]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rust-exp.y
Use gdb::byte_vector in ppc-linux-tdep.c
[thirdparty/binutils-gdb.git] / gdb / rust-exp.y
1 /* Bison parser for Rust expressions, for GDB.
2 Copyright (C) 2016-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Removing the last conflict seems difficult. */
20 %expect 1
21
22 %{
23
24 #include "defs.h"
25
26 #include "block.h"
27 #include "charset.h"
28 #include "cp-support.h"
29 #include "gdb_obstack.h"
30 #include "gdb_regex.h"
31 #include "rust-lang.h"
32 #include "parser-defs.h"
33 #include "selftest.h"
34 #include "value.h"
35 #include "vec.h"
36
37 #define GDB_YY_REMAP_PREFIX rust
38 #include "yy-remap.h"
39
40 #define RUSTSTYPE YYSTYPE
41
42 struct rust_op;
43 typedef std::vector<const struct rust_op *> rust_op_vector;
44
45 /* A typed integer constant. */
46
47 struct typed_val_int
48 {
49 LONGEST val;
50 struct type *type;
51 };
52
53 /* A typed floating point constant. */
54
55 struct typed_val_float
56 {
57 gdb_byte val[16];
58 struct type *type;
59 };
60
61 /* An identifier and an expression. This is used to represent one
62 element of a struct initializer. */
63
64 struct set_field
65 {
66 struct stoken name;
67 const struct rust_op *init;
68 };
69
70 typedef std::vector<set_field> rust_set_vector;
71
72 static int rustyylex (void);
73 static void rust_push_back (char c);
74 static const char *rust_copy_name (const char *, int);
75 static struct stoken rust_concat3 (const char *, const char *, const char *);
76 static struct stoken make_stoken (const char *);
77 static struct block_symbol rust_lookup_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain);
80 static struct type *rust_lookup_type (const char *name,
81 const struct block *block);
82 static struct type *rust_type (const char *name);
83
84 static const struct rust_op *crate_name (const struct rust_op *name);
85 static const struct rust_op *super_name (const struct rust_op *name,
86 unsigned int n_supers);
87
88 static const struct rust_op *ast_operation (enum exp_opcode opcode,
89 const struct rust_op *left,
90 const struct rust_op *right);
91 static const struct rust_op *ast_compound_assignment
92 (enum exp_opcode opcode, const struct rust_op *left,
93 const struct rust_op *rust_op);
94 static const struct rust_op *ast_literal (struct typed_val_int val);
95 static const struct rust_op *ast_dliteral (struct typed_val_float val);
96 static const struct rust_op *ast_structop (const struct rust_op *left,
97 const char *name,
98 int completing);
99 static const struct rust_op *ast_structop_anonymous
100 (const struct rust_op *left, struct typed_val_int number);
101 static const struct rust_op *ast_unary (enum exp_opcode opcode,
102 const struct rust_op *expr);
103 static const struct rust_op *ast_cast (const struct rust_op *expr,
104 const struct rust_op *type);
105 static const struct rust_op *ast_call_ish (enum exp_opcode opcode,
106 const struct rust_op *expr,
107 rust_op_vector *params);
108 static const struct rust_op *ast_path (struct stoken name,
109 rust_op_vector *params);
110 static const struct rust_op *ast_string (struct stoken str);
111 static const struct rust_op *ast_struct (const struct rust_op *name,
112 rust_set_vector *fields);
113 static const struct rust_op *ast_range (const struct rust_op *lhs,
114 const struct rust_op *rhs);
115 static const struct rust_op *ast_array_type (const struct rust_op *lhs,
116 struct typed_val_int val);
117 static const struct rust_op *ast_slice_type (const struct rust_op *type);
118 static const struct rust_op *ast_reference_type (const struct rust_op *type);
119 static const struct rust_op *ast_pointer_type (const struct rust_op *type,
120 int is_mut);
121 static const struct rust_op *ast_function_type (const struct rust_op *result,
122 rust_op_vector *params);
123 static const struct rust_op *ast_tuple_type (rust_op_vector *params);
124
125 /* The current rust parser. */
126
127 struct rust_parser;
128 static rust_parser *current_parser;
129
130 /* A regular expression for matching Rust numbers. This is split up
131 since it is very long and this gives us a way to comment the
132 sections. */
133
134 static const char *number_regex_text =
135 /* subexpression 1: allows use of alternation, otherwise uninteresting */
136 "^("
137 /* First comes floating point. */
138 /* Recognize number after the decimal point, with optional
139 exponent and optional type suffix.
140 subexpression 2: allows "?", otherwise uninteresting
141 subexpression 3: if present, type suffix
142 */
143 "[0-9][0-9_]*\\.[0-9][0-9_]*([eE][-+]?[0-9][0-9_]*)?(f32|f64)?"
144 #define FLOAT_TYPE1 3
145 "|"
146 /* Recognize exponent without decimal point, with optional type
147 suffix.
148 subexpression 4: if present, type suffix
149 */
150 #define FLOAT_TYPE2 4
151 "[0-9][0-9_]*[eE][-+]?[0-9][0-9_]*(f32|f64)?"
152 "|"
153 /* "23." is a valid floating point number, but "23.e5" and
154 "23.f32" are not. So, handle the trailing-. case
155 separately. */
156 "[0-9][0-9_]*\\."
157 "|"
158 /* Finally come integers.
159 subexpression 5: text of integer
160 subexpression 6: if present, type suffix
161 subexpression 7: allows use of alternation, otherwise uninteresting
162 */
163 #define INT_TEXT 5
164 #define INT_TYPE 6
165 "(0x[a-fA-F0-9_]+|0o[0-7_]+|0b[01_]+|[0-9][0-9_]*)"
166 "([iu](size|8|16|32|64))?"
167 ")";
168 /* The number of subexpressions to allocate space for, including the
169 "0th" whole match subexpression. */
170 #define NUM_SUBEXPRESSIONS 8
171
172 /* The compiled number-matching regex. */
173
174 static regex_t number_regex;
175
176 /* Obstack for data temporarily allocated during parsing. Points to
177 the obstack in the rust_parser, or to a temporary obstack during
178 unit testing. */
179
180 static auto_obstack *work_obstack;
181
182 /* An instance of this is created before parsing, and destroyed when
183 parsing is finished. */
184
185 struct rust_parser
186 {
187 rust_parser (struct parser_state *state)
188 : rust_ast (nullptr),
189 pstate (state)
190 {
191 gdb_assert (current_parser == nullptr);
192 current_parser = this;
193 work_obstack = &obstack;
194 }
195
196 ~rust_parser ()
197 {
198 /* Clean up the globals we set. */
199 current_parser = nullptr;
200 work_obstack = nullptr;
201 }
202
203 /* Create a new rust_set_vector. The storage for the new vector is
204 managed by this class. */
205 rust_set_vector *new_set_vector ()
206 {
207 rust_set_vector *result = new rust_set_vector;
208 set_vectors.push_back (std::unique_ptr<rust_set_vector> (result));
209 return result;
210 }
211
212 /* Create a new rust_ops_vector. The storage for the new vector is
213 managed by this class. */
214 rust_op_vector *new_op_vector ()
215 {
216 rust_op_vector *result = new rust_op_vector;
217 op_vectors.push_back (std::unique_ptr<rust_op_vector> (result));
218 return result;
219 }
220
221 /* Return the parser's language. */
222 const struct language_defn *language () const
223 {
224 return parse_language (pstate);
225 }
226
227 /* Return the parser's gdbarch. */
228 struct gdbarch *arch () const
229 {
230 return parse_gdbarch (pstate);
231 }
232
233 /* A pointer to this is installed globally. */
234 auto_obstack obstack;
235
236 /* Result of parsing. Points into obstack. */
237 const struct rust_op *rust_ast;
238
239 /* This keeps track of the various vectors we allocate. */
240 std::vector<std::unique_ptr<rust_set_vector>> set_vectors;
241 std::vector<std::unique_ptr<rust_op_vector>> op_vectors;
242
243 /* The parser state gdb gave us. */
244 struct parser_state *pstate;
245 };
246
247 %}
248
249 %union
250 {
251 /* A typed integer constant. */
252 struct typed_val_int typed_val_int;
253
254 /* A typed floating point constant. */
255 struct typed_val_float typed_val_float;
256
257 /* An identifier or string. */
258 struct stoken sval;
259
260 /* A token representing an opcode, like "==". */
261 enum exp_opcode opcode;
262
263 /* A list of expressions; for example, the arguments to a function
264 call. */
265 rust_op_vector *params;
266
267 /* A list of field initializers. */
268 rust_set_vector *field_inits;
269
270 /* A single field initializer. */
271 struct set_field one_field_init;
272
273 /* An expression. */
274 const struct rust_op *op;
275
276 /* A plain integer, for example used to count the number of
277 "super::" prefixes on a path. */
278 unsigned int depth;
279 }
280
281 %{
282
283 /* Rust AST operations. We build a tree of these; then lower them
284 to gdb expressions when parsing has completed. */
285
286 struct rust_op
287 {
288 /* The opcode. */
289 enum exp_opcode opcode;
290 /* If OPCODE is OP_TYPE, then this holds information about what type
291 is described by this node. */
292 enum type_code typecode;
293 /* Indicates whether OPCODE actually represents a compound
294 assignment. For example, if OPCODE is GTGT and this is false,
295 then this rust_op represents an ordinary ">>"; but if this is
296 true, then this rust_op represents ">>=". Unused in other
297 cases. */
298 unsigned int compound_assignment : 1;
299 /* Only used by a field expression; if set, indicates that the field
300 name occurred at the end of the expression and is eligible for
301 completion. */
302 unsigned int completing : 1;
303 /* Operands of expression. Which one is used and how depends on the
304 particular opcode. */
305 RUSTSTYPE left;
306 RUSTSTYPE right;
307 };
308
309 %}
310
311 %token <sval> GDBVAR
312 %token <sval> IDENT
313 %token <sval> COMPLETE
314 %token <typed_val_int> INTEGER
