]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
* dwarf2-frame.c (dwarf2_frame_eh_frame_regnum): Rename to...
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43 #include "dwarf2-frame.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52
53 #include "solib-svr4.h"
54 #include "ppc-tdep.h"
55
56 #include "gdb_assert.h"
57 #include "dis-asm.h"
58
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
62
63 #include "rs6000-tdep.h"
64
65 /* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72 #define SIG_FRAME_PC_OFFSET 96
73 #define SIG_FRAME_LR_OFFSET 108
74 #define SIG_FRAME_FP_OFFSET 284
75
76 /* To be used by skip_prologue. */
77
78 struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
85 int saved_vr; /* smallest # of saved vr */
86 int saved_ev; /* smallest # of saved ev */
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
92 int vr_offset; /* offset of saved vrs from prev sp */
93 int ev_offset; /* offset of saved evs from prev sp */
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
96 int vrsave_offset; /* offset of saved vrsave register */
97 };
98
99 /* Description of a single register. */
100
101 struct reg
102 {
103 char *name; /* name of register */
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
106 unsigned char fpr; /* whether register is floating-point */
107 unsigned char pseudo; /* whether register is pseudo */
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
111 };
112
113 /* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
117 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
119 /* Static function prototypes */
120
121 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137
138 /* Return true if REGNO is an SPE register, false otherwise. */
139 int
140 spe_register_p (int regno)
141 {
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168 }
169
170
171 /* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
173 int
174 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
180 }
181
182
183 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
190 static void
191 set_sim_regno (int *table, int gdb_regno, int sim_regno)
192 {
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197 }
198
199
200 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
203 static void
204 init_sim_regno_table (struct gdbarch *arch)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281 }
282
283
284 /* Given a GDB register number REG, return the corresponding SIM
285 register number. */
286 static int
287 rs6000_register_sim_regno (int reg)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
292 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
293 sim_regno = tdep->sim_regno[reg];
294
295 if (sim_regno >= 0)
296 return sim_regno;
297 else
298 return LEGACY_SIM_REGNO_IGNORE;
299 }
300
301 \f
302
303 /* Register set support functions. */
304
305 static void
306 ppc_supply_reg (struct regcache *regcache, int regnum,
307 const gdb_byte *regs, size_t offset)
308 {
309 if (regnum != -1 && offset != -1)
310 regcache_raw_supply (regcache, regnum, regs + offset);
311 }
312
313 static void
314 ppc_collect_reg (const struct regcache *regcache, int regnum,
315 gdb_byte *regs, size_t offset)
316 {
317 if (regnum != -1 && offset != -1)
318 regcache_raw_collect (regcache, regnum, regs + offset);
319 }
320
321 /* Supply register REGNUM in the general-purpose register set REGSET
322 from the buffer specified by GREGS and LEN to register cache
323 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
324
325 void
326 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
327 int regnum, const void *gregs, size_t len)
328 {
329 struct gdbarch *gdbarch = get_regcache_arch (regcache);
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 const struct ppc_reg_offsets *offsets = regset->descr;
332 size_t offset;
333 int i;
334
335 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
336 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
337 i++, offset += 4)
338 {
339 if (regnum == -1 || regnum == i)
340 ppc_supply_reg (regcache, i, gregs, offset);
341 }
342
343 if (regnum == -1 || regnum == PC_REGNUM)
344 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
345 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
346 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
347 gregs, offsets->ps_offset);
348 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
349 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
350 gregs, offsets->cr_offset);
351 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
352 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
353 gregs, offsets->lr_offset);
354 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
355 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
356 gregs, offsets->ctr_offset);
357 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
358 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
359 gregs, offsets->cr_offset);
360 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
362 }
363
364 /* Supply register REGNUM in the floating-point register set REGSET
365 from the buffer specified by FPREGS and LEN to register cache
366 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
367
368 void
369 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
370 int regnum, const void *fpregs, size_t len)
371 {
372 struct gdbarch *gdbarch = get_regcache_arch (regcache);
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374 const struct ppc_reg_offsets *offsets = regset->descr;
375 size_t offset;
376 int i;
377
378 gdb_assert (ppc_floating_point_unit_p (gdbarch));
379
380 offset = offsets->f0_offset;
381 for (i = tdep->ppc_fp0_regnum;
382 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
383 i++, offset += 8)
384 {
385 if (regnum == -1 || regnum == i)
386 ppc_supply_reg (regcache, i, fpregs, offset);
387 }
388
389 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
390 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
391 fpregs, offsets->fpscr_offset);
392 }
393
394 /* Collect register REGNUM in the general-purpose register set
395 REGSET. from register cache REGCACHE into the buffer specified by
396 GREGS and LEN. If REGNUM is -1, do this for all registers in
397 REGSET. */
398
399 void
400 ppc_collect_gregset (const struct regset *regset,
401 const struct regcache *regcache,
402 int regnum, void *gregs, size_t len)
403 {
404 struct gdbarch *gdbarch = get_regcache_arch (regcache);
405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
406 const struct ppc_reg_offsets *offsets = regset->descr;
407 size_t offset;
408 int i;
409
410 offset = offsets->r0_offset;
411 for (i = tdep->ppc_gp0_regnum;
412 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
413 i++, offset += 4)
414 {
415 if (regnum == -1 || regnum == i)
416 ppc_collect_reg (regcache, i, gregs, offset);
417 }
418
419 if (regnum == -1 || regnum == PC_REGNUM)
420 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
421 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
422 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
423 gregs, offsets->ps_offset);
424 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
425 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
426 gregs, offsets->cr_offset);
427 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
428 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
429 gregs, offsets->lr_offset);
430 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
431 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
432 gregs, offsets->ctr_offset);
433 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
434 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
435 gregs, offsets->xer_offset);
436 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
438 gregs, offsets->mq_offset);
439 }
440
441 /* Collect register REGNUM in the floating-point register set
442 REGSET. from register cache REGCACHE into the buffer specified by
443 FPREGS and LEN. If REGNUM is -1, do this for all registers in
444 REGSET. */
445
446 void
447 ppc_collect_fpregset (const struct regset *regset,
448 const struct regcache *regcache,
449 int regnum, void *fpregs, size_t len)
450 {
451 struct gdbarch *gdbarch = get_regcache_arch (regcache);
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 const struct ppc_reg_offsets *offsets = regset->descr;
454 size_t offset;
455 int i;
456
457 gdb_assert (ppc_floating_point_unit_p (gdbarch));
458
459 offset = offsets->f0_offset;
460 for (i = tdep->ppc_fp0_regnum;
461 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
462 i++, offset += 8)
463 {
464 if (regnum == -1 || regnum == i)
465 ppc_collect_reg (regcache, i, fpregs, offset);
466 }
467
468 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
469 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
470 fpregs, offsets->fpscr_offset);
471 }
472 \f
473
474 /* Read a LEN-byte address from debugged memory address MEMADDR. */
475
476 static CORE_ADDR
477 read_memory_addr (CORE_ADDR memaddr, int len)
478 {
479 return read_memory_unsigned_integer (memaddr, len);
480 }
481
482 static CORE_ADDR
483 rs6000_skip_prologue (CORE_ADDR pc)
484 {
485 struct rs6000_framedata frame;
486 CORE_ADDR limit_pc, func_addr;
487
488 /* See if we can determine the end of the prologue via the symbol table.
489 If so, then return either PC, or the PC after the prologue, whichever
490 is greater. */
491 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
492 {
493 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
494 if (post_prologue_pc != 0)
495 return max (pc, post_prologue_pc);
496 }
497
498 /* Can't determine prologue from the symbol table, need to examine
499 instructions. */
500
501 /* Find an upper limit on the function prologue using the debug
502 information. If the debug information could not be used to provide
503 that bound, then use an arbitrary large number as the upper bound. */
504 limit_pc = skip_prologue_using_sal (pc);
505 if (limit_pc == 0)
506 limit_pc = pc + 100; /* Magic. */
507
508 pc = skip_prologue (pc, limit_pc, &frame);
509 return pc;
510 }
511
512 static int
513 insn_changes_sp_or_jumps (unsigned long insn)
514 {
515 int opcode = (insn >> 26) & 0x03f;
516 int sd = (insn >> 21) & 0x01f;
517 int a = (insn >> 16) & 0x01f;
518 int subcode = (insn >> 1) & 0x3ff;
519
520 /* Changes the stack pointer. */
521
522 /* NOTE: There are many ways to change the value of a given register.
523 The ways below are those used when the register is R1, the SP,
524 in a funtion's epilogue. */
525
526 if (opcode == 31 && subcode == 444 && a == 1)
527 return 1; /* mr R1,Rn */
528 if (opcode == 14 && sd == 1)
529 return 1; /* addi R1,Rn,simm */
530 if (opcode == 58 && sd == 1)
531 return 1; /* ld R1,ds(Rn) */
532
533 /* Transfers control. */
534
535 if (opcode == 18)
536 return 1; /* b */
537 if (opcode == 16)
538 return 1; /* bc */
539 if (opcode == 19 && subcode == 16)
540 return 1; /* bclr */
541 if (opcode == 19 && subcode == 528)
542 return 1; /* bcctr */
543
544 return 0;
545 }
546
547 /* Return true if we are in the function's epilogue, i.e. after the
548 instruction that destroyed the function's stack frame.
549
550 1) scan forward from the point of execution:
551 a) If you find an instruction that modifies the stack pointer
552 or transfers control (except a return), execution is not in
553 an epilogue, return.
554 b) Stop scanning if you find a return instruction or reach the
555 end of the function or reach the hard limit for the size of
556 an epilogue.
557 2) scan backward from the point of execution:
558 a) If you find an instruction that modifies the stack pointer,
559 execution *is* in an epilogue, return.
