]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sh-tdep.c
Replace regcache_raw_read with regcache->raw_read
[thirdparty/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "target-float.h"
38 #include "osabi.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "objfiles.h"
42
43 #include "sh-tdep.h"
44 #include "sh64-tdep.h"
45
46 #include "elf-bfd.h"
47 #include "solib-svr4.h"
48
49 /* sh flags */
50 #include "elf/sh.h"
51 #include "dwarf2.h"
52 /* registers numbers shared with the simulator. */
53 #include "gdb/sim-sh.h"
54 #include <algorithm>
55
56 /* List of "set sh ..." and "show sh ..." commands. */
57 static struct cmd_list_element *setshcmdlist = NULL;
58 static struct cmd_list_element *showshcmdlist = NULL;
59
60 static const char sh_cc_gcc[] = "gcc";
61 static const char sh_cc_renesas[] = "renesas";
62 static const char *const sh_cc_enum[] = {
63 sh_cc_gcc,
64 sh_cc_renesas,
65 NULL
66 };
67
68 static const char *sh_active_calling_convention = sh_cc_gcc;
69
70 #define SH_NUM_REGS 67
71
72 struct sh_frame_cache
73 {
74 /* Base address. */
75 CORE_ADDR base;
76 LONGEST sp_offset;
77 CORE_ADDR pc;
78
79 /* Flag showing that a frame has been created in the prologue code. */
80 int uses_fp;
81
82 /* Saved registers. */
83 CORE_ADDR saved_regs[SH_NUM_REGS];
84 CORE_ADDR saved_sp;
85 };
86
87 static int
88 sh_is_renesas_calling_convention (struct type *func_type)
89 {
90 int val = 0;
91
92 if (func_type)
93 {
94 func_type = check_typedef (func_type);
95
96 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
97 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
98
99 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
100 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
101 val = 1;
102 }
103
104 if (sh_active_calling_convention == sh_cc_renesas)
105 val = 1;
106
107 return val;
108 }
109
110 static const char *
111 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
112 {
113 static const char *register_names[] = {
114 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
115 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
116 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
117 "", "",
118 "", "", "", "", "", "", "", "",
119 "", "", "", "", "", "", "", "",
120 "", "",
121 "", "", "", "", "", "", "", "",
122 "", "", "", "", "", "", "", "",
123 "", "", "", "", "", "", "", "",
124 };
125 if (reg_nr < 0)
126 return NULL;
127 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
128 return NULL;
129 return register_names[reg_nr];
130 }
131
132 static const char *
133 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
134 {
135 static const char *register_names[] = {
136 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
137 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
138 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
139 "", "",
140 "", "", "", "", "", "", "", "",
141 "", "", "", "", "", "", "", "",
142 "ssr", "spc",
143 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
144 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
145 "", "", "", "", "", "", "", "",
146 };
147 if (reg_nr < 0)
148 return NULL;
149 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
150 return NULL;
151 return register_names[reg_nr];
152 }
153
154 static const char *
155 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
156 {
157 static const char *register_names[] = {
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
161 "fpul", "fpscr",
162 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
163 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
164 "ssr", "spc",
165 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
166 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
167 "", "", "", "", "", "", "", "",
168 };
169 if (reg_nr < 0)
170 return NULL;
171 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
172 return NULL;
173 return register_names[reg_nr];
174 }
175
176 static const char *
177 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
178 {
179 static const char *register_names[] = {
180 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
181 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
182 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
183 "fpul", "fpscr",
184 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
185 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
186 "", "",
187 "", "", "", "", "", "", "", "",
188 "", "", "", "", "", "", "", "",
189 "", "", "", "", "", "", "", "",
190 };
191 if (reg_nr < 0)
192 return NULL;
193 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
194 return NULL;
195 return register_names[reg_nr];
196 }
197
198 static const char *
199 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
200 {
201 static const char *register_names[] = {
202 /* general registers 0-15 */
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
205 /* 16 - 22 */
206 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
207 /* 23, 24 */
208 "fpul", "fpscr",
209 /* floating point registers 25 - 40 */
210 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
211 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
212 /* 41, 42 */
213 "", "",
214 /* 43 - 62. Banked registers. The bank number used is determined by
215 the bank register (63). */
216 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
217 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
218 "machb", "ivnb", "prb", "gbrb", "maclb",
219 /* 63: register bank number, not a real register but used to
220 communicate the register bank currently get/set. This register
221 is hidden to the user, who manipulates it using the pseudo
222 register called "bank" (67). See below. */
223 "",
224 /* 64 - 66 */
225 "ibcr", "ibnr", "tbr",
226 /* 67: register bank number, the user visible pseudo register. */
227 "bank",
228 /* double precision (pseudo) 68 - 75 */
229 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
230 };
231 if (reg_nr < 0)
232 return NULL;
233 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
234 return NULL;
235 return register_names[reg_nr];
236 }
237
238 static const char *
239 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
240 {
241 static const char *register_names[] = {
242 /* general registers 0-15 */
243 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
244 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
245 /* 16 - 22 */
246 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
247 /* 23, 24 */
248 "", "",
249 /* floating point registers 25 - 40 */
250 "", "", "", "", "", "", "", "",
251 "", "", "", "", "", "", "", "",
252 /* 41, 42 */
253 "", "",
254 /* 43 - 62. Banked registers. The bank number used is determined by
255 the bank register (63). */
256 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
257 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
258 "machb", "ivnb", "prb", "gbrb", "maclb",
259 /* 63: register bank number, not a real register but used to
260 communicate the register bank currently get/set. This register
261 is hidden to the user, who manipulates it using the pseudo
262 register called "bank" (67). See below. */
263 "",
264 /* 64 - 66 */
265 "ibcr", "ibnr", "tbr",
266 /* 67: register bank number, the user visible pseudo register. */
267 "bank",
268 /* double precision (pseudo) 68 - 75 */
269 "", "", "", "", "", "", "", "",
270 };
271 if (reg_nr < 0)
272 return NULL;
273 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
274 return NULL;
275 return register_names[reg_nr];
276 }
277
278 static const char *
279 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
280 {
281 static const char *register_names[] = {
282 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
283 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
284 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
285 "", "dsr",
286 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
287 "y0", "y1", "", "", "", "", "", "mod",
288 "", "",
289 "rs", "re", "", "", "", "", "", "",
290 "", "", "", "", "", "", "", "",
291 "", "", "", "", "", "", "", "",
292 };
293 if (reg_nr < 0)
294 return NULL;
295 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
296 return NULL;
297 return register_names[reg_nr];
298 }
299
300 static const char *
301 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
302 {
303 static const char *register_names[] = {
304 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
305 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
306 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
307 "", "dsr",
308 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
309 "y0", "y1", "", "", "", "", "", "mod",
310 "ssr", "spc",
311 "rs", "re", "", "", "", "", "", "",
312 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
313 "", "", "", "", "", "", "", "",
314 "", "", "", "", "", "", "", "",
315 };
316 if (reg_nr < 0)
317 return NULL;
318 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
319 return NULL;
320 return register_names[reg_nr];
321 }
322
323 static const char *
324 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
325 {
326 static const char *register_names[] = {
327 /* general registers 0-15 */
328 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
329 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
330 /* 16 - 22 */
331 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
332 /* 23, 24 */
333 "fpul", "fpscr",
334 /* floating point registers 25 - 40 */
335 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
336 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
337 /* 41, 42 */
338 "ssr", "spc",
339 /* bank 0 43 - 50 */
340 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
341 /* bank 1 51 - 58 */
342 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
343 /* 59 - 66 */
344 "", "", "", "", "", "", "", "",
345 /* pseudo bank register. */
346 "",
347 /* double precision (pseudo) 68 - 75 */
348 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
349 /* vectors (pseudo) 76 - 79 */
350 "fv0", "fv4", "fv8", "fv12",
351 /* FIXME: missing XF */
