]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-frv.c
configure: require libzstd >= 1.4.0
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2022 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
33
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
36
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
39
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
48
49 struct ext_elf32_fdpic_loadseg
50 {
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57 };
58
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66 };
67
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
72 {
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79 };
80
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88 };
89
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
98 {
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
128
129 if (nsegs <= 0)
130 return NULL;
131
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
173 }
174
175 xfree (ext_ldmbuf);
176 return int_ldmbuf;
177 }
178
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
181 typedef gdb_byte ext_ptr[4];
182
183 struct ext_elf32_fdpic_loadaddr
184 {
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187 };
188
189 struct ext_link_map
190 {
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201 };
202
203 /* Link map info to include in an allocated so_list entry. */
204
205 struct lm_info_frv : public lm_info_base
206 {
207 ~lm_info_frv ()
208 {
209 xfree (this->map);
210 xfree (this->dyn_syms);
211 xfree (this->dyn_relocs);
212 }
213
214 /* The loadmap, digested into an easier to use form. */
215 int_elf32_fdpic_loadmap *map = NULL;
216 /* The GOT address for this link map entry. */
217 CORE_ADDR got_value = 0;
218 /* The link map address, needed for frv_fetch_objfile_link_map(). */
219 CORE_ADDR lm_addr = 0;
220
221 /* Cached dynamic symbol table and dynamic relocs initialized and
222 used only by find_canonical_descriptor_in_load_object().
223
224 Note: kevinb/2004-02-26: It appears that calls to
225 bfd_canonicalize_dynamic_reloc() will use the same symbols as
226 those supplied to the first call to this function. Therefore,
227 it's important to NOT free the asymbol ** data structure
228 supplied to the first call. Thus the caching of the dynamic
229 symbols (dyn_syms) is critical for correct operation. The
230 caching of the dynamic relocations could be dispensed with. */
231 asymbol **dyn_syms = NULL;
232 arelent **dyn_relocs = NULL;
233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
234 };
235
236 /* The load map, got value, etc. are not available from the chain
237 of loaded shared objects. ``main_executable_lm_info'' provides
238 a way to get at this information so that it doesn't need to be
239 frequently recomputed. Initialized by frv_relocate_main_executable(). */
240 static lm_info_frv *main_executable_lm_info;
241
242 static void frv_relocate_main_executable (void);
243 static CORE_ADDR main_got (void);
244 static int enable_break2 (void);
245
246 /* Implement the "open_symbol_file_object" target_so_ops method. */
247
248 static int
249 open_symbol_file_object (int from_tty)
250 {
251 /* Unimplemented. */
252 return 0;
253 }
254
255 /* Cached value for lm_base(), below. */
256 static CORE_ADDR lm_base_cache = 0;
257
258 /* Link map address for main module. */
259 static CORE_ADDR main_lm_addr = 0;
260
261 /* Return the address from which the link map chain may be found. On
262 the FR-V, this may be found in a number of ways. Assuming that the
263 main executable has already been relocated, the easiest way to find
264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
265 pointer to the start of the link map will be located at the word found
266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
267 reserve area mandated by the ABI.) */
268
269 static CORE_ADDR
270 lm_base (void)
271 {
272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
273 struct bound_minimal_symbol got_sym;
274 CORE_ADDR addr;
275 gdb_byte buf[FRV_PTR_SIZE];
276
277 /* One of our assumptions is that the main executable has been relocated.
278 Bail out if this has not happened. (Note that post_create_inferior()
279 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
280 If we allow this to happen, lm_base_cache will be initialized with
281 a bogus value. */
282 if (main_executable_lm_info == 0)
283 return 0;
284
285 /* If we already have a cached value, return it. */
286 if (lm_base_cache)
287 return lm_base_cache;
288
289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
290 current_program_space->symfile_object_file);
291 if (got_sym.minsym == 0)
292 {
293 if (solib_frv_debug)
294 gdb_printf (gdb_stdlog,
295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
296 return 0;
297 }
298
299 addr = got_sym.value_address () + 8;
300
301 if (solib_frv_debug)
302 gdb_printf (gdb_stdlog,
303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
304 hex_string_custom (addr, 8));
305
306 if (target_read_memory (addr, buf, sizeof buf) != 0)
307 return 0;
308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
309
310 if (solib_frv_debug)
311 gdb_printf (gdb_stdlog,
312 "lm_base: lm_base_cache = %s\n",
313 hex_string_custom (lm_base_cache, 8));
314
315 return lm_base_cache;
316 }
317
318
319 /* Implement the "current_sos" target_so_ops method. */
320
321 static struct so_list *
322 frv_current_sos (void)
323 {
324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
325 CORE_ADDR lm_addr, mgot;
326 struct so_list *sos_head = NULL;
327 struct so_list **sos_next_ptr = &sos_head;
328
329 /* Make sure that the main executable has been relocated. This is
330 required in order to find the address of the global offset table,
331 which in turn is used to find the link map info. (See lm_base()
332 for details.)
