]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-frv.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
33
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
36
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
39
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
48
49 struct ext_elf32_fdpic_loadseg
50 {
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57 };
58
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66 };
67
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
72 {
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79 };
80
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88 };
89
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
98 {
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
128
129 if (nsegs <= 0)
130 return NULL;
131
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
173 }
174
175 xfree (ext_ldmbuf);
176 return int_ldmbuf;
177 }
178
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
181 typedef gdb_byte ext_ptr[4];
182
183 struct ext_elf32_fdpic_loadaddr
184 {
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187 };
188
189 struct ext_link_map
190 {
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201 };
202
203 /* Link map info to include in an allocated so_list entry. */
204
205 struct lm_info_frv : public lm_info_base
206 {
207 ~lm_info_frv ()
208 {
209 xfree (this->map);
210 xfree (this->dyn_syms);
211 xfree (this->dyn_relocs);
212 }
213
214 /* The loadmap, digested into an easier to use form. */
215 int_elf32_fdpic_loadmap *map = NULL;
216 /* The GOT address for this link map entry. */
217 CORE_ADDR got_value = 0;
218 /* The link map address, needed for frv_fetch_objfile_link_map(). */
219 CORE_ADDR lm_addr = 0;
220
221 /* Cached dynamic symbol table and dynamic relocs initialized and
222 used only by find_canonical_descriptor_in_load_object().
223
224 Note: kevinb/2004-02-26: It appears that calls to
225 bfd_canonicalize_dynamic_reloc() will use the same symbols as
226 those supplied to the first call to this function. Therefore,
227 it's important to NOT free the asymbol ** data structure
228 supplied to the first call. Thus the caching of the dynamic
229 symbols (dyn_syms) is critical for correct operation. The
230 caching of the dynamic relocations could be dispensed with. */
231 asymbol **dyn_syms = NULL;
232 arelent **dyn_relocs = NULL;
233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
234 };
235
236 /* The load map, got value, etc. are not available from the chain
237 of loaded shared objects. ``main_executable_lm_info'' provides
238 a way to get at this information so that it doesn't need to be
239 frequently recomputed. Initialized by frv_relocate_main_executable(). */
240 static lm_info_frv *main_executable_lm_info;
241
242 static void frv_relocate_main_executable (void);
243 static CORE_ADDR main_got (void);
244 static int enable_break2 (void);
245
246 /* Implement the "open_symbol_file_object" target_so_ops method. */
247
248 static int
249 open_symbol_file_object (int from_tty)
250 {
251 /* Unimplemented. */
252 return 0;
253 }
254
255 /* Cached value for lm_base(), below. */
256 static CORE_ADDR lm_base_cache = 0;
257
258 /* Link map address for main module. */
259 static CORE_ADDR main_lm_addr = 0;
260
261 /* Return the address from which the link map chain may be found. On
262 the FR-V, this may be found in a number of ways. Assuming that the
263 main executable has already been relocated, the easiest way to find
264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
265 pointer to the start of the link map will be located at the word found
266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
267 reserve area mandated by the ABI.) */
268
269 static CORE_ADDR
270 lm_base (void)
271 {
272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
273 struct bound_minimal_symbol got_sym;
274 CORE_ADDR addr;
275 gdb_byte buf[FRV_PTR_SIZE];
276
277 /* One of our assumptions is that the main executable has been relocated.
278 Bail out if this has not happened. (Note that post_create_inferior()
279 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
280 If we allow this to happen, lm_base_cache will be initialized with
281 a bogus value. */
282 if (main_executable_lm_info == 0)
283 return 0;
284
285 /* If we already have a cached value, return it. */
286 if (lm_base_cache)
287 return lm_base_cache;
288
289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
290 symfile_objfile);
291 if (got_sym.minsym == 0)
292 {
293 if (solib_frv_debug)
294 fprintf_unfiltered (gdb_stdlog,
295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
296 return 0;
297 }
298
299 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
300
301 if (solib_frv_debug)
302 fprintf_unfiltered (gdb_stdlog,
303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
304 hex_string_custom (addr, 8));
305
306 if (target_read_memory (addr, buf, sizeof buf) != 0)
307 return 0;
308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
309
310 if (solib_frv_debug)
311 fprintf_unfiltered (gdb_stdlog,
312 "lm_base: lm_base_cache = %s\n",
313 hex_string_custom (lm_base_cache, 8));
314
315 return lm_base_cache;
316 }
317
318
319 /* Implement the "current_sos" target_so_ops method. */
320
321 static struct so_list *
322 frv_current_sos (void)
323 {
324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
325 CORE_ADDR lm_addr, mgot;
326 struct so_list *sos_head = NULL;
327 struct so_list **sos_next_ptr = &sos_head;
328
329 /* Make sure that the main executable has been relocated. This is
330 required in order to find the address of the global offset table,
331 which in turn is used to find the link map info. (See lm_base()
332 for details.)