352 /* FIXME: missing XD */
353 };
354 if (reg_nr < 0)
355 return NULL;
356 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
357 return NULL;
358 return register_names[reg_nr];
359 }
360
361 static const char *
362 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
363 {
364 static const char *register_names[] = {
365 /* general registers 0-15 */
366 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
367 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
368 /* 16 - 22 */
369 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
370 /* 23, 24 */
371 "", "",
372 /* floating point registers 25 - 40 -- not for nofpu target */
373 "", "", "", "", "", "", "", "",
374 "", "", "", "", "", "", "", "",
375 /* 41, 42 */
376 "ssr", "spc",
377 /* bank 0 43 - 50 */
378 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
379 /* bank 1 51 - 58 */
380 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
381 /* 59 - 66 */
382 "", "", "", "", "", "", "", "",
383 /* pseudo bank register. */
384 "",
385 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
386 "", "", "", "", "", "", "", "",
387 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
388 "", "", "", "",
389 };
390 if (reg_nr < 0)
391 return NULL;
392 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
393 return NULL;
394 return register_names[reg_nr];
395 }
396
397 static const char *
398 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
399 {
400 static const char *register_names[] = {
401 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
402 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
403 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
404 "", "dsr",
405 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
406 "y0", "y1", "", "", "", "", "", "mod",
407 "ssr", "spc",
408 "rs", "re", "", "", "", "", "", "",
409 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
412 };
413 if (reg_nr < 0)
414 return NULL;
415 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
416 return NULL;
417 return register_names[reg_nr];
418 }
419
420 /* Implement the breakpoint_kind_from_pc gdbarch method. */
421
422 static int
423 sh_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
424 {
425 return 2;
426 }
427
428 /* Implement the sw_breakpoint_from_kind gdbarch method. */
429
430 static const gdb_byte *
431 sh_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
432 {
433 *size = kind;
434
435 /* For remote stub targets, trapa #20 is used. */
436 if (strcmp (target_shortname, "remote") == 0)
437 {
438 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
439 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
440
441 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
442 return big_remote_breakpoint;
443 else
444 return little_remote_breakpoint;
445 }
446 else
447 {
448 /* 0xc3c3 is trapa #c3, and it works in big and little endian
449 modes. */
450 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
451
452 return breakpoint;
453 }
454 }
455
456 /* Prologue looks like
457 mov.l r14,@-r15
458 sts.l pr,@-r15
459 mov.l <regs>,@-r15
460 sub <room_for_loca_vars>,r15
461 mov r15,r14
462
463 Actually it can be more complicated than this but that's it, basically. */
464
465 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
466 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
467
468 /* JSR @Rm 0100mmmm00001011 */
469 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
470
471 /* STS.L PR,@-r15 0100111100100010
472 r15-4-->r15, PR-->(r15) */
473 #define IS_STS(x) ((x) == 0x4f22)
474
475 /* STS.L MACL,@-r15 0100111100010010
476 r15-4-->r15, MACL-->(r15) */
477 #define IS_MACL_STS(x) ((x) == 0x4f12)
478
479 /* MOV.L Rm,@-r15 00101111mmmm0110
480 r15-4-->r15, Rm-->(R15) */
481 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
482
483 /* MOV r15,r14 0110111011110011
484 r15-->r14 */
485 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
486
487 /* ADD #imm,r15 01111111iiiiiiii
488 r15+imm-->r15 */
489 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
490
491 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
492 #define IS_SHLL_R3(x) ((x) == 0x4300)
493
494 /* ADD r3,r15 0011111100111100
495 r15+r3-->r15 */
496 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
497
498 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
499 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
500 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
501 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
502 make this entirely clear. */
503 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
504 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
505
506 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
507 #define IS_MOV_ARG_TO_REG(x) \
508 (((x) & 0xf00f) == 0x6003 && \
509 ((x) & 0x00f0) >= 0x0040 && \
510 ((x) & 0x00f0) <= 0x0070)
511 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
512 #define IS_MOV_ARG_TO_IND_R14(x) \
513 (((x) & 0xff0f) == 0x2e02 && \
514 ((x) & 0x00f0) >= 0x0040 && \
515 ((x) & 0x00f0) <= 0x0070)
516 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
517 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
518 (((x) & 0xff00) == 0x1e00 && \
519 ((x) & 0x00f0) >= 0x0040 && \
520 ((x) & 0x00f0) <= 0x0070)
521
522 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
523 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
524 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
525 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
526 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
527 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
528 /* SUB Rn,R15 00111111nnnn1000 */
529 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
530
531 #define FPSCR_SZ (1 << 20)
532
533 /* The following instructions are used for epilogue testing. */
534 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
535 #define IS_RTS(x) ((x) == 0x000b)
536 #define IS_LDS(x) ((x) == 0x4f26)
537 #define IS_MACL_LDS(x) ((x) == 0x4f16)
538 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
539 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
540 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
541
542 static CORE_ADDR
543 sh_analyze_prologue (struct gdbarch *gdbarch,
544 CORE_ADDR pc, CORE_ADDR limit_pc,
545 struct sh_frame_cache *cache, ULONGEST fpscr)
546 {
547 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
548 ULONGEST inst;
549 int offset;
550 int sav_offset = 0;
551 int r3_val = 0;
552 int reg, sav_reg = -1;
553
554 cache->uses_fp = 0;
555 for (; pc < limit_pc; pc += 2)
556 {
557 inst = read_memory_unsigned_integer (pc, 2, byte_order);
558 /* See where the registers will be saved to. */
559 if (IS_PUSH (inst))
560 {
561 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
562 cache->sp_offset += 4;
563 }
564 else if (IS_STS (inst))
565 {
566 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
567 cache->sp_offset += 4;
568 }
569 else if (IS_MACL_STS (inst))
570 {
571 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
572 cache->sp_offset += 4;
573 }
574 else if (IS_MOV_R3 (inst))
575 {
576 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
577 }
578 else if (IS_SHLL_R3 (inst))
579 {
580 r3_val <<= 1;
581 }
582 else if (IS_ADD_R3SP (inst))
583 {
584 cache->sp_offset += -r3_val;
585 }
586 else if (IS_ADD_IMM_SP (inst))
587 {
588 offset = ((inst & 0xff) ^ 0x80) - 0x80;
589 cache->sp_offset -= offset;
590 }
591 else if (IS_MOVW_PCREL_TO_REG (inst))
592 {
593 if (sav_reg < 0)
594 {
595 reg = GET_TARGET_REG (inst);
596 if (reg < 14)
597 {
598 sav_reg = reg;
599 offset = (inst & 0xff) << 1;
600 sav_offset =
601 read_memory_integer ((pc + 4) + offset, 2, byte_order);
602 }
603 }
604 }
605 else if (IS_MOVL_PCREL_TO_REG (inst))
606 {
607 if (sav_reg < 0)
608 {
609 reg = GET_TARGET_REG (inst);
610 if (reg < 14)
611 {
612 sav_reg = reg;
613 offset = (inst & 0xff) << 2;
614 sav_offset =
615 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
616 4, byte_order);
617 }
618 }
619 }
620 else if (IS_MOVI20 (inst)
621 && (pc + 2 < limit_pc))
622 {
623 if (sav_reg < 0)
624 {
625 reg = GET_TARGET_REG (inst);
626 if (reg < 14)
627 {
628 sav_reg = reg;
629 sav_offset = GET_SOURCE_REG (inst) << 16;
630 /* MOVI20 is a 32 bit instruction! */
631 pc += 2;
632 sav_offset
633 |= read_memory_unsigned_integer (pc, 2, byte_order);
634 /* Now sav_offset contains an unsigned 20 bit value.
635 It must still get sign extended. */
636 if (sav_offset & 0x00080000)
637 sav_offset |= 0xfff00000;
638 }
639 }
640 }
641 else if (IS_SUB_REG_FROM_SP (inst))
642 {
643 reg = GET_SOURCE_REG (inst);
644 if (sav_reg > 0 && reg == sav_reg)
645 {
646 sav_reg = -1;
647 }
648 cache->sp_offset += sav_offset;
649 }
650 else if (IS_FPUSH (inst))
651 {
652 if (fpscr & FPSCR_SZ)
653 {
654 cache->sp_offset += 8;
655 }
656 else
657 {
658 cache->sp_offset += 4;
659 }
660 }
661 else if (IS_MOV_SP_FP (inst))
662 {
663 pc += 2;
664 /* Don't go any further than six more instructions. */
665 limit_pc = std::min (limit_pc, pc + (2 * 6));
666
667 cache->uses_fp = 1;
668 /* At this point, only allow argument register moves to other
669 registers or argument register moves to @(X,fp) which are
670 moving the register arguments onto the stack area allocated
671 by a former add somenumber to SP call. Don't allow moving
672 to an fp indirect address above fp + cache->sp_offset. */
673 for (; pc < limit_pc; pc += 2)
674 {
675 inst = read_memory_integer (pc, 2, byte_order);
676 if (IS_MOV_ARG_TO_IND_R14 (inst))
677 {
678 reg = GET_SOURCE_REG (inst);
679 if (cache->sp_offset > 0)
680 cache->saved_regs[reg] = cache->sp_offset;
681 }
682 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
683 {
684 reg = GET_SOURCE_REG (inst);
685 offset = (inst & 0xf) * 4;
686 if (cache->sp_offset > offset)
687 cache->saved_regs[reg] = cache->sp_offset - offset;
688 }
689 else if (IS_MOV_ARG_TO_REG (inst))
690 continue;
691 else
692 break;
693 }
694 break;
695 }
696 else if (IS_JSR (inst))
697 {
698 /* We have found a jsr that has been scheduled into the prologue.
