]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rx-tdep.c
Update copyright year range in all GDB files.
[thirdparty/binutils-gdb.git] / gdb / rx-tdep.c
1 /* Target-dependent code for the Renesas RX for GDB, the GNU debugger.
2
3 Copyright (C) 2008-2019 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "prologue-value.h"
25 #include "target.h"
26 #include "regcache.h"
27 #include "opcode/rx.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2-frame.h"
36
37 #include "elf/rx.h"
38 #include "elf-bfd.h"
39 #include <algorithm>
40
41 /* Certain important register numbers. */
42 enum
43 {
44 RX_SP_REGNUM = 0,
45 RX_R1_REGNUM = 1,
46 RX_R4_REGNUM = 4,
47 RX_FP_REGNUM = 6,
48 RX_R15_REGNUM = 15,
49 RX_USP_REGNUM = 16,
50 RX_PSW_REGNUM = 18,
51 RX_PC_REGNUM = 19,
52 RX_BPSW_REGNUM = 21,
53 RX_BPC_REGNUM = 22,
54 RX_FPSW_REGNUM = 24,
55 RX_ACC_REGNUM = 25,
56 RX_NUM_REGS = 26
57 };
58
59 /* RX frame types. */
60 enum rx_frame_type {
61 RX_FRAME_TYPE_NORMAL,
62 RX_FRAME_TYPE_EXCEPTION,
63 RX_FRAME_TYPE_FAST_INTERRUPT
64 };
65
66 /* Architecture specific data. */
67 struct gdbarch_tdep
68 {
69 /* The ELF header flags specify the multilib used. */
70 int elf_flags;
71
72 /* Type of PSW and BPSW. */
73 struct type *rx_psw_type;
74
75 /* Type of FPSW. */
76 struct type *rx_fpsw_type;
77 };
78
79 /* This structure holds the results of a prologue analysis. */
80 struct rx_prologue
81 {
82 /* Frame type, either a normal frame or one of two types of exception
83 frames. */
84 enum rx_frame_type frame_type;
85
86 /* The offset from the frame base to the stack pointer --- always
87 zero or negative.
88
89 Calling this a "size" is a bit misleading, but given that the
90 stack grows downwards, using offsets for everything keeps one
91 from going completely sign-crazy: you never change anything's
92 sign for an ADD instruction; always change the second operand's
93 sign for a SUB instruction; and everything takes care of
94 itself. */
95 int frame_size;
96
97 /* Non-zero if this function has initialized the frame pointer from
98 the stack pointer, zero otherwise. */
99 int has_frame_ptr;
100
101 /* If has_frame_ptr is non-zero, this is the offset from the frame
102 base to where the frame pointer points. This is always zero or
103 negative. */
104 int frame_ptr_offset;
105
106 /* The address of the first instruction at which the frame has been
107 set up and the arguments are where the debug info says they are
108 --- as best as we can tell. */
109 CORE_ADDR prologue_end;
110
111 /* reg_offset[R] is the offset from the CFA at which register R is
112 saved, or 1 if register R has not been saved. (Real values are
113 always zero or negative.) */
114 int reg_offset[RX_NUM_REGS];
115 };
116
117 /* Implement the "register_name" gdbarch method. */
118 static const char *
119 rx_register_name (struct gdbarch *gdbarch, int regnr)
120 {
121 static const char *const reg_names[] = {
122 "r0",
123 "r1",
124 "r2",
125 "r3",
126 "r4",
127 "r5",
128 "r6",
129 "r7",
130 "r8",
131 "r9",
132 "r10",
133 "r11",
134 "r12",
135 "r13",
136 "r14",
137 "r15",
138 "usp",
139 "isp",
140 "psw",
141 "pc",
142 "intb",
143 "bpsw",
144 "bpc",
145 "fintv",
146 "fpsw",
147 "acc"
148 };
149
