]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-frv.c
run copyright.sh for 2011.
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "solist.h"
27 #include "frv-tdep.h"
28 #include "objfiles.h"
29 #include "symtab.h"
30 #include "language.h"
31 #include "command.h"
32 #include "gdbcmd.h"
33 #include "elf/frv.h"
34 #include "exceptions.h"
35
36 /* Flag which indicates whether internal debug messages should be printed. */
37 static int solib_frv_debug;
38
39 /* FR-V pointers are four bytes wide. */
40 enum { FRV_PTR_SIZE = 4 };
41
42 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43
44 /* External versions; the size and alignment of the fields should be
45 the same as those on the target. When loaded, the placement of
46 the bits in each field will be the same as on the target. */
47 typedef gdb_byte ext_Elf32_Half[2];
48 typedef gdb_byte ext_Elf32_Addr[4];
49 typedef gdb_byte ext_Elf32_Word[4];
50
51 struct ext_elf32_fdpic_loadseg
52 {
53 /* Core address to which the segment is mapped. */
54 ext_Elf32_Addr addr;
55 /* VMA recorded in the program header. */
56 ext_Elf32_Addr p_vaddr;
57 /* Size of this segment in memory. */
58 ext_Elf32_Word p_memsz;
59 };
60
61 struct ext_elf32_fdpic_loadmap {
62 /* Protocol version number, must be zero. */
63 ext_Elf32_Half version;
64 /* Number of segments in this map. */
65 ext_Elf32_Half nsegs;
66 /* The actual memory map. */
67 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68 };
69
70 /* Internal versions; the types are GDB types and the data in each
71 of the fields is (or will be) decoded from the external struct
72 for ease of consumption. */
73 struct int_elf32_fdpic_loadseg
74 {
75 /* Core address to which the segment is mapped. */
76 CORE_ADDR addr;
77 /* VMA recorded in the program header. */
78 CORE_ADDR p_vaddr;
79 /* Size of this segment in memory. */
80 long p_memsz;
81 };
82
83 struct int_elf32_fdpic_loadmap {
84 /* Protocol version number, must be zero. */
85 int version;
86 /* Number of segments in this map. */
87 int nsegs;
88 /* The actual memory map. */
89 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90 };
91
92 /* Given address LDMADDR, fetch and decode the loadmap at that address.
93 Return NULL if there is a problem reading the target memory or if
94 there doesn't appear to be a loadmap at the given address. The
95 allocated space (representing the loadmap) returned by this
96 function may be freed via a single call to xfree(). */
97
98 static struct int_elf32_fdpic_loadmap *
99 fetch_loadmap (CORE_ADDR ldmaddr)
100 {
101 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
102 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
103 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
104 struct int_elf32_fdpic_loadmap *int_ldmbuf;
105 int ext_ldmbuf_size, int_ldmbuf_size;
106 int version, seg, nsegs;
107
108 /* Fetch initial portion of the loadmap. */
109 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
110 sizeof ext_ldmbuf_partial))
111 {
112 /* Problem reading the target's memory. */
113 return NULL;
114 }
115
116 /* Extract the version. */
117 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
118 sizeof ext_ldmbuf_partial.version,
119 byte_order);
120 if (version != 0)
121 {
122 /* We only handle version 0. */
123 return NULL;
124 }
125
126 /* Extract the number of segments. */
127 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
128 sizeof ext_ldmbuf_partial.nsegs,
129 byte_order);
130
131 if (nsegs <= 0)
132 return NULL;
133
134 /* Allocate space for the complete (external) loadmap. */
135 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
136 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
137 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
138
139 /* Copy over the portion of the loadmap that's already been read. */
140 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
141
142 /* Read the rest of the loadmap from the target. */
143 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
144 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
145 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
146 {
147 /* Couldn't read rest of the loadmap. */
148 xfree (ext_ldmbuf);
149 return NULL;
150 }
151
152 /* Allocate space into which to put information extract from the
153 external loadsegs. I.e, allocate the internal loadsegs. */
154 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
155 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
156 int_ldmbuf = xmalloc (int_ldmbuf_size);
157
158 /* Place extracted information in internal structs. */
159 int_ldmbuf->version = version;
160 int_ldmbuf->nsegs = nsegs;
161 for (seg = 0; seg < nsegs; seg++)
162 {
163 int_ldmbuf->segs[seg].addr
164 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
165 sizeof (ext_ldmbuf->segs[seg].addr),
166 byte_order);
167 int_ldmbuf->segs[seg].p_vaddr
168 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
169 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
170 byte_order);
171 int_ldmbuf->segs[seg].p_memsz
172 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
173 sizeof (ext_ldmbuf->segs[seg].p_memsz),
174 byte_order);
175 }
176
177 xfree (ext_ldmbuf);
178 return int_ldmbuf;
179 }
180
181 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
182
183 typedef gdb_byte ext_ptr[4];
184
185 struct ext_elf32_fdpic_loadaddr
186 {
187 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
188 ext_ptr got_value; /* void *got_value; */
189 };
190
191 struct ext_link_map
192 {
193 struct ext_elf32_fdpic_loadaddr l_addr;
194
195 /* Absolute file name object was found in. */
196 ext_ptr l_name; /* char *l_name; */
197
198 /* Dynamic section of the shared object. */
199 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
200
201 /* Chain of loaded objects. */
202 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
203 };
204
205 /* Link map info to include in an allocated so_list entry */
206
207 struct lm_info
208 {
209 /* The loadmap, digested into an easier to use form. */
210 struct int_elf32_fdpic_loadmap *map;
211 /* The GOT address for this link map entry. */
212 CORE_ADDR got_value;
213 /* The link map address, needed for frv_fetch_objfile_link_map(). */
214 CORE_ADDR lm_addr;
215
216 /* Cached dynamic symbol table and dynamic relocs initialized and
217 used only by find_canonical_descriptor_in_load_object().
