]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib.c
Purge (almost) make_cleanup_func.
[thirdparty/binutils-gdb.git] / gdb / solib.c
1 /* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include "defs.h"
24
25 /* This file is only compilable if link.h is available. */
26
27 #ifdef HAVE_LINK_H
28
29 #include <sys/types.h>
30 #include <signal.h>
31 #include "gdb_string.h"
32 #include <sys/param.h>
33 #include <fcntl.h>
34
35 #ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
37 #include <a.out.h>
38 #else
39 #include "elf/external.h"
40 #endif
41
42 #include <link.h>
43
44 #include "symtab.h"
45 #include "bfd.h"
46 #include "symfile.h"
47 #include "objfiles.h"
48 #include "gdbcore.h"
49 #include "command.h"
50 #include "target.h"
51 #include "frame.h"
52 #include "gdb_regex.h"
53 #include "inferior.h"
54 #include "environ.h"
55 #include "language.h"
56 #include "gdbcmd.h"
57
58 #define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
59
60 /* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68 #ifdef SVR4_SHARED_LIBS
69 static char *solib_break_names[] =
70 {
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76 };
77 #endif
78
79 #define BKPT_AT_SYMBOL 1
80
81 #if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
82 static char *bkpt_names[] =
83 {
84 #ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86 #endif
87 "_start",
88 "main",
89 NULL
90 };
91 #endif
92
93 /* Symbols which are used to locate the base of the link map structures. */
94
95 #ifndef SVR4_SHARED_LIBS
96 static char *debug_base_symbols[] =
97 {
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101 };
102 #endif
103
104 static char *main_name_list[] =
105 {
106 "main_$main",
107 NULL
108 };
109
110 /* local data declarations */
111
112 /* Macro to extract an address from a solib structure.
113 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
114 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
115 64 bits. We have to extract only the significant bits of addresses
116 to get the right address when accessing the core file BFD. */
117
118 #define SOLIB_EXTRACT_ADDRESS(member) \
119 extract_address (&member, sizeof (member))
120
121 #ifndef SVR4_SHARED_LIBS
122
123 #define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_addr))
124 #define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_next))
125 #define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_name))
126 /* Test for first link map entry; first entry is a shared library. */
127 #define IGNORE_FIRST_LINK_MAP_ENTRY(so) (0)
128 static struct link_dynamic dynamic_copy;
129 static struct link_dynamic_2 ld_2_copy;
130 static struct ld_debug debug_copy;
131 static CORE_ADDR debug_addr;
132 static CORE_ADDR flag_addr;
133
134 #else /* SVR4_SHARED_LIBS */
135
136 #define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_addr))
137 #define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_next))
138 #define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_name))
139 /* Test for first link map entry; first entry is the exec-file. */
140 #define IGNORE_FIRST_LINK_MAP_ENTRY(so) \
141 (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_prev) == 0)
142 static struct r_debug debug_copy;
143 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
144
145 #endif /* !SVR4_SHARED_LIBS */
146
147 struct so_list
148 {
149 /* The following fields of the structure come directly from the
150 dynamic linker's tables in the inferior, and are initialized by
151 current_sos. */
152
153 struct so_list *next; /* next structure in linked list */
154 struct link_map lm; /* copy of link map from inferior */
155 CORE_ADDR lmaddr; /* addr in inferior lm was read from */
156
157 /* Shared object file name, exactly as it appears in the
158 inferior's link map. This may be a relative path, or something
159 which needs to be looked up in LD_LIBRARY_PATH, etc. We use it
160 to tell which entries in the inferior's dynamic linker's link
161 map we've already loaded. */
162 char so_original_name[MAX_PATH_SIZE];
163
164 /* shared object file name, expanded to something GDB can open */
165 char so_name[MAX_PATH_SIZE];
166
167 /* The following fields of the structure are built from
168 information gathered from the shared object file itself, and
169 are initialized when we actually add it to our symbol tables. */
170
171 bfd *abfd;
172 CORE_ADDR lmend; /* upper addr bound of mapped object */
173 char symbols_loaded; /* flag: symbols read in yet? */
174 char from_tty; /* flag: print msgs? */
175 struct objfile *objfile; /* objfile for loaded lib */
176 struct section_table *sections;
177 struct section_table *sections_end;
178 struct section_table *textsection;
179 };
180
181 static struct so_list *so_list_head; /* List of known shared objects */
182 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
183 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
184
185 static int solib_cleanup_queued = 0; /* make_run_cleanup called */
186
187 extern int
188 fdmatch PARAMS ((int, int)); /* In libiberty */
189
190 /* Local function prototypes */
191
192 static void
193 do_clear_solib PARAMS ((PTR));
194
195 static int
196 match_main PARAMS ((char *));
197
198 static void
199 special_symbol_handling PARAMS ((void));
200
201 static void
202 sharedlibrary_command PARAMS ((char *, int));
203
204 static int
205 enable_break PARAMS ((void));
206
207 static void
208 info_sharedlibrary_command PARAMS ((char *, int));
209
210 static int symbol_add_stub PARAMS ((PTR));
211
212 static CORE_ADDR
213 first_link_map_member PARAMS ((void));
214
215 static CORE_ADDR
216 locate_base PARAMS ((void));
217
218 static int solib_map_sections PARAMS ((PTR));
219
220 #ifdef SVR4_SHARED_LIBS
221
222 static CORE_ADDR
223 elf_locate_base PARAMS ((void));
224
225 #else
226
227 static struct so_list *current_sos (void);
228 static void free_so (struct so_list *node);
229
230 static int
231 disable_break PARAMS ((void));
232
233 static void
234 allocate_rt_common_objfile PARAMS ((void));
235
236 static void
237 solib_add_common_symbols (CORE_ADDR);
238
239 #endif
240
241 void _initialize_solib PARAMS ((void));
242
243 /* If non-zero, this is a prefix that will be added to the front of the name
244 shared libraries with an absolute filename for loading. */
245 static char *solib_absolute_prefix = NULL;
246
247 /* If non-empty, this is a search path for loading non-absolute shared library
248 symbol files. This takes precedence over the environment variables PATH
249 and LD_LIBRARY_PATH. */
250 static char *solib_search_path = NULL;
251
252 /*
253
254 LOCAL FUNCTION
255
256 solib_map_sections -- open bfd and build sections for shared lib
257
258 SYNOPSIS
259
260 static int solib_map_sections (struct so_list *so)
261
262 DESCRIPTION
263
264 Given a pointer to one of the shared objects in our list
265 of mapped objects, use the recorded name to open a bfd
266 descriptor for the object, build a section table, and then
267 relocate all the section addresses by the base address at
268 which the shared object was mapped.
269
270 FIXMES
271
272 In most (all?) cases the shared object file name recorded in the
273 dynamic linkage tables will be a fully qualified pathname. For
274 cases where it isn't, do we really mimic the systems search
275 mechanism correctly in the below code (particularly the tilde
276 expansion stuff?).