315 %token <typed_val_int> DECIMAL_INTEGER
316 %token <sval> STRING
317 %token <sval> BYTESTRING
318 %token <typed_val_float> FLOAT
319 %token <opcode> COMPOUND_ASSIGN
320
321 /* Keyword tokens. */
322 %token <voidval> KW_AS
323 %token <voidval> KW_IF
324 %token <voidval> KW_TRUE
325 %token <voidval> KW_FALSE
326 %token <voidval> KW_SUPER
327 %token <voidval> KW_SELF
328 %token <voidval> KW_MUT
329 %token <voidval> KW_EXTERN
330 %token <voidval> KW_CONST
331 %token <voidval> KW_FN
332 %token <voidval> KW_SIZEOF
333
334 /* Operator tokens. */
335 %token <voidval> DOTDOT
336 %token <voidval> OROR
337 %token <voidval> ANDAND
338 %token <voidval> EQEQ
339 %token <voidval> NOTEQ
340 %token <voidval> LTEQ
341 %token <voidval> GTEQ
342 %token <voidval> LSH RSH
343 %token <voidval> COLONCOLON
344 %token <voidval> ARROW
345
346 %type <op> type
347 %type <op> path_for_expr
348 %type <op> identifier_path_for_expr
349 %type <op> path_for_type
350 %type <op> identifier_path_for_type
351 %type <op> just_identifiers_for_type
352
353 %type <params> maybe_type_list
354 %type <params> type_list
355
356 %type <depth> super_path
357
358 %type <op> literal
359 %type <op> expr
360 %type <op> field_expr
361 %type <op> idx_expr
362 %type <op> unop_expr
363 %type <op> binop_expr
364 %type <op> binop_expr_expr
365 %type <op> type_cast_expr
366 %type <op> assignment_expr
367 %type <op> compound_assignment_expr
368 %type <op> paren_expr
369 %type <op> call_expr
370 %type <op> path_expr
371 %type <op> tuple_expr
372 %type <op> unit_expr
373 %type <op> struct_expr
374 %type <op> array_expr
375 %type <op> range_expr
376
377 %type <params> expr_list
378 %type <params> maybe_expr_list
379 %type <params> paren_expr_list
380
381 %type <field_inits> struct_expr_list
382 %type <one_field_init> struct_expr_tail
383
384 /* Precedence. */
385 %nonassoc DOTDOT
386 %right '=' COMPOUND_ASSIGN
387 %left OROR
388 %left ANDAND
389 %nonassoc EQEQ NOTEQ '<' '>' LTEQ GTEQ
390 %left '|'
391 %left '^'
392 %left '&'
393 %left LSH RSH
394 %left '@'
395 %left '+' '-'
396 %left '*' '/' '%'
397 /* These could be %precedence in Bison, but that isn't a yacc
398 feature. */
399 %left KW_AS
400 %left UNARY
401 %left '[' '.' '('
402
403 %%
404
405 start:
406 expr
407 {
408 /* If we are completing and see a valid parse,
409 rust_ast will already have been set. */
410 if (current_parser->rust_ast == NULL)
411 current_parser->rust_ast = $1;
412 }
413 ;
414
415 /* Note that the Rust grammar includes a method_call_expr, but we
416 handle this differently, to avoid a shift/reduce conflict with
417 call_expr. */
418 expr:
419 literal
420 | path_expr
421 | tuple_expr
422 | unit_expr
423 | struct_expr
424 | field_expr
425 | array_expr
426 | idx_expr
427 | range_expr
428 | unop_expr /* Must precede call_expr because of ambiguity with sizeof. */
429 | binop_expr
430 | paren_expr
431 | call_expr
432 ;
433
434 tuple_expr:
435 '(' expr ',' maybe_expr_list ')'
436 {
437 $4->push_back ($2);
438 error (_("Tuple expressions not supported yet"));
439 }
440 ;
441
442 unit_expr:
443 '(' ')'
444 {
445 struct typed_val_int val;
446
447 val.type
448 = language_lookup_primitive_type (current_parser->language (),
449 current_parser->arch (),
450 "()");
451 val.val = 0;
452 $$ = ast_literal (val);
453 }
454 ;
455
456 /* To avoid a shift/reduce conflict with call_expr, we don't handle
457 tuple struct expressions here, but instead when examining the
458 AST. */
459 struct_expr:
460 path_for_expr '{' struct_expr_list '}'
461 { $$ = ast_struct ($1, $3); }
462 ;
463
464 struct_expr_tail:
465 DOTDOT expr
466 {
467 struct set_field sf;
468
469 sf.name.ptr = NULL;
470 sf.name.length = 0;
471 sf.init = $2;
472
473 $$ = sf;
474 }
475 | IDENT ':' expr
476 {
477 struct set_field sf;
478
479 sf.name = $1;
480 sf.init = $3;
481 $$ = sf;
482 }
483 ;
484
485 struct_expr_list:
486 /* %empty */
487 {
488 $$ = current_parser->new_set_vector ();
489 }
490 | struct_expr_tail
491 {
492 rust_set_vector *result = current_parser->new_set_vector ();
493 result->push_back ($1);
494 $$ = result;
495 }
496 | IDENT ':' expr ',' struct_expr_list
497 {
498 struct set_field sf;
499
500 sf.name = $1;
501 sf.init = $3;
502 $5->push_back (sf);
503 $$ = $5;
504 }
505 ;
506
507 array_expr:
508 '[' KW_MUT expr_list ']'
509 { $$ = ast_call_ish (OP_ARRAY, NULL, $3); }
510 | '[' expr_list ']'
511 { $$ = ast_call_ish (OP_ARRAY, NULL, $2); }
512 | '[' KW_MUT expr ';' expr ']'
513 { $$ = ast_operation (OP_RUST_ARRAY, $3, $5); }
514 | '[' expr ';' expr ']'
515 { $$ = ast_operation (OP_RUST_ARRAY, $2, $4); }
516 ;
517
518 range_expr:
519 expr DOTDOT
520 { $$ = ast_range ($1, NULL); }
521 | expr DOTDOT expr
522 { $$ = ast_range ($1, $3); }
523 | DOTDOT expr
524 { $$ = ast_range (NULL, $2); }
525 | DOTDOT
526 { $$ = ast_range (NULL, NULL); }
527 ;
528
529 literal:
530 INTEGER
531 { $$ = ast_literal ($1); }
532 | DECIMAL_INTEGER
533 { $$ = ast_literal ($1); }
534 | FLOAT
535 { $$ = ast_dliteral ($1); }
536 | STRING
537 {
538 const struct rust_op *str = ast_string ($1);
539 struct set_field field;
540 struct typed_val_int val;
541 struct stoken token;
542
543 rust_set_vector *fields = current_parser->new_set_vector ();
544
545 /* Wrap the raw string in the &str struct. */
546 field.name.ptr = "data_ptr";
547 field.name.length = strlen (field.name.ptr);
548 field.init = ast_unary (UNOP_ADDR, ast_string ($1));
549 fields->push_back (field);
550
551 val.type = rust_type ("usize");
552 val.val = $1.length;
553
554 field.name.ptr = "length";
555 field.name.length = strlen (field.name.ptr);
556 field.init = ast_literal (val);
557 fields->push_back (field);
558
559 token.ptr = "&str";
560 token.length = strlen (token.ptr);
561 $$ = ast_struct (ast_path (token, NULL), fields);
562 }
563 | BYTESTRING
564 { $$ = ast_string ($1); }
565 | KW_TRUE
566 {
567 struct typed_val_int val;
568
569 val.type = language_bool_type (current_parser->language (),
570 current_parser->arch ());
571 val.val = 1;
572 $$ = ast_literal (val);
573 }
574 | KW_FALSE
575 {
576 struct typed_val_int val;
577
578 val.type = language_bool_type (current_parser->language (),
579 current_parser->arch ());
580 val.val = 0;
581 $$ = ast_literal (val);
582 }
583 ;
584
585 field_expr:
586 expr '.' IDENT
587 { $$ = ast_structop ($1, $3.ptr, 0); }
588 | expr '.' COMPLETE
589 {
590 $$ = ast_structop ($1, $3.ptr, 1);
591 current_parser->rust_ast = $$;
592 }
593 | expr '.' DECIMAL_INTEGER
594 { $$ = ast_structop_anonymous ($1, $3); }
595 ;
596
597 idx_expr:
598 expr '[' expr ']'
599 { $$ = ast_operation (BINOP_SUBSCRIPT, $1, $3); }
600 ;
601
602 unop_expr:
603 '+' expr %prec UNARY
604 { $$ = ast_unary (UNOP_PLUS, $2); }
605
606 | '-' expr %prec UNARY
607 { $$ = ast_unary (UNOP_NEG, $2); }
608
609 | '!' expr %prec UNARY
610 {
611 /* Note that we provide a Rust-specific evaluator
612 override for UNOP_COMPLEMENT, so it can do the
613 right thing for both bool and integral
614 values. */
615 $$ = ast_unary (UNOP_COMPLEMENT, $2);
616 }
617
618 | '*' expr %prec UNARY
619 { $$ = ast_unary (UNOP_IND, $2); }
620
621 | '&' expr %prec UNARY
622 { $$ = ast_unary (UNOP_ADDR, $2); }
623
624 | '&' KW_MUT expr %prec UNARY
625 { $$ = ast_unary (UNOP_ADDR, $3); }
626 | KW_SIZEOF '(' expr ')' %prec UNARY
627 { $$ = ast_unary (UNOP_SIZEOF, $3); }
628 ;
629
630 binop_expr:
631 binop_expr_expr
632 | type_cast_expr
633 | assignment_expr
634 | compound_assignment_expr
635 ;
636
637 binop_expr_expr:
638 expr '*' expr
639 { $$ = ast_operation (BINOP_MUL, $1, $3); }
640
641 | expr '@' expr
642 { $$ = ast_operation (BINOP_REPEAT, $1, $3); }
643
644 | expr '/' expr
645 { $$ = ast_operation (BINOP_DIV, $1, $3); }
646
647 | expr '%' expr
648 { $$ = ast_operation (BINOP_REM, $1, $3); }
649
650 | expr '<' expr
651 { $$ = ast_operation (BINOP_LESS, $1, $3); }
652
653 | expr '>' expr
654 { $$ = ast_operation (BINOP_GTR, $1, $3); }
655
656 | expr '&' expr
657 { $$ = ast_operation (BINOP_BITWISE_AND, $1, $3); }
658
659 | expr '|' expr
660 { $$ = ast_operation (BINOP_BITWISE_IOR, $1, $3); }
661
662 | expr '^' expr
663 { $$ = ast_operation (BINOP_BITWISE_XOR, $1, $3); }
664
665 | expr '+' expr
666 { $$ = ast_operation (BINOP_ADD, $1, $3); }
667
668 | expr '-' expr
669 { $$ = ast_operation (BINOP_SUB, $1, $3); }
670
671 | expr OROR expr
672 { $$ = ast_operation (BINOP_LOGICAL_OR, $1, $3); }
673
674 | expr ANDAND expr
675 { $$ = ast_operation (BINOP_LOGICAL_AND, $1, $3); }
676
677 | expr EQEQ expr
678 { $$ = ast_operation (BINOP_EQUAL, $1, $3); }
679
680 | expr NOTEQ expr
681 { $$ = ast_operation (BINOP_NOTEQUAL, $1, $3); }
682
683 | expr LTEQ expr
684 { $$ = ast_operation (BINOP_LEQ, $1, $3); }
685
686 | expr GTEQ expr
687 { $$ = ast_operation (BINOP_GEQ, $1, $3); }
688
689 | expr LSH expr
690 { $$ = ast_operation (BINOP_LSH, $1, $3); }
691
692 | expr RSH expr
693 { $$ = ast_operation (BINOP_RSH, $1, $3); }
694 ;
695
696 type_cast_expr:
697 expr KW_AS type
698 { $$ = ast_cast ($1, $3); }
699 ;
700
701 assignment_expr:
702 expr '=' expr
703 { $$ = ast_operation (BINOP_ASSIGN, $1, $3); }
704 ;
705
706 compound_assignment_expr:
707 expr COMPOUND_ASSIGN expr
708 { $$ = ast_compound_assignment ($2, $1, $3); }
709
710 ;
711
712 paren_expr:
713 '(' expr ')'
714 { $$ = $2; }
715 ;
716
717 expr_list:
718 expr
719 {
720 $$ = current_parser->new_op_vector ();
721 $$->push_back ($1);
722 }
723 | expr_list ',' expr
724 {
725 $1->push_back ($3);
726 $$ = $1;
727 }
728 ;
729
730 maybe_expr_list:
731 /* %empty */
732 {
733 /* The result can't be NULL. */
734 $$ = current_parser->new_op_vector ();