218
219 Note: kevinb/2004-02-26: It appears that calls to
220 bfd_canonicalize_dynamic_reloc() will use the same symbols as
221 those supplied to the first call to this function. Therefore,
222 it's important to NOT free the asymbol ** data structure
223 supplied to the first call. Thus the caching of the dynamic
224 symbols (dyn_syms) is critical for correct operation. The
225 caching of the dynamic relocations could be dispensed with. */
226 asymbol **dyn_syms;
227 arelent **dyn_relocs;
228 int dyn_reloc_count; /* number of dynamic relocs. */
229
230 };
231
232 /* The load map, got value, etc. are not available from the chain
233 of loaded shared objects. ``main_executable_lm_info'' provides
234 a way to get at this information so that it doesn't need to be
235 frequently recomputed. Initialized by frv_relocate_main_executable(). */
236 static struct lm_info *main_executable_lm_info;
237
238 static void frv_relocate_main_executable (void);
239 static CORE_ADDR main_got (void);
240 static int enable_break2 (void);
241
242 /*
243
244 LOCAL FUNCTION
245
246 bfd_lookup_symbol -- lookup the value for a specific symbol
247
248 SYNOPSIS
249
250 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
251
252 DESCRIPTION
253
254 An expensive way to lookup the value of a single symbol for
255 bfd's that are only temporary anyway. This is used by the
256 shared library support to find the address of the debugger
257 interface structures in the shared library.
258
259 Note that 0 is specifically allowed as an error return (no
260 such symbol).
261 */
262
263 static CORE_ADDR
264 bfd_lookup_symbol (bfd *abfd, char *symname)
265 {
266 long storage_needed;
267 asymbol *sym;
268 asymbol **symbol_table;
269 unsigned int number_of_symbols;
270 unsigned int i;
271 struct cleanup *back_to;
272 CORE_ADDR symaddr = 0;
273
274 storage_needed = bfd_get_symtab_upper_bound (abfd);
275
276 if (storage_needed > 0)
277 {
278 symbol_table = (asymbol **) xmalloc (storage_needed);
279 back_to = make_cleanup (xfree, symbol_table);
280 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
281
282 for (i = 0; i < number_of_symbols; i++)
283 {
284 sym = *symbol_table++;
285 if (strcmp (sym->name, symname) == 0)
286 {
287 /* Bfd symbols are section relative. */
288 symaddr = sym->value + sym->section->vma;
289 break;
290 }
291 }
292 do_cleanups (back_to);
293 }
294
295 if (symaddr)
296 return symaddr;
297
298 /* Look for the symbol in the dynamic string table too. */
299
300 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
301
302 if (storage_needed > 0)
303 {
304 symbol_table = (asymbol **) xmalloc (storage_needed);
305 back_to = make_cleanup (xfree, symbol_table);
306 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
307
308 for (i = 0; i < number_of_symbols; i++)
309 {
310 sym = *symbol_table++;
311 if (strcmp (sym->name, symname) == 0)
312 {
313 /* Bfd symbols are section relative. */
314 symaddr = sym->value + sym->section->vma;
315 break;
316 }
317 }
318 do_cleanups (back_to);
319 }
320
321 return symaddr;
322 }
323
324
325 /*
326
327 LOCAL FUNCTION
328
329 open_symbol_file_object
330
331 SYNOPSIS
332
333 void open_symbol_file_object (void *from_tty)
334
335 DESCRIPTION
336
337 If no open symbol file, attempt to locate and open the main symbol
338 file.
