]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
* target.h (struct regcache): Add forward declaration.
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43 #include "dwarf2-frame.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52
53 #include "solib-svr4.h"
54 #include "ppc-tdep.h"
55
56 #include "gdb_assert.h"
57 #include "dis-asm.h"
58
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
62
63 #include "rs6000-tdep.h"
64
65 /* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72 #define SIG_FRAME_PC_OFFSET 96
73 #define SIG_FRAME_LR_OFFSET 108
74 #define SIG_FRAME_FP_OFFSET 284
75
76 /* To be used by skip_prologue. */
77
78 struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
85 int saved_vr; /* smallest # of saved vr */
86 int saved_ev; /* smallest # of saved ev */
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
92 int vr_offset; /* offset of saved vrs from prev sp */
93 int ev_offset; /* offset of saved evs from prev sp */
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
96 int vrsave_offset; /* offset of saved vrsave register */
97 };
98
99 /* Description of a single register. */
100
101 struct reg
102 {
103 char *name; /* name of register */
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
106 unsigned char fpr; /* whether register is floating-point */
107 unsigned char pseudo; /* whether register is pseudo */
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
111 };
112
113 /* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
117 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
119 /* Static function prototypes */
120
121 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137
138 /* Return true if REGNO is an SPE register, false otherwise. */
139 int
140 spe_register_p (int regno)
141 {
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168 }
169
170
171 /* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
173 int
174 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
180 }
181
182
183 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
190 static void
191 set_sim_regno (int *table, int gdb_regno, int sim_regno)
192 {
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197 }
198
199
200 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
203 static void
204 init_sim_regno_table (struct gdbarch *arch)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281 }
282
283
284 /* Given a GDB register number REG, return the corresponding SIM
285 register number. */
286 static int
287 rs6000_register_sim_regno (int reg)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
292 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
293 sim_regno = tdep->sim_regno[reg];
294
295 if (sim_regno >= 0)
296 return sim_regno;
297 else
298 return LEGACY_SIM_REGNO_IGNORE;
299 }
300
301 \f
302
303 /* Register set support functions. */
304
305 static void
306 ppc_supply_reg (struct regcache *regcache, int regnum,
307 const gdb_byte *regs, size_t offset)
308 {
309 if (regnum != -1 && offset != -1)
310 regcache_raw_supply (regcache, regnum, regs + offset);
311 }
312
313 static void
314 ppc_collect_reg (const struct regcache *regcache, int regnum,
315 gdb_byte *regs, size_t offset)
316 {
317 if (regnum != -1 && offset != -1)
318 regcache_raw_collect (regcache, regnum, regs + offset);
319 }
320
321 /* Supply register REGNUM in the general-purpose register set REGSET
322 from the buffer specified by GREGS and LEN to register cache
323 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
324
325 void
326 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
327 int regnum, const void *gregs, size_t len)
328 {
329 struct gdbarch *gdbarch = get_regcache_arch (regcache);
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 const struct ppc_reg_offsets *offsets = regset->descr;
332 size_t offset;
333 int i;
334
335 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
336 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
337 i++, offset += 4)
338 {
339 if (regnum == -1 || regnum == i)
340 ppc_supply_reg (regcache, i, gregs, offset);
341 }
342
343 if (regnum == -1 || regnum == PC_REGNUM)
344 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
345 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
346 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
347 gregs, offsets->ps_offset);
348 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
349 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
350 gregs, offsets->cr_offset);
351 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
352 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
353 gregs, offsets->lr_offset);
354 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
355 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
356 gregs, offsets->ctr_offset);
357 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
358 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
359 gregs, offsets->cr_offset);
360 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
362 }
363
364 /* Supply register REGNUM in the floating-point register set REGSET
365 from the buffer specified by FPREGS and LEN to register cache
366 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
367
368 void
369 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
370 int regnum, const void *fpregs, size_t len)
371 {
372 struct gdbarch *gdbarch = get_regcache_arch (regcache);
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374 const struct ppc_reg_offsets *offsets = regset->descr;
375 size_t offset;
376 int i;
377
378 gdb_assert (ppc_floating_point_unit_p (gdbarch));
379
380 offset = offsets->f0_offset;
381 for (i = tdep->ppc_fp0_regnum;
382 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
383 i++, offset += 8)
384 {
385 if (regnum == -1 || regnum == i)
386 ppc_supply_reg (regcache, i, fpregs, offset);
387 }
388
389 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
390 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
391 fpregs, offsets->fpscr_offset);
392 }
393
394 /* Collect register REGNUM in the general-purpose register set
395 REGSET. from register cache REGCACHE into the buffer specified by
396 GREGS and LEN. If REGNUM is -1, do this for all registers in
397 REGSET. */
398
399 void
400 ppc_collect_gregset (const struct regset *regset,
401 const struct regcache *regcache,
402 int regnum, void *gregs, size_t len)
403 {
404 struct gdbarch *gdbarch = get_regcache_arch (regcache);
405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
406 const struct ppc_reg_offsets *offsets = regset->descr;
407 size_t offset;
408 int i;
409
410 offset = offsets->r0_offset;
411 for (i = tdep->ppc_gp0_regnum;
412 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
413 i++, offset += 4)
414 {
415 if (regnum == -1 || regnum == i)
416 ppc_collect_reg (regcache, i, gregs, offset);
417 }
418
419 if (regnum == -1 || regnum == PC_REGNUM)
420 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
421 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
422 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
423 gregs, offsets->ps_offset);
424 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
425 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
426 gregs, offsets->cr_offset);
427 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
428 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
429 gregs, offsets->lr_offset);
430 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
431 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
432 gregs, offsets->ctr_offset);
433 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
434 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
435 gregs, offsets->xer_offset);
436 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
438 gregs, offsets->mq_offset);
439 }
440
441 /* Collect register REGNUM in the floating-point register set
442 REGSET. from register cache REGCACHE into the buffer specified by
443 FPREGS and LEN. If REGNUM is -1, do this for all registers in
444 REGSET. */
445
446 void
447 ppc_collect_fpregset (const struct regset *regset,
448 const struct regcache *regcache,
449 int regnum, void *fpregs, size_t len)
450 {
451 struct gdbarch *gdbarch = get_regcache_arch (regcache);
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 const struct ppc_reg_offsets *offsets = regset->descr;
454 size_t offset;
455 int i;
456
457 gdb_assert (ppc_floating_point_unit_p (gdbarch));
458
459 offset = offsets->f0_offset;
460 for (i = tdep->ppc_fp0_regnum;
461 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
462 i++, offset += 8)
463 {
464 if (regnum == -1 || regnum == i)
465 ppc_collect_reg (regcache, i, fpregs, offset);
466 }
467
468 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
469 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
470 fpregs, offsets->fpscr_offset);
471 }
472 \f
473
474 /* Read a LEN-byte address from debugged memory address MEMADDR. */
475
476 static CORE_ADDR
477 read_memory_addr (CORE_ADDR memaddr, int len)
478 {
479 return read_memory_unsigned_integer (memaddr, len);
480 }
481
482 static CORE_ADDR
483 rs6000_skip_prologue (CORE_ADDR pc)
484 {
485 struct rs6000_framedata frame;
486 CORE_ADDR limit_pc, func_addr;
487
488 /* See if we can determine the end of the prologue via the symbol table.
489 If so, then return either PC, or the PC after the prologue, whichever
490 is greater. */
491 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
492 {
493 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
494 if (post_prologue_pc != 0)
495 return max (pc, post_prologue_pc);
496 }
497
498 /* Can't determine prologue from the symbol table, need to examine
499 instructions. */
500
501 /* Find an upper limit on the function prologue using the debug
502 information. If the debug information could not be used to provide
503 that bound, then use an arbitrary large number as the upper bound. */
504 limit_pc = skip_prologue_using_sal (pc);
505 if (limit_pc == 0)
506 limit_pc = pc + 100; /* Magic. */
507
508 pc = skip_prologue (pc, limit_pc, &frame);
509 return pc;
510 }
511
512 static int
513 insn_changes_sp_or_jumps (unsigned long insn)
514 {
515 int opcode = (insn >> 26) & 0x03f;
516 int sd = (insn >> 21) & 0x01f;
517 int a = (insn >> 16) & 0x01f;
518 int subcode = (insn >> 1) & 0x3ff;
519
520 /* Changes the stack pointer. */
521
522 /* NOTE: There are many ways to change the value of a given register.
523 The ways below are those used when the register is R1, the SP,
524 in a funtion's epilogue. */
525
526 if (opcode == 31 && subcode == 444 && a == 1)
527 return 1; /* mr R1,Rn */
528 if (opcode == 14 && sd == 1)
529 return 1; /* addi R1,Rn,simm */
530 if (opcode == 58 && sd == 1)
531 return 1; /* ld R1,ds(Rn) */
532
533 /* Transfers control. */
534
535 if (opcode == 18)
536 return 1; /* b */
537 if (opcode == 16)
538 return 1; /* bc */
539 if (opcode == 19 && subcode == 16)
540 return 1; /* bclr */
541 if (opcode == 19 && subcode == 528)
542 return 1; /* bcctr */
543
544 return 0;
545 }
546
547 /* Return true if we are in the function's epilogue, i.e. after the
548 instruction that destroyed the function's stack frame.
549
550 1) scan forward from the point of execution:
551 a) If you find an instruction that modifies the stack pointer
552 or transfers control (except a return), execution is not in
553 an epilogue, return.
554 b) Stop scanning if you find a return instruction or reach the
555 end of the function or reach the hard limit for the size of
556 an epilogue.
557 2) scan backward from the point of execution:
558 a) If you find an instruction that modifies the stack pointer,
559 execution *is* in an epilogue, return.
560 b) Stop scanning if you reach an instruction that transfers
561 control or the beginning of the function or reach the hard
562 limit for the size of an epilogue. */
563
564 static int
565 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
566 {
567 bfd_byte insn_buf[PPC_INSN_SIZE];
568 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
569 unsigned long insn;
570 struct frame_info *curfrm;
571
572 /* Find the search limits based on function boundaries and hard limit. */
573
574 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
575 return 0;
576
577 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
578 if (epilogue_start < func_start) epilogue_start = func_start;
579
580 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
581 if (epilogue_end > func_end) epilogue_end = func_end;
582
583 curfrm = get_current_frame ();
584
585 /* Scan forward until next 'blr'. */
586
587 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
588 {
589 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
590 return 0;
591 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
592 if (insn == 0x4e800020)
593 break;
594 if (insn_changes_sp_or_jumps (insn))
595 return 0;
596 }
597
598 /* Scan backward until adjustment to stack pointer (R1). */
599
600 for (scan_pc = pc - PPC_INSN_SIZE;
601 scan_pc >= epilogue_start;
602 scan_pc -= PPC_INSN_SIZE)
603 {
604 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
605 return 0;
606 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
607 if (insn_changes_sp_or_jumps (insn))
608 return 1;
609 }
610
611 return 0;
612 }
613
614
615 /* Fill in fi->saved_regs */
616
617 struct frame_extra_info
618 {
619 /* Functions calling alloca() change the value of the stack
620 pointer. We need to use initial stack pointer (which is saved in
621 r31 by gcc) in such cases. If a compiler emits traceback table,
622 then we should use the alloca register specified in traceback
623 table. FIXME. */
624 CORE_ADDR initial_sp; /* initial stack pointer. */
625 };
626
627 /* Get the ith function argument for the current function. */
628 static CORE_ADDR
629 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
630 struct type *type)
631 {
632 return get_frame_register_unsigned (frame, 3 + argi);
633 }
634
635 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
636
637 static CORE_ADDR
638 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
639 {
640 CORE_ADDR dest;
641 int immediate;
642 int absolute;
643 int ext_op;
644
645 absolute = (int) ((instr >> 1) & 1);
646
647 switch (opcode)
648 {
649 case 18:
650 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
651 if (absolute)
652 dest = immediate;
653 else
654 dest = pc + immediate;
655 break;
656
657 case 16:
658 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
659 if (absolute)
660 dest = immediate;
661 else
662 dest = pc + immediate;
663 break;
664
665 case 19:
666 ext_op = (instr >> 1) & 0x3ff;
667
668 if (ext_op == 16) /* br conditional register */
669 {
670 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
671
672 /* If we are about to return from a signal handler, dest is
673 something like 0x3c90. The current frame is a signal handler
674 caller frame, upon completion of the sigreturn system call
675 execution will return to the saved PC in the frame. */
676 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
677 {
678 struct frame_info *fi;
679
680 fi = get_current_frame ();
681 if (fi != NULL)
682 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
683 gdbarch_tdep (current_gdbarch)->wordsize);
684 }
685 }
686
687 else if (ext_op == 528) /* br cond to count reg */
688 {
689 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
690
691 /* If we are about to execute a system call, dest is something
692 like 0x22fc or 0x3b00. Upon completion the system call
693 will return to the address in the link register. */
694 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
695 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
696 }
697 else
698 return -1;
699 break;
700
701 default:
702 return -1;
703 }
704 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
705 }
706
707
708 /* Sequence of bytes for breakpoint instruction. */
709
710 const static unsigned char *
711 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
712 {
713 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
714 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
715 *bp_size = 4;
716 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
717 return big_breakpoint;
718 else
719 return little_breakpoint;
720 }
721
722
723 /* AIX does not support PT_STEP. Simulate it. */
724
725 int
726 rs6000_software_single_step (struct regcache *regcache)
727 {
728 CORE_ADDR dummy;
729 int breakp_sz;
730 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
731 int ii, insn;
732 CORE_ADDR loc;
733 CORE_ADDR breaks[2];
734 int opcode;
735
736 loc = read_pc ();
737
738 insn = read_memory_integer (loc, 4);
739
740 breaks[0] = loc + breakp_sz;
741 opcode = insn >> 26;
742 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
743
744 /* Don't put two breakpoints on the same address. */
745 if (breaks[1] == breaks[0])
746 breaks[1] = -1;
747
748 for (ii = 0; ii < 2; ++ii)
749 {
750 /* ignore invalid breakpoint. */
751 if (breaks[ii] == -1)
752 continue;
753 insert_single_step_breakpoint (breaks[ii]);
754 }
755
756 errno = 0; /* FIXME, don't ignore errors! */
757 /* What errors? {read,write}_memory call error(). */
758 return 1;
759 }
760
761
762 /* return pc value after skipping a function prologue and also return
763 information about a function frame.
