]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
2007-05-31 Markus Deuling <deuling@de.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43 #include "dwarf2-frame.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52
53 #include "solib-svr4.h"
54 #include "ppc-tdep.h"
55
56 #include "gdb_assert.h"
57 #include "dis-asm.h"
58
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
62
63 #include "rs6000-tdep.h"
64
65 /* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72 #define SIG_FRAME_PC_OFFSET 96
73 #define SIG_FRAME_LR_OFFSET 108
74 #define SIG_FRAME_FP_OFFSET 284
75
76 /* To be used by skip_prologue. */
77
78 struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
85 int saved_vr; /* smallest # of saved vr */
86 int saved_ev; /* smallest # of saved ev */
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
92 int vr_offset; /* offset of saved vrs from prev sp */
93 int ev_offset; /* offset of saved evs from prev sp */
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
96 int vrsave_offset; /* offset of saved vrsave register */
97 };
98
99 /* Description of a single register. */
100
101 struct reg
102 {
103 char *name; /* name of register */
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
106 unsigned char fpr; /* whether register is floating-point */
107 unsigned char pseudo; /* whether register is pseudo */
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
111 };
112
113 /* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
117 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
119 /* Static function prototypes */
120
121 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137
138 /* Return true if REGNO is an SPE register, false otherwise. */
139 int
140 spe_register_p (int regno)
141 {
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168 }
169
170
171 /* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
173 int
174 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
180 }
181
182
183 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
190 static void
191 set_sim_regno (int *table, int gdb_regno, int sim_regno)
192 {
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197 }
198
199
200 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
203 static void
204 init_sim_regno_table (struct gdbarch *arch)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281 }
282
283
284 /* Given a GDB register number REG, return the corresponding SIM
285 register number. */
286 static int
287 rs6000_register_sim_regno (int reg)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
292 gdb_assert (0 <= reg
293 && reg <= gdbarch_num_regs (current_gdbarch)
294 + gdbarch_num_pseudo_regs (current_gdbarch));
295 sim_regno = tdep->sim_regno[reg];
296
297 if (sim_regno >= 0)
298 return sim_regno;
299 else
300 return LEGACY_SIM_REGNO_IGNORE;
301 }
302
303 \f
304
305 /* Register set support functions. */
306
307 static void
308 ppc_supply_reg (struct regcache *regcache, int regnum,
309 const gdb_byte *regs, size_t offset)
310 {
311 if (regnum != -1 && offset != -1)
312 regcache_raw_supply (regcache, regnum, regs + offset);
313 }
314
315 static void
316 ppc_collect_reg (const struct regcache *regcache, int regnum,
317 gdb_byte *regs, size_t offset)
318 {
319 if (regnum != -1 && offset != -1)
320 regcache_raw_collect (regcache, regnum, regs + offset);
321 }
322
323 /* Supply register REGNUM in the general-purpose register set REGSET
324 from the buffer specified by GREGS and LEN to register cache
325 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
326
327 void
328 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
329 int regnum, const void *gregs, size_t len)
330 {
331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 const struct ppc_reg_offsets *offsets = regset->descr;
334 size_t offset;
335 int i;
336
337 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
338 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
339 i++, offset += 4)
340 {
341 if (regnum == -1 || regnum == i)
342 ppc_supply_reg (regcache, i, gregs, offset);
343 }
344
345 if (regnum == -1 || regnum == PC_REGNUM)
346 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
347 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
348 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
349 gregs, offsets->ps_offset);
350 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
351 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
352 gregs, offsets->cr_offset);
353 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
354 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
355 gregs, offsets->lr_offset);
356 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
357 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
358 gregs, offsets->ctr_offset);
359 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
360 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
361 gregs, offsets->cr_offset);
362 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
363 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
364 }
365
366 /* Supply register REGNUM in the floating-point register set REGSET
367 from the buffer specified by FPREGS and LEN to register cache
368 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
369
370 void
371 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
372 int regnum, const void *fpregs, size_t len)
373 {
374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
376 const struct ppc_reg_offsets *offsets = regset->descr;
377 size_t offset;
378 int i;
379
380 gdb_assert (ppc_floating_point_unit_p (gdbarch));
381
382 offset = offsets->f0_offset;
383 for (i = tdep->ppc_fp0_regnum;
384 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
385 i++, offset += 8)
386 {
387 if (regnum == -1 || regnum == i)
388 ppc_supply_reg (regcache, i, fpregs, offset);
389 }
390
391 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
392 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
393 fpregs, offsets->fpscr_offset);
394 }
395
396 /* Collect register REGNUM in the general-purpose register set
397 REGSET. from register cache REGCACHE into the buffer specified by
398 GREGS and LEN. If REGNUM is -1, do this for all registers in
399 REGSET. */
400
401 void
402 ppc_collect_gregset (const struct regset *regset,
403 const struct regcache *regcache,
404 int regnum, void *gregs, size_t len)
405 {
406 struct gdbarch *gdbarch = get_regcache_arch (regcache);
407 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
408 const struct ppc_reg_offsets *offsets = regset->descr;
409 size_t offset;
410 int i;
411
412 offset = offsets->r0_offset;
413 for (i = tdep->ppc_gp0_regnum;
414 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
415 i++, offset += 4)
416 {
417 if (regnum == -1 || regnum == i)
418 ppc_collect_reg (regcache, i, gregs, offset);
419 }
420
421 if (regnum == -1 || regnum == PC_REGNUM)
422 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
423 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
424 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
425 gregs, offsets->ps_offset);
426 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
427 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
428 gregs, offsets->cr_offset);
429 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
430 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
431 gregs, offsets->lr_offset);
432 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
433 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
434 gregs, offsets->ctr_offset);
435 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
436 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
437 gregs, offsets->xer_offset);
438 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
439 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
440 gregs, offsets->mq_offset);
441 }
442
443 /* Collect register REGNUM in the floating-point register set
444 REGSET. from register cache REGCACHE into the buffer specified by
445 FPREGS and LEN. If REGNUM is -1, do this for all registers in
446 REGSET. */
447
448 void
449 ppc_collect_fpregset (const struct regset *regset,
450 const struct regcache *regcache,
451 int regnum, void *fpregs, size_t len)
452 {
453 struct gdbarch *gdbarch = get_regcache_arch (regcache);
454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455 const struct ppc_reg_offsets *offsets = regset->descr;
456 size_t offset;
457 int i;
458
459 gdb_assert (ppc_floating_point_unit_p (gdbarch));
460
461 offset = offsets->f0_offset;
462 for (i = tdep->ppc_fp0_regnum;
463 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
464 i++, offset += 8)
465 {
466 if (regnum == -1 || regnum == i)
467 ppc_collect_reg (regcache, i, fpregs, offset);
468 }
469
470 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
471 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
472 fpregs, offsets->fpscr_offset);
473 }
474 \f
475
476 /* Read a LEN-byte address from debugged memory address MEMADDR. */
477
478 static CORE_ADDR
479 read_memory_addr (CORE_ADDR memaddr, int len)
480 {
481 return read_memory_unsigned_integer (memaddr, len);
482 }
483
484 static CORE_ADDR
485 rs6000_skip_prologue (CORE_ADDR pc)
486 {
487 struct rs6000_framedata frame;
488 CORE_ADDR limit_pc, func_addr;
489
490 /* See if we can determine the end of the prologue via the symbol table.
491 If so, then return either PC, or the PC after the prologue, whichever
492 is greater. */
493 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
494 {
495 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
496 if (post_prologue_pc != 0)
497 return max (pc, post_prologue_pc);
498 }
499
500 /* Can't determine prologue from the symbol table, need to examine
501 instructions. */
502
503 /* Find an upper limit on the function prologue using the debug
504 information. If the debug information could not be used to provide
505 that bound, then use an arbitrary large number as the upper bound. */
506 limit_pc = skip_prologue_using_sal (pc);
507 if (limit_pc == 0)
508 limit_pc = pc + 100; /* Magic. */
509
510 pc = skip_prologue (pc, limit_pc, &frame);
511 return pc;
512 }
513
514 static int
515 insn_changes_sp_or_jumps (unsigned long insn)
516 {
517 int opcode = (insn >> 26) & 0x03f;
518 int sd = (insn >> 21) & 0x01f;
519 int a = (insn >> 16) & 0x01f;
520 int subcode = (insn >> 1) & 0x3ff;
521
522 /* Changes the stack pointer. */
523
524 /* NOTE: There are many ways to change the value of a given register.
525 The ways below are those used when the register is R1, the SP,
526 in a funtion's epilogue. */
527
528 if (opcode == 31 && subcode == 444 && a == 1)
529 return 1; /* mr R1,Rn */
530 if (opcode == 14 && sd == 1)
531 return 1; /* addi R1,Rn,simm */
532 if (opcode == 58 && sd == 1)
533 return 1; /* ld R1,ds(Rn) */
534
535 /* Transfers control. */
536
537 if (opcode == 18)
538 return 1; /* b */
539 if (opcode == 16)
540 return 1; /* bc */
541 if (opcode == 19 && subcode == 16)
542 return 1; /* bclr */
543 if (opcode == 19 && subcode == 528)
544 return 1; /* bcctr */
545
546 return 0;
547 }
548
549 /* Return true if we are in the function's epilogue, i.e. after the
550 instruction that destroyed the function's stack frame.
551
552 1) scan forward from the point of execution:
553 a) If you find an instruction that modifies the stack pointer
554 or transfers control (except a return), execution is not in
555 an epilogue, return.
556 b) Stop scanning if you find a return instruction or reach the
557 end of the function or reach the hard limit for the size of
558 an epilogue.
559 2) scan backward from the point of execution:
560 a) If you find an instruction that modifies the stack pointer,
561 execution *is* in an epilogue, return.