699 If we continue the scan and return a pc someplace after this,
700 then setting a breakpoint on this function will cause it to
701 appear to be called after the function it is calling via the
702 jsr, which will be very confusing. Most likely the next
703 instruction is going to be IS_MOV_SP_FP in the delay slot. If
704 so, note that before returning the current pc. */
705 if (pc + 2 < limit_pc)
706 {
707 inst = read_memory_integer (pc + 2, 2, byte_order);
708 if (IS_MOV_SP_FP (inst))
709 cache->uses_fp = 1;
710 }
711 break;
712 }
713 #if 0 /* This used to just stop when it found an instruction
714 that was not considered part of the prologue. Now,
715 we just keep going looking for likely
716 instructions. */
717 else
718 break;
719 #endif
720 }
721
722 return pc;
723 }
724
725 /* Skip any prologue before the guts of a function. */
726 static CORE_ADDR
727 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
728 {
729 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
730 struct sh_frame_cache cache;
731
732 /* See if we can determine the end of the prologue via the symbol table.
733 If so, then return either PC, or the PC after the prologue, whichever
734 is greater. */
735 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
736 {
737 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
738 if (post_prologue_pc != 0)
739 return std::max (pc, post_prologue_pc);
740 }
741
742 /* Can't determine prologue from the symbol table, need to examine
743 instructions. */
744
745 /* Find an upper limit on the function prologue using the debug
746 information. If the debug information could not be used to provide
747 that bound, then use an arbitrary large number as the upper bound. */
748 limit_pc = skip_prologue_using_sal (gdbarch, pc);
749 if (limit_pc == 0)
750 /* Don't go any further than 28 instructions. */
751 limit_pc = pc + (2 * 28);
752
753 /* Do not allow limit_pc to be past the function end, if we know
754 where that end is... */
755 if (func_end_addr != 0)
756 limit_pc = std::min (limit_pc, func_end_addr);
757
758 cache.sp_offset = -4;
759 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
760 if (cache.uses_fp)
761 pc = post_prologue_pc;
762
763 return pc;
764 }
765
766 /* The ABI says:
767
768 Aggregate types not bigger than 8 bytes that have the same size and
769 alignment as one of the integer scalar types are returned in the
770 same registers as the integer type they match.
771
772 For example, a 2-byte aligned structure with size 2 bytes has the
773 same size and alignment as a short int, and will be returned in R0.
774 A 4-byte aligned structure with size 8 bytes has the same size and
775 alignment as a long long int, and will be returned in R0 and R1.
776
777 When an aggregate type is returned in R0 and R1, R0 contains the
778 first four bytes of the aggregate, and R1 contains the
779 remainder. If the size of the aggregate type is not a multiple of 4
780 bytes, the aggregate is tail-padded up to a multiple of 4
781 bytes. The value of the padding is undefined. For little-endian
782 targets the padding will appear at the most significant end of the
783 last element, for big-endian targets the padding appears at the
784 least significant end of the last element.
785
786 All other aggregate types are returned by address. The caller
787 function passes the address of an area large enough to hold the
788 aggregate value in R2. The called function stores the result in
789 this location.
790
791 To reiterate, structs smaller than 8 bytes could also be returned
792 in memory, if they don't pass the "same size and alignment as an
793 integer type" rule.
794
795 For example, in
796
797 struct s { char c[3]; } wibble;
798 struct s foo(void) { return wibble; }
799
800 the return value from foo() will be in memory, not
801 in R0, because there is no 3-byte integer type.
802
803 Similarly, in
804
805 struct s { char c[2]; } wibble;
806 struct s foo(void) { return wibble; }
807
808 because a struct containing two chars has alignment 1, that matches
809 type char, but size 2, that matches type short. There's no integer
810 type that has alignment 1 and size 2, so the struct is returned in
811 memory. */
812
813 static int
814 sh_use_struct_convention (int renesas_abi, struct type *type)
815 {
816 int len = TYPE_LENGTH (type);
817 int nelem = TYPE_NFIELDS (type);
818
819 /* The Renesas ABI returns aggregate types always on stack. */
820 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
821 || TYPE_CODE (type) == TYPE_CODE_UNION))
822 return 1;
823
824 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
825 fit in two registers anyway) use struct convention. */
826 if (len != 1 && len != 2 && len != 4 && len != 8)
827 return 1;
828
829 /* Scalar types and aggregate types with exactly one field are aligned
830 by definition. They are returned in registers. */
831 if (nelem <= 1)
832 return 0;
833
834 /* If the first field in the aggregate has the same length as the entire
835 aggregate type, the type is returned in registers. */
836 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
837 return 0;
838
839 /* If the size of the aggregate is 8 bytes and the first field is
840 of size 4 bytes its alignment is equal to long long's alignment,
841 so it's returned in registers. */
842 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
843 return 0;
844
845 /* Otherwise use struct convention. */
846 return 1;
847 }
848
849 static int
850 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
851 {
852 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
853 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
854 return 1;
855 return sh_use_struct_convention (renesas_abi, type);
856 }
857
858 static CORE_ADDR
859 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
860 {
861 return sp & ~3;
862 }
863
864 /* Function: push_dummy_call (formerly push_arguments)
865 Setup the function arguments for calling a function in the inferior.
866
867 On the Renesas SH architecture, there are four registers (R4 to R7)
868 which are dedicated for passing function arguments. Up to the first
869 four arguments (depending on size) may go into these registers.
870 The rest go on the stack.
871
872 MVS: Except on SH variants that have floating point registers.
873 In that case, float and double arguments are passed in the same
874 manner, but using FP registers instead of GP registers.
875
876 Arguments that are smaller than 4 bytes will still take up a whole
877 register or a whole 32-bit word on the stack, and will be
878 right-justified in the register or the stack word. This includes
879 chars, shorts, and small aggregate types.
880
881 Arguments that are larger than 4 bytes may be split between two or
882 more registers. If there are not enough registers free, an argument
883 may be passed partly in a register (or registers), and partly on the
884 stack. This includes doubles, long longs, and larger aggregates.
885 As far as I know, there is no upper limit to the size of aggregates
886 that will be passed in this way; in other words, the convention of
887 passing a pointer to a large aggregate instead of a copy is not used.
888
889 MVS: The above appears to be true for the SH variants that do not
890 have an FPU, however those that have an FPU appear to copy the
891 aggregate argument onto the stack (and not place it in registers)
892 if it is larger than 16 bytes (four GP registers).
893
894 An exceptional case exists for struct arguments (and possibly other
895 aggregates such as arrays) if the size is larger than 4 bytes but
896 not a multiple of 4 bytes. In this case the argument is never split
897 between the registers and the stack, but instead is copied in its
898 entirety onto the stack, AND also copied into as many registers as
899 there is room for. In other words, space in registers permitting,
900 two copies of the same argument are passed in. As far as I can tell,
901 only the one on the stack is used, although that may be a function
902 of the level of compiler optimization. I suspect this is a compiler
903 bug. Arguments of these odd sizes are left-justified within the
904 word (as opposed to arguments smaller than 4 bytes, which are
905 right-justified).
906
907 If the function is to return an aggregate type such as a struct, it
908 is either returned in the normal return value register R0 (if its
909 size is no greater than one byte), or else the caller must allocate
910 space into which the callee will copy the return value (if the size
911 is greater than one byte). In this case, a pointer to the return
912 value location is passed into the callee in register R2, which does
913 not displace any of the other arguments passed in via registers R4
914 to R7. */
915
916 /* Helper function to justify value in register according to endianess. */
917 static const gdb_byte *
918 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
919 {
920 static gdb_byte valbuf[4];
921
922 memset (valbuf, 0, sizeof (valbuf));
923 if (len < 4)
924 {
925 /* value gets right-justified in the register or stack word. */
926 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
927 memcpy (valbuf + (4 - len), value_contents (val), len);
928 else
929 memcpy (valbuf, value_contents (val), len);
930 return valbuf;
931 }
932 return value_contents (val);
933 }
934
935 /* Helper function to eval number of bytes to allocate on stack. */
936 static CORE_ADDR
937 sh_stack_allocsize (int nargs, struct value **args)
938 {
939 int stack_alloc = 0;
940 while (nargs-- > 0)
941 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
942 return stack_alloc;
943 }
944
945 /* Helper functions for getting the float arguments right. Registers usage
946 depends on the ABI and the endianess. The comments should enlighten how
947 it's intended to work. */
948
949 /* This array stores which of the float arg registers are already in use. */
950 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
951
952 /* This function just resets the above array to "no reg used so far". */
953 static void
954 sh_init_flt_argreg (void)
955 {
956 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
957 }
958
959 /* This function returns the next register to use for float arg passing.