735 }
736 | expr_list
737 { $$ = $1; }
738 ;
739
740 paren_expr_list:
741 '('
742 maybe_expr_list
743 ')'
744 { $$ = $2; }
745 ;
746
747 call_expr:
748 expr paren_expr_list
749 { $$ = ast_call_ish (OP_FUNCALL, $1, $2); }
750 ;
751
752 maybe_self_path:
753 /* %empty */
754 | KW_SELF COLONCOLON
755 ;
756
757 super_path:
758 KW_SUPER COLONCOLON
759 { $$ = 1; }
760 | super_path KW_SUPER COLONCOLON
761 { $$ = $1 + 1; }
762 ;
763
764 path_expr:
765 path_for_expr
766 { $$ = $1; }
767 | GDBVAR
768 { $$ = ast_path ($1, NULL); }
769 | KW_SELF
770 { $$ = ast_path (make_stoken ("self"), NULL); }
771 ;
772
773 path_for_expr:
774 identifier_path_for_expr
775 | KW_SELF COLONCOLON identifier_path_for_expr
776 { $$ = super_name ($3, 0); }
777 | maybe_self_path super_path identifier_path_for_expr
778 { $$ = super_name ($3, $2); }
779 | COLONCOLON identifier_path_for_expr
780 { $$ = crate_name ($2); }
781 | KW_EXTERN identifier_path_for_expr
782 {
783 /* This is a gdb extension to make it possible to
784 refer to items in other crates. It just bypasses
785 adding the current crate to the front of the
786 name. */
787 $$ = ast_path (rust_concat3 ("::", $2->left.sval.ptr, NULL),
788 $2->right.params);
789 }
790 ;
791
792 identifier_path_for_expr:
793 IDENT
794 { $$ = ast_path ($1, NULL); }
795 | identifier_path_for_expr COLONCOLON IDENT
796 {
797 $$ = ast_path (rust_concat3 ($1->left.sval.ptr, "::",
798 $3.ptr),
799 NULL);
800 }
801 | identifier_path_for_expr COLONCOLON '<' type_list '>'
802 { $$ = ast_path ($1->left.sval, $4); }
803 | identifier_path_for_expr COLONCOLON '<' type_list RSH
804 {
805 $$ = ast_path ($1->left.sval, $4);
806 rust_push_back ('>');
807 }
808 ;
809
810 path_for_type:
811 identifier_path_for_type
812 | KW_SELF COLONCOLON identifier_path_for_type
813 { $$ = super_name ($3, 0); }
814 | maybe_self_path super_path identifier_path_for_type
815 { $$ = super_name ($3, $2); }
816 | COLONCOLON identifier_path_for_type
817 { $$ = crate_name ($2); }
818 | KW_EXTERN identifier_path_for_type
819 {
820 /* This is a gdb extension to make it possible to
821 refer to items in other crates. It just bypasses
822 adding the current crate to the front of the
823 name. */
824 $$ = ast_path (rust_concat3 ("::", $2->left.sval.ptr, NULL),
825 $2->right.params);
826 }
827 ;
828
829 just_identifiers_for_type:
830 IDENT
831 { $$ = ast_path ($1, NULL); }
832 | just_identifiers_for_type COLONCOLON IDENT
833 {
834 $$ = ast_path (rust_concat3 ($1->left.sval.ptr, "::",
835 $3.ptr),
836 NULL);
837 }
838 ;
839
840 identifier_path_for_type:
841 just_identifiers_for_type
842 | just_identifiers_for_type '<' type_list '>'
843 { $$ = ast_path ($1->left.sval, $3); }
844 | just_identifiers_for_type '<' type_list RSH
845 {
846 $$ = ast_path ($1->left.sval, $3);
847 rust_push_back ('>');
848 }
849 ;
850
851 type:
852 path_for_type
853 | '[' type ';' INTEGER ']'
854 { $$ = ast_array_type ($2, $4); }
855 | '[' type ';' DECIMAL_INTEGER ']'
856 { $$ = ast_array_type ($2, $4); }
857 | '&' '[' type ']'
858 { $$ = ast_slice_type ($3); }
859 | '&' type
860 { $$ = ast_reference_type ($2); }
861 | '*' KW_MUT type
862 { $$ = ast_pointer_type ($3, 1); }
863 | '*' KW_CONST type
864 { $$ = ast_pointer_type ($3, 0); }
865 | KW_FN '(' maybe_type_list ')' ARROW type
866 { $$ = ast_function_type ($6, $3); }
867 | '(' maybe_type_list ')'
868 { $$ = ast_tuple_type ($2); }
869 ;
870
871 maybe_type_list:
872 /* %empty */
873 { $$ = NULL; }
874 | type_list
875 { $$ = $1; }
876 ;
877
878 type_list:
879 type
880 {
881 rust_op_vector *result = current_parser->new_op_vector ();
882 result->push_back ($1);
883 $$ = result;
884 }
885 | type_list ',' type
886 {
887 $1->push_back ($3);
888 $$ = $1;
889 }
890 ;
891
892 %%
893
894 /* A struct of this type is used to describe a token. */
895
896 struct token_info
897 {
898 const char *name;
899 int value;
900 enum exp_opcode opcode;
901 };
902
903 /* Identifier tokens. */
904
905 static const struct token_info identifier_tokens[] =
906 {
907 { "as", KW_AS, OP_NULL },
908 { "false", KW_FALSE, OP_NULL },
909 { "if", 0, OP_NULL },
910 { "mut", KW_MUT, OP_NULL },
911 { "const", KW_CONST, OP_NULL },
912 { "self", KW_SELF, OP_NULL },
913 { "super", KW_SUPER, OP_NULL },
914 { "true", KW_TRUE, OP_NULL },
915 { "extern", KW_EXTERN, OP_NULL },
916 { "fn", KW_FN, OP_NULL },
917 { "sizeof", KW_SIZEOF, OP_NULL },
918 };
919
920 /* Operator tokens, sorted longest first. */
921
922 static const struct token_info operator_tokens[] =
923 {
924 { ">>=", COMPOUND_ASSIGN, BINOP_RSH },
925 { "<<=", COMPOUND_ASSIGN, BINOP_LSH },
926
927 { "<<", LSH, OP_NULL },
928 { ">>", RSH, OP_NULL },
929 { "&&", ANDAND, OP_NULL },
930 { "||", OROR, OP_NULL },
931 { "==", EQEQ, OP_NULL },
932 { "!=", NOTEQ, OP_NULL },
933 { "<=", LTEQ, OP_NULL },
934 { ">=", GTEQ, OP_NULL },
935 { "+=", COMPOUND_ASSIGN, BINOP_ADD },
936 { "-=", COMPOUND_ASSIGN, BINOP_SUB },
937 { "*=", COMPOUND_ASSIGN, BINOP_MUL },
938 { "/=", COMPOUND_ASSIGN, BINOP_DIV },
939 { "%=", COMPOUND_ASSIGN, BINOP_REM },
940 { "&=", COMPOUND_ASSIGN, BINOP_BITWISE_AND },
941 { "|=", COMPOUND_ASSIGN, BINOP_BITWISE_IOR },
942 { "^=", COMPOUND_ASSIGN, BINOP_BITWISE_XOR },
943
944 { "::", COLONCOLON, OP_NULL },
945 { "..", DOTDOT, OP_NULL },
946 { "->", ARROW, OP_NULL }
947 };
948
949 /* Helper function to copy to the name obstack. */
950
951 static const char *
952 rust_copy_name (const char *name, int len)
953 {
954 return (const char *) obstack_copy0 (work_obstack, name, len);
955 }
956
957 /* Helper function to make an stoken from a C string. */
958
959 static struct stoken
960 make_stoken (const char *p)
961 {
962 struct stoken result;
963
964 result.ptr = p;
965 result.length = strlen (result.ptr);
966 return result;
967 }
968
969 /* Helper function to concatenate three strings on the name
970 obstack. */
971
972 static struct stoken
973 rust_concat3 (const char *s1, const char *s2, const char *s3)
974 {
975 return make_stoken (obconcat (work_obstack, s1, s2, s3, (char *) NULL));
976 }
977
978 /* Return an AST node referring to NAME, but relative to the crate's
979 name. */
980
981 static const struct rust_op *
982 crate_name (const struct rust_op *name)
983 {
984 std::string crate = rust_crate_for_block (expression_context_block);
985 struct stoken result;
986
987 gdb_assert (name->opcode == OP_VAR_VALUE);
988
989 if (crate.empty ())
990 error (_("Could not find crate for current location"));
991 result = make_stoken (obconcat (work_obstack, "::", crate.c_str (), "::",
992 name->left.sval.ptr, (char *) NULL));
993
994 return ast_path (result, name->right.params);
995 }
996
997 /* Create an AST node referring to a "super::" qualified name. IDENT
998 is the base name and N_SUPERS is how many "super::"s were
999 provided. N_SUPERS can be zero. */
1000
1001 static const struct rust_op *
1002 super_name (const struct rust_op *ident, unsigned int n_supers)
1003 {
1004 const char *scope = block_scope (expression_context_block);
1005 int offset;
1006
1007 gdb_assert (ident->opcode == OP_VAR_VALUE);
1008
1009 if (scope[0] == '\0')
1010 error (_("Couldn't find namespace scope for self::"));
1011
1012 if (n_supers > 0)
1013 {
1014 int i;
1015 int len;
1016 std::vector<int> offsets;
1017 unsigned int current_len;
1018
1019 current_len = cp_find_first_component (scope);
1020 while (scope[current_len] != '\0')
1021 {
1022 offsets.push_back (current_len);
1023 gdb_assert (scope[current_len] == ':');
1024 /* The "::". */
1025 current_len += 2;
1026 current_len += cp_find_first_component (scope
1027 + current_len);
1028 }
1029
1030 len = offsets.size ();
1031 if (n_supers >= len)
1032 error (_("Too many super:: uses from '%s'"), scope);
1033
1034 offset = offsets[len - n_supers];
1035 }
1036 else
1037 offset = strlen (scope);
1038
1039 obstack_grow (work_obstack, "::", 2);
1040 obstack_grow (work_obstack, scope, offset);
1041 obstack_grow (work_obstack, "::", 2);
1042 obstack_grow0 (work_obstack, ident->left.sval.ptr, ident->left.sval.length);
1043
1044 return ast_path (make_stoken ((const char *) obstack_finish (work_obstack)),
1045 ident->right.params);
1046 }
1047
1048 /* A helper that updates innermost_block as appropriate. */
1049
1050 static void
1051 update_innermost_block (struct block_symbol sym)
1052 {
1053 if (symbol_read_needs_frame (sym.symbol)
1054 && (innermost_block == NULL
1055 || contained_in (sym.block, innermost_block)))
1056 innermost_block = sym.block;
1057 }
1058
1059 /* A helper to look up a Rust type, or fail. This only works for
1060 types defined by rust_language_arch_info. */
1061
1062 static struct type *
1063 rust_type (const char *name)
1064 {
1065 struct type *type;
1066
1067 type = language_lookup_primitive_type (current_parser->language (),
1068 current_parser->arch (),
1069 name);
1070 if (type == NULL)
1071 error (_("Could not find Rust type %s"), name);
1072 return type;
1073 }
1074
1075 /* Lex a hex number with at least MIN digits and at most MAX
1076 digits. */
1077
1078 static uint32_t
1079 lex_hex (int min, int max)
1080 {
1081 uint32_t result = 0;
1082 int len = 0;
1083 /* We only want to stop at MAX if we're lexing a byte escape. */
1084 int check_max = min == max;
1085
1086 while ((check_max ? len <= max : 1)
1087 && ((lexptr[0] >= 'a' && lexptr[0] <= 'f')
1088 || (lexptr[0] >= 'A' && lexptr[0] <= 'F')
1089 || (lexptr[0] >= '0' && lexptr[0] <= '9')))
1090 {
1091 result *= 16;
1092 if (lexptr[0] >= 'a' && lexptr[0] <= 'f')
1093 result = result + 10 + lexptr[0] - 'a';
1094 else if (lexptr[0] >= 'A' && lexptr[0] <= 'F')