560 b) Stop scanning if you reach an instruction that transfers
561 control or the beginning of the function or reach the hard
562 limit for the size of an epilogue. */
563
564 static int
565 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
566 {
567 bfd_byte insn_buf[PPC_INSN_SIZE];
568 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
569 unsigned long insn;
570 struct frame_info *curfrm;
571
572 /* Find the search limits based on function boundaries and hard limit. */
573
574 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
575 return 0;
576
577 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
578 if (epilogue_start < func_start) epilogue_start = func_start;
579
580 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
581 if (epilogue_end > func_end) epilogue_end = func_end;
582
583 curfrm = get_current_frame ();
584
585 /* Scan forward until next 'blr'. */
586
587 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
588 {
589 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
590 return 0;
591 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
592 if (insn == 0x4e800020)
593 break;
594 if (insn_changes_sp_or_jumps (insn))
595 return 0;
596 }
597
598 /* Scan backward until adjustment to stack pointer (R1). */
599
600 for (scan_pc = pc - PPC_INSN_SIZE;
601 scan_pc >= epilogue_start;
602 scan_pc -= PPC_INSN_SIZE)
603 {
604 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
605 return 0;
606 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
607 if (insn_changes_sp_or_jumps (insn))
608 return 1;
609 }
610
611 return 0;
612 }
613
614
615 /* Fill in fi->saved_regs */
616
617 struct frame_extra_info
618 {
619 /* Functions calling alloca() change the value of the stack
620 pointer. We need to use initial stack pointer (which is saved in
621 r31 by gcc) in such cases. If a compiler emits traceback table,
622 then we should use the alloca register specified in traceback
623 table. FIXME. */
624 CORE_ADDR initial_sp; /* initial stack pointer. */
625 };
626
627 /* Get the ith function argument for the current function. */
628 static CORE_ADDR
629 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
630 struct type *type)
631 {
632 return get_frame_register_unsigned (frame, 3 + argi);
633 }
634
635 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
636
637 static CORE_ADDR
638 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
639 {
640 CORE_ADDR dest;
641 int immediate;
642 int absolute;
643 int ext_op;
644
645 absolute = (int) ((instr >> 1) & 1);
646
647 switch (opcode)
648 {
649 case 18:
650 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
651 if (absolute)
652 dest = immediate;
653 else
654 dest = pc + immediate;
655 break;
656
657 case 16:
658 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
659 if (absolute)
660 dest = immediate;
661 else
662 dest = pc + immediate;
663 break;
664
665 case 19:
666 ext_op = (instr >> 1) & 0x3ff;
667
668 if (ext_op == 16) /* br conditional register */
669 {
670 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
671
672 /* If we are about to return from a signal handler, dest is
673 something like 0x3c90. The current frame is a signal handler
674 caller frame, upon completion of the sigreturn system call
675 execution will return to the saved PC in the frame. */
676 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
677 {
678 struct frame_info *fi;
679
680 fi = get_current_frame ();
681 if (fi != NULL)
682 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
683 gdbarch_tdep (current_gdbarch)->wordsize);
684 }
685 }
686
687 else if (ext_op == 528) /* br cond to count reg */
688 {
689 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
690
691 /* If we are about to execute a system call, dest is something
692 like 0x22fc or 0x3b00. Upon completion the system call
693 will return to the address in the link register. */
694 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
695 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
696 }
697 else
698 return -1;
699 break;
700
701 default:
702 return -1;
703 }
704 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
705 }
706
707
708 /* Sequence of bytes for breakpoint instruction. */
709
710 const static unsigned char *
711 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
712 {
713 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
714 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
715 *bp_size = 4;
716 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
717 return big_breakpoint;
718 else
719 return little_breakpoint;
720 }
721
722
723 /* AIX does not support PT_STEP. Simulate it. */
724
725 void
726 rs6000_software_single_step (enum target_signal signal,
727 int insert_breakpoints_p)
728 {
729 CORE_ADDR dummy;
730 int breakp_sz;
731 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
732 int ii, insn;
733 CORE_ADDR loc;
734 CORE_ADDR breaks[2];
735 int opcode;
736
737 if (insert_breakpoints_p)
738 {
739 loc = read_pc ();
740
741 insn = read_memory_integer (loc, 4);
742
743 breaks[0] = loc + breakp_sz;
744 opcode = insn >> 26;
745 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
746
747 /* Don't put two breakpoints on the same address. */
748 if (breaks[1] == breaks[0])
749 breaks[1] = -1;
750
751 for (ii = 0; ii < 2; ++ii)
752 {
753 /* ignore invalid breakpoint. */
754 if (breaks[ii] == -1)
755 continue;
756 insert_single_step_breakpoint (breaks[ii]);
757 }
758 }
759 else
760 remove_single_step_breakpoints ();
761
762 errno = 0; /* FIXME, don't ignore errors! */
763 /* What errors? {read,write}_memory call error(). */
764 }
765
766
767 /* return pc value after skipping a function prologue and also return
768 information about a function frame.
769
770 in struct rs6000_framedata fdata:
771 - frameless is TRUE, if function does not have a frame.
772 - nosavedpc is TRUE, if function does not save %pc value in its frame.
773 - offset is the initial size of this stack frame --- the amount by
774 which we decrement the sp to allocate the frame.
775 - saved_gpr is the number of the first saved gpr.
776 - saved_fpr is the number of the first saved fpr.
777 - saved_vr is the number of the first saved vr.
778 - saved_ev is the number of the first saved ev.
779 - alloca_reg is the number of the register used for alloca() handling.
780 Otherwise -1.
781 - gpr_offset is the offset of the first saved gpr from the previous frame.
782 - fpr_offset is the offset of the first saved fpr from the previous frame.
783 - vr_offset is the offset of the first saved vr from the previous frame.
784 - ev_offset is the offset of the first saved ev from the previous frame.
785 - lr_offset is the offset of the saved lr
786 - cr_offset is the offset of the saved cr
787 - vrsave_offset is the offset of the saved vrsave register
788 */
789
790 #define SIGNED_SHORT(x) \
791 ((sizeof (short) == 2) \
792 ? ((int)(short)(x)) \
793 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
794
795 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
796
797 /* Limit the number of skipped non-prologue instructions, as the examining
798 of the prologue is expensive. */
799 static int max_skip_non_prologue_insns = 10;
800
801 /* Return nonzero if the given instruction OP can be part of the prologue
802 of a function and saves a parameter on the stack. FRAMEP should be
803 set if one of the previous instructions in the function has set the
804 Frame Pointer. */
805
806 static int
807 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
808 {
809 /* Move parameters from argument registers to temporary register. */
810 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
811 {
812 /* Rx must be scratch register r0. */
813 const int rx_regno = (op >> 16) & 31;
814 /* Ry: Only r3 - r10 are used for parameter passing. */
815 const int ry_regno = GET_SRC_REG (op);
816
817 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
818 {
819 *r0_contains_arg = 1;
820 return 1;
821 }
822 else
823 return 0;
824 }
825
826 /* Save a General Purpose Register on stack. */
827
828 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
829 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
830 {
831 /* Rx: Only r3 - r10 are used for parameter passing. */
832 const int rx_regno = GET_SRC_REG (op);
833
834 return (rx_regno >= 3 && rx_regno <= 10);
835 }
836
837 /* Save a General Purpose Register on stack via the Frame Pointer. */
838
839 if (framep &&
840 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
841 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
842 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
843 {
844 /* Rx: Usually, only r3 - r10 are used for parameter passing.
845 However, the compiler sometimes uses r0 to hold an argument. */
846 const int rx_regno = GET_SRC_REG (op);
847
848 return ((rx_regno >= 3 && rx_regno <= 10)
849 || (rx_regno == 0 && *r0_contains_arg));
850 }
851
852 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
853 {
854 /* Only f2 - f8 are used for parameter passing. */
855 const int src_regno = GET_SRC_REG (op);
856
857 return (src_regno >= 2 && src_regno <= 8);
858 }
859
860 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
861 {
862 /* Only f2 - f8 are used for parameter passing. */
863 const int src_regno = GET_SRC_REG (op);
864
865 return (src_regno >= 2 && src_regno <= 8);
866 }
867
868 /* Not an insn that saves a parameter on stack. */
869 return 0;
870 }
871
872 /* Assuming that INSN is a "bl" instruction located at PC, return
873 nonzero if the destination of the branch is a "blrl" instruction.
874
875 This sequence is sometimes found in certain function prologues.
876 It allows the function to load the LR register with a value that
877 they can use to access PIC data using PC-relative offsets. */
878
879 static int
880 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
881 {
882 const int opcode = 18;
883 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
884 int dest_insn;
885
886 if (dest == -1)
887 return 0; /* Should never happen, but just return zero to be safe. */
888
889 dest_insn = read_memory_integer (dest, 4);
890 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
891 return 1;
892
893 return 0;
894 }
895
896 static CORE_ADDR
897 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
898 {
899 CORE_ADDR orig_pc = pc;
900 CORE_ADDR last_prologue_pc = pc;
901 CORE_ADDR li_found_pc = 0;
902 gdb_byte buf[4];
903 unsigned long op;
904 long offset = 0;
905 long vr_saved_offset = 0;
906 int lr_reg = -1;
907 int cr_reg = -1;
908 int vr_reg = -1;
909 int ev_reg = -1;
910 long ev_offset = 0;
911 int vrsave_reg = -1;
912 int reg;
913 int framep = 0;
914 int minimal_toc_loaded = 0;
915 int prev_insn_was_prologue_insn = 1;
916 int num_skip_non_prologue_insns = 0;
917 int r0_contains_arg = 0;
918 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
919 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
920
921 memset (fdata, 0, sizeof (struct rs6000_framedata));
922 fdata->saved_gpr = -1;
923 fdata->saved_fpr = -1;
924 fdata->saved_vr = -1;
925 fdata->saved_ev = -1;
926 fdata->alloca_reg = -1;
927 fdata->frameless = 1;
928 fdata->nosavedpc = 1;
929
930 for (;; pc += 4)
931 {
932 /* Sometimes it isn't clear if an instruction is a prologue
933 instruction or not. When we encounter one of these ambiguous
934 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
935 Otherwise, we'll assume that it really is a prologue instruction. */
936 if (prev_insn_was_prologue_insn)
937 last_prologue_pc = pc;
938
939 /* Stop scanning if we've hit the limit. */
940 if (pc >= lim_pc)
941 break;
942
943 prev_insn_was_prologue_insn = 1;
944
945 /* Fetch the instruction and convert it to an integer. */
946 if (target_read_memory (pc, buf, 4))
947 break;
948 op = extract_unsigned_integer (buf, 4);
949
950 if ((op & 0xfc1fffff) == 0x7c0802a6)
951 { /* mflr Rx */
952 /* Since shared library / PIC code, which needs to get its
953 address at runtime, can appear to save more than one link
954 register vis:
955
956 *INDENT-OFF*
957 stwu r1,-304(r1)
958 mflr r3
959 bl 0xff570d0 (blrl)
960 stw r30,296(r1)
961 mflr r30
962 stw r31,300(r1)
963 stw r3,308(r1);
964 ...
965 *INDENT-ON*
966
967 remember just the first one, but skip over additional
968 ones. */
969 if (lr_reg == -1)
970 lr_reg = (op & 0x03e00000);
971 if (lr_reg == 0)
972 r0_contains_arg = 0;
973 continue;
974 }
975 else if ((op & 0xfc1fffff) == 0x7c000026)
976 { /* mfcr Rx */
977 cr_reg = (op & 0x03e00000);
978 if (cr_reg == 0)
979 r0_contains_arg = 0;
980 continue;
981
982 }
983 else if ((op & 0xfc1f0000) == 0xd8010000)
984 { /* stfd Rx,NUM(r1) */
985 reg = GET_SRC_REG (op);
986 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
987 {
988 fdata->saved_fpr = reg;
989 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
990 }
991 continue;
992
993 }
994 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
995 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
996 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
997 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
998 {
999
1000 reg = GET_SRC_REG (op);
1001 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1002 {
1003 fdata->saved_gpr = reg;
1004 if ((op & 0xfc1f0003) == 0xf8010000)
1005 op &= ~3UL;
1006 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1007 }
1008 continue;
1009
1010 }
1011 else if ((op & 0xffff0000) == 0x60000000)
1012 {
1013 /* nop */
1014 /* Allow nops in the prologue, but do not consider them to
1015 be part of the prologue unless followed by other prologue
1016 instructions. */
1017 prev_insn_was_prologue_insn = 0;
1018 continue;
1019
1020 }
1021 else if ((op & 0xffff0000) == 0x3c000000)
1022 { /* addis 0,0,NUM, used
1023 for >= 32k frames */
1024 fdata->offset = (op & 0x0000ffff) << 16;
1025 fdata->frameless = 0;
1026 r0_contains_arg = 0;
1027 continue;
1028
1029 }
1030 else if ((op & 0xffff0000) == 0x60000000)
1031 { /* ori 0,0,NUM, 2nd ha
1032 lf of >= 32k frames */
1033 fdata->offset |= (op & 0x0000ffff);
1034 fdata->frameless = 0;
1035 r0_contains_arg = 0;
1036 continue;
1037
1038 }
1039 else if (lr_reg >= 0 &&
1040 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1041 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1042 /* stw Rx, NUM(r1) */
1043 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1044 /* stwu Rx, NUM(r1) */
1045 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1046 { /* where Rx == lr */
1047 fdata->lr_offset = offset;
1048 fdata->nosavedpc = 0;
1049 /* Invalidate lr_reg, but don't set it to -1.
1050 That would mean that it had never been set. */
1051 lr_reg = -2;
1052 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1053 (op & 0xfc000000) == 0x90000000) /* stw */
1054 {
1055 /* Does not update r1, so add displacement to lr_offset. */
1056 fdata->lr_offset += SIGNED_SHORT (op);
1057 }
1058 continue;
1059
1060 }
1061 else if (cr_reg >= 0 &&
1062 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1063 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1064 /* stw Rx, NUM(r1) */
1065 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1066 /* stwu Rx, NUM(r1) */
1067 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1068 { /* where Rx == cr */
1069 fdata->cr_offset = offset;
1070 /* Invalidate cr_reg, but don't set it to -1.