764
765 in struct rs6000_framedata fdata:
766 - frameless is TRUE, if function does not have a frame.
767 - nosavedpc is TRUE, if function does not save %pc value in its frame.
768 - offset is the initial size of this stack frame --- the amount by
769 which we decrement the sp to allocate the frame.
770 - saved_gpr is the number of the first saved gpr.
771 - saved_fpr is the number of the first saved fpr.
772 - saved_vr is the number of the first saved vr.
773 - saved_ev is the number of the first saved ev.
774 - alloca_reg is the number of the register used for alloca() handling.
775 Otherwise -1.
776 - gpr_offset is the offset of the first saved gpr from the previous frame.
777 - fpr_offset is the offset of the first saved fpr from the previous frame.
778 - vr_offset is the offset of the first saved vr from the previous frame.
779 - ev_offset is the offset of the first saved ev from the previous frame.
780 - lr_offset is the offset of the saved lr
781 - cr_offset is the offset of the saved cr
782 - vrsave_offset is the offset of the saved vrsave register
783 */
784
785 #define SIGNED_SHORT(x) \
786 ((sizeof (short) == 2) \
787 ? ((int)(short)(x)) \
788 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
789
790 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
791
792 /* Limit the number of skipped non-prologue instructions, as the examining
793 of the prologue is expensive. */
794 static int max_skip_non_prologue_insns = 10;
795
796 /* Return nonzero if the given instruction OP can be part of the prologue
797 of a function and saves a parameter on the stack. FRAMEP should be
798 set if one of the previous instructions in the function has set the
799 Frame Pointer. */
800
801 static int
802 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
803 {
804 /* Move parameters from argument registers to temporary register. */
805 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
806 {
807 /* Rx must be scratch register r0. */
808 const int rx_regno = (op >> 16) & 31;
809 /* Ry: Only r3 - r10 are used for parameter passing. */
810 const int ry_regno = GET_SRC_REG (op);
811
812 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
813 {
814 *r0_contains_arg = 1;
815 return 1;
816 }
817 else
818 return 0;
819 }
820
821 /* Save a General Purpose Register on stack. */
822
823 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
824 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
825 {
826 /* Rx: Only r3 - r10 are used for parameter passing. */
827 const int rx_regno = GET_SRC_REG (op);
828
829 return (rx_regno >= 3 && rx_regno <= 10);
830 }
831
832 /* Save a General Purpose Register on stack via the Frame Pointer. */
833
834 if (framep &&
835 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
836 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
837 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
838 {
839 /* Rx: Usually, only r3 - r10 are used for parameter passing.
840 However, the compiler sometimes uses r0 to hold an argument. */
841 const int rx_regno = GET_SRC_REG (op);
842
843 return ((rx_regno >= 3 && rx_regno <= 10)
844 || (rx_regno == 0 && *r0_contains_arg));
845 }
846
847 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
848 {
849 /* Only f2 - f8 are used for parameter passing. */
850 const int src_regno = GET_SRC_REG (op);
851
852 return (src_regno >= 2 && src_regno <= 8);
853 }
854
855 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
856 {
857 /* Only f2 - f8 are used for parameter passing. */
858 const int src_regno = GET_SRC_REG (op);
859
860 return (src_regno >= 2 && src_regno <= 8);
861 }
862
863 /* Not an insn that saves a parameter on stack. */
864 return 0;
865 }
866
867 /* Assuming that INSN is a "bl" instruction located at PC, return
868 nonzero if the destination of the branch is a "blrl" instruction.
869
870 This sequence is sometimes found in certain function prologues.
871 It allows the function to load the LR register with a value that
872 they can use to access PIC data using PC-relative offsets. */
873
874 static int
875 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
876 {
877 const int opcode = 18;
878 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
879 int dest_insn;
880
881 if (dest == -1)
882 return 0; /* Should never happen, but just return zero to be safe. */
883
884 dest_insn = read_memory_integer (dest, 4);
885 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
886 return 1;
887
888 return 0;
889 }
890
891 static CORE_ADDR
892 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
893 {
894 CORE_ADDR orig_pc = pc;
895 CORE_ADDR last_prologue_pc = pc;
896 CORE_ADDR li_found_pc = 0;
897 gdb_byte buf[4];
898 unsigned long op;
899 long offset = 0;
900 long vr_saved_offset = 0;
901 int lr_reg = -1;
902 int cr_reg = -1;
903 int vr_reg = -1;
904 int ev_reg = -1;
905 long ev_offset = 0;
906 int vrsave_reg = -1;
907 int reg;
908 int framep = 0;
909 int minimal_toc_loaded = 0;
910 int prev_insn_was_prologue_insn = 1;
911 int num_skip_non_prologue_insns = 0;
912 int r0_contains_arg = 0;
913 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
914 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
915
916 memset (fdata, 0, sizeof (struct rs6000_framedata));
917 fdata->saved_gpr = -1;
918 fdata->saved_fpr = -1;
919 fdata->saved_vr = -1;
920 fdata->saved_ev = -1;
921 fdata->alloca_reg = -1;
922 fdata->frameless = 1;
923 fdata->nosavedpc = 1;
924
925 for (;; pc += 4)
926 {
927 /* Sometimes it isn't clear if an instruction is a prologue
928 instruction or not. When we encounter one of these ambiguous
929 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
930 Otherwise, we'll assume that it really is a prologue instruction. */
931 if (prev_insn_was_prologue_insn)
932 last_prologue_pc = pc;
933
934 /* Stop scanning if we've hit the limit. */
935 if (pc >= lim_pc)
936 break;
937
938 prev_insn_was_prologue_insn = 1;
939
940 /* Fetch the instruction and convert it to an integer. */
941 if (target_read_memory (pc, buf, 4))
942 break;
943 op = extract_unsigned_integer (buf, 4);
944
945 if ((op & 0xfc1fffff) == 0x7c0802a6)
946 { /* mflr Rx */
947 /* Since shared library / PIC code, which needs to get its
948 address at runtime, can appear to save more than one link
949 register vis:
950
951 *INDENT-OFF*
952 stwu r1,-304(r1)
953 mflr r3
954 bl 0xff570d0 (blrl)
955 stw r30,296(r1)
956 mflr r30
957 stw r31,300(r1)
958 stw r3,308(r1);
959 ...
960 *INDENT-ON*
961
962 remember just the first one, but skip over additional
963 ones. */
964 if (lr_reg == -1)
965 lr_reg = (op & 0x03e00000);
966 if (lr_reg == 0)
967 r0_contains_arg = 0;
968 continue;
969 }
970 else if ((op & 0xfc1fffff) == 0x7c000026)
971 { /* mfcr Rx */
972 cr_reg = (op & 0x03e00000);
973 if (cr_reg == 0)
974 r0_contains_arg = 0;
975 continue;
976
977 }
978 else if ((op & 0xfc1f0000) == 0xd8010000)
979 { /* stfd Rx,NUM(r1) */
980 reg = GET_SRC_REG (op);
981 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
982 {
983 fdata->saved_fpr = reg;
984 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
985 }
986 continue;
987
988 }
989 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
990 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
991 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
992 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
993 {
994
995 reg = GET_SRC_REG (op);
996 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
997 {
998 fdata->saved_gpr = reg;
999 if ((op & 0xfc1f0003) == 0xf8010000)
1000 op &= ~3UL;
1001 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1002 }
1003 continue;
1004
1005 }
1006 else if ((op & 0xffff0000) == 0x60000000)
1007 {
1008 /* nop */
1009 /* Allow nops in the prologue, but do not consider them to
1010 be part of the prologue unless followed by other prologue
1011 instructions. */
1012 prev_insn_was_prologue_insn = 0;
1013 continue;
1014
1015 }
1016 else if ((op & 0xffff0000) == 0x3c000000)
1017 { /* addis 0,0,NUM, used
1018 for >= 32k frames */
1019 fdata->offset = (op & 0x0000ffff) << 16;
1020 fdata->frameless = 0;
1021 r0_contains_arg = 0;
1022 continue;
1023
1024 }
1025 else if ((op & 0xffff0000) == 0x60000000)
1026 { /* ori 0,0,NUM, 2nd ha
1027 lf of >= 32k frames */
1028 fdata->offset |= (op & 0x0000ffff);
1029 fdata->frameless = 0;
1030 r0_contains_arg = 0;
1031 continue;
1032
1033 }
1034 else if (lr_reg >= 0 &&
1035 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1036 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1037 /* stw Rx, NUM(r1) */
1038 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1039 /* stwu Rx, NUM(r1) */
1040 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1041 { /* where Rx == lr */
1042 fdata->lr_offset = offset;
1043 fdata->nosavedpc = 0;
1044 /* Invalidate lr_reg, but don't set it to -1.
1045 That would mean that it had never been set. */
1046 lr_reg = -2;
1047 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1048 (op & 0xfc000000) == 0x90000000) /* stw */
1049 {
1050 /* Does not update r1, so add displacement to lr_offset. */
1051 fdata->lr_offset += SIGNED_SHORT (op);
1052 }
1053 continue;
1054
1055 }
1056 else if (cr_reg >= 0 &&
1057 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1058 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1059 /* stw Rx, NUM(r1) */
1060 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1061 /* stwu Rx, NUM(r1) */
1062 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1063 { /* where Rx == cr */
1064 fdata->cr_offset = offset;
1065 /* Invalidate cr_reg, but don't set it to -1.