1095 result = result + 10 + lexptr[0] - 'A';
1096 else
1097 result = result + lexptr[0] - '0';
1098 ++lexptr;
1099 ++len;
1100 }
1101
1102 if (len < min)
1103 error (_("Not enough hex digits seen"));
1104 if (len > max)
1105 {
1106 gdb_assert (min != max);
1107 error (_("Overlong hex escape"));
1108 }
1109
1110 return result;
1111 }
1112
1113 /* Lex an escape. IS_BYTE is true if we're lexing a byte escape;
1114 otherwise we're lexing a character escape. */
1115
1116 static uint32_t
1117 lex_escape (int is_byte)
1118 {
1119 uint32_t result;
1120
1121 gdb_assert (lexptr[0] == '\\');
1122 ++lexptr;
1123 switch (lexptr[0])
1124 {
1125 case 'x':
1126 ++lexptr;
1127 result = lex_hex (2, 2);
1128 break;
1129
1130 case 'u':
1131 if (is_byte)
1132 error (_("Unicode escape in byte literal"));
1133 ++lexptr;
1134 if (lexptr[0] != '{')
1135 error (_("Missing '{' in Unicode escape"));
1136 ++lexptr;
1137 result = lex_hex (1, 6);
1138 /* Could do range checks here. */
1139 if (lexptr[0] != '}')
1140 error (_("Missing '}' in Unicode escape"));
1141 ++lexptr;
1142 break;
1143
1144 case 'n':
1145 result = '\n';
1146 ++lexptr;
1147 break;
1148 case 'r':
1149 result = '\r';
1150 ++lexptr;
1151 break;
1152 case 't':
1153 result = '\t';
1154 ++lexptr;
1155 break;
1156 case '\\':
1157 result = '\\';
1158 ++lexptr;
1159 break;
1160 case '0':
1161 result = '\0';
1162 ++lexptr;
1163 break;
1164 case '\'':
1165 result = '\'';
1166 ++lexptr;
1167 break;
1168 case '"':
1169 result = '"';
1170 ++lexptr;
1171 break;
1172
1173 default:
1174 error (_("Invalid escape \\%c in literal"), lexptr[0]);
1175 }
1176
1177 return result;
1178 }
1179
1180 /* Lex a character constant. */
1181
1182 static int
1183 lex_character (void)
1184 {
1185 int is_byte = 0;
1186 uint32_t value;
1187
1188 if (lexptr[0] == 'b')
1189 {
1190 is_byte = 1;
1191 ++lexptr;
1192 }
1193 gdb_assert (lexptr[0] == '\'');
1194 ++lexptr;
1195 /* This should handle UTF-8 here. */
1196 if (lexptr[0] == '\\')
1197 value = lex_escape (is_byte);
1198 else
1199 {
1200 value = lexptr[0] & 0xff;
1201 ++lexptr;
1202 }
1203
1204 if (lexptr[0] != '\'')
1205 error (_("Unterminated character literal"));
1206 ++lexptr;
1207
1208 rustyylval.typed_val_int.val = value;
1209 rustyylval.typed_val_int.type = rust_type (is_byte ? "u8" : "char");
1210
1211 return INTEGER;
1212 }
1213
1214 /* Return the offset of the double quote if STR looks like the start
1215 of a raw string, or 0 if STR does not start a raw string. */
1216
1217 static int
1218 starts_raw_string (const char *str)
1219 {
1220 const char *save = str;
1221
1222 if (str[0] != 'r')
1223 return 0;
1224 ++str;
1225 while (str[0] == '#')
1226 ++str;
1227 if (str[0] == '"')
1228 return str - save;
1229 return 0;
1230 }
1231
1232 /* Return true if STR looks like the end of a raw string that had N
1233 hashes at the start. */
1234
1235 static bool
1236 ends_raw_string (const char *str, int n)
1237 {
1238 int i;
1239
1240 gdb_assert (str[0] == '"');
1241 for (i = 0; i < n; ++i)
1242 if (str[i + 1] != '#')
1243 return false;
1244 return true;
1245 }
1246
1247 /* Lex a string constant. */
1248
1249 static int
1250 lex_string (void)
1251 {
1252 int is_byte = lexptr[0] == 'b';
1253 int raw_length;
1254 int len_in_chars = 0;
1255
1256 if (is_byte)
1257 ++lexptr;
1258 raw_length = starts_raw_string (lexptr);
1259 lexptr += raw_length;
1260 gdb_assert (lexptr[0] == '"');
1261 ++lexptr;
1262
1263 while (1)
1264 {
1265 uint32_t value;
1266
1267 if (raw_length > 0)
1268 {
1269 if (lexptr[0] == '"' && ends_raw_string (lexptr, raw_length - 1))
1270 {
1271 /* Exit with lexptr pointing after the final "#". */
1272 lexptr += raw_length;
1273 break;
1274 }
1275 else if (lexptr[0] == '\0')
1276 error (_("Unexpected EOF in string"));
1277
1278 value = lexptr[0] & 0xff;
1279 if (is_byte && value > 127)
1280 error (_("Non-ASCII value in raw byte string"));
1281 obstack_1grow (work_obstack, value);
1282
1283 ++lexptr;
1284 }
1285 else if (lexptr[0] == '"')
1286 {
1287 /* Make sure to skip the quote. */
1288 ++lexptr;
1289 break;
1290 }
1291 else if (lexptr[0] == '\\')
1292 {
1293 value = lex_escape (is_byte);
1294
1295 if (is_byte)
1296 obstack_1grow (work_obstack, value);
1297 else
1298 convert_between_encodings ("UTF-32", "UTF-8", (gdb_byte *) &value,
1299 sizeof (value), sizeof (value),
1300 work_obstack, translit_none);
1301 }
1302 else if (lexptr[0] == '\0')
1303 error (_("Unexpected EOF in string"));
1304 else
1305 {
1306 value = lexptr[0] & 0xff;
1307 if (is_byte && value > 127)
1308 error (_("Non-ASCII value in byte string"));
1309 obstack_1grow (work_obstack, value);
1310 ++lexptr;
1311 }
1312 }
1313
1314 rustyylval.sval.length = obstack_object_size (work_obstack);
1315 rustyylval.sval.ptr = (const char *) obstack_finish (work_obstack);
1316 return is_byte ? BYTESTRING : STRING;
1317 }
1318
1319 /* Return true if STRING starts with whitespace followed by a digit. */
1320
1321 static bool
1322 space_then_number (const char *string)
1323 {
1324 const char *p = string;
1325
1326 while (p[0] == ' ' || p[0] == '\t')
1327 ++p;
1328 if (p == string)
1329 return false;
1330
1331 return *p >= '0' && *p <= '9';
1332 }
1333
1334 /* Return true if C can start an identifier. */
1335
1336 static bool
1337 rust_identifier_start_p (char c)
1338 {
1339 return ((c >= 'a' && c <= 'z')
1340 || (c >= 'A' && c <= 'Z')
1341 || c == '_'
1342 || c == '$');
1343 }
1344
1345 /* Lex an identifier. */
1346
1347 static int
1348 lex_identifier (void)
1349 {
1350 const char *start = lexptr;
1351 unsigned int length;
1352 const struct token_info *token;
1353 int i;
1354 int is_gdb_var = lexptr[0] == '$';
1355
1356 gdb_assert (rust_identifier_start_p (lexptr[0]));
1357
1358 ++lexptr;
1359
1360 /* For the time being this doesn't handle Unicode rules. Non-ASCII
1361 identifiers are gated anyway. */
1362 while ((lexptr[0] >= 'a' && lexptr[0] <= 'z')
1363 || (lexptr[0] >= 'A' && lexptr[0] <= 'Z')
1364 || lexptr[0] == '_'
1365 || (is_gdb_var && lexptr[0] == '$')
1366 || (lexptr[0] >= '0' && lexptr[0] <= '9'))
1367 ++lexptr;
1368
1369
1370 length = lexptr - start;
1371 token = NULL;
1372 for (i = 0; i < ARRAY_SIZE (identifier_tokens); ++i)
1373 {
1374 if (length == strlen (identifier_tokens[i].name)
1375 && strncmp (identifier_tokens[i].name, start, length) == 0)
1376 {
1377 token = &identifier_tokens[i];
1378 break;
1379 }
1380 }
1381
1382 if (token != NULL)
1383 {
1384 if (token->value == 0)
1385 {
1386 /* Leave the terminating token alone. */
1387 lexptr = start;
1388 return 0;
1389 }
1390 }
1391 else if (token == NULL
1392 && (strncmp (start, "thread", length) == 0
1393 || strncmp (start, "task", length) == 0)
1394 && space_then_number (lexptr))
1395 {
1396 /* "task" or "thread" followed by a number terminates the
1397 parse, per gdb rules. */
1398 lexptr = start;
1399 return 0;
1400 }
1401
1402 if (token == NULL || (parse_completion && lexptr[0] == '\0'))
1403 rustyylval.sval = make_stoken (rust_copy_name (start, length));
1404
1405 if (parse_completion && lexptr[0] == '\0')
1406 {
1407 /* Prevent rustyylex from returning two COMPLETE tokens. */
1408 prev_lexptr = lexptr;
1409 return COMPLETE;
1410 }
1411
1412 if (token != NULL)
1413 return token->value;
1414 if (is_gdb_var)
1415 return GDBVAR;
1416 return IDENT;
1417 }
1418
1419 /* Lex an operator. */
1420
1421 static int
1422 lex_operator (void)
1423 {
1424 const struct token_info *token = NULL;
1425 int i;
1426
1427 for (i = 0; i < ARRAY_SIZE (operator_tokens); ++i)
1428 {
1429 if (strncmp (operator_tokens[i].name, lexptr,
1430 strlen (operator_tokens[i].name)) == 0)
1431 {
1432 lexptr += strlen (operator_tokens[i].name);
1433 token = &operator_tokens[i];
1434 break;
1435 }
1436 }
1437
1438 if (token != NULL)
1439 {
1440 rustyylval.opcode = token->opcode;
1441 return token->value;
1442 }
1443
1444 return *lexptr++;
1445 }
1446
1447 /* Lex a number. */
1448
1449 static int
1450 lex_number (void)
1451 {
1452 regmatch_t subexps[NUM_SUBEXPRESSIONS];
1453 int match;
1454 int is_integer = 0;
1455 int could_be_decimal = 1;
1456 int implicit_i32 = 0;
1457 const char *type_name = NULL;
1458 struct type *type;
1459 int end_index;
1460 int type_index = -1;
1461 int i;
1462
1463 match = regexec (&number_regex, lexptr, ARRAY_SIZE (subexps), subexps, 0);
1464 /* Failure means the regexp is broken. */
1465 gdb_assert (match == 0);
1466
1467 if (subexps[INT_TEXT].rm_so != -1)
1468 {
1469 /* Integer part matched. */
1470 is_integer = 1;
1471 end_index = subexps[INT_TEXT].rm_eo;
1472 if (subexps[INT_TYPE].rm_so == -1)
1473 {
1474 type_name = "i32";
1475 implicit_i32 = 1;
1476 }
1477 else
1478 {
1479 type_index = INT_TYPE;
1480 could_be_decimal = 0;
1481 }
1482 }
1483 else if (subexps[FLOAT_TYPE1].rm_so != -1)
1484 {
1485 /* Found floating point type suffix. */
1486 end_index = subexps[FLOAT_TYPE1].rm_so;
1487 type_index = FLOAT_TYPE1;
1488 }
1489 else if (subexps[FLOAT_TYPE2].rm_so != -1)
1490 {
1491 /* Found floating point type suffix. */
1492 end_index = subexps[FLOAT_TYPE2].rm_so;
1493 type_index = FLOAT_TYPE2;
1494 }
1495 else
1496 {
1497 /* Any other floating point match. */
1498 end_index = subexps[0].rm_eo;
1499 type_name = "f64";
1500 }
1501
1502 /* We need a special case if the final character is ".". In this
1503 case we might need to parse an integer. For example, "23.f()" is
1504 a request for a trait method call, not a syntax error involving
1505 the floating point number "23.". */
1506 gdb_assert (subexps[0].rm_eo > 0);
1507 if (lexptr[subexps[0].rm_eo - 1] == '.')
