]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-tdep.c
* rs6000-tdep.c (struct frame_extra_info): Delete.
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43 #include "dwarf2-frame.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52
53 #include "solib-svr4.h"
54 #include "ppc-tdep.h"
55
56 #include "gdb_assert.h"
57 #include "dis-asm.h"
58
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
62
63 #include "rs6000-tdep.h"
64
65 /* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72 #define SIG_FRAME_PC_OFFSET 96
73 #define SIG_FRAME_LR_OFFSET 108
74 #define SIG_FRAME_FP_OFFSET 284
75
76 /* To be used by skip_prologue. */
77
78 struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
85 int saved_vr; /* smallest # of saved vr */
86 int saved_ev; /* smallest # of saved ev */
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
92 int vr_offset; /* offset of saved vrs from prev sp */
93 int ev_offset; /* offset of saved evs from prev sp */
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
96 int vrsave_offset; /* offset of saved vrsave register */
97 };
98
99 /* Description of a single register. */
100
101 struct reg
102 {
103 char *name; /* name of register */
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
106 unsigned char fpr; /* whether register is floating-point */
107 unsigned char pseudo; /* whether register is pseudo */
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
111 };
112
113 /* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
117 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
119 /* Static function prototypes */
120
121 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137
138 /* Return true if REGNO is an SPE register, false otherwise. */
139 int
140 spe_register_p (int regno)
141 {
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168 }
169
170
171 /* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
173 int
174 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
180 }
181
182
183 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
190 static void
191 set_sim_regno (int *table, int gdb_regno, int sim_regno)
192 {
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197 }
198
199
200 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
203 static void
204 init_sim_regno_table (struct gdbarch *arch)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281 }
282
283
284 /* Given a GDB register number REG, return the corresponding SIM
285 register number. */
286 static int
287 rs6000_register_sim_regno (int reg)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
292 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
293 sim_regno = tdep->sim_regno[reg];
294
295 if (sim_regno >= 0)
296 return sim_regno;
297 else
298 return LEGACY_SIM_REGNO_IGNORE;
299 }
300
301 \f
302
303 /* Register set support functions. */
304
305 static void
306 ppc_supply_reg (struct regcache *regcache, int regnum,
307 const gdb_byte *regs, size_t offset)
308 {
309 if (regnum != -1 && offset != -1)
310 regcache_raw_supply (regcache, regnum, regs + offset);
311 }
312
313 static void
314 ppc_collect_reg (const struct regcache *regcache, int regnum,
315 gdb_byte *regs, size_t offset)
316 {
317 if (regnum != -1 && offset != -1)
318 regcache_raw_collect (regcache, regnum, regs + offset);
319 }
320
321 /* Supply register REGNUM in the general-purpose register set REGSET
322 from the buffer specified by GREGS and LEN to register cache
323 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
324
325 void
326 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
327 int regnum, const void *gregs, size_t len)
328 {
329 struct gdbarch *gdbarch = get_regcache_arch (regcache);
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 const struct ppc_reg_offsets *offsets = regset->descr;
332 size_t offset;
333 int i;
334
335 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
336 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
337 i++, offset += 4)
338 {
339 if (regnum == -1 || regnum == i)
340 ppc_supply_reg (regcache, i, gregs, offset);
341 }
342
343 if (regnum == -1 || regnum == PC_REGNUM)
344 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
345 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
346 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
347 gregs, offsets->ps_offset);
348 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
349 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
350 gregs, offsets->cr_offset);
351 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
352 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
353 gregs, offsets->lr_offset);
354 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
355 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
356 gregs, offsets->ctr_offset);
357 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
358 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
359 gregs, offsets->cr_offset);
360 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
362 }
363
364 /* Supply register REGNUM in the floating-point register set REGSET
365 from the buffer specified by FPREGS and LEN to register cache
366 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
367
368 void
369 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
370 int regnum, const void *fpregs, size_t len)
371 {
372 struct gdbarch *gdbarch = get_regcache_arch (regcache);
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374 const struct ppc_reg_offsets *offsets = regset->descr;
375 size_t offset;
376 int i;
377
378 gdb_assert (ppc_floating_point_unit_p (gdbarch));
379
380 offset = offsets->f0_offset;
381 for (i = tdep->ppc_fp0_regnum;
382 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
383 i++, offset += 8)
384 {
385 if (regnum == -1 || regnum == i)
386 ppc_supply_reg (regcache, i, fpregs, offset);
387 }
388
389 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
390 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
391 fpregs, offsets->fpscr_offset);
392 }
393
394 /* Collect register REGNUM in the general-purpose register set
395 REGSET. from register cache REGCACHE into the buffer specified by
396 GREGS and LEN. If REGNUM is -1, do this for all registers in
397 REGSET. */
398
399 void
400 ppc_collect_gregset (const struct regset *regset,
401 const struct regcache *regcache,
402 int regnum, void *gregs, size_t len)
403 {
404 struct gdbarch *gdbarch = get_regcache_arch (regcache);
405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
406 const struct ppc_reg_offsets *offsets = regset->descr;
407 size_t offset;
408 int i;
409
410 offset = offsets->r0_offset;
411 for (i = tdep->ppc_gp0_regnum;
412 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
413 i++, offset += 4)
414 {
415 if (regnum == -1 || regnum == i)
416 ppc_collect_reg (regcache, i, gregs, offset);
417 }
418
419 if (regnum == -1 || regnum == PC_REGNUM)
420 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
421 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
422 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
423 gregs, offsets->ps_offset);
424 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
425 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
426 gregs, offsets->cr_offset);
427 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
428 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
429 gregs, offsets->lr_offset);
430 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
431 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
432 gregs, offsets->ctr_offset);
433 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
434 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
435 gregs, offsets->xer_offset);
436 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
438 gregs, offsets->mq_offset);
439 }
440
441 /* Collect register REGNUM in the floating-point register set
442 REGSET. from register cache REGCACHE into the buffer specified by
443 FPREGS and LEN. If REGNUM is -1, do this for all registers in
444 REGSET. */
445
446 void
447 ppc_collect_fpregset (const struct regset *regset,
448 const struct regcache *regcache,
449 int regnum, void *fpregs, size_t len)
450 {
451 struct gdbarch *gdbarch = get_regcache_arch (regcache);
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 const struct ppc_reg_offsets *offsets = regset->descr;
454 size_t offset;
455 int i;
456
457 gdb_assert (ppc_floating_point_unit_p (gdbarch));
458
459 offset = offsets->f0_offset;
460 for (i = tdep->ppc_fp0_regnum;
461 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
462 i++, offset += 8)
463 {
464 if (regnum == -1 || regnum == i)
465 ppc_collect_reg (regcache, i, fpregs, offset);
466 }
467
468 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
469 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
470 fpregs, offsets->fpscr_offset);
471 }
472 \f
473
474 /* Read a LEN-byte address from debugged memory address MEMADDR. */
475
476 static CORE_ADDR
477 read_memory_addr (CORE_ADDR memaddr, int len)
478 {
479 return read_memory_unsigned_integer (memaddr, len);
480 }
481
482 static CORE_ADDR
483 rs6000_skip_prologue (CORE_ADDR pc)
484 {
485 struct rs6000_framedata frame;
486 CORE_ADDR limit_pc, func_addr;
487
488 /* See if we can determine the end of the prologue via the symbol table.
489 If so, then return either PC, or the PC after the prologue, whichever
490 is greater. */
491 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
492 {
493 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
494 if (post_prologue_pc != 0)
495 return max (pc, post_prologue_pc);
496 }
497
498 /* Can't determine prologue from the symbol table, need to examine
499 instructions. */
500
501 /* Find an upper limit on the function prologue using the debug
502 information. If the debug information could not be used to provide
503 that bound, then use an arbitrary large number as the upper bound. */
504 limit_pc = skip_prologue_using_sal (pc);
505 if (limit_pc == 0)
506 limit_pc = pc + 100; /* Magic. */
507
508 pc = skip_prologue (pc, limit_pc, &frame);
509 return pc;
510 }
511
512 static int
513 insn_changes_sp_or_jumps (unsigned long insn)
514 {
515 int opcode = (insn >> 26) & 0x03f;
516 int sd = (insn >> 21) & 0x01f;
517 int a = (insn >> 16) & 0x01f;
518 int subcode = (insn >> 1) & 0x3ff;
519
520 /* Changes the stack pointer. */
521
522 /* NOTE: There are many ways to change the value of a given register.
523 The ways below are those used when the register is R1, the SP,
524 in a funtion's epilogue. */
525
526 if (opcode == 31 && subcode == 444 && a == 1)
527 return 1; /* mr R1,Rn */
528 if (opcode == 14 && sd == 1)
529 return 1; /* addi R1,Rn,simm */
530 if (opcode == 58 && sd == 1)
531 return 1; /* ld R1,ds(Rn) */
532
533 /* Transfers control. */
534
535 if (opcode == 18)
536 return 1; /* b */
537 if (opcode == 16)
538 return 1; /* bc */
539 if (opcode == 19 && subcode == 16)
540 return 1; /* bclr */
541 if (opcode == 19 && subcode == 528)
542 return 1; /* bcctr */
543
544 return 0;
545 }
546
547 /* Return true if we are in the function's epilogue, i.e. after the
548 instruction that destroyed the function's stack frame.
549
550 1) scan forward from the point of execution:
551 a) If you find an instruction that modifies the stack pointer
552 or transfers control (except a return), execution is not in
553 an epilogue, return.
554 b) Stop scanning if you find a return instruction or reach the
555 end of the function or reach the hard limit for the size of
556 an epilogue.
557 2) scan backward from the point of execution:
558 a) If you find an instruction that modifies the stack pointer,
559 execution *is* in an epilogue, return.
560 b) Stop scanning if you reach an instruction that transfers
561 control or the beginning of the function or reach the hard
562 limit for the size of an epilogue. */
563
564 static int
565 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
566 {
567 bfd_byte insn_buf[PPC_INSN_SIZE];
568 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
569 unsigned long insn;
570 struct frame_info *curfrm;
571
572 /* Find the search limits based on function boundaries and hard limit. */
573
574 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
575 return 0;
576
577 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
578 if (epilogue_start < func_start) epilogue_start = func_start;
579
580 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
581 if (epilogue_end > func_end) epilogue_end = func_end;
582
583 curfrm = get_current_frame ();
584
585 /* Scan forward until next 'blr'. */
586
587 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
588 {
589 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
590 return 0;
591 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
592 if (insn == 0x4e800020)
593 break;
594 if (insn_changes_sp_or_jumps (insn))
595 return 0;
596 }
597
598 /* Scan backward until adjustment to stack pointer (R1). */
599
600 for (scan_pc = pc - PPC_INSN_SIZE;
601 scan_pc >= epilogue_start;
602 scan_pc -= PPC_INSN_SIZE)
603 {
604 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
605 return 0;
606 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
607 if (insn_changes_sp_or_jumps (insn))
608 return 1;
609 }
610
611 return 0;
612 }
613
614 /* Get the ith function argument for the current function. */
615 static CORE_ADDR
616 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
617 struct type *type)
618 {
619 return get_frame_register_unsigned (frame, 3 + argi);
620 }
621
622 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
623
624 static CORE_ADDR
625 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
626 {
627 CORE_ADDR dest;
628 int immediate;
629 int absolute;
630 int ext_op;
631
632 absolute = (int) ((instr >> 1) & 1);
633
634 switch (opcode)
635 {
636 case 18:
637 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
638 if (absolute)
639 dest = immediate;
640 else
641 dest = pc + immediate;
642 break;
643
644 case 16:
645 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
646 if (absolute)
647 dest = immediate;
648 else
649 dest = pc + immediate;
650 break;
651
652 case 19:
653 ext_op = (instr >> 1) & 0x3ff;
654
655 if (ext_op == 16) /* br conditional register */
656 {
657 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
658
659 /* If we are about to return from a signal handler, dest is
660 something like 0x3c90. The current frame is a signal handler
661 caller frame, upon completion of the sigreturn system call
662 execution will return to the saved PC in the frame. */
663 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
664 {
665 struct frame_info *fi;
666
667 fi = get_current_frame ();
668 if (fi != NULL)
669 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
670 gdbarch_tdep (current_gdbarch)->wordsize);
671 }
672 }
673
674 else if (ext_op == 528) /* br cond to count reg */
675 {
676 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
677
678 /* If we are about to execute a system call, dest is something
679 like 0x22fc or 0x3b00. Upon completion the system call
680 will return to the address in the link register. */
681 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
682 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
683 }
684 else
685 return -1;
686 break;
687
688 default:
689 return -1;
690 }
691 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
692 }
693
694
695 /* Sequence of bytes for breakpoint instruction. */
696
697 const static unsigned char *
698 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
699 {
700 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
701 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
702 *bp_size = 4;
703 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
704 return big_breakpoint;
705 else
706 return little_breakpoint;
707 }
708
709
710 /* AIX does not support PT_STEP. Simulate it. */
711
712 int
713 rs6000_software_single_step (struct regcache *regcache)
714 {
715 CORE_ADDR dummy;
716 int breakp_sz;
717 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
718 int ii, insn;
719 CORE_ADDR loc;
720 CORE_ADDR breaks[2];
721 int opcode;
722
723 loc = read_pc ();
724
725 insn = read_memory_integer (loc, 4);
726
727 breaks[0] = loc + breakp_sz;
728 opcode = insn >> 26;
729 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
730
731 /* Don't put two breakpoints on the same address. */
732 if (breaks[1] == breaks[0])
733 breaks[1] = -1;
734
735 for (ii = 0; ii < 2; ++ii)
736 {
737 /* ignore invalid breakpoint. */
738 if (breaks[ii] == -1)
739 continue;
740 insert_single_step_breakpoint (breaks[ii]);
741 }
742
743 errno = 0; /* FIXME, don't ignore errors! */
744 /* What errors? {read,write}_memory call error(). */
745 return 1;
746 }
747
748
749 /* return pc value after skipping a function prologue and also return
750 information about a function frame.