333
334 Note that the relocation of the main executable is also performed
335 by solib_create_inferior_hook(), however, in the case of core
336 files, this hook is called too late in order to be of benefit to
337 solib_add. solib_add eventually calls this this function,
338 frv_current_sos, and also precedes the call to
339 solib_create_inferior_hook(). (See post_create_inferior() in
340 infcmd.c.) */
341 if (main_executable_lm_info == 0 && core_bfd != NULL)
342 frv_relocate_main_executable ();
343
344 /* Fetch the GOT corresponding to the main executable. */
345 mgot = main_got ();
346
347 /* Locate the address of the first link map struct. */
348 lm_addr = lm_base ();
349
350 /* We have at least one link map entry. Fetch the lot of them,
351 building the solist chain. */
352 while (lm_addr)
353 {
354 struct ext_link_map lm_buf;
355 CORE_ADDR got_addr;
356
357 if (solib_frv_debug)
358 fprintf_unfiltered (gdb_stdlog,
359 "current_sos: reading link_map entry at %s\n",
360 hex_string_custom (lm_addr, 8));
361
362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
363 sizeof (lm_buf)) != 0)
364 {
365 warning (_("frv_current_sos: Unable to read link map entry. "
366 "Shared object chain may be incomplete."));
367 break;
368 }
369
370 got_addr
371 = extract_unsigned_integer (lm_buf.l_addr.got_value,
372 sizeof (lm_buf.l_addr.got_value),
373 byte_order);
374 /* If the got_addr is the same as mgotr, then we're looking at the
375 entry for the main executable. By convention, we don't include
376 this in the list of shared objects. */
377 if (got_addr != mgot)
378 {
379 struct int_elf32_fdpic_loadmap *loadmap;
380 struct so_list *sop;
381 CORE_ADDR addr;
382
383 /* Fetch the load map address. */
384 addr = extract_unsigned_integer (lm_buf.l_addr.map,
385 sizeof lm_buf.l_addr.map,
386 byte_order);
387 loadmap = fetch_loadmap (addr);
388 if (loadmap == NULL)
389 {
390 warning (_("frv_current_sos: Unable to fetch load map. "
391 "Shared object chain may be incomplete."));
392 break;
393 }
394
395 sop = XCNEW (struct so_list);
396 lm_info_frv *li = new lm_info_frv;
397 sop->lm_info = li;
398 li->map = loadmap;
399 li->got_value = got_addr;
400 li->lm_addr = lm_addr;
401 /* Fetch the name. */
402 addr = extract_unsigned_integer (lm_buf.l_name,
403 sizeof (lm_buf.l_name),
404 byte_order);
405 gdb::unique_xmalloc_ptr<char> name_buf
406 = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1);
407
408 if (solib_frv_debug)
409 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
410 name_buf.get ());
411
412 if (name_buf == nullptr)
413 warning (_("Can't read pathname for link map entry."));
414 else
415 {
416 strncpy (sop->so_name, name_buf.get (),
417 SO_NAME_MAX_PATH_SIZE - 1);
418 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
419 strcpy (sop->so_original_name, sop->so_name);
420 }
421
422 *sos_next_ptr = sop;
423 sos_next_ptr = &sop->next;
424 }
425 else
426 {
427 main_lm_addr = lm_addr;
428 }
429
430 lm_addr = extract_unsigned_integer (lm_buf.l_next,
431 sizeof (lm_buf.l_next), byte_order);
432 }
433
434 enable_break2 ();
435
436 return sos_head;
437 }
438
439
440 /* Return 1 if PC lies in the dynamic symbol resolution code of the
441 run time loader. */
442
443 static CORE_ADDR interp_text_sect_low;
444 static CORE_ADDR interp_text_sect_high;
445 static CORE_ADDR interp_plt_sect_low;
446 static CORE_ADDR interp_plt_sect_high;
447
448 static int
449 frv_in_dynsym_resolve_code (CORE_ADDR pc)
450 {