333
334 Note that the relocation of the main executable is also performed
335 by solib_create_inferior_hook(), however, in the case of core
336 files, this hook is called too late in order to be of benefit to
337 solib_add. solib_add eventually calls this this function,
338 frv_current_sos, and also precedes the call to
339 solib_create_inferior_hook(). (See post_create_inferior() in
340 infcmd.c.) */
341 if (main_executable_lm_info == 0 && core_bfd != NULL)
342 frv_relocate_main_executable ();
343
344 /* Fetch the GOT corresponding to the main executable. */
345 mgot = main_got ();
346
347 /* Locate the address of the first link map struct. */
348 lm_addr = lm_base ();
349
350 /* We have at least one link map entry. Fetch the lot of them,
351 building the solist chain. */
352 while (lm_addr)
353 {
354 struct ext_link_map lm_buf;
355 CORE_ADDR got_addr;
356
357 if (solib_frv_debug)
358 gdb_printf (gdb_stdlog,
359 "current_sos: reading link_map entry at %s\n",
360 hex_string_custom (lm_addr, 8));
361
362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
363 sizeof (lm_buf)) != 0)
364 {
365 warning (_("frv_current_sos: Unable to read link map entry. "
366 "Shared object chain may be incomplete."));
367 break;
368 }
369
370 got_addr
371 = extract_unsigned_integer (lm_buf.l_addr.got_value,
372 sizeof (lm_buf.l_addr.got_value),
373 byte_order);
374 /* If the got_addr is the same as mgotr, then we're looking at the
375 entry for the main executable. By convention, we don't include
376 this in the list of shared objects. */
377 if (got_addr != mgot)
378 {
379 struct int_elf32_fdpic_loadmap *loadmap;
380 struct so_list *sop;
381 CORE_ADDR addr;
382
383 /* Fetch the load map address. */
384 addr = extract_unsigned_integer (lm_buf.l_addr.map,
385 sizeof lm_buf.l_addr.map,
386 byte_order);
387 loadmap = fetch_loadmap (addr);
388 if (loadmap == NULL)
389 {
390 warning (_("frv_current_sos: Unable to fetch load map. "
391 "Shared object chain may be incomplete."));
392 break;
393 }
394
395 sop = XCNEW (struct so_list);
396 lm_info_frv *li = new lm_info_frv;
397 sop->lm_info = li;
398 li->map = loadmap;
399 li->got_value = got_addr;
400 li->lm_addr = lm_addr;
401 /* Fetch the name. */
402 addr = extract_unsigned_integer (lm_buf.l_name,
403 sizeof (lm_buf.l_name),
404 byte_order);
405 gdb::unique_xmalloc_ptr<char> name_buf
406 = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1);
407
408 if (solib_frv_debug)
409 gdb_printf (gdb_stdlog, "current_sos: name = %s\n",
410 name_buf.get ());
411
412 if (name_buf == nullptr)
413 warning (_("Can't read pathname for link map entry."));
414 else
415 {
416 strncpy (sop->so_name, name_buf.get (),
417 SO_NAME_MAX_PATH_SIZE - 1);
418 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
419 strcpy (sop->so_original_name, sop->so_name);
420 }
421
422 *sos_next_ptr = sop;
423 sos_next_ptr = &sop->next;
424 }
425 else
426 {
427 main_lm_addr = lm_addr;
428 }
429
430 lm_addr = extract_unsigned_integer (lm_buf.l_next,
431 sizeof (lm_buf.l_next), byte_order);
432 }
433
434 enable_break2 ();
435
436 return sos_head;
437 }
438
439
440 /* Return 1 if PC lies in the dynamic symbol resolution code of the
441 run time loader. */
442
443 static CORE_ADDR interp_text_sect_low;
444 static CORE_ADDR interp_text_sect_high;
445 static CORE_ADDR interp_plt_sect_low;
446 static CORE_ADDR interp_plt_sect_high;
447
448 static int
449 frv_in_dynsym_resolve_code (CORE_ADDR pc)
450 {
451 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