339
340 If FROM_TTYP dereferences to a non-zero integer, allow messages to
341 be printed. This parameter is a pointer rather than an int because
342 open_symbol_file_object() is called via catch_errors() and
343 catch_errors() requires a pointer argument. */
344
345 static int
346 open_symbol_file_object (void *from_ttyp)
347 {
348 /* Unimplemented. */
349 return 0;
350 }
351
352 /* Cached value for lm_base(), below. */
353 static CORE_ADDR lm_base_cache = 0;
354
355 /* Link map address for main module. */
356 static CORE_ADDR main_lm_addr = 0;
357
358 /* Return the address from which the link map chain may be found. On
359 the FR-V, this may be found in a number of ways. Assuming that the
360 main executable has already been relocated, the easiest way to find
361 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
362 pointer to the start of the link map will be located at the word found
363 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
364 reserve area mandated by the ABI.) */
365
366 static CORE_ADDR
367 lm_base (void)
368 {
369 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
370 struct minimal_symbol *got_sym;
371 CORE_ADDR addr;
372 gdb_byte buf[FRV_PTR_SIZE];
373
374 /* One of our assumptions is that the main executable has been relocated.
375 Bail out if this has not happened. (Note that post_create_inferior()
376 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
377 If we allow this to happen, lm_base_cache will be initialized with
378 a bogus value. */
379 if (main_executable_lm_info == 0)
380 return 0;
381
382 /* If we already have a cached value, return it. */
383 if (lm_base_cache)
384 return lm_base_cache;
385
386 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
387 symfile_objfile);
388 if (got_sym == 0)
389 {
390 if (solib_frv_debug)
391 fprintf_unfiltered (gdb_stdlog,
392 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
393 return 0;
394 }
395
396 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
397
398 if (solib_frv_debug)
399 fprintf_unfiltered (gdb_stdlog,
400 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
401 hex_string_custom (addr, 8));
402
403 if (target_read_memory (addr, buf, sizeof buf) != 0)
404 return 0;
405 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
406
407 if (solib_frv_debug)
408 fprintf_unfiltered (gdb_stdlog,
409 "lm_base: lm_base_cache = %s\n",
410 hex_string_custom (lm_base_cache, 8));
411
412 return lm_base_cache;
413 }
414
415
416 /* LOCAL FUNCTION
417
418 frv_current_sos -- build a list of currently loaded shared objects
419
420 SYNOPSIS
421
422 struct so_list *frv_current_sos ()
423
424 DESCRIPTION
425
426 Build a list of `struct so_list' objects describing the shared
427 objects currently loaded in the inferior. This list does not
428 include an entry for the main executable file.
429
430 Note that we only gather information directly available from the
431 inferior --- we don't examine any of the shared library files
432 themselves. The declaration of `struct so_list' says which fields
433 we provide values for. */
434
435 static struct so_list *
436 frv_current_sos (void)
437 {
438 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
439 CORE_ADDR lm_addr, mgot;
440 struct so_list *sos_head = NULL;
441 struct so_list **sos_next_ptr = &sos_head;
442
443 /* Make sure that the main executable has been relocated. This is
444 required in order to find the address of the global offset table,
445 which in turn is used to find the link map info. (See lm_base()
446 for details.)
447
448 Note that the relocation of the main executable is also performed
449 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
450 files, this hook is called too late in order to be of benefit to
451 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
452 frv_current_sos, and also precedes the call to
453 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
454 infcmd.c.) */
455 if (main_executable_lm_info == 0 && core_bfd != NULL)
456 frv_relocate_main_executable ();
457
458 /* Fetch the GOT corresponding to the main executable. */
459 mgot = main_got ();
460
461 /* Locate the address of the first link map struct. */
462 lm_addr = lm_base ();
463
464 /* We have at least one link map entry. Fetch the the lot of them,
465 building the solist chain. */
466 while (lm_addr)
467 {
468 struct ext_link_map lm_buf;
469 CORE_ADDR got_addr;
470
471 if (solib_frv_debug)
472 fprintf_unfiltered (gdb_stdlog,
473 "current_sos: reading link_map entry at %s\n",
474 hex_string_custom (lm_addr, 8));
475
476 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
477 {
478 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
479 break;
480 }
481
482 got_addr
483 = extract_unsigned_integer (lm_buf.l_addr.got_value,
484 sizeof (lm_buf.l_addr.got_value),
485 byte_order);
486 /* If the got_addr is the same as mgotr, then we're looking at the
487 entry for the main executable. By convention, we don't include
488 this in the list of shared objects. */
489 if (got_addr != mgot)
490 {
491 int errcode;
492 char *name_buf;
493 struct int_elf32_fdpic_loadmap *loadmap;
494 struct so_list *sop;
495 CORE_ADDR addr;
496
497 /* Fetch the load map address. */
498 addr = extract_unsigned_integer (lm_buf.l_addr.map,