751
752 in struct rs6000_framedata fdata:
753 - frameless is TRUE, if function does not have a frame.
754 - nosavedpc is TRUE, if function does not save %pc value in its frame.
755 - offset is the initial size of this stack frame --- the amount by
756 which we decrement the sp to allocate the frame.
757 - saved_gpr is the number of the first saved gpr.
758 - saved_fpr is the number of the first saved fpr.
759 - saved_vr is the number of the first saved vr.
760 - saved_ev is the number of the first saved ev.
761 - alloca_reg is the number of the register used for alloca() handling.
762 Otherwise -1.
763 - gpr_offset is the offset of the first saved gpr from the previous frame.
764 - fpr_offset is the offset of the first saved fpr from the previous frame.
765 - vr_offset is the offset of the first saved vr from the previous frame.
766 - ev_offset is the offset of the first saved ev from the previous frame.
767 - lr_offset is the offset of the saved lr
768 - cr_offset is the offset of the saved cr
769 - vrsave_offset is the offset of the saved vrsave register
770 */
771
772 #define SIGNED_SHORT(x) \
773 ((sizeof (short) == 2) \
774 ? ((int)(short)(x)) \
775 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
776
777 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
778
779 /* Limit the number of skipped non-prologue instructions, as the examining
780 of the prologue is expensive. */
781 static int max_skip_non_prologue_insns = 10;
782
783 /* Return nonzero if the given instruction OP can be part of the prologue
784 of a function and saves a parameter on the stack. FRAMEP should be
785 set if one of the previous instructions in the function has set the
786 Frame Pointer. */
787
788 static int
789 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
790 {
791 /* Move parameters from argument registers to temporary register. */
792 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
793 {
794 /* Rx must be scratch register r0. */
795 const int rx_regno = (op >> 16) & 31;
796 /* Ry: Only r3 - r10 are used for parameter passing. */
797 const int ry_regno = GET_SRC_REG (op);
798
799 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
800 {
801 *r0_contains_arg = 1;
802 return 1;
803 }
804 else
805 return 0;
806 }
807
808 /* Save a General Purpose Register on stack. */
809
810 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
811 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
812 {
813 /* Rx: Only r3 - r10 are used for parameter passing. */
814 const int rx_regno = GET_SRC_REG (op);
815
816 return (rx_regno >= 3 && rx_regno <= 10);
817 }
818
819 /* Save a General Purpose Register on stack via the Frame Pointer. */
820
821 if (framep &&
822 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
823 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
824 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
825 {
826 /* Rx: Usually, only r3 - r10 are used for parameter passing.
827 However, the compiler sometimes uses r0 to hold an argument. */
828 const int rx_regno = GET_SRC_REG (op);
829
830 return ((rx_regno >= 3 && rx_regno <= 10)
831 || (rx_regno == 0 && *r0_contains_arg));
832 }
833
834 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
835 {
836 /* Only f2 - f8 are used for parameter passing. */
837 const int src_regno = GET_SRC_REG (op);
838
839 return (src_regno >= 2 && src_regno <= 8);
840 }
841
842 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
843 {
844 /* Only f2 - f8 are used for parameter passing. */
845 const int src_regno = GET_SRC_REG (op);
846
847 return (src_regno >= 2 && src_regno <= 8);
848 }
849
850 /* Not an insn that saves a parameter on stack. */
851 return 0;
852 }
853
854 /* Assuming that INSN is a "bl" instruction located at PC, return
855 nonzero if the destination of the branch is a "blrl" instruction.
856
857 This sequence is sometimes found in certain function prologues.
858 It allows the function to load the LR register with a value that
859 they can use to access PIC data using PC-relative offsets. */
860
861 static int
862 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
863 {
864 const int opcode = 18;
865 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
866 int dest_insn;
867
868 if (dest == -1)
869 return 0; /* Should never happen, but just return zero to be safe. */
870
871 dest_insn = read_memory_integer (dest, 4);
872 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
873 return 1;
874
875 return 0;
876 }
877
878 static CORE_ADDR
879 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
880 {
881 CORE_ADDR orig_pc = pc;
882 CORE_ADDR last_prologue_pc = pc;
883 CORE_ADDR li_found_pc = 0;
884 gdb_byte buf[4];
885 unsigned long op;
886 long offset = 0;
887 long vr_saved_offset = 0;
888 int lr_reg = -1;
889 int cr_reg = -1;
890 int vr_reg = -1;
891 int ev_reg = -1;
892 long ev_offset = 0;
893 int vrsave_reg = -1;
894 int reg;
895 int framep = 0;
896 int minimal_toc_loaded = 0;
897 int prev_insn_was_prologue_insn = 1;
898 int num_skip_non_prologue_insns = 0;
899 int r0_contains_arg = 0;
900 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
901 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
902
903 memset (fdata, 0, sizeof (struct rs6000_framedata));
904 fdata->saved_gpr = -1;
905 fdata->saved_fpr = -1;
906 fdata->saved_vr = -1;
907 fdata->saved_ev = -1;
908 fdata->alloca_reg = -1;
909 fdata->frameless = 1;
910 fdata->nosavedpc = 1;
911
912 for (;; pc += 4)
913 {
914 /* Sometimes it isn't clear if an instruction is a prologue
915 instruction or not. When we encounter one of these ambiguous
916 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
917 Otherwise, we'll assume that it really is a prologue instruction. */
918 if (prev_insn_was_prologue_insn)
919 last_prologue_pc = pc;
920
921 /* Stop scanning if we've hit the limit. */
922 if (pc >= lim_pc)
923 break;
924
925 prev_insn_was_prologue_insn = 1;
926
927 /* Fetch the instruction and convert it to an integer. */
928 if (target_read_memory (pc, buf, 4))
929 break;
930 op = extract_unsigned_integer (buf, 4);
931
932 if ((op & 0xfc1fffff) == 0x7c0802a6)
933 { /* mflr Rx */
934 /* Since shared library / PIC code, which needs to get its
935 address at runtime, can appear to save more than one link
936 register vis:
937
938 *INDENT-OFF*
939 stwu r1,-304(r1)
940 mflr r3
941 bl 0xff570d0 (blrl)
942 stw r30,296(r1)
943 mflr r30
944 stw r31,300(r1)
945 stw r3,308(r1);
946 ...
947 *INDENT-ON*
948
949 remember just the first one, but skip over additional
950 ones. */
951 if (lr_reg == -1)
952 lr_reg = (op & 0x03e00000);
953 if (lr_reg == 0)
954 r0_contains_arg = 0;
955 continue;
956 }
957 else if ((op & 0xfc1fffff) == 0x7c000026)
958 { /* mfcr Rx */
959 cr_reg = (op & 0x03e00000);
960 if (cr_reg == 0)
961 r0_contains_arg = 0;
962 continue;
963
964 }
965 else if ((op & 0xfc1f0000) == 0xd8010000)
966 { /* stfd Rx,NUM(r1) */
967 reg = GET_SRC_REG (op);
968 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
969 {
970 fdata->saved_fpr = reg;
971 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
972 }
973 continue;
974
975 }
976 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
977 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
978 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
979 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
980 {
981
982 reg = GET_SRC_REG (op);
983 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
984 {
985 fdata->saved_gpr = reg;
986 if ((op & 0xfc1f0003) == 0xf8010000)
987 op &= ~3UL;
988 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
989 }
990 continue;
991
992 }
993 else if ((op & 0xffff0000) == 0x60000000)
994 {
995 /* nop */
996 /* Allow nops in the prologue, but do not consider them to
997 be part of the prologue unless followed by other prologue
998 instructions. */
999 prev_insn_was_prologue_insn = 0;
1000 continue;
1001
1002 }
1003 else if ((op & 0xffff0000) == 0x3c000000)
1004 { /* addis 0,0,NUM, used
1005 for >= 32k frames */
1006 fdata->offset = (op & 0x0000ffff) << 16;
1007 fdata->frameless = 0;
1008 r0_contains_arg = 0;
1009 continue;
1010
1011 }
1012 else if ((op & 0xffff0000) == 0x60000000)
1013 { /* ori 0,0,NUM, 2nd ha
1014 lf of >= 32k frames */
1015 fdata->offset |= (op & 0x0000ffff);
1016 fdata->frameless = 0;
1017 r0_contains_arg = 0;
1018 continue;
1019
1020 }
1021 else if (lr_reg >= 0 &&
1022 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1023 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1024 /* stw Rx, NUM(r1) */
1025 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1026 /* stwu Rx, NUM(r1) */
1027 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1028 { /* where Rx == lr */
1029 fdata->lr_offset = offset;
1030 fdata->nosavedpc = 0;
1031 /* Invalidate lr_reg, but don't set it to -1.
1032 That would mean that it had never been set. */
1033 lr_reg = -2;
1034 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1035 (op & 0xfc000000) == 0x90000000) /* stw */
1036 {
1037 /* Does not update r1, so add displacement to lr_offset. */
1038 fdata->lr_offset += SIGNED_SHORT (op);
1039 }
1040 continue;
1041
1042 }
1043 else if (cr_reg >= 0 &&
1044 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1045 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1046 /* stw Rx, NUM(r1) */
1047 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1048 /* stwu Rx, NUM(r1) */
1049 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1050 { /* where Rx == cr */
1051 fdata->cr_offset = offset;
1052 /* Invalidate cr_reg, but don't set it to -1.
