]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-nat.c
Switch the license of all .c files to GPLv3.
[thirdparty/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "xcoffsolib.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
30 #include "bfd.h"
31 #include "exceptions.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "inf-ptrace.h"
36 #include "ppc-tdep.h"
37 #include "rs6000-tdep.h"
38 #include "exec.h"
39 #include "gdb_stdint.h"
40 #include "observer.h"
41
42 #include <sys/ptrace.h>
43 #include <sys/reg.h>
44
45 #include <sys/param.h>
46 #include <sys/dir.h>
47 #include <sys/user.h>
48 #include <signal.h>
49 #include <sys/ioctl.h>
50 #include <fcntl.h>
51 #include <errno.h>
52
53 #include <a.out.h>
54 #include <sys/file.h>
55 #include "gdb_stat.h"
56 #include <sys/core.h>
57 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
58 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
59 #include <sys/ldr.h>
60 #include <sys/systemcfg.h>
61
62 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
63 debugging 32-bit and 64-bit processes. Define a typedef and macros for
64 accessing fields in the appropriate structures. */
65
66 /* In 32-bit compilation mode (which is the only mode from which ptrace()
67 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
68
69 #ifdef __ld_info32
70 # define ARCH3264
71 #endif
72
73 /* Return whether the current architecture is 64-bit. */
74
75 #ifndef ARCH3264
76 # define ARCH64() 0
77 #else
78 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
79 #endif
80
81 /* Union of 32-bit and 64-bit versions of ld_info. */
82
83 typedef union {
84 #ifndef ARCH3264
85 struct ld_info l32;
86 struct ld_info l64;
87 #else
88 struct __ld_info32 l32;
89 struct __ld_info64 l64;
90 #endif
91 } LdInfo;
92
93 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
94 declare and initialize a variable named VAR suitable for use as the arch64
95 parameter to the various LDI_*() macros. */
96
97 #ifndef ARCH3264
98 # define ARCH64_DECL(var)
99 #else
100 # define ARCH64_DECL(var) int var = ARCH64 ()
101 #endif
102
103 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
104 otherwise. This technique only works for FIELDs with the same data type in
105 32-bit and 64-bit versions of ld_info. */
106
107 #ifndef ARCH3264
108 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
109 #else
110 # define LDI_FIELD(ldi, arch64, field) \
111 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
112 #endif
113
114 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
115 process otherwise. */
116
117 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
118 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
119 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
120
121 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
122
123 static void vmap_exec (void);
124
125 static void vmap_ldinfo (LdInfo *);
126
127 static struct vmap *add_vmap (LdInfo *);
128
129 static int objfile_symbol_add (void *);
130
131 static void vmap_symtab (struct vmap *);
132
133 static void exec_one_dummy_insn (void);
134
135 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
136
137 /* Given REGNO, a gdb register number, return the corresponding
138 number suitable for use as a ptrace() parameter. Return -1 if
139 there's no suitable mapping. Also, set the int pointed to by
140 ISFLOAT to indicate whether REGNO is a floating point register. */
141
142 static int
143 regmap (int regno, int *isfloat)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146
147 *isfloat = 0;
148 if (tdep->ppc_gp0_regnum <= regno
149 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
150 return regno;
151 else if (tdep->ppc_fp0_regnum >= 0
152 && tdep->ppc_fp0_regnum <= regno
153 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
154 {
155 *isfloat = 1;
156 return regno - tdep->ppc_fp0_regnum + FPR0;
157 }
158 else if (regno == gdbarch_pc_regnum (current_gdbarch))
159 return IAR;
160 else if (regno == tdep->ppc_ps_regnum)
161 return MSR;
162 else if (regno == tdep->ppc_cr_regnum)
163 return CR;
164 else if (regno == tdep->ppc_lr_regnum)
165 return LR;
166 else if (regno == tdep->ppc_ctr_regnum)
167 return CTR;
168 else if (regno == tdep->ppc_xer_regnum)
169 return XER;
170 else if (tdep->ppc_fpscr_regnum >= 0
171 && regno == tdep->ppc_fpscr_regnum)
172 return FPSCR;
173 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
174 return MQ;
175 else
176 return -1;
177 }
178
179 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
180
181 static int
182 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
183 {
184 int ret = ptrace (req, id, (int *)addr, data, buf);
185 #if 0
186 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
187 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
188 #endif
189 return ret;
190 }
191
192 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
193
194 static int
195 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