1508 {
1509 const char *next = skip_spaces (&lexptr[subexps[0].rm_eo]);
1510
1511 if (rust_identifier_start_p (*next) || *next == '.')
1512 {
1513 --subexps[0].rm_eo;
1514 is_integer = 1;
1515 end_index = subexps[0].rm_eo;
1516 type_name = "i32";
1517 could_be_decimal = 1;
1518 implicit_i32 = 1;
1519 }
1520 }
1521
1522 /* Compute the type name if we haven't already. */
1523 std::string type_name_holder;
1524 if (type_name == NULL)
1525 {
1526 gdb_assert (type_index != -1);
1527 type_name_holder = std::string (lexptr + subexps[type_index].rm_so,
1528 (subexps[type_index].rm_eo
1529 - subexps[type_index].rm_so));
1530 type_name = type_name_holder.c_str ();
1531 }
1532
1533 /* Look up the type. */
1534 type = rust_type (type_name);
1535
1536 /* Copy the text of the number and remove the "_"s. */
1537 std::string number;
1538 for (i = 0; i < end_index && lexptr[i]; ++i)
1539 {
1540 if (lexptr[i] == '_')
1541 could_be_decimal = 0;
1542 else
1543 number.push_back (lexptr[i]);
1544 }
1545
1546 /* Advance past the match. */
1547 lexptr += subexps[0].rm_eo;
1548
1549 /* Parse the number. */
1550 if (is_integer)
1551 {
1552 uint64_t value;
1553 int radix = 10;
1554 int offset = 0;
1555
1556 if (number[0] == '0')
1557 {
1558 if (number[1] == 'x')
1559 radix = 16;
1560 else if (number[1] == 'o')
1561 radix = 8;
1562 else if (number[1] == 'b')
1563 radix = 2;
1564 if (radix != 10)
1565 {
1566 offset = 2;
1567 could_be_decimal = 0;
1568 }
1569 }
1570
1571 value = strtoul (number.c_str () + offset, NULL, radix);
1572 if (implicit_i32 && value >= ((uint64_t) 1) << 31)
1573 type = rust_type ("i64");
1574
1575 rustyylval.typed_val_int.val = value;
1576 rustyylval.typed_val_int.type = type;
1577 }
1578 else
1579 {
1580 rustyylval.typed_val_float.type = type;
1581 bool parsed = parse_float (number.c_str (), number.length (),
1582 rustyylval.typed_val_float.type,
1583 rustyylval.typed_val_float.val);
1584 gdb_assert (parsed);
1585 }
1586
1587 return is_integer ? (could_be_decimal ? DECIMAL_INTEGER : INTEGER) : FLOAT;
1588 }
1589
1590 /* The lexer. */
1591
1592 static int
1593 rustyylex (void)
1594 {
1595 /* Skip all leading whitespace. */
1596 while (lexptr[0] == ' ' || lexptr[0] == '\t' || lexptr[0] == '\r'
1597 || lexptr[0] == '\n')
1598 ++lexptr;
1599
1600 /* If we hit EOF and we're completing, then return COMPLETE -- maybe
1601 we're completing an empty string at the end of a field_expr.
1602 But, we don't want to return two COMPLETE tokens in a row. */
1603 if (lexptr[0] == '\0' && lexptr == prev_lexptr)
1604 return 0;
1605 prev_lexptr = lexptr;
1606 if (lexptr[0] == '\0')
1607 {
1608 if (parse_completion)
1609 {
1610 rustyylval.sval = make_stoken ("");
1611 return COMPLETE;
1612 }
1613 return 0;
1614 }
1615
1616 if (lexptr[0] >= '0' && lexptr[0] <= '9')
1617 return lex_number ();
1618 else if (lexptr[0] == 'b' && lexptr[1] == '\'')
1619 return lex_character ();
1620 else if (lexptr[0] == 'b' && lexptr[1] == '"')
1621 return lex_string ();
1622 else if (lexptr[0] == 'b' && starts_raw_string (lexptr + 1))
1623 return lex_string ();
1624 else if (starts_raw_string (lexptr))
1625 return lex_string ();
1626 else if (rust_identifier_start_p (lexptr[0]))
1627 return lex_identifier ();
1628 else if (lexptr[0] == '"')
1629 return lex_string ();
1630 else if (lexptr[0] == '\'')
1631 return lex_character ();
1632 else if (lexptr[0] == '}' || lexptr[0] == ']')
1633 {
1634 /* Falls through to lex_operator. */
1635 --paren_depth;
1636 }
1637 else if (lexptr[0] == '(' || lexptr[0] == '{')
1638 {
1639 /* Falls through to lex_operator. */
1640 ++paren_depth;
1641 }
1642 else if (lexptr[0] == ',' && comma_terminates && paren_depth == 0)
1643 return 0;
1644
1645 return lex_operator ();
1646 }
1647
1648 /* Push back a single character to be re-lexed. */
1649
1650 static void
1651 rust_push_back (char c)
1652 {
1653 /* Can't be called before any lexing. */
1654 gdb_assert (prev_lexptr != NULL);
1655
1656 --lexptr;
1657 gdb_assert (*lexptr == c);
1658 }
1659
1660 \f
1661
1662 /* Make an arbitrary operation and fill in the fields. */
1663
1664 static const struct rust_op *
1665 ast_operation (enum exp_opcode opcode, const struct rust_op *left,
1666 const struct rust_op *right)
1667 {
1668 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1669
1670 result->opcode = opcode;
1671 result->left.op = left;
1672 result->right.op = right;
1673
1674 return result;
1675 }
1676
1677 /* Make a compound assignment operation. */
1678
1679 static const struct rust_op *
1680 ast_compound_assignment (enum exp_opcode opcode, const struct rust_op *left,
1681 const struct rust_op *right)
1682 {
1683 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1684
1685 result->opcode = opcode;
1686 result->compound_assignment = 1;
1687 result->left.op = left;
1688 result->right.op = right;
1689
1690 return result;
1691 }
1692
1693 /* Make a typed integer literal operation. */
1694
1695 static const struct rust_op *
1696 ast_literal (struct typed_val_int val)
1697 {
1698 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1699
1700 result->opcode = OP_LONG;
1701 result->left.typed_val_int = val;
1702
1703 return result;
1704 }
1705
1706 /* Make a typed floating point literal operation. */
1707
1708 static const struct rust_op *
1709 ast_dliteral (struct typed_val_float val)
1710 {
1711 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1712
1713 result->opcode = OP_FLOAT;
1714 result->left.typed_val_float = val;
1715
1716 return result;
1717 }
1718
1719 /* Make a unary operation. */
1720
1721 static const struct rust_op *
1722 ast_unary (enum exp_opcode opcode, const struct rust_op *expr)
1723 {
1724 return ast_operation (opcode, expr, NULL);
1725 }
1726
1727 /* Make a cast operation. */
1728
1729 static const struct rust_op *
1730 ast_cast (const struct rust_op *expr, const struct rust_op *type)
1731 {
1732 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1733
1734 result->opcode = UNOP_CAST;
1735 result->left.op = expr;
1736 result->right.op = type;
1737
1738 return result;
1739 }
1740
1741 /* Make a call-like operation. This is nominally a function call, but
1742 when lowering we may discover that it actually represents the
1743 creation of a tuple struct. */
1744
1745 static const struct rust_op *
1746 ast_call_ish (enum exp_opcode opcode, const struct rust_op *expr,
1747 rust_op_vector *params)
1748 {
1749 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1750
1751 result->opcode = opcode;
1752 result->left.op = expr;
1753 result->right.params = params;
1754
1755 return result;
1756 }
1757
1758 /* Make a structure creation operation. */
1759
1760 static const struct rust_op *
1761 ast_struct (const struct rust_op *name, rust_set_vector *fields)
1762 {
1763 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1764
1765 result->opcode = OP_AGGREGATE;
1766 result->left.op = name;
1767 result->right.field_inits = fields;
1768
1769 return result;
1770 }
1771
1772 /* Make an identifier path. */
1773
1774 static const struct rust_op *
1775 ast_path (struct stoken path, rust_op_vector *params)
1776 {
1777 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1778
1779 result->opcode = OP_VAR_VALUE;
1780 result->left.sval = path;
1781 result->right.params = params;
1782
1783 return result;
1784 }
1785
1786 /* Make a string constant operation. */
1787
1788 static const struct rust_op *
1789 ast_string (struct stoken str)
1790 {
1791 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1792
1793 result->opcode = OP_STRING;
1794 result->left.sval = str;
1795
1796 return result;
1797 }
1798
1799 /* Make a field expression. */
1800
1801 static const struct rust_op *
1802 ast_structop (const struct rust_op *left, const char *name, int completing)
1803 {
1804 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1805
1806 result->opcode = STRUCTOP_STRUCT;
1807 result->completing = completing;
1808 result->left.op = left;
1809 result->right.sval = make_stoken (name);
1810
1811 return result;
1812 }
1813
1814 /* Make an anonymous struct operation, like 'x.0'. */
1815
1816 static const struct rust_op *
1817 ast_structop_anonymous (const struct rust_op *left,
1818 struct typed_val_int number)
1819 {
1820 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1821
1822 result->opcode = STRUCTOP_ANONYMOUS;
1823 result->left.op = left;
1824 result->right.typed_val_int = number;
1825
1826 return result;
1827 }
1828
1829 /* Make a range operation. */
1830
1831 static const struct rust_op *
1832 ast_range (const struct rust_op *lhs, const struct rust_op *rhs)
1833 {
1834 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1835
1836 result->opcode = OP_RANGE;
1837 result->left.op = lhs;
1838 result->right.op = rhs;
1839
1840 return result;
1841 }
1842
1843 /* A helper function to make a type-related AST node. */
1844
1845 static struct rust_op *
1846 ast_basic_type (enum type_code typecode)
1847 {
1848 struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