150 return reg_names[regnr];
151 }
152
153 /* Construct the flags type for PSW and BPSW. */
154
155 static struct type *
156 rx_psw_type (struct gdbarch *gdbarch)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 if (tdep->rx_psw_type == NULL)
161 {
162 tdep->rx_psw_type = arch_flags_type (gdbarch, "rx_psw_type", 32);
163 append_flags_type_flag (tdep->rx_psw_type, 0, "C");
164 append_flags_type_flag (tdep->rx_psw_type, 1, "Z");
165 append_flags_type_flag (tdep->rx_psw_type, 2, "S");
166 append_flags_type_flag (tdep->rx_psw_type, 3, "O");
167 append_flags_type_flag (tdep->rx_psw_type, 16, "I");
168 append_flags_type_flag (tdep->rx_psw_type, 17, "U");
169 append_flags_type_flag (tdep->rx_psw_type, 20, "PM");
170 append_flags_type_flag (tdep->rx_psw_type, 24, "IPL0");
171 append_flags_type_flag (tdep->rx_psw_type, 25, "IPL1");
172 append_flags_type_flag (tdep->rx_psw_type, 26, "IPL2");
173 append_flags_type_flag (tdep->rx_psw_type, 27, "IPL3");
174 }
175 return tdep->rx_psw_type;
176 }
177
178 /* Construct flags type for FPSW. */
179
180 static struct type *
181 rx_fpsw_type (struct gdbarch *gdbarch)
182 {
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 if (tdep->rx_fpsw_type == NULL)
186 {
187 tdep->rx_fpsw_type = arch_flags_type (gdbarch, "rx_fpsw_type", 32);
188 append_flags_type_flag (tdep->rx_fpsw_type, 0, "RM0");
189 append_flags_type_flag (tdep->rx_fpsw_type, 1, "RM1");
190 append_flags_type_flag (tdep->rx_fpsw_type, 2, "CV");
191 append_flags_type_flag (tdep->rx_fpsw_type, 3, "CO");
192 append_flags_type_flag (tdep->rx_fpsw_type, 4, "CZ");
193 append_flags_type_flag (tdep->rx_fpsw_type, 5, "CU");
194 append_flags_type_flag (tdep->rx_fpsw_type, 6, "CX");
195 append_flags_type_flag (tdep->rx_fpsw_type, 7, "CE");
196 append_flags_type_flag (tdep->rx_fpsw_type, 8, "DN");
197 append_flags_type_flag (tdep->rx_fpsw_type, 10, "EV");
198 append_flags_type_flag (tdep->rx_fpsw_type, 11, "EO");
199 append_flags_type_flag (tdep->rx_fpsw_type, 12, "EZ");
200 append_flags_type_flag (tdep->rx_fpsw_type, 13, "EU");
201 append_flags_type_flag (tdep->rx_fpsw_type, 14, "EX");
202 append_flags_type_flag (tdep->rx_fpsw_type, 26, "FV");
203 append_flags_type_flag (tdep->rx_fpsw_type, 27, "FO");
204 append_flags_type_flag (tdep->rx_fpsw_type, 28, "FZ");
205 append_flags_type_flag (tdep->rx_fpsw_type, 29, "FU");
206 append_flags_type_flag (tdep->rx_fpsw_type, 30, "FX");
207 append_flags_type_flag (tdep->rx_fpsw_type, 31, "FS");
208 }
209
210 return tdep->rx_fpsw_type;
211 }
212
213 /* Implement the "register_type" gdbarch method. */
214 static struct type *
215 rx_register_type (struct gdbarch *gdbarch, int reg_nr)
216 {
217 if (reg_nr == RX_PC_REGNUM)
218 return builtin_type (gdbarch)->builtin_func_ptr;
219 else if (reg_nr == RX_PSW_REGNUM || reg_nr == RX_BPSW_REGNUM)
220 return rx_psw_type (gdbarch);
221 else if (reg_nr == RX_FPSW_REGNUM)
222 return rx_fpsw_type (gdbarch);
223 else if (reg_nr == RX_ACC_REGNUM)
224 return builtin_type (gdbarch)->builtin_unsigned_long_long;
225 else
226 return builtin_type (gdbarch)->builtin_unsigned_long;
227 }
228
229
230 /* Function for finding saved registers in a 'struct pv_area'; this
231 function is passed to pv_area::scan.