196 {
197 #ifdef ARCH3264
198 int ret = ptracex (req, id, addr, data, buf);
199 #else
200 int ret = 0;
201 #endif
202 #if 0
203 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
204 req, id, addr, data, (unsigned int)buf, ret);
205 #endif
206 return ret;
207 }
208
209 /* Fetch register REGNO from the inferior. */
210
211 static void
212 fetch_register (struct regcache *regcache, int regno)
213 {
214 int addr[MAX_REGISTER_SIZE];
215 int nr, isfloat;
216
217 /* Retrieved values may be -1, so infer errors from errno. */
218 errno = 0;
219
220 nr = regmap (regno, &isfloat);
221
222 /* Floating-point registers. */
223 if (isfloat)
224 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
225
226 /* Bogus register number. */
227 else if (nr < 0)
228 {
229 if (regno >= gdbarch_num_regs (current_gdbarch))
230 fprintf_unfiltered (gdb_stderr,
231 "gdb error: register no %d not implemented.\n",
232 regno);
233 return;
234 }
235
236 /* Fixed-point registers. */
237 else
238 {
239 if (!ARCH64 ())
240 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
241 else
242 {
243 /* PT_READ_GPR requires the buffer parameter to point to long long,
244 even if the register is really only 32 bits. */
245 long long buf;
246 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
247 if (register_size (current_gdbarch, regno) == 8)
248 memcpy (addr, &buf, 8);
249 else
250 *addr = buf;
251 }
252 }
253
254 if (!errno)
255 regcache_raw_supply (regcache, regno, (char *) addr);
256 else
257 {
258 #if 0
259 /* FIXME: this happens 3 times at the start of each 64-bit program. */
260 perror ("ptrace read");
261 #endif
262 errno = 0;
263 }
264 }
265
266 /* Store register REGNO back into the inferior. */
267
268 static void
269 store_register (const struct regcache *regcache, int regno)
270 {
271 int addr[MAX_REGISTER_SIZE];
272 int nr, isfloat;
273
274 /* Fetch the register's value from the register cache. */
275 regcache_raw_collect (regcache, regno, addr);
276
277 /* -1 can be a successful return value, so infer errors from errno. */
278 errno = 0;
279
280 nr = regmap (regno, &isfloat);
281
282 /* Floating-point registers. */
283 if (isfloat)
284 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
285
286 /* Bogus register number. */
287 else if (nr < 0)
288 {
289 if (regno >= gdbarch_num_regs (current_gdbarch))
290 fprintf_unfiltered (gdb_stderr,
291 "gdb error: register no %d not implemented.\n",
292 regno);
293 }
294
295 /* Fixed-point registers. */
296 else
297 {
298 if (regno == gdbarch_sp_regnum (current_gdbarch))
299 /* Execute one dummy instruction (which is a breakpoint) in inferior
300 process to give kernel a chance to do internal housekeeping.
301 Otherwise the following ptrace(2) calls will mess up user stack
302 since kernel will get confused about the bottom of the stack
303 (%sp). */
304 exec_one_dummy_insn ();
305
306 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
307 the register's value is passed by value, but for 64-bit inferiors,
308 the address of a buffer containing the value is passed. */
309 if (!ARCH64 ())
310 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
311 else
312 {
313 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
314 area, even if the register is really only 32 bits. */
315 long long buf;
316 if (register_size (current_gdbarch, regno) == 8)
317 memcpy (&buf, addr, 8);
318 else
319 buf = *addr;
320 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
321 }
322 }
323
324 if (errno)
325 {
326 perror ("ptrace write");
327 errno = 0;
328 }
329 }
330
331 /* Read from the inferior all registers if REGNO == -1 and just register
332 REGNO otherwise. */
333
334 static void
335 rs6000_fetch_inferior_registers (struct regcache *regcache, int regno)
336 {
337 if (regno != -1)
338 fetch_register (regcache, regno);
339
340 else
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
343
344 /* Read 32 general purpose registers. */
345 for (regno = tdep->ppc_gp0_regnum;
346 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
347 regno++)
348 {
349 fetch_register (regcache, regno);
350 }
351
352 /* Read general purpose floating point registers. */
353 if (tdep->ppc_fp0_regnum >= 0)
354 for (regno = 0; regno < ppc_num_fprs; regno++)
355 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
356
357 /* Read special registers. */
358 fetch_register (regcache, gdbarch_pc_regnum (current_gdbarch));
359 fetch_register (regcache, tdep->ppc_ps_regnum);
360 fetch_register (regcache, tdep->ppc_cr_regnum);
361 fetch_register (regcache, tdep->ppc_lr_regnum);
362 fetch_register (regcache, tdep->ppc_ctr_regnum);
363 fetch_register (regcache, tdep->ppc_xer_regnum);
364 if (tdep->ppc_fpscr_regnum >= 0)
365 fetch_register (regcache, tdep->ppc_fpscr_regnum);
366 if (tdep->ppc_mq_regnum >= 0)
367 fetch_register (regcache, tdep->ppc_mq_regnum);
368 }
369 }
370
371 /* Store our register values back into the inferior.