562 b) Stop scanning if you reach an instruction that transfers
563 control or the beginning of the function or reach the hard
564 limit for the size of an epilogue. */
565
566 static int
567 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
568 {
569 bfd_byte insn_buf[PPC_INSN_SIZE];
570 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
571 unsigned long insn;
572 struct frame_info *curfrm;
573
574 /* Find the search limits based on function boundaries and hard limit. */
575
576 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
577 return 0;
578
579 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
580 if (epilogue_start < func_start) epilogue_start = func_start;
581
582 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
583 if (epilogue_end > func_end) epilogue_end = func_end;
584
585 curfrm = get_current_frame ();
586
587 /* Scan forward until next 'blr'. */
588
589 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
590 {
591 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
592 return 0;
593 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
594 if (insn == 0x4e800020)
595 break;
596 if (insn_changes_sp_or_jumps (insn))
597 return 0;
598 }
599
600 /* Scan backward until adjustment to stack pointer (R1). */
601
602 for (scan_pc = pc - PPC_INSN_SIZE;
603 scan_pc >= epilogue_start;
604 scan_pc -= PPC_INSN_SIZE)
605 {
606 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
607 return 0;
608 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
609 if (insn_changes_sp_or_jumps (insn))
610 return 1;
611 }
612
613 return 0;
614 }
615
616 /* Get the ith function argument for the current function. */
617 static CORE_ADDR
618 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
619 struct type *type)
620 {
621 return get_frame_register_unsigned (frame, 3 + argi);
622 }
623
624 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
625
626 static CORE_ADDR
627 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
628 {
629 CORE_ADDR dest;
630 int immediate;
631 int absolute;
632 int ext_op;
633
634 absolute = (int) ((instr >> 1) & 1);
635
636 switch (opcode)
637 {
638 case 18:
639 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
640 if (absolute)
641 dest = immediate;
642 else
643 dest = pc + immediate;
644 break;
645
646 case 16:
647 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
648 if (absolute)
649 dest = immediate;
650 else
651 dest = pc + immediate;
652 break;
653
654 case 19:
655 ext_op = (instr >> 1) & 0x3ff;
656
657 if (ext_op == 16) /* br conditional register */
658 {
659 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
660
661 /* If we are about to return from a signal handler, dest is
662 something like 0x3c90. The current frame is a signal handler
663 caller frame, upon completion of the sigreturn system call
664 execution will return to the saved PC in the frame. */
665 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
666 {
667 struct frame_info *fi;
668
669 fi = get_current_frame ();
670 if (fi != NULL)
671 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
672 gdbarch_tdep (current_gdbarch)->wordsize);
673 }
674 }
675
676 else if (ext_op == 528) /* br cond to count reg */
677 {
678 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
679
680 /* If we are about to execute a system call, dest is something
681 like 0x22fc or 0x3b00. Upon completion the system call
682 will return to the address in the link register. */
683 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
684 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
685 }
686 else
687 return -1;
688 break;
689
690 default:
691 return -1;
692 }
693 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
694 }
695
696
697 /* Sequence of bytes for breakpoint instruction. */
698
699 const static unsigned char *
700 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
701 {
702 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
703 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
704 *bp_size = 4;
705 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
706 return big_breakpoint;
707 else
708 return little_breakpoint;
709 }
710
711
712 /* Instruction masks used during single-stepping of atomic sequences. */
713 #define LWARX_MASK 0xfc0007fe
714 #define LWARX_INSTRUCTION 0x7c000028
715 #define LDARX_INSTRUCTION 0x7c0000A8
716 #define STWCX_MASK 0xfc0007ff
717 #define STWCX_INSTRUCTION 0x7c00012d
718 #define STDCX_INSTRUCTION 0x7c0001ad
719 #define BC_MASK 0xfc000000
720 #define BC_INSTRUCTION 0x40000000
721
722 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
723 instruction and ending with a STWCX/STDCX instruction. If such a sequence
724 is found, attempt to step through it. A breakpoint is placed at the end of
725 the sequence. */
726
727 static int
728 deal_with_atomic_sequence (struct regcache *regcache)
729 {
730 CORE_ADDR pc = read_pc ();
731 CORE_ADDR breaks[2] = {-1, -1};
732 CORE_ADDR loc = pc;
733 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
734 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
735 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
736 int insn_count;
737 int index;
738 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
739 const int atomic_sequence_length = 16; /* Instruction sequence length. */
740 int opcode; /* Branch instruction's OPcode. */
741 int bc_insn_count = 0; /* Conditional branch instruction count. */
742
743 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
744 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
745 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
746 return 0;
747
748 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
749 instructions. */
750 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
751 {
752 loc += PPC_INSN_SIZE;
753 insn = read_memory_integer (loc, PPC_INSN_SIZE);
754
755 /* Assume that there is at most one conditional branch in the atomic
756 sequence. If a conditional branch is found, put a breakpoint in
757 its destination address. */
758 if ((insn & BC_MASK) == BC_INSTRUCTION)
759 {
760 if (bc_insn_count >= 1)
761 return 0; /* More than one conditional branch found, fallback
762 to the standard single-step code. */
763
764 opcode = insn >> 26;
765 branch_bp = branch_dest (opcode, insn, pc, breaks[0]);
766
767 if (branch_bp != -1)
768 {
769 breaks[1] = branch_bp;
770 bc_insn_count++;
771 last_breakpoint++;
772 }
773 }
774
775 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
776 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
777 break;
778 }
779
780 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
781 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
782 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
783 return 0;
784
785 closing_insn = loc;
786 loc += PPC_INSN_SIZE;
787 insn = read_memory_integer (loc, PPC_INSN_SIZE);
788
789 /* Insert a breakpoint right after the end of the atomic sequence. */
790 breaks[0] = loc;
791
792 /* Check for duplicated breakpoints. Check also for a breakpoint
793 placed (branch instruction's destination) at the stwcx/stdcx
794 instruction, this resets the reservation and take us back to the
795 lwarx/ldarx instruction at the beginning of the atomic sequence. */
796 if (last_breakpoint && ((breaks[1] == breaks[0])
797 || (breaks[1] == closing_insn)))
798 last_breakpoint = 0;
799
800 /* Effectively inserts the breakpoints. */
801 for (index = 0; index <= last_breakpoint; index++)
802 insert_single_step_breakpoint (breaks[index]);
803
804 return 1;
805 }
806
807 /* AIX does not support PT_STEP. Simulate it. */
808
809 int
810 rs6000_software_single_step (struct regcache *regcache)
811 {
812 CORE_ADDR dummy;
813 int breakp_sz;
814 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
815 int ii, insn;
816 CORE_ADDR loc;
817 CORE_ADDR breaks[2];
818 int opcode;
819
820 loc = read_pc ();
821
822 insn = read_memory_integer (loc, 4);
823
824 if (deal_with_atomic_sequence (regcache))
825 return 1;
826
827 breaks[0] = loc + breakp_sz;
828 opcode = insn >> 26;
829 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
830
831 /* Don't put two breakpoints on the same address. */
832 if (breaks[1] == breaks[0])
833 breaks[1] = -1;
834
835 for (ii = 0; ii < 2; ++ii)
836 {
837 /* ignore invalid breakpoint. */
838 if (breaks[ii] == -1)
839 continue;
840 insert_single_step_breakpoint (breaks[ii]);
841 }
842
843 errno = 0; /* FIXME, don't ignore errors! */
844 /* What errors? {read,write}_memory call error(). */
845 return 1;
846 }
847
848
849 /* return pc value after skipping a function prologue and also return
850 information about a function frame.
851
852 in struct rs6000_framedata fdata:
853 - frameless is TRUE, if function does not have a frame.
854 - nosavedpc is TRUE, if function does not save %pc value in its frame.
855 - offset is the initial size of this stack frame --- the amount by
856 which we decrement the sp to allocate the frame.
857 - saved_gpr is the number of the first saved gpr.
858 - saved_fpr is the number of the first saved fpr.
859 - saved_vr is the number of the first saved vr.
860 - saved_ev is the number of the first saved ev.
861 - alloca_reg is the number of the register used for alloca() handling.
862 Otherwise -1.
863 - gpr_offset is the offset of the first saved gpr from the previous frame.
864 - fpr_offset is the offset of the first saved fpr from the previous frame.
865 - vr_offset is the offset of the first saved vr from the previous frame.
866 - ev_offset is the offset of the first saved ev from the previous frame.
867 - lr_offset is the offset of the saved lr
868 - cr_offset is the offset of the saved cr
869 - vrsave_offset is the offset of the saved vrsave register
870 */
871
872 #define SIGNED_SHORT(x) \
873 ((sizeof (short) == 2) \
874 ? ((int)(short)(x)) \
875 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
876
877 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
878
879 /* Limit the number of skipped non-prologue instructions, as the examining
880 of the prologue is expensive. */
881 static int max_skip_non_prologue_insns = 10;
882
883 /* Return nonzero if the given instruction OP can be part of the prologue
884 of a function and saves a parameter on the stack. FRAMEP should be
885 set if one of the previous instructions in the function has set the
886 Frame Pointer. */
887
888 static int
889 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
890 {
891 /* Move parameters from argument registers to temporary register. */
892 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
893 {
894 /* Rx must be scratch register r0. */
895 const int rx_regno = (op >> 16) & 31;
896 /* Ry: Only r3 - r10 are used for parameter passing. */
897 const int ry_regno = GET_SRC_REG (op);
898
899 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
900 {
901 *r0_contains_arg = 1;
902 return 1;
903 }
904 else
905 return 0;
906 }
907
908 /* Save a General Purpose Register on stack. */
909
910 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
911 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
912 {
913 /* Rx: Only r3 - r10 are used for parameter passing. */
914 const int rx_regno = GET_SRC_REG (op);
915
916 return (rx_regno >= 3 && rx_regno <= 10);
917 }
918
919 /* Save a General Purpose Register on stack via the Frame Pointer. */
920
921 if (framep &&
922 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
923 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
924 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
925 {
926 /* Rx: Usually, only r3 - r10 are used for parameter passing.
927 However, the compiler sometimes uses r0 to hold an argument. */
928 const int rx_regno = GET_SRC_REG (op);
929
930 return ((rx_regno >= 3 && rx_regno <= 10)
931 || (rx_regno == 0 && *r0_contains_arg));
932 }
933
934 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
935 {
936 /* Only f2 - f8 are used for parameter passing. */
937 const int src_regno = GET_SRC_REG (op);
938
939 return (src_regno >= 2 && src_regno <= 8);
940 }
941
942 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
943 {
944 /* Only f2 - f8 are used for parameter passing. */
945 const int src_regno = GET_SRC_REG (op);
946
947 return (src_regno >= 2 && src_regno <= 8);
948 }
949
950 /* Not an insn that saves a parameter on stack. */
951 return 0;
952 }
953
954 /* Assuming that INSN is a "bl" instruction located at PC, return
955 nonzero if the destination of the branch is a "blrl" instruction.
956
957 This sequence is sometimes found in certain function prologues.
958 It allows the function to load the LR register with a value that
959 they can use to access PIC data using PC-relative offsets. */
960
961 static int
962 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
963 {
964 const int opcode = 18;
965 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
966 int dest_insn;
967
968 if (dest == -1)
969 return 0; /* Should never happen, but just return zero to be safe. */
970
971 dest_insn = read_memory_integer (dest, 4);
972 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
973 return 1;
974
975 return 0;
976 }
977
978 static CORE_ADDR
979 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
980 {
981 CORE_ADDR orig_pc = pc;
982 CORE_ADDR last_prologue_pc = pc;
983 CORE_ADDR li_found_pc = 0;
984 gdb_byte buf[4];
985 unsigned long op;
986 long offset = 0;
987 long vr_saved_offset = 0;
988 int lr_reg = -1;
989 int cr_reg = -1;
990 int vr_reg = -1;
991 int ev_reg = -1;
992 long ev_offset = 0;
993 int vrsave_reg = -1;
994 int reg;
995 int framep = 0;
996 int minimal_toc_loaded = 0;
997 int prev_insn_was_prologue_insn = 1;
998 int num_skip_non_prologue_insns = 0;
999 int r0_contains_arg = 0;
1000 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
1001 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1002
1003 memset (fdata, 0, sizeof (struct rs6000_framedata));
1004 fdata->saved_gpr = -1;
1005 fdata->saved_fpr = -1;
1006 fdata->saved_vr = -1;
1007 fdata->saved_ev = -1;
1008 fdata->alloca_reg = -1;
1009 fdata->frameless = 1;
1010 fdata->nosavedpc = 1;
1011
1012 for (;; pc += 4)
1013 {
1014 /* Sometimes it isn't clear if an instruction is a prologue
1015 instruction or not. When we encounter one of these ambiguous
1016 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1017 Otherwise, we'll assume that it really is a prologue instruction. */
1018 if (prev_insn_was_prologue_insn)
1019 last_prologue_pc = pc;
1020
1021 /* Stop scanning if we've hit the limit. */
1022 if (pc >= lim_pc)
1023 break;
1024
1025 prev_insn_was_prologue_insn = 1;
1026
1027 /* Fetch the instruction and convert it to an integer. */
1028 if (target_read_memory (pc, buf, 4))
1029 break;
1030 op = extract_unsigned_integer (buf, 4);
1031
1032 if ((op & 0xfc1fffff) == 0x7c0802a6)
1033 { /* mflr Rx */
1034 /* Since shared library / PIC code, which needs to get its
1035 address at runtime, can appear to save more than one link
1036 register vis:
1037
1038 *INDENT-OFF*
1039 stwu r1,-304(r1)
1040 mflr r3
1041 bl 0xff570d0 (blrl)
1042 stw r30,296(r1)
1043 mflr r30
1044 stw r31,300(r1)
1045 stw r3,308(r1);
1046 ...
1047 *INDENT-ON*
1048
1049 remember just the first one, but skip over additional
1050 ones. */
1051 if (lr_reg == -1)
1052 lr_reg = (op & 0x03e00000);
1053 if (lr_reg == 0)
1054 r0_contains_arg = 0;
1055 continue;
1056 }
1057 else if ((op & 0xfc1fffff) == 0x7c000026)
1058 { /* mfcr Rx */
1059 cr_reg = (op & 0x03e00000);
1060 if (cr_reg == 0)
1061 r0_contains_arg = 0;
1062 continue;
1063
1064 }
1065 else if ((op & 0xfc1f0000) == 0xd8010000)
1066 { /* stfd Rx,NUM(r1) */
1067 reg = GET_SRC_REG (op);
1068 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1069 {
1070 fdata->saved_fpr = reg;
1071 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1072 }
1073 continue;
1074
1075 }
1076 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1077 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1078 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1079 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1080 {
1081
1082 reg = GET_SRC_REG (op);
1083 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1084 {
1085 fdata->saved_gpr = reg;
1086 if ((op & 0xfc1f0003) == 0xf8010000)
1087 op &= ~3UL;
1088 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1089 }
1090 continue;
1091
1092 }
1093 else if ((op & 0xffff0000) == 0x60000000)
1094 {
1095 /* nop */
1096 /* Allow nops in the prologue, but do not consider them to
1097 be part of the prologue unless followed by other prologue
1098 instructions. */
1099 prev_insn_was_prologue_insn = 0;
1100 continue;
1101
1102 }
1103 else if ((op & 0xffff0000) == 0x3c000000)
1104 { /* addis 0,0,NUM, used
1105 for >= 32k frames */
1106 fdata->offset = (op & 0x0000ffff) << 16;
1107 fdata->frameless = 0;
1108 r0_contains_arg = 0;
1109 continue;
1110
1111 }
1112 else if ((op & 0xffff0000) == 0x60000000)
1113 { /* ori 0,0,NUM, 2nd ha
1114 lf of >= 32k frames */
1115 fdata->offset |= (op & 0x0000ffff);
1116 fdata->frameless = 0;
1117 r0_contains_arg = 0;
1118 continue;
1119
1120 }
1121 else if (lr_reg >= 0 &&
1122 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1123 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1124 /* stw Rx, NUM(r1) */
1125 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1126 /* stwu Rx, NUM(r1) */
1127 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1128 { /* where Rx == lr */
1129 fdata->lr_offset = offset;
1130 fdata->nosavedpc = 0;
1131 /* Invalidate lr_reg, but don't set it to -1.