1849
1850 result->opcode = OP_TYPE;
1851 result->typecode = typecode;
1852 return result;
1853 }
1854
1855 /* Create an AST node describing an array type. */
1856
1857 static const struct rust_op *
1858 ast_array_type (const struct rust_op *lhs, struct typed_val_int val)
1859 {
1860 struct rust_op *result = ast_basic_type (TYPE_CODE_ARRAY);
1861
1862 result->left.op = lhs;
1863 result->right.typed_val_int = val;
1864 return result;
1865 }
1866
1867 /* Create an AST node describing a reference type. */
1868
1869 static const struct rust_op *
1870 ast_slice_type (const struct rust_op *type)
1871 {
1872 /* Use TYPE_CODE_COMPLEX just because it is handy. */
1873 struct rust_op *result = ast_basic_type (TYPE_CODE_COMPLEX);
1874
1875 result->left.op = type;
1876 return result;
1877 }
1878
1879 /* Create an AST node describing a reference type. */
1880
1881 static const struct rust_op *
1882 ast_reference_type (const struct rust_op *type)
1883 {
1884 struct rust_op *result = ast_basic_type (TYPE_CODE_REF);
1885
1886 result->left.op = type;
1887 return result;
1888 }
1889
1890 /* Create an AST node describing a pointer type. */
1891
1892 static const struct rust_op *
1893 ast_pointer_type (const struct rust_op *type, int is_mut)
1894 {
1895 struct rust_op *result = ast_basic_type (TYPE_CODE_PTR);
1896
1897 result->left.op = type;
1898 /* For the time being we ignore is_mut. */
1899 return result;
1900 }
1901
1902 /* Create an AST node describing a function type. */
1903
1904 static const struct rust_op *
1905 ast_function_type (const struct rust_op *rtype, rust_op_vector *params)
1906 {
1907 struct rust_op *result = ast_basic_type (TYPE_CODE_FUNC);
1908
1909 result->left.op = rtype;
1910 result->right.params = params;
1911 return result;
1912 }
1913
1914 /* Create an AST node describing a tuple type. */
1915
1916 static const struct rust_op *
1917 ast_tuple_type (rust_op_vector *params)
1918 {
1919 struct rust_op *result = ast_basic_type (TYPE_CODE_STRUCT);
1920
1921 result->left.params = params;
1922 return result;
1923 }
1924
1925 /* A helper to appropriately munge NAME and BLOCK depending on the
1926 presence of a leading "::". */
1927
1928 static void
1929 munge_name_and_block (const char **name, const struct block **block)
1930 {
1931 /* If it is a global reference, skip the current block in favor of
1932 the static block. */
1933 if (strncmp (*name, "::", 2) == 0)
1934 {
1935 *name += 2;
1936 *block = block_static_block (*block);
1937 }
1938 }
1939
1940 /* Like lookup_symbol, but handles Rust namespace conventions, and
1941 doesn't require field_of_this_result. */
1942
1943 static struct block_symbol
1944 rust_lookup_symbol (const char *name, const struct block *block,
1945 const domain_enum domain)
1946 {
1947 struct block_symbol result;
1948
1949 munge_name_and_block (&name, &block);
1950
1951 result = lookup_symbol (name, block, domain, NULL);
1952 if (result.symbol != NULL)
1953 update_innermost_block (result);
1954 return result;
1955 }
1956
1957 /* Look up a type, following Rust namespace conventions. */
1958
1959 static struct type *
1960 rust_lookup_type (const char *name, const struct block *block)
1961 {
1962 struct block_symbol result;
1963 struct type *type;
1964
1965 munge_name_and_block (&name, &block);
1966
1967 result = lookup_symbol (name, block, STRUCT_DOMAIN, NULL);
1968 if (result.symbol != NULL)
1969 {
1970 update_innermost_block (result);
1971 return SYMBOL_TYPE (result.symbol);
1972 }
1973
1974 type = lookup_typename (current_parser->language (), current_parser->arch (),
1975 name, NULL, 1);
1976 if (type != NULL)
1977 return type;
1978
1979 /* Last chance, try a built-in type. */
1980 return language_lookup_primitive_type (current_parser->language (),
1981 current_parser->arch (),
1982 name);
1983 }
1984
1985 static struct type *convert_ast_to_type (struct parser_state *state,
1986 const struct rust_op *operation);
1987 static const char *convert_name (struct parser_state *state,
1988 const struct rust_op *operation);
1989
1990 /* Convert a vector of rust_ops representing types to a vector of
1991 types. */
1992
1993 static std::vector<struct type *>
1994 convert_params_to_types (struct parser_state *state, rust_op_vector *params)
1995 {
1996 std::vector<struct type *> result;
1997
1998 for (const rust_op *op : *params)
1999 result.push_back (convert_ast_to_type (state, op));
2000
2001 return result;
2002 }
2003
2004 /* Convert a rust_op representing a type to a struct type *. */
2005
2006 static struct type *
2007 convert_ast_to_type (struct parser_state *state,
2008 const struct rust_op *operation)
2009 {
2010 struct type *type, *result = NULL;
2011
2012 if (operation->opcode == OP_VAR_VALUE)
2013 {
2014 const char *varname = convert_name (state, operation);
2015
2016 result = rust_lookup_type (varname, expression_context_block);
2017 if (result == NULL)
2018 error (_("No typed name '%s' in current context"), varname);
2019 return result;
2020 }
2021
2022 gdb_assert (operation->opcode == OP_TYPE);
2023
2024 switch (operation->typecode)
2025 {
2026 case TYPE_CODE_ARRAY:
2027 type = convert_ast_to_type (state, operation->left.op);
2028 if (operation->right.typed_val_int.val < 0)
2029 error (_("Negative array length"));
2030 result = lookup_array_range_type (type, 0,
2031 operation->right.typed_val_int.val - 1);
2032 break;
2033
2034 case TYPE_CODE_COMPLEX:
2035 {
2036 struct type *usize = rust_type ("usize");
2037
2038 type = convert_ast_to_type (state, operation->left.op);
2039 result = rust_slice_type ("&[*gdb*]", type, usize);
2040 }
2041 break;
2042
2043 case TYPE_CODE_REF:
2044 case TYPE_CODE_PTR:
2045 /* For now we treat &x and *x identically. */
2046 type = convert_ast_to_type (state, operation->left.op);
2047 result = lookup_pointer_type (type);
2048 break;
2049
2050 case TYPE_CODE_FUNC:
2051 {
2052 std::vector<struct type *> args
2053 (convert_params_to_types (state, operation->right.params));
2054 struct type **argtypes = NULL;
2055
2056 type = convert_ast_to_type (state, operation->left.op);
2057 if (!args.empty ())
2058 argtypes = args.data ();
2059
2060 result
2061 = lookup_function_type_with_arguments (type, args.size (),
2062 argtypes);
2063 result = lookup_pointer_type (result);
2064 }
2065 break;
2066
2067 case TYPE_CODE_STRUCT:
2068 {
2069 std::vector<struct type *> args
2070 (convert_params_to_types (state, operation->left.params));
2071 int i;
2072 struct type *type;
2073 const char *name;
2074
2075 obstack_1grow (work_obstack, '(');
2076 for (i = 0; i < args.size (); ++i)
2077 {
2078 std::string type_name = type_to_string (args[i]);
2079
2080 if (i > 0)
2081 obstack_1grow (work_obstack, ',');
2082 obstack_grow_str (work_obstack, type_name.c_str ());
2083 }
2084
2085 obstack_grow_str0 (work_obstack, ")");
2086 name = (const char *) obstack_finish (work_obstack);
2087
2088 /* We don't allow creating new tuple types (yet), but we do
2089 allow looking up existing tuple types. */
2090 result = rust_lookup_type (name, expression_context_block);
2091 if (result == NULL)
2092 error (_("could not find tuple type '%s'"), name);
2093 }
2094 break;
2095
2096 default:
2097 gdb_assert_not_reached ("unhandled opcode in convert_ast_to_type");
2098 }
2099
2100 gdb_assert (result != NULL);
2101 return result;
2102 }
2103
2104 /* A helper function to turn a rust_op representing a name into a full
2105 name. This applies generic arguments as needed. The returned name
2106 is allocated on the work obstack. */
2107
2108 static const char *
2109 convert_name (struct parser_state *state, const struct rust_op *operation)
2110 {
2111 int i;
2112
2113 gdb_assert (operation->opcode == OP_VAR_VALUE);
2114
2115 if (operation->right.params == NULL)
2116 return operation->left.sval.ptr;
2117
2118 std::vector<struct type *> types
2119 (convert_params_to_types (state, operation->right.params));
2120
2121 obstack_grow_str (work_obstack, operation->left.sval.ptr);
2122 obstack_1grow (work_obstack, '<');
2123 for (i = 0; i < types.size (); ++i)
2124 {
2125 std::string type_name = type_to_string (types[i]);
2126
2127 if (i > 0)
2128 obstack_1grow (work_obstack, ',');
2129
2130 obstack_grow_str (work_obstack, type_name.c_str ());
2131 }
2132 obstack_grow_str0 (work_obstack, ">");
2133
2134 return (const char *) obstack_finish (work_obstack);
2135 }
2136
2137 static void convert_ast_to_expression (struct parser_state *state,
2138 const struct rust_op *operation,
2139 const struct rust_op *top,
2140 bool want_type = false);
2141
2142 /* A helper function that converts a vec of rust_ops to a gdb
2143 expression. */
2144
2145 static void
2146 convert_params_to_expression (struct parser_state *state,
2147 rust_op_vector *params,
2148 const struct rust_op *top)
2149 {
2150 for (const rust_op *elem : *params)
2151 convert_ast_to_expression (state, elem, top);
2152 }
2153
2154 /* Lower a rust_op to a gdb expression. STATE is the parser state.