372 If REGNO is -1, do this for all registers.
373 Otherwise, REGNO specifies which register (so we can save time). */
374
375 static void
376 rs6000_store_inferior_registers (struct regcache *regcache, int regno)
377 {
378 if (regno != -1)
379 store_register (regcache, regno);
380
381 else
382 {
383 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
384
385 /* Write general purpose registers first. */
386 for (regno = tdep->ppc_gp0_regnum;
387 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
388 regno++)
389 {
390 store_register (regcache, regno);
391 }
392
393 /* Write floating point registers. */
394 if (tdep->ppc_fp0_regnum >= 0)
395 for (regno = 0; regno < ppc_num_fprs; regno++)
396 store_register (regcache, tdep->ppc_fp0_regnum + regno);
397
398 /* Write special registers. */
399 store_register (regcache, gdbarch_pc_regnum (current_gdbarch));
400 store_register (regcache, tdep->ppc_ps_regnum);
401 store_register (regcache, tdep->ppc_cr_regnum);
402 store_register (regcache, tdep->ppc_lr_regnum);
403 store_register (regcache, tdep->ppc_ctr_regnum);
404 store_register (regcache, tdep->ppc_xer_regnum);
405 if (tdep->ppc_fpscr_regnum >= 0)
406 store_register (regcache, tdep->ppc_fpscr_regnum);
407 if (tdep->ppc_mq_regnum >= 0)
408 store_register (regcache, tdep->ppc_mq_regnum);
409 }
410 }
411
412
413 /* Attempt a transfer all LEN bytes starting at OFFSET between the
414 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
415 Return the number of bytes actually transferred. */
416
417 static LONGEST
418 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
419 const char *annex, gdb_byte *readbuf,
420 const gdb_byte *writebuf,
421 ULONGEST offset, LONGEST len)
422 {
423 pid_t pid = ptid_get_pid (inferior_ptid);
424 int arch64 = ARCH64 ();
425
426 switch (object)
427 {
428 case TARGET_OBJECT_MEMORY:
429 {
430 union
431 {
432 PTRACE_TYPE_RET word;
433 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
434 } buffer;
435 ULONGEST rounded_offset;
436 LONGEST partial_len;
437
438 /* Round the start offset down to the next long word
439 boundary. */
440 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
441
442 /* Since ptrace will transfer a single word starting at that
443 rounded_offset the partial_len needs to be adjusted down to
444 that (remember this function only does a single transfer).