451 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
452 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
453 || in_plt_section (pc));
454 }
455
456 /* Given a loadmap and an address, return the displacement needed
457 to relocate the address. */
458
459 static CORE_ADDR
460 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
461 CORE_ADDR addr)
462 {
463 int seg;
464
465 for (seg = 0; seg < map->nsegs; seg++)
466 {
467 if (map->segs[seg].p_vaddr <= addr
468 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
469 {
470 return map->segs[seg].addr - map->segs[seg].p_vaddr;
471 }
472 }
473
474 return 0;
475 }
476
477 /* Print a warning about being unable to set the dynamic linker
478 breakpoint. */
479
480 static void
481 enable_break_failure_warning (void)
482 {
483 warning (_("Unable to find dynamic linker breakpoint function.\n"
484 "GDB will be unable to debug shared library initializers\n"
485 "and track explicitly loaded dynamic code."));
486 }
487
488 /* Helper function for gdb_bfd_lookup_symbol. */
489
490 static int
491 cmp_name (const asymbol *sym, const void *data)
492 {
493 return (strcmp (sym->name, (const char *) data) == 0);
494 }
495
496 /* Arrange for dynamic linker to hit breakpoint.
497
498 The dynamic linkers has, as part of its debugger interface, support
499 for arranging for the inferior to hit a breakpoint after mapping in
500 the shared libraries. This function enables that breakpoint.
501
502 On the FR-V, using the shared library (FDPIC) ABI, the symbol
503 _dl_debug_addr points to the r_debug struct which contains
504 a field called r_brk. r_brk is the address of the function
505 descriptor upon which a breakpoint must be placed. Being a
506 function descriptor, we must extract the entry point in order
507 to set the breakpoint.
508
509 Our strategy will be to get the .interp section from the
510 executable. This section will provide us with the name of the
511 interpreter. We'll open the interpreter and then look up
512 the address of _dl_debug_addr. We then relocate this address
513 using the interpreter's loadmap. Once the relocated address
514 is known, we fetch the value (address) corresponding to r_brk
515 and then use that value to fetch the entry point of the function
516 we're interested in. */
517
518 static int enable_break2_done = 0;
519
520 static int
521 enable_break2 (void)
522 {
523 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
524 asection *interp_sect;
525
526 if (enable_break2_done)
527 return 1;
528
529 interp_text_sect_low = interp_text_sect_high = 0;
530 interp_plt_sect_low = interp_plt_sect_high = 0;
531
532 /* Find the .interp section; if not found, warn the user and drop
533 into the old breakpoint at symbol code. */
534 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
535 if (interp_sect)
536 {
537 unsigned int interp_sect_size;
538 char *buf;
539 int status;
540 CORE_ADDR addr, interp_loadmap_addr;
541 gdb_byte addr_buf[FRV_PTR_SIZE];
542 struct int_elf32_fdpic_loadmap *ldm;
543
544 /* Read the contents of the .interp section into a local buffer;
545 the contents specify the dynamic linker this program uses. */
546 interp_sect_size = bfd_section_size (interp_sect);
547 buf = (char *) alloca (interp_sect_size);
548 bfd_get_section_contents (exec_bfd, interp_sect,
549 buf, 0, interp_sect_size);
550
551 /* Now we need to figure out where the dynamic linker was
552 loaded so that we can load its symbols and place a breakpoint
553 in the dynamic linker itself.