452 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
453 || in_plt_section (pc));
454 }
455
456 /* Given a loadmap and an address, return the displacement needed
457 to relocate the address. */
458
459 static CORE_ADDR
460 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
461 CORE_ADDR addr)
462 {
463 int seg;
464
465 for (seg = 0; seg < map->nsegs; seg++)
466 {
467 if (map->segs[seg].p_vaddr <= addr
468 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
469 {
470 return map->segs[seg].addr - map->segs[seg].p_vaddr;
471 }
472 }
473
474 return 0;
475 }
476
477 /* Print a warning about being unable to set the dynamic linker
478 breakpoint. */
479
480 static void
481 enable_break_failure_warning (void)
482 {
483 warning (_("Unable to find dynamic linker breakpoint function.\n"
484 "GDB will be unable to debug shared library initializers\n"
485 "and track explicitly loaded dynamic code."));
486 }
487
488 /* Helper function for gdb_bfd_lookup_symbol. */
489
490 static int
491 cmp_name (const asymbol *sym, const void *data)
492 {
493 return (strcmp (sym->name, (const char *) data) == 0);
494 }
495
496 /* Arrange for dynamic linker to hit breakpoint.
497
498 The dynamic linkers has, as part of its debugger interface, support
499 for arranging for the inferior to hit a breakpoint after mapping in
500 the shared libraries. This function enables that breakpoint.
501
502 On the FR-V, using the shared library (FDPIC) ABI, the symbol
503 _dl_debug_addr points to the r_debug struct which contains
504 a field called r_brk. r_brk is the address of the function
505 descriptor upon which a breakpoint must be placed. Being a
506 function descriptor, we must extract the entry point in order
507 to set the breakpoint.
508
509 Our strategy will be to get the .interp section from the
510 executable. This section will provide us with the name of the
511 interpreter. We'll open the interpreter and then look up
512 the address of _dl_debug_addr. We then relocate this address
513 using the interpreter's loadmap. Once the relocated address
514 is known, we fetch the value (address) corresponding to r_brk
515 and then use that value to fetch the entry point of the function
516 we're interested in. */
517
518 static int enable_break2_done = 0;
519
520 static int
521 enable_break2 (void)
522 {
523 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
524 asection *interp_sect;
525
526 if (enable_break2_done)
527 return 1;
528
529 interp_text_sect_low = interp_text_sect_high = 0;
530 interp_plt_sect_low = interp_plt_sect_high = 0;
531
532 /* Find the .interp section; if not found, warn the user and drop
533 into the old breakpoint at symbol code. */
534 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
535 ".interp");
536 if (interp_sect)
537 {
538 unsigned int interp_sect_size;
539 char *buf;
540 int status;
541 CORE_ADDR addr, interp_loadmap_addr;
542 gdb_byte addr_buf[FRV_PTR_SIZE];
543 struct int_elf32_fdpic_loadmap *ldm;
544
545 /* Read the contents of the .interp section into a local buffer;
546 the contents specify the dynamic linker this program uses. */
547 interp_sect_size = bfd_section_size (interp_sect);
548 buf = (char *) alloca (interp_sect_size);
549 bfd_get_section_contents (current_program_space->exec_bfd (),
550 interp_sect, buf, 0, interp_sect_size);
551
552 /* Now we need to figure out where the dynamic linker was
553 loaded so that we can load its symbols and place a breakpoint
554 in the dynamic linker itself.