445 Should the required length be even less, adjust it down
446 again. */
447 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
448 if (partial_len > len)
449 partial_len = len;
450
451 if (writebuf)
452 {
453 /* If OFFSET:PARTIAL_LEN is smaller than
454 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
455 be needed. Read in the entire word. */
456 if (rounded_offset < offset
457 || (offset + partial_len
458 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
459 {
460 /* Need part of initial word -- fetch it. */
461 if (arch64)
462 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
463 rounded_offset, 0, NULL);
464 else
465 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
466 (int *)(uintptr_t)rounded_offset,
467 0, NULL);
468 }
469
470 /* Copy data to be written over corresponding part of
471 buffer. */
472 memcpy (buffer.byte + (offset - rounded_offset),
473 writebuf, partial_len);
474
475 errno = 0;
476 if (arch64)
477 rs6000_ptrace64 (PT_WRITE_D, pid,
478 rounded_offset, buffer.word, NULL);
479 else
480 rs6000_ptrace32 (PT_WRITE_D, pid,
481 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
482 if (errno)
483 return 0;
484 }
485
486 if (readbuf)
487 {
488 errno = 0;
489 if (arch64)
490 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
491 rounded_offset, 0, NULL);
492 else
493 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
494 (int *)(uintptr_t)rounded_offset,
495 0, NULL);
496 if (errno)
497 return 0;
498
499 /* Copy appropriate bytes out of the buffer. */
500 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
501 partial_len);
502 }
503
504 return partial_len;
505 }
506
507 default:
508 return -1;
509 }
510 }
511
512 /* Wait for the child specified by PTID to do something. Return the
513 process ID of the child, or MINUS_ONE_PTID in case of error; store
514 the status in *OURSTATUS. */
515
516 static ptid_t
517 rs6000_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
518 {
519 pid_t pid;
520 int status, save_errno;
521
522 do
523 {
524 set_sigint_trap ();
525 set_sigio_trap ();
526
527 do
528 {
529 pid = waitpid (ptid_get_pid (ptid), &status, 0);
530 save_errno = errno;
531 }
532 while (pid == -1 && errno == EINTR);
533
534 clear_sigio_trap ();
535 clear_sigint_trap ();
536
537 if (pid == -1)
538 {
539 fprintf_unfiltered (gdb_stderr,
540 _("Child process unexpectedly missing: %s.\n"),
541 safe_strerror (save_errno));
542
543 /* Claim it exited with unknown signal. */
544 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
545 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
546 return minus_one_ptid;
547 }
548
549 /* Ignore terminated detached child processes. */
550 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
551 pid = -1;
552 }
553 while (pid == -1);
554
555 /* AIX has a couple of strange returns from wait(). */
556
557 /* stop after load" status. */
558 if (status == 0x57c)
559 ourstatus->kind = TARGET_WAITKIND_LOADED;
560 /* signal 0. I have no idea why wait(2) returns with this status word. */
561 else if (status == 0x7f)
562 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
563 /* A normal waitstatus. Let the usual macros deal with it. */
564 else
565 store_waitstatus (ourstatus, status);
566
567 return pid_to_ptid (pid);
568 }
569
570 /* Execute one dummy breakpoint instruction. This way we give the kernel
571 a chance to do some housekeeping and update inferior's internal data,
572 including u_area. */
573
574 static void
575 exec_one_dummy_insn (void)
576 {
577 #define DUMMY_INSN_ADDR gdbarch_tdep (current_gdbarch)->text_segment_base+0x200
578
579 int ret, status, pid;
580 CORE_ADDR prev_pc;
581 void *bp;
582
583 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
584 assume that this address will never be executed again by the real
585 code. */
586
587 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
588
589 /* You might think this could be done with a single ptrace call, and
590 you'd be correct for just about every platform I've ever worked
591 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
592 the inferior never hits the breakpoint (it's also worth noting
593 powerpc-ibm-aix4.1.3 works correctly). */
594 prev_pc = read_pc ();
595 write_pc (DUMMY_INSN_ADDR);
596 if (ARCH64 ())
597 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
598 else
599 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
600
601 if (ret != 0)
602 perror ("pt_continue");
603
604 do
605 {
606 pid = wait (&status);
607 }
608 while (pid != PIDGET (inferior_ptid));
609
610 write_pc (prev_pc);
611 deprecated_remove_raw_breakpoint (bp);
612 }
613 \f
614
615 /* Copy information about text and data sections from LDI to VP for a 64-bit
616 process if ARCH64 and for a 32-bit process otherwise. */
617
618 static void
619 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
620 {
621 if (arch64)
622 {
623 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
624 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
625 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
626 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
627 }
628 else
629 {
630 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
631 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
632 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
633 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
634 }
635
636 /* The run time loader maps the file header in addition to the text
637 section and returns a pointer to the header in ldinfo_textorg.