1053 That would mean that it had never been set. */
1054 cr_reg = -2;
1055 if ((op & 0xfc000003) == 0xf8000000 ||
1056 (op & 0xfc000000) == 0x90000000)
1057 {
1058 /* Does not update r1, so add displacement to cr_offset. */
1059 fdata->cr_offset += SIGNED_SHORT (op);
1060 }
1061 continue;
1062
1063 }
1064 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1065 {
1066 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1067 prediction bits. If the LR has already been saved, we can
1068 skip it. */
1069 continue;
1070 }
1071 else if (op == 0x48000005)
1072 { /* bl .+4 used in
1073 -mrelocatable */
1074 continue;
1075
1076 }
1077 else if (op == 0x48000004)
1078 { /* b .+4 (xlc) */
1079 break;
1080
1081 }
1082 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1083 in V.4 -mminimal-toc */
1084 (op & 0xffff0000) == 0x3bde0000)
1085 { /* addi 30,30,foo@l */
1086 continue;
1087
1088 }
1089 else if ((op & 0xfc000001) == 0x48000001)
1090 { /* bl foo,
1091 to save fprs??? */
1092
1093 fdata->frameless = 0;
1094
1095 /* If the return address has already been saved, we can skip
1096 calls to blrl (for PIC). */
1097 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1098 continue;
1099
1100 /* Don't skip over the subroutine call if it is not within
1101 the first three instructions of the prologue and either
1102 we have no line table information or the line info tells
1103 us that the subroutine call is not part of the line
1104 associated with the prologue. */
1105 if ((pc - orig_pc) > 8)
1106 {
1107 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1108 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1109
1110 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1111 break;
1112 }
1113
1114 op = read_memory_integer (pc + 4, 4);
1115
1116 /* At this point, make sure this is not a trampoline
1117 function (a function that simply calls another functions,
1118 and nothing else). If the next is not a nop, this branch
1119 was part of the function prologue. */
1120
1121 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1122 break; /* don't skip over
1123 this branch */
1124 continue;
1125
1126 }
1127 /* update stack pointer */
1128 else if ((op & 0xfc1f0000) == 0x94010000)
1129 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1130 fdata->frameless = 0;
1131 fdata->offset = SIGNED_SHORT (op);
1132 offset = fdata->offset;
1133 continue;
1134 }
1135 else if ((op & 0xfc1f016a) == 0x7c01016e)
1136 { /* stwux rX,r1,rY */
1137 /* no way to figure out what r1 is going to be */
1138 fdata->frameless = 0;
1139 offset = fdata->offset;
1140 continue;
1141 }
1142 else if ((op & 0xfc1f0003) == 0xf8010001)
1143 { /* stdu rX,NUM(r1) */
1144 fdata->frameless = 0;
1145 fdata->offset = SIGNED_SHORT (op & ~3UL);
1146 offset = fdata->offset;
1147 continue;
1148 }
1149 else if ((op & 0xfc1f016a) == 0x7c01016a)
1150 { /* stdux rX,r1,rY */
1151 /* no way to figure out what r1 is going to be */
1152 fdata->frameless = 0;
1153 offset = fdata->offset;
1154 continue;
1155 }
1156 else if ((op & 0xffff0000) == 0x38210000)
1157 { /* addi r1,r1,SIMM */
1158 fdata->frameless = 0;
1159 fdata->offset += SIGNED_SHORT (op);
1160 offset = fdata->offset;
1161 continue;
1162 }
1163 /* Load up minimal toc pointer. Do not treat an epilogue restore
1164 of r31 as a minimal TOC load. */
1165 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1166 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1167 && !framep
1168 && !minimal_toc_loaded)
1169 {
1170 minimal_toc_loaded = 1;
1171 continue;
1172
1173 /* move parameters from argument registers to local variable
1174 registers */
1175 }
1176 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1177 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1178 (((op >> 21) & 31) <= 10) &&
1179 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1180 {
1181 continue;
1182
1183 /* store parameters in stack */
1184 }
1185 /* Move parameters from argument registers to temporary register. */
1186 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1187 {
1188 continue;
1189
1190 /* Set up frame pointer */
1191 }
1192 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1193 || op == 0x7c3f0b78)
1194 { /* mr r31, r1 */
1195 fdata->frameless = 0;
1196 framep = 1;
1197 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1198 continue;
1199
1200 /* Another way to set up the frame pointer. */
1201 }
1202 else if ((op & 0xfc1fffff) == 0x38010000)
1203 { /* addi rX, r1, 0x0 */
1204 fdata->frameless = 0;
1205 framep = 1;
1206 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1207 + ((op & ~0x38010000) >> 21));
1208 continue;
1209 }
1210 /* AltiVec related instructions. */
1211 /* Store the vrsave register (spr 256) in another register for
1212 later manipulation, or load a register into the vrsave
1213 register. 2 instructions are used: mfvrsave and
1214 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1215 and mtspr SPR256, Rn. */
1216 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1217 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1218 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1219 {
1220 vrsave_reg = GET_SRC_REG (op);
1221 continue;
1222 }
1223 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1224 {
1225 continue;
1226 }
1227 /* Store the register where vrsave was saved to onto the stack:
1228 rS is the register where vrsave was stored in a previous
1229 instruction. */
1230 /* 100100 sssss 00001 dddddddd dddddddd */
1231 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1232 {
1233 if (vrsave_reg == GET_SRC_REG (op))
1234 {
1235 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1236 vrsave_reg = -1;
1237 }
1238 continue;
1239 }
1240 /* Compute the new value of vrsave, by modifying the register
1241 where vrsave was saved to. */
1242 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1243 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1244 {
1245 continue;
1246 }
1247 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1248 in a pair of insns to save the vector registers on the
1249 stack. */
1250 /* 001110 00000 00000 iiii iiii iiii iiii */
1251 /* 001110 01110 00000 iiii iiii iiii iiii */
1252 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1253 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1254 {
1255 if ((op & 0xffff0000) == 0x38000000)
1256 r0_contains_arg = 0;
1257 li_found_pc = pc;
1258 vr_saved_offset = SIGNED_SHORT (op);
1259
1260 /* This insn by itself is not part of the prologue, unless
1261 if part of the pair of insns mentioned above. So do not
1262 record this insn as part of the prologue yet. */
1263 prev_insn_was_prologue_insn = 0;
1264 }
1265 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1266 /* 011111 sssss 11111 00000 00111001110 */
1267 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1268 {
1269 if (pc == (li_found_pc + 4))
1270 {
1271 vr_reg = GET_SRC_REG (op);
1272 /* If this is the first vector reg to be saved, or if
1273 it has a lower number than others previously seen,
1274 reupdate the frame info. */
1275 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1276 {
1277 fdata->saved_vr = vr_reg;
1278 fdata->vr_offset = vr_saved_offset + offset;
1279 }
1280 vr_saved_offset = -1;
1281 vr_reg = -1;
1282 li_found_pc = 0;
1283 }
1284 }
1285 /* End AltiVec related instructions. */
1286
1287 /* Start BookE related instructions. */
1288 /* Store gen register S at (r31+uimm).
1289 Any register less than r13 is volatile, so we don't care. */
1290 /* 000100 sssss 11111 iiiii 01100100001 */
1291 else if (arch_info->mach == bfd_mach_ppc_e500
1292 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1293 {
1294 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1295 {
1296 unsigned int imm;
1297 ev_reg = GET_SRC_REG (op);
1298 imm = (op >> 11) & 0x1f;
1299 ev_offset = imm * 8;
1300 /* If this is the first vector reg to be saved, or if
1301 it has a lower number than others previously seen,
1302 reupdate the frame info. */
1303 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1304 {
1305 fdata->saved_ev = ev_reg;
1306 fdata->ev_offset = ev_offset + offset;
1307 }
1308 }
1309 continue;
1310 }
1311 /* Store gen register rS at (r1+rB). */
1312 /* 000100 sssss 00001 bbbbb 01100100000 */
1313 else if (arch_info->mach == bfd_mach_ppc_e500
1314 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1315 {
1316 if (pc == (li_found_pc + 4))
1317 {
1318 ev_reg = GET_SRC_REG (op);
1319 /* If this is the first vector reg to be saved, or if
1320 it has a lower number than others previously seen,
1321 reupdate the frame info. */
1322 /* We know the contents of rB from the previous instruction. */
1323 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1324 {
1325 fdata->saved_ev = ev_reg;
1326 fdata->ev_offset = vr_saved_offset + offset;
1327 }
1328 vr_saved_offset = -1;
1329 ev_reg = -1;
1330 li_found_pc = 0;
1331 }
1332 continue;
1333 }
1334 /* Store gen register r31 at (rA+uimm). */
1335 /* 000100 11111 aaaaa iiiii 01100100001 */
1336 else if (arch_info->mach == bfd_mach_ppc_e500
1337 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1338 {
1339 /* Wwe know that the source register is 31 already, but
1340 it can't hurt to compute it. */
1341 ev_reg = GET_SRC_REG (op);
1342 ev_offset = ((op >> 11) & 0x1f) * 8;
1343 /* If this is the first vector reg to be saved, or if
1344 it has a lower number than others previously seen,
1345 reupdate the frame info. */
1346 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1347 {
1348 fdata->saved_ev = ev_reg;
1349 fdata->ev_offset = ev_offset + offset;
1350 }
1351
1352 continue;
1353 }
1354 /* Store gen register S at (r31+r0).
1355 Store param on stack when offset from SP bigger than 4 bytes. */
1356 /* 000100 sssss 11111 00000 01100100000 */
1357 else if (arch_info->mach == bfd_mach_ppc_e500
1358 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1359 {
1360 if (pc == (li_found_pc + 4))
1361 {
1362 if ((op & 0x03e00000) >= 0x01a00000)
1363 {
1364 ev_reg = GET_SRC_REG (op);
1365 /* If this is the first vector reg to be saved, or if
1366 it has a lower number than others previously seen,
1367 reupdate the frame info. */
1368 /* We know the contents of r0 from the previous
1369 instruction. */
1370 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1371 {
1372 fdata->saved_ev = ev_reg;
1373 fdata->ev_offset = vr_saved_offset + offset;
1374 }
1375 ev_reg = -1;
1376 }
1377 vr_saved_offset = -1;
1378 li_found_pc = 0;
1379 continue;
1380 }
1381 }
1382 /* End BookE related instructions. */
1383
1384 else
1385 {
1386 /* Not a recognized prologue instruction.
1387 Handle optimizer code motions into the prologue by continuing
1388 the search if we have no valid frame yet or if the return
1389 address is not yet saved in the frame. */
1390 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1391 break;
1392
1393 if (op == 0x4e800020 /* blr */
1394 || op == 0x4e800420) /* bctr */
1395 /* Do not scan past epilogue in frameless functions or
1396 trampolines. */
1397 break;
1398 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1399 /* Never skip branches. */
1400 break;
1401
1402 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1403 /* Do not scan too many insns, scanning insns is expensive with
1404 remote targets. */
1405 break;
1406
1407 /* Continue scanning. */
1408 prev_insn_was_prologue_insn = 0;
1409 continue;
1410 }
1411 }
1412
1413 #if 0
1414 /* I have problems with skipping over __main() that I need to address
1415 * sometime. Previously, I used to use misc_function_vector which
1416 * didn't work as well as I wanted to be. -MGO */
1417
1418 /* If the first thing after skipping a prolog is a branch to a function,
1419 this might be a call to an initializer in main(), introduced by gcc2.
1420 We'd like to skip over it as well. Fortunately, xlc does some extra
1421 work before calling a function right after a prologue, thus we can
1422 single out such gcc2 behaviour. */
1423
1424
1425 if ((op & 0xfc000001) == 0x48000001)
1426 { /* bl foo, an initializer function? */
1427 op = read_memory_integer (pc + 4, 4);
1428
1429 if (op == 0x4def7b82)
1430 { /* cror 0xf, 0xf, 0xf (nop) */
1431
1432 /* Check and see if we are in main. If so, skip over this
1433 initializer function as well. */
1434
1435 tmp = find_pc_misc_function (pc);
1436 if (tmp >= 0
1437 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1438 return pc + 8;
1439 }
1440 }
1441 #endif /* 0 */
1442
1443 fdata->offset = -fdata->offset;
1444 return last_prologue_pc;
1445 }
1446
1447
1448 /*************************************************************************
1449 Support for creating pushing a dummy frame into the stack, and popping
1450 frames, etc.
1451 *************************************************************************/
1452
1453
1454 /* All the ABI's require 16 byte alignment. */
1455 static CORE_ADDR
1456 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1457 {
1458 return (addr & -16);
1459 }
1460
1461 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1462 the first eight words of the argument list (that might be less than
1463 eight parameters if some parameters occupy more than one word) are
1464 passed in r3..r10 registers. float and double parameters are
1465 passed in fpr's, in addition to that. Rest of the parameters if any
1466 are passed in user stack. There might be cases in which half of the
1467 parameter is copied into registers, the other half is pushed into
1468 stack.