232
233 If VALUE is a saved register, ADDR says it was saved at a constant
234 offset from the frame base, and SIZE indicates that the whole
235 register was saved, record its offset. */
236 static void
237 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
238 {
239 struct rx_prologue *result = (struct rx_prologue *) result_untyped;
240
241 if (value.kind == pvk_register
242 && value.k == 0
243 && pv_is_register (addr, RX_SP_REGNUM)
244 && size == register_size (target_gdbarch (), value.reg))
245 result->reg_offset[value.reg] = addr.k;
246 }
247
248 /* Define a "handle" struct for fetching the next opcode. */
249 struct rx_get_opcode_byte_handle
250 {
251 CORE_ADDR pc;
252 };
253
254 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
255 the memory address of the next byte to fetch. If successful,
256 the address in the handle is updated and the byte fetched is
257 returned as the value of the function. If not successful, -1
258 is returned. */
259 static int
260 rx_get_opcode_byte (void *handle)
261 {
262 struct rx_get_opcode_byte_handle *opcdata
263 = (struct rx_get_opcode_byte_handle *) handle;
264 int status;
265 gdb_byte byte;
266
267 status = target_read_code (opcdata->pc, &byte, 1);
268 if (status == 0)
269 {
270 opcdata->pc += 1;
271 return byte;
272 }
273 else
274 return -1;
275 }
276
277 /* Analyze a prologue starting at START_PC, going no further than
278 LIMIT_PC. Fill in RESULT as appropriate. */
279
280 static void
281 rx_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
282 enum rx_frame_type frame_type,
283 struct rx_prologue *result)
284 {
285 CORE_ADDR pc, next_pc;
286 int rn;
287 pv_t reg[RX_NUM_REGS];
288 CORE_ADDR after_last_frame_setup_insn = start_pc;
289
290 memset (result, 0, sizeof (*result));
291
292 result->frame_type = frame_type;
293
294 for (rn = 0; rn < RX_NUM_REGS; rn++)
295 {
296 reg[rn] = pv_register (rn, 0);
297 result->reg_offset[rn] = 1;
298 }
299
300 pv_area stack (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
301
302 if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT)
303 {
304 /* This code won't do anything useful at present, but this is
305 what happens for fast interrupts. */
306 reg[RX_BPSW_REGNUM] = reg[RX_PSW_REGNUM];
307 reg[RX_BPC_REGNUM] = reg[RX_PC_REGNUM];
308 }
309 else
310 {
311 /* When an exception occurs, the PSW is saved to the interrupt stack
312 first. */
313 if (frame_type == RX_FRAME_TYPE_EXCEPTION)
314 {
315 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
316 stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PSW_REGNUM]);
317 }
318
319 /* The call instruction (or an exception/interrupt) has saved the return
320 address on the stack. */
321 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
322 stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]);
323
324 }
325
326
327 pc = start_pc;
328 while (pc < limit_pc)
329 {
330 int bytes_read;
331 struct rx_get_opcode_byte_handle opcode_handle;
332 RX_Opcode_Decoded opc;
333
334 opcode_handle.pc = pc;
335 bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
336 &opcode_handle);
337 next_pc = pc + bytes_read;
338
339 if (opc.id == RXO_pushm /* pushm r1, r2 */
340 && opc.op[1].type == RX_Operand_Register
341 && opc.op[2].type == RX_Operand_Register)
342 {
343 int r1, r2;
344 int r;
345
346 r1 = opc.op[1].reg;
347 r2 = opc.op[2].reg;
348 for (r = r2; r >= r1; r--)
349 {
350 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
351 stack.store (reg[RX_SP_REGNUM], 4, reg[r]);
352 }
353 after_last_frame_setup_insn = next_pc;
354 }
355 else if (opc.id == RXO_mov /* mov.l rdst, rsrc */
356 && opc.op[0].type == RX_Operand_Register
357 && opc.op[1].type == RX_Operand_Register
358 && opc.size == RX_Long)
359 {
360 int rdst, rsrc;
361
362 rdst = opc.op[0].reg;
363 rsrc = opc.op[1].reg;
364 reg[rdst] = reg[rsrc];
365 if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM)
366 after_last_frame_setup_insn = next_pc;
367 }
368 else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */
369 && opc.op[0].type == RX_Operand_Predec
370 && opc.op[0].reg == RX_SP_REGNUM
371 && opc.op[1].type == RX_Operand_Register
372 && opc.size == RX_Long)
373 {
374 int rsrc;
375
376 rsrc = opc.op[1].reg;
377 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
378 stack.store (reg[RX_SP_REGNUM], 4, reg[rsrc]);
379 after_last_frame_setup_insn = next_pc;
380 }
381 else if (opc.id == RXO_add /* add #const, rsrc, rdst */
382 && opc.op[0].type == RX_Operand_Register
383 && opc.op[1].type == RX_Operand_Immediate
384 && opc.op[2].type == RX_Operand_Register)
385 {
386 int rdst = opc.op[0].reg;
387 int addend = opc.op[1].addend;
388 int rsrc = opc.op[2].reg;
389 reg[rdst] = pv_add_constant (reg[rsrc], addend);
390 /* Negative adjustments to the stack pointer or frame pointer
391 are (most likely) part of the prologue. */
392 if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0)
393 after_last_frame_setup_insn = next_pc;
394 }
395 else if (opc.id == RXO_mov
396 && opc.op[0].type == RX_Operand_Indirect
397 && opc.op[1].type == RX_Operand_Register
398 && opc.size == RX_Long
399 && (opc.op[0].reg == RX_SP_REGNUM
400 || opc.op[0].reg == RX_FP_REGNUM)
401 && (RX_R1_REGNUM <= opc.op[1].reg
402 && opc.op[1].reg <= RX_R4_REGNUM))
403 {
404 /* This moves an argument register to the stack. Don't
405 record it, but allow it to be a part of the prologue. */
406 }
407 else if (opc.id == RXO_branch
408 && opc.op[0].type == RX_Operand_Immediate
409 && next_pc < opc.op[0].addend)
410 {
411 /* When a loop appears as the first statement of a function
412 body, gcc 4.x will use a BRA instruction to branch to the
413 loop condition checking code. This BRA instruction is
414 marked as part of the prologue. We therefore set next_pc
415 to this branch target and also stop the prologue scan.