554
555 This address is stored on the stack. However, I've been unable
556 to find any magic formula to find it for Solaris (appears to
557 be trivial on GNU/Linux). Therefore, we have to try an alternate
558 mechanism to find the dynamic linker's base address. */
559
560 gdb_bfd_ref_ptr tmp_bfd;
561 try
562 {
563 tmp_bfd = solib_bfd_open (buf);
564 }
565 catch (const gdb_exception &ex)
566 {
567 }
568
569 if (tmp_bfd == NULL)
570 {
571 enable_break_failure_warning ();
572 return 0;
573 }
574
575 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
576 &interp_loadmap_addr, 0);
577 if (status < 0)
578 {
579 warning (_("Unable to determine dynamic linker loadmap address."));
580 enable_break_failure_warning ();
581 return 0;
582 }
583
584 if (solib_frv_debug)
585 fprintf_unfiltered (gdb_stdlog,
586 "enable_break: interp_loadmap_addr = %s\n",
587 hex_string_custom (interp_loadmap_addr, 8));
588
589 ldm = fetch_loadmap (interp_loadmap_addr);
590 if (ldm == NULL)
591 {
592 warning (_("Unable to load dynamic linker loadmap at address %s."),
593 hex_string_custom (interp_loadmap_addr, 8));
594 enable_break_failure_warning ();
595 return 0;
596 }
597
598 /* Record the relocated start and end address of the dynamic linker
599 text and plt section for svr4_in_dynsym_resolve_code. */
600 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
601 if (interp_sect)
602 {
603 interp_text_sect_low = bfd_section_vma (interp_sect);
604 interp_text_sect_low
605 += displacement_from_map (ldm, interp_text_sect_low);
606 interp_text_sect_high
607 = interp_text_sect_low + bfd_section_size (interp_sect);
608 }
609 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
610 if (interp_sect)
611 {
612 interp_plt_sect_low = bfd_section_vma (interp_sect);
613 interp_plt_sect_low
614 += displacement_from_map (ldm, interp_plt_sect_low);
615 interp_plt_sect_high =
616 interp_plt_sect_low + bfd_section_size (interp_sect);
617 }
618
619 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
620
621 if (addr == 0)
622 {
623 warning (_("Could not find symbol _dl_debug_addr "
624 "in dynamic linker"));
625 enable_break_failure_warning ();
626 return 0;
627 }
628
629 if (solib_frv_debug)
630 fprintf_unfiltered (gdb_stdlog,
631 "enable_break: _dl_debug_addr "
632 "(prior to relocation) = %s\n",
633 hex_string_custom (addr, 8));
634
635 addr += displacement_from_map (ldm, addr);
636
637 if (solib_frv_debug)
638 fprintf_unfiltered (gdb_stdlog,
639 "enable_break: _dl_debug_addr "
640 "(after relocation) = %s\n",
641 hex_string_custom (addr, 8));
642
643 /* Fetch the address of the r_debug struct. */
644 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
645 {
646 warning (_("Unable to fetch contents of _dl_debug_addr "
647 "(at address %s) from dynamic linker"),
648 hex_string_custom (addr, 8));
649 }
650 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
651
652 if (solib_frv_debug)
653 fprintf_unfiltered (gdb_stdlog,
654 "enable_break: _dl_debug_addr[0..3] = %s\n",
655 hex_string_custom (addr, 8));
656
657 /* If it's zero, then the ldso hasn't initialized yet, and so
658 there are no shared libs yet loaded. */
659 if (addr == 0)
660 {
661 if (solib_frv_debug)
662 fprintf_unfiltered (gdb_stdlog,
663 "enable_break: ldso not yet initialized\n");
664 /* Do not warn, but mark to run again. */
665 return 0;
666 }
667
668 /* Fetch the r_brk field. It's 8 bytes from the start of
669 _dl_debug_addr. */
670 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
671 {
672 warning (_("Unable to fetch _dl_debug_addr->r_brk "
673 "(at address %s) from dynamic linker"),
674 hex_string_custom (addr + 8, 8));
675 enable_break_failure_warning ();
676 return 0;
677 }
678 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
679
680 /* Now fetch the function entry point. */
681 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
682 {