1066 That would mean that it had never been set. */
1067 cr_reg = -2;
1068 if ((op & 0xfc000003) == 0xf8000000 ||
1069 (op & 0xfc000000) == 0x90000000)
1070 {
1071 /* Does not update r1, so add displacement to cr_offset. */
1072 fdata->cr_offset += SIGNED_SHORT (op);
1073 }
1074 continue;
1075
1076 }
1077 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1078 {
1079 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1080 prediction bits. If the LR has already been saved, we can
1081 skip it. */
1082 continue;
1083 }
1084 else if (op == 0x48000005)
1085 { /* bl .+4 used in
1086 -mrelocatable */
1087 continue;
1088
1089 }
1090 else if (op == 0x48000004)
1091 { /* b .+4 (xlc) */
1092 break;
1093
1094 }
1095 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1096 in V.4 -mminimal-toc */
1097 (op & 0xffff0000) == 0x3bde0000)
1098 { /* addi 30,30,foo@l */
1099 continue;
1100
1101 }
1102 else if ((op & 0xfc000001) == 0x48000001)
1103 { /* bl foo,
1104 to save fprs??? */
1105
1106 fdata->frameless = 0;
1107
1108 /* If the return address has already been saved, we can skip
1109 calls to blrl (for PIC). */
1110 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1111 continue;
1112
1113 /* Don't skip over the subroutine call if it is not within
1114 the first three instructions of the prologue and either
1115 we have no line table information or the line info tells
1116 us that the subroutine call is not part of the line
1117 associated with the prologue. */
1118 if ((pc - orig_pc) > 8)
1119 {
1120 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1121 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1122
1123 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1124 break;
1125 }
1126
1127 op = read_memory_integer (pc + 4, 4);
1128
1129 /* At this point, make sure this is not a trampoline
1130 function (a function that simply calls another functions,
1131 and nothing else). If the next is not a nop, this branch
1132 was part of the function prologue. */
1133
1134 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1135 break; /* don't skip over
1136 this branch */
1137 continue;
1138
1139 }
1140 /* update stack pointer */
1141 else if ((op & 0xfc1f0000) == 0x94010000)
1142 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1143 fdata->frameless = 0;
1144 fdata->offset = SIGNED_SHORT (op);
1145 offset = fdata->offset;
1146 continue;
1147 }
1148 else if ((op & 0xfc1f016a) == 0x7c01016e)
1149 { /* stwux rX,r1,rY */
1150 /* no way to figure out what r1 is going to be */
1151 fdata->frameless = 0;
1152 offset = fdata->offset;
1153 continue;
1154 }
1155 else if ((op & 0xfc1f0003) == 0xf8010001)
1156 { /* stdu rX,NUM(r1) */
1157 fdata->frameless = 0;
1158 fdata->offset = SIGNED_SHORT (op & ~3UL);
1159 offset = fdata->offset;
1160 continue;
1161 }
1162 else if ((op & 0xfc1f016a) == 0x7c01016a)
1163 { /* stdux rX,r1,rY */
1164 /* no way to figure out what r1 is going to be */
1165 fdata->frameless = 0;
1166 offset = fdata->offset;
1167 continue;
1168 }
1169 else if ((op & 0xffff0000) == 0x38210000)
1170 { /* addi r1,r1,SIMM */
1171 fdata->frameless = 0;
1172 fdata->offset += SIGNED_SHORT (op);
1173 offset = fdata->offset;
1174 continue;
1175 }
1176 /* Load up minimal toc pointer. Do not treat an epilogue restore
1177 of r31 as a minimal TOC load. */
1178 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1179 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1180 && !framep
1181 && !minimal_toc_loaded)
1182 {
1183 minimal_toc_loaded = 1;
1184 continue;
1185
1186 /* move parameters from argument registers to local variable
1187 registers */
1188 }
1189 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1190 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1191 (((op >> 21) & 31) <= 10) &&
1192 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1193 {
1194 continue;
1195
1196 /* store parameters in stack */
1197 }
1198 /* Move parameters from argument registers to temporary register. */
1199 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1200 {
1201 continue;
1202
1203 /* Set up frame pointer */
1204 }
1205 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1206 || op == 0x7c3f0b78)
1207 { /* mr r31, r1 */
1208 fdata->frameless = 0;
1209 framep = 1;
1210 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1211 continue;
1212
1213 /* Another way to set up the frame pointer. */
1214 }
1215 else if ((op & 0xfc1fffff) == 0x38010000)
1216 { /* addi rX, r1, 0x0 */
1217 fdata->frameless = 0;
1218 framep = 1;
1219 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1220 + ((op & ~0x38010000) >> 21));
1221 continue;
1222 }
1223 /* AltiVec related instructions. */
1224 /* Store the vrsave register (spr 256) in another register for
1225 later manipulation, or load a register into the vrsave
1226 register. 2 instructions are used: mfvrsave and
1227 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1228 and mtspr SPR256, Rn. */
1229 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1230 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1231 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1232 {
1233 vrsave_reg = GET_SRC_REG (op);
1234 continue;
1235 }
1236 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1237 {
1238 continue;
1239 }
1240 /* Store the register where vrsave was saved to onto the stack:
1241 rS is the register where vrsave was stored in a previous
1242 instruction. */
1243 /* 100100 sssss 00001 dddddddd dddddddd */
1244 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1245 {
1246 if (vrsave_reg == GET_SRC_REG (op))
1247 {
1248 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1249 vrsave_reg = -1;
1250 }
1251 continue;
1252 }
1253 /* Compute the new value of vrsave, by modifying the register
1254 where vrsave was saved to. */
1255 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1256 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1257 {
1258 continue;
1259 }
1260 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1261 in a pair of insns to save the vector registers on the
1262 stack. */
1263 /* 001110 00000 00000 iiii iiii iiii iiii */
1264 /* 001110 01110 00000 iiii iiii iiii iiii */
1265 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1266 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1267 {
1268 if ((op & 0xffff0000) == 0x38000000)
1269 r0_contains_arg = 0;
1270 li_found_pc = pc;
1271 vr_saved_offset = SIGNED_SHORT (op);
1272
1273 /* This insn by itself is not part of the prologue, unless
1274 if part of the pair of insns mentioned above. So do not
1275 record this insn as part of the prologue yet. */
1276 prev_insn_was_prologue_insn = 0;
1277 }
1278 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1279 /* 011111 sssss 11111 00000 00111001110 */
1280 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1281 {
1282 if (pc == (li_found_pc + 4))
1283 {
1284 vr_reg = GET_SRC_REG (op);
1285 /* If this is the first vector reg to be saved, or if
1286 it has a lower number than others previously seen,
1287 reupdate the frame info. */
1288 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1289 {
1290 fdata->saved_vr = vr_reg;
1291 fdata->vr_offset = vr_saved_offset + offset;
1292 }
1293 vr_saved_offset = -1;
1294 vr_reg = -1;
1295 li_found_pc = 0;
1296 }
1297 }
1298 /* End AltiVec related instructions. */
1299
1300 /* Start BookE related instructions. */
1301 /* Store gen register S at (r31+uimm).
1302 Any register less than r13 is volatile, so we don't care. */
1303 /* 000100 sssss 11111 iiiii 01100100001 */
1304 else if (arch_info->mach == bfd_mach_ppc_e500
1305 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1306 {
1307 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1308 {
1309 unsigned int imm;
1310 ev_reg = GET_SRC_REG (op);
1311 imm = (op >> 11) & 0x1f;
1312 ev_offset = imm * 8;
1313 /* If this is the first vector reg to be saved, or if
1314 it has a lower number than others previously seen,
1315 reupdate the frame info. */
1316 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1317 {
1318 fdata->saved_ev = ev_reg;
1319 fdata->ev_offset = ev_offset + offset;
1320 }
1321 }
1322 continue;
1323 }
1324 /* Store gen register rS at (r1+rB). */
1325 /* 000100 sssss 00001 bbbbb 01100100000 */
1326 else if (arch_info->mach == bfd_mach_ppc_e500
1327 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1328 {
1329 if (pc == (li_found_pc + 4))
1330 {
1331 ev_reg = GET_SRC_REG (op);
1332 /* If this is the first vector reg to be saved, or if
1333 it has a lower number than others previously seen,
1334 reupdate the frame info. */
1335 /* We know the contents of rB from the previous instruction. */
1336 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1337 {
1338 fdata->saved_ev = ev_reg;
1339 fdata->ev_offset = vr_saved_offset + offset;
1340 }
1341 vr_saved_offset = -1;
1342 ev_reg = -1;
1343 li_found_pc = 0;
1344 }
1345 continue;
1346 }
1347 /* Store gen register r31 at (rA+uimm). */
1348 /* 000100 11111 aaaaa iiiii 01100100001 */
1349 else if (arch_info->mach == bfd_mach_ppc_e500
1350 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1351 {
1352 /* Wwe know that the source register is 31 already, but
1353 it can't hurt to compute it. */
1354 ev_reg = GET_SRC_REG (op);
1355 ev_offset = ((op >> 11) & 0x1f) * 8;
1356 /* If this is the first vector reg to be saved, or if
1357 it has a lower number than others previously seen,
1358 reupdate the frame info. */
1359 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1360 {
1361 fdata->saved_ev = ev_reg;
1362 fdata->ev_offset = ev_offset + offset;
1363 }
1364
1365 continue;
1366 }
1367 /* Store gen register S at (r31+r0).
1368 Store param on stack when offset from SP bigger than 4 bytes. */
1369 /* 000100 sssss 11111 00000 01100100000 */
1370 else if (arch_info->mach == bfd_mach_ppc_e500
1371 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1372 {
1373 if (pc == (li_found_pc + 4))
1374 {
1375 if ((op & 0x03e00000) >= 0x01a00000)
1376 {
1377 ev_reg = GET_SRC_REG (op);
1378 /* If this is the first vector reg to be saved, or if
1379 it has a lower number than others previously seen,
1380 reupdate the frame info. */
1381 /* We know the contents of r0 from the previous
1382 instruction. */
1383 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1384 {
1385 fdata->saved_ev = ev_reg;
1386 fdata->ev_offset = vr_saved_offset + offset;
1387 }
1388 ev_reg = -1;
1389 }
1390 vr_saved_offset = -1;
1391 li_found_pc = 0;
1392 continue;
1393 }
1394 }
1395 /* End BookE related instructions. */
1396
1397 else
1398 {
1399 /* Not a recognized prologue instruction.
1400 Handle optimizer code motions into the prologue by continuing
1401 the search if we have no valid frame yet or if the return
1402 address is not yet saved in the frame. */
1403 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1404 break;
1405
1406 if (op == 0x4e800020 /* blr */
1407 || op == 0x4e800420) /* bctr */
1408 /* Do not scan past epilogue in frameless functions or
1409 trampolines. */
1410 break;
1411 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1412 /* Never skip branches. */
1413 break;
1414
1415 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1416 /* Do not scan too many insns, scanning insns is expensive with
1417 remote targets. */
1418 break;
1419
1420 /* Continue scanning. */
1421 prev_insn_was_prologue_insn = 0;
1422 continue;
1423 }
1424 }
1425
1426 #if 0
1427 /* I have problems with skipping over __main() that I need to address
1428 * sometime. Previously, I used to use misc_function_vector which
1429 * didn't work as well as I wanted to be. -MGO */
1430
1431 /* If the first thing after skipping a prolog is a branch to a function,
1432 this might be a call to an initializer in main(), introduced by gcc2.
1433 We'd like to skip over it as well. Fortunately, xlc does some extra
1434 work before calling a function right after a prologue, thus we can
1435 single out such gcc2 behaviour. */
1436
1437
1438 if ((op & 0xfc000001) == 0x48000001)
1439 { /* bl foo, an initializer function? */
1440 op = read_memory_integer (pc + 4, 4);
1441
1442 if (op == 0x4def7b82)
1443 { /* cror 0xf, 0xf, 0xf (nop) */
1444
1445 /* Check and see if we are in main. If so, skip over this
1446 initializer function as well. */
1447
1448 tmp = find_pc_misc_function (pc);
1449 if (tmp >= 0
1450 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1451 return pc + 8;
1452 }
1453 }
1454 #endif /* 0 */
1455
1456 fdata->offset = -fdata->offset;
1457 return last_prologue_pc;
1458 }
1459
1460
1461 /*************************************************************************
1462 Support for creating pushing a dummy frame into the stack, and popping
1463 frames, etc.