555
556 This address is stored on the stack. However, I've been unable
557 to find any magic formula to find it for Solaris (appears to
558 be trivial on GNU/Linux). Therefore, we have to try an alternate
559 mechanism to find the dynamic linker's base address. */
560
561 gdb_bfd_ref_ptr tmp_bfd;
562 try
563 {
564 tmp_bfd = solib_bfd_open (buf);
565 }
566 catch (const gdb_exception &ex)
567 {
568 }
569
570 if (tmp_bfd == NULL)
571 {
572 enable_break_failure_warning ();
573 return 0;
574 }
575
576 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
577 &interp_loadmap_addr, 0);
578 if (status < 0)
579 {
580 warning (_("Unable to determine dynamic linker loadmap address."));
581 enable_break_failure_warning ();
582 return 0;
583 }
584
585 if (solib_frv_debug)
586 gdb_printf (gdb_stdlog,
587 "enable_break: interp_loadmap_addr = %s\n",
588 hex_string_custom (interp_loadmap_addr, 8));
589
590 ldm = fetch_loadmap (interp_loadmap_addr);
591 if (ldm == NULL)
592 {
593 warning (_("Unable to load dynamic linker loadmap at address %s."),
594 hex_string_custom (interp_loadmap_addr, 8));
595 enable_break_failure_warning ();
596 return 0;
597 }
598
599 /* Record the relocated start and end address of the dynamic linker
600 text and plt section for svr4_in_dynsym_resolve_code. */
601 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
602 if (interp_sect)
603 {
604 interp_text_sect_low = bfd_section_vma (interp_sect);
605 interp_text_sect_low
606 += displacement_from_map (ldm, interp_text_sect_low);
607 interp_text_sect_high
608 = interp_text_sect_low + bfd_section_size (interp_sect);
609 }
610 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
611 if (interp_sect)
612 {
613 interp_plt_sect_low = bfd_section_vma (interp_sect);
614 interp_plt_sect_low
615 += displacement_from_map (ldm, interp_plt_sect_low);
616 interp_plt_sect_high =
617 interp_plt_sect_low + bfd_section_size (interp_sect);
618 }
619
620 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
621
622 if (addr == 0)
623 {
624 warning (_("Could not find symbol _dl_debug_addr "
625 "in dynamic linker"));
626 enable_break_failure_warning ();
627 return 0;
628 }
629
630 if (solib_frv_debug)
631 gdb_printf (gdb_stdlog,
632 "enable_break: _dl_debug_addr "
633 "(prior to relocation) = %s\n",
634 hex_string_custom (addr, 8));
635
636 addr += displacement_from_map (ldm, addr);
637
638 if (solib_frv_debug)
639 gdb_printf (gdb_stdlog,
640 "enable_break: _dl_debug_addr "
641 "(after relocation) = %s\n",
642 hex_string_custom (addr, 8));
643
644 /* Fetch the address of the r_debug struct. */
645 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
646 {
647 warning (_("Unable to fetch contents of _dl_debug_addr "
648 "(at address %s) from dynamic linker"),
649 hex_string_custom (addr, 8));
650 }
651 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
652
653 if (solib_frv_debug)
654 gdb_printf (gdb_stdlog,
655 "enable_break: _dl_debug_addr[0..3] = %s\n",
656 hex_string_custom (addr, 8));
657
658 /* If it's zero, then the ldso hasn't initialized yet, and so
659 there are no shared libs yet loaded. */
660 if (addr == 0)
661 {
662 if (solib_frv_debug)
663 gdb_printf (gdb_stdlog,
664 "enable_break: ldso not yet initialized\n");
665 /* Do not warn, but mark to run again. */
666 return 0;
667 }
668
669 /* Fetch the r_brk field. It's 8 bytes from the start of
670 _dl_debug_addr. */
671 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
672 {
673 warning (_("Unable to fetch _dl_debug_addr->r_brk "
674 "(at address %s) from dynamic linker"),
675 hex_string_custom (addr + 8, 8));
676 enable_break_failure_warning ();
677 return 0;
678 }
679 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
680
681 /* Now fetch the function entry point. */
682 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
683 {
684 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