499 sizeof lm_buf.l_addr.map,
500 byte_order);
501 loadmap = fetch_loadmap (addr);
502 if (loadmap == NULL)
503 {
504 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
505 break;
506 }
507
508 sop = xcalloc (1, sizeof (struct so_list));
509 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
510 sop->lm_info->map = loadmap;
511 sop->lm_info->got_value = got_addr;
512 sop->lm_info->lm_addr = lm_addr;
513 /* Fetch the name. */
514 addr = extract_unsigned_integer (lm_buf.l_name,
515 sizeof (lm_buf.l_name),
516 byte_order);
517 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
518 &errcode);
519
520 if (solib_frv_debug)
521 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
522 name_buf);
523
524 if (errcode != 0)
525 warning (_("Can't read pathname for link map entry: %s."),
526 safe_strerror (errcode));
527 else
528 {
529 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
530 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
531 xfree (name_buf);
532 strcpy (sop->so_original_name, sop->so_name);
533 }
534
535 *sos_next_ptr = sop;
536 sos_next_ptr = &sop->next;
537 }
538 else
539 {
540 main_lm_addr = lm_addr;
541 }
542
543 lm_addr = extract_unsigned_integer (lm_buf.l_next,
544 sizeof (lm_buf.l_next), byte_order);
545 }
546
547 enable_break2 ();
548
549 return sos_head;
550 }
551
552
553 /* Return 1 if PC lies in the dynamic symbol resolution code of the
554 run time loader. */
555
556 static CORE_ADDR interp_text_sect_low;
557 static CORE_ADDR interp_text_sect_high;
558 static CORE_ADDR interp_plt_sect_low;
559 static CORE_ADDR interp_plt_sect_high;
560
561 static int
562 frv_in_dynsym_resolve_code (CORE_ADDR pc)
563 {
564 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
565 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
566 || in_plt_section (pc, NULL));
567 }
568
569 /* Given a loadmap and an address, return the displacement needed
570 to relocate the address. */
571
572 static CORE_ADDR
573 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
574 CORE_ADDR addr)
575 {
576 int seg;
577
578 for (seg = 0; seg < map->nsegs; seg++)
579 {
580 if (map->segs[seg].p_vaddr <= addr
581 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
582 {
583 return map->segs[seg].addr - map->segs[seg].p_vaddr;
584 }
585 }
586
587 return 0;
588 }
589
590 /* Print a warning about being unable to set the dynamic linker
591 breakpoint. */
592
593 static void
594 enable_break_failure_warning (void)
595 {
596 warning (_("Unable to find dynamic linker breakpoint function.\n"
597 "GDB will be unable to debug shared library initializers\n"
598 "and track explicitly loaded dynamic code."));
599 }
600
601 /*
602
603 LOCAL FUNCTION
604
605 enable_break -- arrange for dynamic linker to hit breakpoint
606
607 SYNOPSIS
608
609 int enable_break (void)
610
611 DESCRIPTION
612
613 The dynamic linkers has, as part of its debugger interface, support
614 for arranging for the inferior to hit a breakpoint after mapping in
615 the shared libraries. This function enables that breakpoint.
616
617 On the FR-V, using the shared library (FDPIC) ABI, the symbol
618 _dl_debug_addr points to the r_debug struct which contains
619 a field called r_brk. r_brk is the address of the function
620 descriptor upon which a breakpoint must be placed. Being a
621 function descriptor, we must extract the entry point in order
622 to set the breakpoint.
623
624 Our strategy will be to get the .interp section from the
625 executable. This section will provide us with the name of the
626 interpreter. We'll open the interpreter and then look up
627 the address of _dl_debug_addr. We then relocate this address
628 using the interpreter's loadmap. Once the relocated address
629 is known, we fetch the value (address) corresponding to r_brk
630 and then use that value to fetch the entry point of the function
631 we're interested in.
632
633 */
634
635 static int enable_break2_done = 0;
636
637 static int
638 enable_break2 (void)
639 {
640 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
641 int success = 0;
642 char **bkpt_namep;
643 asection *interp_sect;
644
645 if (enable_break2_done)
646 return 1;
647
648 interp_text_sect_low = interp_text_sect_high = 0;
649 interp_plt_sect_low = interp_plt_sect_high = 0;
650
651 /* Find the .interp section; if not found, warn the user and drop
652 into the old breakpoint at symbol code. */
653 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
654 if (interp_sect)
655 {
656 unsigned int interp_sect_size;
657 gdb_byte *buf;
658 bfd *tmp_bfd = NULL;
659 int status;
660 CORE_ADDR addr, interp_loadmap_addr;
661 gdb_byte addr_buf[FRV_PTR_SIZE];
662 struct int_elf32_fdpic_loadmap *ldm;
663 volatile struct gdb_exception ex;
664
665 /* Read the contents of the .interp section into a local buffer;
666 the contents specify the dynamic linker this program uses. */
667 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
668 buf = alloca (interp_sect_size);
669 bfd_get_section_contents (exec_bfd, interp_sect,
670 buf, 0, interp_sect_size);
671
672 /* Now we need to figure out where the dynamic linker was
673 loaded so that we can load its symbols and place a breakpoint
674 in the dynamic linker itself.