416 The instructions at and beyond the branch target should
417 no longer be associated with the prologue.
418
419 Note that we only consider forward branches here. We
420 presume that a forward branch is being used to skip over
421 a loop body.
422
423 A backwards branch is covered by the default case below.
424 If we were to encounter a backwards branch, that would
425 most likely mean that we've scanned through a loop body.
426 We definitely want to stop the prologue scan when this
427 happens and that is precisely what is done by the default
428 case below. */
429
430 after_last_frame_setup_insn = opc.op[0].addend;
431 break; /* Scan no further if we hit this case. */
432 }
433 else
434 {
435 /* Terminate the prologue scan. */
436 break;
437 }
438
439 pc = next_pc;
440 }
441
442 /* Is the frame size (offset, really) a known constant? */
443 if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM))
444 result->frame_size = reg[RX_SP_REGNUM].k;
445
446 /* Was the frame pointer initialized? */
447 if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM))
448 {
449 result->has_frame_ptr = 1;
450 result->frame_ptr_offset = reg[RX_FP_REGNUM].k;
451 }
452
453 /* Record where all the registers were saved. */
454 stack.scan (check_for_saved, (void *) result);
455
456 result->prologue_end = after_last_frame_setup_insn;
457 }
458
459
460 /* Implement the "skip_prologue" gdbarch method. */
461 static CORE_ADDR
462 rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
463 {
464 const char *name;
465 CORE_ADDR func_addr, func_end;
466 struct rx_prologue p;
467
468 /* Try to find the extent of the function that contains PC. */
469 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
470 return pc;
471
472 /* The frame type doesn't matter here, since we only care about
473 where the prologue ends. We'll use RX_FRAME_TYPE_NORMAL. */
474 rx_analyze_prologue (pc, func_end, RX_FRAME_TYPE_NORMAL, &p);
475 return p.prologue_end;
476 }
477
478 /* Given a frame described by THIS_FRAME, decode the prologue of its
479 associated function if there is not cache entry as specified by
480 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
481 return that struct as the value of this function. */
482
483 static struct rx_prologue *
484 rx_analyze_frame_prologue (struct frame_info *this_frame,
485 enum rx_frame_type frame_type,
486 void **this_prologue_cache)
487 {
488 if (!*this_prologue_cache)
489 {
490 CORE_ADDR func_start, stop_addr;
491
492 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue);
493
494 func_start = get_frame_func (this_frame);
495 stop_addr = get_frame_pc (this_frame);
496
497 /* If we couldn't find any function containing the PC, then
498 just initialize the prologue cache, but don't do anything. */
499 if (!func_start)
500 stop_addr = func_start;
501
502 rx_analyze_prologue (func_start, stop_addr, frame_type,
503 (struct rx_prologue *) *this_prologue_cache);
504 }
505
506 return (struct rx_prologue *) *this_prologue_cache;
507 }
508
509 /* Determine type of frame by scanning the function for a return
510 instruction. */
511
512 static enum rx_frame_type
513 rx_frame_type (struct frame_info *this_frame, void **this_cache)
514 {
515 const char *name;
516 CORE_ADDR pc, start_pc, lim_pc;
517 int bytes_read;
518 struct rx_get_opcode_byte_handle opcode_handle;
519 RX_Opcode_Decoded opc;
520
521 gdb_assert (this_cache != NULL);
522
523 /* If we have a cached value, return it. */
524
525 if (*this_cache != NULL)
526 {
527 struct rx_prologue *p = (struct rx_prologue *) *this_cache;
528
529 return p->frame_type;
530 }
531
532 /* No cached value; scan the function. The frame type is cached in
533 rx_analyze_prologue / rx_analyze_frame_prologue. */
534
535 pc = get_frame_pc (this_frame);
536
537 /* Attempt to find the last address in the function. If it cannot
538 be determined, set the limit to be a short ways past the frame's
539 pc. */
540 if (!find_pc_partial_function (pc, &name, &start_pc, &lim_pc))
541 lim_pc = pc + 20;
542
543 while (pc < lim_pc)
544 {
545 opcode_handle.pc = pc;
546 bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
547 &opcode_handle);
548
549 if (bytes_read <= 0 || opc.id == RXO_rts)
550 return RX_FRAME_TYPE_NORMAL;
551 else if (opc.id == RXO_rtfi)
552 return RX_FRAME_TYPE_FAST_INTERRUPT;
553 else if (opc.id == RXO_rte)
554 return RX_FRAME_TYPE_EXCEPTION;
555
556 pc += bytes_read;
557 }
558
559 return RX_FRAME_TYPE_NORMAL;
560 }
561
562
563 /* Given the next frame and a prologue cache, return this frame's
564 base. */
565
566 static CORE_ADDR