277 */
278
279 static int
280 solib_map_sections (arg)
281 PTR arg;
282 {
283 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
284 char *filename;
285 char *scratch_pathname;
286 int scratch_chan;
287 struct section_table *p;
288 struct cleanup *old_chain;
289 bfd *abfd;
290
291 filename = tilde_expand (so->so_name);
292
293 if (solib_absolute_prefix && ROOTED_P (filename))
294 /* Prefix shared libraries with absolute filenames with
295 SOLIB_ABSOLUTE_PREFIX. */
296 {
297 char *pfxed_fn;
298 int pfx_len;
299
300 pfx_len = strlen (solib_absolute_prefix);
301
302 /* Remove trailing slashes. */
303 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
304 pfx_len--;
305
306 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
307 strcpy (pfxed_fn, solib_absolute_prefix);
308 strcat (pfxed_fn, filename);
309 free (filename);
310
311 filename = pfxed_fn;
312 }
313
314 old_chain = make_cleanup (free, filename);
315
316 scratch_chan = -1;
317
318 if (solib_search_path)
319 scratch_chan = openp (solib_search_path,
320 1, filename, O_RDONLY, 0, &scratch_pathname);
321 if (scratch_chan < 0)
322 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
323 1, filename, O_RDONLY, 0, &scratch_pathname);
324 if (scratch_chan < 0)
325 {
326 scratch_chan = openp (get_in_environ
327 (inferior_environ, "LD_LIBRARY_PATH"),
328 1, filename, O_RDONLY, 0, &scratch_pathname);
329 }
330 if (scratch_chan < 0)
331 {
332 perror_with_name (filename);
333 }
334 /* Leave scratch_pathname allocated. abfd->name will point to it. */
335
336 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
337 if (!abfd)
338 {
339 close (scratch_chan);
340 error ("Could not open `%s' as an executable file: %s",
341 scratch_pathname, bfd_errmsg (bfd_get_error ()));
342 }
343 /* Leave bfd open, core_xfer_memory and "info files" need it. */
344 so->abfd = abfd;
345 abfd->cacheable = true;
346
347 /* copy full path name into so_name, so that later symbol_file_add can find
348 it */
349 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
350 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
351 strcpy (so->so_name, scratch_pathname);
352
353 if (!bfd_check_format (abfd, bfd_object))
354 {
355 error ("\"%s\": not in executable format: %s.",
356 scratch_pathname, bfd_errmsg (bfd_get_error ()));
357 }
358 if (build_section_table (abfd, &so->sections, &so->sections_end))
359 {
360 error ("Can't find the file sections in `%s': %s",
361 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
362 }
363
364 for (p = so->sections; p < so->sections_end; p++)
365 {
366 /* Relocate the section binding addresses as recorded in the shared
367 object's file by the base address to which the object was actually
368 mapped. */
369 p->addr += LM_ADDR (so);
370 p->endaddr += LM_ADDR (so);
371 so->lmend = max (p->endaddr, so->lmend);
372 if (STREQ (p->the_bfd_section->name, ".text"))
373 {
374 so->textsection = p;
375 }
376 }
377
378 /* Free the file names, close the file now. */
379 do_cleanups (old_chain);
380
381 return (1);
382 }
383
384 #ifndef SVR4_SHARED_LIBS
385
386 /* Allocate the runtime common object file. */
387
388 static void
389 allocate_rt_common_objfile ()
390 {
391 struct objfile *objfile;
392 struct objfile *last_one;
393
394 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
395 memset (objfile, 0, sizeof (struct objfile));
396 objfile->md = NULL;
397 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
398 xmalloc, free);
399 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
400 free);
401 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
402 free);
403 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
404 free);
405 objfile->name = mstrsave (objfile->md, "rt_common");
406
407 /* Add this file onto the tail of the linked list of other such files. */
408
409 objfile->next = NULL;
410 if (object_files == NULL)
411 object_files = objfile;
412 else
413 {
414 for (last_one = object_files;
415 last_one->next;
416 last_one = last_one->next);
417 last_one->next = objfile;
418 }
419
420 rt_common_objfile = objfile;
421 }
422
423 /* Read all dynamically loaded common symbol definitions from the inferior
424 and put them into the minimal symbol table for the runtime common
425 objfile. */
426
427 static void
428 solib_add_common_symbols (rtc_symp)
429 CORE_ADDR rtc_symp;
430 {
431 struct rtc_symb inferior_rtc_symb;
432 struct nlist inferior_rtc_nlist;
433 int len;
434 char *name;
435
436 /* Remove any runtime common symbols from previous runs. */
437
438 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
439 {
440 obstack_free (&rt_common_objfile->symbol_obstack, 0);
441 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
442 xmalloc, free);
443 rt_common_objfile->minimal_symbol_count = 0;
444 rt_common_objfile->msymbols = NULL;
445 }
446
447 init_minimal_symbol_collection ();
448 make_cleanup_discard_minimal_symbols ();
449
450 while (rtc_symp)
451 {
452 read_memory (rtc_symp,
453 (char *) &inferior_rtc_symb,
454 sizeof (inferior_rtc_symb));
455 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
456 (char *) &inferior_rtc_nlist,
457 sizeof (inferior_rtc_nlist));
458 if (inferior_rtc_nlist.n_type == N_COMM)
459 {
460 /* FIXME: The length of the symbol name is not available, but in the
461 current implementation the common symbol is allocated immediately
462 behind the name of the symbol. */
463 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
464
465 name = xmalloc (len);
466 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
467 name, len);
468
469 /* Allocate the runtime common objfile if necessary. */
470 if (rt_common_objfile == NULL)
471 allocate_rt_common_objfile ();
472
473 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
474 mst_bss, rt_common_objfile);
475 free (name);
476 }
477 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
478 }
479
480 /* Install any minimal symbols that have been collected as the current
481 minimal symbols for the runtime common objfile. */
482
483 install_minimal_symbols (rt_common_objfile);
484 }
485
486 #endif /* SVR4_SHARED_LIBS */
487
488
489 #ifdef SVR4_SHARED_LIBS
490
491 static CORE_ADDR
492 bfd_lookup_symbol PARAMS ((bfd *, char *));
493
494 /*
495
496 LOCAL FUNCTION
497
498 bfd_lookup_symbol -- lookup the value for a specific symbol
499
500 SYNOPSIS
501
502 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
503
504 DESCRIPTION
505
506 An expensive way to lookup the value of a single symbol for
507 bfd's that are only temporary anyway. This is used by the
508 shared library support to find the address of the debugger
509 interface structures in the shared library.
510
511 Note that 0 is specifically allowed as an error return (no
512 such symbol).
513 */
514
515 static CORE_ADDR
516 bfd_lookup_symbol (abfd, symname)
517 bfd *abfd;
518 char *symname;
519 {
520 unsigned int storage_needed;
521 asymbol *sym;
522 asymbol **symbol_table;
523 unsigned int number_of_symbols;
524 unsigned int i;
525 struct cleanup *back_to;
526 CORE_ADDR symaddr = 0;
527
528 storage_needed = bfd_get_symtab_upper_bound (abfd);
529
530 if (storage_needed > 0)
531 {
532 symbol_table = (asymbol **) xmalloc (storage_needed);
533 back_to = make_cleanup (free, (PTR) symbol_table);
534 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
535
536 for (i = 0; i < number_of_symbols; i++)
537 {
538 sym = *symbol_table++;
539 if (STREQ (sym->name, symname))
540 {
541 /* Bfd symbols are section relative. */
542 symaddr = sym->value + sym->section->vma;
543 break;
544 }
545 }
546 do_cleanups (back_to);
547 }
548 return (symaddr);
549 }
550
551 #ifdef HANDLE_SVR4_EXEC_EMULATORS
552
553 /*
554 Solaris BCP (the part of Solaris which allows it to run SunOS4
555 a.out files) throws in another wrinkle. Solaris does not fill
556 in the usual a.out link map structures when running BCP programs,
557 the only way to get at them is via groping around in the dynamic
558 linker.
559 The dynamic linker and it's structures are located in the shared
560 C library, which gets run as the executable's "interpreter" by
561 the kernel.
562
563 Note that we can assume nothing about the process state at the time
564 we need to find these structures. We may be stopped on the first
565 instruction of the interpreter (C shared library), the first
566 instruction of the executable itself, or somewhere else entirely
567 (if we attached to the process for example).
568 */
569
570 static char *debug_base_symbols[] =
571 {
572 "r_debug", /* Solaris 2.3 */
573 "_r_debug", /* Solaris 2.1, 2.2 */
574 NULL
575 };
576
577 static int
578 look_for_base PARAMS ((int, CORE_ADDR));
579
580 /*
581
582 LOCAL FUNCTION
583
584 look_for_base -- examine file for each mapped address segment
585
586 SYNOPSYS
587
588 static int look_for_base (int fd, CORE_ADDR baseaddr)
589
590 DESCRIPTION
591
592 This function is passed to proc_iterate_over_mappings, which
593 causes it to get called once for each mapped address space, with
594 an open file descriptor for the file mapped to that space, and the
595 base address of that mapped space.
596
597 Our job is to find the debug base symbol in the file that this
598 fd is open on, if it exists, and if so, initialize the dynamic
599 linker structure base address debug_base.