1132 That would mean that it had never been set. */
1133 lr_reg = -2;
1134 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1135 (op & 0xfc000000) == 0x90000000) /* stw */
1136 {
1137 /* Does not update r1, so add displacement to lr_offset. */
1138 fdata->lr_offset += SIGNED_SHORT (op);
1139 }
1140 continue;
1141
1142 }
1143 else if (cr_reg >= 0 &&
1144 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1145 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1146 /* stw Rx, NUM(r1) */
1147 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1148 /* stwu Rx, NUM(r1) */
1149 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1150 { /* where Rx == cr */
1151 fdata->cr_offset = offset;
1152 /* Invalidate cr_reg, but don't set it to -1.
1153 That would mean that it had never been set. */
1154 cr_reg = -2;
1155 if ((op & 0xfc000003) == 0xf8000000 ||
1156 (op & 0xfc000000) == 0x90000000)
1157 {
1158 /* Does not update r1, so add displacement to cr_offset. */
1159 fdata->cr_offset += SIGNED_SHORT (op);
1160 }
1161 continue;
1162
1163 }
1164 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1165 {
1166 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1167 prediction bits. If the LR has already been saved, we can
1168 skip it. */
1169 continue;
1170 }
1171 else if (op == 0x48000005)
1172 { /* bl .+4 used in
1173 -mrelocatable */
1174 continue;
1175
1176 }
1177 else if (op == 0x48000004)
1178 { /* b .+4 (xlc) */
1179 break;
1180
1181 }
1182 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1183 in V.4 -mminimal-toc */
1184 (op & 0xffff0000) == 0x3bde0000)
1185 { /* addi 30,30,foo@l */
1186 continue;
1187
1188 }
1189 else if ((op & 0xfc000001) == 0x48000001)
1190 { /* bl foo,
1191 to save fprs??? */
1192
1193 fdata->frameless = 0;
1194
1195 /* If the return address has already been saved, we can skip
1196 calls to blrl (for PIC). */
1197 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1198 continue;
1199
1200 /* Don't skip over the subroutine call if it is not within
1201 the first three instructions of the prologue and either
1202 we have no line table information or the line info tells
1203 us that the subroutine call is not part of the line
1204 associated with the prologue. */
1205 if ((pc - orig_pc) > 8)
1206 {
1207 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1208 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1209
1210 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1211 break;
1212 }
1213
1214 op = read_memory_integer (pc + 4, 4);
1215
1216 /* At this point, make sure this is not a trampoline
1217 function (a function that simply calls another functions,
1218 and nothing else). If the next is not a nop, this branch
1219 was part of the function prologue. */
1220
1221 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1222 break; /* don't skip over
1223 this branch */
1224 continue;
1225
1226 }
1227 /* update stack pointer */
1228 else if ((op & 0xfc1f0000) == 0x94010000)
1229 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1230 fdata->frameless = 0;
1231 fdata->offset = SIGNED_SHORT (op);
1232 offset = fdata->offset;
1233 continue;
1234 }
1235 else if ((op & 0xfc1f016a) == 0x7c01016e)
1236 { /* stwux rX,r1,rY */
1237 /* no way to figure out what r1 is going to be */
1238 fdata->frameless = 0;
1239 offset = fdata->offset;
1240 continue;
1241 }
1242 else if ((op & 0xfc1f0003) == 0xf8010001)
1243 { /* stdu rX,NUM(r1) */
1244 fdata->frameless = 0;
1245 fdata->offset = SIGNED_SHORT (op & ~3UL);
1246 offset = fdata->offset;
1247 continue;
1248 }
1249 else if ((op & 0xfc1f016a) == 0x7c01016a)
1250 { /* stdux rX,r1,rY */
1251 /* no way to figure out what r1 is going to be */
1252 fdata->frameless = 0;
1253 offset = fdata->offset;
1254 continue;
1255 }
1256 else if ((op & 0xffff0000) == 0x38210000)
1257 { /* addi r1,r1,SIMM */
1258 fdata->frameless = 0;
1259 fdata->offset += SIGNED_SHORT (op);
1260 offset = fdata->offset;
1261 continue;
1262 }
1263 /* Load up minimal toc pointer. Do not treat an epilogue restore
1264 of r31 as a minimal TOC load. */
1265 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1266 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1267 && !framep
1268 && !minimal_toc_loaded)
1269 {
1270 minimal_toc_loaded = 1;
1271 continue;
1272
1273 /* move parameters from argument registers to local variable
1274 registers */
1275 }
1276 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1277 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1278 (((op >> 21) & 31) <= 10) &&
1279 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1280 {
1281 continue;
1282
1283 /* store parameters in stack */
1284 }
1285 /* Move parameters from argument registers to temporary register. */
1286 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1287 {
1288 continue;
1289
1290 /* Set up frame pointer */
1291 }
1292 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1293 || op == 0x7c3f0b78)
1294 { /* mr r31, r1 */
1295 fdata->frameless = 0;
1296 framep = 1;
1297 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1298 continue;
1299
1300 /* Another way to set up the frame pointer. */
1301 }
1302 else if ((op & 0xfc1fffff) == 0x38010000)
1303 { /* addi rX, r1, 0x0 */
1304 fdata->frameless = 0;
1305 framep = 1;
1306 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1307 + ((op & ~0x38010000) >> 21));
1308 continue;
1309 }
1310 /* AltiVec related instructions. */
1311 /* Store the vrsave register (spr 256) in another register for
1312 later manipulation, or load a register into the vrsave
1313 register. 2 instructions are used: mfvrsave and
1314 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1315 and mtspr SPR256, Rn. */
1316 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1317 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1318 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1319 {
1320 vrsave_reg = GET_SRC_REG (op);
1321 continue;
1322 }
1323 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1324 {
1325 continue;
1326 }
1327 /* Store the register where vrsave was saved to onto the stack:
1328 rS is the register where vrsave was stored in a previous
1329 instruction. */
1330 /* 100100 sssss 00001 dddddddd dddddddd */
1331 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1332 {
1333 if (vrsave_reg == GET_SRC_REG (op))
1334 {
1335 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1336 vrsave_reg = -1;
1337 }
1338 continue;
1339 }
1340 /* Compute the new value of vrsave, by modifying the register
1341 where vrsave was saved to. */
1342 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1343 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1344 {
1345 continue;
1346 }
1347 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1348 in a pair of insns to save the vector registers on the
1349 stack. */
1350 /* 001110 00000 00000 iiii iiii iiii iiii */
1351 /* 001110 01110 00000 iiii iiii iiii iiii */
1352 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1353 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1354 {
1355 if ((op & 0xffff0000) == 0x38000000)
1356 r0_contains_arg = 0;
1357 li_found_pc = pc;
1358 vr_saved_offset = SIGNED_SHORT (op);
1359
1360 /* This insn by itself is not part of the prologue, unless
1361 if part of the pair of insns mentioned above. So do not
1362 record this insn as part of the prologue yet. */
1363 prev_insn_was_prologue_insn = 0;
1364 }
1365 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1366 /* 011111 sssss 11111 00000 00111001110 */
1367 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1368 {
1369 if (pc == (li_found_pc + 4))
1370 {
1371 vr_reg = GET_SRC_REG (op);
1372 /* If this is the first vector reg to be saved, or if
1373 it has a lower number than others previously seen,
1374 reupdate the frame info. */
1375 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1376 {
1377 fdata->saved_vr = vr_reg;
1378 fdata->vr_offset = vr_saved_offset + offset;
1379 }
1380 vr_saved_offset = -1;
1381 vr_reg = -1;
1382 li_found_pc = 0;
1383 }
1384 }
1385 /* End AltiVec related instructions. */
1386
1387 /* Start BookE related instructions. */
1388 /* Store gen register S at (r31+uimm).
1389 Any register less than r13 is volatile, so we don't care. */
1390 /* 000100 sssss 11111 iiiii 01100100001 */
1391 else if (arch_info->mach == bfd_mach_ppc_e500
1392 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1393 {
1394 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1395 {
1396 unsigned int imm;
1397 ev_reg = GET_SRC_REG (op);
1398 imm = (op >> 11) & 0x1f;
1399 ev_offset = imm * 8;
1400 /* If this is the first vector reg to be saved, or if
1401 it has a lower number than others previously seen,
1402 reupdate the frame info. */
1403 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1404 {
1405 fdata->saved_ev = ev_reg;
1406 fdata->ev_offset = ev_offset + offset;
1407 }
1408 }
1409 continue;
1410 }
1411 /* Store gen register rS at (r1+rB). */
1412 /* 000100 sssss 00001 bbbbb 01100100000 */
1413 else if (arch_info->mach == bfd_mach_ppc_e500
1414 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1415 {
1416 if (pc == (li_found_pc + 4))
1417 {
1418 ev_reg = GET_SRC_REG (op);
1419 /* If this is the first vector reg to be saved, or if
1420 it has a lower number than others previously seen,
1421 reupdate the frame info. */
1422 /* We know the contents of rB from the previous instruction. */
1423 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1424 {
1425 fdata->saved_ev = ev_reg;
1426 fdata->ev_offset = vr_saved_offset + offset;
1427 }
1428 vr_saved_offset = -1;
1429 ev_reg = -1;
1430 li_found_pc = 0;
1431 }
1432 continue;
1433 }
1434 /* Store gen register r31 at (rA+uimm). */
1435 /* 000100 11111 aaaaa iiiii 01100100001 */
1436 else if (arch_info->mach == bfd_mach_ppc_e500
1437 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1438 {
1439 /* Wwe know that the source register is 31 already, but
1440 it can't hurt to compute it. */
1441 ev_reg = GET_SRC_REG (op);
1442 ev_offset = ((op >> 11) & 0x1f) * 8;
1443 /* If this is the first vector reg to be saved, or if
1444 it has a lower number than others previously seen,
1445 reupdate the frame info. */
1446 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1447 {
1448 fdata->saved_ev = ev_reg;
1449 fdata->ev_offset = ev_offset + offset;
1450 }
1451
1452 continue;
1453 }
1454 /* Store gen register S at (r31+r0).
1455 Store param on stack when offset from SP bigger than 4 bytes. */
1456 /* 000100 sssss 11111 00000 01100100000 */
1457 else if (arch_info->mach == bfd_mach_ppc_e500
1458 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1459 {
1460 if (pc == (li_found_pc + 4))
1461 {
1462 if ((op & 0x03e00000) >= 0x01a00000)
1463 {
1464 ev_reg = GET_SRC_REG (op);
1465 /* If this is the first vector reg to be saved, or if
1466 it has a lower number than others previously seen,
1467 reupdate the frame info. */
1468 /* We know the contents of r0 from the previous
1469 instruction. */
1470 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1471 {
1472 fdata->saved_ev = ev_reg;
1473 fdata->ev_offset = vr_saved_offset + offset;
1474 }
1475 ev_reg = -1;
1476 }
1477 vr_saved_offset = -1;
1478 li_found_pc = 0;
1479 continue;
1480 }
1481 }
1482 /* End BookE related instructions. */
1483
1484 else
1485 {
1486 /* Not a recognized prologue instruction.