675
676 This address is stored on the stack. However, I've been unable
677 to find any magic formula to find it for Solaris (appears to
678 be trivial on GNU/Linux). Therefore, we have to try an alternate
679 mechanism to find the dynamic linker's base address. */
680
681 TRY_CATCH (ex, RETURN_MASK_ALL)
682 {
683 tmp_bfd = solib_bfd_open (buf);
684 }
685 if (tmp_bfd == NULL)
686 {
687 enable_break_failure_warning ();
688 return 0;
689 }
690
691 status = frv_fdpic_loadmap_addresses (target_gdbarch,
692 &interp_loadmap_addr, 0);
693 if (status < 0)
694 {
695 warning (_("Unable to determine dynamic linker loadmap address."));
696 enable_break_failure_warning ();
697 bfd_close (tmp_bfd);
698 return 0;
699 }
700
701 if (solib_frv_debug)
702 fprintf_unfiltered (gdb_stdlog,
703 "enable_break: interp_loadmap_addr = %s\n",
704 hex_string_custom (interp_loadmap_addr, 8));
705
706 ldm = fetch_loadmap (interp_loadmap_addr);
707 if (ldm == NULL)
708 {
709 warning (_("Unable to load dynamic linker loadmap at address %s."),
710 hex_string_custom (interp_loadmap_addr, 8));
711 enable_break_failure_warning ();
712 bfd_close (tmp_bfd);
713 return 0;
714 }
715
716 /* Record the relocated start and end address of the dynamic linker
717 text and plt section for svr4_in_dynsym_resolve_code. */
718 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
719 if (interp_sect)
720 {
721 interp_text_sect_low
722 = bfd_section_vma (tmp_bfd, interp_sect);
723 interp_text_sect_low
724 += displacement_from_map (ldm, interp_text_sect_low);
725 interp_text_sect_high
726 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
727 }
728 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
729 if (interp_sect)
730 {
731 interp_plt_sect_low =
732 bfd_section_vma (tmp_bfd, interp_sect);
733 interp_plt_sect_low
734 += displacement_from_map (ldm, interp_plt_sect_low);
735 interp_plt_sect_high =
736 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
737 }
738
739 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
740 if (addr == 0)
741 {
742 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
743 enable_break_failure_warning ();
744 bfd_close (tmp_bfd);
745 return 0;
746 }
747
748 if (solib_frv_debug)
749 fprintf_unfiltered (gdb_stdlog,
750 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
751 hex_string_custom (addr, 8));
752
753 addr += displacement_from_map (ldm, addr);
754
755 if (solib_frv_debug)
756 fprintf_unfiltered (gdb_stdlog,
757 "enable_break: _dl_debug_addr (after relocation) = %s\n",
758 hex_string_custom (addr, 8));
759
760 /* Fetch the address of the r_debug struct. */
761 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
762 {
763 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
764 hex_string_custom (addr, 8));
765 }
766 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
767
768 if (solib_frv_debug)
769 fprintf_unfiltered (gdb_stdlog,
770 "enable_break: _dl_debug_addr[0..3] = %s\n",
771 hex_string_custom (addr, 8));
772
773 /* If it's zero, then the ldso hasn't initialized yet, and so
774 there are no shared libs yet loaded. */
775 if (addr == 0)
776 {
777 if (solib_frv_debug)
778 fprintf_unfiltered (gdb_stdlog,
779 "enable_break: ldso not yet initialized\n");
780 /* Do not warn, but mark to run again. */
781 return 0;
782 }
783
784 /* Fetch the r_brk field. It's 8 bytes from the start of
785 _dl_debug_addr. */
786 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
787 {
788 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
789 hex_string_custom (addr + 8, 8));
790 enable_break_failure_warning ();
791 bfd_close (tmp_bfd);
792 return 0;
793 }
794 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
795
796 /* Now fetch the function entry point. */
797 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
798 {
799 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
800 hex_string_custom (addr, 8));
801 enable_break_failure_warning ();
802 bfd_close (tmp_bfd);
803 return 0;
804 }
805 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
806
807 /* We're done with the temporary bfd. */
808 bfd_close (tmp_bfd);
809
810 /* We're also done with the loadmap. */
811 xfree (ldm);
812
813 /* Remove all the solib event breakpoints. Their addresses
814 may have changed since the last time we ran the program. */
815 remove_solib_event_breakpoints ();
816
817 /* Now (finally!) create the solib breakpoint. */
818 create_solib_event_breakpoint (target_gdbarch, addr);
819
820 enable_break2_done = 1;
821
822 return 1;
823 }
824
825 /* Tell the user we couldn't set a dynamic linker breakpoint. */
826 enable_break_failure_warning ();
827
828 /* Failure return. */
829 return 0;
830 }
831
832 static int
833 enable_break (void)
834 {
835 asection *interp_sect;
836
837 if (symfile_objfile == NULL)
838 {
839 if (solib_frv_debug)
840 fprintf_unfiltered (gdb_stdlog,
841 "enable_break: No symbol file found.\n");
842 return 0;
843 }
844
845 if (!symfile_objfile->ei.entry_point_p)
846 {
847 if (solib_frv_debug)
848 fprintf_unfiltered (gdb_stdlog,
849 "enable_break: Symbol file has no entry point.\n");
850 return 0;
851 }
852
853 /* Check for the presence of a .interp section. If there is no
854 such section, the executable is statically linked. */
855
856 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
857
858 if (interp_sect == NULL)
859 {
860 if (solib_frv_debug)
861 fprintf_unfiltered (gdb_stdlog,
862 "enable_break: No .interp section found.\n");
863 return 0;
864 }
865
866 create_solib_event_breakpoint (target_gdbarch,
867 symfile_objfile->ei.entry_point);
868
869 if (solib_frv_debug)
870 fprintf_unfiltered (gdb_stdlog,
871 "enable_break: solib event breakpoint placed at entry point: %s\n",
872 hex_string_custom (symfile_objfile->ei.entry_point, 8));
873 return 1;
874 }
875
876 /*
877
878 LOCAL FUNCTION
879
880 special_symbol_handling -- additional shared library symbol handling
881
882 SYNOPSIS
883
884 void special_symbol_handling ()
885
886 DESCRIPTION
887
888 Once the symbols from a shared object have been loaded in the usual
889 way, we are called to do any system specific symbol handling that
890 is needed.