600
601 Note that this is a computationally expensive proposition, since
602 we basically have to open a bfd on every call, so we specifically
603 avoid opening the exec file.
604 */
605
606 static int
607 look_for_base (fd, baseaddr)
608 int fd;
609 CORE_ADDR baseaddr;
610 {
611 bfd *interp_bfd;
612 CORE_ADDR address = 0;
613 char **symbolp;
614
615 /* If the fd is -1, then there is no file that corresponds to this
616 mapped memory segment, so skip it. Also, if the fd corresponds
617 to the exec file, skip it as well. */
618
619 if (fd == -1
620 || (exec_bfd != NULL
621 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
622 {
623 return (0);
624 }
625
626 /* Try to open whatever random file this fd corresponds to. Note that
627 we have no way currently to find the filename. Don't gripe about
628 any problems we might have, just fail. */
629
630 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
631 {
632 return (0);
633 }
634 if (!bfd_check_format (interp_bfd, bfd_object))
635 {
636 /* FIXME-leak: on failure, might not free all memory associated with
637 interp_bfd. */
638 bfd_close (interp_bfd);
639 return (0);
640 }
641
642 /* Now try to find our debug base symbol in this file, which we at
643 least know to be a valid ELF executable or shared library. */
644
645 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
646 {
647 address = bfd_lookup_symbol (interp_bfd, *symbolp);
648 if (address != 0)
649 {
650 break;
651 }
652 }
653 if (address == 0)
654 {
655 /* FIXME-leak: on failure, might not free all memory associated with
656 interp_bfd. */
657 bfd_close (interp_bfd);
658 return (0);
659 }
660
661 /* Eureka! We found the symbol. But now we may need to relocate it
662 by the base address. If the symbol's value is less than the base
663 address of the shared library, then it hasn't yet been relocated
664 by the dynamic linker, and we have to do it ourself. FIXME: Note
665 that we make the assumption that the first segment that corresponds
666 to the shared library has the base address to which the library
667 was relocated. */
668
669 if (address < baseaddr)
670 {
671 address += baseaddr;
672 }
673 debug_base = address;
674 /* FIXME-leak: on failure, might not free all memory associated with
675 interp_bfd. */
676 bfd_close (interp_bfd);
677 return (1);
678 }
679 #endif /* HANDLE_SVR4_EXEC_EMULATORS */
680
681 /*
682
683 LOCAL FUNCTION
684
685 elf_locate_base -- locate the base address of dynamic linker structs
686 for SVR4 elf targets.
687
688 SYNOPSIS
689
690 CORE_ADDR elf_locate_base (void)
691
692 DESCRIPTION
693
694 For SVR4 elf targets the address of the dynamic linker's runtime
695 structure is contained within the dynamic info section in the
696 executable file. The dynamic section is also mapped into the
697 inferior address space. Because the runtime loader fills in the
698 real address before starting the inferior, we have to read in the
699 dynamic info section from the inferior address space.
700 If there are any errors while trying to find the address, we
701 silently return 0, otherwise the found address is returned.
702
703 */
704
705 static CORE_ADDR
706 elf_locate_base ()
707 {
708 sec_ptr dyninfo_sect;
709 int dyninfo_sect_size;
710 CORE_ADDR dyninfo_addr;
711 char *buf;
712 char *bufend;
713 int arch_size;
714
715 /* Find the start address of the .dynamic section. */
716 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
717 if (dyninfo_sect == NULL)
718 return 0;
719 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
720
721 /* Read in .dynamic section, silently ignore errors. */
722 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
723 buf = alloca (dyninfo_sect_size);
724 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
725 return 0;
726
727 /* Find the DT_DEBUG entry in the the .dynamic section.
728 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
729 no DT_DEBUG entries. */
730
731 arch_size = bfd_elf_get_arch_size (exec_bfd);
732 if (arch_size == -1) /* failure */
733 return 0;
734
735 if (arch_size == 32)
736 { /* 32-bit elf */
737 for (bufend = buf + dyninfo_sect_size;
738 buf < bufend;
739 buf += sizeof (Elf32_External_Dyn))
740 {
741 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
742 long dyn_tag;
743 CORE_ADDR dyn_ptr;
744
745 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
746 if (dyn_tag == DT_NULL)
747 break;
748 else if (dyn_tag == DT_DEBUG)
749 {
750 dyn_ptr = bfd_h_get_32 (exec_bfd,
751 (bfd_byte *) x_dynp->d_un.d_ptr);
752 return dyn_ptr;
753 }
754 #ifdef DT_MIPS_RLD_MAP
755 else if (dyn_tag == DT_MIPS_RLD_MAP)
756 {
757 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
758
759 /* DT_MIPS_RLD_MAP contains a pointer to the address
760 of the dynamic link structure. */
761 dyn_ptr = bfd_h_get_32 (exec_bfd,
762 (bfd_byte *) x_dynp->d_un.d_ptr);
763 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
764 return 0;
765 return extract_unsigned_integer (pbuf, sizeof (pbuf));
766 }
767 #endif
768 }
769 }
770 else /* 64-bit elf */
771 {
772 for (bufend = buf + dyninfo_sect_size;
773 buf < bufend;
774 buf += sizeof (Elf64_External_Dyn))
775 {
776 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
777 long dyn_tag;
778 CORE_ADDR dyn_ptr;
779
780 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
781 if (dyn_tag == DT_NULL)
782 break;
783 else if (dyn_tag == DT_DEBUG)
784 {
785 dyn_ptr = bfd_h_get_64 (exec_bfd,
786 (bfd_byte *) x_dynp->d_un.d_ptr);
787 return dyn_ptr;
788 }
789 }
790 }
791
792 /* DT_DEBUG entry not found. */
793 return 0;
794 }
795
796 #endif /* SVR4_SHARED_LIBS */
797
798 /*
799
800 LOCAL FUNCTION
801
802 locate_base -- locate the base address of dynamic linker structs
803
804 SYNOPSIS
805
806 CORE_ADDR locate_base (void)
807
808 DESCRIPTION
809
810 For both the SunOS and SVR4 shared library implementations, if the
811 inferior executable has been linked dynamically, there is a single
812 address somewhere in the inferior's data space which is the key to
813 locating all of the dynamic linker's runtime structures. This
814 address is the value of the debug base symbol. The job of this
815 function is to find and return that address, or to return 0 if there
816 is no such address (the executable is statically linked for example).
817
818 For SunOS, the job is almost trivial, since the dynamic linker and
819 all of it's structures are statically linked to the executable at
820 link time. Thus the symbol for the address we are looking for has
821 already been added to the minimal symbol table for the executable's
822 objfile at the time the symbol file's symbols were read, and all we
823 have to do is look it up there. Note that we explicitly do NOT want
824 to find the copies in the shared library.
825
826 The SVR4 version is a bit more complicated because the address
827 is contained somewhere in the dynamic info section. We have to go
828 to a lot more work to discover the address of the debug base symbol.
829 Because of this complexity, we cache the value we find and return that
830 value on subsequent invocations. Note there is no copy in the
831 executable symbol tables.
