]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/spu-tdep.c
Use gdb:array_view in call_function_by_hand & friends
[thirdparty/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "disasm.h"
37 #include "objfiles.h"
38 #include "language.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "block.h"
42 #include "observable.h"
43 #include "infcall.h"
44 #include "dwarf2.h"
45 #include "dwarf2-frame.h"
46 #include "ax.h"
47 #include "spu-tdep.h"
48 #include "location.h"
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static const char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static enum register_status
185 spu_pseudo_register_read_spu (readable_regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = regcache->arch ();
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
194 ULONGEST ul;
195
196 status = regcache->raw_read (SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
206 return REG_VALID;
207 }
208
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
211 int regnum, gdb_byte *buf)
212 {
213 gdb_byte reg[16];
214 char annex[32];
215 ULONGEST id;
216 enum register_status status;
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
221 status = regcache->raw_read (SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
224 memcpy (buf, reg, 4);
225 return status;
226
227 case SPU_FPSCR_REGNUM:
228 status = regcache->raw_read (SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (current_top_target (), TARGET_OBJECT_SPU, annex, buf, 0, 16);
233 return status;
234
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
237
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
240
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
243
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
246
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250 }
251
252 static void
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255 {
256 struct gdbarch *gdbarch = regcache->arch ();
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258 char reg[32];
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (current_top_target (), TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
268 }
269
270 static void
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273 {
274 gdb_byte reg[16];
275 char annex[32];
276 ULONGEST id;
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache->raw_read (SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache->raw_write (SPU_RAW_SP_REGNUM, reg);
284 break;
285
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (current_top_target (), TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311 }
312
313 static int
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316 {
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333 }
334
335 static int
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338 {
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355 }
356
357
358 /* Value conversion -- access scalar values at the preferred slot. */
359
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
363 {
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
366 LONGEST len = TYPE_LENGTH (type);
367
368 if (regnum < SPU_NUM_GPRS && len < 16)
369 {
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
372 }
373
374 return value;
375 }
376
377 /* Register groups. */
378
379 static int
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382 {
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397 }
398
399 /* DWARF-2 register numbers. */
400
401 static int
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403 {
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406 }
407
408
409 /* Address handling. */
410
411 static int
412 spu_gdbarch_id (struct gdbarch *gdbarch)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427 }
428
429 static int
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431 {
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436 }
437
438 static const char *
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440 {
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445 }
446
447 static int
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450 {
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458 }
459
460 static void
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463 {
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467 }
468
469 static CORE_ADDR
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
472 {
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
477
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
482 return addr? SPUADDR (id, addr) : 0;
483 }
484
485 static CORE_ADDR
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488 {
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
491
492 return SPUADDR (id, addr);
493 }
494
495
496 /* Decoding SPU instructions. */
497
498 enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
514 op_selb = 0x8,
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532 static int
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534 {
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 static int
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548 {
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559 }
560
561 static int
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563 {
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573 }
574
575 static int
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577 {
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587 }
588
589 static int
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591 {
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600 }
601
602 static int
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604 {
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613 }
614
615 static int
616 is_branch (unsigned int insn, int *offset, int *reg)
617 {
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652 }
653
654
655 /* Prolog parsing. */
656
657 struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670 static CORE_ADDR
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
674 {
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
679 int found_bc = 0;
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
709
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
737 insn = extract_unsigned_integer (buf, 4, byte_order);
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852 }
853
854 /* Return the first instruction after the prologue starting at PC. */
855 static CORE_ADDR
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
857 {
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
860 }
861
862 /* Return the frame pointer in use at address PC. */
863 static void
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
866 {
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882 }
883
884 /* Implement the stack_frame_destroyed_p gdbarch method.
885
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
889 an epilogue, return.
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
892 an epilogue.