960 It returns either a valid value between FLOAT_ARG0_REGNUM and
961 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
962 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
963
964 Note that register number 0 in flt_argreg_array corresponds with the
965 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
966 29) the parity of the register number is preserved, which is important
967 for the double register passing test (see the "argreg & 1" test below). */
968 static int
969 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
970 {
971 int argreg;
972
973 /* First search for the next free register. */
974 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
975 ++argreg)
976 if (!flt_argreg_array[argreg])
977 break;
978
979 /* No register left? */
980 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
981 return FLOAT_ARGLAST_REGNUM + 1;
982
983 if (len == 8)
984 {
985 /* Doubles are always starting in a even register number. */
986 if (argreg & 1)
987 {
988 /* In gcc ABI, the skipped register is lost for further argument
989 passing now. Not so in Renesas ABI. */
990 if (!sh_is_renesas_calling_convention (func_type))
991 flt_argreg_array[argreg] = 1;
992
993 ++argreg;
994
995 /* No register left? */
996 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
997 return FLOAT_ARGLAST_REGNUM + 1;
998 }
999 /* Also mark the next register as used. */
1000 flt_argreg_array[argreg + 1] = 1;
1001 }
1002 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1003 && !sh_is_renesas_calling_convention (func_type))
1004 {
1005 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
1006 if (!flt_argreg_array[argreg + 1])
1007 ++argreg;
1008 }
1009 flt_argreg_array[argreg] = 1;
1010 return FLOAT_ARG0_REGNUM + argreg;
1011 }
1012
1013 /* Helper function which figures out, if a type is treated like a float type.
1014
1015 The FPU ABIs have a special way how to treat types as float types.
1016 Structures with exactly one member, which is of type float or double, are
1017 treated exactly as the base types float or double:
1018
1019 struct sf {
1020 float f;
1021 };
1022
1023 struct sd {
1024 double d;
1025 };
1026
1027 are handled the same way as just
1028
1029 float f;
1030
1031 double d;
1032
1033 As a result, arguments of these struct types are pushed into floating point
1034 registers exactly as floats or doubles, using the same decision algorithm.
1035
1036 The same is valid if these types are used as function return types. The
1037 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1038 or even using struct convention as it is for other structs. */
1039
1040 static int
1041 sh_treat_as_flt_p (struct type *type)
1042 {
1043 /* Ordinary float types are obviously treated as float. */
1044 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1045 return 1;
1046 /* Otherwise non-struct types are not treated as float. */
1047 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1048 return 0;
1049 /* Otherwise structs with more than one memeber are not treated as float. */
1050 if (TYPE_NFIELDS (type) != 1)
1051 return 0;
1052 /* Otherwise if the type of that member is float, the whole type is
1053 treated as float. */
1054 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1055 return 1;
1056 /* Otherwise it's not treated as float. */
1057 return 0;
1058 }
1059
1060 static CORE_ADDR
1061 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1062 struct value *function,
1063 struct regcache *regcache,
1064 CORE_ADDR bp_addr, int nargs,
1065 struct value **args,
1066 CORE_ADDR sp, int struct_return,
1067 CORE_ADDR struct_addr)
1068 {
1069 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1070 int stack_offset = 0;
1071 int argreg = ARG0_REGNUM;
1072 int flt_argreg = 0;
1073 int argnum;
1074 struct type *func_type = value_type (function);
1075 struct type *type;
1076 CORE_ADDR regval;
1077 const gdb_byte *val;
1078 int len, reg_size = 0;
1079 int pass_on_stack = 0;
1080 int treat_as_flt;
1081 int last_reg_arg = INT_MAX;
1082
1083 /* The Renesas ABI expects all varargs arguments, plus the last
1084 non-vararg argument to be on the stack, no matter how many
1085 registers have been used so far. */
1086 if (sh_is_renesas_calling_convention (func_type)
1087 && TYPE_VARARGS (func_type))
1088 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1089
1090 /* First force sp to a 4-byte alignment. */
1091 sp = sh_frame_align (gdbarch, sp);
1092
1093 /* Make room on stack for args. */
1094 sp -= sh_stack_allocsize (nargs, args);
1095
1096 /* Initialize float argument mechanism. */
1097 sh_init_flt_argreg ();
1098
1099 /* Now load as many as possible of the first arguments into
1100 registers, and push the rest onto the stack. There are 16 bytes
1101 in four registers available. Loop thru args from first to last. */
1102 for (argnum = 0; argnum < nargs; argnum++)
1103 {
1104 type = value_type (args[argnum]);
1105 len = TYPE_LENGTH (type);
1106 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1107
1108 /* Some decisions have to be made how various types are handled.
1109 This also differs in different ABIs. */
1110 pass_on_stack = 0;
1111
1112 /* Find out the next register to use for a floating point value. */
1113 treat_as_flt = sh_treat_as_flt_p (type);
1114 if (treat_as_flt)
1115 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1116 /* In Renesas ABI, long longs and aggregate types are always passed
1117 on stack. */
1118 else if (sh_is_renesas_calling_convention (func_type)
1119 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1120 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1121 || TYPE_CODE (type) == TYPE_CODE_UNION))
1122 pass_on_stack = 1;
1123 /* In contrast to non-FPU CPUs, arguments are never split between
1124 registers and stack. If an argument doesn't fit in the remaining
1125 registers it's always pushed entirely on the stack. */
1126 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1127 pass_on_stack = 1;
1128
1129 while (len > 0)
1130 {
1131 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1132 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1133 || pass_on_stack))
1134 || argnum > last_reg_arg)
1135 {
1136 /* The data goes entirely on the stack, 4-byte aligned. */
1137 reg_size = (len + 3) & ~3;
1138 write_memory (sp + stack_offset, val, reg_size);
1139 stack_offset += reg_size;
1140 }
1141 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1142 {
1143 /* Argument goes in a float argument register. */
1144 reg_size = register_size (gdbarch, flt_argreg);
1145 regval = extract_unsigned_integer (val, reg_size, byte_order);
1146 /* In little endian mode, float types taking two registers
1147 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1148 be stored swapped in the argument registers. The below
1149 code first writes the first 32 bits in the next but one
1150 register, increments the val and len values accordingly
1151 and then proceeds as normal by writing the second 32 bits
1152 into the next register. */
1153 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1154 && TYPE_LENGTH (type) == 2 * reg_size)
1155 {
1156 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1157 regval);
1158 val += reg_size;
1159 len -= reg_size;
1160 regval = extract_unsigned_integer (val, reg_size,
1161 byte_order);
1162 }
1163 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1164 }
1165 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1166 {
1167 /* there's room in a register */
1168 reg_size = register_size (gdbarch, argreg);
1169 regval = extract_unsigned_integer (val, reg_size, byte_order);
1170 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1171 }
1172 /* Store the value one register at a time or in one step on
1173 stack. */
1174 len -= reg_size;
1175 val += reg_size;
1176 }
1177 }
1178
1179 if (struct_return)
1180 {
1181 if (sh_is_renesas_calling_convention (func_type))
1182 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1183 the stack and store the struct return address there. */
1184 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1185 else
1186 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1187 its own dedicated register. */
1188 regcache_cooked_write_unsigned (regcache,
1189 STRUCT_RETURN_REGNUM, struct_addr);
1190 }
1191
1192 /* Store return address. */
1193 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1194
1195 /* Update stack pointer. */
1196 regcache_cooked_write_unsigned (regcache,
1197 gdbarch_sp_regnum (gdbarch), sp);
1198
1199 return sp;
1200 }
1201
1202 static CORE_ADDR
1203 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1204 struct value *function,
1205 struct regcache *regcache,
1206 CORE_ADDR bp_addr,
1207 int nargs, struct value **args,
1208 CORE_ADDR sp, int struct_return,
1209 CORE_ADDR struct_addr)
1210 {
1211 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1212 int stack_offset = 0;
1213 int argreg = ARG0_REGNUM;
1214 int argnum;
1215 struct type *func_type = value_type (function);
1216 struct type *type;
1217 CORE_ADDR regval;
1218 const gdb_byte *val;
1219 int len, reg_size = 0;
1220 int pass_on_stack = 0;
1221 int last_reg_arg = INT_MAX;
1222
1223 /* The Renesas ABI expects all varargs arguments, plus the last
1224 non-vararg argument to be on the stack, no matter how many
1225 registers have been used so far. */
1226 if (sh_is_renesas_calling_convention (func_type)
1227 && TYPE_VARARGS (func_type))
1228 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1229
1230 /* First force sp to a 4-byte alignment. */
1231 sp = sh_frame_align (gdbarch, sp);
1232
1233 /* Make room on stack for args. */
1234 sp -= sh_stack_allocsize (nargs, args);
1235
1236 /* Now load as many as possible of the first arguments into
1237 registers, and push the rest onto the stack. There are 16 bytes
1238 in four registers available. Loop thru args from first to last. */
1239 for (argnum = 0; argnum < nargs; argnum++)
1240 {
1241 type = value_type (args[argnum]);
1242 len = TYPE_LENGTH (type);
1243 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1244
1245 /* Some decisions have to be made how various types are handled.
1246 This also differs in different ABIs. */
1247 pass_on_stack = 0;
1248 /* Renesas ABI pushes doubles and long longs entirely on stack.