1469
1470 Stack must be aligned on 64-bit boundaries when synthesizing
1471 function calls.
1472
1473 If the function is returning a structure, then the return address is passed
1474 in r3, then the first 7 words of the parameters can be passed in registers,
1475 starting from r4. */
1476
1477 static CORE_ADDR
1478 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1479 struct regcache *regcache, CORE_ADDR bp_addr,
1480 int nargs, struct value **args, CORE_ADDR sp,
1481 int struct_return, CORE_ADDR struct_addr)
1482 {
1483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1484 int ii;
1485 int len = 0;
1486 int argno; /* current argument number */
1487 int argbytes; /* current argument byte */
1488 gdb_byte tmp_buffer[50];
1489 int f_argno = 0; /* current floating point argno */
1490 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1491 CORE_ADDR func_addr = find_function_addr (function, NULL);
1492
1493 struct value *arg = 0;
1494 struct type *type;
1495
1496 CORE_ADDR saved_sp;
1497
1498 /* The calling convention this function implements assumes the
1499 processor has floating-point registers. We shouldn't be using it
1500 on PPC variants that lack them. */
1501 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1502
1503 /* The first eight words of ther arguments are passed in registers.
1504 Copy them appropriately. */
1505 ii = 0;
1506
1507 /* If the function is returning a `struct', then the first word
1508 (which will be passed in r3) is used for struct return address.
1509 In that case we should advance one word and start from r4
1510 register to copy parameters. */
1511 if (struct_return)
1512 {
1513 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1514 struct_addr);
1515 ii++;
1516 }
1517
1518 /*
1519 effectively indirect call... gcc does...
1520
1521 return_val example( float, int);
1522
1523 eabi:
1524 float in fp0, int in r3
1525 offset of stack on overflow 8/16
1526 for varargs, must go by type.
1527 power open:
1528 float in r3&r4, int in r5
1529 offset of stack on overflow different
1530 both:
1531 return in r3 or f0. If no float, must study how gcc emulates floats;
1532 pay attention to arg promotion.
1533 User may have to cast\args to handle promotion correctly
1534 since gdb won't know if prototype supplied or not.
1535 */
1536
1537 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1538 {
1539 int reg_size = register_size (current_gdbarch, ii + 3);
1540
1541 arg = args[argno];
1542 type = check_typedef (value_type (arg));
1543 len = TYPE_LENGTH (type);
1544
1545 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1546 {
1547
1548 /* Floating point arguments are passed in fpr's, as well as gpr's.
1549 There are 13 fpr's reserved for passing parameters. At this point
1550 there is no way we would run out of them. */
1551
1552 gdb_assert (len <= 8);
1553
1554 regcache_cooked_write (regcache,
1555 tdep->ppc_fp0_regnum + 1 + f_argno,
1556 value_contents (arg));
1557 ++f_argno;
1558 }
1559
1560 if (len > reg_size)
1561 {
1562
1563 /* Argument takes more than one register. */
1564 while (argbytes < len)
1565 {
1566 gdb_byte word[MAX_REGISTER_SIZE];
1567 memset (word, 0, reg_size);
1568 memcpy (word,
1569 ((char *) value_contents (arg)) + argbytes,
1570 (len - argbytes) > reg_size
1571 ? reg_size : len - argbytes);
1572 regcache_cooked_write (regcache,
1573 tdep->ppc_gp0_regnum + 3 + ii,
1574 word);
1575 ++ii, argbytes += reg_size;
1576
1577 if (ii >= 8)
1578 goto ran_out_of_registers_for_arguments;
1579 }
1580 argbytes = 0;
1581 --ii;
1582 }
1583 else
1584 {
1585 /* Argument can fit in one register. No problem. */
1586 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1587 gdb_byte word[MAX_REGISTER_SIZE];
1588
1589 memset (word, 0, reg_size);
1590 memcpy (word, value_contents (arg), len);
1591 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1592 }
1593 ++argno;
1594 }
1595
1596 ran_out_of_registers_for_arguments:
1597
1598 saved_sp = read_sp ();
1599
1600 /* Location for 8 parameters are always reserved. */
1601 sp -= wordsize * 8;
1602
1603 /* Another six words for back chain, TOC register, link register, etc. */
1604 sp -= wordsize * 6;
1605
1606 /* Stack pointer must be quadword aligned. */
1607 sp &= -16;
1608
1609 /* If there are more arguments, allocate space for them in
1610 the stack, then push them starting from the ninth one. */
1611
1612 if ((argno < nargs) || argbytes)
1613 {
1614 int space = 0, jj;
1615
1616 if (argbytes)
1617 {
1618 space += ((len - argbytes + 3) & -4);
1619 jj = argno + 1;
1620 }
1621 else
1622 jj = argno;
1623
1624 for (; jj < nargs; ++jj)
1625 {
1626 struct value *val = args[jj];
1627 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1628 }
1629
1630 /* Add location required for the rest of the parameters. */
1631 space = (space + 15) & -16;
1632 sp -= space;
1633
1634 /* This is another instance we need to be concerned about
1635 securing our stack space. If we write anything underneath %sp
1636 (r1), we might conflict with the kernel who thinks he is free
1637 to use this area. So, update %sp first before doing anything
1638 else. */
1639
1640 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1641
1642 /* If the last argument copied into the registers didn't fit there
1643 completely, push the rest of it into stack. */
1644
1645 if (argbytes)
1646 {
1647 write_memory (sp + 24 + (ii * 4),
1648 value_contents (arg) + argbytes,
1649 len - argbytes);
1650 ++argno;
1651 ii += ((len - argbytes + 3) & -4) / 4;
1652 }
1653
1654 /* Push the rest of the arguments into stack. */
1655 for (; argno < nargs; ++argno)
1656 {
1657
1658 arg = args[argno];
1659 type = check_typedef (value_type (arg));
1660 len = TYPE_LENGTH (type);
1661
1662
1663 /* Float types should be passed in fpr's, as well as in the
1664 stack. */
1665 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1666 {
1667
1668 gdb_assert (len <= 8);
1669
1670 regcache_cooked_write (regcache,
1671 tdep->ppc_fp0_regnum + 1 + f_argno,
1672 value_contents (arg));
1673 ++f_argno;
1674 }
1675
1676 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1677 ii += ((len + 3) & -4) / 4;
1678 }
1679 }
1680
1681 /* Set the stack pointer. According to the ABI, the SP is meant to
1682 be set _before_ the corresponding stack space is used. On AIX,
1683 this even applies when the target has been completely stopped!
1684 Not doing this can lead to conflicts with the kernel which thinks
1685 that it still has control over this not-yet-allocated stack
1686 region. */
1687 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1688
1689 /* Set back chain properly. */
1690 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1691 write_memory (sp, tmp_buffer, wordsize);
1692
1693 /* Point the inferior function call's return address at the dummy's
1694 breakpoint. */
1695 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1696
1697 /* Set the TOC register, get the value from the objfile reader
1698 which, in turn, gets it from the VMAP table. */
1699 if (rs6000_find_toc_address_hook != NULL)
1700 {
1701 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1702 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1703 }
1704
1705 target_store_registers (regcache, -1);
1706 return sp;
1707 }
1708
1709 static enum return_value_convention
1710 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1711 struct regcache *regcache, gdb_byte *readbuf,
1712 const gdb_byte *writebuf)
1713 {
1714 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1715 gdb_byte buf[8];
1716
1717 /* The calling convention this function implements assumes the
1718 processor has floating-point registers. We shouldn't be using it
1719 on PowerPC variants that lack them. */
1720 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1721
1722 /* AltiVec extension: Functions that declare a vector data type as a
1723 return value place that return value in VR2. */
1724 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1725 && TYPE_LENGTH (valtype) == 16)
1726 {
1727 if (readbuf)
1728 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1729 if (writebuf)
1730 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1731
1732 return RETURN_VALUE_REGISTER_CONVENTION;
1733 }
1734
1735 /* If the called subprogram returns an aggregate, there exists an
1736 implicit first argument, whose value is the address of a caller-
1737 allocated buffer into which the callee is assumed to store its
1738 return value. All explicit parameters are appropriately
1739 relabeled. */
1740 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1741 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1742 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1743 return RETURN_VALUE_STRUCT_CONVENTION;
1744
1745 /* Scalar floating-point values are returned in FPR1 for float or
1746 double, and in FPR1:FPR2 for quadword precision. Fortran
1747 complex*8 and complex*16 are returned in FPR1:FPR2, and
1748 complex*32 is returned in FPR1:FPR4. */
1749 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1750 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1751 {
1752 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1753 gdb_byte regval[8];
1754
1755 /* FIXME: kettenis/2007-01-01: Add support for quadword
1756 precision and complex. */
1757
1758 if (readbuf)
1759 {
1760 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1761 convert_typed_floating (regval, regtype, readbuf, valtype);
1762 }
1763 if (writebuf)
1764 {
1765 convert_typed_floating (writebuf, valtype, regval, regtype);
1766 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1767 }
1768
1769 return RETURN_VALUE_REGISTER_CONVENTION;
1770 }
1771
1772 /* Values of the types int, long, short, pointer, and char (length
1773 is less than or equal to four bytes), as well as bit values of
1774 lengths less than or equal to 32 bits, must be returned right
1775 justified in GPR3 with signed values sign extended and unsigned
1776 values zero extended, as necessary. */
1777 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1778 {
1779 if (readbuf)
1780 {
1781 ULONGEST regval;
1782
1783 /* For reading we don't have to worry about sign extension. */
1784 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1785 &regval);
1786 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1787 }
1788 if (writebuf)
1789 {
1790 /* For writing, use unpack_long since that should handle any
1791 required sign extension. */
1792 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1793 unpack_long (valtype, writebuf));
1794 }
1795
1796 return RETURN_VALUE_REGISTER_CONVENTION;
1797 }
1798
1799 /* Eight-byte non-floating-point scalar values must be returned in
1800 GPR3:GPR4. */
1801
1802 if (TYPE_LENGTH (valtype) == 8)
1803 {
1804 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1805 gdb_assert (tdep->wordsize == 4);
1806
1807 if (readbuf)
1808 {
1809 gdb_byte regval[8];
1810
1811 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1812 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1813 regval + 4);
1814 memcpy (readbuf, regval, 8);
1815 }
1816 if (writebuf)
1817 {
1818 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1819 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1820 writebuf + 4);
1821 }
1822
1823 return RETURN_VALUE_REGISTER_CONVENTION;
1824 }
1825
1826 return RETURN_VALUE_STRUCT_CONVENTION;
1827 }
1828
1829 /* Return whether handle_inferior_event() should proceed through code
1830 starting at PC in function NAME when stepping.
1831
1832 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1833 handle memory references that are too distant to fit in instructions
1834 generated by the compiler. For example, if 'foo' in the following
1835 instruction:
1836
1837 lwz r9,foo(r2)
1838
1839 is greater than 32767, the linker might replace the lwz with a branch to
1840 somewhere in @FIX1 that does the load in 2 instructions and then branches
1841 back to where execution should continue.
1842
1843 GDB should silently step over @FIX code, just like AIX dbx does.
1844 Unfortunately, the linker uses the "b" instruction for the
1845 branches, meaning that the link register doesn't get set.
1846 Therefore, GDB's usual step_over_function () mechanism won't work.
1847
1848 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1849 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1850 @FIX code. */
1851
1852 int
1853 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1854 {
1855 return name && !strncmp (name, "@FIX", 4);
1856 }
1857
1858 /* Skip code that the user doesn't want to see when stepping:
1859
1860 1. Indirect function calls use a piece of trampoline code to do context
1861 switching, i.e. to set the new TOC table. Skip such code if we are on
1862 its first instruction (as when we have single-stepped to here).
1863
1864 2. Skip shared library trampoline code (which is different from
1865 indirect function call trampolines).
1866
1867 3. Skip bigtoc fixup code.