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
899
900 static int
901 spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
902 {
903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
905 bfd_byte buf[4];
906 unsigned int insn;
907 int rt, ra, rb, immed;
908
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
911
912 const int spu_max_epilogue_size = 64 * 4;
913
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
915 return 0;
916
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
919 else
920 epilogue_start = pc - spu_max_epilogue_size;
921
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
924 else
925 epilogue_end = pc + spu_max_epilogue_size;
926
927 /* Scan forward until next 'bi $0'. */
928
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
930 {
931 if (target_read_memory (scan_pc, buf, 4))
932 return 0;
933 insn = extract_unsigned_integer (buf, 4, byte_order);
934
935 if (is_branch (insn, &immed, &ra))
936 {
937 if (immed == 0 && ra == SPU_LR_REGNUM)
938 break;
939
940 return 0;
941 }
942
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
946 {
947 if (rt == SPU_RAW_SP_REGNUM)
948 return 0;
949 }
950 }
951
952 if (scan_pc >= epilogue_end)
953 return 0;
954
955 /* Scan backward until adjustment to stack pointer (R1). */
956
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
958 {
959 if (target_read_memory (scan_pc, buf, 4))
960 return 0;
961 insn = extract_unsigned_integer (buf, 4, byte_order);
962
963 if (is_branch (insn, &immed, &ra))
964 return 0;
965
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
969 {
970 if (rt == SPU_RAW_SP_REGNUM)
971 return 1;
972 }
973 }
974
975 return 0;
976 }
977
978
979 /* Normal stack frames. */
980
981 struct spu_unwind_cache
982 {
983 CORE_ADDR func;
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
986
987 struct trad_frame_saved_reg *saved_regs;
988 };
989
990 static struct spu_unwind_cache *
991 spu_frame_unwind_cache (struct frame_info *this_frame,
992 void **this_prologue_cache)
993 {
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
999 CORE_ADDR id = tdep->id;
1000 gdb_byte buf[16];
1001
1002 if (*this_prologue_cache)
1003 return (struct spu_unwind_cache *) *this_prologue_cache;
1004
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1008 info->frame_base = 0;
1009 info->local_base = 0;
1010
1011 /* Find the start of the current function, and analyze its prologue. */
1012 info->func = get_frame_func (this_frame);
1013 if (info->func == 0)
1014 {
1015 /* Fall back to using the current PC as frame ID. */
1016 info->func = get_frame_pc (this_frame);
1017 data.size = -1;
1018 }
1019 else
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1021 &data);
1022
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1025 {
1026 CORE_ADDR cfa;
1027 int i;
1028
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1030 get_frame_register (this_frame, data.cfa_reg, buf);
1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1032 cfa = SPUADDR (id, cfa);
1033
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1040
1041 /* Frame bases. */
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1044 }
1045
1046 /* Otherwise, fall back to reading the backchain link. */
1047 else
1048 {
1049 CORE_ADDR reg;
1050 LONGEST backchain;
1051 ULONGEST lslr;
1052 int status;
1053
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1056 if (!lslr)
1057 lslr = (ULONGEST) -1;
1058
1059 /* Get the backchain. */
1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1062 &backchain);
1063
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
1066 if (status && backchain > 0 && backchain <= lslr)
1067 {
1068 /* Assume the link register is saved into its slot. */
1069 if (backchain + 16 <= lslr)
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1071 backchain + 16);
1072
1073 /* Frame bases. */
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
1076 }
1077 }
1078
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1081 return info;
1082
1083 /* The previous SP is equal to the CFA. */
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
1086
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1091 else
1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1093
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1102 extract_unsigned_integer (buf + 8, 4, byte_order));
1103 else
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1105 extract_unsigned_integer (buf, 4, byte_order));
1106
1107 return info;
1108 }
1109
1110 static void
1111 spu_frame_this_id (struct frame_info *this_frame,
1112 void **this_prologue_cache, struct frame_id *this_id)
1113 {
1114 struct spu_unwind_cache *info =
1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1116
1117 if (info->frame_base == 0)
1118 return;
1119
1120 *this_id = frame_id_build (info->frame_base, info->func);
1121 }
1122
1123 static struct value *
1124 spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
1126 {
1127 struct spu_unwind_cache *info