832
833 */
834
835 static CORE_ADDR
836 locate_base ()
837 {
838
839 #ifndef SVR4_SHARED_LIBS
840
841 struct minimal_symbol *msymbol;
842 CORE_ADDR address = 0;
843 char **symbolp;
844
845 /* For SunOS, we want to limit the search for the debug base symbol to the
846 executable being debugged, since there is a duplicate named symbol in the
847 shared library. We don't want the shared library versions. */
848
849 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
850 {
851 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
852 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
853 {
854 address = SYMBOL_VALUE_ADDRESS (msymbol);
855 return (address);
856 }
857 }
858 return (0);
859
860 #else /* SVR4_SHARED_LIBS */
861
862 /* Check to see if we have a currently valid address, and if so, avoid
863 doing all this work again and just return the cached address. If
864 we have no cached address, try to locate it in the dynamic info
865 section for ELF executables. */
866
867 if (debug_base == 0)
868 {
869 if (exec_bfd != NULL
870 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
871 debug_base = elf_locate_base ();
872 #ifdef HANDLE_SVR4_EXEC_EMULATORS
873 /* Try it the hard way for emulated executables. */
874 else if (inferior_pid != 0 && target_has_execution)
875 proc_iterate_over_mappings (look_for_base);
876 #endif
877 }
878 return (debug_base);
879
880 #endif /* !SVR4_SHARED_LIBS */
881
882 }
883
884 /*
885
886 LOCAL FUNCTION
887
888 first_link_map_member -- locate first member in dynamic linker's map
889
890 SYNOPSIS
891
892 static CORE_ADDR first_link_map_member (void)
893
894 DESCRIPTION
895
896 Find the first element in the inferior's dynamic link map, and
897 return its address in the inferior. This function doesn't copy the
898 link map entry itself into our address space; current_sos actually
899 does the reading. */
900
901 static CORE_ADDR
902 first_link_map_member ()
903 {
904 CORE_ADDR lm = 0;
905
906 #ifndef SVR4_SHARED_LIBS
907
908 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
909 if (dynamic_copy.ld_version >= 2)
910 {
911 /* It is a version that we can deal with, so read in the secondary
912 structure and find the address of the link map list from it. */
913 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
914 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
915 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
916 }
917
918 #else /* SVR4_SHARED_LIBS */
919
920 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
921 /* FIXME: Perhaps we should validate the info somehow, perhaps by
922 checking r_version for a known version number, or r_state for
923 RT_CONSISTENT. */
924 lm = SOLIB_EXTRACT_ADDRESS (debug_copy.r_map);
925
926 #endif /* !SVR4_SHARED_LIBS */
927
928 return (lm);
929 }
930
931 #ifdef SVR4_SHARED_LIBS
932 /*
933
934 LOCAL FUNCTION
935
936 open_symbol_file_object
937
938 SYNOPSIS
939
940 void open_symbol_file_object (int from_tty)
941
942 DESCRIPTION
943
944 If no open symbol file, attempt to locate and open the main symbol
945 file. On SVR4 systems, this is the first link map entry. If its
946 name is here, we can open it. Useful when attaching to a process
947 without first loading its symbol file.
948
949 */
950
951 static int
952 open_symbol_file_object (from_ttyp)
953 int *from_ttyp; /* sneak past catch_errors */
954 {
955 CORE_ADDR lm;
956 struct link_map lmcopy;
957 char *filename;
958 int errcode;
959
960 if (symfile_objfile)
961 if (!query ("Attempt to reload symbols from process? "))
962 return 0;
963
964 if ((debug_base = locate_base ()) == 0)
965 return 0; /* failed somehow... */
966
967 /* First link map member should be the executable. */
968 if ((lm = first_link_map_member ()) == 0)
969 return 0; /* failed somehow... */
970
971 /* Read from target memory to GDB. */
972 read_memory (lm, (void *) &lmcopy, sizeof (lmcopy));
973
974 if (lmcopy.l_name == 0)
975 return 0; /* no filename. */
976
977 /* Now fetch the filename from target memory. */
978 target_read_string (SOLIB_EXTRACT_ADDRESS (lmcopy.l_name), &filename,
979 MAX_PATH_SIZE - 1, &errcode);
980 if (errcode)
981 {
982 warning ("failed to read exec filename from attached file: %s",
983 safe_strerror (errcode));
984 return 0;
985 }
986
987 make_cleanup (free, filename);
988 /* Have a pathname: read the symbol file. */
989 symbol_file_command (filename, *from_ttyp);
990
991 return 1;
992 }
993 #endif /* SVR4_SHARED_LIBS */
994
995
996 /* LOCAL FUNCTION
997
998 free_so --- free a `struct so_list' object
999
1000 SYNOPSIS
1001
1002 void free_so (struct so_list *so)
1003
1004 DESCRIPTION
1005
1006 Free the storage associated with the `struct so_list' object SO.
1007 If we have opened a BFD for SO, close it.
1008
1009 The caller is responsible for removing SO from whatever list it is
1010 a member of. If we have placed SO's sections in some target's
1011 section table, the caller is responsible for removing them.
1012
1013 This function doesn't mess with objfiles at all. If there is an
1014 objfile associated with SO that needs to be removed, the caller is
1015 responsible for taking care of that. */
1016
1017 static void
1018 free_so (struct so_list *so)
1019 {
1020 char *bfd_filename = 0;
1021
1022 if (so->sections)
1023 free (so->sections);
1024
1025 if (so->abfd)
1026 {
1027 bfd_filename = bfd_get_filename (so->abfd);
1028 if (! bfd_close (so->abfd))
1029 warning ("cannot close \"%s\": %s",
1030 bfd_filename, bfd_errmsg (bfd_get_error ()));
1031 }
1032
1033 if (bfd_filename)
1034 free (bfd_filename);
1035
1036 free (so);
1037 }
1038
1039
1040 /* On some systems, the only way to recognize the link map entry for
1041 the main executable file is by looking at its name. Return
1042 non-zero iff SONAME matches one of the known main executable names. */
1043
1044 static int
1045 match_main (soname)
1046 char *soname;
1047 {
1048 char **mainp;
1049
1050 for (mainp = main_name_list; *mainp != NULL; mainp++)
1051 {
1052 if (strcmp (soname, *mainp) == 0)
1053 return (1);
1054 }
1055
1056 return (0);
1057 }
1058
1059
1060 /* LOCAL FUNCTION
1061
1062 current_sos -- build a list of currently loaded shared objects
1063
1064 SYNOPSIS
1065
1066 struct so_list *current_sos ()
1067
1068 DESCRIPTION
1069
1070 Build a list of `struct so_list' objects describing the shared
1071 objects currently loaded in the inferior. This list does not
1072 include an entry for the main executable file.