1487 Handle optimizer code motions into the prologue by continuing
1488 the search if we have no valid frame yet or if the return
1489 address is not yet saved in the frame. */
1490 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1491 break;
1492
1493 if (op == 0x4e800020 /* blr */
1494 || op == 0x4e800420) /* bctr */
1495 /* Do not scan past epilogue in frameless functions or
1496 trampolines. */
1497 break;
1498 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1499 /* Never skip branches. */
1500 break;
1501
1502 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1503 /* Do not scan too many insns, scanning insns is expensive with
1504 remote targets. */
1505 break;
1506
1507 /* Continue scanning. */
1508 prev_insn_was_prologue_insn = 0;
1509 continue;
1510 }
1511 }
1512
1513 #if 0
1514 /* I have problems with skipping over __main() that I need to address
1515 * sometime. Previously, I used to use misc_function_vector which
1516 * didn't work as well as I wanted to be. -MGO */
1517
1518 /* If the first thing after skipping a prolog is a branch to a function,
1519 this might be a call to an initializer in main(), introduced by gcc2.
1520 We'd like to skip over it as well. Fortunately, xlc does some extra
1521 work before calling a function right after a prologue, thus we can
1522 single out such gcc2 behaviour. */
1523
1524
1525 if ((op & 0xfc000001) == 0x48000001)
1526 { /* bl foo, an initializer function? */
1527 op = read_memory_integer (pc + 4, 4);
1528
1529 if (op == 0x4def7b82)
1530 { /* cror 0xf, 0xf, 0xf (nop) */
1531
1532 /* Check and see if we are in main. If so, skip over this
1533 initializer function as well. */
1534
1535 tmp = find_pc_misc_function (pc);
1536 if (tmp >= 0
1537 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1538 return pc + 8;
1539 }
1540 }
1541 #endif /* 0 */
1542
1543 fdata->offset = -fdata->offset;
1544 return last_prologue_pc;
1545 }
1546
1547
1548 /*************************************************************************
1549 Support for creating pushing a dummy frame into the stack, and popping
1550 frames, etc.
1551 *************************************************************************/
1552
1553
1554 /* All the ABI's require 16 byte alignment. */
1555 static CORE_ADDR
1556 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1557 {
1558 return (addr & -16);
1559 }
1560
1561 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1562 the first eight words of the argument list (that might be less than
1563 eight parameters if some parameters occupy more than one word) are
1564 passed in r3..r10 registers. float and double parameters are
1565 passed in fpr's, in addition to that. Rest of the parameters if any
1566 are passed in user stack. There might be cases in which half of the
1567 parameter is copied into registers, the other half is pushed into
1568 stack.
1569
1570 Stack must be aligned on 64-bit boundaries when synthesizing
1571 function calls.
1572
1573 If the function is returning a structure, then the return address is passed
1574 in r3, then the first 7 words of the parameters can be passed in registers,
1575 starting from r4. */
1576
1577 static CORE_ADDR
1578 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1579 struct regcache *regcache, CORE_ADDR bp_addr,
1580 int nargs, struct value **args, CORE_ADDR sp,
1581 int struct_return, CORE_ADDR struct_addr)
1582 {
1583 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1584 int ii;
1585 int len = 0;
1586 int argno; /* current argument number */
1587 int argbytes; /* current argument byte */
1588 gdb_byte tmp_buffer[50];
1589 int f_argno = 0; /* current floating point argno */
1590 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1591 CORE_ADDR func_addr = find_function_addr (function, NULL);
1592
1593 struct value *arg = 0;
1594 struct type *type;
1595
1596 ULONGEST saved_sp;
1597
1598 /* The calling convention this function implements assumes the
1599 processor has floating-point registers. We shouldn't be using it
1600 on PPC variants that lack them. */
1601 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1602
1603 /* The first eight words of ther arguments are passed in registers.
1604 Copy them appropriately. */
1605 ii = 0;
1606
1607 /* If the function is returning a `struct', then the first word
1608 (which will be passed in r3) is used for struct return address.
1609 In that case we should advance one word and start from r4
1610 register to copy parameters. */
1611 if (struct_return)
1612 {
1613 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1614 struct_addr);
1615 ii++;
1616 }
1617
1618 /*
1619 effectively indirect call... gcc does...
1620
1621 return_val example( float, int);
1622
1623 eabi:
1624 float in fp0, int in r3
1625 offset of stack on overflow 8/16
1626 for varargs, must go by type.
1627 power open:
1628 float in r3&r4, int in r5
1629 offset of stack on overflow different
1630 both:
1631 return in r3 or f0. If no float, must study how gcc emulates floats;
1632 pay attention to arg promotion.
1633 User may have to cast\args to handle promotion correctly
1634 since gdb won't know if prototype supplied or not.
1635 */
1636
1637 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1638 {
1639 int reg_size = register_size (current_gdbarch, ii + 3);
1640
1641 arg = args[argno];
1642 type = check_typedef (value_type (arg));
1643 len = TYPE_LENGTH (type);
1644
1645 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1646 {
1647
1648 /* Floating point arguments are passed in fpr's, as well as gpr's.
1649 There are 13 fpr's reserved for passing parameters. At this point
1650 there is no way we would run out of them. */
1651
1652 gdb_assert (len <= 8);
1653
1654 regcache_cooked_write (regcache,
1655 tdep->ppc_fp0_regnum + 1 + f_argno,
1656 value_contents (arg));
1657 ++f_argno;
1658 }
1659
1660 if (len > reg_size)
1661 {
1662
1663 /* Argument takes more than one register. */
1664 while (argbytes < len)
1665 {
1666 gdb_byte word[MAX_REGISTER_SIZE];
1667 memset (word, 0, reg_size);
1668 memcpy (word,
1669 ((char *) value_contents (arg)) + argbytes,
1670 (len - argbytes) > reg_size
1671 ? reg_size : len - argbytes);
1672 regcache_cooked_write (regcache,
1673 tdep->ppc_gp0_regnum + 3 + ii,
1674 word);
1675 ++ii, argbytes += reg_size;
1676
1677 if (ii >= 8)
1678 goto ran_out_of_registers_for_arguments;
1679 }
1680 argbytes = 0;
1681 --ii;
1682 }
1683 else
1684 {
1685 /* Argument can fit in one register. No problem. */
1686 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1687 gdb_byte word[MAX_REGISTER_SIZE];
1688
1689 memset (word, 0, reg_size);
1690 memcpy (word, value_contents (arg), len);
1691 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1692 }
1693 ++argno;
1694 }
1695
1696 ran_out_of_registers_for_arguments:
1697
1698 regcache_cooked_read_unsigned (regcache, SP_REGNUM, &saved_sp);
1699
1700 /* Location for 8 parameters are always reserved. */
1701 sp -= wordsize * 8;
1702
1703 /* Another six words for back chain, TOC register, link register, etc. */
1704 sp -= wordsize * 6;
1705
1706 /* Stack pointer must be quadword aligned. */
1707 sp &= -16;
1708
1709 /* If there are more arguments, allocate space for them in
1710 the stack, then push them starting from the ninth one. */
1711
1712 if ((argno < nargs) || argbytes)
1713 {
1714 int space = 0, jj;
1715
1716 if (argbytes)
1717 {
1718 space += ((len - argbytes + 3) & -4);
1719 jj = argno + 1;
1720 }
1721 else
1722 jj = argno;
1723
1724 for (; jj < nargs; ++jj)
1725 {
1726 struct value *val = args[jj];
1727 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1728 }
1729
1730 /* Add location required for the rest of the parameters. */
1731 space = (space + 15) & -16;
1732 sp -= space;
1733
1734 /* This is another instance we need to be concerned about
1735 securing our stack space. If we write anything underneath %sp
1736 (r1), we might conflict with the kernel who thinks he is free
1737 to use this area. So, update %sp first before doing anything
1738 else. */
1739
1740 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1741
1742 /* If the last argument copied into the registers didn't fit there
1743 completely, push the rest of it into stack. */
1744
1745 if (argbytes)
1746 {
1747 write_memory (sp + 24 + (ii * 4),
1748 value_contents (arg) + argbytes,
1749 len - argbytes);
1750 ++argno;
1751 ii += ((len - argbytes + 3) & -4) / 4;
1752 }
1753
1754 /* Push the rest of the arguments into stack. */
1755 for (; argno < nargs; ++argno)
1756 {
1757
1758 arg = args[argno];
1759 type = check_typedef (value_type (arg));
1760 len = TYPE_LENGTH (type);
1761
1762
1763 /* Float types should be passed in fpr's, as well as in the
1764 stack. */
1765 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1766 {
1767
1768 gdb_assert (len <= 8);
1769
1770 regcache_cooked_write (regcache,
1771 tdep->ppc_fp0_regnum + 1 + f_argno,
1772 value_contents (arg));
1773 ++f_argno;
1774 }
1775
1776 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1777 ii += ((len + 3) & -4) / 4;
1778 }
1779 }
1780
1781 /* Set the stack pointer. According to the ABI, the SP is meant to
1782 be set _before_ the corresponding stack space is used. On AIX,
1783 this even applies when the target has been completely stopped!
1784 Not doing this can lead to conflicts with the kernel which thinks
1785 that it still has control over this not-yet-allocated stack
1786 region. */
1787 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1788
1789 /* Set back chain properly. */
1790 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1791 write_memory (sp, tmp_buffer, wordsize);
1792
1793 /* Point the inferior function call's return address at the dummy's
1794 breakpoint. */
1795 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1796
1797 /* Set the TOC register, get the value from the objfile reader
1798 which, in turn, gets it from the VMAP table. */
1799 if (rs6000_find_toc_address_hook != NULL)
1800 {
1801 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1802 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1803 }
1804
1805 target_store_registers (regcache, -1);
1806 return sp;
1807 }
1808
1809 static enum return_value_convention
1810 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1811 struct regcache *regcache, gdb_byte *readbuf,
1812 const gdb_byte *writebuf)
1813 {
1814 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1815 gdb_byte buf[8];
1816
1817 /* The calling convention this function implements assumes the
1818 processor has floating-point registers. We shouldn't be using it
1819 on PowerPC variants that lack them. */
1820 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1821
1822 /* AltiVec extension: Functions that declare a vector data type as a
1823 return value place that return value in VR2. */
1824 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1825 && TYPE_LENGTH (valtype) == 16)
1826 {
1827 if (readbuf)
1828 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1829 if (writebuf)
1830 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1831
1832 return RETURN_VALUE_REGISTER_CONVENTION;
1833 }
1834
1835 /* If the called subprogram returns an aggregate, there exists an
1836 implicit first argument, whose value is the address of a caller-
1837 allocated buffer into which the callee is assumed to store its
1838 return value. All explicit parameters are appropriately
1839 relabeled. */
1840 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1841 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1842 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1843 return RETURN_VALUE_STRUCT_CONVENTION;
1844
1845 /* Scalar floating-point values are returned in FPR1 for float or
1846 double, and in FPR1:FPR2 for quadword precision. Fortran
1847 complex*8 and complex*16 are returned in FPR1:FPR2, and
1848 complex*32 is returned in FPR1:FPR4. */
1849 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1850 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1851 {
1852 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1853 gdb_byte regval[8];
1854
1855 /* FIXME: kettenis/2007-01-01: Add support for quadword
1856 precision and complex. */
1857
1858 if (readbuf)
1859 {
1860 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1861 convert_typed_floating (regval, regtype, readbuf, valtype);
1862 }
1863 if (writebuf)
1864 {
1865 convert_typed_floating (writebuf, valtype, regval, regtype);
1866 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1867 }
1868
1869 return RETURN_VALUE_REGISTER_CONVENTION;
1870 }
1871
1872 /* Values of the types int, long, short, pointer, and char (length
1873 is less than or equal to four bytes), as well as bit values of
1874 lengths less than or equal to 32 bits, must be returned right
1875 justified in GPR3 with signed values sign extended and unsigned
1876 values zero extended, as necessary. */
1877 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1878 {
1879 if (readbuf)
1880 {
1881 ULONGEST regval;
1882
1883 /* For reading we don't have to worry about sign extension. */
1884 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1885 &regval);
1886 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1887 }
1888 if (writebuf)
1889 {
1890 /* For writing, use unpack_long since that should handle any
1891 required sign extension. */
1892 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1893 unpack_long (valtype, writebuf));
1894 }
1895
1896 return RETURN_VALUE_REGISTER_CONVENTION;
1897 }
1898
1899 /* Eight-byte non-floating-point scalar values must be returned in
1900 GPR3:GPR4. */
1901
1902 if (TYPE_LENGTH (valtype) == 8)
1903 {
1904 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1905 gdb_assert (tdep->wordsize == 4);
1906
1907 if (readbuf)
1908 {
1909 gdb_byte regval[8];
1910
1911 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1912 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1913 regval + 4);
1914 memcpy (readbuf, regval, 8);
1915 }
1916 if (writebuf)
1917 {
1918 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1919 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1920 writebuf + 4);
1921 }
1922
1923 return RETURN_VALUE_REGISTER_CONVENTION;
1924 }
1925
1926 return RETURN_VALUE_STRUCT_CONVENTION;
1927 }
1928
1929 /* Return whether handle_inferior_event() should proceed through code
1930 starting at PC in function NAME when stepping.