1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1129
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1133
1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1135 }
1136
1137 static const struct frame_unwind spu_frame_unwind = {
1138 NORMAL_FRAME,
1139 default_frame_unwind_stop_reason,
1140 spu_frame_this_id,
1141 spu_frame_prev_register,
1142 NULL,
1143 default_frame_sniffer
1144 };
1145
1146 static CORE_ADDR
1147 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1148 {
1149 struct spu_unwind_cache *info
1150 = spu_frame_unwind_cache (this_frame, this_cache);
1151 return info->local_base;
1152 }
1153
1154 static const struct frame_base spu_frame_base = {
1155 &spu_frame_unwind,
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1159 };
1160
1161 static CORE_ADDR
1162 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1163 {
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
1167 return SPUADDR (tdep->id, pc & -4);
1168 }
1169
1170 static CORE_ADDR
1171 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1172 {
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
1176 }
1177
1178 static CORE_ADDR
1179 spu_read_pc (readable_regcache *regcache)
1180 {
1181 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
1182 ULONGEST pc;
1183
1184 regcache->cooked_read (SPU_PC_REGNUM, &pc);
1185 /* Mask off interrupt enable bit. */
1186 return SPUADDR (tdep->id, pc & -4);
1187 }
1188
1189 static void
1190 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1191 {
1192 /* Keep interrupt enabled state unchanged. */
1193 ULONGEST old_pc;
1194
1195 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1196 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1197 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1198 }
1199
1200
1201 /* Cell/B.E. cross-architecture unwinder support. */
1202
1203 struct spu2ppu_cache
1204 {
1205 struct frame_id frame_id;
1206 readonly_detached_regcache *regcache;
1207 };
1208
1209 static struct gdbarch *
1210 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211 {
1212 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1213 return cache->regcache->arch ();
1214 }
1215
1216 static void
1217 spu2ppu_this_id (struct frame_info *this_frame,
1218 void **this_cache, struct frame_id *this_id)
1219 {
1220 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1221 *this_id = cache->frame_id;
1222 }
1223
1224 static struct value *
1225 spu2ppu_prev_register (struct frame_info *this_frame,
1226 void **this_cache, int regnum)
1227 {
1228 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1229 struct gdbarch *gdbarch = cache->regcache->arch ();
1230 gdb_byte *buf;
1231
1232 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1233 cache->regcache->cooked_read (regnum, buf);
1234 return frame_unwind_got_bytes (this_frame, regnum, buf);
1235 }
1236
1237 static int
1238 spu2ppu_sniffer (const struct frame_unwind *self,
1239 struct frame_info *this_frame, void **this_prologue_cache)
1240 {
1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1242 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243 CORE_ADDR base, func, backchain;
1244 gdb_byte buf[4];
1245
1246 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1247 return 0;
1248
1249 base = get_frame_sp (this_frame);
1250 func = get_frame_pc (this_frame);
1251 if (target_read_memory (base, buf, 4))
1252 return 0;
1253 backchain = extract_unsigned_integer (buf, 4, byte_order);
1254
1255 if (!backchain)
1256 {
1257 struct frame_info *fi;
1258
1259 struct spu2ppu_cache *cache
1260 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261
1262 cache->frame_id = frame_id_build (base + 16, func);
1263
1264 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1265 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1266 break;
1267
1268 if (fi)
1269 {
1270 cache->regcache = frame_save_as_regcache (fi).release ();
1271 *this_prologue_cache = cache;
1272 return 1;
1273 }
1274 else
1275 {
1276 struct regcache *regcache;
1277 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1278 cache->regcache = new readonly_detached_regcache (*regcache);
1279 *this_prologue_cache = cache;
1280 return 1;
1281 }
1282 }
1283
1284 return 0;
1285 }
1286
1287 static void
1288 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289 {
1290 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1291 delete cache->regcache;
1292 }
1293
1294 static const struct frame_unwind spu2ppu_unwind = {
1295 ARCH_FRAME,
1296 default_frame_unwind_stop_reason,
1297 spu2ppu_this_id,
1298 spu2ppu_prev_register,
1299 NULL,
1300 spu2ppu_sniffer,
1301 spu2ppu_dealloc_cache,
1302 spu2ppu_prev_arch,
1303 };
1304
1305
1306 /* Function calling convention. */
1307
1308 static CORE_ADDR
1309 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1310 {
1311 return sp & ~15;
1312 }
1313
1314 static CORE_ADDR
1315 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1316 struct value **args, int nargs, struct type *value_type,