1071 That would mean that it had never been set. */
1072 cr_reg = -2;
1073 if ((op & 0xfc000003) == 0xf8000000 ||
1074 (op & 0xfc000000) == 0x90000000)
1075 {
1076 /* Does not update r1, so add displacement to cr_offset. */
1077 fdata->cr_offset += SIGNED_SHORT (op);
1078 }
1079 continue;
1080
1081 }
1082 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1083 {
1084 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1085 prediction bits. If the LR has already been saved, we can
1086 skip it. */
1087 continue;
1088 }
1089 else if (op == 0x48000005)
1090 { /* bl .+4 used in
1091 -mrelocatable */
1092 continue;
1093
1094 }
1095 else if (op == 0x48000004)
1096 { /* b .+4 (xlc) */
1097 break;
1098
1099 }
1100 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1101 in V.4 -mminimal-toc */
1102 (op & 0xffff0000) == 0x3bde0000)
1103 { /* addi 30,30,foo@l */
1104 continue;
1105
1106 }
1107 else if ((op & 0xfc000001) == 0x48000001)
1108 { /* bl foo,
1109 to save fprs??? */
1110
1111 fdata->frameless = 0;
1112
1113 /* If the return address has already been saved, we can skip
1114 calls to blrl (for PIC). */
1115 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1116 continue;
1117
1118 /* Don't skip over the subroutine call if it is not within
1119 the first three instructions of the prologue and either
1120 we have no line table information or the line info tells
1121 us that the subroutine call is not part of the line
1122 associated with the prologue. */
1123 if ((pc - orig_pc) > 8)
1124 {
1125 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1126 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1127
1128 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1129 break;
1130 }
1131
1132 op = read_memory_integer (pc + 4, 4);
1133
1134 /* At this point, make sure this is not a trampoline
1135 function (a function that simply calls another functions,
1136 and nothing else). If the next is not a nop, this branch
1137 was part of the function prologue. */
1138
1139 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1140 break; /* don't skip over
1141 this branch */
1142 continue;
1143
1144 }
1145 /* update stack pointer */
1146 else if ((op & 0xfc1f0000) == 0x94010000)
1147 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1148 fdata->frameless = 0;
1149 fdata->offset = SIGNED_SHORT (op);
1150 offset = fdata->offset;
1151 continue;
1152 }
1153 else if ((op & 0xfc1f016a) == 0x7c01016e)
1154 { /* stwux rX,r1,rY */
1155 /* no way to figure out what r1 is going to be */
1156 fdata->frameless = 0;
1157 offset = fdata->offset;
1158 continue;
1159 }
1160 else if ((op & 0xfc1f0003) == 0xf8010001)
1161 { /* stdu rX,NUM(r1) */
1162 fdata->frameless = 0;
1163 fdata->offset = SIGNED_SHORT (op & ~3UL);
1164 offset = fdata->offset;
1165 continue;
1166 }
1167 else if ((op & 0xfc1f016a) == 0x7c01016a)
1168 { /* stdux rX,r1,rY */
1169 /* no way to figure out what r1 is going to be */
1170 fdata->frameless = 0;
1171 offset = fdata->offset;
1172 continue;
1173 }
1174 else if ((op & 0xffff0000) == 0x38210000)
1175 { /* addi r1,r1,SIMM */
1176 fdata->frameless = 0;
1177 fdata->offset += SIGNED_SHORT (op);
1178 offset = fdata->offset;
1179 continue;
1180 }
1181 /* Load up minimal toc pointer. Do not treat an epilogue restore
1182 of r31 as a minimal TOC load. */
1183 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1184 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1185 && !framep
1186 && !minimal_toc_loaded)
1187 {
1188 minimal_toc_loaded = 1;
1189 continue;
1190
1191 /* move parameters from argument registers to local variable
1192 registers */
1193 }
1194 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1195 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1196 (((op >> 21) & 31) <= 10) &&
1197 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1198 {
1199 continue;
1200
1201 /* store parameters in stack */
1202 }
1203 /* Move parameters from argument registers to temporary register. */
1204 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1205 {
1206 continue;
1207
1208 /* Set up frame pointer */
1209 }
1210 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1211 || op == 0x7c3f0b78)
1212 { /* mr r31, r1 */
1213 fdata->frameless = 0;
1214 framep = 1;
1215 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1216 continue;
1217
1218 /* Another way to set up the frame pointer. */
1219 }
1220 else if ((op & 0xfc1fffff) == 0x38010000)
1221 { /* addi rX, r1, 0x0 */
1222 fdata->frameless = 0;
1223 framep = 1;
1224 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1225 + ((op & ~0x38010000) >> 21));
1226 continue;
1227 }
1228 /* AltiVec related instructions. */
1229 /* Store the vrsave register (spr 256) in another register for
1230 later manipulation, or load a register into the vrsave
1231 register. 2 instructions are used: mfvrsave and
1232 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1233 and mtspr SPR256, Rn. */
1234 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1235 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1236 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1237 {
1238 vrsave_reg = GET_SRC_REG (op);
1239 continue;
1240 }
1241 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1242 {
1243 continue;
1244 }
1245 /* Store the register where vrsave was saved to onto the stack:
1246 rS is the register where vrsave was stored in a previous
1247 instruction. */
1248 /* 100100 sssss 00001 dddddddd dddddddd */
1249 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1250 {
1251 if (vrsave_reg == GET_SRC_REG (op))
1252 {
1253 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1254 vrsave_reg = -1;
1255 }
1256 continue;
1257 }
1258 /* Compute the new value of vrsave, by modifying the register
1259 where vrsave was saved to. */
1260 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1261 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1262 {
1263 continue;
1264 }
1265 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1266 in a pair of insns to save the vector registers on the
1267 stack. */
1268 /* 001110 00000 00000 iiii iiii iiii iiii */
1269 /* 001110 01110 00000 iiii iiii iiii iiii */
1270 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1271 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1272 {
1273 if ((op & 0xffff0000) == 0x38000000)
1274 r0_contains_arg = 0;
1275 li_found_pc = pc;
1276 vr_saved_offset = SIGNED_SHORT (op);
1277
1278 /* This insn by itself is not part of the prologue, unless
1279 if part of the pair of insns mentioned above. So do not
1280 record this insn as part of the prologue yet. */
1281 prev_insn_was_prologue_insn = 0;
1282 }
1283 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1284 /* 011111 sssss 11111 00000 00111001110 */
1285 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1286 {
1287 if (pc == (li_found_pc + 4))
1288 {
1289 vr_reg = GET_SRC_REG (op);
1290 /* If this is the first vector reg to be saved, or if
1291 it has a lower number than others previously seen,
1292 reupdate the frame info. */
1293 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1294 {
1295 fdata->saved_vr = vr_reg;
1296 fdata->vr_offset = vr_saved_offset + offset;
1297 }
1298 vr_saved_offset = -1;
1299 vr_reg = -1;
1300 li_found_pc = 0;
1301 }
1302 }
1303 /* End AltiVec related instructions. */
1304
1305 /* Start BookE related instructions. */
1306 /* Store gen register S at (r31+uimm).
1307 Any register less than r13 is volatile, so we don't care. */
1308 /* 000100 sssss 11111 iiiii 01100100001 */
1309 else if (arch_info->mach == bfd_mach_ppc_e500
1310 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1311 {
1312 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1313 {
1314 unsigned int imm;
1315 ev_reg = GET_SRC_REG (op);
1316 imm = (op >> 11) & 0x1f;
1317 ev_offset = imm * 8;
1318 /* If this is the first vector reg to be saved, or if
1319 it has a lower number than others previously seen,
1320 reupdate the frame info. */
1321 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1322 {
1323 fdata->saved_ev = ev_reg;
1324 fdata->ev_offset = ev_offset + offset;
1325 }
1326 }
1327 continue;
1328 }
1329 /* Store gen register rS at (r1+rB). */
1330 /* 000100 sssss 00001 bbbbb 01100100000 */
1331 else if (arch_info->mach == bfd_mach_ppc_e500
1332 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1333 {
1334 if (pc == (li_found_pc + 4))
1335 {
1336 ev_reg = GET_SRC_REG (op);
1337 /* If this is the first vector reg to be saved, or if
1338 it has a lower number than others previously seen,
1339 reupdate the frame info. */
1340 /* We know the contents of rB from the previous instruction. */
1341 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1342 {
1343 fdata->saved_ev = ev_reg;
1344 fdata->ev_offset = vr_saved_offset + offset;
1345 }
1346 vr_saved_offset = -1;
1347 ev_reg = -1;
1348 li_found_pc = 0;
1349 }
1350 continue;
1351 }
1352 /* Store gen register r31 at (rA+uimm). */
1353 /* 000100 11111 aaaaa iiiii 01100100001 */
1354 else if (arch_info->mach == bfd_mach_ppc_e500
1355 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1356 {
1357 /* Wwe know that the source register is 31 already, but
1358 it can't hurt to compute it. */
1359 ev_reg = GET_SRC_REG (op);
1360 ev_offset = ((op >> 11) & 0x1f) * 8;
1361 /* If this is the first vector reg to be saved, or if
1362 it has a lower number than others previously seen,
1363 reupdate the frame info. */
1364 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1365 {
1366 fdata->saved_ev = ev_reg;
1367 fdata->ev_offset = ev_offset + offset;
1368 }
1369
1370 continue;
1371 }
1372 /* Store gen register S at (r31+r0).
1373 Store param on stack when offset from SP bigger than 4 bytes. */
1374 /* 000100 sssss 11111 00000 01100100000 */
1375 else if (arch_info->mach == bfd_mach_ppc_e500
1376 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1377 {
1378 if (pc == (li_found_pc + 4))
1379 {
1380 if ((op & 0x03e00000) >= 0x01a00000)
1381 {
1382 ev_reg = GET_SRC_REG (op);
1383 /* If this is the first vector reg to be saved, or if
1384 it has a lower number than others previously seen,
1385 reupdate the frame info. */
1386 /* We know the contents of r0 from the previous
1387 instruction. */
1388 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1389 {
1390 fdata->saved_ev = ev_reg;
1391 fdata->ev_offset = vr_saved_offset + offset;
1392 }
1393 ev_reg = -1;
1394 }
1395 vr_saved_offset = -1;
1396 li_found_pc = 0;
1397 continue;
1398 }
1399 }
1400 /* End BookE related instructions. */
1401
1402 else
1403 {
1404 /* Not a recognized prologue instruction.
1405 Handle optimizer code motions into the prologue by continuing
1406 the search if we have no valid frame yet or if the return
1407 address is not yet saved in the frame. */
1408 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1409 break;
1410
1411 if (op == 0x4e800020 /* blr */
1412 || op == 0x4e800420) /* bctr */
1413 /* Do not scan past epilogue in frameless functions or
1414 trampolines. */
1415 break;
1416 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1417 /* Never skip branches. */
1418 break;
1419
1420 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1421 /* Do not scan too many insns, scanning insns is expensive with
1422 remote targets. */
1423 break;
1424
1425 /* Continue scanning. */
1426 prev_insn_was_prologue_insn = 0;
1427 continue;
1428 }
1429 }
1430
1431 #if 0
1432 /* I have problems with skipping over __main() that I need to address
1433 * sometime. Previously, I used to use misc_function_vector which
1434 * didn't work as well as I wanted to be. -MGO */
1435
1436 /* If the first thing after skipping a prolog is a branch to a function,
1437 this might be a call to an initializer in main(), introduced by gcc2.
1438 We'd like to skip over it as well. Fortunately, xlc does some extra
1439 work before calling a function right after a prologue, thus we can
1440 single out such gcc2 behaviour. */
1441
1442
1443 if ((op & 0xfc000001) == 0x48000001)
1444 { /* bl foo, an initializer function? */
1445 op = read_memory_integer (pc + 4, 4);
1446
1447 if (op == 0x4def7b82)
1448 { /* cror 0xf, 0xf, 0xf (nop) */
1449
1450 /* Check and see if we are in main. If so, skip over this
1451 initializer function as well. */
1452
1453 tmp = find_pc_misc_function (pc);
1454 if (tmp >= 0
1455 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1456 return pc + 8;
1457 }
1458 }
1459 #endif /* 0 */
1460
1461 fdata->offset = -fdata->offset;
1462 return last_prologue_pc;
1463 }
1464
1465
1466 /*************************************************************************
1467 Support for creating pushing a dummy frame into the stack, and popping
1468 frames, etc.