685 "(at address %s) from dynamic linker"),
686 hex_string_custom (addr, 8));
687 enable_break_failure_warning ();
688 return 0;
689 }
690 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
691
692 /* We're done with the loadmap. */
693 xfree (ldm);
694
695 /* Remove all the solib event breakpoints. Their addresses
696 may have changed since the last time we ran the program. */
697 remove_solib_event_breakpoints ();
698
699 /* Now (finally!) create the solib breakpoint. */
700 create_solib_event_breakpoint (target_gdbarch (), addr);
701
702 enable_break2_done = 1;
703
704 return 1;
705 }
706
707 /* Tell the user we couldn't set a dynamic linker breakpoint. */
708 enable_break_failure_warning ();
709
710 /* Failure return. */
711 return 0;
712 }
713
714 static int
715 enable_break (void)
716 {
717 asection *interp_sect;
718 CORE_ADDR entry_point;
719
720 if (current_program_space->symfile_object_file == NULL)
721 {
722 if (solib_frv_debug)
723 gdb_printf (gdb_stdlog,
724 "enable_break: No symbol file found.\n");
725 return 0;
726 }
727
728 if (!entry_point_address_query (&entry_point))
729 {
730 if (solib_frv_debug)
731 gdb_printf (gdb_stdlog,
732 "enable_break: Symbol file has no entry point.\n");
733 return 0;
734 }
735
736 /* Check for the presence of a .interp section. If there is no
737 such section, the executable is statically linked. */
738
739 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
740 ".interp");
741
742 if (interp_sect == NULL)
743 {
744 if (solib_frv_debug)
745 gdb_printf (gdb_stdlog,
746 "enable_break: No .interp section found.\n");
747 return 0;
748 }
749
750 create_solib_event_breakpoint (target_gdbarch (), entry_point);
751
752 if (solib_frv_debug)
753 gdb_printf (gdb_stdlog,
754 "enable_break: solib event breakpoint "
755 "placed at entry point: %s\n",
756 hex_string_custom (entry_point, 8));
757 return 1;
758 }
759
760 static void
761 frv_relocate_main_executable (void)
762 {
763 int status;
764 CORE_ADDR exec_addr, interp_addr;
765 struct int_elf32_fdpic_loadmap *ldm;
766 int changed;
767 struct obj_section *osect;
768
769 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
770 &interp_addr, &exec_addr);
771
772 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
773 {
774 /* Not using FDPIC ABI, so do nothing. */
775 return;
776 }
777
778 /* Fetch the loadmap located at ``exec_addr''. */
779 ldm = fetch_loadmap (exec_addr);
780 if (ldm == NULL)
781 error (_("Unable to load the executable's loadmap."));
782
783 delete main_executable_lm_info;
784 main_executable_lm_info = new lm_info_frv;
785 main_executable_lm_info->map = ldm;
786
787 objfile *objf = current_program_space->symfile_object_file;
788 section_offsets new_offsets (objf->section_offsets.size ());
789 changed = 0;
790
791 ALL_OBJFILE_OSECTIONS (objf, osect)
792 {
793 CORE_ADDR orig_addr, addr, offset;
794 int osect_idx;
795 int seg;
796
797 osect_idx = osect - objf->sections;
798
799 /* Current address of section. */
800 addr = osect->addr ();
801 /* Offset from where this section started. */
802 offset = objf->section_offsets[osect_idx];
803 /* Original address prior to any past relocations. */
804 orig_addr = addr - offset;
805
806 for (seg = 0; seg < ldm->nsegs; seg++)
807 {
808 if (ldm->segs[seg].p_vaddr <= orig_addr
809 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
810 {
811 new_offsets[osect_idx]
812 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
813
814 if (new_offsets[osect_idx] != offset)
815 changed = 1;
816 break;
817 }
818 }
819 }
820
821 if (changed)
822 objfile_relocate (objf, new_offsets);
823
824 /* Now that OBJF has been relocated, we can compute the GOT value
825 and stash it away. */
826 main_executable_lm_info->got_value = main_got ();
827 }
828
829 /* Implement the "create_inferior_hook" target_solib_ops method.