1073
1074 Note that we only gather information directly available from the
1075 inferior --- we don't examine any of the shared library files
1076 themselves. The declaration of `struct so_list' says which fields
1077 we provide values for. */
1078
1079 static struct so_list *
1080 current_sos ()
1081 {
1082 CORE_ADDR lm;
1083 struct so_list *head = 0;
1084 struct so_list **link_ptr = &head;
1085
1086 /* Make sure we've looked up the inferior's dynamic linker's base
1087 structure. */
1088 if (! debug_base)
1089 {
1090 debug_base = locate_base ();
1091
1092 /* If we can't find the dynamic linker's base structure, this
1093 must not be a dynamically linked executable. Hmm. */
1094 if (! debug_base)
1095 return 0;
1096 }
1097
1098 /* Walk the inferior's link map list, and build our list of
1099 `struct so_list' nodes. */
1100 lm = first_link_map_member ();
1101 while (lm)
1102 {
1103 struct so_list *new
1104 = (struct so_list *) xmalloc (sizeof (struct so_list));
1105 struct cleanup *old_chain = make_cleanup (free, new);
1106 memset (new, 0, sizeof (*new));
1107
1108 new->lmaddr = lm;
1109 read_memory (lm, (char *) &(new->lm), sizeof (struct link_map));
1110
1111 lm = LM_NEXT (new);
1112
1113 /* For SVR4 versions, the first entry in the link map is for the
1114 inferior executable, so we must ignore it. For some versions of
1115 SVR4, it has no name. For others (Solaris 2.3 for example), it
1116 does have a name, so we can no longer use a missing name to
1117 decide when to ignore it. */
1118 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
1119 free_so (new);
1120 else
1121 {
1122 int errcode;
1123 char *buffer;
1124
1125 /* Extract this shared object's name. */
1126 target_read_string (LM_NAME (new), &buffer,
1127 MAX_PATH_SIZE - 1, &errcode);
1128 if (errcode != 0)
1129 {
1130 warning ("current_sos: Can't read pathname for load map: %s\n",
1131 safe_strerror (errcode));
1132 }
1133 else
1134 {
1135 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1136 new->so_name[MAX_PATH_SIZE - 1] = '\0';
1137 free (buffer);
1138 strcpy (new->so_original_name, new->so_name);
1139 }
1140
1141 /* If this entry has no name, or its name matches the name
1142 for the main executable, don't include it in the list. */
1143 if (! new->so_name[0]
1144 || match_main (new->so_name))
1145 free_so (new);
1146 else
1147 {
1148 new->next = 0;
1149 *link_ptr = new;
1150 link_ptr = &new->next;
1151 }
1152 }
1153
1154 discard_cleanups (old_chain);
1155 }
1156
1157 return head;
1158 }
1159
1160
1161 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
1162
1163 static int
1164 symbol_add_stub (arg)
1165 PTR arg;
1166 {
1167 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
1168 struct section_addr_info *sap;
1169 CORE_ADDR lowest_addr = 0;
1170 int lowest_index;
1171 asection *lowest_sect = NULL;
1172
1173 /* Have we already loaded this shared object? */
1174 ALL_OBJFILES (so->objfile)
1175 {
1176 if (strcmp (so->objfile->name, so->so_name) == 0)
1177 return 1;
1178 }
1179
1180 /* Find the shared object's text segment. */
1181 if (so->textsection)
1182 {
1183 lowest_addr = so->textsection->addr;
1184 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
1185 lowest_index = lowest_sect->index;
1186 }
1187 else if (so->abfd != NULL)
1188 {
1189 /* If we didn't find a mapped non zero sized .text section, set
1190 up lowest_addr so that the relocation in symbol_file_add does
1191 no harm. */
1192 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
1193 if (lowest_sect == NULL)
1194 bfd_map_over_sections (so->abfd, find_lowest_section,
1195 (PTR) &lowest_sect);
1196 if (lowest_sect)
1197 {
1198 lowest_addr = bfd_section_vma (so->abfd, lowest_sect)
1199 + LM_ADDR (so);
1200 lowest_index = lowest_sect->index;
1201 }
1202 }
1203
1204 sap = build_section_addr_info_from_section_table (so->sections,
1205 so->sections_end);
1206
1207 sap->other[lowest_index].addr = lowest_addr;
1208
1209 so->objfile = symbol_file_add (so->so_name, so->from_tty,
1210 sap, 0, OBJF_SHARED);
1211 free_section_addr_info (sap);
1212
1213 return (1);
1214 }
1215
1216
1217 /* LOCAL FUNCTION
1218
1219 update_solib_list --- synchronize GDB's shared object list with inferior's
1220
1221 SYNOPSIS
1222
1223 void update_solib_list (int from_tty, struct target_ops *TARGET)
1224
1225 Extract the list of currently loaded shared objects from the
1226 inferior, and compare it with the list of shared objects currently
1227 in GDB's so_list_head list. Edit so_list_head to bring it in sync
1228 with the inferior's new list.
1229
1230 If we notice that the inferior has unloaded some shared objects,
1231 free any symbolic info GDB had read about those shared objects.
1232
1233 Don't load symbolic info for any new shared objects; just add them
1234 to the list, and leave their symbols_loaded flag clear.
1235
1236 If FROM_TTY is non-null, feel free to print messages about what
1237 we're doing.
1238
1239 If TARGET is non-null, add the sections of all new shared objects
1240 to TARGET's section table. Note that this doesn't remove any
1241 sections for shared objects that have been unloaded, and it
1242 doesn't check to see if the new shared objects are already present in
1243 the section table. But we only use this for core files and
1244 processes we've just attached to, so that's okay. */
1245
1246 void
1247 update_solib_list (int from_tty, struct target_ops *target)
1248 {
1249 struct so_list *inferior = current_sos ();
1250 struct so_list *gdb, **gdb_link;
1251
1252 #ifdef SVR4_SHARED_LIBS
1253 /* If we are attaching to a running process for which we
1254 have not opened a symbol file, we may be able to get its
1255 symbols now! */
1256 if (attach_flag &&
1257 symfile_objfile == NULL)
1258 catch_errors (open_symbol_file_object, (PTR) &from_tty,
1259 "Error reading attached process's symbol file.\n",
1260 RETURN_MASK_ALL);
1261
1262 #endif SVR4_SHARED_LIBS
1263
1264 /* Since this function might actually add some elements to the
1265 so_list_head list, arrange for it to be cleaned up when
1266 appropriate. */
1267 if (!solib_cleanup_queued)
1268 {
1269 make_run_cleanup (do_clear_solib, NULL);
1270 solib_cleanup_queued = 1;
1271 }
1272
1273 /* GDB and the inferior's dynamic linker each maintain their own
1274 list of currently loaded shared objects; we want to bring the
1275 former in sync with the latter. Scan both lists, seeing which
1276 shared objects appear where. There are three cases:
1277
1278 - A shared object appears on both lists. This means that GDB
1279 knows about it already, and it's still loaded in the inferior.
1280 Nothing needs to happen.
1281
1282 - A shared object appears only on GDB's list. This means that
1283 the inferior has unloaded it. We should remove the shared
1284 object from GDB's tables.
1285
1286 - A shared object appears only on the inferior's list. This
1287 means that it's just been loaded. We should add it to GDB's
1288 tables.
1289
1290 So we walk GDB's list, checking each entry to see if it appears
1291 in the inferior's list too. If it does, no action is needed, and
1292 we remove it from the inferior's list. If it doesn't, the
1293 inferior has unloaded it, and we remove it from GDB's list. By
1294 the time we're done walking GDB's list, the inferior's list
1295 contains only the new shared objects, which we then add. */
1296
1297 gdb = so_list_head;
1298 gdb_link = &so_list_head;
1299 while (gdb)
1300 {
1301 struct so_list *i = inferior;
1302 struct so_list **i_link = &inferior;
1303
1304 /* Check to see whether the shared object *gdb also appears in
1305 the inferior's current list. */
1306 while (i)
1307 {
1308 if (! strcmp (gdb->so_original_name, i->so_original_name))
1309 break;
1310
1311 i_link = &i->next;
1312 i = *i_link;
1313 }
1314
1315 /* If the shared object appears on the inferior's list too, then
1316 it's still loaded, so we don't need to do anything. Delete
1317 it from the inferior's list, and leave it on GDB's list. */
1318 if (i)
1319 {
1320 *i_link = i->next;
1321 free_so (i);
1322 gdb_link = &gdb->next;
1323 gdb = *gdb_link;
1324 }
1325
1326 /* If it's not on the inferior's list, remove it from GDB's tables. */
1327 else
1328 {
1329 *gdb_link = gdb->next;
1330
1331 /* Unless the user loaded it explicitly, free SO's objfile. */
1332 if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED))
1333 free_objfile (gdb->objfile);
1334
1335 /* Some targets' section tables might be referring to
1336 sections from so->abfd; remove them. */
1337 remove_target_sections (gdb->abfd);
1338
1339 free_so (gdb);
1340 gdb = *gdb_link;
1341 }
1342 }
1343
1344 /* Now the inferior's list contains only shared objects that don't
1345 appear in GDB's list --- those that are newly loaded. Add them
1346 to GDB's shared object list. */
1347 if (inferior)
1348 {
1349 struct so_list *i;
1350
1351 /* Add the new shared objects to GDB's list. */
1352 *gdb_link = inferior;
1353
1354 /* Fill in the rest of each of the `struct so_list' nodes. */
1355 for (i = inferior; i; i = i->next)
1356 {
1357 i->from_tty = from_tty;
1358
1359 /* Fill in the rest of the `struct so_list' node. */
1360 catch_errors (solib_map_sections, i,
1361 "Error while mapping shared library sections:\n",
1362 RETURN_MASK_ALL);
1363 }
1364
1365 /* If requested, add the shared objects' sections to the the
1366 TARGET's section table. */
1367 if (target)
1368 {
1369 int new_sections;
1370
1371 /* Figure out how many sections we'll need to add in total. */
1372 new_sections = 0;
1373 for (i = inferior; i; i = i->next)
1374 new_sections += (i->sections_end - i->sections);
1375
1376 if (new_sections > 0)
1377 {
1378 int space = target_resize_to_sections (target, new_sections);
1379
1380 for (i = inferior; i; i = i->next)
1381 {
1382 int count = (i->sections_end - i->sections);
1383 memcpy (target->to_sections + space,
1384 i->sections,
1385 count * sizeof (i->sections[0]));
1386 space += count;
1387 }
1388 }
1389 }
1390 }
1391 }
1392
1393
1394 /* GLOBAL FUNCTION
1395
1396 solib_add -- read in symbol info for newly added shared libraries
1397
1398 SYNOPSIS
1399
1400 void solib_add (char *pattern, int from_tty, struct target_ops *TARGET)
1401
1402 DESCRIPTION
1403
1404 Read in symbolic information for any shared objects whose names
1405 match PATTERN. (If we've already read a shared object's symbol
1406 info, leave it alone.) If PATTERN is zero, read them all.