1469 *************************************************************************/
1470
1471
1472 /* All the ABI's require 16 byte alignment. */
1473 static CORE_ADDR
1474 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1475 {
1476 return (addr & -16);
1477 }
1478
1479 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1480 the first eight words of the argument list (that might be less than
1481 eight parameters if some parameters occupy more than one word) are
1482 passed in r3..r10 registers. float and double parameters are
1483 passed in fpr's, in addition to that. Rest of the parameters if any
1484 are passed in user stack. There might be cases in which half of the
1485 parameter is copied into registers, the other half is pushed into
1486 stack.
1487
1488 Stack must be aligned on 64-bit boundaries when synthesizing
1489 function calls.
1490
1491 If the function is returning a structure, then the return address is passed
1492 in r3, then the first 7 words of the parameters can be passed in registers,
1493 starting from r4. */
1494
1495 static CORE_ADDR
1496 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1497 struct regcache *regcache, CORE_ADDR bp_addr,
1498 int nargs, struct value **args, CORE_ADDR sp,
1499 int struct_return, CORE_ADDR struct_addr)
1500 {
1501 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1502 int ii;
1503 int len = 0;
1504 int argno; /* current argument number */
1505 int argbytes; /* current argument byte */
1506 gdb_byte tmp_buffer[50];
1507 int f_argno = 0; /* current floating point argno */
1508 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1509 CORE_ADDR func_addr = find_function_addr (function, NULL);
1510
1511 struct value *arg = 0;
1512 struct type *type;
1513
1514 CORE_ADDR saved_sp;
1515
1516 /* The calling convention this function implements assumes the
1517 processor has floating-point registers. We shouldn't be using it
1518 on PPC variants that lack them. */
1519 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1520
1521 /* The first eight words of ther arguments are passed in registers.
1522 Copy them appropriately. */
1523 ii = 0;
1524
1525 /* If the function is returning a `struct', then the first word
1526 (which will be passed in r3) is used for struct return address.
1527 In that case we should advance one word and start from r4
1528 register to copy parameters. */
1529 if (struct_return)
1530 {
1531 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1532 struct_addr);
1533 ii++;
1534 }
1535
1536 /*
1537 effectively indirect call... gcc does...
1538
1539 return_val example( float, int);
1540
1541 eabi:
1542 float in fp0, int in r3
1543 offset of stack on overflow 8/16
1544 for varargs, must go by type.
1545 power open:
1546 float in r3&r4, int in r5
1547 offset of stack on overflow different
1548 both:
1549 return in r3 or f0. If no float, must study how gcc emulates floats;
1550 pay attention to arg promotion.
1551 User may have to cast\args to handle promotion correctly
1552 since gdb won't know if prototype supplied or not.
1553 */
1554
1555 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1556 {
1557 int reg_size = register_size (current_gdbarch, ii + 3);
1558
1559 arg = args[argno];
1560 type = check_typedef (value_type (arg));
1561 len = TYPE_LENGTH (type);
1562
1563 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1564 {
1565
1566 /* Floating point arguments are passed in fpr's, as well as gpr's.
1567 There are 13 fpr's reserved for passing parameters. At this point
1568 there is no way we would run out of them. */
1569
1570 gdb_assert (len <= 8);
1571
1572 regcache_cooked_write (regcache,
1573 tdep->ppc_fp0_regnum + 1 + f_argno,
1574 value_contents (arg));
1575 ++f_argno;
1576 }
1577
1578 if (len > reg_size)
1579 {
1580
1581 /* Argument takes more than one register. */
1582 while (argbytes < len)
1583 {
1584 gdb_byte word[MAX_REGISTER_SIZE];
1585 memset (word, 0, reg_size);
1586 memcpy (word,
1587 ((char *) value_contents (arg)) + argbytes,
1588 (len - argbytes) > reg_size
1589 ? reg_size : len - argbytes);
1590 regcache_cooked_write (regcache,
1591 tdep->ppc_gp0_regnum + 3 + ii,
1592 word);
1593 ++ii, argbytes += reg_size;
1594
1595 if (ii >= 8)
1596 goto ran_out_of_registers_for_arguments;
1597 }
1598 argbytes = 0;
1599 --ii;
1600 }
1601 else
1602 {
1603 /* Argument can fit in one register. No problem. */
1604 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1605 gdb_byte word[MAX_REGISTER_SIZE];
1606
1607 memset (word, 0, reg_size);
1608 memcpy (word, value_contents (arg), len);
1609 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1610 }
1611 ++argno;
1612 }
1613
1614 ran_out_of_registers_for_arguments:
1615
1616 saved_sp = read_sp ();
1617
1618 /* Location for 8 parameters are always reserved. */
1619 sp -= wordsize * 8;
1620
1621 /* Another six words for back chain, TOC register, link register, etc. */
1622 sp -= wordsize * 6;
1623
1624 /* Stack pointer must be quadword aligned. */
1625 sp &= -16;
1626
1627 /* If there are more arguments, allocate space for them in
1628 the stack, then push them starting from the ninth one. */
1629
1630 if ((argno < nargs) || argbytes)
1631 {
1632 int space = 0, jj;
1633
1634 if (argbytes)
1635 {
1636 space += ((len - argbytes + 3) & -4);
1637 jj = argno + 1;
1638 }
1639 else
1640 jj = argno;
1641
1642 for (; jj < nargs; ++jj)
1643 {
1644 struct value *val = args[jj];
1645 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1646 }
1647
1648 /* Add location required for the rest of the parameters. */
1649 space = (space + 15) & -16;
1650 sp -= space;
1651
1652 /* This is another instance we need to be concerned about
1653 securing our stack space. If we write anything underneath %sp
1654 (r1), we might conflict with the kernel who thinks he is free
1655 to use this area. So, update %sp first before doing anything
1656 else. */
1657
1658 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1659
1660 /* If the last argument copied into the registers didn't fit there
1661 completely, push the rest of it into stack. */
1662
1663 if (argbytes)
1664 {
1665 write_memory (sp + 24 + (ii * 4),
1666 value_contents (arg) + argbytes,
1667 len - argbytes);
1668 ++argno;
1669 ii += ((len - argbytes + 3) & -4) / 4;
1670 }
1671
1672 /* Push the rest of the arguments into stack. */
1673 for (; argno < nargs; ++argno)
1674 {
1675
1676 arg = args[argno];
1677 type = check_typedef (value_type (arg));
1678 len = TYPE_LENGTH (type);
1679
1680
1681 /* Float types should be passed in fpr's, as well as in the
1682 stack. */
1683 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1684 {
1685
1686 gdb_assert (len <= 8);
1687
1688 regcache_cooked_write (regcache,
1689 tdep->ppc_fp0_regnum + 1 + f_argno,
1690 value_contents (arg));
1691 ++f_argno;
1692 }
1693
1694 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1695 ii += ((len + 3) & -4) / 4;
1696 }
1697 }
1698
1699 /* Set the stack pointer. According to the ABI, the SP is meant to
1700 be set _before_ the corresponding stack space is used. On AIX,
1701 this even applies when the target has been completely stopped!
1702 Not doing this can lead to conflicts with the kernel which thinks
1703 that it still has control over this not-yet-allocated stack
1704 region. */
1705 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1706
1707 /* Set back chain properly. */
1708 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1709 write_memory (sp, tmp_buffer, wordsize);
1710
1711 /* Point the inferior function call's return address at the dummy's
1712 breakpoint. */
1713 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1714
1715 /* Set the TOC register, get the value from the objfile reader
1716 which, in turn, gets it from the VMAP table. */
1717 if (rs6000_find_toc_address_hook != NULL)
1718 {
1719 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1720 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1721 }
1722
1723 target_store_registers (-1);
1724 return sp;
1725 }
1726
1727 static enum return_value_convention
1728 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1729 struct regcache *regcache, gdb_byte *readbuf,
1730 const gdb_byte *writebuf)
1731 {
1732 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1733 gdb_byte buf[8];
1734
1735 /* The calling convention this function implements assumes the
1736 processor has floating-point registers. We shouldn't be using it
1737 on PowerPC variants that lack them. */
1738 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1739
1740 /* AltiVec extension: Functions that declare a vector data type as a
1741 return value place that return value in VR2. */
1742 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1743 && TYPE_LENGTH (valtype) == 16)
1744 {
1745 if (readbuf)
1746 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1747 if (writebuf)
1748 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1749
1750 return RETURN_VALUE_REGISTER_CONVENTION;
1751 }
1752
1753 /* If the called subprogram returns an aggregate, there exists an
1754 implicit first argument, whose value is the address of a caller-
1755 allocated buffer into which the callee is assumed to store its
1756 return value. All explicit parameters are appropriately
1757 relabeled. */
1758 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1759 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1760 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1761 return RETURN_VALUE_STRUCT_CONVENTION;
1762
1763 /* Scalar floating-point values are returned in FPR1 for float or
1764 double, and in FPR1:FPR2 for quadword precision. Fortran
1765 complex*8 and complex*16 are returned in FPR1:FPR2, and
1766 complex*32 is returned in FPR1:FPR4. */
1767 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1768 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1769 {
1770 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1771 gdb_byte regval[8];
1772
1773 /* FIXME: kettenis/2007-01-01: Add support for quadword
1774 precision and complex. */
1775
1776 if (readbuf)
1777 {
1778 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1779 convert_typed_floating (regval, regtype, readbuf, valtype);
1780 }
1781 if (writebuf)
1782 {
1783 convert_typed_floating (writebuf, valtype, regval, regtype);
1784 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1785 }
1786
1787 return RETURN_VALUE_REGISTER_CONVENTION;
1788 }
1789
1790 /* Values of the types int, long, short, pointer, and char (length
1791 is less than or equal to four bytes), as well as bit values of
1792 lengths less than or equal to 32 bits, must be returned right
1793 justified in GPR3 with signed values sign extended and unsigned
1794 values zero extended, as necessary. */
1795 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1796 {
1797 if (readbuf)
1798 {
1799 ULONGEST regval;
1800
1801 /* For reading we don't have to worry about sign extension. */
1802 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1803 &regval);
1804 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1805 }
1806 if (writebuf)
1807 {
1808 /* For writing, use unpack_long since that should handle any
1809 required sign extension. */
1810 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1811 unpack_long (valtype, writebuf));
1812 }
1813
1814 return RETURN_VALUE_REGISTER_CONVENTION;
1815 }
1816
1817 /* Eight-byte non-floating-point scalar values must be returned in
1818 GPR3:GPR4. */
1819
1820 if (TYPE_LENGTH (valtype) == 8)
1821 {
1822 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1823 gdb_assert (tdep->wordsize == 4);
1824
1825 if (readbuf)
1826 {
1827 gdb_byte regval[8];
1828
1829 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1830 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1831 regval + 4);
1832 memcpy (readbuf, regval, 8);
1833 }
1834 if (writebuf)
1835 {
1836 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1837 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1838 writebuf + 4);
1839 }
1840
1841 return RETURN_VALUE_REGISTER_CONVENTION;
1842 }
1843
1844 return RETURN_VALUE_STRUCT_CONVENTION;
1845 }
1846
1847 /* Return whether handle_inferior_event() should proceed through code
1848 starting at PC in function NAME when stepping.
1849
1850 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1851 handle memory references that are too distant to fit in instructions
1852 generated by the compiler. For example, if 'foo' in the following
1853 instruction:
1854
1855 lwz r9,foo(r2)
1856
1857 is greater than 32767, the linker might replace the lwz with a branch to
1858 somewhere in @FIX1 that does the load in 2 instructions and then branches
1859 back to where execution should continue.
1860
1861 GDB should silently step over @FIX code, just like AIX dbx does.
1862 Unfortunately, the linker uses the "b" instruction for the
1863 branches, meaning that the link register doesn't get set.
1864 Therefore, GDB's usual step_over_function () mechanism won't work.
1865
1866 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1867 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1868 @FIX code. */
1869
1870 int
1871 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1872 {
1873 return name && !strncmp (name, "@FIX", 4);
1874 }
1875
1876 /* Skip code that the user doesn't want to see when stepping:
1877
1878 1. Indirect function calls use a piece of trampoline code to do context
1879 switching, i.e. to set the new TOC table. Skip such code if we are on
1880 its first instruction (as when we have single-stepped to here).