830
831 For the FR-V shared library ABI (FDPIC), the main executable needs
832 to be relocated. The shared library breakpoints also need to be
833 enabled. */
834
835 static void
836 frv_solib_create_inferior_hook (int from_tty)
837 {
838 /* Relocate main executable. */
839 frv_relocate_main_executable ();
840
841 /* Enable shared library breakpoints. */
842 if (!enable_break ())
843 {
844 warning (_("shared library handler failed to enable breakpoint"));
845 return;
846 }
847 }
848
849 static void
850 frv_clear_solib (void)
851 {
852 lm_base_cache = 0;
853 enable_break2_done = 0;
854 main_lm_addr = 0;
855
856 delete main_executable_lm_info;
857 main_executable_lm_info = NULL;
858 }
859
860 static void
861 frv_free_so (struct so_list *so)
862 {
863 lm_info_frv *li = (lm_info_frv *) so->lm_info;
864
865 delete li;
866 }
867
868 static void
869 frv_relocate_section_addresses (struct so_list *so,
870 struct target_section *sec)
871 {
872 int seg;
873 lm_info_frv *li = (lm_info_frv *) so->lm_info;
874 int_elf32_fdpic_loadmap *map = li->map;
875
876 for (seg = 0; seg < map->nsegs; seg++)
877 {
878 if (map->segs[seg].p_vaddr <= sec->addr
879 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
880 {
881 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
882
883 sec->addr += displ;
884 sec->endaddr += displ;
885 break;
886 }
887 }
888 }
889
890 /* Return the GOT address associated with the main executable. Return
891 0 if it can't be found. */
892
893 static CORE_ADDR
894 main_got (void)
895 {
896 struct bound_minimal_symbol got_sym;
897
898 objfile *objf = current_program_space->symfile_object_file;
899 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, objf);
900 if (got_sym.minsym == 0)
901 return 0;
902
903 return got_sym.value_address ();
904 }
905
906 /* Find the global pointer for the given function address ADDR. */
907
908 CORE_ADDR
909 frv_fdpic_find_global_pointer (CORE_ADDR addr)
910 {
911 for (struct so_list *so : current_program_space->solibs ())
912 {
913 int seg;
914 lm_info_frv *li = (lm_info_frv *) so->lm_info;
915 int_elf32_fdpic_loadmap *map = li->map;
916
917 for (seg = 0; seg < map->nsegs; seg++)
918 {
919 if (map->segs[seg].addr <= addr
920 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
921 return li->got_value;
922 }
923 }
924
925 /* Didn't find it in any of the shared objects. So assume it's in the
926 main executable. */
927 return main_got ();
928 }
929
930 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
931 static CORE_ADDR find_canonical_descriptor_in_load_object
932 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
933
934 /* Given a function entry point, attempt to find the canonical descriptor
935 associated with that entry point. Return 0 if no canonical descriptor
936 could be found. */
937
938 CORE_ADDR
939 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
940 {
941 const char *name;
942 CORE_ADDR addr;
943 CORE_ADDR got_value;
944 struct symbol *sym;
945
946 /* Fetch the corresponding global pointer for the entry point. */
947 got_value = frv_fdpic_find_global_pointer (entry_point);
948
949 /* Attempt to find the name of the function. If the name is available,
950 it'll be used as an aid in finding matching functions in the dynamic
951 symbol table. */
952 sym = find_pc_function (entry_point);
953 if (sym == 0)
954 name = 0;
955 else
956 name = sym->linkage_name ();
957
958 /* Check the main executable. */
959 objfile *objf = current_program_space->symfile_object_file;
960 addr = find_canonical_descriptor_in_load_object
961 (entry_point, got_value, name, objf->obfd.get (),
962 main_executable_lm_info);
963
964 /* If descriptor not found via main executable, check each load object
965 in list of shared objects. */
966 if (addr == 0)
967 {
968 for (struct so_list *so : current_program_space->solibs ())
969 {
970 lm_info_frv *li = (lm_info_frv *) so->lm_info;
971
972 addr = find_canonical_descriptor_in_load_object
973 (entry_point, got_value, name, so->abfd, li);
974
975 if (addr != 0)
976 break;
977 }
978 }
979
980 return addr;
981 }
982
983 static CORE_ADDR
984 find_canonical_descriptor_in_load_object
985 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
986 lm_info_frv *lm)
987 {
988 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
989 arelent *rel;
990 unsigned int i;
991 CORE_ADDR addr = 0;
992
993 /* Nothing to do if no bfd. */
994 if (abfd == 0)
995 return 0;
996
997 /* Nothing to do if no link map. */
998 if (lm == 0)
999 return 0;
1000
1001 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1002 (More about this later.) But in order to fetch the relocs, we
1003 need to first fetch the dynamic symbols. These symbols need to
1004 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1005 works. (See the comments in the declaration of struct lm_info
1006 for more information.) */
1007 if (lm->dyn_syms == NULL)
1008 {
1009 long storage_needed;
1010 unsigned int number_of_symbols;
1011
1012 /* Determine amount of space needed to hold the dynamic symbol table. */
1013 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1014
1015 /* If there are no dynamic symbols, there's nothing to do. */
1016 if (storage_needed <= 0)
1017 return 0;
1018
1019 /* Allocate space for the dynamic symbol table. */
1020 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1021
1022 /* Fetch the dynamic symbol table. */
1023 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1024
1025 if (number_of_symbols == 0)
1026 return 0;
1027 }
1028
1029 /* Fetch the dynamic relocations if not already cached. */
1030 if (lm->dyn_relocs == NULL)
1031 {
1032 long storage_needed;
1033
1034 /* Determine amount of space needed to hold the dynamic relocs. */
1035 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1036
1037 /* Bail out if there are no dynamic relocs. */
1038 if (storage_needed <= 0)
1039 return 0;
1040
1041 /* Allocate space for the relocs. */
1042 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1043
1044 /* Fetch the dynamic relocs. */
1045 lm->dyn_reloc_count
1046 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1047 }
1048
1049 /* Search the dynamic relocs. */
1050 for (i = 0; i < lm->dyn_reloc_count; i++)
1051 {
1052 rel = lm->dyn_relocs[i];
1053
1054 /* Relocs of interest are those which meet the following
1055 criteria:
1056
1057 - the names match (assuming the caller could provide
1058 a name which matches ``entry_point'').