1249 Same goes for aggregate types. */
1250 if (sh_is_renesas_calling_convention (func_type)
1251 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1252 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1253 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1254 || TYPE_CODE (type) == TYPE_CODE_UNION))
1255 pass_on_stack = 1;
1256 while (len > 0)
1257 {
1258 if (argreg > ARGLAST_REGNUM || pass_on_stack
1259 || argnum > last_reg_arg)
1260 {
1261 /* The remainder of the data goes entirely on the stack,
1262 4-byte aligned. */
1263 reg_size = (len + 3) & ~3;
1264 write_memory (sp + stack_offset, val, reg_size);
1265 stack_offset += reg_size;
1266 }
1267 else if (argreg <= ARGLAST_REGNUM)
1268 {
1269 /* There's room in a register. */
1270 reg_size = register_size (gdbarch, argreg);
1271 regval = extract_unsigned_integer (val, reg_size, byte_order);
1272 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1273 }
1274 /* Store the value reg_size bytes at a time. This means that things
1275 larger than reg_size bytes may go partly in registers and partly
1276 on the stack. */
1277 len -= reg_size;
1278 val += reg_size;
1279 }
1280 }
1281
1282 if (struct_return)
1283 {
1284 if (sh_is_renesas_calling_convention (func_type))
1285 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1286 the stack and store the struct return address there. */
1287 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1288 else
1289 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1290 its own dedicated register. */
1291 regcache_cooked_write_unsigned (regcache,
1292 STRUCT_RETURN_REGNUM, struct_addr);
1293 }
1294
1295 /* Store return address. */
1296 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1297
1298 /* Update stack pointer. */
1299 regcache_cooked_write_unsigned (regcache,
1300 gdbarch_sp_regnum (gdbarch), sp);
1301
1302 return sp;
1303 }
1304
1305 /* Find a function's return value in the appropriate registers (in
1306 regbuf), and copy it into valbuf. Extract from an array REGBUF
1307 containing the (raw) register state a function return value of type
1308 TYPE, and copy that, in virtual format, into VALBUF. */
1309 static void
1310 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1311 gdb_byte *valbuf)
1312 {
1313 struct gdbarch *gdbarch = regcache->arch ();
1314 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1315 int len = TYPE_LENGTH (type);
1316
1317 if (len <= 4)
1318 {
1319 ULONGEST c;
1320
1321 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1322 store_unsigned_integer (valbuf, len, byte_order, c);
1323 }
1324 else if (len == 8)
1325 {
1326 int i, regnum = R0_REGNUM;
1327 for (i = 0; i < len; i += 4)
1328 regcache_raw_read (regcache, regnum++, valbuf + i);
1329 }
1330 else
1331 error (_("bad size for return value"));
1332 }
1333
1334 static void
1335 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1336 gdb_byte *valbuf)
1337 {
1338 struct gdbarch *gdbarch = regcache->arch ();
1339 if (sh_treat_as_flt_p (type))
1340 {
1341 int len = TYPE_LENGTH (type);
1342 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1343 for (i = 0; i < len; i += 4)
1344 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1345 regcache_raw_read (regcache, regnum++,
1346 valbuf + len - 4 - i);
1347 else
1348 regcache_raw_read (regcache, regnum++, valbuf + i);
1349 }
1350 else
1351 sh_extract_return_value_nofpu (type, regcache, valbuf);
1352 }
1353
1354 /* Write into appropriate registers a function return value
1355 of type TYPE, given in virtual format.
1356 If the architecture is sh4 or sh3e, store a function's return value
1357 in the R0 general register or in the FP0 floating point register,
1358 depending on the type of the return value. In all the other cases
1359 the result is stored in r0, left-justified. */
1360 static void
1361 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1362 const gdb_byte *valbuf)
1363 {
1364 struct gdbarch *gdbarch = regcache->arch ();
1365 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1366 ULONGEST val;
1367 int len = TYPE_LENGTH (type);
1368
1369 if (len <= 4)
1370 {
1371 val = extract_unsigned_integer (valbuf, len, byte_order);
1372 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1373 }
1374 else
1375 {
1376 int i, regnum = R0_REGNUM;
1377 for (i = 0; i < len; i += 4)
1378 regcache_raw_write (regcache, regnum++, valbuf + i);
1379 }
1380 }
1381
1382 static void
1383 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1384 const gdb_byte *valbuf)
1385 {
1386 struct gdbarch *gdbarch = regcache->arch ();
1387 if (sh_treat_as_flt_p (type))
1388 {
1389 int len = TYPE_LENGTH (type);
1390 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1391 for (i = 0; i < len; i += 4)
1392 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1393 regcache_raw_write (regcache, regnum++,
1394 valbuf + len - 4 - i);
1395 else
1396 regcache_raw_write (regcache, regnum++, valbuf + i);
1397 }
1398 else
1399 sh_store_return_value_nofpu (type, regcache, valbuf);
1400 }
1401
1402 static enum return_value_convention
1403 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1404 struct type *type, struct regcache *regcache,
1405 gdb_byte *readbuf, const gdb_byte *writebuf)
1406 {
1407 struct type *func_type = function ? value_type (function) : NULL;
1408
1409 if (sh_use_struct_convention_nofpu (
1410 sh_is_renesas_calling_convention (func_type), type))
1411 return RETURN_VALUE_STRUCT_CONVENTION;
1412 if (writebuf)
1413 sh_store_return_value_nofpu (type, regcache, writebuf);
1414 else if (readbuf)
1415 sh_extract_return_value_nofpu (type, regcache, readbuf);
1416 return RETURN_VALUE_REGISTER_CONVENTION;
1417 }
1418
1419 static enum return_value_convention
1420 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1421 struct type *type, struct regcache *regcache,
1422 gdb_byte *readbuf, const gdb_byte *writebuf)
1423 {
1424 struct type *func_type = function ? value_type (function) : NULL;
1425
1426 if (sh_use_struct_convention (
1427 sh_is_renesas_calling_convention (func_type), type))
1428 return RETURN_VALUE_STRUCT_CONVENTION;
1429 if (writebuf)
1430 sh_store_return_value_fpu (type, regcache, writebuf);
1431 else if (readbuf)
1432 sh_extract_return_value_fpu (type, regcache, readbuf);
1433 return RETURN_VALUE_REGISTER_CONVENTION;
1434 }
1435
1436 static struct type *
1437 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1438 {
1439 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1440 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1441 return builtin_type (gdbarch)->builtin_float;
1442 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1443 return builtin_type (gdbarch)->builtin_double;
1444 else
1445 return builtin_type (gdbarch)->builtin_int;
1446 }
1447
1448 /* Return the GDB type object for the "standard" data type
1449 of data in register N. */
1450 static struct type *
1451 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1452 {
1453 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1454 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1455 return builtin_type (gdbarch)->builtin_float;
1456 else
1457 return builtin_type (gdbarch)->builtin_int;
1458 }
1459
1460 static struct type *
1461 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1462 {
1463 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1464 0, high);
1465 }
1466
1467 static struct type *
1468 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1469 {
1470 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1471 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1472 return builtin_type (gdbarch)->builtin_float;
1473 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1474 return builtin_type (gdbarch)->builtin_double;
1475 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1476 return sh_sh4_build_float_register_type (gdbarch, 3);
1477 else
1478 return builtin_type (gdbarch)->builtin_int;
1479 }
1480
1481 static struct type *
1482 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1483 {
1484 return builtin_type (gdbarch)->builtin_int;
1485 }
1486
1487 /* Is a register in a reggroup?
1488 The default code in reggroup.c doesn't identify system registers, some
1489 float registers or any of the vector registers.
1490 TODO: sh2a and dsp registers. */
1491 static int
1492 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1493 struct reggroup *reggroup)
1494 {
1495 if (gdbarch_register_name (gdbarch, regnum) == NULL
1496 || *gdbarch_register_name (gdbarch, regnum) == '\0')
1497 return 0;
1498
1499 if (reggroup == float_reggroup
1500 && (regnum == FPUL_REGNUM
1501 || regnum == FPSCR_REGNUM))
1502 return 1;
1503
1504 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1505 {
1506 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1507 return 1;
1508 if (reggroup == general_reggroup)
1509 return 0;
1510 }
1511
1512 if (regnum == VBR_REGNUM
1513 || regnum == SR_REGNUM
1514 || regnum == FPSCR_REGNUM
1515 || regnum == SSR_REGNUM
1516 || regnum == SPC_REGNUM)
1517 {
1518 if (reggroup == system_reggroup)
1519 return 1;
1520 if (reggroup == general_reggroup)
1521 return 0;
1522 }
1523
1524 /* The default code can cope with any other registers. */
1525 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1526 }
1527
1528 /* On the sh4, the DRi pseudo registers are problematic if the target
1529 is little endian. When the user writes one of those registers, for
1530 instance with 'set var $dr0=1', we want the double to be stored
1531 like this:
1532 fr0 = 0x00 0x00 0xf0 0x3f
1533 fr1 = 0x00 0x00 0x00 0x00
1534
1535 This corresponds to little endian byte order & big endian word
1536 order. However if we let gdb write the register w/o conversion, it
1537 will write fr0 and fr1 this way:
1538 fr0 = 0x00 0x00 0x00 0x00
1539 fr1 = 0x00 0x00 0xf0 0x3f
1540 because it will consider fr0 and fr1 as a single LE stretch of memory.