1881
1882 2. Skip shared library trampoline code (which is different from
1883 indirect function call trampolines).
1884
1885 3. Skip bigtoc fixup code.
1886
1887 Result is desired PC to step until, or NULL if we are not in
1888 code that should be skipped. */
1889
1890 CORE_ADDR
1891 rs6000_skip_trampoline_code (CORE_ADDR pc)
1892 {
1893 unsigned int ii, op;
1894 int rel;
1895 CORE_ADDR solib_target_pc;
1896 struct minimal_symbol *msymbol;
1897
1898 static unsigned trampoline_code[] =
1899 {
1900 0x800b0000, /* l r0,0x0(r11) */
1901 0x90410014, /* st r2,0x14(r1) */
1902 0x7c0903a6, /* mtctr r0 */
1903 0x804b0004, /* l r2,0x4(r11) */
1904 0x816b0008, /* l r11,0x8(r11) */
1905 0x4e800420, /* bctr */
1906 0x4e800020, /* br */
1907 0
1908 };
1909
1910 /* Check for bigtoc fixup code. */
1911 msymbol = lookup_minimal_symbol_by_pc (pc);
1912 if (msymbol
1913 && rs6000_in_solib_return_trampoline (pc,
1914 DEPRECATED_SYMBOL_NAME (msymbol)))
1915 {
1916 /* Double-check that the third instruction from PC is relative "b". */
1917 op = read_memory_integer (pc + 8, 4);
1918 if ((op & 0xfc000003) == 0x48000000)
1919 {
1920 /* Extract bits 6-29 as a signed 24-bit relative word address and
1921 add it to the containing PC. */
1922 rel = ((int)(op << 6) >> 6);
1923 return pc + 8 + rel;
1924 }
1925 }
1926
1927 /* If pc is in a shared library trampoline, return its target. */
1928 solib_target_pc = find_solib_trampoline_target (pc);
1929 if (solib_target_pc)
1930 return solib_target_pc;
1931
1932 for (ii = 0; trampoline_code[ii]; ++ii)
1933 {
1934 op = read_memory_integer (pc + (ii * 4), 4);
1935 if (op != trampoline_code[ii])
1936 return 0;
1937 }
1938 ii = read_register (11); /* r11 holds destination addr */
1939 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1940 return pc;
1941 }
1942
1943 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1944 isn't available with that word size, return 0. */
1945
1946 static int
1947 regsize (const struct reg *reg, int wordsize)
1948 {
1949 return wordsize == 8 ? reg->sz64 : reg->sz32;
1950 }
1951
1952 /* Return the name of register number N, or null if no such register exists
1953 in the current architecture. */
1954
1955 static const char *
1956 rs6000_register_name (int n)
1957 {
1958 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1959 const struct reg *reg = tdep->regs + n;
1960
1961 if (!regsize (reg, tdep->wordsize))
1962 return NULL;
1963 return reg->name;
1964 }
1965
1966 /* Return the GDB type object for the "standard" data type
1967 of data in register N. */
1968
1969 static struct type *
1970 rs6000_register_type (struct gdbarch *gdbarch, int n)
1971 {
1972 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1973 const struct reg *reg = tdep->regs + n;
1974
1975 if (reg->fpr)
1976 return builtin_type_double;
1977 else
1978 {
1979 int size = regsize (reg, tdep->wordsize);
1980 switch (size)
1981 {
1982 case 0:
1983 return builtin_type_int0;
1984 case 4:
1985 return builtin_type_uint32;
1986 case 8:
1987 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1988 return builtin_type_vec64;
1989 else
1990 return builtin_type_uint64;
1991 break;
1992 case 16:
1993 return builtin_type_vec128;
1994 break;
1995 default:
1996 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1997 n, size);
1998 }
1999 }
2000 }
2001
2002 /* Is REGNUM a member of REGGROUP? */
2003 static int
2004 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2005 struct reggroup *group)
2006 {
2007 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2008 int float_p;
2009 int vector_p;
2010 int general_p;
2011
2012 if (REGISTER_NAME (regnum) == NULL
2013 || *REGISTER_NAME (regnum) == '\0')
2014 return 0;
2015 if (group == all_reggroup)
2016 return 1;
2017
2018 float_p = (regnum == tdep->ppc_fpscr_regnum
2019 || (regnum >= tdep->ppc_fp0_regnum
2020 && regnum < tdep->ppc_fp0_regnum + 32));
2021 if (group == float_reggroup)
2022 return float_p;
2023
2024 vector_p = ((tdep->ppc_vr0_regnum >= 0
2025 && regnum >= tdep->ppc_vr0_regnum
2026 && regnum < tdep->ppc_vr0_regnum + 32)
2027 || (tdep->ppc_ev0_regnum >= 0
2028 && regnum >= tdep->ppc_ev0_regnum
2029 && regnum < tdep->ppc_ev0_regnum + 32)
2030 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2031 || regnum == tdep->ppc_vrsave_regnum
2032 || regnum == tdep->ppc_acc_regnum
2033 || regnum == tdep->ppc_spefscr_regnum);
2034 if (group == vector_reggroup)
2035 return vector_p;
2036
2037 /* Note that PS aka MSR isn't included - it's a system register (and
2038 besides, due to GCC's CFI foobar you do not want to restore
2039 it). */
2040 general_p = ((regnum >= tdep->ppc_gp0_regnum
2041 && regnum < tdep->ppc_gp0_regnum + 32)
2042 || regnum == tdep->ppc_toc_regnum
2043 || regnum == tdep->ppc_cr_regnum
2044 || regnum == tdep->ppc_lr_regnum
2045 || regnum == tdep->ppc_ctr_regnum
2046 || regnum == tdep->ppc_xer_regnum
2047 || regnum == PC_REGNUM);
2048 if (group == general_reggroup)
2049 return general_p;
2050
2051 if (group == save_reggroup || group == restore_reggroup)
2052 return general_p || vector_p || float_p;
2053
2054 return 0;
2055 }
2056
2057 /* The register format for RS/6000 floating point registers is always
2058 double, we need a conversion if the memory format is float. */
2059
2060 static int
2061 rs6000_convert_register_p (int regnum, struct type *type)
2062 {
2063 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2064
2065 return (reg->fpr
2066 && TYPE_CODE (type) == TYPE_CODE_FLT
2067 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2068 }
2069
2070 static void
2071 rs6000_register_to_value (struct frame_info *frame,
2072 int regnum,
2073 struct type *type,
2074 gdb_byte *to)
2075 {
2076 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2077 gdb_byte from[MAX_REGISTER_SIZE];
2078
2079 gdb_assert (reg->fpr);
2080 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2081
2082 get_frame_register (frame, regnum, from);
2083 convert_typed_floating (from, builtin_type_double, to, type);
2084 }
2085
2086 static void
2087 rs6000_value_to_register (struct frame_info *frame,
2088 int regnum,
2089 struct type *type,
2090 const gdb_byte *from)
2091 {
2092 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2093 gdb_byte to[MAX_REGISTER_SIZE];
2094
2095 gdb_assert (reg->fpr);
2096 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2097
2098 convert_typed_floating (from, type, to, builtin_type_double);
2099 put_frame_register (frame, regnum, to);
2100 }
2101
2102 /* Move SPE vector register values between a 64-bit buffer and the two
2103 32-bit raw register halves in a regcache. This function handles
2104 both splitting a 64-bit value into two 32-bit halves, and joining
2105 two halves into a whole 64-bit value, depending on the function
2106 passed as the MOVE argument.
2107
2108 EV_REG must be the number of an SPE evN vector register --- a
2109 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2110 64-bit buffer.
2111
2112 Call MOVE once for each 32-bit half of that register, passing
2113 REGCACHE, the number of the raw register corresponding to that
2114 half, and the address of the appropriate half of BUFFER.
2115
2116 For example, passing 'regcache_raw_read' as the MOVE function will
2117 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2118 'regcache_raw_supply' will supply the contents of BUFFER to the
2119 appropriate pair of raw registers in REGCACHE.
2120
2121 You may need to cast away some 'const' qualifiers when passing
2122 MOVE, since this function can't tell at compile-time which of
2123 REGCACHE or BUFFER is acting as the source of the data. If C had
2124 co-variant type qualifiers, ... */
2125 static void
2126 e500_move_ev_register (void (*move) (struct regcache *regcache,
2127 int regnum, gdb_byte *buf),
2128 struct regcache *regcache, int ev_reg,
2129 gdb_byte *buffer)
2130 {
2131 struct gdbarch *arch = get_regcache_arch (regcache);
2132 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2133 int reg_index;
2134 gdb_byte *byte_buffer = buffer;
2135
2136 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2137 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2138
2139 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2140
2141 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2142 {
2143 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2144 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2145 }
2146 else
2147 {
2148 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2149 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2150 }
2151 }
2152
2153 static void
2154 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2155 int reg_nr, gdb_byte *buffer)
2156 {
2157 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2159
2160 gdb_assert (regcache_arch == gdbarch);
2161
2162 if (tdep->ppc_ev0_regnum <= reg_nr
2163 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2164 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2165 else
2166 internal_error (__FILE__, __LINE__,
2167 _("e500_pseudo_register_read: "
2168 "called on unexpected register '%s' (%d)"),
2169 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2170 }
2171
2172 static void
2173 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2174 int reg_nr, const gdb_byte *buffer)
2175 {
2176 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2178
2179 gdb_assert (regcache_arch == gdbarch);
2180
2181 if (tdep->ppc_ev0_regnum <= reg_nr
2182 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2183 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2184 regcache_raw_write,
2185 regcache, reg_nr, (gdb_byte *) buffer);
2186 else
2187 internal_error (__FILE__, __LINE__,
2188 _("e500_pseudo_register_read: "
2189 "called on unexpected register '%s' (%d)"),
2190 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2191 }
2192
2193 /* The E500 needs a custom reggroup function: it has anonymous raw
2194 registers, and default_register_reggroup_p assumes that anonymous
2195 registers are not members of any reggroup. */
2196 static int
2197 e500_register_reggroup_p (struct gdbarch *gdbarch,
2198 int regnum,
2199 struct reggroup *group)
2200 {
2201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2202
2203 /* The save and restore register groups need to include the
2204 upper-half registers, even though they're anonymous. */
2205 if ((group == save_reggroup
2206 || group == restore_reggroup)
2207 && (tdep->ppc_ev0_upper_regnum <= regnum
2208 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2209 return 1;
2210
2211 /* In all other regards, the default reggroup definition is fine. */
2212 return default_register_reggroup_p (gdbarch, regnum, group);
2213 }
2214
2215 /* Convert a DBX STABS register number to a GDB register number. */
2216 static int
2217 rs6000_stab_reg_to_regnum (int num)
2218 {
2219 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2220
2221 if (0 <= num && num <= 31)
2222 return tdep->ppc_gp0_regnum + num;
2223 else if (32 <= num && num <= 63)
2224 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2225 specifies registers the architecture doesn't have? Our
2226 callers don't check the value we return. */
2227 return tdep->ppc_fp0_regnum + (num - 32);
2228 else if (77 <= num && num <= 108)
2229 return tdep->ppc_vr0_regnum + (num - 77);
2230 else if (1200 <= num && num < 1200 + 32)
2231 return tdep->ppc_ev0_regnum + (num - 1200);
2232 else
2233 switch (num)
2234 {
2235 case 64:
2236 return tdep->ppc_mq_regnum;
2237 case 65:
2238 return tdep->ppc_lr_regnum;
2239 case 66:
2240 return tdep->ppc_ctr_regnum;
2241 case 76:
2242 return tdep->ppc_xer_regnum;
2243 case 109:
2244 return tdep->ppc_vrsave_regnum;
2245 case 110:
2246 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2247 case 111:
2248 return tdep->ppc_acc_regnum;
2249 case 112:
2250 return tdep->ppc_spefscr_regnum;
2251 default:
2252 return num;
2253 }
2254 }
2255
2256
2257 /* Convert a Dwarf 2 register number to a GDB register number. */
2258 static int
2259 rs6000_dwarf2_reg_to_regnum (int num)
2260 {
2261 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2262
2263 if (0 <= num && num <= 31)
2264 return tdep->ppc_gp0_regnum + num;
2265 else if (32 <= num && num <= 63)
2266 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2267 specifies registers the architecture doesn't have? Our
2268 callers don't check the value we return. */
2269 return tdep->ppc_fp0_regnum + (num - 32);
2270 else if (1124 <= num && num < 1124 + 32)
2271 return tdep->ppc_vr0_regnum + (num - 1124);
2272 else if (1200 <= num && num < 1200 + 32)
2273 return tdep->ppc_ev0_regnum + (num - 1200);
2274 else
2275 switch (num)
2276 {
2277 case 67:
2278 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2279 case 99:
2280 return tdep->ppc_acc_regnum;
2281 case 100:
2282 return tdep->ppc_mq_regnum;
2283 case 101:
2284 return tdep->ppc_xer_regnum;
2285 case 108:
2286 return tdep->ppc_lr_regnum;
2287 case 109:
2288 return tdep->ppc_ctr_regnum;
2289 case 356:
2290 return tdep->ppc_vrsave_regnum;
2291 case 612:
2292 return tdep->ppc_spefscr_regnum;
2293 default:
2294 return num;
2295 }
2296 }
2297
2298 /* Translate a .eh_frame register to DWARF register, or adjust a
2299 .debug_frame register. */
2300
2301 static int
2302 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2303 {
2304 /* GCC releases before 3.4 use GCC internal register numbering in
2305 .debug_frame (and .debug_info, et cetera). The numbering is
2306 different from the standard SysV numbering for everything except
2307 for GPRs and FPRs. We can not detect this problem in most cases
2308 - to get accurate debug info for variables living in lr, ctr, v0,
2309 et cetera, use a newer version of GCC. But we must detect
2310 one important case - lr is in column 65 in .debug_frame output,
2311 instead of 108.