1868
1869 Result is desired PC to step until, or NULL if we are not in
1870 code that should be skipped. */
1871
1872 CORE_ADDR
1873 rs6000_skip_trampoline_code (CORE_ADDR pc)
1874 {
1875 unsigned int ii, op;
1876 int rel;
1877 CORE_ADDR solib_target_pc;
1878 struct minimal_symbol *msymbol;
1879
1880 static unsigned trampoline_code[] =
1881 {
1882 0x800b0000, /* l r0,0x0(r11) */
1883 0x90410014, /* st r2,0x14(r1) */
1884 0x7c0903a6, /* mtctr r0 */
1885 0x804b0004, /* l r2,0x4(r11) */
1886 0x816b0008, /* l r11,0x8(r11) */
1887 0x4e800420, /* bctr */
1888 0x4e800020, /* br */
1889 0
1890 };
1891
1892 /* Check for bigtoc fixup code. */
1893 msymbol = lookup_minimal_symbol_by_pc (pc);
1894 if (msymbol
1895 && rs6000_in_solib_return_trampoline (pc,
1896 DEPRECATED_SYMBOL_NAME (msymbol)))
1897 {
1898 /* Double-check that the third instruction from PC is relative "b". */
1899 op = read_memory_integer (pc + 8, 4);
1900 if ((op & 0xfc000003) == 0x48000000)
1901 {
1902 /* Extract bits 6-29 as a signed 24-bit relative word address and
1903 add it to the containing PC. */
1904 rel = ((int)(op << 6) >> 6);
1905 return pc + 8 + rel;
1906 }
1907 }
1908
1909 /* If pc is in a shared library trampoline, return its target. */
1910 solib_target_pc = find_solib_trampoline_target (pc);
1911 if (solib_target_pc)
1912 return solib_target_pc;
1913
1914 for (ii = 0; trampoline_code[ii]; ++ii)
1915 {
1916 op = read_memory_integer (pc + (ii * 4), 4);
1917 if (op != trampoline_code[ii])
1918 return 0;
1919 }
1920 ii = read_register (11); /* r11 holds destination addr */
1921 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1922 return pc;
1923 }
1924
1925 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1926 isn't available with that word size, return 0. */
1927
1928 static int
1929 regsize (const struct reg *reg, int wordsize)
1930 {
1931 return wordsize == 8 ? reg->sz64 : reg->sz32;
1932 }
1933
1934 /* Return the name of register number N, or null if no such register exists
1935 in the current architecture. */
1936
1937 static const char *
1938 rs6000_register_name (int n)
1939 {
1940 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1941 const struct reg *reg = tdep->regs + n;
1942
1943 if (!regsize (reg, tdep->wordsize))
1944 return NULL;
1945 return reg->name;
1946 }
1947
1948 /* Return the GDB type object for the "standard" data type
1949 of data in register N. */
1950
1951 static struct type *
1952 rs6000_register_type (struct gdbarch *gdbarch, int n)
1953 {
1954 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1955 const struct reg *reg = tdep->regs + n;
1956
1957 if (reg->fpr)
1958 return builtin_type_double;
1959 else
1960 {
1961 int size = regsize (reg, tdep->wordsize);
1962 switch (size)
1963 {
1964 case 0:
1965 return builtin_type_int0;
1966 case 4:
1967 return builtin_type_uint32;
1968 case 8:
1969 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1970 return builtin_type_vec64;
1971 else
1972 return builtin_type_uint64;
1973 break;
1974 case 16:
1975 return builtin_type_vec128;
1976 break;
1977 default:
1978 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1979 n, size);
1980 }
1981 }
1982 }
1983
1984 /* Is REGNUM a member of REGGROUP? */
1985 static int
1986 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1987 struct reggroup *group)
1988 {
1989 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1990 int float_p;
1991 int vector_p;
1992 int general_p;
1993
1994 if (REGISTER_NAME (regnum) == NULL
1995 || *REGISTER_NAME (regnum) == '\0')
1996 return 0;
1997 if (group == all_reggroup)
1998 return 1;
1999
2000 float_p = (regnum == tdep->ppc_fpscr_regnum
2001 || (regnum >= tdep->ppc_fp0_regnum
2002 && regnum < tdep->ppc_fp0_regnum + 32));
2003 if (group == float_reggroup)
2004 return float_p;
2005
2006 vector_p = ((tdep->ppc_vr0_regnum >= 0
2007 && regnum >= tdep->ppc_vr0_regnum
2008 && regnum < tdep->ppc_vr0_regnum + 32)
2009 || (tdep->ppc_ev0_regnum >= 0
2010 && regnum >= tdep->ppc_ev0_regnum
2011 && regnum < tdep->ppc_ev0_regnum + 32)
2012 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2013 || regnum == tdep->ppc_vrsave_regnum
2014 || regnum == tdep->ppc_acc_regnum
2015 || regnum == tdep->ppc_spefscr_regnum);
2016 if (group == vector_reggroup)
2017 return vector_p;
2018
2019 /* Note that PS aka MSR isn't included - it's a system register (and
2020 besides, due to GCC's CFI foobar you do not want to restore
2021 it). */
2022 general_p = ((regnum >= tdep->ppc_gp0_regnum
2023 && regnum < tdep->ppc_gp0_regnum + 32)
2024 || regnum == tdep->ppc_toc_regnum
2025 || regnum == tdep->ppc_cr_regnum
2026 || regnum == tdep->ppc_lr_regnum
2027 || regnum == tdep->ppc_ctr_regnum
2028 || regnum == tdep->ppc_xer_regnum
2029 || regnum == PC_REGNUM);
2030 if (group == general_reggroup)
2031 return general_p;
2032
2033 if (group == save_reggroup || group == restore_reggroup)
2034 return general_p || vector_p || float_p;
2035
2036 return 0;
2037 }
2038
2039 /* The register format for RS/6000 floating point registers is always
2040 double, we need a conversion if the memory format is float. */
2041
2042 static int
2043 rs6000_convert_register_p (int regnum, struct type *type)
2044 {
2045 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2046
2047 return (reg->fpr
2048 && TYPE_CODE (type) == TYPE_CODE_FLT
2049 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2050 }
2051
2052 static void
2053 rs6000_register_to_value (struct frame_info *frame,
2054 int regnum,
2055 struct type *type,
2056 gdb_byte *to)
2057 {
2058 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2059 gdb_byte from[MAX_REGISTER_SIZE];
2060
2061 gdb_assert (reg->fpr);
2062 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2063
2064 get_frame_register (frame, regnum, from);
2065 convert_typed_floating (from, builtin_type_double, to, type);
2066 }
2067
2068 static void
2069 rs6000_value_to_register (struct frame_info *frame,
2070 int regnum,
2071 struct type *type,
2072 const gdb_byte *from)
2073 {
2074 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2075 gdb_byte to[MAX_REGISTER_SIZE];
2076
2077 gdb_assert (reg->fpr);
2078 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2079
2080 convert_typed_floating (from, type, to, builtin_type_double);
2081 put_frame_register (frame, regnum, to);
2082 }
2083
2084 /* Move SPE vector register values between a 64-bit buffer and the two
2085 32-bit raw register halves in a regcache. This function handles
2086 both splitting a 64-bit value into two 32-bit halves, and joining
2087 two halves into a whole 64-bit value, depending on the function
2088 passed as the MOVE argument.
2089
2090 EV_REG must be the number of an SPE evN vector register --- a
2091 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2092 64-bit buffer.
2093
2094 Call MOVE once for each 32-bit half of that register, passing
2095 REGCACHE, the number of the raw register corresponding to that
2096 half, and the address of the appropriate half of BUFFER.
2097
2098 For example, passing 'regcache_raw_read' as the MOVE function will
2099 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2100 'regcache_raw_supply' will supply the contents of BUFFER to the
2101 appropriate pair of raw registers in REGCACHE.
2102
2103 You may need to cast away some 'const' qualifiers when passing
2104 MOVE, since this function can't tell at compile-time which of
2105 REGCACHE or BUFFER is acting as the source of the data. If C had
2106 co-variant type qualifiers, ... */
2107 static void
2108 e500_move_ev_register (void (*move) (struct regcache *regcache,
2109 int regnum, gdb_byte *buf),
2110 struct regcache *regcache, int ev_reg,
2111 gdb_byte *buffer)
2112 {
2113 struct gdbarch *arch = get_regcache_arch (regcache);
2114 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2115 int reg_index;
2116 gdb_byte *byte_buffer = buffer;
2117
2118 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2119 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2120
2121 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2122
2123 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2124 {
2125 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2126 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2127 }
2128 else
2129 {
2130 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2131 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2132 }
2133 }
2134
2135 static void
2136 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2137 int reg_nr, gdb_byte *buffer)
2138 {
2139 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2141
2142 gdb_assert (regcache_arch == gdbarch);
2143
2144 if (tdep->ppc_ev0_regnum <= reg_nr
2145 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2146 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2147 else
2148 internal_error (__FILE__, __LINE__,
2149 _("e500_pseudo_register_read: "
2150 "called on unexpected register '%s' (%d)"),
2151 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2152 }
2153
2154 static void
2155 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2156 int reg_nr, const gdb_byte *buffer)
2157 {
2158 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2159 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2160
2161 gdb_assert (regcache_arch == gdbarch);
2162
2163 if (tdep->ppc_ev0_regnum <= reg_nr
2164 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2165 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2166 regcache_raw_write,
2167 regcache, reg_nr, (gdb_byte *) buffer);
2168 else
2169 internal_error (__FILE__, __LINE__,
2170 _("e500_pseudo_register_read: "
2171 "called on unexpected register '%s' (%d)"),
2172 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2173 }
2174
2175 /* The E500 needs a custom reggroup function: it has anonymous raw
2176 registers, and default_register_reggroup_p assumes that anonymous
2177 registers are not members of any reggroup. */
2178 static int
2179 e500_register_reggroup_p (struct gdbarch *gdbarch,
2180 int regnum,
2181 struct reggroup *group)
2182 {
2183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2184
2185 /* The save and restore register groups need to include the
2186 upper-half registers, even though they're anonymous. */
2187 if ((group == save_reggroup
2188 || group == restore_reggroup)
2189 && (tdep->ppc_ev0_upper_regnum <= regnum
2190 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2191 return 1;
2192
2193 /* In all other regards, the default reggroup definition is fine. */
2194 return default_register_reggroup_p (gdbarch, regnum, group);
2195 }
2196
2197 /* Convert a DBX STABS register number to a GDB register number. */
2198 static int
2199 rs6000_stab_reg_to_regnum (int num)
2200 {
2201 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2202
2203 if (0 <= num && num <= 31)
2204 return tdep->ppc_gp0_regnum + num;
2205 else if (32 <= num && num <= 63)
2206 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2207 specifies registers the architecture doesn't have? Our
2208 callers don't check the value we return. */
2209 return tdep->ppc_fp0_regnum + (num - 32);
2210 else if (77 <= num && num <= 108)
2211 return tdep->ppc_vr0_regnum + (num - 77);
2212 else if (1200 <= num && num < 1200 + 32)
2213 return tdep->ppc_ev0_regnum + (num - 1200);
2214 else
2215 switch (num)
2216 {
2217 case 64:
2218 return tdep->ppc_mq_regnum;
2219 case 65:
2220 return tdep->ppc_lr_regnum;
2221 case 66:
2222 return tdep->ppc_ctr_regnum;
2223 case 76:
2224 return tdep->ppc_xer_regnum;
2225 case 109:
2226 return tdep->ppc_vrsave_regnum;
2227 case 110:
2228 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2229 case 111:
2230 return tdep->ppc_acc_regnum;
2231 case 112:
2232 return tdep->ppc_spefscr_regnum;
2233 default:
2234 return num;
2235 }
2236 }
2237
2238
2239 /* Convert a Dwarf 2 register number to a GDB register number. */
2240 static int
2241 rs6000_dwarf2_reg_to_regnum (int num)
2242 {
2243 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2244
2245 if (0 <= num && num <= 31)
2246 return tdep->ppc_gp0_regnum + num;
2247 else if (32 <= num && num <= 63)
2248 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2249 specifies registers the architecture doesn't have? Our
2250 callers don't check the value we return. */
2251 return tdep->ppc_fp0_regnum + (num - 32);
2252 else if (1124 <= num && num < 1124 + 32)
2253 return tdep->ppc_vr0_regnum + (num - 1124);
2254 else if (1200 <= num && num < 1200 + 32)
2255 return tdep->ppc_ev0_regnum + (num - 1200);
2256 else
2257 switch (num)
2258 {
2259 case 64:
2260 return tdep->ppc_cr_regnum;
2261 case 67:
2262 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2263 case 99:
2264 return tdep->ppc_acc_regnum;
2265 case 100:
2266 return tdep->ppc_mq_regnum;
2267 case 101:
2268 return tdep->ppc_xer_regnum;
2269 case 108:
2270 return tdep->ppc_lr_regnum;
2271 case 109:
2272 return tdep->ppc_ctr_regnum;
2273 case 356:
2274 return tdep->ppc_vrsave_regnum;
2275 case 612:
2276 return tdep->ppc_spefscr_regnum;
2277 default:
2278 return num;
2279 }
2280 }
2281
2282 /* Translate a .eh_frame register to DWARF register, or adjust a
2283 .debug_frame register. */
2284
2285 static int
2286 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2287 {
2288 /* GCC releases before 3.4 use GCC internal register numbering in
2289 .debug_frame (and .debug_info, et cetera). The numbering is
2290 different from the standard SysV numbering for everything except
2291 for GPRs and FPRs. We can not detect this problem in most cases
2292 - to get accurate debug info for variables living in lr, ctr, v0,
2293 et cetera, use a newer version of GCC. But we must detect
2294 one important case - lr is in column 65 in .debug_frame output,
2295 instead of 108.