1317 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1318 struct regcache *regcache)
1319 {
1320 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1321 sp = (sp - 4) & ~15;
1322 /* Store the address of that breakpoint */
1323 *bp_addr = sp;
1324 /* The call starts at the callee's entry point. */
1325 *real_pc = funaddr;
1326
1327 return sp;
1328 }
1329
1330 static int
1331 spu_scalar_value_p (struct type *type)
1332 {
1333 switch (TYPE_CODE (type))
1334 {
1335 case TYPE_CODE_INT:
1336 case TYPE_CODE_ENUM:
1337 case TYPE_CODE_RANGE:
1338 case TYPE_CODE_CHAR:
1339 case TYPE_CODE_BOOL:
1340 case TYPE_CODE_PTR:
1341 case TYPE_CODE_REF:
1342 case TYPE_CODE_RVALUE_REF:
1343 return TYPE_LENGTH (type) <= 16;
1344
1345 default:
1346 return 0;
1347 }
1348 }
1349
1350 static void
1351 spu_value_to_regcache (struct regcache *regcache, int regnum,
1352 struct type *type, const gdb_byte *in)
1353 {
1354 int len = TYPE_LENGTH (type);
1355
1356 if (spu_scalar_value_p (type))
1357 {
1358 int preferred_slot = len < 4 ? 4 - len : 0;
1359 regcache->cooked_write_part (regnum, preferred_slot, len, in);
1360 }
1361 else
1362 {
1363 while (len >= 16)
1364 {
1365 regcache->cooked_write (regnum++, in);
1366 in += 16;
1367 len -= 16;
1368 }
1369
1370 if (len > 0)
1371 regcache->cooked_write_part (regnum, 0, len, in);
1372 }
1373 }
1374
1375 static void
1376 spu_regcache_to_value (struct regcache *regcache, int regnum,
1377 struct type *type, gdb_byte *out)
1378 {
1379 int len = TYPE_LENGTH (type);
1380
1381 if (spu_scalar_value_p (type))
1382 {
1383 int preferred_slot = len < 4 ? 4 - len : 0;
1384 regcache->cooked_read_part (regnum, preferred_slot, len, out);
1385 }
1386 else
1387 {
1388 while (len >= 16)
1389 {
1390 regcache->cooked_read (regnum++, out);
1391 out += 16;
1392 len -= 16;
1393 }
1394
1395 if (len > 0)
1396 regcache->cooked_read_part (regnum, 0, len, out);
1397 }
1398 }
1399
1400 static CORE_ADDR
1401 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1402 struct regcache *regcache, CORE_ADDR bp_addr,
1403 int nargs, struct value **args, CORE_ADDR sp,
1404 function_call_return_method return_method,
1405 CORE_ADDR struct_addr)
1406 {
1407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1408 CORE_ADDR sp_delta;
1409 int i;
1410 int regnum = SPU_ARG1_REGNUM;
1411 int stack_arg = -1;
1412 gdb_byte buf[16];
1413
1414 /* Set the return address. */
1415 memset (buf, 0, sizeof buf);
1416 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1417 regcache->cooked_write (SPU_LR_REGNUM, buf);
1418
1419 /* If STRUCT_RETURN is true, then the struct return address (in
1420 STRUCT_ADDR) will consume the first argument-passing register.
1421 Both adjust the register count and store that value. */
1422 if (return_method == return_method_struct)
1423 {
1424 memset (buf, 0, sizeof buf);
1425 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1426 regcache->cooked_write (regnum++, buf);
1427 }
1428
1429 /* Fill in argument registers. */
1430 for (i = 0; i < nargs; i++)
1431 {
1432 struct value *arg = args[i];
1433 struct type *type = check_typedef (value_type (arg));
1434 const gdb_byte *contents = value_contents (arg);
1435 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1436
1437 /* If the argument doesn't wholly fit into registers, it and
1438 all subsequent arguments go to the stack. */
1439 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1440 {
1441 stack_arg = i;
1442 break;
1443 }
1444
1445 spu_value_to_regcache (regcache, regnum, type, contents);
1446 regnum += n_regs;
1447 }
1448
1449 /* Overflow arguments go to the stack. */
1450 if (stack_arg != -1)
1451 {
1452 CORE_ADDR ap;
1453
1454 /* Allocate all required stack size. */
1455 for (i = stack_arg; i < nargs; i++)
1456 {
1457 struct type *type = check_typedef (value_type (args[i]));
1458 sp -= align_up (TYPE_LENGTH (type), 16);
1459 }
1460
1461 /* Fill in stack arguments. */
1462 ap = sp;
1463 for (i = stack_arg; i < nargs; i++)
1464 {
1465 struct value *arg = args[i];
1466 struct type *type = check_typedef (value_type (arg));
1467 int len = TYPE_LENGTH (type);
1468 int preferred_slot;
1469
1470 if (spu_scalar_value_p (type))
1471 preferred_slot = len < 4 ? 4 - len : 0;
1472 else
1473 preferred_slot = 0;
1474
1475 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1476 ap += align_up (TYPE_LENGTH (type), 16);
1477 }
1478 }
1479
1480 /* Allocate stack frame header. */
1481 sp -= 32;
1482
1483 /* Store stack back chain. */
1484 regcache->cooked_read (SPU_RAW_SP_REGNUM, buf);
1485 target_write_memory (sp, buf, 16);
1486
1487 /* Finally, update all slots of the SP register. */
1488 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1489 for (i = 0; i < 4; i++)
1490 {
1491 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1492 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1493 }
1494 regcache->cooked_write (SPU_RAW_SP_REGNUM, buf);
1495
1496 return sp;
1497 }
1498
1499 static struct frame_id
1500 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1501 {