1931
1932 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1933 handle memory references that are too distant to fit in instructions
1934 generated by the compiler. For example, if 'foo' in the following
1935 instruction:
1936
1937 lwz r9,foo(r2)
1938
1939 is greater than 32767, the linker might replace the lwz with a branch to
1940 somewhere in @FIX1 that does the load in 2 instructions and then branches
1941 back to where execution should continue.
1942
1943 GDB should silently step over @FIX code, just like AIX dbx does.
1944 Unfortunately, the linker uses the "b" instruction for the
1945 branches, meaning that the link register doesn't get set.
1946 Therefore, GDB's usual step_over_function () mechanism won't work.
1947
1948 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1949 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1950 @FIX code. */
1951
1952 int
1953 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1954 {
1955 return name && !strncmp (name, "@FIX", 4);
1956 }
1957
1958 /* Skip code that the user doesn't want to see when stepping:
1959
1960 1. Indirect function calls use a piece of trampoline code to do context
1961 switching, i.e. to set the new TOC table. Skip such code if we are on
1962 its first instruction (as when we have single-stepped to here).
1963
1964 2. Skip shared library trampoline code (which is different from
1965 indirect function call trampolines).
1966
1967 3. Skip bigtoc fixup code.
1968
1969 Result is desired PC to step until, or NULL if we are not in
1970 code that should be skipped. */
1971
1972 CORE_ADDR
1973 rs6000_skip_trampoline_code (CORE_ADDR pc)
1974 {
1975 unsigned int ii, op;
1976 int rel;
1977 CORE_ADDR solib_target_pc;
1978 struct minimal_symbol *msymbol;
1979
1980 static unsigned trampoline_code[] =
1981 {
1982 0x800b0000, /* l r0,0x0(r11) */
1983 0x90410014, /* st r2,0x14(r1) */
1984 0x7c0903a6, /* mtctr r0 */
1985 0x804b0004, /* l r2,0x4(r11) */
1986 0x816b0008, /* l r11,0x8(r11) */
1987 0x4e800420, /* bctr */
1988 0x4e800020, /* br */
1989 0
1990 };
1991
1992 /* Check for bigtoc fixup code. */
1993 msymbol = lookup_minimal_symbol_by_pc (pc);
1994 if (msymbol
1995 && rs6000_in_solib_return_trampoline (pc,
1996 DEPRECATED_SYMBOL_NAME (msymbol)))
1997 {
1998 /* Double-check that the third instruction from PC is relative "b". */
1999 op = read_memory_integer (pc + 8, 4);
2000 if ((op & 0xfc000003) == 0x48000000)
2001 {
2002 /* Extract bits 6-29 as a signed 24-bit relative word address and
2003 add it to the containing PC. */
2004 rel = ((int)(op << 6) >> 6);
2005 return pc + 8 + rel;
2006 }
2007 }
2008
2009 /* If pc is in a shared library trampoline, return its target. */
2010 solib_target_pc = find_solib_trampoline_target (pc);
2011 if (solib_target_pc)
2012 return solib_target_pc;
2013
2014 for (ii = 0; trampoline_code[ii]; ++ii)
2015 {
2016 op = read_memory_integer (pc + (ii * 4), 4);
2017 if (op != trampoline_code[ii])
2018 return 0;
2019 }
2020 ii = read_register (11); /* r11 holds destination addr */
2021 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
2022 return pc;
2023 }
2024
2025 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
2026 isn't available with that word size, return 0. */
2027
2028 static int
2029 regsize (const struct reg *reg, int wordsize)
2030 {
2031 return wordsize == 8 ? reg->sz64 : reg->sz32;
2032 }
2033
2034 /* Return the name of register number N, or null if no such register exists
2035 in the current architecture. */
2036
2037 static const char *
2038 rs6000_register_name (int n)
2039 {
2040 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2041 const struct reg *reg = tdep->regs + n;
2042
2043 if (!regsize (reg, tdep->wordsize))
2044 return NULL;
2045 return reg->name;
2046 }
2047
2048 /* Return the GDB type object for the "standard" data type
2049 of data in register N. */
2050
2051 static struct type *
2052 rs6000_register_type (struct gdbarch *gdbarch, int n)
2053 {
2054 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2055 const struct reg *reg = tdep->regs + n;
2056
2057 if (reg->fpr)
2058 return builtin_type_double;
2059 else
2060 {
2061 int size = regsize (reg, tdep->wordsize);
2062 switch (size)
2063 {
2064 case 0:
2065 return builtin_type_int0;
2066 case 4:
2067 return builtin_type_uint32;
2068 case 8:
2069 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
2070 return builtin_type_vec64;
2071 else
2072 return builtin_type_uint64;
2073 break;
2074 case 16:
2075 return builtin_type_vec128;
2076 break;
2077 default:
2078 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
2079 n, size);
2080 }
2081 }
2082 }
2083
2084 /* Is REGNUM a member of REGGROUP? */
2085 static int
2086 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2087 struct reggroup *group)
2088 {
2089 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2090 int float_p;
2091 int vector_p;
2092 int general_p;
2093
2094 if (REGISTER_NAME (regnum) == NULL
2095 || *REGISTER_NAME (regnum) == '\0')
2096 return 0;
2097 if (group == all_reggroup)
2098 return 1;
2099
2100 float_p = (regnum == tdep->ppc_fpscr_regnum
2101 || (regnum >= tdep->ppc_fp0_regnum
2102 && regnum < tdep->ppc_fp0_regnum + 32));
2103 if (group == float_reggroup)
2104 return float_p;
2105
2106 vector_p = ((tdep->ppc_vr0_regnum >= 0
2107 && regnum >= tdep->ppc_vr0_regnum
2108 && regnum < tdep->ppc_vr0_regnum + 32)
2109 || (tdep->ppc_ev0_regnum >= 0
2110 && regnum >= tdep->ppc_ev0_regnum
2111 && regnum < tdep->ppc_ev0_regnum + 32)
2112 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2113 || regnum == tdep->ppc_vrsave_regnum
2114 || regnum == tdep->ppc_acc_regnum
2115 || regnum == tdep->ppc_spefscr_regnum);
2116 if (group == vector_reggroup)
2117 return vector_p;
2118
2119 /* Note that PS aka MSR isn't included - it's a system register (and
2120 besides, due to GCC's CFI foobar you do not want to restore
2121 it). */
2122 general_p = ((regnum >= tdep->ppc_gp0_regnum
2123 && regnum < tdep->ppc_gp0_regnum + 32)
2124 || regnum == tdep->ppc_toc_regnum
2125 || regnum == tdep->ppc_cr_regnum
2126 || regnum == tdep->ppc_lr_regnum
2127 || regnum == tdep->ppc_ctr_regnum
2128 || regnum == tdep->ppc_xer_regnum
2129 || regnum == PC_REGNUM);
2130 if (group == general_reggroup)
2131 return general_p;
2132
2133 if (group == save_reggroup || group == restore_reggroup)
2134 return general_p || vector_p || float_p;
2135
2136 return 0;
2137 }
2138
2139 /* The register format for RS/6000 floating point registers is always
2140 double, we need a conversion if the memory format is float. */
2141
2142 static int
2143 rs6000_convert_register_p (int regnum, struct type *type)
2144 {
2145 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2146
2147 return (reg->fpr
2148 && TYPE_CODE (type) == TYPE_CODE_FLT
2149 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2150 }
2151
2152 static void
2153 rs6000_register_to_value (struct frame_info *frame,
2154 int regnum,
2155 struct type *type,
2156 gdb_byte *to)
2157 {
2158 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2159 gdb_byte from[MAX_REGISTER_SIZE];
2160
2161 gdb_assert (reg->fpr);
2162 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2163
2164 get_frame_register (frame, regnum, from);
2165 convert_typed_floating (from, builtin_type_double, to, type);
2166 }
2167
2168 static void
2169 rs6000_value_to_register (struct frame_info *frame,
2170 int regnum,
2171 struct type *type,
2172 const gdb_byte *from)
2173 {
2174 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2175 gdb_byte to[MAX_REGISTER_SIZE];
2176
2177 gdb_assert (reg->fpr);
2178 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2179
2180 convert_typed_floating (from, type, to, builtin_type_double);
2181 put_frame_register (frame, regnum, to);
2182 }
2183
2184 /* Move SPE vector register values between a 64-bit buffer and the two
2185 32-bit raw register halves in a regcache. This function handles
2186 both splitting a 64-bit value into two 32-bit halves, and joining
2187 two halves into a whole 64-bit value, depending on the function
2188 passed as the MOVE argument.
2189
2190 EV_REG must be the number of an SPE evN vector register --- a
2191 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2192 64-bit buffer.
2193
2194 Call MOVE once for each 32-bit half of that register, passing
2195 REGCACHE, the number of the raw register corresponding to that
2196 half, and the address of the appropriate half of BUFFER.
2197
2198 For example, passing 'regcache_raw_read' as the MOVE function will
2199 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2200 'regcache_raw_supply' will supply the contents of BUFFER to the
2201 appropriate pair of raw registers in REGCACHE.
2202
2203 You may need to cast away some 'const' qualifiers when passing
2204 MOVE, since this function can't tell at compile-time which of
2205 REGCACHE or BUFFER is acting as the source of the data. If C had
2206 co-variant type qualifiers, ... */
2207 static void
2208 e500_move_ev_register (void (*move) (struct regcache *regcache,
2209 int regnum, gdb_byte *buf),
2210 struct regcache *regcache, int ev_reg,
2211 gdb_byte *buffer)
2212 {
2213 struct gdbarch *arch = get_regcache_arch (regcache);
2214 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2215 int reg_index;
2216 gdb_byte *byte_buffer = buffer;
2217
2218 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2219 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2220
2221 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2222
2223 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2224 {
2225 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2226 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2227 }
2228 else
2229 {
2230 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2231 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2232 }
2233 }
2234
2235 static void
2236 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2237 int reg_nr, gdb_byte *buffer)
2238 {
2239 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2240 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2241
2242 gdb_assert (regcache_arch == gdbarch);
2243
2244 if (tdep->ppc_ev0_regnum <= reg_nr
2245 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2246 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2247 else
2248 internal_error (__FILE__, __LINE__,
2249 _("e500_pseudo_register_read: "
2250 "called on unexpected register '%s' (%d)"),
2251 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2252 }
2253
2254 static void
2255 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2256 int reg_nr, const gdb_byte *buffer)
2257 {
2258 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2260
2261 gdb_assert (regcache_arch == gdbarch);
2262
2263 if (tdep->ppc_ev0_regnum <= reg_nr
2264 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2265 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2266 regcache_raw_write,
2267 regcache, reg_nr, (gdb_byte *) buffer);
2268 else
2269 internal_error (__FILE__, __LINE__,
2270 _("e500_pseudo_register_read: "
2271 "called on unexpected register '%s' (%d)"),
2272 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2273 }
2274
2275 /* The E500 needs a custom reggroup function: it has anonymous raw
2276 registers, and default_register_reggroup_p assumes that anonymous
2277 registers are not members of any reggroup. */
2278 static int
2279 e500_register_reggroup_p (struct gdbarch *gdbarch,
2280 int regnum,
2281 struct reggroup *group)
2282 {
2283 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2284
2285 /* The save and restore register groups need to include the
2286 upper-half registers, even though they're anonymous. */
2287 if ((group == save_reggroup
2288 || group == restore_reggroup)
2289 && (tdep->ppc_ev0_upper_regnum <= regnum
2290 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2291 return 1;
2292
2293 /* In all other regards, the default reggroup definition is fine. */
2294 return default_register_reggroup_p (gdbarch, regnum, group);
2295 }
2296
2297 /* Convert a DBX STABS register number to a GDB register number. */
2298 static int
2299 rs6000_stab_reg_to_regnum (int num)
2300 {
2301 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2302
2303 if (0 <= num && num <= 31)
2304 return tdep->ppc_gp0_regnum + num;
2305 else if (32 <= num && num <= 63)
2306 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2307 specifies registers the architecture doesn't have? Our
2308 callers don't check the value we return. */
2309 return tdep->ppc_fp0_regnum + (num - 32);
2310 else if (77 <= num && num <= 108)
2311 return tdep->ppc_vr0_regnum + (num - 77);
2312 else if (1200 <= num && num < 1200 + 32)
2313 return tdep->ppc_ev0_regnum + (num - 1200);
2314 else
2315 switch (num)
2316 {
2317 case 64:
2318 return tdep->ppc_mq_regnum;
2319 case 65:
2320 return tdep->ppc_lr_regnum;
2321 case 66:
2322 return tdep->ppc_ctr_regnum;
2323 case 76:
2324 return tdep->ppc_xer_regnum;
2325 case 109:
2326 return tdep->ppc_vrsave_regnum;
2327 case 110:
2328 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2329 case 111:
2330 return tdep->ppc_acc_regnum;
2331 case 112:
2332 return tdep->ppc_spefscr_regnum;
2333 default:
2334 return num;
2335 }
2336 }
2337
2338
2339 /* Convert a Dwarf 2 register number to a GDB register number. */
2340 static int
2341 rs6000_dwarf2_reg_to_regnum (int num)
2342 {
2343 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2344
2345 if (0 <= num && num <= 31)
2346 return tdep->ppc_gp0_regnum + num;
2347 else if (32 <= num && num <= 63)
2348 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2349 specifies registers the architecture doesn't have? Our
2350 callers don't check the value we return. */
2351 return tdep->ppc_fp0_regnum + (num - 32);
2352 else if (1124 <= num && num < 1124 + 32)
2353 return tdep->ppc_vr0_regnum + (num - 1124);
2354 else if (1200 <= num && num < 1200 + 32)
2355 return tdep->ppc_ev0_regnum + (num - 1200);
2356 else
2357 switch (num)
2358 {
2359 case 64:
2360 return tdep->ppc_cr_regnum;
2361 case 67:
2362 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2363 case 99:
2364 return tdep->ppc_acc_regnum;
2365 case 100:
2366 return tdep->ppc_mq_regnum;
2367 case 101:
2368 return tdep->ppc_xer_regnum;
2369 case 108:
2370 return tdep->ppc_lr_regnum;
2371 case 109:
2372 return tdep->ppc_ctr_regnum;
2373 case 356:
2374 return tdep->ppc_vrsave_regnum;
2375 case 612:
2376 return tdep->ppc_spefscr_regnum;
2377 default:
2378 return num;
2379 }
2380 }
2381
2382 /* Translate a .eh_frame register to DWARF register, or adjust a
2383 .debug_frame register. */
2384
2385 static int
2386 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2387 {
2388 /* GCC releases before 3.4 use GCC internal register numbering in
2389 .debug_frame (and .debug_info, et cetera). The numbering is
2390 different from the standard SysV numbering for everything except
2391 for GPRs and FPRs. We can not detect this problem in most cases
2392 - to get accurate debug info for variables living in lr, ctr, v0,
2393 et cetera, use a newer version of GCC. But we must detect
2394 one important case - lr is in column 65 in .debug_frame output,
2395 instead of 108.