1059 - the relocation type must be R_FRV_FUNCDESC. Relocs
1060 of this type are used (by the dynamic linker) to
1061 look up the address of a canonical descriptor (allocating
1062 it if need be) and initializing the GOT entry referred
1063 to by the offset to the address of the descriptor.
1064
1065 These relocs of interest may be used to obtain a
1066 candidate descriptor by first adjusting the reloc's
1067 address according to the link map and then dereferencing
1068 this address (which is a GOT entry) to obtain a descriptor
1069 address. */
1070 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1071 && rel->howto->type == R_FRV_FUNCDESC)
1072 {
1073 gdb_byte buf [FRV_PTR_SIZE];
1074
1075 /* Compute address of address of candidate descriptor. */
1076 addr = rel->address + displacement_from_map (lm->map, rel->address);
1077
1078 /* Fetch address of candidate descriptor. */
1079 if (target_read_memory (addr, buf, sizeof buf) != 0)
1080 continue;
1081 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1082
1083 /* Check for matching entry point. */
1084 if (target_read_memory (addr, buf, sizeof buf) != 0)
1085 continue;
1086 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1087 != entry_point)
1088 continue;
1089
1090 /* Check for matching got value. */
1091 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1092 continue;
1093 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1094 != got_value)
1095 continue;
1096
1097 /* Match was successful! Exit loop. */
1098 break;
1099 }
1100 }
1101
1102 return addr;
1103 }
1104
1105 /* Given an objfile, return the address of its link map. This value is
1106 needed for TLS support. */
1107 CORE_ADDR
1108 frv_fetch_objfile_link_map (struct objfile *objfile)
1109 {
1110 /* Cause frv_current_sos() to be run if it hasn't been already. */
1111 if (main_lm_addr == 0)
1112 solib_add (0, 0, 1);
1113
1114 /* frv_current_sos() will set main_lm_addr for the main executable. */
1115 if (objfile == current_program_space->symfile_object_file)
1116 return main_lm_addr;
1117
1118 /* The other link map addresses may be found by examining the list
1119 of shared libraries. */
1120 for (struct so_list *so : current_program_space->solibs ())
1121 {
1122 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1123
1124 if (so->objfile == objfile)
1125 return li->lm_addr;
1126 }
1127
1128 /* Not found! */
1129 return 0;
1130 }
1131
1132 const struct target_so_ops frv_so_ops =
1133 {
1134 frv_relocate_section_addresses,
1135 frv_free_so,
1136 nullptr,
1137 frv_clear_solib,
1138 frv_solib_create_inferior_hook,
1139 frv_current_sos,
1140 open_symbol_file_object,
1141 frv_in_dynsym_resolve_code,
1142 solib_bfd_open,
1143 };
1144
1145 void _initialize_frv_solib ();
1146 void
1147 _initialize_frv_solib ()
1148 {
1149 /* Debug this file's internals. */
1150 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1151 &solib_frv_debug, _("\
1152 Set internal debugging of shared library code for FR-V."), _("\
1153 Show internal debugging of shared library code for FR-V."), _("\
1154 When non-zero, FR-V solib specific internal debugging is enabled."),
1155 NULL,
1156 NULL, /* FIXME: i18n: */
1157 &setdebuglist, &showdebuglist);
1158 }