567 rx_frame_base (struct frame_info *this_frame, void **this_cache)
568 {
569 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
570 struct rx_prologue *p
571 = rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
572
573 /* In functions that use alloca, the distance between the stack
574 pointer and the frame base varies dynamically, so we can't use
575 the SP plus static information like prologue analysis to find the
576 frame base. However, such functions must have a frame pointer,
577 to be able to restore the SP on exit. So whenever we do have a
578 frame pointer, use that to find the base. */
579 if (p->has_frame_ptr)
580 {
581 CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM);
582 return fp - p->frame_ptr_offset;
583 }
584 else
585 {
586 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM);
587 return sp - p->frame_size;
588 }
589 }
590
591 /* Implement the "frame_this_id" method for unwinding frames. */
592
593 static void
594 rx_frame_this_id (struct frame_info *this_frame, void **this_cache,
595 struct frame_id *this_id)
596 {
597 *this_id = frame_id_build (rx_frame_base (this_frame, this_cache),
598 get_frame_func (this_frame));
599 }
600
601 /* Implement the "frame_prev_register" method for unwinding frames. */
602
603 static struct value *
604 rx_frame_prev_register (struct frame_info *this_frame, void **this_cache,
605 int regnum)
606 {
607 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
608 struct rx_prologue *p
609 = rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
610 CORE_ADDR frame_base = rx_frame_base (this_frame, this_cache);
611
612 if (regnum == RX_SP_REGNUM)
613 {
614 if (frame_type == RX_FRAME_TYPE_EXCEPTION)
615 {
616 struct value *psw_val;
617 CORE_ADDR psw;
618
619 psw_val = rx_frame_prev_register (this_frame, this_cache,
620 RX_PSW_REGNUM);
621 psw = extract_unsigned_integer (value_contents_all (psw_val), 4,
622 gdbarch_byte_order (
623 get_frame_arch (this_frame)));
624
625 if ((psw & 0x20000 /* U bit */) != 0)
626 return rx_frame_prev_register (this_frame, this_cache,
627 RX_USP_REGNUM);
628
629 /* Fall through for the case where U bit is zero. */
630 }
631
632 return frame_unwind_got_constant (this_frame, regnum, frame_base);
633 }
634
635 if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT)
636 {
637 if (regnum == RX_PC_REGNUM)
638 return rx_frame_prev_register (this_frame, this_cache,
639 RX_BPC_REGNUM);
640 if (regnum == RX_PSW_REGNUM)
641 return rx_frame_prev_register (this_frame, this_cache,
642 RX_BPSW_REGNUM);
643 }
644
645 /* If prologue analysis says we saved this register somewhere,
646 return a description of the stack slot holding it. */
647 if (p->reg_offset[regnum] != 1)
648 return frame_unwind_got_memory (this_frame, regnum,
649 frame_base + p->reg_offset[regnum]);
650
651 /* Otherwise, presume we haven't changed the value of this
652 register, and get it from the next frame. */
653 return frame_unwind_got_register (this_frame, regnum, regnum);
654 }
655
656 /* Return TRUE if the frame indicated by FRAME_TYPE is a normal frame. */
657
658 static int
659 normal_frame_p (enum rx_frame_type frame_type)
660 {
661 return (frame_type == RX_FRAME_TYPE_NORMAL);
662 }
663
664 /* Return TRUE if the frame indicated by FRAME_TYPE is an exception
665 frame. */
666
667 static int
668 exception_frame_p (enum rx_frame_type frame_type)
669 {
670 return (frame_type == RX_FRAME_TYPE_EXCEPTION
671 || frame_type == RX_FRAME_TYPE_FAST_INTERRUPT);
672 }
673
674 /* Common code used by both normal and exception frame sniffers. */
675
676 static int
677 rx_frame_sniffer_common (const struct frame_unwind *self,
678 struct frame_info *this_frame,
679 void **this_cache,
680 int (*sniff_p)(enum rx_frame_type) )
681 {
682 gdb_assert (this_cache != NULL);
683
684 if (*this_cache == NULL)
685 {
686 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
687
688 if (sniff_p (frame_type))
689 {
690 /* The call below will fill in the cache, including the frame
691 type. */
692 (void) rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
693
694 return 1;
695 }
696 else
697 return 0;
698 }
699 else
700 {
701 struct rx_prologue *p = (struct rx_prologue *) *this_cache;
702
703 return sniff_p (p->frame_type);
704 }
705 }
706
707 /* Frame sniffer for normal (non-exception) frames. */
708
709 static int
710 rx_frame_sniffer (const struct frame_unwind *self,
711 struct frame_info *this_frame,
712 void **this_cache)
713 {
714 return rx_frame_sniffer_common (self, this_frame, this_cache,
715 normal_frame_p);
716 }
717
718 /* Frame sniffer for exception frames. */