638 Adjust the text start address to point to the real start address
639 of the text section. */
640 vp->tstart += vp->toffs;
641 }
642
643 /* handle symbol translation on vmapping */
644
645 static void
646 vmap_symtab (struct vmap *vp)
647 {
648 struct objfile *objfile;
649 struct section_offsets *new_offsets;
650 int i;
651
652 objfile = vp->objfile;
653 if (objfile == NULL)
654 {
655 /* OK, it's not an objfile we opened ourselves.
656 Currently, that can only happen with the exec file, so
657 relocate the symbols for the symfile. */
658 if (symfile_objfile == NULL)
659 return;
660 objfile = symfile_objfile;
661 }
662 else if (!vp->loaded)
663 /* If symbols are not yet loaded, offsets are not yet valid. */
664 return;
665
666 new_offsets =
667 (struct section_offsets *)
668 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
669
670 for (i = 0; i < objfile->num_sections; ++i)
671 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
672
673 /* The symbols in the object file are linked to the VMA of the section,
674 relocate them VMA relative. */
675 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
676 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
677 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
678
679 objfile_relocate (objfile, new_offsets);
680 }
681 \f
682 /* Add symbols for an objfile. */
683
684 static int
685 objfile_symbol_add (void *arg)
686 {
687 struct objfile *obj = (struct objfile *) arg;
688
689 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
690 new_symfile_objfile (obj, 0, 0);
691 return 1;
692 }
693
694 /* Add symbols for a vmap. Return zero upon error. */
695
696 int
697 vmap_add_symbols (struct vmap *vp)
698 {
699 if (catch_errors (objfile_symbol_add, vp->objfile,
700 "Error while reading shared library symbols:\n",
701 RETURN_MASK_ALL))
702 {
703 /* Note this is only done if symbol reading was successful. */
704 vp->loaded = 1;
705 vmap_symtab (vp);
706 return 1;
707 }
708 return 0;
709 }
710
711 /* Add a new vmap entry based on ldinfo() information.
712
713 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
714 core file), the caller should set it to -1, and we will open the file.
715
716 Return the vmap new entry. */
717
718 static struct vmap *
719 add_vmap (LdInfo *ldi)
720 {
721 bfd *abfd, *last;
722 char *mem, *objname, *filename;
723 struct objfile *obj;
724 struct vmap *vp;
725 int fd;
726 ARCH64_DECL (arch64);
727
728 /* This ldi structure was allocated using alloca() in
729 xcoff_relocate_symtab(). Now we need to have persistent object
730 and member names, so we should save them. */
731
732 filename = LDI_FILENAME (ldi, arch64);
733 mem = filename + strlen (filename) + 1;
734 mem = savestring (mem, strlen (mem));
735 objname = savestring (filename, strlen (filename));
736
737 fd = LDI_FD (ldi, arch64);
738 if (fd < 0)
739 /* Note that this opens it once for every member; a possible
740 enhancement would be to only open it once for every object. */
741 abfd = bfd_openr (objname, gnutarget);
742 else
743 abfd = bfd_fdopenr (objname, gnutarget, fd);
744 if (!abfd)
745 {
746 warning (_("Could not open `%s' as an executable file: %s"),
747 objname, bfd_errmsg (bfd_get_error ()));
748 return NULL;
749 }
750
751 /* make sure we have an object file */
752
753 if (bfd_check_format (abfd, bfd_object))
754 vp = map_vmap (abfd, 0);
755
756 else if (bfd_check_format (abfd, bfd_archive))
757 {
758 last = 0;
759 /* FIXME??? am I tossing BFDs? bfd? */
760 while ((last = bfd_openr_next_archived_file (abfd, last)))
761 if (DEPRECATED_STREQ (mem, last->filename))
762 break;
763
764 if (!last)
765 {
766 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
767 bfd_close (abfd);
768 return NULL;
769 }
770
771 if (!bfd_check_format (last, bfd_object))
772 {
773 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
774 objname, mem, bfd_errmsg (bfd_get_error ()));
775 bfd_close (last);
776 bfd_close (abfd);
777 return NULL;
778 }
779
780 vp = map_vmap (last, abfd);
781 }
782 else
783 {
784 warning (_("\"%s\": not in executable format: %s."),
785 objname, bfd_errmsg (bfd_get_error ()));
786 bfd_close (abfd);
787 return NULL;
788 }
789 obj = allocate_objfile (vp->bfd, 0);
790 vp->objfile = obj;
791
792 /* Always add symbols for the main objfile. */
793 if (vp == vmap || auto_solib_add)
794 vmap_add_symbols (vp);
795 return vp;
796 }
797 \f
798 /* update VMAP info with ldinfo() information
799 Input is ptr to ldinfo() results. */
800
801 static void
802 vmap_ldinfo (LdInfo *ldi)
803 {
804 struct stat ii, vi;
805 struct vmap *vp;
806 int got_one, retried;
807 int got_exec_file = 0;
808 uint next;
809 int arch64 = ARCH64 ();
810
811 /* For each *ldi, see if we have a corresponding *vp.