891
892 */
893
894 static void
895 frv_special_symbol_handling (void)
896 {
897 /* Nothing needed (yet) for FRV. */
898 }
899
900 static void
901 frv_relocate_main_executable (void)
902 {
903 int status;
904 CORE_ADDR exec_addr, interp_addr;
905 struct int_elf32_fdpic_loadmap *ldm;
906 struct cleanup *old_chain;
907 struct section_offsets *new_offsets;
908 int changed;
909 struct obj_section *osect;
910
911 status = frv_fdpic_loadmap_addresses (target_gdbarch,
912 &interp_addr, &exec_addr);
913
914 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
915 {
916 /* Not using FDPIC ABI, so do nothing. */
917 return;
918 }
919
920 /* Fetch the loadmap located at ``exec_addr''. */
921 ldm = fetch_loadmap (exec_addr);
922 if (ldm == NULL)
923 error (_("Unable to load the executable's loadmap."));
924
925 if (main_executable_lm_info)
926 xfree (main_executable_lm_info);
927 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
928 main_executable_lm_info->map = ldm;
929
930 new_offsets = xcalloc (symfile_objfile->num_sections,
931 sizeof (struct section_offsets));
932 old_chain = make_cleanup (xfree, new_offsets);
933 changed = 0;
934
935 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
936 {
937 CORE_ADDR orig_addr, addr, offset;
938 int osect_idx;
939 int seg;
940
941 osect_idx = osect->the_bfd_section->index;
942
943 /* Current address of section. */
944 addr = obj_section_addr (osect);
945 /* Offset from where this section started. */
946 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
947 /* Original address prior to any past relocations. */
948 orig_addr = addr - offset;
949
950 for (seg = 0; seg < ldm->nsegs; seg++)
951 {
952 if (ldm->segs[seg].p_vaddr <= orig_addr
953 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
954 {
955 new_offsets->offsets[osect_idx]
956 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
957
958 if (new_offsets->offsets[osect_idx] != offset)
959 changed = 1;
960 break;
961 }
962 }
963 }
964
965 if (changed)
966 objfile_relocate (symfile_objfile, new_offsets);
967
968 do_cleanups (old_chain);
969
970 /* Now that symfile_objfile has been relocated, we can compute the
971 GOT value and stash it away. */
972 main_executable_lm_info->got_value = main_got ();
973 }
974
975 /*
976
977 GLOBAL FUNCTION
978
979 frv_solib_create_inferior_hook -- shared library startup support
980
981 SYNOPSIS
982
983 void frv_solib_create_inferior_hook ()
984
985 DESCRIPTION
986
987 When gdb starts up the inferior, it nurses it along (through the
988 shell) until it is ready to execute it's first instruction. At this
989 point, this function gets called via expansion of the macro
990 SOLIB_CREATE_INFERIOR_HOOK.
991
992 For the FR-V shared library ABI (FDPIC), the main executable
993 needs to be relocated. The shared library breakpoints also need
994 to be enabled.