1407
1408 FROM_TTY and TARGET are as described for update_solib_list, above. */
1409
1410 void
1411 solib_add (char *pattern, int from_tty, struct target_ops *target)
1412 {
1413 struct so_list *gdb;
1414
1415 if (pattern)
1416 {
1417 char *re_err = re_comp (pattern);
1418
1419 if (re_err)
1420 error ("Invalid regexp: %s", re_err);
1421 }
1422
1423 update_solib_list (from_tty, target);
1424
1425 /* Walk the list of currently loaded shared libraries, and read
1426 symbols for any that match the pattern --- or any whose symbols
1427 aren't already loaded, if no pattern was given. */
1428 {
1429 int any_matches = 0;
1430 int loaded_any_symbols = 0;
1431
1432 for (gdb = so_list_head; gdb; gdb = gdb->next)
1433 if (! pattern || re_exec (gdb->so_name))
1434 {
1435 any_matches = 1;
1436
1437 if (gdb->symbols_loaded)
1438 {
1439 if (from_tty)
1440 printf_unfiltered ("Symbols already loaded for %s\n",
1441 gdb->so_name);
1442 }
1443 else
1444 {
1445 if (catch_errors
1446 (symbol_add_stub, gdb,
1447 "Error while reading shared library symbols:\n",
1448 RETURN_MASK_ALL))
1449 {
1450 if (from_tty)
1451 printf_unfiltered ("Loaded symbols for %s\n",
1452 gdb->so_name);
1453 gdb->symbols_loaded = 1;
1454 loaded_any_symbols = 1;
1455 }
1456 }
1457 }
1458
1459 if (from_tty && pattern && ! any_matches)
1460 printf_unfiltered
1461 ("No loaded shared libraries match the pattern `%s'.\n", pattern);
1462
1463 if (loaded_any_symbols)
1464 {
1465 /* Getting new symbols may change our opinion about what is
1466 frameless. */
1467 reinit_frame_cache ();
1468
1469 special_symbol_handling ();
1470 }
1471 }
1472 }
1473
1474
1475 /*
1476
1477 LOCAL FUNCTION
1478
1479 info_sharedlibrary_command -- code for "info sharedlibrary"
1480
1481 SYNOPSIS
1482
1483 static void info_sharedlibrary_command ()
1484
1485 DESCRIPTION
1486
1487 Walk through the shared library list and print information
1488 about each attached library.
1489 */
1490
1491 static void
1492 info_sharedlibrary_command (ignore, from_tty)
1493 char *ignore;
1494 int from_tty;
1495 {
1496 register struct so_list *so = NULL; /* link map state variable */
1497 int header_done = 0;
1498 int addr_width;
1499 char *addr_fmt;
1500 int arch_size;
1501
1502 if (exec_bfd == NULL)
1503 {
1504 printf_unfiltered ("No executable file.\n");
1505 return;
1506 }
1507
1508 arch_size = bfd_elf_get_arch_size (exec_bfd);
1509 /* Default to 32-bit in case of failure (non-elf). */
1510 if (arch_size == 32 || arch_size == -1)
1511 {
1512 addr_width = 8 + 4;
1513 addr_fmt = "08l";
1514 }
1515 else if (arch_size == 64)
1516 {
1517 addr_width = 16 + 4;
1518 addr_fmt = "016l";
1519 }
1520
1521 update_solib_list (from_tty, 0);
1522
1523 for (so = so_list_head; so; so = so->next)
1524 {
1525 if (so->so_name[0])
1526 {
1527 if (!header_done)
1528 {
1529 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1530 addr_width, "To", "Syms Read",
1531 "Shared Object Library");
1532 header_done++;
1533 }
1534
1535 printf_unfiltered ("%-*s", addr_width,
1536 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1537 addr_fmt));
1538 printf_unfiltered ("%-*s", addr_width,
1539 local_hex_string_custom ((unsigned long) so->lmend,
1540 addr_fmt));
1541 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1542 printf_unfiltered ("%s\n", so->so_name);
1543 }
1544 }
1545 if (so_list_head == NULL)
1546 {
1547 printf_unfiltered ("No shared libraries loaded at this time.\n");
1548 }
1549 }
1550
1551 /*
1552
1553 GLOBAL FUNCTION
1554
1555 solib_address -- check to see if an address is in a shared lib
1556
1557 SYNOPSIS
1558
1559 char * solib_address (CORE_ADDR address)
1560
1561 DESCRIPTION
1562
1563 Provides a hook for other gdb routines to discover whether or
1564 not a particular address is within the mapped address space of
1565 a shared library. Any address between the base mapping address
1566 and the first address beyond the end of the last mapping, is
1567 considered to be within the shared library address space, for
1568 our purposes.
1569
1570 For example, this routine is called at one point to disable
1571 breakpoints which are in shared libraries that are not currently
1572 mapped in.
1573 */
1574
1575 char *
1576 solib_address (address)
1577 CORE_ADDR address;
1578 {
1579 register struct so_list *so = 0; /* link map state variable */
1580
1581 for (so = so_list_head; so; so = so->next)
1582 {
1583 if (LM_ADDR (so) <= address && address < so->lmend)
1584 return (so->so_name);
1585 }
1586
1587 return (0);
1588 }
1589
1590 /* Called by free_all_symtabs */
1591
1592 void
1593 clear_solib ()
1594 {
1595 /* This function is expected to handle ELF shared libraries. It is
1596 also used on Solaris, which can run either ELF or a.out binaries
1597 (for compatibility with SunOS 4), both of which can use shared
1598 libraries. So we don't know whether we have an ELF executable or
1599 an a.out executable until the user chooses an executable file.
1600
1601 ELF shared libraries don't get mapped into the address space
1602 until after the program starts, so we'd better not try to insert
1603 breakpoints in them immediately. We have to wait until the
1604 dynamic linker has loaded them; we'll hit a bp_shlib_event
1605 breakpoint (look for calls to create_solib_event_breakpoint) when
1606 it's ready.
1607
1608 SunOS shared libraries seem to be different --- they're present
1609 as soon as the process begins execution, so there's no need to
1610 put off inserting breakpoints. There's also nowhere to put a
1611 bp_shlib_event breakpoint, so if we put it off, we'll never get
1612 around to it.
1613
1614 So: disable breakpoints only if we're using ELF shared libs. */
1615 if (exec_bfd != NULL
1616 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1617 disable_breakpoints_in_shlibs (1);
1618
1619 while (so_list_head)
1620 {
1621 struct so_list *so = so_list_head;
1622 so_list_head = so->next;
1623 free_so (so);
1624 }
1625
1626 debug_base = 0;
1627 }
1628
1629 static void
1630 do_clear_solib (dummy)
1631 PTR dummy;
1632 {
1633 solib_cleanup_queued = 0;
1634 clear_solib ();
1635 }
1636
1637 #ifdef SVR4_SHARED_LIBS
1638
1639 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1640 SVR4 run time loader. */
1641
1642 static CORE_ADDR interp_text_sect_low;
1643 static CORE_ADDR interp_text_sect_high;
1644 static CORE_ADDR interp_plt_sect_low;
1645 static CORE_ADDR interp_plt_sect_high;
1646
1647 int
1648 in_svr4_dynsym_resolve_code (pc)
1649 CORE_ADDR pc;
1650 {
1651 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1652 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1653 || in_plt_section (pc, NULL));
1654 }
1655 #endif
1656
1657 /*
1658
1659 LOCAL FUNCTION
1660
1661 disable_break -- remove the "mapping changed" breakpoint
1662
1663 SYNOPSIS
1664
1665 static int disable_break ()
1666
1667 DESCRIPTION
1668
1669 Removes the breakpoint that gets hit when the dynamic linker
1670 completes a mapping change.