683 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
684 "(at address %s) from dynamic linker"),
685 hex_string_custom (addr, 8));
686 enable_break_failure_warning ();
687 return 0;
688 }
689 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
690
691 /* We're done with the loadmap. */
692 xfree (ldm);
693
694 /* Remove all the solib event breakpoints. Their addresses
695 may have changed since the last time we ran the program. */
696 remove_solib_event_breakpoints ();
697
698 /* Now (finally!) create the solib breakpoint. */
699 create_solib_event_breakpoint (target_gdbarch (), addr);
700
701 enable_break2_done = 1;
702
703 return 1;
704 }
705
706 /* Tell the user we couldn't set a dynamic linker breakpoint. */
707 enable_break_failure_warning ();
708
709 /* Failure return. */
710 return 0;
711 }
712
713 static int
714 enable_break (void)
715 {
716 asection *interp_sect;
717 CORE_ADDR entry_point;
718
719 if (symfile_objfile == NULL)
720 {
721 if (solib_frv_debug)
722 fprintf_unfiltered (gdb_stdlog,
723 "enable_break: No symbol file found.\n");
724 return 0;
725 }
726
727 if (!entry_point_address_query (&entry_point))
728 {
729 if (solib_frv_debug)
730 fprintf_unfiltered (gdb_stdlog,
731 "enable_break: Symbol file has no entry point.\n");
732 return 0;
733 }
734
735 /* Check for the presence of a .interp section. If there is no
736 such section, the executable is statically linked. */
737
738 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
739
740 if (interp_sect == NULL)
741 {
742 if (solib_frv_debug)
743 fprintf_unfiltered (gdb_stdlog,
744 "enable_break: No .interp section found.\n");
745 return 0;
746 }
747
748 create_solib_event_breakpoint (target_gdbarch (), entry_point);
749
750 if (solib_frv_debug)
751 fprintf_unfiltered (gdb_stdlog,
752 "enable_break: solib event breakpoint "
753 "placed at entry point: %s\n",
754 hex_string_custom (entry_point, 8));
755 return 1;
756 }
757
758 static void
759 frv_relocate_main_executable (void)
760 {
761 int status;
762 CORE_ADDR exec_addr, interp_addr;
763 struct int_elf32_fdpic_loadmap *ldm;
764 int changed;
765 struct obj_section *osect;
766
767 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
768 &interp_addr, &exec_addr);
769
770 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
771 {
772 /* Not using FDPIC ABI, so do nothing. */
773 return;
774 }
775
776 /* Fetch the loadmap located at ``exec_addr''. */
777 ldm = fetch_loadmap (exec_addr);
778 if (ldm == NULL)
779 error (_("Unable to load the executable's loadmap."));
780
781 delete main_executable_lm_info;
782 main_executable_lm_info = new lm_info_frv;
783 main_executable_lm_info->map = ldm;
784
785 section_offsets new_offsets (symfile_objfile->section_offsets.size ());
786 changed = 0;
787
788 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
789 {
790 CORE_ADDR orig_addr, addr, offset;
791 int osect_idx;
792 int seg;
793
794 osect_idx = osect - symfile_objfile->sections;
795
796 /* Current address of section. */
797 addr = obj_section_addr (osect);
798 /* Offset from where this section started. */
799 offset = symfile_objfile->section_offsets[osect_idx];
800 /* Original address prior to any past relocations. */
801 orig_addr = addr - offset;
802
803 for (seg = 0; seg < ldm->nsegs; seg++)
804 {
805 if (ldm->segs[seg].p_vaddr <= orig_addr
806 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
807 {
808 new_offsets[osect_idx]
809 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
810
811 if (new_offsets[osect_idx] != offset)
812 changed = 1;
813 break;
814 }
815 }
816 }
817
818 if (changed)
819 objfile_relocate (symfile_objfile, new_offsets);
820
821 /* Now that symfile_objfile has been relocated, we can compute the
822 GOT value and stash it away. */
823 main_executable_lm_info->got_value = main_got ();
824 }
825
826 /* Implement the "create_inferior_hook" target_solib_ops method.