812 If so, update the mapping, and symbol table.
813 If not, add an entry and symbol table. */
814
815 do
816 {
817 char *name = LDI_FILENAME (ldi, arch64);
818 char *memb = name + strlen (name) + 1;
819 int fd = LDI_FD (ldi, arch64);
820
821 retried = 0;
822
823 if (fstat (fd, &ii) < 0)
824 {
825 /* The kernel sets ld_info to -1, if the process is still using the
826 object, and the object is removed. Keep the symbol info for the
827 removed object and issue a warning. */
828 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
829 name, fd);
830 continue;
831 }
832 retry:
833 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
834 {
835 struct objfile *objfile;
836
837 /* First try to find a `vp', which is the same as in ldinfo.
838 If not the same, just continue and grep the next `vp'. If same,
839 relocate its tstart, tend, dstart, dend values. If no such `vp'
840 found, get out of this for loop, add this ldi entry as a new vmap
841 (add_vmap) and come back, find its `vp' and so on... */
842
843 /* The filenames are not always sufficient to match on. */
844
845 if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
846 || (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
847 continue;
848
849 /* See if we are referring to the same file.
850 We have to check objfile->obfd, symfile.c:reread_symbols might
851 have updated the obfd after a change. */
852 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
853 if (objfile == NULL
854 || objfile->obfd == NULL
855 || bfd_stat (objfile->obfd, &vi) < 0)
856 {
857 warning (_("Unable to stat %s, keeping its symbols"), name);
858 continue;
859 }
860
861 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
862 continue;
863
864 if (!retried)
865 close (fd);
866
867 ++got_one;
868
869 /* Found a corresponding VMAP. Remap! */
870
871 vmap_secs (vp, ldi, arch64);
872
873 /* The objfile is only NULL for the exec file. */
874 if (vp->objfile == NULL)
875 got_exec_file = 1;
876
877 /* relocate symbol table(s). */
878 vmap_symtab (vp);
879
880 /* Announce new object files. Doing this after symbol relocation
881 makes aix-thread.c's job easier. */
882 if (vp->objfile)
883 observer_notify_new_objfile (vp->objfile);
884
885 /* There may be more, so we don't break out of the loop. */
886 }
887
888 /* if there was no matching *vp, we must perforce create the sucker(s) */
889 if (!got_one && !retried)
890 {
891 add_vmap (ldi);
892 ++retried;
893 goto retry;
894 }
895 }
896 while ((next = LDI_NEXT (ldi, arch64))
897 && (ldi = (void *) (next + (char *) ldi)));
898
899 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
900 is unlikely that the symbol file is relocated to the proper
901 address. And we might have attached to a process which is
902 running a different copy of the same executable. */
903 if (symfile_objfile != NULL && !got_exec_file)
904 {
905 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
906 If in fact that file has symbols which the mapped files listed by\n\
907 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
908 \"add-symbol-file\" commands (note that you must take care of relocating\n\
909 symbols to the proper address)."),
910 symfile_objfile->name);
911 free_objfile (symfile_objfile);
912 symfile_objfile = NULL;
913 }
914 breakpoint_re_set ();
915 }
916 \f
917 /* As well as symbol tables, exec_sections need relocation. After
918 the inferior process' termination, there will be a relocated symbol
919 table exist with no corresponding inferior process. At that time, we
920 need to use `exec' bfd, rather than the inferior process's memory space
921 to look up symbols.
922
923 `exec_sections' need to be relocated only once, as long as the exec
924 file remains unchanged.