1464 *************************************************************************/
1465
1466
1467 /* All the ABI's require 16 byte alignment. */
1468 static CORE_ADDR
1469 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1470 {
1471 return (addr & -16);
1472 }
1473
1474 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1475 the first eight words of the argument list (that might be less than
1476 eight parameters if some parameters occupy more than one word) are
1477 passed in r3..r10 registers. float and double parameters are
1478 passed in fpr's, in addition to that. Rest of the parameters if any
1479 are passed in user stack. There might be cases in which half of the
1480 parameter is copied into registers, the other half is pushed into
1481 stack.
1482
1483 Stack must be aligned on 64-bit boundaries when synthesizing
1484 function calls.
1485
1486 If the function is returning a structure, then the return address is passed
1487 in r3, then the first 7 words of the parameters can be passed in registers,
1488 starting from r4. */
1489
1490 static CORE_ADDR
1491 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1492 struct regcache *regcache, CORE_ADDR bp_addr,
1493 int nargs, struct value **args, CORE_ADDR sp,
1494 int struct_return, CORE_ADDR struct_addr)
1495 {
1496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1497 int ii;
1498 int len = 0;
1499 int argno; /* current argument number */
1500 int argbytes; /* current argument byte */
1501 gdb_byte tmp_buffer[50];
1502 int f_argno = 0; /* current floating point argno */
1503 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1504 CORE_ADDR func_addr = find_function_addr (function, NULL);
1505
1506 struct value *arg = 0;
1507 struct type *type;
1508
1509 CORE_ADDR saved_sp;
1510
1511 /* The calling convention this function implements assumes the
1512 processor has floating-point registers. We shouldn't be using it
1513 on PPC variants that lack them. */
1514 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1515
1516 /* The first eight words of ther arguments are passed in registers.
1517 Copy them appropriately. */
1518 ii = 0;
1519
1520 /* If the function is returning a `struct', then the first word
1521 (which will be passed in r3) is used for struct return address.
1522 In that case we should advance one word and start from r4
1523 register to copy parameters. */
1524 if (struct_return)
1525 {
1526 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1527 struct_addr);
1528 ii++;
1529 }
1530
1531 /*
1532 effectively indirect call... gcc does...
1533
1534 return_val example( float, int);
1535
1536 eabi:
1537 float in fp0, int in r3
1538 offset of stack on overflow 8/16
1539 for varargs, must go by type.
1540 power open:
1541 float in r3&r4, int in r5
1542 offset of stack on overflow different
1543 both:
1544 return in r3 or f0. If no float, must study how gcc emulates floats;
1545 pay attention to arg promotion.
1546 User may have to cast\args to handle promotion correctly
1547 since gdb won't know if prototype supplied or not.
1548 */
1549
1550 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1551 {
1552 int reg_size = register_size (current_gdbarch, ii + 3);
1553
1554 arg = args[argno];
1555 type = check_typedef (value_type (arg));
1556 len = TYPE_LENGTH (type);
1557
1558 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1559 {
1560
1561 /* Floating point arguments are passed in fpr's, as well as gpr's.
1562 There are 13 fpr's reserved for passing parameters. At this point
1563 there is no way we would run out of them. */
1564
1565 gdb_assert (len <= 8);
1566
1567 regcache_cooked_write (regcache,
1568 tdep->ppc_fp0_regnum + 1 + f_argno,
1569 value_contents (arg));
1570 ++f_argno;
1571 }
1572
1573 if (len > reg_size)
1574 {
1575
1576 /* Argument takes more than one register. */
1577 while (argbytes < len)
1578 {
1579 gdb_byte word[MAX_REGISTER_SIZE];
1580 memset (word, 0, reg_size);
1581 memcpy (word,
1582 ((char *) value_contents (arg)) + argbytes,
1583 (len - argbytes) > reg_size
1584 ? reg_size : len - argbytes);
1585 regcache_cooked_write (regcache,
1586 tdep->ppc_gp0_regnum + 3 + ii,
1587 word);
1588 ++ii, argbytes += reg_size;
1589
1590 if (ii >= 8)
1591 goto ran_out_of_registers_for_arguments;
1592 }
1593 argbytes = 0;
1594 --ii;
1595 }
1596 else
1597 {
1598 /* Argument can fit in one register. No problem. */
1599 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1600 gdb_byte word[MAX_REGISTER_SIZE];
1601
1602 memset (word, 0, reg_size);
1603 memcpy (word, value_contents (arg), len);
1604 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1605 }
1606 ++argno;
1607 }
1608
1609 ran_out_of_registers_for_arguments:
1610
1611 saved_sp = read_sp ();
1612
1613 /* Location for 8 parameters are always reserved. */
1614 sp -= wordsize * 8;
1615
1616 /* Another six words for back chain, TOC register, link register, etc. */
1617 sp -= wordsize * 6;
1618
1619 /* Stack pointer must be quadword aligned. */
1620 sp &= -16;
1621
1622 /* If there are more arguments, allocate space for them in
1623 the stack, then push them starting from the ninth one. */
1624
1625 if ((argno < nargs) || argbytes)
1626 {
1627 int space = 0, jj;
1628
1629 if (argbytes)
1630 {
1631 space += ((len - argbytes + 3) & -4);
1632 jj = argno + 1;
1633 }
1634 else
1635 jj = argno;
1636
1637 for (; jj < nargs; ++jj)
1638 {
1639 struct value *val = args[jj];
1640 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1641 }
1642
1643 /* Add location required for the rest of the parameters. */
1644 space = (space + 15) & -16;
1645 sp -= space;
1646
1647 /* This is another instance we need to be concerned about
1648 securing our stack space. If we write anything underneath %sp
1649 (r1), we might conflict with the kernel who thinks he is free
1650 to use this area. So, update %sp first before doing anything
1651 else. */
1652
1653 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1654
1655 /* If the last argument copied into the registers didn't fit there
1656 completely, push the rest of it into stack. */
1657
1658 if (argbytes)
1659 {
1660 write_memory (sp + 24 + (ii * 4),
1661 value_contents (arg) + argbytes,
1662 len - argbytes);
1663 ++argno;
1664 ii += ((len - argbytes + 3) & -4) / 4;
1665 }
1666
1667 /* Push the rest of the arguments into stack. */
1668 for (; argno < nargs; ++argno)
1669 {
1670
1671 arg = args[argno];
1672 type = check_typedef (value_type (arg));
1673 len = TYPE_LENGTH (type);
1674
1675
1676 /* Float types should be passed in fpr's, as well as in the
1677 stack. */
1678 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1679 {
1680
1681 gdb_assert (len <= 8);
1682
1683 regcache_cooked_write (regcache,
1684 tdep->ppc_fp0_regnum + 1 + f_argno,
1685 value_contents (arg));
1686 ++f_argno;
1687 }
1688
1689 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1690 ii += ((len + 3) & -4) / 4;
1691 }
1692 }
1693
1694 /* Set the stack pointer. According to the ABI, the SP is meant to
1695 be set _before_ the corresponding stack space is used. On AIX,
1696 this even applies when the target has been completely stopped!
1697 Not doing this can lead to conflicts with the kernel which thinks
1698 that it still has control over this not-yet-allocated stack
1699 region. */
1700 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1701
1702 /* Set back chain properly. */
1703 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1704 write_memory (sp, tmp_buffer, wordsize);
1705
1706 /* Point the inferior function call's return address at the dummy's
1707 breakpoint. */
1708 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1709
1710 /* Set the TOC register, get the value from the objfile reader
1711 which, in turn, gets it from the VMAP table. */
1712 if (rs6000_find_toc_address_hook != NULL)
1713 {
1714 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1715 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1716 }
1717
1718 target_store_registers (regcache, -1);
1719 return sp;
1720 }
1721
1722 static enum return_value_convention
1723 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1724 struct regcache *regcache, gdb_byte *readbuf,
1725 const gdb_byte *writebuf)
1726 {
1727 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1728 gdb_byte buf[8];
1729
1730 /* The calling convention this function implements assumes the
1731 processor has floating-point registers. We shouldn't be using it
1732 on PowerPC variants that lack them. */
1733 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1734
1735 /* AltiVec extension: Functions that declare a vector data type as a
1736 return value place that return value in VR2. */
1737 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1738 && TYPE_LENGTH (valtype) == 16)
1739 {
1740 if (readbuf)
1741 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1742 if (writebuf)
1743 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1744
1745 return RETURN_VALUE_REGISTER_CONVENTION;
1746 }
1747
1748 /* If the called subprogram returns an aggregate, there exists an
1749 implicit first argument, whose value is the address of a caller-
1750 allocated buffer into which the callee is assumed to store its
1751 return value. All explicit parameters are appropriately
1752 relabeled. */
1753 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1754 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1755 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1756 return RETURN_VALUE_STRUCT_CONVENTION;
1757
1758 /* Scalar floating-point values are returned in FPR1 for float or
1759 double, and in FPR1:FPR2 for quadword precision. Fortran
1760 complex*8 and complex*16 are returned in FPR1:FPR2, and
1761 complex*32 is returned in FPR1:FPR4. */
1762 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1763 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1764 {
1765 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1766 gdb_byte regval[8];
1767
1768 /* FIXME: kettenis/2007-01-01: Add support for quadword
1769 precision and complex. */
1770
1771 if (readbuf)
1772 {
1773 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1774 convert_typed_floating (regval, regtype, readbuf, valtype);
1775 }
1776 if (writebuf)
1777 {
1778 convert_typed_floating (writebuf, valtype, regval, regtype);
1779 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1780 }
1781
1782 return RETURN_VALUE_REGISTER_CONVENTION;
1783 }
1784
1785 /* Values of the types int, long, short, pointer, and char (length
1786 is less than or equal to four bytes), as well as bit values of
1787 lengths less than or equal to 32 bits, must be returned right
1788 justified in GPR3 with signed values sign extended and unsigned
1789 values zero extended, as necessary. */
1790 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1791 {
1792 if (readbuf)
1793 {
1794 ULONGEST regval;
1795
1796 /* For reading we don't have to worry about sign extension. */
1797 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1798 &regval);
1799 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1800 }
1801 if (writebuf)
1802 {
1803 /* For writing, use unpack_long since that should handle any
1804 required sign extension. */
1805 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1806 unpack_long (valtype, writebuf));
1807 }
1808
1809 return RETURN_VALUE_REGISTER_CONVENTION;
1810 }
1811
1812 /* Eight-byte non-floating-point scalar values must be returned in
1813 GPR3:GPR4. */
1814
1815 if (TYPE_LENGTH (valtype) == 8)
1816 {
1817 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1818 gdb_assert (tdep->wordsize == 4);
1819
1820 if (readbuf)
1821 {
1822 gdb_byte regval[8];
1823
1824 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1825 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1826 regval + 4);
1827 memcpy (readbuf, regval, 8);
1828 }
1829 if (writebuf)
1830 {
1831 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1832 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1833 writebuf + 4);
1834 }
1835
1836 return RETURN_VALUE_REGISTER_CONVENTION;
1837 }
1838
1839 return RETURN_VALUE_STRUCT_CONVENTION;
1840 }
1841
1842 /* Return whether handle_inferior_event() should proceed through code
1843 starting at PC in function NAME when stepping.
1844
1845 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1846 handle memory references that are too distant to fit in instructions
1847 generated by the compiler. For example, if 'foo' in the following
1848 instruction:
1849
1850 lwz r9,foo(r2)
1851
1852 is greater than 32767, the linker might replace the lwz with a branch to
1853 somewhere in @FIX1 that does the load in 2 instructions and then branches
1854 back to where execution should continue.
1855
1856 GDB should silently step over @FIX code, just like AIX dbx does.
1857 Unfortunately, the linker uses the "b" instruction for the
1858 branches, meaning that the link register doesn't get set.
1859 Therefore, GDB's usual step_over_function () mechanism won't work.
1860
1861 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1862 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1863 @FIX code. */
1864
1865 int
1866 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1867 {
1868 return name && !strncmp (name, "@FIX", 4);
1869 }
1870
1871 /* Skip code that the user doesn't want to see when stepping:
1872
1873 1. Indirect function calls use a piece of trampoline code to do context
1874 switching, i.e. to set the new TOC table. Skip such code if we are on
1875 its first instruction (as when we have single-stepped to here).