2396
2397 GCC 3.4, and the "hammer" branch, have a related problem. They
2398 record lr register saves in .debug_frame as 108, but still record
2399 the return column as 65. We fix that up too.
2400
2401 We can do this because 65 is assigned to fpsr, and GCC never
2402 generates debug info referring to it. To add support for
2403 handwritten debug info that restores fpsr, we would need to add a
2404 producer version check to this. */
2405 if (!eh_frame_p)
2406 {
2407 if (num == 65)
2408 return 108;
2409 else
2410 return num;
2411 }
2412
2413 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2414 internal register numbering; translate that to the standard DWARF2
2415 register numbering. */
2416 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2417 return num;
2418 else if (68 <= num && num <= 75) /* cr0-cr8 */
2419 return num - 68 + 86;
2420 else if (77 <= num && num <= 108) /* vr0-vr31 */
2421 return num - 77 + 1124;
2422 else
2423 switch (num)
2424 {
2425 case 64: /* mq */
2426 return 100;
2427 case 65: /* lr */
2428 return 108;
2429 case 66: /* ctr */
2430 return 109;
2431 case 76: /* xer */
2432 return 101;
2433 case 109: /* vrsave */
2434 return 356;
2435 case 110: /* vscr */
2436 return 67;
2437 case 111: /* spe_acc */
2438 return 99;
2439 case 112: /* spefscr */
2440 return 612;
2441 default:
2442 return num;
2443 }
2444 }
2445 \f
2446 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2447
2448 Usually a function pointer's representation is simply the address
2449 of the function. On the RS/6000 however, a function pointer is
2450 represented by a pointer to an OPD entry. This OPD entry contains
2451 three words, the first word is the address of the function, the
2452 second word is the TOC pointer (r2), and the third word is the
2453 static chain value. Throughout GDB it is currently assumed that a
2454 function pointer contains the address of the function, which is not
2455 easy to fix. In addition, the conversion of a function address to
2456 a function pointer would require allocation of an OPD entry in the
2457 inferior's memory space, with all its drawbacks. To be able to
2458 call C++ virtual methods in the inferior (which are called via
2459 function pointers), find_function_addr uses this function to get the
2460 function address from a function pointer. */
2461
2462 /* Return real function address if ADDR (a function pointer) is in the data
2463 space and is therefore a special function pointer. */
2464
2465 static CORE_ADDR
2466 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2467 CORE_ADDR addr,
2468 struct target_ops *targ)
2469 {
2470 struct obj_section *s;
2471
2472 s = find_pc_section (addr);
2473 if (s && s->the_bfd_section->flags & SEC_CODE)
2474 return addr;
2475
2476 /* ADDR is in the data space, so it's a special function pointer. */
2477 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2478 }
2479 \f
2480
2481 /* Handling the various POWER/PowerPC variants. */
2482
2483
2484 /* The arrays here called registers_MUMBLE hold information about available
2485 registers.
2486
2487 For each family of PPC variants, I've tried to isolate out the
2488 common registers and put them up front, so that as long as you get
2489 the general family right, GDB will correctly identify the registers
2490 common to that family. The common register sets are:
2491
2492 For the 60x family: hid0 hid1 iabr dabr pir
2493
2494 For the 505 and 860 family: eie eid nri
2495
2496 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2497 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2498 pbu1 pbl2 pbu2
2499
2500 Most of these register groups aren't anything formal. I arrived at
2501 them by looking at the registers that occurred in more than one
2502 processor.
2503
2504 Note: kevinb/2002-04-30: Support for the fpscr register was added
2505 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2506 for Power. For PowerPC, slot 70 was unused and was already in the
2507 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2508 slot 70 was being used for "mq", so the next available slot (71)
2509 was chosen. It would have been nice to be able to make the
2510 register numbers the same across processor cores, but this wasn't
2511 possible without either 1) renumbering some registers for some
2512 processors or 2) assigning fpscr to a really high slot that's
2513 larger than any current register number. Doing (1) is bad because
2514 existing stubs would break. Doing (2) is undesirable because it
2515 would introduce a really large gap between fpscr and the rest of
2516 the registers for most processors. */
2517
2518 /* Convenience macros for populating register arrays. */
2519
2520 /* Within another macro, convert S to a string. */
2521
2522 #define STR(s) #s
2523
2524 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2525 and 64 bits on 64-bit systems. */
2526 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2527
2528 /* Return a struct reg defining register NAME that's 32 bits on all
2529 systems. */
2530 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2531
2532 /* Return a struct reg defining register NAME that's 64 bits on all
2533 systems. */
2534 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2535
2536 /* Return a struct reg defining register NAME that's 128 bits on all
2537 systems. */
2538 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2539
2540 /* Return a struct reg defining floating-point register NAME. */
2541 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2542
2543 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2544 long on all systems. */
2545 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2546
2547 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2548 systems and that doesn't exist on 64-bit systems. */
2549 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2550
2551 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2552 systems and that doesn't exist on 32-bit systems. */
2553 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2554
2555 /* Return a struct reg placeholder for a register that doesn't exist. */
2556 #define R0 { 0, 0, 0, 0, 0, -1 }
2557
2558 /* Return a struct reg defining an anonymous raw register that's 32
2559 bits on all systems. */
2560 #define A4 { 0, 4, 4, 0, 0, -1 }
2561
2562 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2563 32-bit systems and 64 bits on 64-bit systems. */
2564 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2565
2566 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2567 all systems. */
2568 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2569
2570 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2571 all systems, and whose SPR number is NUMBER. */
2572 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2573
2574 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2575 64-bit systems and that doesn't exist on 32-bit systems. */
2576 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2577
2578 /* UISA registers common across all architectures, including POWER. */
2579
2580 #define COMMON_UISA_REGS \
2581 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2582 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2583 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2584 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2585 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2586 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2587 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2588 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2589 /* 64 */ R(pc), R(ps)
2590
2591 /* UISA-level SPRs for PowerPC. */
2592 #define PPC_UISA_SPRS \
2593 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2594
2595 /* UISA-level SPRs for PowerPC without floating point support. */
2596 #define PPC_UISA_NOFP_SPRS \
2597 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2598
2599 /* Segment registers, for PowerPC. */
2600 #define PPC_SEGMENT_REGS \
2601 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2602 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2603 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2604 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2605
2606 /* OEA SPRs for PowerPC. */
2607 #define PPC_OEA_SPRS \
2608 /* 87 */ S4(pvr), \
2609 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2610 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2611 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2612 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2613 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2614 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2615 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2616 /* 116 */ S4(dec), S(dabr), S4(ear)
2617
2618 /* AltiVec registers. */
2619 #define PPC_ALTIVEC_REGS \
2620 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2621 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2622 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2623 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2624 /*151*/R4(vscr), R4(vrsave)
2625
2626
2627 /* On machines supporting the SPE APU, the general-purpose registers
2628 are 64 bits long. There are SIMD vector instructions to treat them
2629 as pairs of floats, but the rest of the instruction set treats them
2630 as 32-bit registers, and only operates on their lower halves.
2631
2632 In the GDB regcache, we treat their high and low halves as separate
2633 registers. The low halves we present as the general-purpose
2634 registers, and then we have pseudo-registers that stitch together
2635 the upper and lower halves and present them as pseudo-registers. */
2636
2637 /* SPE GPR lower halves --- raw registers. */
2638 #define PPC_SPE_GP_REGS \
2639 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2640 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2641 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2642 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2643
2644 /* SPE GPR upper halves --- anonymous raw registers. */
2645 #define PPC_SPE_UPPER_GP_REGS \
2646 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2647 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2648 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2649 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2650
2651 /* SPE GPR vector registers --- pseudo registers based on underlying
2652 gprs and the anonymous upper half raw registers. */
2653 #define PPC_EV_PSEUDO_REGS \
2654 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2655 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2656 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2657 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2658
2659 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2660 user-level SPR's. */
2661 static const struct reg registers_power[] =
2662 {
2663 COMMON_UISA_REGS,
2664 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2665 /* 71 */ R4(fpscr)
2666 };
2667
2668 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2669 view of the PowerPC. */
2670 static const struct reg registers_powerpc[] =
2671 {
2672 COMMON_UISA_REGS,
2673 PPC_UISA_SPRS,
2674 PPC_ALTIVEC_REGS
2675 };
2676
2677 /* IBM PowerPC 403.
2678
2679 Some notes about the "tcr" special-purpose register:
2680 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2681 403's programmable interval timer, fixed interval timer, and
2682 watchdog timer.
2683 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2684 watchdog timer, and nothing else.
2685
2686 Some of the fields are similar between the two, but they're not
2687 compatible with each other. Since the two variants have different
2688 registers, with different numbers, but the same name, we can't
2689 splice the register name to get the SPR number. */
2690 static const struct reg registers_403[] =
2691 {
2692 COMMON_UISA_REGS,
2693 PPC_UISA_SPRS,
2694 PPC_SEGMENT_REGS,
2695 PPC_OEA_SPRS,
2696 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2697 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2698 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2699 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2700 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2701 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2702 };
2703
2704 /* IBM PowerPC 403GC.