1541
1542 To achieve what we want we must force gdb to store things in
1543 floatformat_ieee_double_littlebyte_bigword (which is defined in
1544 include/floatformat.h and libiberty/floatformat.c.
1545
1546 In case the target is big endian, there is no problem, the
1547 raw bytes will look like:
1548 fr0 = 0x3f 0xf0 0x00 0x00
1549 fr1 = 0x00 0x00 0x00 0x00
1550
1551 The other pseudo registers (the FVs) also don't pose a problem
1552 because they are stored as 4 individual FP elements. */
1553
1554 static struct type *
1555 sh_littlebyte_bigword_type (struct gdbarch *gdbarch)
1556 {
1557 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1558
1559 if (tdep->sh_littlebyte_bigword_type == NULL)
1560 tdep->sh_littlebyte_bigword_type
1561 = arch_float_type (gdbarch, -1, "builtin_type_sh_littlebyte_bigword",
1562 floatformats_ieee_double_littlebyte_bigword);
1563
1564 return tdep->sh_littlebyte_bigword_type;
1565 }
1566
1567 static void
1568 sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1569 struct type *type, gdb_byte *from, gdb_byte *to)
1570 {
1571 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1572 {
1573 /* It is a no-op. */
1574 memcpy (to, from, register_size (gdbarch, regnum));
1575 return;
1576 }
1577
1578 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1579 target_float_convert (from, sh_littlebyte_bigword_type (gdbarch),
1580 to, type);
1581 else
1582 error
1583 ("sh_register_convert_to_virtual called with non DR register number");
1584 }
1585
1586 static void
1587 sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1588 int regnum, const gdb_byte *from, gdb_byte *to)
1589 {
1590 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1591 {
1592 /* It is a no-op. */
1593 memcpy (to, from, register_size (gdbarch, regnum));
1594 return;
1595 }
1596
1597 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1598 target_float_convert (from, type,
1599 to, sh_littlebyte_bigword_type (gdbarch));
1600 else
1601 error (_("sh_register_convert_to_raw called with non DR register number"));
1602 }
1603
1604 /* For vectors of 4 floating point registers. */
1605 static int
1606 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1607 {
1608 int fp_regnum;
1609
1610 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1611 + (fv_regnum - FV0_REGNUM) * 4;
1612 return fp_regnum;
1613 }
1614
1615 /* For double precision floating point registers, i.e 2 fp regs. */
1616 static int
1617 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1618 {
1619 int fp_regnum;
1620
1621 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1622 + (dr_regnum - DR0_REGNUM) * 2;
1623 return fp_regnum;
1624 }
1625
1626 /* Concatenate PORTIONS contiguous raw registers starting at
1627 BASE_REGNUM into BUFFER. */
1628
1629 static enum register_status
1630 pseudo_register_read_portions (struct gdbarch *gdbarch,
1631 struct regcache *regcache,
1632 int portions,
1633 int base_regnum, gdb_byte *buffer)
1634 {
1635 int portion;
1636
1637 for (portion = 0; portion < portions; portion++)
1638 {
1639 enum register_status status;
1640 gdb_byte *b;
1641
1642 b = buffer + register_size (gdbarch, base_regnum) * portion;
1643 status = regcache->raw_read (base_regnum + portion, b);
1644 if (status != REG_VALID)
1645 return status;
1646 }
1647
1648 return REG_VALID;
1649 }
1650
1651 static enum register_status
1652 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1653 int reg_nr, gdb_byte *buffer)
1654 {
1655 int base_regnum;
1656 enum register_status status;
1657
1658 if (reg_nr == PSEUDO_BANK_REGNUM)
1659 return regcache->raw_read (BANK_REGNUM, buffer);
1660 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1661 {
1662 /* Enough space for two float registers. */
1663 gdb_byte temp_buffer[4 * 2];
1664 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1665
1666 /* Build the value in the provided buffer. */
1667 /* Read the real regs for which this one is an alias. */
1668 status = pseudo_register_read_portions (gdbarch, regcache,
1669 2, base_regnum, temp_buffer);
1670 if (status == REG_VALID)
1671 {
1672 /* We must pay attention to the endiannes. */
1673 sh_register_convert_to_virtual (gdbarch, reg_nr,
1674 register_type (gdbarch, reg_nr),
1675 temp_buffer, buffer);
1676 }
1677 return status;
1678 }
1679 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1680 {
1681 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1682
1683 /* Read the real regs for which this one is an alias. */
1684 return pseudo_register_read_portions (gdbarch, regcache,
1685 4, base_regnum, buffer);
1686 }
1687 else
1688 gdb_assert_not_reached ("invalid pseudo register number");
1689 }
1690
1691 static void
1692 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1693 int reg_nr, const gdb_byte *buffer)
1694 {
1695 int base_regnum, portion;
1696
1697 if (reg_nr == PSEUDO_BANK_REGNUM)
1698 {
1699 /* When the bank register is written to, the whole register bank
1700 is switched and all values in the bank registers must be read
1701 from the target/sim again. We're just invalidating the regcache
1702 so that a re-read happens next time it's necessary. */
1703 int bregnum;
1704
1705 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1706 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1707 regcache_invalidate (regcache, bregnum);
1708 }
1709 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1710 {
1711 /* Enough space for two float registers. */
1712 gdb_byte temp_buffer[4 * 2];
1713 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1714
1715 /* We must pay attention to the endiannes. */
1716 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1717 reg_nr, buffer, temp_buffer);
1718
1719 /* Write the real regs for which this one is an alias. */
1720 for (portion = 0; portion < 2; portion++)
1721 regcache_raw_write (regcache, base_regnum + portion,
1722 (temp_buffer
1723 + register_size (gdbarch,
1724 base_regnum) * portion));
1725 }
1726 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1727 {
1728 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1729
1730 /* Write the real regs for which this one is an alias. */
1731 for (portion = 0; portion < 4; portion++)
1732 regcache_raw_write (regcache, base_regnum + portion,
1733 (buffer
1734 + register_size (gdbarch,
1735 base_regnum) * portion));
1736 }
1737 }
1738
1739 static int
1740 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1741 {
1742 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1743 return legacy_register_sim_regno (gdbarch, nr);
1744 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1745 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1746 if (nr == MOD_REGNUM)
1747 return SIM_SH_MOD_REGNUM;
1748 if (nr == RS_REGNUM)
1749 return SIM_SH_RS_REGNUM;
1750 if (nr == RE_REGNUM)
1751 return SIM_SH_RE_REGNUM;
1752 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1753 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1754 return nr;
1755 }
1756
1757 static int
1758 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1759 {
1760 switch (nr)
1761 {
1762 case TBR_REGNUM:
1763 return SIM_SH_TBR_REGNUM;
1764 case IBNR_REGNUM:
1765 return SIM_SH_IBNR_REGNUM;
1766 case IBCR_REGNUM:
1767 return SIM_SH_IBCR_REGNUM;
1768 case BANK_REGNUM:
1769 return SIM_SH_BANK_REGNUM;
1770 case MACLB_REGNUM:
1771 return SIM_SH_BANK_MACL_REGNUM;
1772 case GBRB_REGNUM:
1773 return SIM_SH_BANK_GBR_REGNUM;
1774 case PRB_REGNUM:
1775 return SIM_SH_BANK_PR_REGNUM;
1776 case IVNB_REGNUM:
1777 return SIM_SH_BANK_IVN_REGNUM;
1778 case MACHB_REGNUM:
1779 return SIM_SH_BANK_MACH_REGNUM;
1780 default:
1781 break;
1782 }
1783 return legacy_register_sim_regno (gdbarch, nr);
1784 }
1785
1786 /* Set up the register unwinding such that call-clobbered registers are
1787 not displayed in frames >0 because the true value is not certain.