1876
1877 2. Skip shared library trampoline code (which is different from
1878 indirect function call trampolines).
1879
1880 3. Skip bigtoc fixup code.
1881
1882 Result is desired PC to step until, or NULL if we are not in
1883 code that should be skipped. */
1884
1885 CORE_ADDR
1886 rs6000_skip_trampoline_code (CORE_ADDR pc)
1887 {
1888 unsigned int ii, op;
1889 int rel;
1890 CORE_ADDR solib_target_pc;
1891 struct minimal_symbol *msymbol;
1892
1893 static unsigned trampoline_code[] =
1894 {
1895 0x800b0000, /* l r0,0x0(r11) */
1896 0x90410014, /* st r2,0x14(r1) */
1897 0x7c0903a6, /* mtctr r0 */
1898 0x804b0004, /* l r2,0x4(r11) */
1899 0x816b0008, /* l r11,0x8(r11) */
1900 0x4e800420, /* bctr */
1901 0x4e800020, /* br */
1902 0
1903 };
1904
1905 /* Check for bigtoc fixup code. */
1906 msymbol = lookup_minimal_symbol_by_pc (pc);
1907 if (msymbol
1908 && rs6000_in_solib_return_trampoline (pc,
1909 DEPRECATED_SYMBOL_NAME (msymbol)))
1910 {
1911 /* Double-check that the third instruction from PC is relative "b". */
1912 op = read_memory_integer (pc + 8, 4);
1913 if ((op & 0xfc000003) == 0x48000000)
1914 {
1915 /* Extract bits 6-29 as a signed 24-bit relative word address and
1916 add it to the containing PC. */
1917 rel = ((int)(op << 6) >> 6);
1918 return pc + 8 + rel;
1919 }
1920 }
1921
1922 /* If pc is in a shared library trampoline, return its target. */
1923 solib_target_pc = find_solib_trampoline_target (pc);
1924 if (solib_target_pc)
1925 return solib_target_pc;
1926
1927 for (ii = 0; trampoline_code[ii]; ++ii)
1928 {
1929 op = read_memory_integer (pc + (ii * 4), 4);
1930 if (op != trampoline_code[ii])
1931 return 0;
1932 }
1933 ii = read_register (11); /* r11 holds destination addr */
1934 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1935 return pc;
1936 }
1937
1938 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1939 isn't available with that word size, return 0. */
1940
1941 static int
1942 regsize (const struct reg *reg, int wordsize)
1943 {
1944 return wordsize == 8 ? reg->sz64 : reg->sz32;
1945 }
1946
1947 /* Return the name of register number N, or null if no such register exists
1948 in the current architecture. */
1949
1950 static const char *
1951 rs6000_register_name (int n)
1952 {
1953 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1954 const struct reg *reg = tdep->regs + n;
1955
1956 if (!regsize (reg, tdep->wordsize))
1957 return NULL;
1958 return reg->name;
1959 }
1960
1961 /* Return the GDB type object for the "standard" data type
1962 of data in register N. */
1963
1964 static struct type *
1965 rs6000_register_type (struct gdbarch *gdbarch, int n)
1966 {
1967 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1968 const struct reg *reg = tdep->regs + n;
1969
1970 if (reg->fpr)
1971 return builtin_type_double;
1972 else
1973 {
1974 int size = regsize (reg, tdep->wordsize);
1975 switch (size)
1976 {
1977 case 0:
1978 return builtin_type_int0;
1979 case 4:
1980 return builtin_type_uint32;
1981 case 8:
1982 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1983 return builtin_type_vec64;
1984 else
1985 return builtin_type_uint64;
1986 break;
1987 case 16:
1988 return builtin_type_vec128;
1989 break;
1990 default:
1991 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1992 n, size);
1993 }
1994 }
1995 }
1996
1997 /* Is REGNUM a member of REGGROUP? */
1998 static int
1999 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2000 struct reggroup *group)
2001 {
2002 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2003 int float_p;
2004 int vector_p;
2005 int general_p;
2006
2007 if (REGISTER_NAME (regnum) == NULL
2008 || *REGISTER_NAME (regnum) == '\0')
2009 return 0;
2010 if (group == all_reggroup)
2011 return 1;
2012
2013 float_p = (regnum == tdep->ppc_fpscr_regnum
2014 || (regnum >= tdep->ppc_fp0_regnum
2015 && regnum < tdep->ppc_fp0_regnum + 32));
2016 if (group == float_reggroup)
2017 return float_p;
2018
2019 vector_p = ((tdep->ppc_vr0_regnum >= 0
2020 && regnum >= tdep->ppc_vr0_regnum
2021 && regnum < tdep->ppc_vr0_regnum + 32)
2022 || (tdep->ppc_ev0_regnum >= 0
2023 && regnum >= tdep->ppc_ev0_regnum
2024 && regnum < tdep->ppc_ev0_regnum + 32)
2025 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2026 || regnum == tdep->ppc_vrsave_regnum
2027 || regnum == tdep->ppc_acc_regnum
2028 || regnum == tdep->ppc_spefscr_regnum);
2029 if (group == vector_reggroup)
2030 return vector_p;
2031
2032 /* Note that PS aka MSR isn't included - it's a system register (and
2033 besides, due to GCC's CFI foobar you do not want to restore
2034 it). */
2035 general_p = ((regnum >= tdep->ppc_gp0_regnum
2036 && regnum < tdep->ppc_gp0_regnum + 32)
2037 || regnum == tdep->ppc_toc_regnum
2038 || regnum == tdep->ppc_cr_regnum
2039 || regnum == tdep->ppc_lr_regnum
2040 || regnum == tdep->ppc_ctr_regnum
2041 || regnum == tdep->ppc_xer_regnum
2042 || regnum == PC_REGNUM);
2043 if (group == general_reggroup)
2044 return general_p;
2045
2046 if (group == save_reggroup || group == restore_reggroup)
2047 return general_p || vector_p || float_p;
2048
2049 return 0;
2050 }
2051
2052 /* The register format for RS/6000 floating point registers is always
2053 double, we need a conversion if the memory format is float. */
2054
2055 static int
2056 rs6000_convert_register_p (int regnum, struct type *type)
2057 {
2058 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2059
2060 return (reg->fpr
2061 && TYPE_CODE (type) == TYPE_CODE_FLT
2062 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2063 }
2064
2065 static void
2066 rs6000_register_to_value (struct frame_info *frame,
2067 int regnum,
2068 struct type *type,
2069 gdb_byte *to)
2070 {
2071 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2072 gdb_byte from[MAX_REGISTER_SIZE];
2073
2074 gdb_assert (reg->fpr);
2075 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2076
2077 get_frame_register (frame, regnum, from);
2078 convert_typed_floating (from, builtin_type_double, to, type);
2079 }
2080
2081 static void
2082 rs6000_value_to_register (struct frame_info *frame,
2083 int regnum,
2084 struct type *type,
2085 const gdb_byte *from)
2086 {
2087 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2088 gdb_byte to[MAX_REGISTER_SIZE];
2089
2090 gdb_assert (reg->fpr);
2091 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2092
2093 convert_typed_floating (from, type, to, builtin_type_double);
2094 put_frame_register (frame, regnum, to);
2095 }
2096
2097 /* Move SPE vector register values between a 64-bit buffer and the two
2098 32-bit raw register halves in a regcache. This function handles
2099 both splitting a 64-bit value into two 32-bit halves, and joining
2100 two halves into a whole 64-bit value, depending on the function
2101 passed as the MOVE argument.
2102
2103 EV_REG must be the number of an SPE evN vector register --- a
2104 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2105 64-bit buffer.
2106
2107 Call MOVE once for each 32-bit half of that register, passing
2108 REGCACHE, the number of the raw register corresponding to that
2109 half, and the address of the appropriate half of BUFFER.
2110
2111 For example, passing 'regcache_raw_read' as the MOVE function will
2112 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2113 'regcache_raw_supply' will supply the contents of BUFFER to the
2114 appropriate pair of raw registers in REGCACHE.
2115
2116 You may need to cast away some 'const' qualifiers when passing
2117 MOVE, since this function can't tell at compile-time which of
2118 REGCACHE or BUFFER is acting as the source of the data. If C had
2119 co-variant type qualifiers, ... */
2120 static void
2121 e500_move_ev_register (void (*move) (struct regcache *regcache,
2122 int regnum, gdb_byte *buf),
2123 struct regcache *regcache, int ev_reg,
2124 gdb_byte *buffer)
2125 {
2126 struct gdbarch *arch = get_regcache_arch (regcache);
2127 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2128 int reg_index;
2129 gdb_byte *byte_buffer = buffer;
2130
2131 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2132 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2133
2134 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2135
2136 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2137 {
2138 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2139 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2140 }
2141 else
2142 {
2143 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2144 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2145 }
2146 }
2147
2148 static void
2149 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2150 int reg_nr, gdb_byte *buffer)
2151 {
2152 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2154
2155 gdb_assert (regcache_arch == gdbarch);
2156
2157 if (tdep->ppc_ev0_regnum <= reg_nr
2158 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2159 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2160 else
2161 internal_error (__FILE__, __LINE__,
2162 _("e500_pseudo_register_read: "
2163 "called on unexpected register '%s' (%d)"),
2164 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2165 }
2166
2167 static void
2168 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2169 int reg_nr, const gdb_byte *buffer)
2170 {
2171 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2172 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2173
2174 gdb_assert (regcache_arch == gdbarch);
2175
2176 if (tdep->ppc_ev0_regnum <= reg_nr
2177 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2178 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2179 regcache_raw_write,
2180 regcache, reg_nr, (gdb_byte *) buffer);
2181 else
2182 internal_error (__FILE__, __LINE__,
2183 _("e500_pseudo_register_read: "
2184 "called on unexpected register '%s' (%d)"),
2185 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2186 }
2187
2188 /* The E500 needs a custom reggroup function: it has anonymous raw
2189 registers, and default_register_reggroup_p assumes that anonymous
2190 registers are not members of any reggroup. */
2191 static int
2192 e500_register_reggroup_p (struct gdbarch *gdbarch,
2193 int regnum,
2194 struct reggroup *group)
2195 {
2196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2197
2198 /* The save and restore register groups need to include the
2199 upper-half registers, even though they're anonymous. */
2200 if ((group == save_reggroup
2201 || group == restore_reggroup)
2202 && (tdep->ppc_ev0_upper_regnum <= regnum
2203 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2204 return 1;
2205
2206 /* In all other regards, the default reggroup definition is fine. */
2207 return default_register_reggroup_p (gdbarch, regnum, group);
2208 }
2209
2210 /* Convert a DBX STABS register number to a GDB register number. */
2211 static int
2212 rs6000_stab_reg_to_regnum (int num)
2213 {
2214 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2215
2216 if (0 <= num && num <= 31)
2217 return tdep->ppc_gp0_regnum + num;
2218 else if (32 <= num && num <= 63)
2219 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2220 specifies registers the architecture doesn't have? Our
2221 callers don't check the value we return. */
2222 return tdep->ppc_fp0_regnum + (num - 32);
2223 else if (77 <= num && num <= 108)
2224 return tdep->ppc_vr0_regnum + (num - 77);
2225 else if (1200 <= num && num < 1200 + 32)
2226 return tdep->ppc_ev0_regnum + (num - 1200);
2227 else
2228 switch (num)
2229 {
2230 case 64:
2231 return tdep->ppc_mq_regnum;
2232 case 65:
2233 return tdep->ppc_lr_regnum;
2234 case 66:
2235 return tdep->ppc_ctr_regnum;
2236 case 76:
2237 return tdep->ppc_xer_regnum;
2238 case 109:
2239 return tdep->ppc_vrsave_regnum;
2240 case 110:
2241 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2242 case 111:
2243 return tdep->ppc_acc_regnum;
2244 case 112:
2245 return tdep->ppc_spefscr_regnum;
2246 default:
2247 return num;
2248 }
2249 }
2250
2251
2252 /* Convert a Dwarf 2 register number to a GDB register number. */
2253 static int
2254 rs6000_dwarf2_reg_to_regnum (int num)
2255 {
2256 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2257
2258 if (0 <= num && num <= 31)
2259 return tdep->ppc_gp0_regnum + num;
2260 else if (32 <= num && num <= 63)
2261 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2262 specifies registers the architecture doesn't have? Our
2263 callers don't check the value we return. */
2264 return tdep->ppc_fp0_regnum + (num - 32);
2265 else if (1124 <= num && num < 1124 + 32)
2266 return tdep->ppc_vr0_regnum + (num - 1124);
2267 else if (1200 <= num && num < 1200 + 32)
2268 return tdep->ppc_ev0_regnum + (num - 1200);
2269 else
2270 switch (num)
2271 {
2272 case 64:
2273 return tdep->ppc_cr_regnum;
2274 case 67:
2275 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2276 case 99:
2277 return tdep->ppc_acc_regnum;
2278 case 100:
2279 return tdep->ppc_mq_regnum;
2280 case 101:
2281 return tdep->ppc_xer_regnum;
2282 case 108:
2283 return tdep->ppc_lr_regnum;
2284 case 109:
2285 return tdep->ppc_ctr_regnum;
2286 case 356:
2287 return tdep->ppc_vrsave_regnum;
2288 case 612:
2289 return tdep->ppc_spefscr_regnum;
2290 default:
2291 return num;
2292 }
2293 }
2294
2295 /* Translate a .eh_frame register to DWARF register, or adjust a
2296 .debug_frame register. */
2297
2298 static int
2299 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2300 {
2301 /* GCC releases before 3.4 use GCC internal register numbering in
2302 .debug_frame (and .debug_info, et cetera). The numbering is
2303 different from the standard SysV numbering for everything except
2304 for GPRs and FPRs. We can not detect this problem in most cases
2305 - to get accurate debug info for variables living in lr, ctr, v0,
2306 et cetera, use a newer version of GCC. But we must detect
2307 one important case - lr is in column 65 in .debug_frame output,
2308 instead of 108.