925 */
926
927 static void
928 vmap_exec (void)
929 {
930 static bfd *execbfd;
931 int i;
932
933 if (execbfd == exec_bfd)
934 return;
935
936 execbfd = exec_bfd;
937
938 if (!vmap || !exec_ops.to_sections)
939 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
940
941 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
942 {
943 if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
944 {
945 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
946 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
947 }
948 else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
949 {
950 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
951 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
952 }
953 else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
954 {
955 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
956 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
957 }
958 }
959 }
960
961 /* Set the current architecture from the host running GDB. Called when
962 starting a child process. */
963
964 static void (*super_create_inferior) (char *exec_file, char *allargs,
965 char **env, int from_tty);
966 static void
967 rs6000_create_inferior (char *exec_file, char *allargs, char **env, int from_tty)
968 {
969 enum bfd_architecture arch;
970 unsigned long mach;
971 bfd abfd;
972 struct gdbarch_info info;
973
974 super_create_inferior (exec_file, allargs, env, from_tty);
975
976 if (__power_rs ())
977 {
978 arch = bfd_arch_rs6000;
979 mach = bfd_mach_rs6k;
980 }
981 else
982 {
983 arch = bfd_arch_powerpc;
984 mach = bfd_mach_ppc;
985 }
986
987 /* FIXME: schauer/2002-02-25:
988 We don't know if we are executing a 32 or 64 bit executable,
989 and have no way to pass the proper word size to rs6000_gdbarch_init.
990 So we have to avoid switching to a new architecture, if the architecture
991 matches already.
992 Blindly calling rs6000_gdbarch_init used to work in older versions of
993 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
994 determine the wordsize. */
995 if (exec_bfd)
996 {
997 const struct bfd_arch_info *exec_bfd_arch_info;
998
999 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1000 if (arch == exec_bfd_arch_info->arch)
1001 return;
1002 }
1003
1004 bfd_default_set_arch_mach (&abfd, arch, mach);
1005
1006 gdbarch_info_init (&info);
1007 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1008 info.abfd = exec_bfd;
1009
1010 if (!gdbarch_update_p (info))
1011 internal_error (__FILE__, __LINE__,
1012 _("rs6000_create_inferior: failed to select architecture"));
1013 }
1014
1015 \f
1016 /* xcoff_relocate_symtab - hook for symbol table relocation.
1017
1018 This is only applicable to live processes, and is a no-op when
1019 debugging a core file. */
1020
1021 void
1022 xcoff_relocate_symtab (unsigned int pid)
1023 {
1024 int load_segs = 64; /* number of load segments */
1025 int rc;
1026 LdInfo *ldi = NULL;
1027 int arch64 = ARCH64 ();
1028 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1029 int size;
1030
1031 if (ptid_equal (inferior_ptid, null_ptid))
1032 return;
1033
1034 do
1035 {
1036 size = load_segs * ldisize;
1037 ldi = (void *) xrealloc (ldi, size);
1038
1039 #if 0
1040 /* According to my humble theory, AIX has some timing problems and
1041 when the user stack grows, kernel doesn't update stack info in time
1042 and ptrace calls step on user stack. That is why we sleep here a
1043 little, and give kernel to update its internals. */
1044 usleep (36000);
1045 #endif
1046
1047 if (arch64)
1048 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1049 else
1050 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1051
1052 if (rc == -1)
1053 {
1054 if (errno == ENOMEM)
1055 load_segs *= 2;
1056 else
1057 perror_with_name (_("ptrace ldinfo"));
1058 }
1059 else
1060 {
1061 vmap_ldinfo (ldi);
1062 vmap_exec (); /* relocate the exec and core sections as well. */
1063 }
1064 } while (rc == -1);
1065 if (ldi)
1066 xfree (ldi);
1067 }
1068 \f
1069 /* Core file stuff. */
1070
1071 /* Relocate symtabs and read in shared library info, based on symbols
1072 from the core file. */
1073