1502 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1503 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1504 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1505 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1506 }
1507
1508 /* Function return value access. */
1509
1510 static enum return_value_convention
1511 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1512 struct type *type, struct regcache *regcache,
1513 gdb_byte *out, const gdb_byte *in)
1514 {
1515 struct type *func_type = function ? value_type (function) : NULL;
1516 enum return_value_convention rvc;
1517 int opencl_vector = 0;
1518
1519 if (func_type)
1520 {
1521 func_type = check_typedef (func_type);
1522
1523 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1524 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1525
1526 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1527 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1528 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1529 && TYPE_VECTOR (type))
1530 opencl_vector = 1;
1531 }
1532
1533 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1534 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1535 else
1536 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1537
1538 if (in)
1539 {
1540 switch (rvc)
1541 {
1542 case RETURN_VALUE_REGISTER_CONVENTION:
1543 if (opencl_vector && TYPE_LENGTH (type) == 2)
1544 regcache->cooked_write_part (SPU_ARG1_REGNUM, 2, 2, in);
1545 else
1546 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1547 break;
1548
1549 case RETURN_VALUE_STRUCT_CONVENTION:
1550 error (_("Cannot set function return value."));
1551 break;
1552 }
1553 }
1554 else if (out)
1555 {
1556 switch (rvc)
1557 {
1558 case RETURN_VALUE_REGISTER_CONVENTION:
1559 if (opencl_vector && TYPE_LENGTH (type) == 2)
1560 regcache->cooked_read_part (SPU_ARG1_REGNUM, 2, 2, out);
1561 else
1562 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1563 break;
1564
1565 case RETURN_VALUE_STRUCT_CONVENTION:
1566 error (_("Function return value unknown."));
1567 break;
1568 }
1569 }
1570
1571 return rvc;
1572 }
1573
1574
1575 /* Breakpoints. */
1576 constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
1577
1578 typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
1579
1580 static int
1581 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1582 struct bp_target_info *bp_tgt)
1583 {
1584 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1585 that in a combined application, we have some breakpoints inserted in SPU
1586 code, and now the application forks (on the PPU side). GDB common code
1587 will assume that the fork system call copied all breakpoints into the new
1588 process' address space, and that all those copies now need to be removed
1589 (see breakpoint.c:detach_breakpoints).
1590
1591 While this is certainly true for PPU side breakpoints, it is not true
1592 for SPU side breakpoints. fork will clone the SPU context file
1593 descriptors, so that all the existing SPU contexts are in accessible
1594 in the new process. However, the contents of the SPU contexts themselves
1595 are *not* cloned. Therefore the effect of detach_breakpoints is to
1596 remove SPU breakpoints from the *original* SPU context's local store
1597 -- this is not the correct behaviour.
1598
1599 The workaround is to check whether the PID we are asked to remove this
1600 breakpoint from (i.e. inferior_ptid.pid ()) is different from the
1601 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1602 true in the context of detach_breakpoints. If so, we simply do nothing.
1603 [ Note that for the fork child process, it does not matter if breakpoints
1604 remain inserted, because those SPU contexts are not runnable anyway --
1605 the Linux kernel allows only the original process to invoke spu_run. */
1606
1607 if (inferior_ptid.pid () != current_inferior ()->pid)
1608 return 0;
1609
1610 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1611 }
1612
1613
1614 /* Software single-stepping support. */
1615
1616 static std::vector<CORE_ADDR>
1617 spu_software_single_step (struct regcache *regcache)
1618 {
1619 struct gdbarch *gdbarch = regcache->arch ();
1620 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1621 CORE_ADDR pc, next_pc;
1622 unsigned int insn;
1623 int offset, reg;
1624 gdb_byte buf[4];
1625 ULONGEST lslr;
1626 std::vector<CORE_ADDR> next_pcs;
1627
1628 pc = regcache_read_pc (regcache);
1629
1630 if (target_read_memory (pc, buf, 4))
1631 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1632 paddress (gdbarch, pc));
1633
1634 insn = extract_unsigned_integer (buf, 4, byte_order);
1635
1636 /* Get local store limit. */
1637 if ((regcache_cooked_read_unsigned (regcache, SPU_LSLR_REGNUM, &lslr)
1638 != REG_VALID) || !lslr)
1639 lslr = (ULONGEST) -1;
1640
1641 /* Next sequential instruction is at PC + 4, except if the current
1642 instruction is a PPE-assisted call, in which case it is at PC + 8.