2309
2310 GCC 3.4, and the "hammer" branch, have a related problem. They
2311 record lr register saves in .debug_frame as 108, but still record
2312 the return column as 65. We fix that up too.
2313
2314 We can do this because 65 is assigned to fpsr, and GCC never
2315 generates debug info referring to it. To add support for
2316 handwritten debug info that restores fpsr, we would need to add a
2317 producer version check to this. */
2318 if (!eh_frame_p)
2319 {
2320 if (num == 65)
2321 return 108;
2322 else
2323 return num;
2324 }
2325
2326 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2327 internal register numbering; translate that to the standard DWARF2
2328 register numbering. */
2329 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2330 return num;
2331 else if (68 <= num && num <= 75) /* cr0-cr8 */
2332 return num - 68 + 86;
2333 else if (77 <= num && num <= 108) /* vr0-vr31 */
2334 return num - 77 + 1124;
2335 else
2336 switch (num)
2337 {
2338 case 64: /* mq */
2339 return 100;
2340 case 65: /* lr */
2341 return 108;
2342 case 66: /* ctr */
2343 return 109;
2344 case 76: /* xer */
2345 return 101;
2346 case 109: /* vrsave */
2347 return 356;
2348 case 110: /* vscr */
2349 return 67;
2350 case 111: /* spe_acc */
2351 return 99;
2352 case 112: /* spefscr */
2353 return 612;
2354 default:
2355 return num;
2356 }
2357 }
2358 \f
2359 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2360
2361 Usually a function pointer's representation is simply the address
2362 of the function. On the RS/6000 however, a function pointer is
2363 represented by a pointer to an OPD entry. This OPD entry contains
2364 three words, the first word is the address of the function, the
2365 second word is the TOC pointer (r2), and the third word is the
2366 static chain value. Throughout GDB it is currently assumed that a
2367 function pointer contains the address of the function, which is not
2368 easy to fix. In addition, the conversion of a function address to
2369 a function pointer would require allocation of an OPD entry in the
2370 inferior's memory space, with all its drawbacks. To be able to
2371 call C++ virtual methods in the inferior (which are called via
2372 function pointers), find_function_addr uses this function to get the
2373 function address from a function pointer. */
2374
2375 /* Return real function address if ADDR (a function pointer) is in the data
2376 space and is therefore a special function pointer. */
2377
2378 static CORE_ADDR
2379 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2380 CORE_ADDR addr,
2381 struct target_ops *targ)
2382 {
2383 struct obj_section *s;
2384
2385 s = find_pc_section (addr);
2386 if (s && s->the_bfd_section->flags & SEC_CODE)
2387 return addr;
2388
2389 /* ADDR is in the data space, so it's a special function pointer. */
2390 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2391 }
2392 \f
2393
2394 /* Handling the various POWER/PowerPC variants. */
2395
2396
2397 /* The arrays here called registers_MUMBLE hold information about available
2398 registers.
2399
2400 For each family of PPC variants, I've tried to isolate out the
2401 common registers and put them up front, so that as long as you get
2402 the general family right, GDB will correctly identify the registers
2403 common to that family. The common register sets are:
2404
2405 For the 60x family: hid0 hid1 iabr dabr pir
2406
2407 For the 505 and 860 family: eie eid nri
2408
2409 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2410 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2411 pbu1 pbl2 pbu2
2412
2413 Most of these register groups aren't anything formal. I arrived at
2414 them by looking at the registers that occurred in more than one
2415 processor.
2416
2417 Note: kevinb/2002-04-30: Support for the fpscr register was added
2418 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2419 for Power. For PowerPC, slot 70 was unused and was already in the
2420 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2421 slot 70 was being used for "mq", so the next available slot (71)
2422 was chosen. It would have been nice to be able to make the
2423 register numbers the same across processor cores, but this wasn't
2424 possible without either 1) renumbering some registers for some
2425 processors or 2) assigning fpscr to a really high slot that's
2426 larger than any current register number. Doing (1) is bad because
2427 existing stubs would break. Doing (2) is undesirable because it
2428 would introduce a really large gap between fpscr and the rest of
2429 the registers for most processors. */
2430
2431 /* Convenience macros for populating register arrays. */
2432
2433 /* Within another macro, convert S to a string. */
2434
2435 #define STR(s) #s
2436
2437 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2438 and 64 bits on 64-bit systems. */
2439 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2440
2441 /* Return a struct reg defining register NAME that's 32 bits on all
2442 systems. */
2443 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2444
2445 /* Return a struct reg defining register NAME that's 64 bits on all
2446 systems. */
2447 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2448
2449 /* Return a struct reg defining register NAME that's 128 bits on all
2450 systems. */
2451 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2452
2453 /* Return a struct reg defining floating-point register NAME. */
2454 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2455
2456 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2457 long on all systems. */
2458 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2459
2460 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2461 systems and that doesn't exist on 64-bit systems. */
2462 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2463
2464 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2465 systems and that doesn't exist on 32-bit systems. */
2466 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2467
2468 /* Return a struct reg placeholder for a register that doesn't exist. */
2469 #define R0 { 0, 0, 0, 0, 0, -1 }
2470
2471 /* Return a struct reg defining an anonymous raw register that's 32
2472 bits on all systems. */
2473 #define A4 { 0, 4, 4, 0, 0, -1 }
2474
2475 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2476 32-bit systems and 64 bits on 64-bit systems. */
2477 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2478
2479 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2480 all systems. */
2481 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2482
2483 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2484 all systems, and whose SPR number is NUMBER. */
2485 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2486
2487 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2488 64-bit systems and that doesn't exist on 32-bit systems. */
2489 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2490
2491 /* UISA registers common across all architectures, including POWER. */
2492
2493 #define COMMON_UISA_REGS \
2494 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2495 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2496 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2497 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2498 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2499 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2500 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2501 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2502 /* 64 */ R(pc), R(ps)
2503
2504 /* UISA-level SPRs for PowerPC. */
2505 #define PPC_UISA_SPRS \
2506 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2507
2508 /* UISA-level SPRs for PowerPC without floating point support. */
2509 #define PPC_UISA_NOFP_SPRS \
2510 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2511
2512 /* Segment registers, for PowerPC. */
2513 #define PPC_SEGMENT_REGS \
2514 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2515 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2516 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2517 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2518
2519 /* OEA SPRs for PowerPC. */
2520 #define PPC_OEA_SPRS \
2521 /* 87 */ S4(pvr), \
2522 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2523 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2524 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2525 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2526 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2527 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2528 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2529 /* 116 */ S4(dec), S(dabr), S4(ear)
2530
2531 /* AltiVec registers. */
2532 #define PPC_ALTIVEC_REGS \
2533 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2534 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2535 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2536 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2537 /*151*/R4(vscr), R4(vrsave)
2538
2539
2540 /* On machines supporting the SPE APU, the general-purpose registers
2541 are 64 bits long. There are SIMD vector instructions to treat them
2542 as pairs of floats, but the rest of the instruction set treats them
2543 as 32-bit registers, and only operates on their lower halves.
2544
2545 In the GDB regcache, we treat their high and low halves as separate
2546 registers. The low halves we present as the general-purpose
2547 registers, and then we have pseudo-registers that stitch together
2548 the upper and lower halves and present them as pseudo-registers. */
2549
2550 /* SPE GPR lower halves --- raw registers. */
2551 #define PPC_SPE_GP_REGS \
2552 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2553 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2554 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2555 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2556
2557 /* SPE GPR upper halves --- anonymous raw registers. */
2558 #define PPC_SPE_UPPER_GP_REGS \
2559 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2560 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2561 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2562 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2563
2564 /* SPE GPR vector registers --- pseudo registers based on underlying
2565 gprs and the anonymous upper half raw registers. */
2566 #define PPC_EV_PSEUDO_REGS \
2567 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2568 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2569 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2570 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2571
2572 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2573 user-level SPR's. */
2574 static const struct reg registers_power[] =
2575 {
2576 COMMON_UISA_REGS,
2577 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2578 /* 71 */ R4(fpscr)
2579 };
2580
2581 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2582 view of the PowerPC. */
2583 static const struct reg registers_powerpc[] =
2584 {
2585 COMMON_UISA_REGS,
2586 PPC_UISA_SPRS,
2587 PPC_ALTIVEC_REGS
2588 };
2589
2590 /* IBM PowerPC 403.
2591
2592 Some notes about the "tcr" special-purpose register:
2593 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2594 403's programmable interval timer, fixed interval timer, and
2595 watchdog timer.
2596 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2597 watchdog timer, and nothing else.
2598
2599 Some of the fields are similar between the two, but they're not
2600 compatible with each other. Since the two variants have different
2601 registers, with different numbers, but the same name, we can't
2602 splice the register name to get the SPR number. */
2603 static const struct reg registers_403[] =
2604 {
2605 COMMON_UISA_REGS,
2606 PPC_UISA_SPRS,
2607 PPC_SEGMENT_REGS,
2608 PPC_OEA_SPRS,
2609 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2610 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2611 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2612 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2613 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2614 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2615 };
2616
2617 /* IBM PowerPC 403GC.
2618 See the comments about 'tcr' for the 403, above. */
2619 static const struct reg registers_403GC[] =
2620 {
2621 COMMON_UISA_REGS,
2622 PPC_UISA_SPRS,
2623 PPC_SEGMENT_REGS,
2624 PPC_OEA_SPRS,
2625 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2626 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2627 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2628 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2629 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2630 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2631 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2632 /* 147 */ S(tbhu), S(tblu)
2633 };
2634
2635 /* Motorola PowerPC 505. */
2636 static const struct reg registers_505[] =
2637 {
2638 COMMON_UISA_REGS,
2639 PPC_UISA_SPRS,
2640 PPC_SEGMENT_REGS,
2641 PPC_OEA_SPRS,
2642 /* 119 */ S(eie), S(eid), S(nri)
2643 };
2644
2645 /* Motorola PowerPC 860 or 850. */
2646 static const struct reg registers_860[] =
2647 {
2648 COMMON_UISA_REGS,
2649 PPC_UISA_SPRS,
2650 PPC_SEGMENT_REGS,
2651 PPC_OEA_SPRS,
2652 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2653 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2654 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2655 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2656 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2657 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2658 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2659 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2660 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2661 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2662 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2663 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2664 };
2665
2666 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2667 for reading and writing RTCU and RTCL. However, how one reads and writes a
2668 register is the stub's problem. */
2669 static const struct reg registers_601[] =
2670 {
2671 COMMON_UISA_REGS,
2672 PPC_UISA_SPRS,
2673 PPC_SEGMENT_REGS,
2674 PPC_OEA_SPRS,
2675 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2676 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2677 };
2678
2679 /* Motorola PowerPC 602.