719
720 static int
721 rx_exception_sniffer (const struct frame_unwind *self,
722 struct frame_info *this_frame,
723 void **this_cache)
724 {
725 return rx_frame_sniffer_common (self, this_frame, this_cache,
726 exception_frame_p);
727 }
728
729 /* Data structure for normal code using instruction-based prologue
730 analyzer. */
731
732 static const struct frame_unwind rx_frame_unwind = {
733 NORMAL_FRAME,
734 default_frame_unwind_stop_reason,
735 rx_frame_this_id,
736 rx_frame_prev_register,
737 NULL,
738 rx_frame_sniffer
739 };
740
741 /* Data structure for exception code using instruction-based prologue
742 analyzer. */
743
744 static const struct frame_unwind rx_exception_unwind = {
745 /* SIGTRAMP_FRAME could be used here, but backtraces are less informative. */
746 NORMAL_FRAME,
747 default_frame_unwind_stop_reason,
748 rx_frame_this_id,
749 rx_frame_prev_register,
750 NULL,
751 rx_exception_sniffer
752 };
753
754 /* Implement the "unwind_pc" gdbarch method. */
755 static CORE_ADDR
756 rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
757 {
758 ULONGEST pc;
759
760 pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM);
761 return pc;
762 }
763
764 /* Implement the "unwind_sp" gdbarch method. */
765 static CORE_ADDR
766 rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
767 {
768 ULONGEST sp;
769
770 sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM);
771 return sp;
772 }
773
774 /* Implement the "dummy_id" gdbarch method. */
775 static struct frame_id
776 rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
777 {
778 return
779 frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM),
780 get_frame_pc (this_frame));
781 }
782
783 /* Implement the "push_dummy_call" gdbarch method. */
784 static CORE_ADDR
785 rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
786 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
787 struct value **args, CORE_ADDR sp,
788 function_call_return_method return_method,
789 CORE_ADDR struct_addr)
790 {
791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
792 int write_pass;
793 int sp_off = 0;
794 CORE_ADDR cfa;
795 int num_register_candidate_args;
796
797 struct type *func_type = value_type (function);
798
799 /* Dereference function pointer types. */
800 while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
801 func_type = TYPE_TARGET_TYPE (func_type);
802
803 /* The end result had better be a function or a method. */
804 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
805 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
806
807 /* Functions with a variable number of arguments have all of their
808 variable arguments and the last non-variable argument passed
809 on the stack.
810
811 Otherwise, we can pass up to four arguments on the stack.
812
813 Once computed, we leave this value alone. I.e. we don't update
814 it in case of a struct return going in a register or an argument
815 requiring multiple registers, etc. We rely instead on the value
816 of the ``arg_reg'' variable to get these other details correct. */
817
818 if (TYPE_VARARGS (func_type))
819 num_register_candidate_args = TYPE_NFIELDS (func_type) - 1;
820 else
821 num_register_candidate_args = 4;
822
823 /* We make two passes; the first does the stack allocation,
824 the second actually stores the arguments. */
825 for (write_pass = 0; write_pass <= 1; write_pass++)
826 {
827 int i;
828 int arg_reg = RX_R1_REGNUM;
829
830 if (write_pass)
831 sp = align_down (sp - sp_off, 4);
832 sp_off = 0;
833
834 if (return_method == return_method_struct)
835 {
836 struct type *return_type = TYPE_TARGET_TYPE (func_type);
837
838 gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT
839 || TYPE_CODE (func_type) == TYPE_CODE_UNION);
840
841 if (TYPE_LENGTH (return_type) > 16
842 || TYPE_LENGTH (return_type) % 4 != 0)
843 {
844 if (write_pass)
845 regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
846 struct_addr);
847 }
848 }
849
850 /* Push the arguments. */
851 for (i = 0; i < nargs; i++)
852 {
853 struct value *arg = args[i];
854 const gdb_byte *arg_bits = value_contents_all (arg);
855 struct type *arg_type = check_typedef (value_type (arg));
856 ULONGEST arg_size = TYPE_LENGTH (arg_type);
857
858 if (i == 0 && struct_addr != 0
859 && return_method != return_method_struct
860 && TYPE_CODE (arg_type) == TYPE_CODE_PTR
861 && extract_unsigned_integer (arg_bits, 4,
862 byte_order) == struct_addr)
863 {
864 /* This argument represents the address at which C++ (and
865 possibly other languages) store their return value.