2705 See the comments about 'tcr' for the 403, above. */
2706 static const struct reg registers_403GC[] =
2707 {
2708 COMMON_UISA_REGS,
2709 PPC_UISA_SPRS,
2710 PPC_SEGMENT_REGS,
2711 PPC_OEA_SPRS,
2712 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2713 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2714 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2715 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2716 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2717 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2718 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2719 /* 147 */ S(tbhu), S(tblu)
2720 };
2721
2722 /* Motorola PowerPC 505. */
2723 static const struct reg registers_505[] =
2724 {
2725 COMMON_UISA_REGS,
2726 PPC_UISA_SPRS,
2727 PPC_SEGMENT_REGS,
2728 PPC_OEA_SPRS,
2729 /* 119 */ S(eie), S(eid), S(nri)
2730 };
2731
2732 /* Motorola PowerPC 860 or 850. */
2733 static const struct reg registers_860[] =
2734 {
2735 COMMON_UISA_REGS,
2736 PPC_UISA_SPRS,
2737 PPC_SEGMENT_REGS,
2738 PPC_OEA_SPRS,
2739 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2740 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2741 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2742 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2743 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2744 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2745 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2746 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2747 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2748 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2749 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2750 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2751 };
2752
2753 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2754 for reading and writing RTCU and RTCL. However, how one reads and writes a
2755 register is the stub's problem. */
2756 static const struct reg registers_601[] =
2757 {
2758 COMMON_UISA_REGS,
2759 PPC_UISA_SPRS,
2760 PPC_SEGMENT_REGS,
2761 PPC_OEA_SPRS,
2762 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2763 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2764 };
2765
2766 /* Motorola PowerPC 602.
2767 See the notes under the 403 about 'tcr'. */
2768 static const struct reg registers_602[] =
2769 {
2770 COMMON_UISA_REGS,
2771 PPC_UISA_SPRS,
2772 PPC_SEGMENT_REGS,
2773 PPC_OEA_SPRS,
2774 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2775 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2776 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2777 };
2778
2779 /* Motorola/IBM PowerPC 603 or 603e. */
2780 static const struct reg registers_603[] =
2781 {
2782 COMMON_UISA_REGS,
2783 PPC_UISA_SPRS,
2784 PPC_SEGMENT_REGS,
2785 PPC_OEA_SPRS,
2786 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2787 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2788 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2789 };
2790
2791 /* Motorola PowerPC 604 or 604e. */
2792 static const struct reg registers_604[] =
2793 {
2794 COMMON_UISA_REGS,
2795 PPC_UISA_SPRS,
2796 PPC_SEGMENT_REGS,
2797 PPC_OEA_SPRS,
2798 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2799 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2800 /* 127 */ S(sia), S(sda)
2801 };
2802
2803 /* Motorola/IBM PowerPC 750 or 740. */
2804 static const struct reg registers_750[] =
2805 {
2806 COMMON_UISA_REGS,
2807 PPC_UISA_SPRS,
2808 PPC_SEGMENT_REGS,
2809 PPC_OEA_SPRS,
2810 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2811 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2812 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2813 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2814 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2815 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2816 };
2817
2818
2819 /* Motorola PowerPC 7400. */
2820 static const struct reg registers_7400[] =
2821 {
2822 /* gpr0-gpr31, fpr0-fpr31 */
2823 COMMON_UISA_REGS,
2824 /* cr, lr, ctr, xer, fpscr */
2825 PPC_UISA_SPRS,
2826 /* sr0-sr15 */
2827 PPC_SEGMENT_REGS,
2828 PPC_OEA_SPRS,
2829 /* vr0-vr31, vrsave, vscr */
2830 PPC_ALTIVEC_REGS
2831 /* FIXME? Add more registers? */
2832 };
2833
2834 /* Motorola e500. */
2835 static const struct reg registers_e500[] =
2836 {
2837 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2838 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2839 /* 64 .. 65 */ R(pc), R(ps),
2840 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2841 /* 71 .. 72 */ R8(acc), S4(spefscr),
2842 /* NOTE: Add new registers here the end of the raw register
2843 list and just before the first pseudo register. */
2844 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2845 };
2846
2847 /* Information about a particular processor variant. */
2848
2849 struct variant
2850 {
2851 /* Name of this variant. */
2852 char *name;
2853
2854 /* English description of the variant. */
2855 char *description;
2856
2857 /* bfd_arch_info.arch corresponding to variant. */
2858 enum bfd_architecture arch;
2859
2860 /* bfd_arch_info.mach corresponding to variant. */
2861 unsigned long mach;
2862
2863 /* Number of real registers. */
2864 int nregs;
2865
2866 /* Number of pseudo registers. */
2867 int npregs;
2868
2869 /* Number of total registers (the sum of nregs and npregs). */
2870 int num_tot_regs;
2871
2872 /* Table of register names; registers[R] is the name of the register
2873 number R. */
2874 const struct reg *regs;
2875 };
2876
2877 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2878
2879 static int
2880 num_registers (const struct reg *reg_list, int num_tot_regs)
2881 {
2882 int i;
2883 int nregs = 0;
2884
2885 for (i = 0; i < num_tot_regs; i++)
2886 if (!reg_list[i].pseudo)
2887 nregs++;
2888
2889 return nregs;
2890 }
2891
2892 static int
2893 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2894 {
2895 int i;
2896 int npregs = 0;
2897
2898 for (i = 0; i < num_tot_regs; i++)
2899 if (reg_list[i].pseudo)
2900 npregs ++;
2901
2902 return npregs;
2903 }
2904
2905 /* Information in this table comes from the following web sites:
2906 IBM: http://www.chips.ibm.com:80/products/embedded/
2907 Motorola: http://www.mot.com/SPS/PowerPC/
2908
2909 I'm sure I've got some of the variant descriptions not quite right.
2910 Please report any inaccuracies you find to GDB's maintainer.
2911
2912 If you add entries to this table, please be sure to allow the new
2913 value as an argument to the --with-cpu flag, in configure.in. */
2914
2915 static struct variant variants[] =
2916 {
2917
2918 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2919 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2920 registers_powerpc},
2921 {"power", "POWER user-level", bfd_arch_rs6000,
2922 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2923 registers_power},
2924 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2925 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2926 registers_403},
2927 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2928 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2929 registers_601},
2930 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2931 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2932 registers_602},
2933 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2934 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2935 registers_603},
2936 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2937 604, -1, -1, tot_num_registers (registers_604),
2938 registers_604},
2939 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2940 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2941 registers_403GC},
2942 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2943 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2944 registers_505},
2945 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2946 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2947 registers_860},
2948 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2949 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2950 registers_750},
2951 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2952 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2953 registers_7400},
2954 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2955 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2956 registers_e500},
2957
2958 /* 64-bit */
2959 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2960 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2961 registers_powerpc},
2962 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2963 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2964 registers_powerpc},
2965 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2966 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2967 registers_powerpc},
2968 {"a35", "PowerPC A35", bfd_arch_powerpc,
2969 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2970 registers_powerpc},
2971 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2972 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2973 registers_powerpc},
2974 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2975 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2976 registers_powerpc},
2977
2978 /* FIXME: I haven't checked the register sets of the following. */
2979 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2980 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2981 registers_power},
2982 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2983 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2984 registers_power},
2985 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2986 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2987 registers_power},
2988
2989 {0, 0, 0, 0, 0, 0, 0, 0}
2990 };
2991
2992 /* Initialize the number of registers and pseudo registers in each variant. */
2993
2994 static void
2995 init_variants (void)
2996 {
2997 struct variant *v;
2998
2999 for (v = variants; v->name; v++)
3000 {
3001 if (v->nregs == -1)
3002 v->nregs = num_registers (v->regs, v->num_tot_regs);
3003 if (v->npregs == -1)
3004 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
3005 }
3006 }
3007
3008 /* Return the variant corresponding to architecture ARCH and machine number
3009 MACH. If no such variant exists, return null. */
3010
3011 static const struct variant *
3012 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3013 {
3014 const struct variant *v;
3015
3016 for (v = variants; v->name; v++)
3017 if (arch == v->arch && mach == v->mach)
3018 return v;
3019
3020 return NULL;
3021 }
3022
3023 static int
3024 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3025 {
3026 if (!info->disassembler_options)
3027 info->disassembler_options = "any";
3028
3029 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3030 return print_insn_big_powerpc (memaddr, info);
3031 else
3032 return print_insn_little_powerpc (memaddr, info);
3033 }
3034 \f
3035 static CORE_ADDR
3036 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3037 {
3038 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
3039 }
3040
3041 static struct frame_id
3042 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3043 {
3044 return frame_id_build (frame_unwind_register_unsigned (next_frame,
3045 SP_REGNUM),
3046 frame_pc_unwind (next_frame));
3047 }
3048
3049 struct rs6000_frame_cache
3050 {
3051 CORE_ADDR base;
3052 CORE_ADDR initial_sp;
3053 struct trad_frame_saved_reg *saved_regs;
3054 };
3055
3056 static struct rs6000_frame_cache *
3057 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
3058 {
3059 struct rs6000_frame_cache *cache;
3060 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3062 struct rs6000_framedata fdata;
3063 int wordsize = tdep->wordsize;
3064 CORE_ADDR func, pc;
3065
3066 if ((*this_cache) != NULL)
3067 return (*this_cache);
3068 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3069 (*this_cache) = cache;
3070 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
3071
3072 func = frame_func_unwind (next_frame, NORMAL_FRAME);
3073 pc = frame_pc_unwind (next_frame);
3074 skip_prologue (func, pc, &fdata);
3075
3076 /* Figure out the parent's stack pointer. */
3077
3078 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3079 address of the current frame. Things might be easier if the
3080 ->frame pointed to the outer-most address of the frame. In
3081 the mean time, the address of the prev frame is used as the
3082 base address of this frame. */
3083 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3084
3085 /* If the function appears to be frameless, check a couple of likely
3086 indicators that we have simply failed to find the frame setup.
3087 Two common cases of this are missing symbols (i.e.
3088 frame_func_unwind returns the wrong address or 0), and assembly
3089 stubs which have a fast exit path but set up a frame on the slow
3090 path.
3091
3092 If the LR appears to return to this function, then presume that
3093 we have an ABI compliant frame that we failed to find. */
3094 if (fdata.frameless && fdata.lr_offset == 0)
3095 {
3096 CORE_ADDR saved_lr;
3097 int make_frame = 0;
3098
3099 saved_lr = frame_unwind_register_unsigned (next_frame,
3100 tdep->ppc_lr_regnum);
3101 if (func == 0 && saved_lr == pc)
3102 make_frame = 1;
3103 else if (func != 0)
3104 {
3105 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3106 if (func == saved_func)
3107 make_frame = 1;
3108 }
3109
3110 if (make_frame)
3111 {
3112 fdata.frameless = 0;
3113 fdata.lr_offset = tdep->lr_frame_offset;
3114 }
3115 }
3116
3117 if (!fdata.frameless)
3118 /* Frameless really means stackless. */
3119 cache->base = read_memory_addr (cache->base, wordsize);
3120
3121 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3122
3123 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3124 All fpr's from saved_fpr to fp31 are saved. */
3125
3126 if (fdata.saved_fpr >= 0)
3127 {
3128 int i;
3129 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3130
3131 /* If skip_prologue says floating-point registers were saved,
3132 but the current architecture has no floating-point registers,
3133 then that's strange. But we have no indices to even record
3134 the addresses under, so we just ignore it. */
3135 if (ppc_floating_point_unit_p (gdbarch))
3136 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3137 {
3138 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3139 fpr_addr += 8;
3140 }
3141 }
3142
3143 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3144 All gpr's from saved_gpr to gpr31 are saved. */
3145
3146 if (fdata.saved_gpr >= 0)
3147 {
3148 int i;
3149 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3150 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3151 {
3152 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3153 gpr_addr += wordsize;
3154 }
3155 }
3156
3157 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3158 All vr's from saved_vr to vr31 are saved. */
3159 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3160 {
3161 if (fdata.saved_vr >= 0)
3162 {
3163 int i;
3164 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3165 for (i = fdata.saved_vr; i < 32; i++)
3166 {
3167 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3168 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3169 }
3170 }
3171 }
3172
3173 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3174 All vr's from saved_ev to ev31 are saved. ????? */
3175 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3176 {
3177 if (fdata.saved_ev >= 0)
3178 {
3179 int i;
3180 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3181 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3182 {
3183 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3184 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3185 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3186 }
3187 }
3188 }
3189
3190 /* If != 0, fdata.cr_offset is the offset from the frame that
3191 holds the CR. */
3192 if (fdata.cr_offset != 0)
3193 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3194
3195 /* If != 0, fdata.lr_offset is the offset from the frame that
3196 holds the LR. */
3197 if (fdata.lr_offset != 0)
3198 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3199 /* The PC is found in the link register. */
3200 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3201
3202 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3203 holds the VRSAVE. */
3204 if (fdata.vrsave_offset != 0)
3205 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3206
3207 if (fdata.alloca_reg < 0)
3208 /* If no alloca register used, then fi->frame is the value of the
3209 %sp for this frame, and it is good enough. */
3210 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3211 else
3212 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3213 fdata.alloca_reg);
3214
3215 return cache;
3216 }
3217
3218 static void
3219 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3220 struct frame_id *this_id)
3221 {
3222 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3223 this_cache);
3224 (*this_id) = frame_id_build (info->base,
3225 frame_func_unwind (next_frame, NORMAL_FRAME));
3226 }
3227
3228 static void
3229 rs6000_frame_prev_register (struct frame_info *next_frame,
3230 void **this_cache,
3231 int regnum, int *optimizedp,
3232 enum lval_type *lvalp, CORE_ADDR *addrp,
3233 int *realnump, gdb_byte *valuep)
3234 {
3235 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3236 this_cache);
3237 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3238 optimizedp, lvalp, addrp, realnump, valuep);
3239 }
3240
3241 static const struct frame_unwind rs6000_frame_unwind =
3242 {
3243 NORMAL_FRAME,
3244 rs6000_frame_this_id,
3245 rs6000_frame_prev_register
3246 };
3247
3248 static const struct frame_unwind *
3249 rs6000_frame_sniffer (struct frame_info *next_frame)
3250 {
3251 return &rs6000_frame_unwind;
3252 }
3253
3254 \f
3255
3256 static CORE_ADDR
3257 rs6000_frame_base_address (struct frame_info *next_frame,
3258 void **this_cache)
3259 {
3260 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3261 this_cache);
3262 return info->initial_sp;
3263 }
3264
3265 static const struct frame_base rs6000_frame_base = {
3266 &rs6000_frame_unwind,
3267 rs6000_frame_base_address,
3268 rs6000_frame_base_address,
3269 rs6000_frame_base_address
3270 };
3271
3272 static const struct frame_base *
3273 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3274 {
3275 return &rs6000_frame_base;
3276 }
3277
3278 /* Initialize the current architecture based on INFO. If possible, re-use an
3279 architecture from ARCHES, which is a list of architectures already created
3280 during this debugging session.