1788 The 'undefined' registers will show up as 'not available' unless the
1789 CFI says otherwise.
1790
1791 This function is currently set up for SH4 and compatible only. */
1792
1793 static void
1794 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1795 struct dwarf2_frame_state_reg *reg,
1796 struct frame_info *this_frame)
1797 {
1798 /* Mark the PC as the destination for the return address. */
1799 if (regnum == gdbarch_pc_regnum (gdbarch))
1800 reg->how = DWARF2_FRAME_REG_RA;
1801
1802 /* Mark the stack pointer as the call frame address. */
1803 else if (regnum == gdbarch_sp_regnum (gdbarch))
1804 reg->how = DWARF2_FRAME_REG_CFA;
1805
1806 /* The above was taken from the default init_reg in dwarf2-frame.c
1807 while the below is SH specific. */
1808
1809 /* Caller save registers. */
1810 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1811 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1812 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1813 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1814 || (regnum == MACH_REGNUM)
1815 || (regnum == MACL_REGNUM)
1816 || (regnum == FPUL_REGNUM)
1817 || (regnum == SR_REGNUM))
1818 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1819
1820 /* Callee save registers. */
1821 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1822 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1823 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1824 || (regnum == FV0_REGNUM+3))
1825 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1826
1827 /* Other registers. These are not in the ABI and may or may not
1828 mean anything in frames >0 so don't show them. */
1829 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1830 || (regnum == GBR_REGNUM)
1831 || (regnum == VBR_REGNUM)
1832 || (regnum == FPSCR_REGNUM)
1833 || (regnum == SSR_REGNUM)
1834 || (regnum == SPC_REGNUM))
1835 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1836 }
1837
1838 static struct sh_frame_cache *
1839 sh_alloc_frame_cache (void)
1840 {
1841 struct sh_frame_cache *cache;
1842 int i;
1843
1844 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1845
1846 /* Base address. */
1847 cache->base = 0;
1848 cache->saved_sp = 0;
1849 cache->sp_offset = 0;
1850 cache->pc = 0;
1851
1852 /* Frameless until proven otherwise. */
1853 cache->uses_fp = 0;
1854
1855 /* Saved registers. We initialize these to -1 since zero is a valid
1856 offset (that's where fp is supposed to be stored). */
1857 for (i = 0; i < SH_NUM_REGS; i++)
1858 {
1859 cache->saved_regs[i] = -1;
1860 }
1861
1862 return cache;
1863 }
1864
1865 static struct sh_frame_cache *
1866 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1867 {
1868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1869 struct sh_frame_cache *cache;
1870 CORE_ADDR current_pc;
1871 int i;
1872
1873 if (*this_cache)
1874 return (struct sh_frame_cache *) *this_cache;
1875
1876 cache = sh_alloc_frame_cache ();
1877 *this_cache = cache;
1878
1879 /* In principle, for normal frames, fp holds the frame pointer,
1880 which holds the base address for the current stack frame.
1881 However, for functions that don't need it, the frame pointer is
1882 optional. For these "frameless" functions the frame pointer is
1883 actually the frame pointer of the calling frame. */
1884 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1885 if (cache->base == 0)
1886 return cache;
1887
1888 cache->pc = get_frame_func (this_frame);
1889 current_pc = get_frame_pc (this_frame);
1890 if (cache->pc != 0)
1891 {
1892 ULONGEST fpscr;
1893
1894 /* Check for the existence of the FPSCR register. If it exists,
1895 fetch its value for use in prologue analysis. Passing a zero
1896 value is the best choice for architecture variants upon which
1897 there's no FPSCR register. */
1898 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1899 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1900 else
1901 fpscr = 0;
1902
1903 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1904 }
1905
1906 if (!cache->uses_fp)
1907 {
1908 /* We didn't find a valid frame, which means that CACHE->base
1909 currently holds the frame pointer for our calling frame. If
1910 we're at the start of a function, or somewhere half-way its
1911 prologue, the function's frame probably hasn't been fully
1912 setup yet. Try to reconstruct the base address for the stack
1913 frame by looking at the stack pointer. For truly "frameless"
1914 functions this might work too. */
1915 cache->base = get_frame_register_unsigned
1916 (this_frame, gdbarch_sp_regnum (gdbarch));
1917 }
1918
1919 /* Now that we have the base address for the stack frame we can
1920 calculate the value of sp in the calling frame. */
1921 cache->saved_sp = cache->base + cache->sp_offset;
1922
1923 /* Adjust all the saved registers such that they contain addresses
1924 instead of offsets. */
1925 for (i = 0; i < SH_NUM_REGS; i++)
1926 if (cache->saved_regs[i] != -1)
1927 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1928
1929 return cache;
1930 }
1931
1932 static struct value *
1933 sh_frame_prev_register (struct frame_info *this_frame,
1934 void **this_cache, int regnum)
1935 {
1936 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1937 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1938
1939 gdb_assert (regnum >= 0);
1940
1941 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1942 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1943
1944 /* The PC of the previous frame is stored in the PR register of
1945 the current frame. Frob regnum so that we pull the value from
1946 the correct place. */
1947 if (regnum == gdbarch_pc_regnum (gdbarch))
1948 regnum = PR_REGNUM;
1949
1950 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1951 return frame_unwind_got_memory (this_frame, regnum,
1952 cache->saved_regs[regnum]);
1953
1954 return frame_unwind_got_register (this_frame, regnum, regnum);
1955 }
1956
1957 static void
1958 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1959 struct frame_id *this_id)
1960 {
1961 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1962
1963 /* This marks the outermost frame. */
1964 if (cache->base == 0)
1965 return;
1966
1967 *this_id = frame_id_build (cache->saved_sp, cache->pc);
1968 }
1969
1970 static const struct frame_unwind sh_frame_unwind = {
1971 NORMAL_FRAME,
1972 default_frame_unwind_stop_reason,
1973 sh_frame_this_id,
1974 sh_frame_prev_register,
1975 NULL,
1976 default_frame_sniffer
1977 };
1978
1979 static CORE_ADDR
1980 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1981 {
1982 return frame_unwind_register_unsigned (next_frame,
1983 gdbarch_sp_regnum (gdbarch));
1984 }
1985
1986 static CORE_ADDR
1987 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1988 {
1989 return frame_unwind_register_unsigned (next_frame,
1990 gdbarch_pc_regnum (gdbarch));
1991 }
1992
1993 static struct frame_id
1994 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1995 {
1996 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1997 gdbarch_sp_regnum (gdbarch));
1998 return frame_id_build (sp, get_frame_pc (this_frame));
1999 }
2000
2001 static CORE_ADDR
2002 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
2003 {
2004 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
2005
2006 return cache->base;
2007 }
2008
2009 static const struct frame_base sh_frame_base = {
2010 &sh_frame_unwind,
2011 sh_frame_base_address,
2012 sh_frame_base_address,
2013 sh_frame_base_address
2014 };
2015
2016 static struct sh_frame_cache *
2017 sh_make_stub_cache (struct frame_info *this_frame)
2018 {
2019 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2020 struct sh_frame_cache *cache;
2021
2022 cache = sh_alloc_frame_cache ();
2023
2024 cache->saved_sp
2025 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2026
2027 return cache;
2028 }
2029
2030 static void
2031 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2032 struct frame_id *this_id)
2033 {
2034 struct sh_frame_cache *cache;
2035
2036 if (*this_cache == NULL)
2037 *this_cache = sh_make_stub_cache (this_frame);
2038 cache = (struct sh_frame_cache *) *this_cache;
2039
2040 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2041 }
2042
2043 static int
2044 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2045 struct frame_info *this_frame,
2046 void **this_prologue_cache)
2047 {
2048 CORE_ADDR addr_in_block;
2049
2050 addr_in_block = get_frame_address_in_block (this_frame);
2051 if (in_plt_section (addr_in_block))
2052 return 1;
2053
2054 return 0;
2055 }
2056
2057 static const struct frame_unwind sh_stub_unwind =
2058 {
2059 NORMAL_FRAME,
2060 default_frame_unwind_stop_reason,
2061 sh_stub_this_id,
2062 sh_frame_prev_register,
2063 NULL,
2064 sh_stub_unwind_sniffer
2065 };
2066
2067 /* Implement the stack_frame_destroyed_p gdbarch method.
2068
2069 The epilogue is defined here as the area at the end of a function,
2070 either on the `ret' instruction itself or after an instruction which
2071 destroys the function's stack frame. */
2072
2073 static int
2074 sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2075 {
2076 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2077 CORE_ADDR func_addr = 0, func_end = 0;
2078
2079 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2080 {
2081 ULONGEST inst;
2082 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2083 for a nop and some fixed data (e.g. big offsets) which are
2084 unfortunately also treated as part of the function (which
2085 means, they are below func_end. */
2086 CORE_ADDR addr = func_end - 28;
2087 if (addr < func_addr + 4)
2088 addr = func_addr + 4;
2089 if (pc < addr)
2090 return 0;
2091
2092 /* First search forward until hitting an rts. */
2093 while (addr < func_end
2094 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2095 addr += 2;
2096 if (addr >= func_end)
2097 return 0;
2098
2099 /* At this point we should find a mov.l @r15+,r14 instruction,
2100 either before or after the rts. If not, then the function has
2101 probably no "normal" epilogue and we bail out here. */
2102 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2103 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2104 byte_order)))
2105 addr -= 2;
2106 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2107 byte_order)))
2108 return 0;
2109
2110 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2111
2112 /* Step over possible lds.l @r15+,macl. */
2113 if (IS_MACL_LDS (inst))
2114 {
2115 addr -= 2;
2116 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2117 }
2118
2119 /* Step over possible lds.l @r15+,pr. */
2120 if (IS_LDS (inst))
2121 {
2122 addr -= 2;
2123 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2124 }
2125
2126 /* Step over possible mov r14,r15. */
2127 if (IS_MOV_FP_SP (inst))
2128 {
2129 addr -= 2;
2130 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2131 }
2132
2133 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2134 instructions. */
2135 while (addr > func_addr + 4
2136 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2137 {
2138 addr -= 2;
2139 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2140 }
2141
2142 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2143 That's allowed for the epilogue. */
2144 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2145 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2146 && addr > func_addr + 6
2147 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2148 byte_order)))
2149 addr -= 4;
2150
2151 if (pc >= addr)
2152 return 1;
2153 }
2154 return 0;
2155 }
2156
2157
2158 /* Supply register REGNUM from the buffer specified by REGS and LEN
2159 in the register set REGSET to register cache REGCACHE.