1643 Wrap around LS limit to be on the safe side. */
1644 if ((insn & 0xffffff00) == 0x00002100)
1645 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1646 else
1647 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1648
1649 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), next_pc));
1650
1651 if (is_branch (insn, &offset, &reg))
1652 {
1653 CORE_ADDR target = offset;
1654
1655 if (reg == SPU_PC_REGNUM)
1656 target += SPUADDR_ADDR (pc);
1657 else if (reg != -1)
1658 {
1659 regcache->raw_read_part (reg, 0, 4, buf);
1660 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1661 }
1662
1663 target = target & lslr;
1664 if (target != next_pc)
1665 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), target));
1666 }
1667
1668 return next_pcs;
1669 }
1670
1671
1672 /* Longjmp support. */
1673
1674 static int
1675 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1676 {
1677 struct gdbarch *gdbarch = get_frame_arch (frame);
1678 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1679 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1680 gdb_byte buf[4];
1681 CORE_ADDR jb_addr;
1682 int optim, unavail;
1683
1684 /* Jump buffer is pointed to by the argument register $r3. */
1685 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1686 &optim, &unavail))
1687 return 0;
1688
1689 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1690 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1691 return 0;
1692
1693 *pc = extract_unsigned_integer (buf, 4, byte_order);
1694 *pc = SPUADDR (tdep->id, *pc);
1695 return 1;
1696 }
1697
1698
1699 /* Disassembler. */
1700
1701 struct spu_dis_asm_info : disassemble_info
1702 {
1703 int id;
1704 };
1705
1706 static void
1707 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1708 {
1709 struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
1710 gdb_disassembler *di
1711 = static_cast<gdb_disassembler *>(info->application_data);
1712
1713 print_address (di->arch (), SPUADDR (data->id, addr),
1714 (struct ui_file *) info->stream);
1715 }
1716
1717 static int
1718 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1719 {
1720 /* The opcodes disassembler does 18-bit address arithmetic. Make
1721 sure the SPU ID encoded in the high bits is added back when we
1722 call print_address. */
1723 struct spu_dis_asm_info spu_info;
1724
1725 memcpy (&spu_info, info, sizeof (*info));
1726 spu_info.id = SPUADDR_SPU (memaddr);
1727 spu_info.print_address_func = spu_dis_asm_print_address;
1728 return default_print_insn (memaddr, &spu_info);
1729 }
1730
1731
1732 /* Target overlays for the SPU overlay manager.
1733
1734 See the documentation of simple_overlay_update for how the
1735 interface is supposed to work.
1736
1737 Data structures used by the overlay manager:
1738
1739 struct ovly_table
1740 {
1741 u32 vma;
1742 u32 size;
1743 u32 pos;
1744 u32 buf;
1745 } _ovly_table[]; -- one entry per overlay section
1746
1747 struct ovly_buf_table
1748 {
1749 u32 mapped;
1750 } _ovly_buf_table[]; -- one entry per overlay buffer
1751
1752 _ovly_table should never change.
1753
1754 Both tables are aligned to a 16-byte boundary, the symbols
1755 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1756 size set to the size of the respective array. buf in _ovly_table is
1757 an index into _ovly_buf_table.