1671
1672 */
1673
1674 #ifndef SVR4_SHARED_LIBS
1675
1676 static int
1677 disable_break ()
1678 {
1679 int status = 1;
1680
1681 #ifndef SVR4_SHARED_LIBS
1682
1683 int in_debugger = 0;
1684
1685 /* Read the debugger structure from the inferior to retrieve the
1686 address of the breakpoint and the original contents of the
1687 breakpoint address. Remove the breakpoint by writing the original
1688 contents back. */
1689
1690 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1691
1692 /* Set `in_debugger' to zero now. */
1693
1694 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1695
1696 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
1697 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1698 sizeof (debug_copy.ldd_bp_inst));
1699
1700 #else /* SVR4_SHARED_LIBS */
1701
1702 /* Note that breakpoint address and original contents are in our address
1703 space, so we just need to write the original contents back. */
1704
1705 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1706 {
1707 status = 0;
1708 }
1709
1710 #endif /* !SVR4_SHARED_LIBS */
1711
1712 /* For the SVR4 version, we always know the breakpoint address. For the
1713 SunOS version we don't know it until the above code is executed.
1714 Grumble if we are stopped anywhere besides the breakpoint address. */
1715
1716 if (stop_pc != breakpoint_addr)
1717 {
1718 warning ("stopped at unknown breakpoint while handling shared libraries");
1719 }
1720
1721 return (status);
1722 }
1723
1724 #endif /* #ifdef SVR4_SHARED_LIBS */
1725
1726 /*
1727
1728 LOCAL FUNCTION
1729
1730 enable_break -- arrange for dynamic linker to hit breakpoint
1731
1732 SYNOPSIS
1733
1734 int enable_break (void)
1735
1736 DESCRIPTION
1737
1738 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1739 debugger interface, support for arranging for the inferior to hit
1740 a breakpoint after mapping in the shared libraries. This function
1741 enables that breakpoint.
1742
1743 For SunOS, there is a special flag location (in_debugger) which we
1744 set to 1. When the dynamic linker sees this flag set, it will set
1745 a breakpoint at a location known only to itself, after saving the
1746 original contents of that place and the breakpoint address itself,
1747 in it's own internal structures. When we resume the inferior, it
1748 will eventually take a SIGTRAP when it runs into the breakpoint.
1749 We handle this (in a different place) by restoring the contents of
1750 the breakpointed location (which is only known after it stops),
1751 chasing around to locate the shared libraries that have been
1752 loaded, then resuming.
1753
1754 For SVR4, the debugger interface structure contains a member (r_brk)
1755 which is statically initialized at the time the shared library is
1756 built, to the offset of a function (_r_debug_state) which is guaran-
1757 teed to be called once before mapping in a library, and again when
1758 the mapping is complete. At the time we are examining this member,
1759 it contains only the unrelocated offset of the function, so we have
1760 to do our own relocation. Later, when the dynamic linker actually
1761 runs, it relocates r_brk to be the actual address of _r_debug_state().
1762
1763 The debugger interface structure also contains an enumeration which
1764 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1765 depending upon whether or not the library is being mapped or unmapped,
1766 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1767 */
1768
1769 static int
1770 enable_break ()
1771 {
1772 int success = 0;
1773
1774 #ifndef SVR4_SHARED_LIBS
1775
1776 int j;
1777 int in_debugger;
1778
1779 /* Get link_dynamic structure */
1780
1781 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1782 sizeof (dynamic_copy));
1783 if (j)
1784 {
1785 /* unreadable */
1786 return (0);
1787 }
1788
1789 /* Calc address of debugger interface structure */
1790
1791 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
1792
1793 /* Calc address of `in_debugger' member of debugger interface structure */
1794
1795 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1796 (char *) &debug_copy);
1797
1798 /* Write a value of 1 to this member. */
1799
1800 in_debugger = 1;
1801 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1802 success = 1;
1803
1804 #else /* SVR4_SHARED_LIBS */
1805
1806 #ifdef BKPT_AT_SYMBOL
1807
1808 struct minimal_symbol *msymbol;
1809 char **bkpt_namep;
1810 asection *interp_sect;
1811
1812 /* First, remove all the solib event breakpoints. Their addresses
1813 may have changed since the last time we ran the program. */
1814 remove_solib_event_breakpoints ();
1815
1816 #ifdef SVR4_SHARED_LIBS
1817 interp_text_sect_low = interp_text_sect_high = 0;
1818 interp_plt_sect_low = interp_plt_sect_high = 0;
1819
1820 /* Find the .interp section; if not found, warn the user and drop
1821 into the old breakpoint at symbol code. */
1822 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1823 if (interp_sect)
1824 {
1825 unsigned int interp_sect_size;
1826 char *buf;
1827 CORE_ADDR load_addr;
1828 bfd *tmp_bfd;
1829 CORE_ADDR sym_addr = 0;
1830
1831 /* Read the contents of the .interp section into a local buffer;
1832 the contents specify the dynamic linker this program uses. */
1833 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1834 buf = alloca (interp_sect_size);
1835 bfd_get_section_contents (exec_bfd, interp_sect,
1836 buf, 0, interp_sect_size);
1837
1838 /* Now we need to figure out where the dynamic linker was
1839 loaded so that we can load its symbols and place a breakpoint
1840 in the dynamic linker itself.
1841
1842 This address is stored on the stack. However, I've been unable
1843 to find any magic formula to find it for Solaris (appears to
1844 be trivial on GNU/Linux). Therefore, we have to try an alternate
1845 mechanism to find the dynamic linker's base address. */
1846 tmp_bfd = bfd_openr (buf, gnutarget);
1847 if (tmp_bfd == NULL)
1848 goto bkpt_at_symbol;
1849
1850 /* Make sure the dynamic linker's really a useful object. */
1851 if (!bfd_check_format (tmp_bfd, bfd_object))
1852 {
1853 warning ("Unable to grok dynamic linker %s as an object file", buf);
1854 bfd_close (tmp_bfd);
1855 goto bkpt_at_symbol;
1856 }
1857
1858 /* We find the dynamic linker's base address by examining the
1859 current pc (which point at the entry point for the dynamic
1860 linker) and subtracting the offset of the entry point. */
1861 load_addr = read_pc () - tmp_bfd->start_address;
1862
1863 /* Record the relocated start and end address of the dynamic linker
1864 text and plt section for in_svr4_dynsym_resolve_code. */
1865 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1866 if (interp_sect)
1867 {
1868 interp_text_sect_low =
1869 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1870 interp_text_sect_high =
1871 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1872 }
1873 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1874 if (interp_sect)
1875 {
1876 interp_plt_sect_low =
1877 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1878 interp_plt_sect_high =
1879 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1880 }
1881
1882 /* Now try to set a breakpoint in the dynamic linker. */
1883 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1884 {
1885 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1886 if (sym_addr != 0)
1887 break;
1888 }
1889
1890 /* We're done with the temporary bfd. */
1891 bfd_close (tmp_bfd);
1892
1893 if (sym_addr != 0)
1894 {
1895 create_solib_event_breakpoint (load_addr + sym_addr);
1896 return 1;
1897 }
1898
1899 /* For whatever reason we couldn't set a breakpoint in the dynamic
1900 linker. Warn and drop into the old code. */
1901 bkpt_at_symbol:
1902 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1903 }
1904 #endif
1905
1906 /* Scan through the list of symbols, trying to look up the symbol and
1907 set a breakpoint there. Terminate loop when we/if we succeed. */
1908
1909 breakpoint_addr = 0;
1910 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1911 {
1912 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1913 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1914 {
1915 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1916 return 1;
1917 }
1918 }
1919
1920 /* Nothing good happened. */
1921 success = 0;
1922
1923 #endif /* BKPT_AT_SYMBOL */
1924
1925 #endif /* !SVR4_SHARED_LIBS */
1926
1927 return (success);
1928 }
1929
1930 /*
1931
1932 GLOBAL FUNCTION
1933
1934 solib_create_inferior_hook -- shared library startup support
1935
1936 SYNOPSIS
1937
1938 void solib_create_inferior_hook()
1939
1940 DESCRIPTION
1941
1942 When gdb starts up the inferior, it nurses it along (through the
1943 shell) until it is ready to execute it's first instruction. At this
1944 point, this function gets called via expansion of the macro
1945 SOLIB_CREATE_INFERIOR_HOOK.
1946
1947 For SunOS executables, this first instruction is typically the
1948 one at "_start", or a similar text label, regardless of whether
1949 the executable is statically or dynamically linked. The runtime
1950 startup code takes care of dynamically linking in any shared
1951 libraries, once gdb allows the inferior to continue.