866 Put this value in R15. */
867 if (write_pass)
868 regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
869 struct_addr);
870 }
871 else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT
872 && TYPE_CODE (arg_type) != TYPE_CODE_UNION
873 && arg_size <= 8)
874 {
875 /* Argument is a scalar. */
876 if (arg_size == 8)
877 {
878 if (i < num_register_candidate_args
879 && arg_reg <= RX_R4_REGNUM - 1)
880 {
881 /* If argument registers are going to be used to pass
882 an 8 byte scalar, the ABI specifies that two registers
883 must be available. */
884 if (write_pass)
885 {
886 regcache_cooked_write_unsigned (regcache, arg_reg,
887 extract_unsigned_integer
888 (arg_bits, 4,
889 byte_order));
890 regcache_cooked_write_unsigned (regcache,
891 arg_reg + 1,
892 extract_unsigned_integer
893 (arg_bits + 4, 4,
894 byte_order));
895 }
896 arg_reg += 2;
897 }
898 else
899 {
900 sp_off = align_up (sp_off, 4);
901 /* Otherwise, pass the 8 byte scalar on the stack. */
902 if (write_pass)
903 write_memory (sp + sp_off, arg_bits, 8);
904 sp_off += 8;
905 }
906 }
907 else
908 {
909 ULONGEST u;
910
911 gdb_assert (arg_size <= 4);
912
913 u =
914 extract_unsigned_integer (arg_bits, arg_size, byte_order);
915
916 if (i < num_register_candidate_args
917 && arg_reg <= RX_R4_REGNUM)
918 {
919 if (write_pass)
920 regcache_cooked_write_unsigned (regcache, arg_reg, u);
921 arg_reg += 1;
922 }
923 else
924 {
925 int p_arg_size = 4;
926
927 if (TYPE_PROTOTYPED (func_type)
928 && i < TYPE_NFIELDS (func_type))
929 {
930 struct type *p_arg_type =
931 TYPE_FIELD_TYPE (func_type, i);
932 p_arg_size = TYPE_LENGTH (p_arg_type);
933 }
934
935 sp_off = align_up (sp_off, p_arg_size);
936
937 if (write_pass)
938 write_memory_unsigned_integer (sp + sp_off,
939 p_arg_size, byte_order,
940 u);
941 sp_off += p_arg_size;
942 }
943 }
944 }
945 else
946 {
947 /* Argument is a struct or union. Pass as much of the struct
948 in registers, if possible. Pass the rest on the stack. */
949 while (arg_size > 0)
950 {
951 if (i < num_register_candidate_args
952 && arg_reg <= RX_R4_REGNUM
953 && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1)
954 && arg_size % 4 == 0)
955 {
956 int len = std::min (arg_size, (ULONGEST) 4);
957
958 if (write_pass)
959 regcache_cooked_write_unsigned (regcache, arg_reg,
960 extract_unsigned_integer
961 (arg_bits, len,
962 byte_order));
963 arg_bits += len;
964 arg_size -= len;
965 arg_reg++;
966 }
967 else
968 {
969 sp_off = align_up (sp_off, 4);
970 if (write_pass)
971 write_memory (sp + sp_off, arg_bits, arg_size);
972 sp_off += align_up (arg_size, 4);
973 arg_size = 0;
974 }
975 }
976 }
977 }
978 }
979
980 /* Keep track of the stack address prior to pushing the return address.