827
828 For the FR-V shared library ABI (FDPIC), the main executable needs
829 to be relocated. The shared library breakpoints also need to be
830 enabled. */
831
832 static void
833 frv_solib_create_inferior_hook (int from_tty)
834 {
835 /* Relocate main executable. */
836 frv_relocate_main_executable ();
837
838 /* Enable shared library breakpoints. */
839 if (!enable_break ())
840 {
841 warning (_("shared library handler failed to enable breakpoint"));
842 return;
843 }
844 }
845
846 static void
847 frv_clear_solib (void)
848 {
849 lm_base_cache = 0;
850 enable_break2_done = 0;
851 main_lm_addr = 0;
852
853 delete main_executable_lm_info;
854 main_executable_lm_info = NULL;
855 }
856
857 static void
858 frv_free_so (struct so_list *so)
859 {
860 lm_info_frv *li = (lm_info_frv *) so->lm_info;
861
862 delete li;
863 }
864
865 static void
866 frv_relocate_section_addresses (struct so_list *so,
867 struct target_section *sec)
868 {
869 int seg;
870 lm_info_frv *li = (lm_info_frv *) so->lm_info;
871 int_elf32_fdpic_loadmap *map = li->map;
872
873 for (seg = 0; seg < map->nsegs; seg++)
874 {
875 if (map->segs[seg].p_vaddr <= sec->addr
876 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
877 {
878 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
879
880 sec->addr += displ;
881 sec->endaddr += displ;
882 break;
883 }
884 }
885 }
886
887 /* Return the GOT address associated with the main executable. Return
888 0 if it can't be found. */
889
890 static CORE_ADDR
891 main_got (void)
892 {
893 struct bound_minimal_symbol got_sym;
894
895 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
896 NULL, symfile_objfile);
897 if (got_sym.minsym == 0)
898 return 0;
899
900 return BMSYMBOL_VALUE_ADDRESS (got_sym);
901 }
902
903 /* Find the global pointer for the given function address ADDR. */
904
905 CORE_ADDR
906 frv_fdpic_find_global_pointer (CORE_ADDR addr)
907 {
908 for (struct so_list *so : current_program_space->solibs ())
909 {
910 int seg;
911 lm_info_frv *li = (lm_info_frv *) so->lm_info;
912 int_elf32_fdpic_loadmap *map = li->map;
913
914 for (seg = 0; seg < map->nsegs; seg++)
915 {
916 if (map->segs[seg].addr <= addr
917 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
918 return li->got_value;
919 }
920 }
921
922 /* Didn't find it in any of the shared objects. So assume it's in the
923 main executable. */
924 return main_got ();
925 }
926
927 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
928 static CORE_ADDR find_canonical_descriptor_in_load_object
929 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
930
931 /* Given a function entry point, attempt to find the canonical descriptor
932 associated with that entry point. Return 0 if no canonical descriptor
933 could be found. */
934
935 CORE_ADDR
936 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
937 {
938 const char *name;
939 CORE_ADDR addr;
940 CORE_ADDR got_value;
941 struct symbol *sym;
942
943 /* Fetch the corresponding global pointer for the entry point. */
944 got_value = frv_fdpic_find_global_pointer (entry_point);
945
946 /* Attempt to find the name of the function. If the name is available,
947 it'll be used as an aid in finding matching functions in the dynamic
948 symbol table. */
949 sym = find_pc_function (entry_point);
950 if (sym == 0)
951 name = 0;
952 else
953 name = sym->linkage_name ();
954
955 /* Check the main executable. */
956 addr = find_canonical_descriptor_in_load_object
957 (entry_point, got_value, name, symfile_objfile->obfd,
958 main_executable_lm_info);
959
960 /* If descriptor not found via main executable, check each load object
961 in list of shared objects. */
962 if (addr == 0)
963 {
964 for (struct so_list *so : current_program_space->solibs ())
965 {
966 lm_info_frv *li = (lm_info_frv *) so->lm_info;
967
968 addr = find_canonical_descriptor_in_load_object
969 (entry_point, got_value, name, so->abfd, li);
970
971 if (addr != 0)
972 break;
973 }
974 }
975
976 return addr;
977 }
978
979 static CORE_ADDR
980 find_canonical_descriptor_in_load_object
981 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
982 lm_info_frv *lm)
983 {
984 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
985 arelent *rel;
986 unsigned int i;
987 CORE_ADDR addr = 0;
988
989 /* Nothing to do if no bfd. */
990 if (abfd == 0)
991 return 0;
992
993 /* Nothing to do if no link map. */
994 if (lm == 0)
995 return 0;
996
997 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
998 (More about this later.) But in order to fetch the relocs, we
999 need to first fetch the dynamic symbols. These symbols need to
1000 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1001 works. (See the comments in the declaration of struct lm_info
1002 for more information.) */
1003 if (lm->dyn_syms == NULL)
1004 {
1005 long storage_needed;
1006 unsigned int number_of_symbols;
1007
1008 /* Determine amount of space needed to hold the dynamic symbol table. */
1009 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1010
1011 /* If there are no dynamic symbols, there's nothing to do. */
1012 if (storage_needed <= 0)
1013 return 0;
1014
1015 /* Allocate space for the dynamic symbol table. */
1016 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1017
1018 /* Fetch the dynamic symbol table. */
1019 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1020
1021 if (number_of_symbols == 0)
1022 return 0;
1023 }
1024
1025 /* Fetch the dynamic relocations if not already cached. */
1026 if (lm->dyn_relocs == NULL)
1027 {
1028 long storage_needed;
1029
1030 /* Determine amount of space needed to hold the dynamic relocs. */
1031 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1032
1033 /* Bail out if there are no dynamic relocs. */
1034 if (storage_needed <= 0)
1035 return 0;
1036
1037 /* Allocate space for the relocs. */
1038 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1039
1040 /* Fetch the dynamic relocs. */
1041 lm->dyn_reloc_count
1042 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1043 }
1044
1045 /* Search the dynamic relocs. */
1046 for (i = 0; i < lm->dyn_reloc_count; i++)
1047 {
1048 rel = lm->dyn_relocs[i];
1049
1050 /* Relocs of interest are those which meet the following
1051 criteria:
1052
1053 - the names match (assuming the caller could provide
1054 a name which matches ``entry_point'').