2296
2297 GCC 3.4, and the "hammer" branch, have a related problem. They
2298 record lr register saves in .debug_frame as 108, but still record
2299 the return column as 65. We fix that up too.
2300
2301 We can do this because 65 is assigned to fpsr, and GCC never
2302 generates debug info referring to it. To add support for
2303 handwritten debug info that restores fpsr, we would need to add a
2304 producer version check to this. */
2305 if (!eh_frame_p)
2306 {
2307 if (num == 65)
2308 return 108;
2309 else
2310 return num;
2311 }
2312
2313 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2314 internal register numbering; translate that to the standard DWARF2
2315 register numbering. */
2316 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2317 return num;
2318 else if (68 <= num && num <= 75) /* cr0-cr8 */
2319 return num - 68 + 86;
2320 else if (77 <= num && num <= 108) /* vr0-vr31 */
2321 return num - 77 + 1124;
2322 else
2323 switch (num)
2324 {
2325 case 64: /* mq */
2326 return 100;
2327 case 65: /* lr */
2328 return 108;
2329 case 66: /* ctr */
2330 return 109;
2331 case 76: /* xer */
2332 return 101;
2333 case 109: /* vrsave */
2334 return 356;
2335 case 110: /* vscr */
2336 return 67;
2337 case 111: /* spe_acc */
2338 return 99;
2339 case 112: /* spefscr */
2340 return 612;
2341 default:
2342 return num;
2343 }
2344 }
2345 \f
2346 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2347
2348 Usually a function pointer's representation is simply the address
2349 of the function. On the RS/6000 however, a function pointer is
2350 represented by a pointer to an OPD entry. This OPD entry contains
2351 three words, the first word is the address of the function, the
2352 second word is the TOC pointer (r2), and the third word is the
2353 static chain value. Throughout GDB it is currently assumed that a
2354 function pointer contains the address of the function, which is not
2355 easy to fix. In addition, the conversion of a function address to
2356 a function pointer would require allocation of an OPD entry in the
2357 inferior's memory space, with all its drawbacks. To be able to
2358 call C++ virtual methods in the inferior (which are called via
2359 function pointers), find_function_addr uses this function to get the
2360 function address from a function pointer. */
2361
2362 /* Return real function address if ADDR (a function pointer) is in the data
2363 space and is therefore a special function pointer. */
2364
2365 static CORE_ADDR
2366 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2367 CORE_ADDR addr,
2368 struct target_ops *targ)
2369 {
2370 struct obj_section *s;
2371
2372 s = find_pc_section (addr);
2373 if (s && s->the_bfd_section->flags & SEC_CODE)
2374 return addr;
2375
2376 /* ADDR is in the data space, so it's a special function pointer. */
2377 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2378 }
2379 \f
2380
2381 /* Handling the various POWER/PowerPC variants. */
2382
2383
2384 /* The arrays here called registers_MUMBLE hold information about available
2385 registers.
2386
2387 For each family of PPC variants, I've tried to isolate out the
2388 common registers and put them up front, so that as long as you get
2389 the general family right, GDB will correctly identify the registers
2390 common to that family. The common register sets are:
2391
2392 For the 60x family: hid0 hid1 iabr dabr pir
2393
2394 For the 505 and 860 family: eie eid nri
2395
2396 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2397 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2398 pbu1 pbl2 pbu2
2399
2400 Most of these register groups aren't anything formal. I arrived at
2401 them by looking at the registers that occurred in more than one
2402 processor.
2403
2404 Note: kevinb/2002-04-30: Support for the fpscr register was added
2405 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2406 for Power. For PowerPC, slot 70 was unused and was already in the
2407 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2408 slot 70 was being used for "mq", so the next available slot (71)
2409 was chosen. It would have been nice to be able to make the
2410 register numbers the same across processor cores, but this wasn't
2411 possible without either 1) renumbering some registers for some
2412 processors or 2) assigning fpscr to a really high slot that's
2413 larger than any current register number. Doing (1) is bad because
2414 existing stubs would break. Doing (2) is undesirable because it
2415 would introduce a really large gap between fpscr and the rest of
2416 the registers for most processors. */
2417
2418 /* Convenience macros for populating register arrays. */
2419
2420 /* Within another macro, convert S to a string. */
2421
2422 #define STR(s) #s
2423
2424 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2425 and 64 bits on 64-bit systems. */
2426 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2427
2428 /* Return a struct reg defining register NAME that's 32 bits on all
2429 systems. */
2430 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2431
2432 /* Return a struct reg defining register NAME that's 64 bits on all
2433 systems. */
2434 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2435
2436 /* Return a struct reg defining register NAME that's 128 bits on all
2437 systems. */
2438 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2439
2440 /* Return a struct reg defining floating-point register NAME. */
2441 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2442
2443 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2444 long on all systems. */
2445 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2446
2447 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2448 systems and that doesn't exist on 64-bit systems. */
2449 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2450
2451 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2452 systems and that doesn't exist on 32-bit systems. */
2453 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2454
2455 /* Return a struct reg placeholder for a register that doesn't exist. */
2456 #define R0 { 0, 0, 0, 0, 0, -1 }
2457
2458 /* Return a struct reg defining an anonymous raw register that's 32
2459 bits on all systems. */
2460 #define A4 { 0, 4, 4, 0, 0, -1 }
2461
2462 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2463 32-bit systems and 64 bits on 64-bit systems. */
2464 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2465
2466 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2467 all systems. */
2468 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2469
2470 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2471 all systems, and whose SPR number is NUMBER. */
2472 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2473
2474 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2475 64-bit systems and that doesn't exist on 32-bit systems. */
2476 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2477
2478 /* UISA registers common across all architectures, including POWER. */
2479
2480 #define COMMON_UISA_REGS \
2481 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2482 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2483 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2484 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2485 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2486 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2487 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2488 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2489 /* 64 */ R(pc), R(ps)
2490
2491 /* UISA-level SPRs for PowerPC. */
2492 #define PPC_UISA_SPRS \
2493 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2494
2495 /* UISA-level SPRs for PowerPC without floating point support. */
2496 #define PPC_UISA_NOFP_SPRS \
2497 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2498
2499 /* Segment registers, for PowerPC. */
2500 #define PPC_SEGMENT_REGS \
2501 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2502 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2503 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2504 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2505
2506 /* OEA SPRs for PowerPC. */
2507 #define PPC_OEA_SPRS \
2508 /* 87 */ S4(pvr), \
2509 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2510 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2511 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2512 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2513 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2514 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2515 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2516 /* 116 */ S4(dec), S(dabr), S4(ear)
2517
2518 /* AltiVec registers. */
2519 #define PPC_ALTIVEC_REGS \
2520 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2521 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2522 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2523 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2524 /*151*/R4(vscr), R4(vrsave)
2525
2526
2527 /* On machines supporting the SPE APU, the general-purpose registers
2528 are 64 bits long. There are SIMD vector instructions to treat them
2529 as pairs of floats, but the rest of the instruction set treats them
2530 as 32-bit registers, and only operates on their lower halves.
2531
2532 In the GDB regcache, we treat their high and low halves as separate
2533 registers. The low halves we present as the general-purpose
2534 registers, and then we have pseudo-registers that stitch together
2535 the upper and lower halves and present them as pseudo-registers. */
2536
2537 /* SPE GPR lower halves --- raw registers. */
2538 #define PPC_SPE_GP_REGS \
2539 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2540 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2541 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2542 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2543
2544 /* SPE GPR upper halves --- anonymous raw registers. */
2545 #define PPC_SPE_UPPER_GP_REGS \
2546 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2547 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2548 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2549 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2550
2551 /* SPE GPR vector registers --- pseudo registers based on underlying
2552 gprs and the anonymous upper half raw registers. */
2553 #define PPC_EV_PSEUDO_REGS \
2554 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2555 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2556 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2557 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2558
2559 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2560 user-level SPR's. */
2561 static const struct reg registers_power[] =
2562 {
2563 COMMON_UISA_REGS,
2564 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2565 /* 71 */ R4(fpscr)
2566 };
2567
2568 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2569 view of the PowerPC. */
2570 static const struct reg registers_powerpc[] =
2571 {
2572 COMMON_UISA_REGS,
2573 PPC_UISA_SPRS,
2574 PPC_ALTIVEC_REGS
2575 };
2576
2577 /* IBM PowerPC 403.
2578
2579 Some notes about the "tcr" special-purpose register:
2580 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2581 403's programmable interval timer, fixed interval timer, and
2582 watchdog timer.
2583 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2584 watchdog timer, and nothing else.
2585
2586 Some of the fields are similar between the two, but they're not
2587 compatible with each other. Since the two variants have different
2588 registers, with different numbers, but the same name, we can't
2589 splice the register name to get the SPR number. */
2590 static const struct reg registers_403[] =
2591 {
2592 COMMON_UISA_REGS,
2593 PPC_UISA_SPRS,
2594 PPC_SEGMENT_REGS,
2595 PPC_OEA_SPRS,
2596 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2597 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2598 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2599 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2600 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2601 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2602 };
2603
2604 /* IBM PowerPC 403GC.
2605 See the comments about 'tcr' for the 403, above. */
2606 static const struct reg registers_403GC[] =
2607 {
2608 COMMON_UISA_REGS,
2609 PPC_UISA_SPRS,
2610 PPC_SEGMENT_REGS,
2611 PPC_OEA_SPRS,
2612 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2613 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2614 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2615 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2616 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2617 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2618 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2619 /* 147 */ S(tbhu), S(tblu)
2620 };
2621
2622 /* Motorola PowerPC 505. */
2623 static const struct reg registers_505[] =
2624 {
2625 COMMON_UISA_REGS,
2626 PPC_UISA_SPRS,
2627 PPC_SEGMENT_REGS,
2628 PPC_OEA_SPRS,
2629 /* 119 */ S(eie), S(eid), S(nri)
2630 };
2631
2632 /* Motorola PowerPC 860 or 850. */
2633 static const struct reg registers_860[] =
2634 {
2635 COMMON_UISA_REGS,
2636 PPC_UISA_SPRS,
2637 PPC_SEGMENT_REGS,
2638 PPC_OEA_SPRS,
2639 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2640 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2641 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2642 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2643 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2644 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2645 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2646 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2647 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2648 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2649 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2650 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2651 };
2652
2653 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2654 for reading and writing RTCU and RTCL. However, how one reads and writes a
2655 register is the stub's problem. */
2656 static const struct reg registers_601[] =
2657 {
2658 COMMON_UISA_REGS,
2659 PPC_UISA_SPRS,
2660 PPC_SEGMENT_REGS,
2661 PPC_OEA_SPRS,
2662 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2663 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2664 };
2665
2666 /* Motorola PowerPC 602.