981 This is the value that we'll return. */
982 cfa = sp;
983
984 /* Push the return address. */
985 sp = sp - 4;
986 write_memory_unsigned_integer (sp, 4, byte_order, bp_addr);
987
988 /* Update the stack pointer. */
989 regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp);
990
991 return cfa;
992 }
993
994 /* Implement the "return_value" gdbarch method. */
995 static enum return_value_convention
996 rx_return_value (struct gdbarch *gdbarch,
997 struct value *function,
998 struct type *valtype,
999 struct regcache *regcache,
1000 gdb_byte *readbuf, const gdb_byte *writebuf)
1001 {
1002 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1003 ULONGEST valtype_len = TYPE_LENGTH (valtype);
1004
1005 if (TYPE_LENGTH (valtype) > 16
1006 || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1007 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
1008 && TYPE_LENGTH (valtype) % 4 != 0))
1009 return RETURN_VALUE_STRUCT_CONVENTION;
1010
1011 if (readbuf)
1012 {
1013 ULONGEST u;
1014 int argreg = RX_R1_REGNUM;
1015 int offset = 0;
1016
1017 while (valtype_len > 0)
1018 {
1019 int len = std::min (valtype_len, (ULONGEST) 4);
1020
1021 regcache_cooked_read_unsigned (regcache, argreg, &u);
1022 store_unsigned_integer (readbuf + offset, len, byte_order, u);
1023 valtype_len -= len;
1024 offset += len;
1025 argreg++;
1026 }
1027 }
1028
1029 if (writebuf)
1030 {
1031 ULONGEST u;
1032 int argreg = RX_R1_REGNUM;
1033 int offset = 0;
1034
1035 while (valtype_len > 0)
1036 {
1037 int len = std::min (valtype_len, (ULONGEST) 4);
1038
1039 u = extract_unsigned_integer (writebuf + offset, len, byte_order);
1040 regcache_cooked_write_unsigned (regcache, argreg, u);
1041 valtype_len -= len;
1042 offset += len;
1043 argreg++;
1044 }
1045 }
1046
1047 return RETURN_VALUE_REGISTER_CONVENTION;
1048 }
1049
1050 constexpr gdb_byte rx_break_insn[] = { 0x00 };
1051
1052 typedef BP_MANIPULATION (rx_break_insn) rx_breakpoint;
1053
1054 /* Implement the dwarf_reg_to_regnum" gdbarch method. */
1055
1056 static int
1057 rx_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1058 {
1059 if (0 <= reg && reg <= 15)
1060 return reg;
1061 else if (reg == 16)
1062 return RX_PSW_REGNUM;
1063 else if (reg == 17)
1064 return RX_PC_REGNUM;
1065 else
1066 return -1;
1067 }
1068
1069 /* Allocate and initialize a gdbarch object. */
1070 static struct gdbarch *
1071 rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1072 {
1073 struct gdbarch *gdbarch;
1074 struct gdbarch_tdep *tdep;
1075 int elf_flags;
1076
1077 /* Extract the elf_flags if available. */
1078 if (info.abfd != NULL
1079 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1080 elf_flags = elf_elfheader (info.abfd)->e_flags;
1081 else
1082 elf_flags = 0;
1083
1084
1085 /* Try to find the architecture in the list of already defined
1086 architectures. */
1087 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1088 arches != NULL;
1089 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1090 {
1091 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1092 continue;
1093
1094 return arches->gdbarch;
1095 }
1096
1097 /* None found, create a new architecture from the information
1098 provided. */
1099 tdep = XCNEW (struct gdbarch_tdep);
1100 gdbarch = gdbarch_alloc (&info, tdep);
1101 tdep->elf_flags = elf_flags;
1102
1103 set_gdbarch_num_regs (gdbarch, RX_NUM_REGS);
1104 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1105 set_gdbarch_register_name (gdbarch, rx_register_name);
1106 set_gdbarch_register_type (gdbarch, rx_register_type);
1107 set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM);
1108 set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM);
1109 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1110 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1111 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rx_breakpoint::kind_from_pc);
1112 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rx_breakpoint::bp_from_kind);
1113 set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue);
1114
1115 set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc);
1116 set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp);
1117
1118 /* Target builtin data types. */
1119 set_gdbarch_char_signed (gdbarch, 0);
1120 set_gdbarch_short_bit (gdbarch, 16);
1121 set_gdbarch_int_bit (gdbarch, 32);
1122 set_gdbarch_long_bit (gdbarch, 32);
1123 set_gdbarch_long_long_bit (gdbarch, 64);
1124 set_gdbarch_ptr_bit (gdbarch, 32);
1125 set_gdbarch_float_bit (gdbarch, 32);
1126 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1127 if (elf_flags & E_FLAG_RX_64BIT_DOUBLES)
1128 {
1129 set_gdbarch_double_bit (gdbarch, 64);
1130 set_gdbarch_long_double_bit (gdbarch, 64);
1131 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1132 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1133 }
1134 else
1135 {
1136 set_gdbarch_double_bit (gdbarch, 32);
1137 set_gdbarch_long_double_bit (gdbarch, 32);
1138 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1139 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1140 }
1141
1142 /* DWARF register mapping. */
1143 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rx_dwarf_reg_to_regnum);
1144
1145 /* Frame unwinding. */
1146 frame_unwind_append_unwinder (gdbarch, &rx_exception_unwind);
1147 dwarf2_append_unwinders (gdbarch);
1148 frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind);
1149
1150 /* Methods for saving / extracting a dummy frame's ID.
1151 The ID's stack address must match the SP value returned by
1152 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1153 set_gdbarch_dummy_id (gdbarch, rx_dummy_id);
1154 set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call);
1155 set_gdbarch_return_value (gdbarch, rx_return_value);
1156
1157 /* Virtual tables. */
1158 set_gdbarch_vbit_in_delta (gdbarch, 1);
1159
1160 return gdbarch;
1161 }
1162
1163 /* Register the above initialization routine. */
1164
1165 void
1166 _initialize_rx_tdep (void)
1167 {
1168 register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init);
1169 }