2155 OPERATION is the operation to lower. TOP is a pointer to the
2156 top-most operation; it is used to handle the special case where the
2157 top-most expression is an identifier and can be optionally lowered
2158 to OP_TYPE. WANT_TYPE is a flag indicating that, if the expression
2159 is the name of a type, then emit an OP_TYPE for it (rather than
2160 erroring). If WANT_TYPE is set, then the similar TOP handling is
2161 not done. */
2162
2163 static void
2164 convert_ast_to_expression (struct parser_state *state,
2165 const struct rust_op *operation,
2166 const struct rust_op *top,
2167 bool want_type)
2168 {
2169 switch (operation->opcode)
2170 {
2171 case OP_LONG:
2172 write_exp_elt_opcode (state, OP_LONG);
2173 write_exp_elt_type (state, operation->left.typed_val_int.type);
2174 write_exp_elt_longcst (state, operation->left.typed_val_int.val);
2175 write_exp_elt_opcode (state, OP_LONG);
2176 break;
2177
2178 case OP_FLOAT:
2179 write_exp_elt_opcode (state, OP_FLOAT);
2180 write_exp_elt_type (state, operation->left.typed_val_float.type);
2181 write_exp_elt_floatcst (state, operation->left.typed_val_float.val);
2182 write_exp_elt_opcode (state, OP_FLOAT);
2183 break;
2184
2185 case STRUCTOP_STRUCT:
2186 {
2187 convert_ast_to_expression (state, operation->left.op, top);
2188
2189 if (operation->completing)
2190 mark_struct_expression (state);
2191 write_exp_elt_opcode (state, STRUCTOP_STRUCT);
2192 write_exp_string (state, operation->right.sval);
2193 write_exp_elt_opcode (state, STRUCTOP_STRUCT);
2194 }
2195 break;
2196
2197 case STRUCTOP_ANONYMOUS:
2198 {
2199 convert_ast_to_expression (state, operation->left.op, top);
2200
2201 write_exp_elt_opcode (state, STRUCTOP_ANONYMOUS);
2202 write_exp_elt_longcst (state, operation->right.typed_val_int.val);
2203 write_exp_elt_opcode (state, STRUCTOP_ANONYMOUS);
2204 }
2205 break;
2206
2207 case UNOP_SIZEOF:
2208 convert_ast_to_expression (state, operation->left.op, top, true);
2209 write_exp_elt_opcode (state, UNOP_SIZEOF);
2210 break;
2211
2212 case UNOP_PLUS:
2213 case UNOP_NEG:
2214 case UNOP_COMPLEMENT:
2215 case UNOP_IND:
2216 case UNOP_ADDR:
2217 convert_ast_to_expression (state, operation->left.op, top);
2218 write_exp_elt_opcode (state, operation->opcode);
2219 break;
2220
2221 case BINOP_SUBSCRIPT:
2222 case BINOP_MUL:
2223 case BINOP_REPEAT:
2224 case BINOP_DIV:
2225 case BINOP_REM:
2226 case BINOP_LESS:
2227 case BINOP_GTR:
2228 case BINOP_BITWISE_AND:
2229 case BINOP_BITWISE_IOR:
2230 case BINOP_BITWISE_XOR:
2231 case BINOP_ADD:
2232 case BINOP_SUB:
2233 case BINOP_LOGICAL_OR:
2234 case BINOP_LOGICAL_AND:
2235 case BINOP_EQUAL:
2236 case BINOP_NOTEQUAL:
2237 case BINOP_LEQ:
2238 case BINOP_GEQ:
2239 case BINOP_LSH:
2240 case BINOP_RSH:
2241 case BINOP_ASSIGN:
2242 case OP_RUST_ARRAY:
2243 convert_ast_to_expression (state, operation->left.op, top);
2244 convert_ast_to_expression (state, operation->right.op, top);
2245 if (operation->compound_assignment)
2246 {
2247 write_exp_elt_opcode (state, BINOP_ASSIGN_MODIFY);
2248 write_exp_elt_opcode (state, operation->opcode);
2249 write_exp_elt_opcode (state, BINOP_ASSIGN_MODIFY);
2250 }
2251 else
2252 write_exp_elt_opcode (state, operation->opcode);
2253
2254 if (operation->compound_assignment
2255 || operation->opcode == BINOP_ASSIGN)
2256 {
2257 struct type *type;
2258
2259 type = language_lookup_primitive_type (parse_language (state),
2260 parse_gdbarch (state),
2261 "()");
2262
2263 write_exp_elt_opcode (state, OP_LONG);
2264 write_exp_elt_type (state, type);
2265 write_exp_elt_longcst (state, 0);
2266 write_exp_elt_opcode (state, OP_LONG);
2267
2268 write_exp_elt_opcode (state, BINOP_COMMA);
2269 }
2270 break;
2271
2272 case UNOP_CAST:
2273 {
2274 struct type *type = convert_ast_to_type (state, operation->right.op);
2275
2276 convert_ast_to_expression (state, operation->left.op, top);
2277 write_exp_elt_opcode (state, UNOP_CAST);
2278 write_exp_elt_type (state, type);
2279 write_exp_elt_opcode (state, UNOP_CAST);
2280 }
2281 break;
2282
2283 case OP_FUNCALL:
2284 {
2285 if (operation->left.op->opcode == OP_VAR_VALUE)
2286 {
2287 struct type *type;
2288 const char *varname = convert_name (state, operation->left.op);
2289
2290 type = rust_lookup_type (varname, expression_context_block);
2291 if (type != NULL)
2292 {
2293 /* This is actually a tuple struct expression, not a
2294 call expression. */
2295 rust_op_vector *params = operation->right.params;
2296
2297 if (TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
2298 {
2299 if (!rust_tuple_struct_type_p (type))
2300 error (_("Type %s is not a tuple struct"), varname);
2301
2302 for (int i = 0; i < params->size (); ++i)
2303 {
2304 char *cell = get_print_cell ();
2305
2306 xsnprintf (cell, PRINT_CELL_SIZE, "__%d", i);
2307 write_exp_elt_opcode (state, OP_NAME);
2308 write_exp_string (state, make_stoken (cell));
2309 write_exp_elt_opcode (state, OP_NAME);
2310
2311 convert_ast_to_expression (state, (*params)[i], top);
2312 }
2313
2314 write_exp_elt_opcode (state, OP_AGGREGATE);
2315 write_exp_elt_type (state, type);
2316 write_exp_elt_longcst (state, 2 * params->size ());
2317 write_exp_elt_opcode (state, OP_AGGREGATE);
2318 break;
2319 }
2320 }
2321 }
2322 convert_ast_to_expression (state, operation->left.op, top);
2323 convert_params_to_expression (state, operation->right.params, top);
2324 write_exp_elt_opcode (state, OP_FUNCALL);
2325 write_exp_elt_longcst (state, operation->right.params->size ());
2326 write_exp_elt_longcst (state, OP_FUNCALL);
2327 }
2328 break;
2329
2330 case OP_ARRAY:
2331 gdb_assert (operation->left.op == NULL);
2332 convert_params_to_expression (state, operation->right.params, top);
2333 write_exp_elt_opcode (state, OP_ARRAY);
2334 write_exp_elt_longcst (state, 0);
2335 write_exp_elt_longcst (state, operation->right.params->size () - 1);
2336 write_exp_elt_longcst (state, OP_ARRAY);
2337 break;
2338
2339 case OP_VAR_VALUE:
2340 {
2341 struct block_symbol sym;
2342 const char *varname;
2343
2344 if (operation->left.sval.ptr[0] == '$')
2345 {
2346 write_dollar_variable (state, operation->left.sval);
2347 break;
2348 }
2349
2350 varname = convert_name (state, operation);
2351 sym = rust_lookup_symbol (varname, expression_context_block,
2352 VAR_DOMAIN);
2353 if (sym.symbol != NULL && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
2354 {
2355 write_exp_elt_opcode (state, OP_VAR_VALUE);
2356 write_exp_elt_block (state, sym.block);
2357 write_exp_elt_sym (state, sym.symbol);
2358 write_exp_elt_opcode (state, OP_VAR_VALUE);
2359 }
2360 else
2361 {
2362 struct type *type = NULL;
2363
2364 if (sym.symbol != NULL)
2365 {
2366 gdb_assert (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF);
2367 type = SYMBOL_TYPE (sym.symbol);
2368 }
2369 if (type == NULL)
2370 type = rust_lookup_type (varname, expression_context_block);
2371 if (type == NULL)
2372 error (_("No symbol '%s' in current context"), varname);
2373
2374 if (!want_type
2375 && TYPE_CODE (type) == TYPE_CODE_STRUCT
2376 && TYPE_NFIELDS (type) == 0)
2377 {
2378 /* A unit-like struct. */
2379 write_exp_elt_opcode (state, OP_AGGREGATE);
2380 write_exp_elt_type (state, type);
2381 write_exp_elt_longcst (state, 0);
2382 write_exp_elt_opcode (state, OP_AGGREGATE);
2383 }
2384 else if (want_type || operation == top)
2385 {
2386 write_exp_elt_opcode (state, OP_TYPE);
2387 write_exp_elt_type (state, type);
2388 write_exp_elt_opcode (state, OP_TYPE);
2389 }
2390 else
2391 error (_("Found type '%s', which can't be "
2392 "evaluated in this context"),
2393 varname);
2394 }
2395 }
2396 break;
2397
2398 case OP_AGGREGATE:
2399 {
2400 int i;
2401 int length;
2402 rust_set_vector *fields = operation->right.field_inits;
2403 struct type *type;
2404 const char *name;
2405
2406 length = 0;
2407 for (const set_field &init : *fields)
2408 {
2409 if (init.name.ptr != NULL)
2410 {
2411 write_exp_elt_opcode (state, OP_NAME);
2412 write_exp_string (state, init.name);
2413 write_exp_elt_opcode (state, OP_NAME);
2414 ++length;
2415 }
2416
2417 convert_ast_to_expression (state, init.init, top);
2418 ++length;
2419
2420 if (init.name.ptr == NULL)
2421 {
2422 /* This is handled differently from Ada in our
2423 evaluator. */
2424 write_exp_elt_opcode (state, OP_OTHERS);
2425 }
2426 }
2427
2428 name = convert_name (state, operation->left.op);
2429 type = rust_lookup_type (name, expression_context_block);
2430 if (type == NULL)
2431 error (_("Could not find type '%s'"), operation->left.sval.ptr);
2432
2433 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2434 || rust_tuple_type_p (type)
2435 || rust_tuple_struct_type_p (type))
2436 error (_("Struct expression applied to non-struct type"));
2437
2438 write_exp_elt_opcode (state, OP_AGGREGATE);
2439 write_exp_elt_type (state, type);
2440 write_exp_elt_longcst (state, length);
2441 write_exp_elt_opcode (state, OP_AGGREGATE);
2442 }
2443 break;
2444
2445 case OP_STRING:
2446 {
2447 write_exp_elt_opcode (state, OP_STRING);
2448 write_exp_string (state, operation->left.sval);
2449 write_exp_elt_opcode (state, OP_STRING);
2450 }
2451 break;
2452
2453 case OP_RANGE:
2454 {
2455 enum range_type kind = BOTH_BOUND_DEFAULT;
2456
2457 if (operation->left.op != NULL)
2458 {
2459 convert_ast_to_expression (state, operation->left.op, top);
2460 kind = HIGH_BOUND_DEFAULT;
2461 }
2462 if (operation->right.op != NULL)
2463 {
2464 convert_ast_to_expression (state, operation->right.op, top);
2465 if (kind == BOTH_BOUND_DEFAULT)
2466 kind = LOW_BOUND_DEFAULT;
2467 else
2468 {
2469 gdb_assert (kind == HIGH_BOUND_DEFAULT);
2470 kind = NONE_BOUND_DEFAULT;
2471 }
2472 }
2473 write_exp_elt_opcode (state, OP_RANGE);