1758
1759 mapped is an index into _ovly_table. Both the mapped and buf indices start
1760 from one to reference the first entry in their respective tables. */
1761
1762 /* Using the per-objfile private data mechanism, we store for each
1763 objfile an array of "struct spu_overlay_table" structures, one
1764 for each obj_section of the objfile. This structure holds two
1765 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1766 is *not* an overlay section. If it is non-zero, it represents
1767 a target address. The overlay section is mapped iff the target
1768 integer at this location equals MAPPED_VAL. */
1769
1770 static const struct objfile_data *spu_overlay_data;
1771
1772 struct spu_overlay_table
1773 {
1774 CORE_ADDR mapped_ptr;
1775 CORE_ADDR mapped_val;
1776 };
1777
1778 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1779 the _ovly_table data structure from the target and initialize the
1780 spu_overlay_table data structure from it. */
1781 static struct spu_overlay_table *
1782 spu_get_overlay_table (struct objfile *objfile)
1783 {
1784 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1785 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1786 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1787 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1788 unsigned ovly_table_size, ovly_buf_table_size;
1789 struct spu_overlay_table *tbl;
1790 struct obj_section *osect;
1791 gdb_byte *ovly_table;
1792 int i;
1793
1794 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1795 if (tbl)
1796 return tbl;
1797
1798 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1799 if (!ovly_table_msym.minsym)
1800 return NULL;
1801
1802 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1803 NULL, objfile);
1804 if (!ovly_buf_table_msym.minsym)
1805 return NULL;
1806
1807 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1808 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1809
1810 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1811 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1812
1813 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1814 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1815
1816 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1817 objfile->sections_end - objfile->sections,
1818 struct spu_overlay_table);
1819
1820 for (i = 0; i < ovly_table_size / 16; i++)
1821 {
1822 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1823 4, byte_order);
1824 /* Note that this skips the "size" entry, which is at offset
1825 4. */
1826 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1827 4, byte_order);
1828 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1829 4, byte_order);
1830
1831 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1832 continue;
1833
1834 ALL_OBJFILE_OSECTIONS (objfile, osect)
1835 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1836 && pos == osect->the_bfd_section->filepos)
1837 {
1838 int ndx = osect - objfile->sections;
1839 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1840 tbl[ndx].mapped_val = i + 1;
1841 break;
1842 }
1843 }
1844
1845 xfree (ovly_table);
1846 set_objfile_data (objfile, spu_overlay_data, tbl);
1847 return tbl;
1848 }
1849
1850 /* Read _ovly_buf_table entry from the target to dermine whether
1851 OSECT is currently mapped, and update the mapped state. */
1852 static void
1853 spu_overlay_update_osect (struct obj_section *osect)
1854 {
1855 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1856 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1857 struct spu_overlay_table *ovly_table;
1858 CORE_ADDR id, val;
1859
1860 ovly_table = spu_get_overlay_table (osect->objfile);
1861 if (!ovly_table)
1862 return;
1863
1864 ovly_table += osect - osect->objfile->sections;
1865 if (ovly_table->mapped_ptr == 0)
1866 return;
1867
1868 id = SPUADDR_SPU (obj_section_addr (osect));
1869 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1870 4, byte_order);
1871 osect->ovly_mapped = (val == ovly_table->mapped_val);
1872 }
1873
1874 /* If OSECT is NULL, then update all sections' mapped state.
1875 If OSECT is non-NULL, then update only OSECT's mapped state. */
1876 static void
1877 spu_overlay_update (struct obj_section *osect)
1878 {
1879 /* Just one section. */
1880 if (osect)
1881 spu_overlay_update_osect (osect);
1882
1883 /* All sections. */
1884 else
1885 {
1886 struct objfile *objfile;
1887
1888 ALL_OBJSECTIONS (objfile, osect)
1889 if (section_is_overlay (osect))
1890 spu_overlay_update_osect (osect);
1891 }
1892 }
1893
1894 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1895 If there is one, go through all sections and make sure for non-
1896 overlay sections LMA equals VMA, while for overlay sections LMA
1897 is larger than SPU_OVERLAY_LMA. */
1898 static void
1899 spu_overlay_new_objfile (struct objfile *objfile)
1900 {
1901 struct spu_overlay_table *ovly_table;
1902 struct obj_section *osect;
1903
1904 /* If we've already touched this file, do nothing. */
1905 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1906 return;
1907
1908 /* Consider only SPU objfiles. */