995 */
996
997 static void
998 frv_solib_create_inferior_hook (int from_tty)
999 {
1000 /* Relocate main executable. */
1001 frv_relocate_main_executable ();
1002
1003 /* Enable shared library breakpoints. */
1004 if (!enable_break ())
1005 {
1006 warning (_("shared library handler failed to enable breakpoint"));
1007 return;
1008 }
1009 }
1010
1011 static void
1012 frv_clear_solib (void)
1013 {
1014 lm_base_cache = 0;
1015 enable_break2_done = 0;
1016 main_lm_addr = 0;
1017 if (main_executable_lm_info != 0)
1018 {
1019 xfree (main_executable_lm_info->map);
1020 xfree (main_executable_lm_info->dyn_syms);
1021 xfree (main_executable_lm_info->dyn_relocs);
1022 xfree (main_executable_lm_info);
1023 main_executable_lm_info = 0;
1024 }
1025 }
1026
1027 static void
1028 frv_free_so (struct so_list *so)
1029 {
1030 xfree (so->lm_info->map);
1031 xfree (so->lm_info->dyn_syms);
1032 xfree (so->lm_info->dyn_relocs);
1033 xfree (so->lm_info);
1034 }
1035
1036 static void
1037 frv_relocate_section_addresses (struct so_list *so,
1038 struct target_section *sec)
1039 {
1040 int seg;
1041 struct int_elf32_fdpic_loadmap *map;
1042
1043 map = so->lm_info->map;
1044
1045 for (seg = 0; seg < map->nsegs; seg++)
1046 {
1047 if (map->segs[seg].p_vaddr <= sec->addr
1048 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1049 {
1050 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1051
1052 sec->addr += displ;
1053 sec->endaddr += displ;
1054 break;
1055 }
1056 }
1057 }
1058
1059 /* Return the GOT address associated with the main executable. Return
1060 0 if it can't be found. */
1061
1062 static CORE_ADDR
1063 main_got (void)
1064 {
1065 struct minimal_symbol *got_sym;
1066
1067 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1068 if (got_sym == 0)
1069 return 0;
1070
1071 return SYMBOL_VALUE_ADDRESS (got_sym);
1072 }
1073
1074 /* Find the global pointer for the given function address ADDR. */
1075
1076 CORE_ADDR
1077 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1078 {
1079 struct so_list *so;
1080
1081 so = master_so_list ();
1082 while (so)
1083 {
1084 int seg;
1085 struct int_elf32_fdpic_loadmap *map;
1086
1087 map = so->lm_info->map;
1088
1089 for (seg = 0; seg < map->nsegs; seg++)
1090 {
1091 if (map->segs[seg].addr <= addr
1092 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1093 return so->lm_info->got_value;
1094 }
1095
1096 so = so->next;
1097 }
1098
1099 /* Didn't find it it any of the shared objects. So assume it's in the
1100 main executable. */
1101 return main_got ();
1102 }
1103
1104 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1105 static CORE_ADDR find_canonical_descriptor_in_load_object
1106 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1107
1108 /* Given a function entry point, attempt to find the canonical descriptor
1109 associated with that entry point. Return 0 if no canonical descriptor
1110 could be found. */
1111
1112 CORE_ADDR
1113 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1114 {
1115 char *name;
1116 CORE_ADDR addr;
1117 CORE_ADDR got_value;
1118 struct int_elf32_fdpic_loadmap *ldm = 0;
1119 struct symbol *sym;
1120 int status;
1121 CORE_ADDR exec_loadmap_addr;
1122
1123 /* Fetch the corresponding global pointer for the entry point. */
1124 got_value = frv_fdpic_find_global_pointer (entry_point);
1125
1126 /* Attempt to find the name of the function. If the name is available,
1127 it'll be used as an aid in finding matching functions in the dynamic
1128 symbol table. */
1129 sym = find_pc_function (entry_point);
1130 if (sym == 0)
1131 name = 0;
1132 else
1133 name = SYMBOL_LINKAGE_NAME (sym);
1134
1135 /* Check the main executable. */
1136 addr = find_canonical_descriptor_in_load_object
1137 (entry_point, got_value, name, symfile_objfile->obfd,
1138 main_executable_lm_info);
1139
1140 /* If descriptor not found via main executable, check each load object
1141 in list of shared objects. */
1142 if (addr == 0)
1143 {
1144 struct so_list *so;
1145
1146 so = master_so_list ();
1147 while (so)
1148 {
1149 addr = find_canonical_descriptor_in_load_object
1150 (entry_point, got_value, name, so->abfd, so->lm_info);
1151
1152 if (addr != 0)
1153 break;
1154
1155 so = so->next;
1156 }
1157 }
1158
1159 return addr;
1160 }
1161
1162 static CORE_ADDR
1163 find_canonical_descriptor_in_load_object
1164 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1165 struct lm_info *lm)
1166 {
1167 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1168 arelent *rel;
1169 unsigned int i;
1170 CORE_ADDR addr = 0;
1171
1172 /* Nothing to do if no bfd. */
1173 if (abfd == 0)
1174 return 0;
1175
1176 /* Nothing to do if no link map. */
1177 if (lm == 0)
1178 return 0;
1179
1180 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1181 (More about this later.) But in order to fetch the relocs, we
1182 need to first fetch the dynamic symbols. These symbols need to
1183 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1184 works. (See the comments in the declaration of struct lm_info
1185 for more information.) */