1952
1953 For SVR4 executables, this first instruction is either the first
1954 instruction in the dynamic linker (for dynamically linked
1955 executables) or the instruction at "start" for statically linked
1956 executables. For dynamically linked executables, the system
1957 first exec's /lib/libc.so.N, which contains the dynamic linker,
1958 and starts it running. The dynamic linker maps in any needed
1959 shared libraries, maps in the actual user executable, and then
1960 jumps to "start" in the user executable.
1961
1962 For both SunOS shared libraries, and SVR4 shared libraries, we
1963 can arrange to cooperate with the dynamic linker to discover the
1964 names of shared libraries that are dynamically linked, and the
1965 base addresses to which they are linked.
1966
1967 This function is responsible for discovering those names and
1968 addresses, and saving sufficient information about them to allow
1969 their symbols to be read at a later time.
1970
1971 FIXME
1972
1973 Between enable_break() and disable_break(), this code does not
1974 properly handle hitting breakpoints which the user might have
1975 set in the startup code or in the dynamic linker itself. Proper
1976 handling will probably have to wait until the implementation is
1977 changed to use the "breakpoint handler function" method.
1978
1979 Also, what if child has exit()ed? Must exit loop somehow.
1980 */
1981
1982 void
1983 solib_create_inferior_hook ()
1984 {
1985 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1986 yet. In fact, in the case of a SunOS4 executable being run on
1987 Solaris, we can't get it yet. current_sos will get it when it needs
1988 it. */
1989 #if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1990 if ((debug_base = locate_base ()) == 0)
1991 {
1992 /* Can't find the symbol or the executable is statically linked. */
1993 return;
1994 }
1995 #endif
1996
1997 if (!enable_break ())
1998 {
1999 warning ("shared library handler failed to enable breakpoint");
2000 return;
2001 }
2002
2003 #if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
2004 /* SCO and SunOS need the loop below, other systems should be using the
2005 special shared library breakpoints and the shared library breakpoint
2006 service routine.
2007
2008 Now run the target. It will eventually hit the breakpoint, at
2009 which point all of the libraries will have been mapped in and we
2010 can go groveling around in the dynamic linker structures to find
2011 out what we need to know about them. */
2012
2013 clear_proceed_status ();
2014 stop_soon_quietly = 1;
2015 stop_signal = TARGET_SIGNAL_0;
2016 do
2017 {
2018 target_resume (-1, 0, stop_signal);
2019 wait_for_inferior ();
2020 }
2021 while (stop_signal != TARGET_SIGNAL_TRAP);
2022 stop_soon_quietly = 0;
2023
2024 #if !defined(_SCO_DS)
2025 /* We are now either at the "mapping complete" breakpoint (or somewhere
2026 else, a condition we aren't prepared to deal with anyway), so adjust
2027 the PC as necessary after a breakpoint, disable the breakpoint, and
2028 add any shared libraries that were mapped in. */
2029
2030 if (DECR_PC_AFTER_BREAK)
2031 {
2032 stop_pc -= DECR_PC_AFTER_BREAK;
2033 write_register (PC_REGNUM, stop_pc);
2034 }
2035
2036 if (!disable_break ())
2037 {
2038 warning ("shared library handler failed to disable breakpoint");
2039 }
2040
2041 if (auto_solib_add)
2042 solib_add ((char *) 0, 0, (struct target_ops *) 0);
2043 #endif /* ! _SCO_DS */
2044 #endif
2045 }
2046
2047 /*
2048
2049 LOCAL FUNCTION
2050
2051 special_symbol_handling -- additional shared library symbol handling
2052
2053 SYNOPSIS
2054
2055 void special_symbol_handling ()
2056
2057 DESCRIPTION
2058
2059 Once the symbols from a shared object have been loaded in the usual
2060 way, we are called to do any system specific symbol handling that
2061 is needed.
2062
2063 For SunOS4, this consists of grunging around in the dynamic
2064 linkers structures to find symbol definitions for "common" symbols
2065 and adding them to the minimal symbol table for the runtime common
2066 objfile.
2067
2068 */
2069
2070 static void
2071 special_symbol_handling ()
2072 {
2073 #ifndef SVR4_SHARED_LIBS
2074 int j;
2075
2076 if (debug_addr == 0)
2077 {
2078 /* Get link_dynamic structure */
2079
2080 j = target_read_memory (debug_base, (char *) &dynamic_copy,
2081 sizeof (dynamic_copy));
2082 if (j)
2083 {
2084 /* unreadable */
2085 return;
2086 }
2087
2088 /* Calc address of debugger interface structure */
2089 /* FIXME, this needs work for cross-debugging of core files
2090 (byteorder, size, alignment, etc). */
2091
2092 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
2093 }
2094
2095 /* Read the debugger structure from the inferior, just to make sure
2096 we have a current copy. */
2097
2098 j = target_read_memory (debug_addr, (char *) &debug_copy,
2099 sizeof (debug_copy));
2100 if (j)
2101 return; /* unreadable */
2102
2103 /* Get common symbol definitions for the loaded object. */
2104
2105 if (debug_copy.ldd_cp)
2106 {
2107 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
2108 }
2109
2110 #endif /* !SVR4_SHARED_LIBS */
2111 }
2112
2113
2114 /*
2115
2116 LOCAL FUNCTION
2117
2118 sharedlibrary_command -- handle command to explicitly add library
2119
2120 SYNOPSIS
2121
2122 static void sharedlibrary_command (char *args, int from_tty)
2123
2124 DESCRIPTION
2125
2126 */
2127
2128 static void
2129 sharedlibrary_command (args, from_tty)
2130 char *args;
2131 int from_tty;
2132 {
2133 dont_repeat ();
2134 solib_add (args, from_tty, (struct target_ops *) 0);
2135 }
2136
2137 #endif /* HAVE_LINK_H */
2138
2139 void
2140 _initialize_solib ()
2141 {
2142 #ifdef HAVE_LINK_H
2143
2144 add_com ("sharedlibrary", class_files, sharedlibrary_command,
2145 "Load shared object library symbols for files matching REGEXP.");
2146 add_info ("sharedlibrary", info_sharedlibrary_command,
2147 "Status of loaded shared object libraries.");
2148
2149 add_show_from_set
2150 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
2151 (char *) &auto_solib_add,
2152 "Set autoloading of shared library symbols.\n\
2153 If nonzero, symbols from all shared object libraries will be loaded\n\
2154 automatically when the inferior begins execution or when the dynamic linker\n\
2155 informs gdb that a new library has been loaded. Otherwise, symbols\n\
2156 must be loaded manually, using `sharedlibrary'.",
2157 &setlist),
2158 &showlist);
2159
2160 add_show_from_set
2161 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
2162 (char *) &solib_absolute_prefix,
2163 "Set prefix for loading absolute shared library symbol files.\n\
2164 For other (relative) files, you can add values using `set solib-search-path'.",
2165 &setlist),
2166 &showlist);
2167 add_show_from_set
2168 (add_set_cmd ("solib-search-path", class_support, var_string,
2169 (char *) &solib_search_path,
2170 "Set the search path for loading non-absolute shared library symbol files.\n\
2171 This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
2172 &setlist),
2173 &showlist);
2174
2175 #endif /* HAVE_LINK_H */
2176 }