1074 void
1075 xcoff_relocate_core (struct target_ops *target)
1076 {
1077 struct bfd_section *ldinfo_sec;
1078 int offset = 0;
1079 LdInfo *ldi;
1080 struct vmap *vp;
1081 int arch64 = ARCH64 ();
1082
1083 /* Size of a struct ld_info except for the variable-length filename. */
1084 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1085
1086 /* Allocated size of buffer. */
1087 int buffer_size = nonfilesz;
1088 char *buffer = xmalloc (buffer_size);
1089 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1090
1091 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1092 if (ldinfo_sec == NULL)
1093 {
1094 bfd_err:
1095 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1096 bfd_errmsg (bfd_get_error ()));
1097 do_cleanups (old);
1098 return;
1099 }
1100 do
1101 {
1102 int i;
1103 int names_found = 0;
1104
1105 /* Read in everything but the name. */
1106 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1107 offset, nonfilesz) == 0)
1108 goto bfd_err;
1109
1110 /* Now the name. */
1111 i = nonfilesz;
1112 do
1113 {
1114 if (i == buffer_size)
1115 {
1116 buffer_size *= 2;
1117 buffer = xrealloc (buffer, buffer_size);
1118 }
1119 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1120 offset + i, 1) == 0)
1121 goto bfd_err;
1122 if (buffer[i++] == '\0')
1123 ++names_found;
1124 }
1125 while (names_found < 2);
1126
1127 ldi = (LdInfo *) buffer;
1128
1129 /* Can't use a file descriptor from the core file; need to open it. */
1130 if (arch64)
1131 ldi->l64.ldinfo_fd = -1;
1132 else
1133 ldi->l32.ldinfo_fd = -1;
1134
1135 /* The first ldinfo is for the exec file, allocated elsewhere. */
1136 if (offset == 0 && vmap != NULL)
1137 vp = vmap;
1138 else
1139 vp = add_vmap (ldi);
1140
1141 /* Process next shared library upon error. */
1142 offset += LDI_NEXT (ldi, arch64);
1143 if (vp == NULL)
1144 continue;
1145
1146 vmap_secs (vp, ldi, arch64);
1147
1148 /* Unless this is the exec file,
1149 add our sections to the section table for the core target. */
1150 if (vp != vmap)
1151 {
1152 struct section_table *stp;
1153
1154 target_resize_to_sections (target, 2);
1155 stp = target->to_sections_end - 2;
1156
1157 stp->bfd = vp->bfd;
1158 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1159 stp->addr = vp->tstart;
1160 stp->endaddr = vp->tend;
1161 stp++;
1162
1163 stp->bfd = vp->bfd;
1164 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1165 stp->addr = vp->dstart;
1166 stp->endaddr = vp->dend;
1167 }
1168
1169 vmap_symtab (vp);
1170
1171 if (vp != vmap && vp->objfile)
1172 observer_notify_new_objfile (vp->objfile);
1173 }
1174 while (LDI_NEXT (ldi, arch64) != 0);
1175 vmap_exec ();
1176 breakpoint_re_set ();
1177 do_cleanups (old);
1178 }
1179 \f
1180 /* Under AIX, we have to pass the correct TOC pointer to a function
1181 when calling functions in the inferior.
1182 We try to find the relative toc offset of the objfile containing PC
1183 and add the current load address of the data segment from the vmap. */
1184
1185 static CORE_ADDR
1186 find_toc_address (CORE_ADDR pc)
1187 {
1188 struct vmap *vp;
1189 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1190
1191 for (vp = vmap; vp; vp = vp->nxt)
1192 {
1193 if (pc >= vp->tstart && pc < vp->tend)
1194 {
1195 /* vp->objfile is only NULL for the exec file. */
1196 return vp->dstart + get_toc_offset (vp->objfile == NULL
1197 ? symfile_objfile
1198 : vp->objfile);
1199 }
1200 }
1201 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1202 }
1203 \f
1204
1205 void
1206 _initialize_rs6000_nat (void)
1207 {
1208 struct target_ops *t;
1209
1210 t = inf_ptrace_target ();
1211 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1212 t->to_store_registers = rs6000_store_inferior_registers;
1213 t->to_xfer_partial = rs6000_xfer_partial;
1214
1215 super_create_inferior = t->to_create_inferior;
1216 t->to_create_inferior = rs6000_create_inferior;
1217
1218 t->to_wait = rs6000_wait;
1219
1220 add_target (t);
1221
1222 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1223 when calling functions in the inferior. */
1224 rs6000_find_toc_address_hook = find_toc_address;
1225 }