1055 - the relocation type must be R_FRV_FUNCDESC. Relocs
1056 of this type are used (by the dynamic linker) to
1057 look up the address of a canonical descriptor (allocating
1058 it if need be) and initializing the GOT entry referred
1059 to by the offset to the address of the descriptor.
1060
1061 These relocs of interest may be used to obtain a
1062 candidate descriptor by first adjusting the reloc's
1063 address according to the link map and then dereferencing
1064 this address (which is a GOT entry) to obtain a descriptor
1065 address. */
1066 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1067 && rel->howto->type == R_FRV_FUNCDESC)
1068 {
1069 gdb_byte buf [FRV_PTR_SIZE];
1070
1071 /* Compute address of address of candidate descriptor. */
1072 addr = rel->address + displacement_from_map (lm->map, rel->address);
1073
1074 /* Fetch address of candidate descriptor. */
1075 if (target_read_memory (addr, buf, sizeof buf) != 0)
1076 continue;
1077 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1078
1079 /* Check for matching entry point. */
1080 if (target_read_memory (addr, buf, sizeof buf) != 0)
1081 continue;
1082 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1083 != entry_point)
1084 continue;
1085
1086 /* Check for matching got value. */
1087 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1088 continue;
1089 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1090 != got_value)
1091 continue;
1092
1093 /* Match was successful! Exit loop. */
1094 break;
1095 }
1096 }
1097
1098 return addr;
1099 }
1100
1101 /* Given an objfile, return the address of its link map. This value is
1102 needed for TLS support. */
1103 CORE_ADDR
1104 frv_fetch_objfile_link_map (struct objfile *objfile)
1105 {
1106 /* Cause frv_current_sos() to be run if it hasn't been already. */
1107 if (main_lm_addr == 0)
1108 solib_add (0, 0, 1);
1109
1110 /* frv_current_sos() will set main_lm_addr for the main executable. */
1111 if (objfile == symfile_objfile)
1112 return main_lm_addr;
1113
1114 /* The other link map addresses may be found by examining the list
1115 of shared libraries. */
1116 for (struct so_list *so : current_program_space->solibs ())
1117 {
1118 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1119
1120 if (so->objfile == objfile)
1121 return li->lm_addr;
1122 }
1123
1124 /* Not found! */
1125 return 0;
1126 }
1127
1128 struct target_so_ops frv_so_ops;
1129
1130 void _initialize_frv_solib ();
1131 void
1132 _initialize_frv_solib ()
1133 {
1134 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1135 frv_so_ops.free_so = frv_free_so;
1136 frv_so_ops.clear_solib = frv_clear_solib;
1137 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1138 frv_so_ops.current_sos = frv_current_sos;
1139 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1140 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1141 frv_so_ops.bfd_open = solib_bfd_open;
1142
1143 /* Debug this file's internals. */
1144 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1145 &solib_frv_debug, _("\
1146 Set internal debugging of shared library code for FR-V."), _("\
1147 Show internal debugging of shared library code for FR-V."), _("\
1148 When non-zero, FR-V solib specific internal debugging is enabled."),
1149 NULL,
1150 NULL, /* FIXME: i18n: */
1151 &setdebuglist, &showdebuglist);
1152 }