1186 if (lm->dyn_syms == NULL)
1187 {
1188 long storage_needed;
1189 unsigned int number_of_symbols;
1190
1191 /* Determine amount of space needed to hold the dynamic symbol table. */
1192 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1193
1194 /* If there are no dynamic symbols, there's nothing to do. */
1195 if (storage_needed <= 0)
1196 return 0;
1197
1198 /* Allocate space for the dynamic symbol table. */
1199 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1200
1201 /* Fetch the dynamic symbol table. */
1202 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1203
1204 if (number_of_symbols == 0)
1205 return 0;
1206 }
1207
1208 /* Fetch the dynamic relocations if not already cached. */
1209 if (lm->dyn_relocs == NULL)
1210 {
1211 long storage_needed;
1212
1213 /* Determine amount of space needed to hold the dynamic relocs. */
1214 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1215
1216 /* Bail out if there are no dynamic relocs. */
1217 if (storage_needed <= 0)
1218 return 0;
1219
1220 /* Allocate space for the relocs. */
1221 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1222
1223 /* Fetch the dynamic relocs. */
1224 lm->dyn_reloc_count
1225 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1226 }
1227
1228 /* Search the dynamic relocs. */
1229 for (i = 0; i < lm->dyn_reloc_count; i++)
1230 {
1231 rel = lm->dyn_relocs[i];
1232
1233 /* Relocs of interest are those which meet the following
1234 criteria:
1235
1236 - the names match (assuming the caller could provide
1237 a name which matches ``entry_point'').
1238 - the relocation type must be R_FRV_FUNCDESC. Relocs
1239 of this type are used (by the dynamic linker) to
1240 look up the address of a canonical descriptor (allocating
1241 it if need be) and initializing the GOT entry referred
1242 to by the offset to the address of the descriptor.
1243
1244 These relocs of interest may be used to obtain a
1245 candidate descriptor by first adjusting the reloc's
1246 address according to the link map and then dereferencing
1247 this address (which is a GOT entry) to obtain a descriptor
1248 address. */
1249 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1250 && rel->howto->type == R_FRV_FUNCDESC)
1251 {
1252 gdb_byte buf [FRV_PTR_SIZE];
1253
1254 /* Compute address of address of candidate descriptor. */
1255 addr = rel->address + displacement_from_map (lm->map, rel->address);
1256
1257 /* Fetch address of candidate descriptor. */
1258 if (target_read_memory (addr, buf, sizeof buf) != 0)
1259 continue;
1260 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1261
1262 /* Check for matching entry point. */
1263 if (target_read_memory (addr, buf, sizeof buf) != 0)
1264 continue;
1265 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1266 != entry_point)
1267 continue;
1268
1269 /* Check for matching got value. */
1270 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1271 continue;
1272 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1273 != got_value)
1274 continue;
1275
1276 /* Match was successful! Exit loop. */
1277 break;
1278 }
1279 }
1280
1281 return addr;
1282 }
1283
1284 /* Given an objfile, return the address of its link map. This value is
1285 needed for TLS support. */
1286 CORE_ADDR
1287 frv_fetch_objfile_link_map (struct objfile *objfile)
1288 {
1289 struct so_list *so;
1290
1291 /* Cause frv_current_sos() to be run if it hasn't been already. */
1292 if (main_lm_addr == 0)
1293 solib_add (0, 0, 0, 1);
1294
1295 /* frv_current_sos() will set main_lm_addr for the main executable. */
1296 if (objfile == symfile_objfile)
1297 return main_lm_addr;
1298
1299 /* The other link map addresses may be found by examining the list
1300 of shared libraries. */
1301 for (so = master_so_list (); so; so = so->next)
1302 {
1303 if (so->objfile == objfile)
1304 return so->lm_info->lm_addr;
1305 }
1306
1307 /* Not found! */
1308 return 0;
1309 }
1310
1311 struct target_so_ops frv_so_ops;
1312
1313 /* Provide a prototype to silence -Wmissing-prototypes. */
1314 extern initialize_file_ftype _initialize_frv_solib;
1315
1316 void
1317 _initialize_frv_solib (void)
1318 {
1319 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1320 frv_so_ops.free_so = frv_free_so;
1321 frv_so_ops.clear_solib = frv_clear_solib;
1322 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1323 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1324 frv_so_ops.current_sos = frv_current_sos;
1325 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1326 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1327 frv_so_ops.bfd_open = solib_bfd_open;
1328
1329 /* Debug this file's internals. */
1330 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1331 &solib_frv_debug, _("\
1332 Set internal debugging of shared library code for FR-V."), _("\
1333 Show internal debugging of shared library code for FR-V."), _("\
1334 When non-zero, FR-V solib specific internal debugging is enabled."),
1335 NULL,
1336 NULL, /* FIXME: i18n: */
1337 &setdebuglist, &showdebuglist);
1338 }