2680 See the notes under the 403 about 'tcr'. */
2681 static const struct reg registers_602[] =
2682 {
2683 COMMON_UISA_REGS,
2684 PPC_UISA_SPRS,
2685 PPC_SEGMENT_REGS,
2686 PPC_OEA_SPRS,
2687 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2688 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2689 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2690 };
2691
2692 /* Motorola/IBM PowerPC 603 or 603e. */
2693 static const struct reg registers_603[] =
2694 {
2695 COMMON_UISA_REGS,
2696 PPC_UISA_SPRS,
2697 PPC_SEGMENT_REGS,
2698 PPC_OEA_SPRS,
2699 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2700 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2701 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2702 };
2703
2704 /* Motorola PowerPC 604 or 604e. */
2705 static const struct reg registers_604[] =
2706 {
2707 COMMON_UISA_REGS,
2708 PPC_UISA_SPRS,
2709 PPC_SEGMENT_REGS,
2710 PPC_OEA_SPRS,
2711 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2712 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2713 /* 127 */ S(sia), S(sda)
2714 };
2715
2716 /* Motorola/IBM PowerPC 750 or 740. */
2717 static const struct reg registers_750[] =
2718 {
2719 COMMON_UISA_REGS,
2720 PPC_UISA_SPRS,
2721 PPC_SEGMENT_REGS,
2722 PPC_OEA_SPRS,
2723 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2724 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2725 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2726 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2727 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2728 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2729 };
2730
2731
2732 /* Motorola PowerPC 7400. */
2733 static const struct reg registers_7400[] =
2734 {
2735 /* gpr0-gpr31, fpr0-fpr31 */
2736 COMMON_UISA_REGS,
2737 /* cr, lr, ctr, xer, fpscr */
2738 PPC_UISA_SPRS,
2739 /* sr0-sr15 */
2740 PPC_SEGMENT_REGS,
2741 PPC_OEA_SPRS,
2742 /* vr0-vr31, vrsave, vscr */
2743 PPC_ALTIVEC_REGS
2744 /* FIXME? Add more registers? */
2745 };
2746
2747 /* Motorola e500. */
2748 static const struct reg registers_e500[] =
2749 {
2750 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2751 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2752 /* 64 .. 65 */ R(pc), R(ps),
2753 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2754 /* 71 .. 72 */ R8(acc), S4(spefscr),
2755 /* NOTE: Add new registers here the end of the raw register
2756 list and just before the first pseudo register. */
2757 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2758 };
2759
2760 /* Information about a particular processor variant. */
2761
2762 struct variant
2763 {
2764 /* Name of this variant. */
2765 char *name;
2766
2767 /* English description of the variant. */
2768 char *description;
2769
2770 /* bfd_arch_info.arch corresponding to variant. */
2771 enum bfd_architecture arch;
2772
2773 /* bfd_arch_info.mach corresponding to variant. */
2774 unsigned long mach;
2775
2776 /* Number of real registers. */
2777 int nregs;
2778
2779 /* Number of pseudo registers. */
2780 int npregs;
2781
2782 /* Number of total registers (the sum of nregs and npregs). */
2783 int num_tot_regs;
2784
2785 /* Table of register names; registers[R] is the name of the register
2786 number R. */
2787 const struct reg *regs;
2788 };
2789
2790 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2791
2792 static int
2793 num_registers (const struct reg *reg_list, int num_tot_regs)
2794 {
2795 int i;
2796 int nregs = 0;
2797
2798 for (i = 0; i < num_tot_regs; i++)
2799 if (!reg_list[i].pseudo)
2800 nregs++;
2801
2802 return nregs;
2803 }
2804
2805 static int
2806 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2807 {
2808 int i;
2809 int npregs = 0;
2810
2811 for (i = 0; i < num_tot_regs; i++)
2812 if (reg_list[i].pseudo)
2813 npregs ++;
2814
2815 return npregs;
2816 }
2817
2818 /* Information in this table comes from the following web sites:
2819 IBM: http://www.chips.ibm.com:80/products/embedded/
2820 Motorola: http://www.mot.com/SPS/PowerPC/
2821
2822 I'm sure I've got some of the variant descriptions not quite right.
2823 Please report any inaccuracies you find to GDB's maintainer.
2824
2825 If you add entries to this table, please be sure to allow the new
2826 value as an argument to the --with-cpu flag, in configure.in. */
2827
2828 static struct variant variants[] =
2829 {
2830
2831 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2832 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2833 registers_powerpc},
2834 {"power", "POWER user-level", bfd_arch_rs6000,
2835 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2836 registers_power},
2837 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2838 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2839 registers_403},
2840 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2841 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2842 registers_601},
2843 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2844 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2845 registers_602},
2846 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2847 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2848 registers_603},
2849 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2850 604, -1, -1, tot_num_registers (registers_604),
2851 registers_604},
2852 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2853 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2854 registers_403GC},
2855 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2856 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2857 registers_505},
2858 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2859 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2860 registers_860},
2861 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2862 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2863 registers_750},
2864 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2865 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2866 registers_7400},
2867 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2868 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2869 registers_e500},
2870
2871 /* 64-bit */
2872 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2873 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2874 registers_powerpc},
2875 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2876 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2877 registers_powerpc},
2878 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2879 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2880 registers_powerpc},
2881 {"a35", "PowerPC A35", bfd_arch_powerpc,
2882 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2883 registers_powerpc},
2884 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2885 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2886 registers_powerpc},
2887 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2888 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2889 registers_powerpc},
2890
2891 /* FIXME: I haven't checked the register sets of the following. */
2892 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2893 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2894 registers_power},
2895 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2896 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2897 registers_power},
2898 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2899 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2900 registers_power},
2901
2902 {0, 0, 0, 0, 0, 0, 0, 0}
2903 };
2904
2905 /* Initialize the number of registers and pseudo registers in each variant. */
2906
2907 static void
2908 init_variants (void)
2909 {
2910 struct variant *v;
2911
2912 for (v = variants; v->name; v++)
2913 {
2914 if (v->nregs == -1)
2915 v->nregs = num_registers (v->regs, v->num_tot_regs);
2916 if (v->npregs == -1)
2917 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2918 }
2919 }
2920
2921 /* Return the variant corresponding to architecture ARCH and machine number
2922 MACH. If no such variant exists, return null. */
2923
2924 static const struct variant *
2925 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2926 {
2927 const struct variant *v;
2928
2929 for (v = variants; v->name; v++)
2930 if (arch == v->arch && mach == v->mach)
2931 return v;
2932
2933 return NULL;
2934 }
2935
2936 static int
2937 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2938 {
2939 if (!info->disassembler_options)
2940 info->disassembler_options = "any";
2941
2942 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2943 return print_insn_big_powerpc (memaddr, info);
2944 else
2945 return print_insn_little_powerpc (memaddr, info);
2946 }
2947 \f
2948 static CORE_ADDR
2949 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2950 {
2951 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2952 }
2953
2954 static struct frame_id
2955 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2956 {
2957 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2958 SP_REGNUM),
2959 frame_pc_unwind (next_frame));
2960 }
2961
2962 struct rs6000_frame_cache
2963 {
2964 CORE_ADDR base;
2965 CORE_ADDR initial_sp;
2966 struct trad_frame_saved_reg *saved_regs;
2967 };
2968
2969 static struct rs6000_frame_cache *
2970 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2971 {
2972 struct rs6000_frame_cache *cache;
2973 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2974 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2975 struct rs6000_framedata fdata;
2976 int wordsize = tdep->wordsize;
2977 CORE_ADDR func, pc;
2978
2979 if ((*this_cache) != NULL)
2980 return (*this_cache);
2981 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2982 (*this_cache) = cache;
2983 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2984
2985 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2986 pc = frame_pc_unwind (next_frame);
2987 skip_prologue (func, pc, &fdata);
2988
2989 /* Figure out the parent's stack pointer. */
2990
2991 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2992 address of the current frame. Things might be easier if the
2993 ->frame pointed to the outer-most address of the frame. In
2994 the mean time, the address of the prev frame is used as the
2995 base address of this frame. */
2996 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2997
2998 /* If the function appears to be frameless, check a couple of likely
2999 indicators that we have simply failed to find the frame setup.
3000 Two common cases of this are missing symbols (i.e.
3001 frame_func_unwind returns the wrong address or 0), and assembly
3002 stubs which have a fast exit path but set up a frame on the slow
3003 path.
3004
3005 If the LR appears to return to this function, then presume that
3006 we have an ABI compliant frame that we failed to find. */
3007 if (fdata.frameless && fdata.lr_offset == 0)
3008 {
3009 CORE_ADDR saved_lr;
3010 int make_frame = 0;
3011
3012 saved_lr = frame_unwind_register_unsigned (next_frame,
3013 tdep->ppc_lr_regnum);
3014 if (func == 0 && saved_lr == pc)
3015 make_frame = 1;
3016 else if (func != 0)
3017 {
3018 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3019 if (func == saved_func)
3020 make_frame = 1;
3021 }
3022
3023 if (make_frame)
3024 {
3025 fdata.frameless = 0;
3026 fdata.lr_offset = tdep->lr_frame_offset;
3027 }
3028 }
3029
3030 if (!fdata.frameless)
3031 /* Frameless really means stackless. */
3032 cache->base = read_memory_addr (cache->base, wordsize);
3033
3034 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3035
3036 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3037 All fpr's from saved_fpr to fp31 are saved. */
3038
3039 if (fdata.saved_fpr >= 0)
3040 {
3041 int i;
3042 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3043
3044 /* If skip_prologue says floating-point registers were saved,
3045 but the current architecture has no floating-point registers,
3046 then that's strange. But we have no indices to even record
3047 the addresses under, so we just ignore it. */
3048 if (ppc_floating_point_unit_p (gdbarch))
3049 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3050 {
3051 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3052 fpr_addr += 8;
3053 }
3054 }
3055
3056 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3057 All gpr's from saved_gpr to gpr31 are saved. */
3058
3059 if (fdata.saved_gpr >= 0)
3060 {
3061 int i;
3062 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3063 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3064 {
3065 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3066 gpr_addr += wordsize;
3067 }
3068 }
3069
3070 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3071 All vr's from saved_vr to vr31 are saved. */
3072 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3073 {
3074 if (fdata.saved_vr >= 0)
3075 {
3076 int i;
3077 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3078 for (i = fdata.saved_vr; i < 32; i++)
3079 {
3080 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3081 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3082 }
3083 }
3084 }
3085
3086 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3087 All vr's from saved_ev to ev31 are saved. ????? */
3088 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3089 {
3090 if (fdata.saved_ev >= 0)
3091 {
3092 int i;
3093 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3094 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3095 {
3096 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3097 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3098 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3099 }
3100 }
3101 }
3102
3103 /* If != 0, fdata.cr_offset is the offset from the frame that
3104 holds the CR. */
3105 if (fdata.cr_offset != 0)
3106 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3107
3108 /* If != 0, fdata.lr_offset is the offset from the frame that
3109 holds the LR. */
3110 if (fdata.lr_offset != 0)
3111 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3112 /* The PC is found in the link register. */
3113 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3114
3115 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3116 holds the VRSAVE. */
3117 if (fdata.vrsave_offset != 0)
3118 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3119
3120 if (fdata.alloca_reg < 0)
3121 /* If no alloca register used, then fi->frame is the value of the
3122 %sp for this frame, and it is good enough. */
3123 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3124 else
3125 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3126 fdata.alloca_reg);
3127
3128 return cache;
3129 }
3130
3131 static void
3132 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3133 struct frame_id *this_id)
3134 {
3135 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3136 this_cache);
3137 (*this_id) = frame_id_build (info->base,
3138 frame_func_unwind (next_frame, NORMAL_FRAME));
3139 }
3140
3141 static void
3142 rs6000_frame_prev_register (struct frame_info *next_frame,
3143 void **this_cache,
3144 int regnum, int *optimizedp,
3145 enum lval_type *lvalp, CORE_ADDR *addrp,
3146 int *realnump, gdb_byte *valuep)
3147 {
3148 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3149 this_cache);
3150 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3151 optimizedp, lvalp, addrp, realnump, valuep);
3152 }
3153
3154 static const struct frame_unwind rs6000_frame_unwind =
3155 {
3156 NORMAL_FRAME,
3157 rs6000_frame_this_id,
3158 rs6000_frame_prev_register
3159 };
3160
3161 static const struct frame_unwind *
3162 rs6000_frame_sniffer (struct frame_info *next_frame)
3163 {
3164 return &rs6000_frame_unwind;
3165 }
3166
3167 \f
3168
3169 static CORE_ADDR
3170 rs6000_frame_base_address (struct frame_info *next_frame,
3171 void **this_cache)
3172 {
3173 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3174 this_cache);
3175 return info->initial_sp;
3176 }
3177
3178 static const struct frame_base rs6000_frame_base = {
3179 &rs6000_frame_unwind,
3180 rs6000_frame_base_address,
3181 rs6000_frame_base_address,
3182 rs6000_frame_base_address
3183 };
3184
3185 static const struct frame_base *
3186 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3187 {
3188 return &rs6000_frame_base;
3189 }
3190
3191 /* Initialize the current architecture based on INFO. If possible, re-use an
3192 architecture from ARCHES, which is a list of architectures already created
3193 during this debugging session.