2667 See the notes under the 403 about 'tcr'. */
2668 static const struct reg registers_602[] =
2669 {
2670 COMMON_UISA_REGS,
2671 PPC_UISA_SPRS,
2672 PPC_SEGMENT_REGS,
2673 PPC_OEA_SPRS,
2674 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2675 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2676 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2677 };
2678
2679 /* Motorola/IBM PowerPC 603 or 603e. */
2680 static const struct reg registers_603[] =
2681 {
2682 COMMON_UISA_REGS,
2683 PPC_UISA_SPRS,
2684 PPC_SEGMENT_REGS,
2685 PPC_OEA_SPRS,
2686 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2687 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2688 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2689 };
2690
2691 /* Motorola PowerPC 604 or 604e. */
2692 static const struct reg registers_604[] =
2693 {
2694 COMMON_UISA_REGS,
2695 PPC_UISA_SPRS,
2696 PPC_SEGMENT_REGS,
2697 PPC_OEA_SPRS,
2698 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2699 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2700 /* 127 */ S(sia), S(sda)
2701 };
2702
2703 /* Motorola/IBM PowerPC 750 or 740. */
2704 static const struct reg registers_750[] =
2705 {
2706 COMMON_UISA_REGS,
2707 PPC_UISA_SPRS,
2708 PPC_SEGMENT_REGS,
2709 PPC_OEA_SPRS,
2710 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2711 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2712 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2713 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2714 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2715 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2716 };
2717
2718
2719 /* Motorola PowerPC 7400. */
2720 static const struct reg registers_7400[] =
2721 {
2722 /* gpr0-gpr31, fpr0-fpr31 */
2723 COMMON_UISA_REGS,
2724 /* cr, lr, ctr, xer, fpscr */
2725 PPC_UISA_SPRS,
2726 /* sr0-sr15 */
2727 PPC_SEGMENT_REGS,
2728 PPC_OEA_SPRS,
2729 /* vr0-vr31, vrsave, vscr */
2730 PPC_ALTIVEC_REGS
2731 /* FIXME? Add more registers? */
2732 };
2733
2734 /* Motorola e500. */
2735 static const struct reg registers_e500[] =
2736 {
2737 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2738 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2739 /* 64 .. 65 */ R(pc), R(ps),
2740 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2741 /* 71 .. 72 */ R8(acc), S4(spefscr),
2742 /* NOTE: Add new registers here the end of the raw register
2743 list and just before the first pseudo register. */
2744 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2745 };
2746
2747 /* Information about a particular processor variant. */
2748
2749 struct variant
2750 {
2751 /* Name of this variant. */
2752 char *name;
2753
2754 /* English description of the variant. */
2755 char *description;
2756
2757 /* bfd_arch_info.arch corresponding to variant. */
2758 enum bfd_architecture arch;
2759
2760 /* bfd_arch_info.mach corresponding to variant. */
2761 unsigned long mach;
2762
2763 /* Number of real registers. */
2764 int nregs;
2765
2766 /* Number of pseudo registers. */
2767 int npregs;
2768
2769 /* Number of total registers (the sum of nregs and npregs). */
2770 int num_tot_regs;
2771
2772 /* Table of register names; registers[R] is the name of the register
2773 number R. */
2774 const struct reg *regs;
2775 };
2776
2777 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2778
2779 static int
2780 num_registers (const struct reg *reg_list, int num_tot_regs)
2781 {
2782 int i;
2783 int nregs = 0;
2784
2785 for (i = 0; i < num_tot_regs; i++)
2786 if (!reg_list[i].pseudo)
2787 nregs++;
2788
2789 return nregs;
2790 }
2791
2792 static int
2793 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2794 {
2795 int i;
2796 int npregs = 0;
2797
2798 for (i = 0; i < num_tot_regs; i++)
2799 if (reg_list[i].pseudo)
2800 npregs ++;
2801
2802 return npregs;
2803 }
2804
2805 /* Information in this table comes from the following web sites:
2806 IBM: http://www.chips.ibm.com:80/products/embedded/
2807 Motorola: http://www.mot.com/SPS/PowerPC/
2808
2809 I'm sure I've got some of the variant descriptions not quite right.
2810 Please report any inaccuracies you find to GDB's maintainer.
2811
2812 If you add entries to this table, please be sure to allow the new
2813 value as an argument to the --with-cpu flag, in configure.in. */
2814
2815 static struct variant variants[] =
2816 {
2817
2818 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2819 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2820 registers_powerpc},
2821 {"power", "POWER user-level", bfd_arch_rs6000,
2822 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2823 registers_power},
2824 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2825 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2826 registers_403},
2827 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2828 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2829 registers_601},
2830 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2831 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2832 registers_602},
2833 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2834 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2835 registers_603},
2836 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2837 604, -1, -1, tot_num_registers (registers_604),
2838 registers_604},
2839 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2840 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2841 registers_403GC},
2842 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2843 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2844 registers_505},
2845 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2846 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2847 registers_860},
2848 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2849 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2850 registers_750},
2851 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2852 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2853 registers_7400},
2854 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2855 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2856 registers_e500},
2857
2858 /* 64-bit */
2859 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2860 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2861 registers_powerpc},
2862 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2863 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2864 registers_powerpc},
2865 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2866 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2867 registers_powerpc},
2868 {"a35", "PowerPC A35", bfd_arch_powerpc,
2869 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2870 registers_powerpc},
2871 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2872 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2873 registers_powerpc},
2874 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2875 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2876 registers_powerpc},
2877
2878 /* FIXME: I haven't checked the register sets of the following. */
2879 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2880 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2881 registers_power},
2882 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2883 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2884 registers_power},
2885 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2886 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2887 registers_power},
2888
2889 {0, 0, 0, 0, 0, 0, 0, 0}
2890 };
2891
2892 /* Initialize the number of registers and pseudo registers in each variant. */
2893
2894 static void
2895 init_variants (void)
2896 {
2897 struct variant *v;
2898
2899 for (v = variants; v->name; v++)
2900 {
2901 if (v->nregs == -1)
2902 v->nregs = num_registers (v->regs, v->num_tot_regs);
2903 if (v->npregs == -1)
2904 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2905 }
2906 }
2907
2908 /* Return the variant corresponding to architecture ARCH and machine number
2909 MACH. If no such variant exists, return null. */
2910
2911 static const struct variant *
2912 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2913 {
2914 const struct variant *v;
2915
2916 for (v = variants; v->name; v++)
2917 if (arch == v->arch && mach == v->mach)
2918 return v;
2919
2920 return NULL;
2921 }
2922
2923 static int
2924 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2925 {
2926 if (!info->disassembler_options)
2927 info->disassembler_options = "any";
2928
2929 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2930 return print_insn_big_powerpc (memaddr, info);
2931 else
2932 return print_insn_little_powerpc (memaddr, info);
2933 }
2934 \f
2935 static CORE_ADDR
2936 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2937 {
2938 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2939 }
2940
2941 static struct frame_id
2942 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2943 {
2944 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2945 SP_REGNUM),
2946 frame_pc_unwind (next_frame));
2947 }
2948
2949 struct rs6000_frame_cache
2950 {
2951 CORE_ADDR base;
2952 CORE_ADDR initial_sp;
2953 struct trad_frame_saved_reg *saved_regs;
2954 };
2955
2956 static struct rs6000_frame_cache *
2957 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2958 {
2959 struct rs6000_frame_cache *cache;
2960 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2962 struct rs6000_framedata fdata;
2963 int wordsize = tdep->wordsize;
2964 CORE_ADDR func, pc;
2965
2966 if ((*this_cache) != NULL)
2967 return (*this_cache);
2968 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2969 (*this_cache) = cache;
2970 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2971
2972 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2973 pc = frame_pc_unwind (next_frame);
2974 skip_prologue (func, pc, &fdata);
2975
2976 /* Figure out the parent's stack pointer. */
2977
2978 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2979 address of the current frame. Things might be easier if the
2980 ->frame pointed to the outer-most address of the frame. In
2981 the mean time, the address of the prev frame is used as the
2982 base address of this frame. */
2983 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2984
2985 /* If the function appears to be frameless, check a couple of likely
2986 indicators that we have simply failed to find the frame setup.
2987 Two common cases of this are missing symbols (i.e.
2988 frame_func_unwind returns the wrong address or 0), and assembly
2989 stubs which have a fast exit path but set up a frame on the slow
2990 path.
2991
2992 If the LR appears to return to this function, then presume that
2993 we have an ABI compliant frame that we failed to find. */
2994 if (fdata.frameless && fdata.lr_offset == 0)
2995 {
2996 CORE_ADDR saved_lr;
2997 int make_frame = 0;
2998
2999 saved_lr = frame_unwind_register_unsigned (next_frame,
3000 tdep->ppc_lr_regnum);
3001 if (func == 0 && saved_lr == pc)
3002 make_frame = 1;
3003 else if (func != 0)
3004 {
3005 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3006 if (func == saved_func)
3007 make_frame = 1;
3008 }
3009
3010 if (make_frame)
3011 {
3012 fdata.frameless = 0;
3013 fdata.lr_offset = tdep->lr_frame_offset;
3014 }
3015 }
3016
3017 if (!fdata.frameless)
3018 /* Frameless really means stackless. */
3019 cache->base = read_memory_addr (cache->base, wordsize);
3020
3021 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3022
3023 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3024 All fpr's from saved_fpr to fp31 are saved. */
3025
3026 if (fdata.saved_fpr >= 0)
3027 {
3028 int i;
3029 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3030
3031 /* If skip_prologue says floating-point registers were saved,
3032 but the current architecture has no floating-point registers,
3033 then that's strange. But we have no indices to even record
3034 the addresses under, so we just ignore it. */
3035 if (ppc_floating_point_unit_p (gdbarch))
3036 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3037 {
3038 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3039 fpr_addr += 8;
3040 }
3041 }
3042
3043 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3044 All gpr's from saved_gpr to gpr31 are saved. */
3045
3046 if (fdata.saved_gpr >= 0)
3047 {
3048 int i;
3049 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3050 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3051 {
3052 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3053 gpr_addr += wordsize;
3054 }
3055 }
3056
3057 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3058 All vr's from saved_vr to vr31 are saved. */
3059 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3060 {
3061 if (fdata.saved_vr >= 0)
3062 {
3063 int i;
3064 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3065 for (i = fdata.saved_vr; i < 32; i++)
3066 {
3067 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3068 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3069 }
3070 }
3071 }
3072
3073 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3074 All vr's from saved_ev to ev31 are saved. ????? */
3075 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3076 {
3077 if (fdata.saved_ev >= 0)
3078 {
3079 int i;
3080 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3081 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3082 {
3083 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3084 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3085 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3086 }
3087 }
3088 }
3089
3090 /* If != 0, fdata.cr_offset is the offset from the frame that
3091 holds the CR. */
3092 if (fdata.cr_offset != 0)
3093 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3094
3095 /* If != 0, fdata.lr_offset is the offset from the frame that
3096 holds the LR. */
3097 if (fdata.lr_offset != 0)
3098 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3099 /* The PC is found in the link register. */
3100 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3101
3102 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3103 holds the VRSAVE. */
3104 if (fdata.vrsave_offset != 0)
3105 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3106
3107 if (fdata.alloca_reg < 0)
3108 /* If no alloca register used, then fi->frame is the value of the
3109 %sp for this frame, and it is good enough. */
3110 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3111 else
3112 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3113 fdata.alloca_reg);
3114
3115 return cache;
3116 }
3117
3118 static void
3119 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3120 struct frame_id *this_id)
3121 {
3122 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3123 this_cache);
3124 (*this_id) = frame_id_build (info->base,
3125 frame_func_unwind (next_frame, NORMAL_FRAME));
3126 }
3127
3128 static void
3129 rs6000_frame_prev_register (struct frame_info *next_frame,
3130 void **this_cache,
3131 int regnum, int *optimizedp,
3132 enum lval_type *lvalp, CORE_ADDR *addrp,
3133 int *realnump, gdb_byte *valuep)
3134 {
3135 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3136 this_cache);
3137 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3138 optimizedp, lvalp, addrp, realnump, valuep);
3139 }
3140
3141 static const struct frame_unwind rs6000_frame_unwind =
3142 {
3143 NORMAL_FRAME,
3144 rs6000_frame_this_id,
3145 rs6000_frame_prev_register
3146 };
3147
3148 static const struct frame_unwind *
3149 rs6000_frame_sniffer (struct frame_info *next_frame)
3150 {
3151 return &rs6000_frame_unwind;
3152 }
3153
3154 \f
3155
3156 static CORE_ADDR
3157 rs6000_frame_base_address (struct frame_info *next_frame,
3158 void **this_cache)
3159 {
3160 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3161 this_cache);
3162 return info->initial_sp;
3163 }
3164
3165 static const struct frame_base rs6000_frame_base = {
3166 &rs6000_frame_unwind,
3167 rs6000_frame_base_address,
3168 rs6000_frame_base_address,
3169 rs6000_frame_base_address
3170 };
3171
3172 static const struct frame_base *
3173 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3174 {
3175 return &rs6000_frame_base;
3176 }
3177
3178 /* Initialize the current architecture based on INFO. If possible, re-use an
3179 architecture from ARCHES, which is a list of architectures already created
3180 during this debugging session.