2312
2313 GCC 3.4, and the "hammer" branch, have a related problem. They
2314 record lr register saves in .debug_frame as 108, but still record
2315 the return column as 65. We fix that up too.
2316
2317 We can do this because 65 is assigned to fpsr, and GCC never
2318 generates debug info referring to it. To add support for
2319 handwritten debug info that restores fpsr, we would need to add a
2320 producer version check to this. */
2321 if (!eh_frame_p)
2322 {
2323 if (num == 65)
2324 return 108;
2325 else
2326 return num;
2327 }
2328
2329 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2330 internal register numbering; translate that to the standard DWARF2
2331 register numbering. */
2332 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2333 return num;
2334 else if (68 <= num && num <= 75) /* cr0-cr8 */
2335 return num - 68 + 86;
2336 else if (77 <= num && num <= 108) /* vr0-vr31 */
2337 return num - 77 + 1124;
2338 else
2339 switch (num)
2340 {
2341 case 64: /* mq */
2342 return 100;
2343 case 65: /* lr */
2344 return 108;
2345 case 66: /* ctr */
2346 return 109;
2347 case 76: /* xer */
2348 return 101;
2349 case 109: /* vrsave */
2350 return 356;
2351 case 110: /* vscr */
2352 return 67;
2353 case 111: /* spe_acc */
2354 return 99;
2355 case 112: /* spefscr */
2356 return 612;
2357 default:
2358 return num;
2359 }
2360 }
2361 \f
2362 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2363
2364 Usually a function pointer's representation is simply the address
2365 of the function. On the RS/6000 however, a function pointer is
2366 represented by a pointer to an OPD entry. This OPD entry contains
2367 three words, the first word is the address of the function, the
2368 second word is the TOC pointer (r2), and the third word is the
2369 static chain value. Throughout GDB it is currently assumed that a
2370 function pointer contains the address of the function, which is not
2371 easy to fix. In addition, the conversion of a function address to
2372 a function pointer would require allocation of an OPD entry in the
2373 inferior's memory space, with all its drawbacks. To be able to
2374 call C++ virtual methods in the inferior (which are called via
2375 function pointers), find_function_addr uses this function to get the
2376 function address from a function pointer. */
2377
2378 /* Return real function address if ADDR (a function pointer) is in the data
2379 space and is therefore a special function pointer. */
2380
2381 static CORE_ADDR
2382 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2383 CORE_ADDR addr,
2384 struct target_ops *targ)
2385 {
2386 struct obj_section *s;
2387
2388 s = find_pc_section (addr);
2389 if (s && s->the_bfd_section->flags & SEC_CODE)
2390 return addr;
2391
2392 /* ADDR is in the data space, so it's a special function pointer. */
2393 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2394 }
2395 \f
2396
2397 /* Handling the various POWER/PowerPC variants. */
2398
2399
2400 /* The arrays here called registers_MUMBLE hold information about available
2401 registers.
2402
2403 For each family of PPC variants, I've tried to isolate out the
2404 common registers and put them up front, so that as long as you get
2405 the general family right, GDB will correctly identify the registers
2406 common to that family. The common register sets are:
2407
2408 For the 60x family: hid0 hid1 iabr dabr pir
2409
2410 For the 505 and 860 family: eie eid nri
2411
2412 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2413 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2414 pbu1 pbl2 pbu2
2415
2416 Most of these register groups aren't anything formal. I arrived at
2417 them by looking at the registers that occurred in more than one
2418 processor.
2419
2420 Note: kevinb/2002-04-30: Support for the fpscr register was added
2421 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2422 for Power. For PowerPC, slot 70 was unused and was already in the
2423 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2424 slot 70 was being used for "mq", so the next available slot (71)
2425 was chosen. It would have been nice to be able to make the
2426 register numbers the same across processor cores, but this wasn't
2427 possible without either 1) renumbering some registers for some
2428 processors or 2) assigning fpscr to a really high slot that's
2429 larger than any current register number. Doing (1) is bad because
2430 existing stubs would break. Doing (2) is undesirable because it
2431 would introduce a really large gap between fpscr and the rest of
2432 the registers for most processors. */
2433
2434 /* Convenience macros for populating register arrays. */
2435
2436 /* Within another macro, convert S to a string. */
2437
2438 #define STR(s) #s
2439
2440 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2441 and 64 bits on 64-bit systems. */
2442 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2443
2444 /* Return a struct reg defining register NAME that's 32 bits on all
2445 systems. */
2446 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2447
2448 /* Return a struct reg defining register NAME that's 64 bits on all
2449 systems. */
2450 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2451
2452 /* Return a struct reg defining register NAME that's 128 bits on all
2453 systems. */
2454 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2455
2456 /* Return a struct reg defining floating-point register NAME. */
2457 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2458
2459 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2460 long on all systems. */
2461 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2462
2463 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2464 systems and that doesn't exist on 64-bit systems. */
2465 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2466
2467 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2468 systems and that doesn't exist on 32-bit systems. */
2469 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2470
2471 /* Return a struct reg placeholder for a register that doesn't exist. */
2472 #define R0 { 0, 0, 0, 0, 0, -1 }
2473
2474 /* Return a struct reg defining an anonymous raw register that's 32
2475 bits on all systems. */
2476 #define A4 { 0, 4, 4, 0, 0, -1 }
2477
2478 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2479 32-bit systems and 64 bits on 64-bit systems. */
2480 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2481
2482 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2483 all systems. */
2484 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2485
2486 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2487 all systems, and whose SPR number is NUMBER. */
2488 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2489
2490 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2491 64-bit systems and that doesn't exist on 32-bit systems. */
2492 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2493
2494 /* UISA registers common across all architectures, including POWER. */
2495
2496 #define COMMON_UISA_REGS \
2497 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2498 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2499 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2500 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2501 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2502 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2503 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2504 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2505 /* 64 */ R(pc), R(ps)
2506
2507 /* UISA-level SPRs for PowerPC. */
2508 #define PPC_UISA_SPRS \
2509 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2510
2511 /* UISA-level SPRs for PowerPC without floating point support. */
2512 #define PPC_UISA_NOFP_SPRS \
2513 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2514
2515 /* Segment registers, for PowerPC. */
2516 #define PPC_SEGMENT_REGS \
2517 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2518 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2519 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2520 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2521
2522 /* OEA SPRs for PowerPC. */
2523 #define PPC_OEA_SPRS \
2524 /* 87 */ S4(pvr), \
2525 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2526 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2527 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2528 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2529 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2530 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2531 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2532 /* 116 */ S4(dec), S(dabr), S4(ear)
2533
2534 /* AltiVec registers. */
2535 #define PPC_ALTIVEC_REGS \
2536 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2537 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2538 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2539 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2540 /*151*/R4(vscr), R4(vrsave)
2541
2542
2543 /* On machines supporting the SPE APU, the general-purpose registers
2544 are 64 bits long. There are SIMD vector instructions to treat them
2545 as pairs of floats, but the rest of the instruction set treats them
2546 as 32-bit registers, and only operates on their lower halves.
2547
2548 In the GDB regcache, we treat their high and low halves as separate
2549 registers. The low halves we present as the general-purpose
2550 registers, and then we have pseudo-registers that stitch together
2551 the upper and lower halves and present them as pseudo-registers. */
2552
2553 /* SPE GPR lower halves --- raw registers. */
2554 #define PPC_SPE_GP_REGS \
2555 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2556 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2557 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2558 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2559
2560 /* SPE GPR upper halves --- anonymous raw registers. */
2561 #define PPC_SPE_UPPER_GP_REGS \
2562 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2563 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2564 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2565 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2566
2567 /* SPE GPR vector registers --- pseudo registers based on underlying
2568 gprs and the anonymous upper half raw registers. */
2569 #define PPC_EV_PSEUDO_REGS \
2570 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2571 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2572 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2573 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2574
2575 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2576 user-level SPR's. */
2577 static const struct reg registers_power[] =
2578 {
2579 COMMON_UISA_REGS,
2580 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2581 /* 71 */ R4(fpscr)
2582 };
2583
2584 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2585 view of the PowerPC. */
2586 static const struct reg registers_powerpc[] =
2587 {
2588 COMMON_UISA_REGS,
2589 PPC_UISA_SPRS,
2590 PPC_ALTIVEC_REGS
2591 };
2592
2593 /* IBM PowerPC 403.
2594
2595 Some notes about the "tcr" special-purpose register:
2596 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2597 403's programmable interval timer, fixed interval timer, and
2598 watchdog timer.
2599 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2600 watchdog timer, and nothing else.
2601
2602 Some of the fields are similar between the two, but they're not
2603 compatible with each other. Since the two variants have different
2604 registers, with different numbers, but the same name, we can't
2605 splice the register name to get the SPR number. */
2606 static const struct reg registers_403[] =
2607 {
2608 COMMON_UISA_REGS,
2609 PPC_UISA_SPRS,
2610 PPC_SEGMENT_REGS,
2611 PPC_OEA_SPRS,
2612 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2613 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2614 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2615 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2616 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2617 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2618 };
2619
2620 /* IBM PowerPC 403GC.
2621 See the comments about 'tcr' for the 403, above. */
2622 static const struct reg registers_403GC[] =
2623 {
2624 COMMON_UISA_REGS,
2625 PPC_UISA_SPRS,
2626 PPC_SEGMENT_REGS,
2627 PPC_OEA_SPRS,
2628 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2629 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2630 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2631 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2632 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2633 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2634 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2635 /* 147 */ S(tbhu), S(tblu)
2636 };
2637
2638 /* Motorola PowerPC 505. */
2639 static const struct reg registers_505[] =
2640 {
2641 COMMON_UISA_REGS,
2642 PPC_UISA_SPRS,
2643 PPC_SEGMENT_REGS,
2644 PPC_OEA_SPRS,
2645 /* 119 */ S(eie), S(eid), S(nri)
2646 };
2647
2648 /* Motorola PowerPC 860 or 850. */
2649 static const struct reg registers_860[] =
2650 {
2651 COMMON_UISA_REGS,
2652 PPC_UISA_SPRS,
2653 PPC_SEGMENT_REGS,
2654 PPC_OEA_SPRS,
2655 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2656 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2657 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2658 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2659 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2660 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2661 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2662 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2663 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2664 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2665 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2666 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2667 };
2668
2669 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2670 for reading and writing RTCU and RTCL. However, how one reads and writes a
2671 register is the stub's problem. */
2672 static const struct reg registers_601[] =
2673 {
2674 COMMON_UISA_REGS,
2675 PPC_UISA_SPRS,
2676 PPC_SEGMENT_REGS,
2677 PPC_OEA_SPRS,
2678 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2679 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2680 };
2681
2682 /* Motorola PowerPC 602.