2160 REGTABLE specifies where each register can be found in REGS.
2161 If REGNUM is -1, do this for all registers in REGSET. */
2162
2163 void
2164 sh_corefile_supply_regset (const struct regset *regset,
2165 struct regcache *regcache,
2166 int regnum, const void *regs, size_t len)
2167 {
2168 struct gdbarch *gdbarch = regcache->arch ();
2169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2170 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2171 ? tdep->core_gregmap
2172 : tdep->core_fpregmap);
2173 int i;
2174
2175 for (i = 0; regmap[i].regnum != -1; i++)
2176 {
2177 if ((regnum == -1 || regnum == regmap[i].regnum)
2178 && regmap[i].offset + 4 <= len)
2179 regcache_raw_supply (regcache, regmap[i].regnum,
2180 (char *)regs + regmap[i].offset);
2181 }
2182 }
2183
2184 /* Collect register REGNUM in the register set REGSET from register cache
2185 REGCACHE into the buffer specified by REGS and LEN.
2186 REGTABLE specifies where each register can be found in REGS.
2187 If REGNUM is -1, do this for all registers in REGSET. */
2188
2189 void
2190 sh_corefile_collect_regset (const struct regset *regset,
2191 const struct regcache *regcache,
2192 int regnum, void *regs, size_t len)
2193 {
2194 struct gdbarch *gdbarch = regcache->arch ();
2195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2196 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2197 ? tdep->core_gregmap
2198 : tdep->core_fpregmap);
2199 int i;
2200
2201 for (i = 0; regmap[i].regnum != -1; i++)
2202 {
2203 if ((regnum == -1 || regnum == regmap[i].regnum)
2204 && regmap[i].offset + 4 <= len)
2205 regcache_raw_collect (regcache, regmap[i].regnum,
2206 (char *)regs + regmap[i].offset);
2207 }
2208 }
2209
2210 /* The following two regsets have the same contents, so it is tempting to
2211 unify them, but they are distiguished by their address, so don't. */
2212
2213 const struct regset sh_corefile_gregset =
2214 {
2215 NULL,
2216 sh_corefile_supply_regset,
2217 sh_corefile_collect_regset
2218 };
2219
2220 static const struct regset sh_corefile_fpregset =
2221 {
2222 NULL,
2223 sh_corefile_supply_regset,
2224 sh_corefile_collect_regset
2225 };
2226
2227 static void
2228 sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2229 iterate_over_regset_sections_cb *cb,
2230 void *cb_data,
2231 const struct regcache *regcache)
2232 {
2233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2234
2235 if (tdep->core_gregmap != NULL)
2236 cb (".reg", tdep->sizeof_gregset, &sh_corefile_gregset, NULL, cb_data);
2237
2238 if (tdep->core_fpregmap != NULL)
2239 cb (".reg2", tdep->sizeof_fpregset, &sh_corefile_fpregset, NULL, cb_data);
2240 }
2241
2242 /* This is the implementation of gdbarch method
2243 return_in_first_hidden_param_p. */
2244
2245 static int
2246 sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2247 struct type *type)
2248 {
2249 return 0;
2250 }
2251
2252 \f
2253
2254 static struct gdbarch *
2255 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2256 {
2257 struct gdbarch *gdbarch;
2258 struct gdbarch_tdep *tdep;
2259
2260 /* SH5 is handled entirely in sh64-tdep.c. */
2261 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2262 return sh64_gdbarch_init (info, arches);
2263
2264 /* If there is already a candidate, use it. */
2265 arches = gdbarch_list_lookup_by_info (arches, &info);
2266 if (arches != NULL)
2267 return arches->gdbarch;
2268
2269 /* None found, create a new architecture from the information
2270 provided. */
2271 tdep = XCNEW (struct gdbarch_tdep);
2272 gdbarch = gdbarch_alloc (&info, tdep);
2273
2274 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2275 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2276 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2277 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2278
2279 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2280 set_gdbarch_wchar_signed (gdbarch, 0);
2281
2282 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2283 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2284 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2285 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2286
2287 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2288 set_gdbarch_sp_regnum (gdbarch, 15);
2289 set_gdbarch_pc_regnum (gdbarch, 16);
2290 set_gdbarch_fp0_regnum (gdbarch, -1);
2291 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2292
2293 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2294 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2295
2296 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh_breakpoint_kind_from_pc);
2297 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh_sw_breakpoint_from_kind);
2298
2299 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2300
2301 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2302
2303 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2304 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2305
2306 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2307 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2308 sh_return_in_first_hidden_param_p);
2309
2310 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2311
2312 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2313 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2314 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2315 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
2316 frame_base_set_default (gdbarch, &sh_frame_base);
2317
2318 set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
2319
2320 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2321
2322 set_gdbarch_iterate_over_regset_sections
2323 (gdbarch, sh_iterate_over_regset_sections);
2324
2325 switch (info.bfd_arch_info->mach)
2326 {
2327 case bfd_mach_sh:
2328 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2329 break;
2330
2331 case bfd_mach_sh2:
2332 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2333 break;
2334
2335 case bfd_mach_sh2e:
2336 /* doubles on sh2e and sh3e are actually 4 byte. */
2337 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2338 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2339
2340 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2341 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2342 set_gdbarch_fp0_regnum (gdbarch, 25);
2343 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2344 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2345 break;
2346
2347 case bfd_mach_sh2a:
2348 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2349 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2350 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2351
2352 set_gdbarch_fp0_regnum (gdbarch, 25);
2353 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2354 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2355 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2356 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2357 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2358 break;
2359
2360 case bfd_mach_sh2a_nofpu:
2361 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2362 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2363
2364 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2365 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2366 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2367 break;
2368
2369 case bfd_mach_sh_dsp:
2370 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2371 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2372 break;
2373
2374 case bfd_mach_sh3:
2375 case bfd_mach_sh3_nommu:
2376 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2377 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2378 break;
2379
2380 case bfd_mach_sh3e:
2381 case bfd_mach_sh2a_or_sh3e:
2382 /* doubles on sh2e and sh3e are actually 4 byte. */
2383 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2384 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2385
2386 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2387 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2388 set_gdbarch_fp0_regnum (gdbarch, 25);
2389 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2390 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2391 break;
2392
2393 case bfd_mach_sh3_dsp:
2394 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2395 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2396 break;
2397
2398 case bfd_mach_sh4:
2399 case bfd_mach_sh4a:
2400 case bfd_mach_sh2a_or_sh4:
2401 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2402 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2403 set_gdbarch_fp0_regnum (gdbarch, 25);
2404 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2405 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2406 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2407 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2408 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2409 break;
2410
2411 case bfd_mach_sh4_nofpu:
2412 case bfd_mach_sh4a_nofpu:
2413 case bfd_mach_sh4_nommu_nofpu:
2414 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2415 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2416 break;
2417
2418 case bfd_mach_sh4al_dsp:
2419 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2420 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2421 break;
2422
2423 default:
2424 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2425 break;
2426 }
2427
2428 /* Hook in ABI-specific overrides, if they have been registered. */
2429 gdbarch_init_osabi (info, gdbarch);
2430
2431 dwarf2_append_unwinders (gdbarch);
2432 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2433 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2434
2435 return gdbarch;
2436 }
2437
2438 static void
2439 show_sh_command (const char *args, int from_tty)
2440 {
2441 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2442 }
2443
2444 static void
2445 set_sh_command (const char *args, int from_tty)
2446 {
2447 printf_unfiltered
2448 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2449 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2450 }
2451
2452 void
2453 _initialize_sh_tdep (void)
2454 {
2455 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2456
2457 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2458 &setshcmdlist, "set sh ", 0, &setlist);
2459 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2460 &showshcmdlist, "show sh ", 0, &showlist);
2461
2462 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2463 &sh_active_calling_convention,
2464 _("Set calling convention used when calling target "
2465 "functions from GDB."),
2466 _("Show calling convention used when calling target "
2467 "functions from GDB."),
2468 _("gcc - Use GCC calling convention (default).\n"
2469 "renesas - Enforce Renesas calling convention."),
2470 NULL, NULL,
2471 &setshcmdlist, &showshcmdlist);
2472 }