3181
3182 Called e.g. at program startup, when reading a core file, and when reading
3183 a binary file. */
3184
3185 static struct gdbarch *
3186 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3187 {
3188 struct gdbarch *gdbarch;
3189 struct gdbarch_tdep *tdep;
3190 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3191 struct reg *regs;
3192 const struct variant *v;
3193 enum bfd_architecture arch;
3194 unsigned long mach;
3195 bfd abfd;
3196 int sysv_abi;
3197 asection *sect;
3198
3199 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3200 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3201
3202 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3203 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3204
3205 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3206
3207 /* Check word size. If INFO is from a binary file, infer it from
3208 that, else choose a likely default. */
3209 if (from_xcoff_exec)
3210 {
3211 if (bfd_xcoff_is_xcoff64 (info.abfd))
3212 wordsize = 8;
3213 else
3214 wordsize = 4;
3215 }
3216 else if (from_elf_exec)
3217 {
3218 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3219 wordsize = 8;
3220 else
3221 wordsize = 4;
3222 }
3223 else
3224 {
3225 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3226 wordsize = info.bfd_arch_info->bits_per_word /
3227 info.bfd_arch_info->bits_per_byte;
3228 else
3229 wordsize = 4;
3230 }
3231
3232 /* Find a candidate among extant architectures. */
3233 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3234 arches != NULL;
3235 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3236 {
3237 /* Word size in the various PowerPC bfd_arch_info structs isn't
3238 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3239 separate word size check. */
3240 tdep = gdbarch_tdep (arches->gdbarch);
3241 if (tdep && tdep->wordsize == wordsize)
3242 return arches->gdbarch;
3243 }
3244
3245 /* None found, create a new architecture from INFO, whose bfd_arch_info
3246 validity depends on the source:
3247 - executable useless
3248 - rs6000_host_arch() good
3249 - core file good
3250 - "set arch" trust blindly
3251 - GDB startup useless but harmless */
3252
3253 if (!from_xcoff_exec)
3254 {
3255 arch = info.bfd_arch_info->arch;
3256 mach = info.bfd_arch_info->mach;
3257 }
3258 else
3259 {
3260 arch = bfd_arch_powerpc;
3261 bfd_default_set_arch_mach (&abfd, arch, 0);
3262 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3263 mach = info.bfd_arch_info->mach;
3264 }
3265 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3266 tdep->wordsize = wordsize;
3267
3268 /* For e500 executables, the apuinfo section is of help here. Such
3269 section contains the identifier and revision number of each
3270 Application-specific Processing Unit that is present on the
3271 chip. The content of the section is determined by the assembler
3272 which looks at each instruction and determines which unit (and
3273 which version of it) can execute it. In our case we just look for
3274 the existance of the section. */
3275
3276 if (info.abfd)
3277 {
3278 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3279 if (sect)
3280 {
3281 arch = info.bfd_arch_info->arch;
3282 mach = bfd_mach_ppc_e500;
3283 bfd_default_set_arch_mach (&abfd, arch, mach);
3284 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3285 }
3286 }
3287
3288 gdbarch = gdbarch_alloc (&info, tdep);
3289
3290 /* Initialize the number of real and pseudo registers in each variant. */
3291 init_variants ();
3292
3293 /* Choose variant. */
3294 v = find_variant_by_arch (arch, mach);
3295 if (!v)
3296 return NULL;
3297
3298 tdep->regs = v->regs;
3299
3300 tdep->ppc_gp0_regnum = 0;
3301 tdep->ppc_toc_regnum = 2;
3302 tdep->ppc_ps_regnum = 65;
3303 tdep->ppc_cr_regnum = 66;
3304 tdep->ppc_lr_regnum = 67;
3305 tdep->ppc_ctr_regnum = 68;
3306 tdep->ppc_xer_regnum = 69;
3307 if (v->mach == bfd_mach_ppc_601)
3308 tdep->ppc_mq_regnum = 124;
3309 else if (arch == bfd_arch_rs6000)
3310 tdep->ppc_mq_regnum = 70;
3311 else
3312 tdep->ppc_mq_regnum = -1;
3313 tdep->ppc_fp0_regnum = 32;
3314 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3315 tdep->ppc_sr0_regnum = 71;
3316 tdep->ppc_vr0_regnum = -1;
3317 tdep->ppc_vrsave_regnum = -1;
3318 tdep->ppc_ev0_upper_regnum = -1;
3319 tdep->ppc_ev0_regnum = -1;
3320 tdep->ppc_ev31_regnum = -1;
3321 tdep->ppc_acc_regnum = -1;
3322 tdep->ppc_spefscr_regnum = -1;
3323
3324 set_gdbarch_pc_regnum (gdbarch, 64);
3325 set_gdbarch_sp_regnum (gdbarch, 1);
3326 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3327 set_gdbarch_fp0_regnum (gdbarch, 32);
3328 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3329 if (sysv_abi && wordsize == 8)
3330 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3331 else if (sysv_abi && wordsize == 4)
3332 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3333 else
3334 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3335
3336 /* Set lr_frame_offset. */
3337 if (wordsize == 8)
3338 tdep->lr_frame_offset = 16;
3339 else if (sysv_abi)
3340 tdep->lr_frame_offset = 4;
3341 else
3342 tdep->lr_frame_offset = 8;
3343
3344 if (v->arch == bfd_arch_rs6000)
3345 tdep->ppc_sr0_regnum = -1;
3346 else if (v->arch == bfd_arch_powerpc)
3347 switch (v->mach)
3348 {
3349 case bfd_mach_ppc:
3350 tdep->ppc_sr0_regnum = -1;
3351 tdep->ppc_vr0_regnum = 71;
3352 tdep->ppc_vrsave_regnum = 104;
3353 break;
3354 case bfd_mach_ppc_7400:
3355 tdep->ppc_vr0_regnum = 119;
3356 tdep->ppc_vrsave_regnum = 152;
3357 break;
3358 case bfd_mach_ppc_e500:
3359 tdep->ppc_toc_regnum = -1;
3360 tdep->ppc_ev0_upper_regnum = 32;
3361 tdep->ppc_ev0_regnum = 73;
3362 tdep->ppc_ev31_regnum = 104;
3363 tdep->ppc_acc_regnum = 71;
3364 tdep->ppc_spefscr_regnum = 72;
3365 tdep->ppc_fp0_regnum = -1;
3366 tdep->ppc_fpscr_regnum = -1;
3367 tdep->ppc_sr0_regnum = -1;
3368 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3369 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3370 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3371 break;
3372
3373 case bfd_mach_ppc64:
3374 case bfd_mach_ppc_620:
3375 case bfd_mach_ppc_630:
3376 case bfd_mach_ppc_a35:
3377 case bfd_mach_ppc_rs64ii:
3378 case bfd_mach_ppc_rs64iii:
3379 /* These processor's register sets don't have segment registers. */
3380 tdep->ppc_sr0_regnum = -1;
3381 break;
3382 }
3383 else
3384 internal_error (__FILE__, __LINE__,
3385 _("rs6000_gdbarch_init: "
3386 "received unexpected BFD 'arch' value"));
3387
3388 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3389
3390 /* Sanity check on registers. */
3391 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3392
3393 /* Select instruction printer. */
3394 if (arch == bfd_arch_rs6000)
3395 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3396 else
3397 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3398
3399 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3400
3401 set_gdbarch_num_regs (gdbarch, v->nregs);
3402 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3403 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3404 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3405 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3406
3407 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3408 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3409 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3410 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3411 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3412 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3413 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3414 if (sysv_abi)
3415 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3416 else
3417 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3418 set_gdbarch_char_signed (gdbarch, 0);
3419
3420 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3421 if (sysv_abi && wordsize == 8)
3422 /* PPC64 SYSV. */
3423 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3424 else if (!sysv_abi && wordsize == 4)
3425 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3426 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3427 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3428 224. */
3429 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3430
3431 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3432 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3433 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3434
3435 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3436 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3437
3438 if (sysv_abi && wordsize == 4)
3439 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3440 else if (sysv_abi && wordsize == 8)
3441 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3442 else
3443 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3444
3445 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3446 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3447
3448 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3449 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3450
3451 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3452 for the descriptor and ".FN" for the entry-point -- a user
3453 specifying "break FN" will unexpectedly end up with a breakpoint
3454 on the descriptor and not the function. This architecture method
3455 transforms any breakpoints on descriptors into breakpoints on the
3456 corresponding entry point. */
3457 if (sysv_abi && wordsize == 8)
3458 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3459
3460 /* Not sure on this. FIXMEmgo */
3461 set_gdbarch_frame_args_skip (gdbarch, 8);
3462
3463 if (!sysv_abi)
3464 {
3465 /* Handle RS/6000 function pointers (which are really function
3466 descriptors). */
3467 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3468 rs6000_convert_from_func_ptr_addr);
3469 }
3470
3471 /* Helpers for function argument information. */
3472 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3473
3474 /* Trampoline. */
3475 set_gdbarch_in_solib_return_trampoline
3476 (gdbarch, rs6000_in_solib_return_trampoline);
3477 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3478
3479 /* Hook in the DWARF CFI frame unwinder. */
3480 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3481 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3482
3483 /* Hook in ABI-specific overrides, if they have been registered. */
3484 gdbarch_init_osabi (info, gdbarch);
3485
3486 switch (info.osabi)
3487 {
3488 case GDB_OSABI_LINUX:
3489 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3490 have altivec registers. If not, ptrace will fail the first time it's
3491 called to access one and will not be called again. This wart will
3492 be removed when Daniel Jacobowitz's proposal for autodetecting target
3493 registers is implemented. */
3494 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3495 {
3496 tdep->ppc_vr0_regnum = 71;
3497 tdep->ppc_vrsave_regnum = 104;
3498 }
3499 /* Fall Thru */
3500 case GDB_OSABI_NETBSD_AOUT:
3501 case GDB_OSABI_NETBSD_ELF:
3502 case GDB_OSABI_UNKNOWN:
3503 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3504 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3505 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3506 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3507 break;
3508 default:
3509 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3510
3511 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3512 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3513 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3514 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3515 }
3516
3517 init_sim_regno_table (gdbarch);
3518
3519 return gdbarch;
3520 }
3521
3522 static void
3523 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3524 {
3525 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3526
3527 if (tdep == NULL)
3528 return;
3529
3530 /* FIXME: Dump gdbarch_tdep. */
3531 }
3532
3533 /* Initialization code. */
3534
3535 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3536
3537 void
3538 _initialize_rs6000_tdep (void)
3539 {
3540 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3541 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3542 }