2683 See the notes under the 403 about 'tcr'. */
2684 static const struct reg registers_602[] =
2685 {
2686 COMMON_UISA_REGS,
2687 PPC_UISA_SPRS,
2688 PPC_SEGMENT_REGS,
2689 PPC_OEA_SPRS,
2690 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2691 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2692 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2693 };
2694
2695 /* Motorola/IBM PowerPC 603 or 603e. */
2696 static const struct reg registers_603[] =
2697 {
2698 COMMON_UISA_REGS,
2699 PPC_UISA_SPRS,
2700 PPC_SEGMENT_REGS,
2701 PPC_OEA_SPRS,
2702 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2703 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2704 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2705 };
2706
2707 /* Motorola PowerPC 604 or 604e. */
2708 static const struct reg registers_604[] =
2709 {
2710 COMMON_UISA_REGS,
2711 PPC_UISA_SPRS,
2712 PPC_SEGMENT_REGS,
2713 PPC_OEA_SPRS,
2714 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2715 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2716 /* 127 */ S(sia), S(sda)
2717 };
2718
2719 /* Motorola/IBM PowerPC 750 or 740. */
2720 static const struct reg registers_750[] =
2721 {
2722 COMMON_UISA_REGS,
2723 PPC_UISA_SPRS,
2724 PPC_SEGMENT_REGS,
2725 PPC_OEA_SPRS,
2726 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2727 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2728 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2729 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2730 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2731 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2732 };
2733
2734
2735 /* Motorola PowerPC 7400. */
2736 static const struct reg registers_7400[] =
2737 {
2738 /* gpr0-gpr31, fpr0-fpr31 */
2739 COMMON_UISA_REGS,
2740 /* cr, lr, ctr, xer, fpscr */
2741 PPC_UISA_SPRS,
2742 /* sr0-sr15 */
2743 PPC_SEGMENT_REGS,
2744 PPC_OEA_SPRS,
2745 /* vr0-vr31, vrsave, vscr */
2746 PPC_ALTIVEC_REGS
2747 /* FIXME? Add more registers? */
2748 };
2749
2750 /* Motorola e500. */
2751 static const struct reg registers_e500[] =
2752 {
2753 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2754 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2755 /* 64 .. 65 */ R(pc), R(ps),
2756 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2757 /* 71 .. 72 */ R8(acc), S4(spefscr),
2758 /* NOTE: Add new registers here the end of the raw register
2759 list and just before the first pseudo register. */
2760 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2761 };
2762
2763 /* Information about a particular processor variant. */
2764
2765 struct variant
2766 {
2767 /* Name of this variant. */
2768 char *name;
2769
2770 /* English description of the variant. */
2771 char *description;
2772
2773 /* bfd_arch_info.arch corresponding to variant. */
2774 enum bfd_architecture arch;
2775
2776 /* bfd_arch_info.mach corresponding to variant. */
2777 unsigned long mach;
2778
2779 /* Number of real registers. */
2780 int nregs;
2781
2782 /* Number of pseudo registers. */
2783 int npregs;
2784
2785 /* Number of total registers (the sum of nregs and npregs). */
2786 int num_tot_regs;
2787
2788 /* Table of register names; registers[R] is the name of the register
2789 number R. */
2790 const struct reg *regs;
2791 };
2792
2793 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2794
2795 static int
2796 num_registers (const struct reg *reg_list, int num_tot_regs)
2797 {
2798 int i;
2799 int nregs = 0;
2800
2801 for (i = 0; i < num_tot_regs; i++)
2802 if (!reg_list[i].pseudo)
2803 nregs++;
2804
2805 return nregs;
2806 }
2807
2808 static int
2809 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2810 {
2811 int i;
2812 int npregs = 0;
2813
2814 for (i = 0; i < num_tot_regs; i++)
2815 if (reg_list[i].pseudo)
2816 npregs ++;
2817
2818 return npregs;
2819 }
2820
2821 /* Information in this table comes from the following web sites:
2822 IBM: http://www.chips.ibm.com:80/products/embedded/
2823 Motorola: http://www.mot.com/SPS/PowerPC/
2824
2825 I'm sure I've got some of the variant descriptions not quite right.
2826 Please report any inaccuracies you find to GDB's maintainer.
2827
2828 If you add entries to this table, please be sure to allow the new
2829 value as an argument to the --with-cpu flag, in configure.in. */
2830
2831 static struct variant variants[] =
2832 {
2833
2834 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2835 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2836 registers_powerpc},
2837 {"power", "POWER user-level", bfd_arch_rs6000,
2838 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2839 registers_power},
2840 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2841 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2842 registers_403},
2843 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2844 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2845 registers_601},
2846 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2847 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2848 registers_602},
2849 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2850 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2851 registers_603},
2852 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2853 604, -1, -1, tot_num_registers (registers_604),
2854 registers_604},
2855 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2856 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2857 registers_403GC},
2858 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2859 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2860 registers_505},
2861 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2862 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2863 registers_860},
2864 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2865 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2866 registers_750},
2867 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2868 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2869 registers_7400},
2870 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2871 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2872 registers_e500},
2873
2874 /* 64-bit */
2875 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2876 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2877 registers_powerpc},
2878 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2879 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2880 registers_powerpc},
2881 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2882 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2883 registers_powerpc},
2884 {"a35", "PowerPC A35", bfd_arch_powerpc,
2885 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2886 registers_powerpc},
2887 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2888 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2889 registers_powerpc},
2890 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2891 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2892 registers_powerpc},
2893
2894 /* FIXME: I haven't checked the register sets of the following. */
2895 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2896 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2897 registers_power},
2898 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2899 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2900 registers_power},
2901 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2902 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2903 registers_power},
2904
2905 {0, 0, 0, 0, 0, 0, 0, 0}
2906 };
2907
2908 /* Initialize the number of registers and pseudo registers in each variant. */
2909
2910 static void
2911 init_variants (void)
2912 {
2913 struct variant *v;
2914
2915 for (v = variants; v->name; v++)
2916 {
2917 if (v->nregs == -1)
2918 v->nregs = num_registers (v->regs, v->num_tot_regs);
2919 if (v->npregs == -1)
2920 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2921 }
2922 }
2923
2924 /* Return the variant corresponding to architecture ARCH and machine number
2925 MACH. If no such variant exists, return null. */
2926
2927 static const struct variant *
2928 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2929 {
2930 const struct variant *v;
2931
2932 for (v = variants; v->name; v++)
2933 if (arch == v->arch && mach == v->mach)
2934 return v;
2935
2936 return NULL;
2937 }
2938
2939 static int
2940 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2941 {
2942 if (!info->disassembler_options)
2943 info->disassembler_options = "any";
2944
2945 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2946 return print_insn_big_powerpc (memaddr, info);
2947 else
2948 return print_insn_little_powerpc (memaddr, info);
2949 }
2950 \f
2951 static CORE_ADDR
2952 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2953 {
2954 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2955 }
2956
2957 static struct frame_id
2958 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2959 {
2960 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2961 SP_REGNUM),
2962 frame_pc_unwind (next_frame));
2963 }
2964
2965 struct rs6000_frame_cache
2966 {
2967 CORE_ADDR base;
2968 CORE_ADDR initial_sp;
2969 struct trad_frame_saved_reg *saved_regs;
2970 };
2971
2972 static struct rs6000_frame_cache *
2973 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2974 {
2975 struct rs6000_frame_cache *cache;
2976 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2978 struct rs6000_framedata fdata;
2979 int wordsize = tdep->wordsize;
2980 CORE_ADDR func, pc;
2981
2982 if ((*this_cache) != NULL)
2983 return (*this_cache);
2984 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2985 (*this_cache) = cache;
2986 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2987
2988 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2989 pc = frame_pc_unwind (next_frame);
2990 skip_prologue (func, pc, &fdata);
2991
2992 /* Figure out the parent's stack pointer. */
2993
2994 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2995 address of the current frame. Things might be easier if the
2996 ->frame pointed to the outer-most address of the frame. In
2997 the mean time, the address of the prev frame is used as the
2998 base address of this frame. */
2999 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3000
3001 /* If the function appears to be frameless, check a couple of likely
3002 indicators that we have simply failed to find the frame setup.
3003 Two common cases of this are missing symbols (i.e.
3004 frame_func_unwind returns the wrong address or 0), and assembly
3005 stubs which have a fast exit path but set up a frame on the slow
3006 path.
3007
3008 If the LR appears to return to this function, then presume that
3009 we have an ABI compliant frame that we failed to find. */
3010 if (fdata.frameless && fdata.lr_offset == 0)
3011 {
3012 CORE_ADDR saved_lr;
3013 int make_frame = 0;
3014
3015 saved_lr = frame_unwind_register_unsigned (next_frame,
3016 tdep->ppc_lr_regnum);
3017 if (func == 0 && saved_lr == pc)
3018 make_frame = 1;
3019 else if (func != 0)
3020 {
3021 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3022 if (func == saved_func)
3023 make_frame = 1;
3024 }
3025
3026 if (make_frame)
3027 {
3028 fdata.frameless = 0;
3029 fdata.lr_offset = wordsize;
3030 }
3031 }
3032
3033 if (!fdata.frameless)
3034 /* Frameless really means stackless. */
3035 cache->base = read_memory_addr (cache->base, wordsize);
3036
3037 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3038
3039 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3040 All fpr's from saved_fpr to fp31 are saved. */
3041
3042 if (fdata.saved_fpr >= 0)
3043 {
3044 int i;
3045 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3046
3047 /* If skip_prologue says floating-point registers were saved,
3048 but the current architecture has no floating-point registers,
3049 then that's strange. But we have no indices to even record
3050 the addresses under, so we just ignore it. */
3051 if (ppc_floating_point_unit_p (gdbarch))
3052 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3053 {
3054 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3055 fpr_addr += 8;
3056 }
3057 }
3058
3059 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3060 All gpr's from saved_gpr to gpr31 are saved. */
3061
3062 if (fdata.saved_gpr >= 0)
3063 {
3064 int i;
3065 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3066 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3067 {
3068 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3069 gpr_addr += wordsize;
3070 }
3071 }
3072
3073 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3074 All vr's from saved_vr to vr31 are saved. */
3075 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3076 {
3077 if (fdata.saved_vr >= 0)
3078 {
3079 int i;
3080 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3081 for (i = fdata.saved_vr; i < 32; i++)
3082 {
3083 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3084 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3085 }
3086 }
3087 }
3088
3089 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3090 All vr's from saved_ev to ev31 are saved. ????? */
3091 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3092 {
3093 if (fdata.saved_ev >= 0)
3094 {
3095 int i;
3096 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3097 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3098 {
3099 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3100 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3101 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3102 }
3103 }
3104 }
3105
3106 /* If != 0, fdata.cr_offset is the offset from the frame that
3107 holds the CR. */
3108 if (fdata.cr_offset != 0)
3109 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3110
3111 /* If != 0, fdata.lr_offset is the offset from the frame that
3112 holds the LR. */
3113 if (fdata.lr_offset != 0)
3114 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3115 /* The PC is found in the link register. */
3116 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3117
3118 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3119 holds the VRSAVE. */
3120 if (fdata.vrsave_offset != 0)
3121 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3122
3123 if (fdata.alloca_reg < 0)
3124 /* If no alloca register used, then fi->frame is the value of the
3125 %sp for this frame, and it is good enough. */
3126 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3127 else
3128 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3129 fdata.alloca_reg);
3130
3131 return cache;
3132 }
3133
3134 static void
3135 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3136 struct frame_id *this_id)
3137 {
3138 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3139 this_cache);
3140 (*this_id) = frame_id_build (info->base,
3141 frame_func_unwind (next_frame, NORMAL_FRAME));
3142 }
3143
3144 static void
3145 rs6000_frame_prev_register (struct frame_info *next_frame,
3146 void **this_cache,
3147 int regnum, int *optimizedp,
3148 enum lval_type *lvalp, CORE_ADDR *addrp,
3149 int *realnump, gdb_byte *valuep)
3150 {
3151 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3152 this_cache);
3153 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3154 optimizedp, lvalp, addrp, realnump, valuep);
3155 }
3156
3157 static const struct frame_unwind rs6000_frame_unwind =
3158 {
3159 NORMAL_FRAME,
3160 rs6000_frame_this_id,
3161 rs6000_frame_prev_register
3162 };
3163
3164 static const struct frame_unwind *
3165 rs6000_frame_sniffer (struct frame_info *next_frame)
3166 {
3167 return &rs6000_frame_unwind;
3168 }
3169
3170 \f
3171
3172 static CORE_ADDR
3173 rs6000_frame_base_address (struct frame_info *next_frame,
3174 void **this_cache)
3175 {
3176 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3177 this_cache);
3178 return info->initial_sp;
3179 }
3180
3181 static const struct frame_base rs6000_frame_base = {
3182 &rs6000_frame_unwind,
3183 rs6000_frame_base_address,
3184 rs6000_frame_base_address,
3185 rs6000_frame_base_address
3186 };
3187
3188 static const struct frame_base *
3189 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3190 {
3191 return &rs6000_frame_base;
3192 }
3193
3194 /* Initialize the current architecture based on INFO. If possible, re-use an
3195 architecture from ARCHES, which is a list of architectures already created
3196 during this debugging session.