3194
3195 Called e.g. at program startup, when reading a core file, and when reading
3196 a binary file. */
3197
3198 static struct gdbarch *
3199 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3200 {
3201 struct gdbarch *gdbarch;
3202 struct gdbarch_tdep *tdep;
3203 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3204 struct reg *regs;
3205 const struct variant *v;
3206 enum bfd_architecture arch;
3207 unsigned long mach;
3208 bfd abfd;
3209 int sysv_abi;
3210 asection *sect;
3211
3212 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3213 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3214
3215 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3216 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3217
3218 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3219
3220 /* Check word size. If INFO is from a binary file, infer it from
3221 that, else choose a likely default. */
3222 if (from_xcoff_exec)
3223 {
3224 if (bfd_xcoff_is_xcoff64 (info.abfd))
3225 wordsize = 8;
3226 else
3227 wordsize = 4;
3228 }
3229 else if (from_elf_exec)
3230 {
3231 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3232 wordsize = 8;
3233 else
3234 wordsize = 4;
3235 }
3236 else
3237 {
3238 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3239 wordsize = info.bfd_arch_info->bits_per_word /
3240 info.bfd_arch_info->bits_per_byte;
3241 else
3242 wordsize = 4;
3243 }
3244
3245 /* Find a candidate among extant architectures. */
3246 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3247 arches != NULL;
3248 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3249 {
3250 /* Word size in the various PowerPC bfd_arch_info structs isn't
3251 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3252 separate word size check. */
3253 tdep = gdbarch_tdep (arches->gdbarch);
3254 if (tdep && tdep->wordsize == wordsize)
3255 return arches->gdbarch;
3256 }
3257
3258 /* None found, create a new architecture from INFO, whose bfd_arch_info
3259 validity depends on the source:
3260 - executable useless
3261 - rs6000_host_arch() good
3262 - core file good
3263 - "set arch" trust blindly
3264 - GDB startup useless but harmless */
3265
3266 if (!from_xcoff_exec)
3267 {
3268 arch = info.bfd_arch_info->arch;
3269 mach = info.bfd_arch_info->mach;
3270 }
3271 else
3272 {
3273 arch = bfd_arch_powerpc;
3274 bfd_default_set_arch_mach (&abfd, arch, 0);
3275 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3276 mach = info.bfd_arch_info->mach;
3277 }
3278 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3279 tdep->wordsize = wordsize;
3280
3281 /* For e500 executables, the apuinfo section is of help here. Such
3282 section contains the identifier and revision number of each
3283 Application-specific Processing Unit that is present on the
3284 chip. The content of the section is determined by the assembler
3285 which looks at each instruction and determines which unit (and
3286 which version of it) can execute it. In our case we just look for
3287 the existance of the section. */
3288
3289 if (info.abfd)
3290 {
3291 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3292 if (sect)
3293 {
3294 arch = info.bfd_arch_info->arch;
3295 mach = bfd_mach_ppc_e500;
3296 bfd_default_set_arch_mach (&abfd, arch, mach);
3297 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3298 }
3299 }
3300
3301 gdbarch = gdbarch_alloc (&info, tdep);
3302
3303 /* Initialize the number of real and pseudo registers in each variant. */
3304 init_variants ();
3305
3306 /* Choose variant. */
3307 v = find_variant_by_arch (arch, mach);
3308 if (!v)
3309 return NULL;
3310
3311 tdep->regs = v->regs;
3312
3313 tdep->ppc_gp0_regnum = 0;
3314 tdep->ppc_toc_regnum = 2;
3315 tdep->ppc_ps_regnum = 65;
3316 tdep->ppc_cr_regnum = 66;
3317 tdep->ppc_lr_regnum = 67;
3318 tdep->ppc_ctr_regnum = 68;
3319 tdep->ppc_xer_regnum = 69;
3320 if (v->mach == bfd_mach_ppc_601)
3321 tdep->ppc_mq_regnum = 124;
3322 else if (arch == bfd_arch_rs6000)
3323 tdep->ppc_mq_regnum = 70;
3324 else
3325 tdep->ppc_mq_regnum = -1;
3326 tdep->ppc_fp0_regnum = 32;
3327 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3328 tdep->ppc_sr0_regnum = 71;
3329 tdep->ppc_vr0_regnum = -1;
3330 tdep->ppc_vrsave_regnum = -1;
3331 tdep->ppc_ev0_upper_regnum = -1;
3332 tdep->ppc_ev0_regnum = -1;
3333 tdep->ppc_ev31_regnum = -1;
3334 tdep->ppc_acc_regnum = -1;
3335 tdep->ppc_spefscr_regnum = -1;
3336
3337 set_gdbarch_pc_regnum (gdbarch, 64);
3338 set_gdbarch_sp_regnum (gdbarch, 1);
3339 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3340 set_gdbarch_fp0_regnum (gdbarch, 32);
3341 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3342 if (sysv_abi && wordsize == 8)
3343 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3344 else if (sysv_abi && wordsize == 4)
3345 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3346 else
3347 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3348
3349 /* Set lr_frame_offset. */
3350 if (wordsize == 8)
3351 tdep->lr_frame_offset = 16;
3352 else if (sysv_abi)
3353 tdep->lr_frame_offset = 4;
3354 else
3355 tdep->lr_frame_offset = 8;
3356
3357 if (v->arch == bfd_arch_rs6000)
3358 tdep->ppc_sr0_regnum = -1;
3359 else if (v->arch == bfd_arch_powerpc)
3360 switch (v->mach)
3361 {
3362 case bfd_mach_ppc:
3363 tdep->ppc_sr0_regnum = -1;
3364 tdep->ppc_vr0_regnum = 71;
3365 tdep->ppc_vrsave_regnum = 104;
3366 break;
3367 case bfd_mach_ppc_7400:
3368 tdep->ppc_vr0_regnum = 119;
3369 tdep->ppc_vrsave_regnum = 152;
3370 break;
3371 case bfd_mach_ppc_e500:
3372 tdep->ppc_toc_regnum = -1;
3373 tdep->ppc_ev0_upper_regnum = 32;
3374 tdep->ppc_ev0_regnum = 73;
3375 tdep->ppc_ev31_regnum = 104;
3376 tdep->ppc_acc_regnum = 71;
3377 tdep->ppc_spefscr_regnum = 72;
3378 tdep->ppc_fp0_regnum = -1;
3379 tdep->ppc_fpscr_regnum = -1;
3380 tdep->ppc_sr0_regnum = -1;
3381 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3382 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3383 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3384 break;
3385
3386 case bfd_mach_ppc64:
3387 case bfd_mach_ppc_620:
3388 case bfd_mach_ppc_630:
3389 case bfd_mach_ppc_a35:
3390 case bfd_mach_ppc_rs64ii:
3391 case bfd_mach_ppc_rs64iii:
3392 /* These processor's register sets don't have segment registers. */
3393 tdep->ppc_sr0_regnum = -1;
3394 break;
3395 }
3396 else
3397 internal_error (__FILE__, __LINE__,
3398 _("rs6000_gdbarch_init: "
3399 "received unexpected BFD 'arch' value"));
3400
3401 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3402
3403 /* Sanity check on registers. */
3404 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3405
3406 /* Select instruction printer. */
3407 if (arch == bfd_arch_rs6000)
3408 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3409 else
3410 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3411
3412 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3413
3414 set_gdbarch_num_regs (gdbarch, v->nregs);
3415 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3416 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3417 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3418 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3419
3420 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3421 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3422 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3423 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3424 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3425 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3426 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3427 if (sysv_abi)
3428 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3429 else
3430 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3431 set_gdbarch_char_signed (gdbarch, 0);
3432
3433 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3434 if (sysv_abi && wordsize == 8)
3435 /* PPC64 SYSV. */
3436 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3437 else if (!sysv_abi && wordsize == 4)
3438 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3439 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3440 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3441 224. */
3442 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3443
3444 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3445 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3446 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3447
3448 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3449 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3450
3451 if (sysv_abi && wordsize == 4)
3452 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3453 else if (sysv_abi && wordsize == 8)
3454 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3455 else
3456 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3457
3458 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3459 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3460
3461 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3462 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3463
3464 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3465 for the descriptor and ".FN" for the entry-point -- a user
3466 specifying "break FN" will unexpectedly end up with a breakpoint
3467 on the descriptor and not the function. This architecture method
3468 transforms any breakpoints on descriptors into breakpoints on the
3469 corresponding entry point. */
3470 if (sysv_abi && wordsize == 8)
3471 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3472
3473 /* Not sure on this. FIXMEmgo */
3474 set_gdbarch_frame_args_skip (gdbarch, 8);
3475
3476 if (!sysv_abi)
3477 {
3478 /* Handle RS/6000 function pointers (which are really function
3479 descriptors). */
3480 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3481 rs6000_convert_from_func_ptr_addr);
3482 }
3483
3484 /* Helpers for function argument information. */
3485 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3486
3487 /* Trampoline. */
3488 set_gdbarch_in_solib_return_trampoline
3489 (gdbarch, rs6000_in_solib_return_trampoline);
3490 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3491
3492 /* Hook in the DWARF CFI frame unwinder. */
3493 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3494 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3495
3496 /* Hook in ABI-specific overrides, if they have been registered. */
3497 gdbarch_init_osabi (info, gdbarch);
3498
3499 switch (info.osabi)
3500 {
3501 case GDB_OSABI_LINUX:
3502 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3503 have altivec registers. If not, ptrace will fail the first time it's
3504 called to access one and will not be called again. This wart will
3505 be removed when Daniel Jacobowitz's proposal for autodetecting target
3506 registers is implemented. */
3507 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3508 {
3509 tdep->ppc_vr0_regnum = 71;
3510 tdep->ppc_vrsave_regnum = 104;
3511 }
3512 /* Fall Thru */
3513 case GDB_OSABI_NETBSD_AOUT:
3514 case GDB_OSABI_NETBSD_ELF:
3515 case GDB_OSABI_UNKNOWN:
3516 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3517 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3518 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3519 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3520 break;
3521 default:
3522 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3523
3524 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3525 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3526 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3527 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3528 }
3529
3530 init_sim_regno_table (gdbarch);
3531
3532 return gdbarch;
3533 }
3534
3535 static void
3536 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3537 {
3538 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3539
3540 if (tdep == NULL)
3541 return;
3542
3543 /* FIXME: Dump gdbarch_tdep. */
3544 }
3545
3546 /* Initialization code. */
3547
3548 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3549
3550 void
3551 _initialize_rs6000_tdep (void)
3552 {
3553 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3554 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3555 }