2474 write_exp_elt_longcst (state, kind);
2475 write_exp_elt_opcode (state, OP_RANGE);
2476 }
2477 break;
2478
2479 default:
2480 gdb_assert_not_reached ("unhandled opcode in convert_ast_to_expression");
2481 }
2482 }
2483
2484 \f
2485
2486 /* The parser as exposed to gdb. */
2487
2488 int
2489 rust_parse (struct parser_state *state)
2490 {
2491 int result;
2492
2493 /* This sets various globals and also clears them on
2494 destruction. */
2495 rust_parser parser (state);
2496
2497 result = rustyyparse ();
2498
2499 if (!result || (parse_completion && parser.rust_ast != NULL))
2500 convert_ast_to_expression (state, parser.rust_ast, parser.rust_ast);
2501
2502 return result;
2503 }
2504
2505 /* The parser error handler. */
2506
2507 void
2508 rustyyerror (const char *msg)
2509 {
2510 const char *where = prev_lexptr ? prev_lexptr : lexptr;
2511 error (_("%s in expression, near `%s'."), (msg ? msg : "Error"), where);
2512 }
2513
2514 \f
2515
2516 #if GDB_SELF_TEST
2517
2518 /* Initialize the lexer for testing. */
2519
2520 static void
2521 rust_lex_test_init (const char *input)
2522 {
2523 prev_lexptr = NULL;
2524 lexptr = input;
2525 paren_depth = 0;
2526 }
2527
2528 /* A test helper that lexes a string, expecting a single token. It
2529 returns the lexer data for this token. */
2530
2531 static RUSTSTYPE
2532 rust_lex_test_one (const char *input, int expected)
2533 {
2534 int token;
2535 RUSTSTYPE result;
2536
2537 rust_lex_test_init (input);
2538
2539 token = rustyylex ();
2540 SELF_CHECK (token == expected);
2541 result = rustyylval;
2542
2543 if (token)
2544 {
2545 token = rustyylex ();
2546 SELF_CHECK (token == 0);
2547 }
2548
2549 return result;
2550 }
2551
2552 /* Test that INPUT lexes as the integer VALUE. */
2553
2554 static void
2555 rust_lex_int_test (const char *input, int value, int kind)
2556 {
2557 RUSTSTYPE result = rust_lex_test_one (input, kind);
2558 SELF_CHECK (result.typed_val_int.val == value);
2559 }
2560
2561 /* Test that INPUT throws an exception with text ERR. */
2562
2563 static void
2564 rust_lex_exception_test (const char *input, const char *err)
2565 {
2566 TRY
2567 {
2568 /* The "kind" doesn't matter. */
2569 rust_lex_test_one (input, DECIMAL_INTEGER);
2570 SELF_CHECK (0);
2571 }
2572 CATCH (except, RETURN_MASK_ERROR)
2573 {
2574 SELF_CHECK (strcmp (except.message, err) == 0);
2575 }
2576 END_CATCH
2577 }
2578
2579 /* Test that INPUT lexes as the identifier, string, or byte-string
2580 VALUE. KIND holds the expected token kind. */
2581
2582 static void
2583 rust_lex_stringish_test (const char *input, const char *value, int kind)
2584 {
2585 RUSTSTYPE result = rust_lex_test_one (input, kind);
2586 SELF_CHECK (result.sval.length == strlen (value));
2587 SELF_CHECK (strncmp (result.sval.ptr, value, result.sval.length) == 0);
2588 }
2589
2590 /* Helper to test that a string parses as a given token sequence. */
2591
2592 static void
2593 rust_lex_test_sequence (const char *input, int len, const int expected[])
2594 {
2595 int i;
2596
2597 lexptr = input;
2598 paren_depth = 0;
2599
2600 for (i = 0; i < len; ++i)
2601 {
2602 int token = rustyylex ();
2603
2604 SELF_CHECK (token == expected[i]);
2605 }
2606 }
2607
2608 /* Tests for an integer-parsing corner case. */
2609
2610 static void
2611 rust_lex_test_trailing_dot (void)
2612 {
2613 const int expected1[] = { DECIMAL_INTEGER, '.', IDENT, '(', ')', 0 };
2614 const int expected2[] = { INTEGER, '.', IDENT, '(', ')', 0 };
2615 const int expected3[] = { FLOAT, EQEQ, '(', ')', 0 };
2616 const int expected4[] = { DECIMAL_INTEGER, DOTDOT, DECIMAL_INTEGER, 0 };
2617
2618 rust_lex_test_sequence ("23.g()", ARRAY_SIZE (expected1), expected1);
2619 rust_lex_test_sequence ("23_0.g()", ARRAY_SIZE (expected2), expected2);
2620 rust_lex_test_sequence ("23.==()", ARRAY_SIZE (expected3), expected3);
2621 rust_lex_test_sequence ("23..25", ARRAY_SIZE (expected4), expected4);
2622 }
2623
2624 /* Tests of completion. */
2625
2626 static void
2627 rust_lex_test_completion (void)
2628 {
2629 const int expected[] = { IDENT, '.', COMPLETE, 0 };
2630
2631 parse_completion = 1;
2632
2633 rust_lex_test_sequence ("something.wha", ARRAY_SIZE (expected), expected);
2634 rust_lex_test_sequence ("something.", ARRAY_SIZE (expected), expected);
2635
2636 parse_completion = 0;
2637 }
2638
2639 /* Test pushback. */
2640
2641 static void
2642 rust_lex_test_push_back (void)
2643 {
2644 int token;
2645
2646 rust_lex_test_init (">>=");
2647
2648 token = rustyylex ();
2649 SELF_CHECK (token == COMPOUND_ASSIGN);
2650 SELF_CHECK (rustyylval.opcode == BINOP_RSH);
2651
2652 rust_push_back ('=');
2653
2654 token = rustyylex ();
2655 SELF_CHECK (token == '=');
2656
2657 token = rustyylex ();
2658 SELF_CHECK (token == 0);
2659 }
2660
2661 /* Unit test the lexer. */
2662
2663 static void
2664 rust_lex_tests (void)
2665 {
2666 int i;
2667
2668 auto_obstack test_obstack;
2669 scoped_restore obstack_holder = make_scoped_restore (&work_obstack,
2670 &test_obstack);
2671
2672 // Set up dummy "parser", so that rust_type works.
2673 struct parser_state ps;
2674 initialize_expout (&ps, 0, &rust_language_defn, target_gdbarch ());
2675 rust_parser parser (&ps);
2676
2677 rust_lex_test_one ("", 0);
2678 rust_lex_test_one (" \t \n \r ", 0);
2679 rust_lex_test_one ("thread 23", 0);
2680 rust_lex_test_one ("task 23", 0);
2681 rust_lex_test_one ("th 104", 0);
2682 rust_lex_test_one ("ta 97", 0);
2683
2684 rust_lex_int_test ("'z'", 'z', INTEGER);
2685 rust_lex_int_test ("'\\xff'", 0xff, INTEGER);
2686 rust_lex_int_test ("'\\u{1016f}'", 0x1016f, INTEGER);
2687 rust_lex_int_test ("b'z'", 'z', INTEGER);
2688 rust_lex_int_test ("b'\\xfe'", 0xfe, INTEGER);
2689 rust_lex_int_test ("b'\\xFE'", 0xfe, INTEGER);
2690 rust_lex_int_test ("b'\\xfE'", 0xfe, INTEGER);
2691
2692 /* Test all escapes in both modes. */
2693 rust_lex_int_test ("'\\n'", '\n', INTEGER);
2694 rust_lex_int_test ("'\\r'", '\r', INTEGER);
2695 rust_lex_int_test ("'\\t'", '\t', INTEGER);
2696 rust_lex_int_test ("'\\\\'", '\\', INTEGER);
2697 rust_lex_int_test ("'\\0'", '\0', INTEGER);
2698 rust_lex_int_test ("'\\''", '\'', INTEGER);
2699 rust_lex_int_test ("'\\\"'", '"', INTEGER);
2700
2701 rust_lex_int_test ("b'\\n'", '\n', INTEGER);
2702 rust_lex_int_test ("b'\\r'", '\r', INTEGER);
2703 rust_lex_int_test ("b'\\t'", '\t', INTEGER);
2704 rust_lex_int_test ("b'\\\\'", '\\', INTEGER);
2705 rust_lex_int_test ("b'\\0'", '\0', INTEGER);
2706 rust_lex_int_test ("b'\\''", '\'', INTEGER);
2707 rust_lex_int_test ("b'\\\"'", '"', INTEGER);
2708
2709 rust_lex_exception_test ("'z", "Unterminated character literal");
2710 rust_lex_exception_test ("b'\\x0'", "Not enough hex digits seen");
2711 rust_lex_exception_test ("b'\\u{0}'", "Unicode escape in byte literal");
2712 rust_lex_exception_test ("'\\x0'", "Not enough hex digits seen");
2713 rust_lex_exception_test ("'\\u0'", "Missing '{' in Unicode escape");
2714 rust_lex_exception_test ("'\\u{0", "Missing '}' in Unicode escape");
2715 rust_lex_exception_test ("'\\u{0000007}", "Overlong hex escape");
2716 rust_lex_exception_test ("'\\u{}", "Not enough hex digits seen");
2717 rust_lex_exception_test ("'\\Q'", "Invalid escape \\Q in literal");
2718 rust_lex_exception_test ("b'\\Q'", "Invalid escape \\Q in literal");
2719
2720 rust_lex_int_test ("23", 23, DECIMAL_INTEGER);
2721 rust_lex_int_test ("2_344__29", 234429, INTEGER);
2722 rust_lex_int_test ("0x1f", 0x1f, INTEGER);
2723 rust_lex_int_test ("23usize", 23, INTEGER);
2724 rust_lex_int_test ("23i32", 23, INTEGER);
2725 rust_lex_int_test ("0x1_f", 0x1f, INTEGER);
2726 rust_lex_int_test ("0b1_101011__", 0x6b, INTEGER);
2727 rust_lex_int_test ("0o001177i64", 639, INTEGER);
2728
2729 rust_lex_test_trailing_dot ();
2730
2731 rust_lex_test_one ("23.", FLOAT);
2732 rust_lex_test_one ("23.99f32", FLOAT);
2733 rust_lex_test_one ("23e7", FLOAT);
2734 rust_lex_test_one ("23E-7", FLOAT);
2735 rust_lex_test_one ("23e+7", FLOAT);
2736 rust_lex_test_one ("23.99e+7f64", FLOAT);
2737 rust_lex_test_one ("23.82f32", FLOAT);
2738
2739 rust_lex_stringish_test ("hibob", "hibob", IDENT);
2740 rust_lex_stringish_test ("hibob__93", "hibob__93", IDENT);
2741 rust_lex_stringish_test ("thread", "thread", IDENT);
2742
2743 rust_lex_stringish_test ("\"string\"", "string", STRING);
2744 rust_lex_stringish_test ("\"str\\ting\"", "str\ting", STRING);
2745 rust_lex_stringish_test ("\"str\\\"ing\"", "str\"ing", STRING);
2746 rust_lex_stringish_test ("r\"str\\ing\"", "str\\ing", STRING);
2747 rust_lex_stringish_test ("r#\"str\\ting\"#", "str\\ting", STRING);
2748 rust_lex_stringish_test ("r###\"str\\\"ing\"###", "str\\\"ing", STRING);
2749
2750 rust_lex_stringish_test ("b\"string\"", "string", BYTESTRING);
2751 rust_lex_stringish_test ("b\"\x73tring\"", "string", BYTESTRING);
2752 rust_lex_stringish_test ("b\"str\\\"ing\"", "str\"ing", BYTESTRING);
2753 rust_lex_stringish_test ("br####\"\\x73tring\"####", "\\x73tring",
2754 BYTESTRING);
2755
2756 for (i = 0; i < ARRAY_SIZE (identifier_tokens); ++i)
2757 rust_lex_test_one (identifier_tokens[i].name, identifier_tokens[i].value);
2758
2759 for (i = 0; i < ARRAY_SIZE (operator_tokens); ++i)
2760 rust_lex_test_one (operator_tokens[i].name, operator_tokens[i].value);
2761
2762 rust_lex_test_completion ();
2763 rust_lex_test_push_back ();
2764 }
2765
2766 #endif /* GDB_SELF_TEST */
2767
2768 void
2769 _initialize_rust_exp (void)
2770 {
2771 int code = regcomp (&number_regex, number_regex_text, REG_EXTENDED);
2772 /* If the regular expression was incorrect, it was a programming
2773 error. */
2774 gdb_assert (code == 0);
2775
2776 #if GDB_SELF_TEST
2777 selftests::register_test ("rust-lex", rust_lex_tests);
2778 #endif
2779 }