3197
3198 Called e.g. at program startup, when reading a core file, and when reading
3199 a binary file. */
3200
3201 static struct gdbarch *
3202 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3203 {
3204 struct gdbarch *gdbarch;
3205 struct gdbarch_tdep *tdep;
3206 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3207 struct reg *regs;
3208 const struct variant *v;
3209 enum bfd_architecture arch;
3210 unsigned long mach;
3211 bfd abfd;
3212 int sysv_abi;
3213 asection *sect;
3214
3215 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3216 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3217
3218 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3219 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3220
3221 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3222
3223 /* Check word size. If INFO is from a binary file, infer it from
3224 that, else choose a likely default. */
3225 if (from_xcoff_exec)
3226 {
3227 if (bfd_xcoff_is_xcoff64 (info.abfd))
3228 wordsize = 8;
3229 else
3230 wordsize = 4;
3231 }
3232 else if (from_elf_exec)
3233 {
3234 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3235 wordsize = 8;
3236 else
3237 wordsize = 4;
3238 }
3239 else
3240 {
3241 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3242 wordsize = info.bfd_arch_info->bits_per_word /
3243 info.bfd_arch_info->bits_per_byte;
3244 else
3245 wordsize = 4;
3246 }
3247
3248 /* Find a candidate among extant architectures. */
3249 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3250 arches != NULL;
3251 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3252 {
3253 /* Word size in the various PowerPC bfd_arch_info structs isn't
3254 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3255 separate word size check. */
3256 tdep = gdbarch_tdep (arches->gdbarch);
3257 if (tdep && tdep->wordsize == wordsize)
3258 return arches->gdbarch;
3259 }
3260
3261 /* None found, create a new architecture from INFO, whose bfd_arch_info
3262 validity depends on the source:
3263 - executable useless
3264 - rs6000_host_arch() good
3265 - core file good
3266 - "set arch" trust blindly
3267 - GDB startup useless but harmless */
3268
3269 if (!from_xcoff_exec)
3270 {
3271 arch = info.bfd_arch_info->arch;
3272 mach = info.bfd_arch_info->mach;
3273 }
3274 else
3275 {
3276 arch = bfd_arch_powerpc;
3277 bfd_default_set_arch_mach (&abfd, arch, 0);
3278 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3279 mach = info.bfd_arch_info->mach;
3280 }
3281 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3282 tdep->wordsize = wordsize;
3283
3284 /* For e500 executables, the apuinfo section is of help here. Such
3285 section contains the identifier and revision number of each
3286 Application-specific Processing Unit that is present on the
3287 chip. The content of the section is determined by the assembler
3288 which looks at each instruction and determines which unit (and
3289 which version of it) can execute it. In our case we just look for
3290 the existance of the section. */
3291
3292 if (info.abfd)
3293 {
3294 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3295 if (sect)
3296 {
3297 arch = info.bfd_arch_info->arch;
3298 mach = bfd_mach_ppc_e500;
3299 bfd_default_set_arch_mach (&abfd, arch, mach);
3300 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3301 }
3302 }
3303
3304 gdbarch = gdbarch_alloc (&info, tdep);
3305
3306 /* Initialize the number of real and pseudo registers in each variant. */
3307 init_variants ();
3308
3309 /* Choose variant. */
3310 v = find_variant_by_arch (arch, mach);
3311 if (!v)
3312 return NULL;
3313
3314 tdep->regs = v->regs;
3315
3316 tdep->ppc_gp0_regnum = 0;
3317 tdep->ppc_toc_regnum = 2;
3318 tdep->ppc_ps_regnum = 65;
3319 tdep->ppc_cr_regnum = 66;
3320 tdep->ppc_lr_regnum = 67;
3321 tdep->ppc_ctr_regnum = 68;
3322 tdep->ppc_xer_regnum = 69;
3323 if (v->mach == bfd_mach_ppc_601)
3324 tdep->ppc_mq_regnum = 124;
3325 else if (arch == bfd_arch_rs6000)
3326 tdep->ppc_mq_regnum = 70;
3327 else
3328 tdep->ppc_mq_regnum = -1;
3329 tdep->ppc_fp0_regnum = 32;
3330 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3331 tdep->ppc_sr0_regnum = 71;
3332 tdep->ppc_vr0_regnum = -1;
3333 tdep->ppc_vrsave_regnum = -1;
3334 tdep->ppc_ev0_upper_regnum = -1;
3335 tdep->ppc_ev0_regnum = -1;
3336 tdep->ppc_ev31_regnum = -1;
3337 tdep->ppc_acc_regnum = -1;
3338 tdep->ppc_spefscr_regnum = -1;
3339
3340 set_gdbarch_pc_regnum (gdbarch, 64);
3341 set_gdbarch_sp_regnum (gdbarch, 1);
3342 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3343 set_gdbarch_fp0_regnum (gdbarch, 32);
3344 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3345 if (sysv_abi && wordsize == 8)
3346 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3347 else if (sysv_abi && wordsize == 4)
3348 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3349 else
3350 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3351
3352 /* Set lr_frame_offset. */
3353 if (wordsize == 8)
3354 tdep->lr_frame_offset = 16;
3355 else if (sysv_abi)
3356 tdep->lr_frame_offset = 4;
3357 else
3358 tdep->lr_frame_offset = 8;
3359
3360 if (v->arch == bfd_arch_rs6000)
3361 tdep->ppc_sr0_regnum = -1;
3362 else if (v->arch == bfd_arch_powerpc)
3363 switch (v->mach)
3364 {
3365 case bfd_mach_ppc:
3366 tdep->ppc_sr0_regnum = -1;
3367 tdep->ppc_vr0_regnum = 71;
3368 tdep->ppc_vrsave_regnum = 104;
3369 break;
3370 case bfd_mach_ppc_7400:
3371 tdep->ppc_vr0_regnum = 119;
3372 tdep->ppc_vrsave_regnum = 152;
3373 break;
3374 case bfd_mach_ppc_e500:
3375 tdep->ppc_toc_regnum = -1;
3376 tdep->ppc_ev0_upper_regnum = 32;
3377 tdep->ppc_ev0_regnum = 73;
3378 tdep->ppc_ev31_regnum = 104;
3379 tdep->ppc_acc_regnum = 71;
3380 tdep->ppc_spefscr_regnum = 72;
3381 tdep->ppc_fp0_regnum = -1;
3382 tdep->ppc_fpscr_regnum = -1;
3383 tdep->ppc_sr0_regnum = -1;
3384 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3385 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3386 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3387 break;
3388
3389 case bfd_mach_ppc64:
3390 case bfd_mach_ppc_620:
3391 case bfd_mach_ppc_630:
3392 case bfd_mach_ppc_a35:
3393 case bfd_mach_ppc_rs64ii:
3394 case bfd_mach_ppc_rs64iii:
3395 /* These processor's register sets don't have segment registers. */
3396 tdep->ppc_sr0_regnum = -1;
3397 break;
3398 }
3399 else
3400 internal_error (__FILE__, __LINE__,
3401 _("rs6000_gdbarch_init: "
3402 "received unexpected BFD 'arch' value"));
3403
3404 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3405
3406 /* Sanity check on registers. */
3407 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3408
3409 /* Select instruction printer. */
3410 if (arch == bfd_arch_rs6000)
3411 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3412 else
3413 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3414
3415 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3416
3417 set_gdbarch_num_regs (gdbarch, v->nregs);
3418 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3419 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3420 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3421 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3422
3423 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3424 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3425 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3426 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3427 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3428 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3429 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3430 if (sysv_abi)
3431 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3432 else
3433 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3434 set_gdbarch_char_signed (gdbarch, 0);
3435
3436 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3437 if (sysv_abi && wordsize == 8)
3438 /* PPC64 SYSV. */
3439 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3440 else if (!sysv_abi && wordsize == 4)
3441 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3442 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3443 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3444 224. */
3445 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3446
3447 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3448 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3449 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3450
3451 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3452 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3453
3454 if (sysv_abi && wordsize == 4)
3455 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3456 else if (sysv_abi && wordsize == 8)
3457 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3458 else
3459 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3460
3461 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3462 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3463
3464 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3465 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3466
3467 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3468 for the descriptor and ".FN" for the entry-point -- a user
3469 specifying "break FN" will unexpectedly end up with a breakpoint
3470 on the descriptor and not the function. This architecture method
3471 transforms any breakpoints on descriptors into breakpoints on the
3472 corresponding entry point. */
3473 if (sysv_abi && wordsize == 8)
3474 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3475
3476 /* Not sure on this. FIXMEmgo */
3477 set_gdbarch_frame_args_skip (gdbarch, 8);
3478
3479 if (!sysv_abi)
3480 {
3481 /* Handle RS/6000 function pointers (which are really function
3482 descriptors). */
3483 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3484 rs6000_convert_from_func_ptr_addr);
3485 }
3486
3487 /* Helpers for function argument information. */
3488 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3489
3490 /* Trampoline. */
3491 set_gdbarch_in_solib_return_trampoline
3492 (gdbarch, rs6000_in_solib_return_trampoline);
3493 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3494
3495 /* Hook in the DWARF CFI frame unwinder. */
3496 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3497 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3498
3499 /* Hook in ABI-specific overrides, if they have been registered. */
3500 gdbarch_init_osabi (info, gdbarch);
3501
3502 switch (info.osabi)
3503 {
3504 case GDB_OSABI_LINUX:
3505 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3506 have altivec registers. If not, ptrace will fail the first time it's
3507 called to access one and will not be called again. This wart will
3508 be removed when Daniel Jacobowitz's proposal for autodetecting target
3509 registers is implemented. */
3510 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3511 {
3512 tdep->ppc_vr0_regnum = 71;
3513 tdep->ppc_vrsave_regnum = 104;
3514 }
3515 /* Fall Thru */
3516 case GDB_OSABI_NETBSD_AOUT:
3517 case GDB_OSABI_NETBSD_ELF:
3518 case GDB_OSABI_UNKNOWN:
3519 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3520 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3521 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3522 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3523 break;
3524 default:
3525 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3526
3527 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3528 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3529 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3530 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3531 }
3532
3533 init_sim_regno_table (gdbarch);
3534
3535 return gdbarch;
3536 }
3537
3538 static void
3539 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3540 {
3541 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3542
3543 if (tdep == NULL)
3544 return;
3545
3546 /* FIXME: Dump gdbarch_tdep. */
3547 }
3548
3549 /* Initialization code. */
3550
3551 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3552
3553 void
3554 _initialize_rs6000_tdep (void)
3555 {
3556 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3557 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3558 }