3281
3282 Called e.g. at program startup, when reading a core file, and when reading
3283 a binary file. */
3284
3285 static struct gdbarch *
3286 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3287 {
3288 struct gdbarch *gdbarch;
3289 struct gdbarch_tdep *tdep;
3290 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3291 struct reg *regs;
3292 const struct variant *v;
3293 enum bfd_architecture arch;
3294 unsigned long mach;
3295 bfd abfd;
3296 int sysv_abi;
3297 asection *sect;
3298
3299 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3300 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3301
3302 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3303 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3304
3305 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3306
3307 /* Check word size. If INFO is from a binary file, infer it from
3308 that, else choose a likely default. */
3309 if (from_xcoff_exec)
3310 {
3311 if (bfd_xcoff_is_xcoff64 (info.abfd))
3312 wordsize = 8;
3313 else
3314 wordsize = 4;
3315 }
3316 else if (from_elf_exec)
3317 {
3318 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3319 wordsize = 8;
3320 else
3321 wordsize = 4;
3322 }
3323 else
3324 {
3325 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3326 wordsize = info.bfd_arch_info->bits_per_word /
3327 info.bfd_arch_info->bits_per_byte;
3328 else
3329 wordsize = 4;
3330 }
3331
3332 /* Find a candidate among extant architectures. */
3333 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3334 arches != NULL;
3335 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3336 {
3337 /* Word size in the various PowerPC bfd_arch_info structs isn't
3338 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3339 separate word size check. */
3340 tdep = gdbarch_tdep (arches->gdbarch);
3341 if (tdep && tdep->wordsize == wordsize)
3342 return arches->gdbarch;
3343 }
3344
3345 /* None found, create a new architecture from INFO, whose bfd_arch_info
3346 validity depends on the source:
3347 - executable useless
3348 - rs6000_host_arch() good
3349 - core file good
3350 - "set arch" trust blindly
3351 - GDB startup useless but harmless */
3352
3353 if (!from_xcoff_exec)
3354 {
3355 arch = info.bfd_arch_info->arch;
3356 mach = info.bfd_arch_info->mach;
3357 }
3358 else
3359 {
3360 arch = bfd_arch_powerpc;
3361 bfd_default_set_arch_mach (&abfd, arch, 0);
3362 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3363 mach = info.bfd_arch_info->mach;
3364 }
3365 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3366 tdep->wordsize = wordsize;
3367
3368 /* For e500 executables, the apuinfo section is of help here. Such
3369 section contains the identifier and revision number of each
3370 Application-specific Processing Unit that is present on the
3371 chip. The content of the section is determined by the assembler
3372 which looks at each instruction and determines which unit (and
3373 which version of it) can execute it. In our case we just look for
3374 the existance of the section. */
3375
3376 if (info.abfd)
3377 {
3378 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3379 if (sect)
3380 {
3381 arch = info.bfd_arch_info->arch;
3382 mach = bfd_mach_ppc_e500;
3383 bfd_default_set_arch_mach (&abfd, arch, mach);
3384 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3385 }
3386 }
3387
3388 gdbarch = gdbarch_alloc (&info, tdep);
3389
3390 /* Initialize the number of real and pseudo registers in each variant. */
3391 init_variants ();
3392
3393 /* Choose variant. */
3394 v = find_variant_by_arch (arch, mach);
3395 if (!v)
3396 return NULL;
3397
3398 tdep->regs = v->regs;
3399
3400 tdep->ppc_gp0_regnum = 0;
3401 tdep->ppc_toc_regnum = 2;
3402 tdep->ppc_ps_regnum = 65;
3403 tdep->ppc_cr_regnum = 66;
3404 tdep->ppc_lr_regnum = 67;
3405 tdep->ppc_ctr_regnum = 68;
3406 tdep->ppc_xer_regnum = 69;
3407 if (v->mach == bfd_mach_ppc_601)
3408 tdep->ppc_mq_regnum = 124;
3409 else if (arch == bfd_arch_rs6000)
3410 tdep->ppc_mq_regnum = 70;
3411 else
3412 tdep->ppc_mq_regnum = -1;
3413 tdep->ppc_fp0_regnum = 32;
3414 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3415 tdep->ppc_sr0_regnum = 71;
3416 tdep->ppc_vr0_regnum = -1;
3417 tdep->ppc_vrsave_regnum = -1;
3418 tdep->ppc_ev0_upper_regnum = -1;
3419 tdep->ppc_ev0_regnum = -1;
3420 tdep->ppc_ev31_regnum = -1;
3421 tdep->ppc_acc_regnum = -1;
3422 tdep->ppc_spefscr_regnum = -1;
3423
3424 set_gdbarch_pc_regnum (gdbarch, 64);
3425 set_gdbarch_sp_regnum (gdbarch, 1);
3426 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3427 set_gdbarch_fp0_regnum (gdbarch, 32);
3428 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3429 if (sysv_abi && wordsize == 8)
3430 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3431 else if (sysv_abi && wordsize == 4)
3432 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3433 else
3434 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3435
3436 /* Set lr_frame_offset. */
3437 if (wordsize == 8)
3438 tdep->lr_frame_offset = 16;
3439 else if (sysv_abi)
3440 tdep->lr_frame_offset = 4;
3441 else
3442 tdep->lr_frame_offset = 8;
3443
3444 if (v->arch == bfd_arch_rs6000)
3445 tdep->ppc_sr0_regnum = -1;
3446 else if (v->arch == bfd_arch_powerpc)
3447 switch (v->mach)
3448 {
3449 case bfd_mach_ppc:
3450 tdep->ppc_sr0_regnum = -1;
3451 tdep->ppc_vr0_regnum = 71;
3452 tdep->ppc_vrsave_regnum = 104;
3453 break;
3454 case bfd_mach_ppc_7400:
3455 tdep->ppc_vr0_regnum = 119;
3456 tdep->ppc_vrsave_regnum = 152;
3457 break;
3458 case bfd_mach_ppc_e500:
3459 tdep->ppc_toc_regnum = -1;
3460 tdep->ppc_ev0_upper_regnum = 32;
3461 tdep->ppc_ev0_regnum = 73;
3462 tdep->ppc_ev31_regnum = 104;
3463 tdep->ppc_acc_regnum = 71;
3464 tdep->ppc_spefscr_regnum = 72;
3465 tdep->ppc_fp0_regnum = -1;
3466 tdep->ppc_fpscr_regnum = -1;
3467 tdep->ppc_sr0_regnum = -1;
3468 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3469 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3470 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3471 break;
3472
3473 case bfd_mach_ppc64:
3474 case bfd_mach_ppc_620:
3475 case bfd_mach_ppc_630:
3476 case bfd_mach_ppc_a35:
3477 case bfd_mach_ppc_rs64ii:
3478 case bfd_mach_ppc_rs64iii:
3479 /* These processor's register sets don't have segment registers. */
3480 tdep->ppc_sr0_regnum = -1;
3481 break;
3482 }
3483 else
3484 internal_error (__FILE__, __LINE__,
3485 _("rs6000_gdbarch_init: "
3486 "received unexpected BFD 'arch' value"));
3487
3488 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3489
3490 /* Sanity check on registers. */
3491 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3492
3493 /* Select instruction printer. */
3494 if (arch == bfd_arch_rs6000)
3495 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3496 else
3497 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3498
3499 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3500
3501 set_gdbarch_num_regs (gdbarch, v->nregs);
3502 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3503 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3504 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3505 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3506
3507 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3508 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3509 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3510 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3511 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3512 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3513 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3514 if (sysv_abi)
3515 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3516 else
3517 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3518 set_gdbarch_char_signed (gdbarch, 0);
3519
3520 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3521 if (sysv_abi && wordsize == 8)
3522 /* PPC64 SYSV. */
3523 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3524 else if (!sysv_abi && wordsize == 4)
3525 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3526 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3527 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3528 224. */
3529 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3530
3531 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3532 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3533 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3534
3535 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3536 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3537
3538 if (sysv_abi && wordsize == 4)
3539 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3540 else if (sysv_abi && wordsize == 8)
3541 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3542 else
3543 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3544
3545 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3546 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3547
3548 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3549 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3550
3551 /* Handles single stepping of atomic sequences. */
3552 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3553
3554 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3555 for the descriptor and ".FN" for the entry-point -- a user
3556 specifying "break FN" will unexpectedly end up with a breakpoint
3557 on the descriptor and not the function. This architecture method
3558 transforms any breakpoints on descriptors into breakpoints on the
3559 corresponding entry point. */
3560 if (sysv_abi && wordsize == 8)
3561 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3562
3563 /* Not sure on this. FIXMEmgo */
3564 set_gdbarch_frame_args_skip (gdbarch, 8);
3565
3566 if (!sysv_abi)
3567 {
3568 /* Handle RS/6000 function pointers (which are really function
3569 descriptors). */
3570 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3571 rs6000_convert_from_func_ptr_addr);
3572 }
3573
3574 /* Helpers for function argument information. */
3575 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3576
3577 /* Trampoline. */
3578 set_gdbarch_in_solib_return_trampoline
3579 (gdbarch, rs6000_in_solib_return_trampoline);
3580 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3581
3582 /* Hook in the DWARF CFI frame unwinder. */
3583 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3584 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3585
3586 /* Hook in ABI-specific overrides, if they have been registered. */
3587 gdbarch_init_osabi (info, gdbarch);
3588
3589 switch (info.osabi)
3590 {
3591 case GDB_OSABI_LINUX:
3592 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3593 have altivec registers. If not, ptrace will fail the first time it's
3594 called to access one and will not be called again. This wart will
3595 be removed when Daniel Jacobowitz's proposal for autodetecting target
3596 registers is implemented. */
3597 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3598 {
3599 tdep->ppc_vr0_regnum = 71;
3600 tdep->ppc_vrsave_regnum = 104;
3601 }
3602 /* Fall Thru */
3603 case GDB_OSABI_NETBSD_AOUT:
3604 case GDB_OSABI_NETBSD_ELF:
3605 case GDB_OSABI_UNKNOWN:
3606 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3607 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3608 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3609 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3610 break;
3611 default:
3612 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3613
3614 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3615 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3616 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3617 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3618 }
3619
3620 init_sim_regno_table (gdbarch);
3621
3622 return gdbarch;
3623 }
3624
3625 static void
3626 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3627 {
3628 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3629
3630 if (tdep == NULL)
3631 return;
3632
3633 /* FIXME: Dump gdbarch_tdep. */
3634 }
3635
3636 /* Initialization code. */
3637
3638 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3639
3640 void
3641 _initialize_rs6000_tdep (void)
3642 {
3643 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3644 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3645 }