1909 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1910 return;
1911
1912 /* Check if this objfile has overlays. */
1913 ovly_table = spu_get_overlay_table (objfile);
1914 if (!ovly_table)
1915 return;
1916
1917 /* Now go and fiddle with all the LMAs. */
1918 ALL_OBJFILE_OSECTIONS (objfile, osect)
1919 {
1920 asection *bsect = osect->the_bfd_section;
1921 int ndx = osect - objfile->sections;
1922
1923 if (ovly_table[ndx].mapped_ptr == 0)
1924 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1925 else
1926 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1927 }
1928 }
1929
1930
1931 /* Insert temporary breakpoint on "main" function of newly loaded
1932 SPE context OBJFILE. */
1933 static void
1934 spu_catch_start (struct objfile *objfile)
1935 {
1936 struct bound_minimal_symbol minsym;
1937 struct compunit_symtab *cust;
1938 CORE_ADDR pc;
1939
1940 /* Do this only if requested by "set spu stop-on-load on". */
1941 if (!spu_stop_on_load_p)
1942 return;
1943
1944 /* Consider only SPU objfiles. */
1945 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1946 return;
1947
1948 /* The main objfile is handled differently. */
1949 if (objfile == symfile_objfile)
1950 return;
1951
1952 /* There can be multiple symbols named "main". Search for the
1953 "main" in *this* objfile. */
1954 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1955 if (!minsym.minsym)
1956 return;
1957
1958 /* If we have debugging information, try to use it -- this
1959 will allow us to properly skip the prologue. */
1960 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1961 cust
1962 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1963 minsym.minsym));
1964 if (cust != NULL)
1965 {
1966 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1967 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1968 struct symbol *sym;
1969 struct symtab_and_line sal;
1970
1971 sym = block_lookup_symbol (block, "main",
1972 symbol_name_match_type::SEARCH_NAME,
1973 VAR_DOMAIN);
1974 if (sym)
1975 {
1976 fixup_symbol_section (sym, objfile);
1977 sal = find_function_start_sal (sym, 1);
1978 pc = sal.pc;
1979 }
1980 }
1981
1982 /* Use a numerical address for the set_breakpoint command to avoid having
1983 the breakpoint re-set incorrectly. */
1984 event_location_up location = new_address_location (pc, NULL, 0);
1985 create_breakpoint (get_objfile_arch (objfile), location.get (),
1986 NULL /* cond_string */, -1 /* thread */,
1987 NULL /* extra_string */,
1988 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1989 bp_breakpoint /* type_wanted */,
1990 0 /* ignore_count */,
1991 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1992 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1993 1 /* enabled */, 0 /* internal */, 0);
1994 }
1995
1996
1997 /* Look up OBJFILE loaded into FRAME's SPU context. */
1998 static struct objfile *
1999 spu_objfile_from_frame (struct frame_info *frame)
2000 {
2001 struct gdbarch *gdbarch = get_frame_arch (frame);
2002 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2003 struct objfile *obj;
2004
2005 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2006 return NULL;
2007
2008 ALL_OBJFILES (obj)
2009 {
2010 if (obj->sections != obj->sections_end
2011 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2012 return obj;
2013 }
2014
2015 return NULL;
2016 }
2017
2018 /* Flush cache for ea pointer access if available. */
2019 static void
2020 flush_ea_cache (void)
2021 {
2022 struct bound_minimal_symbol msymbol;
2023 struct objfile *obj;
2024
2025 if (!has_stack_frames ())
2026 return;
2027
2028 obj = spu_objfile_from_frame (get_current_frame ());
2029 if (obj == NULL)
2030 return;
2031
2032 /* Lookup inferior function __cache_flush. */
2033 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2034 if (msymbol.minsym != NULL)
2035 {
2036 struct type *type;
2037 CORE_ADDR addr;
2038
2039 type = objfile_type (obj)->builtin_void;
2040 type = lookup_function_type (type);
2041 type = lookup_pointer_type (type);
2042 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2043
2044 call_function_by_hand (value_from_pointer (type, addr), NULL, {});
2045 }
2046 }
2047
2048 /* This handler is called when the inferior has stopped. If it is stopped in
2049 SPU architecture then flush the ea cache if used. */
2050 static void
2051 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2052 {
2053 if (!spu_auto_flush_cache_p)
2054 return;
2055
2056 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2057 re-entering this function when __cache_flush stops. */
2058 spu_auto_flush_cache_p = 0;
2059 flush_ea_cache ();
2060 spu_auto_flush_cache_p = 1;
2061 }
2062
2063
2064 /* "info spu" commands. */
2065
2066 static void
2067 info_spu_event_command (const char *args, int from_tty)
2068 {
2069 struct frame_info *frame = get_selected_frame (NULL);
2070 ULONGEST event_status = 0;
2071 ULONGEST event_mask = 0;
2072 gdb_byte buf[100];
2073 char annex[32];
2074 LONGEST len;
2075 int id;
2076
2077 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2078 error (_("\"info spu\" is only supported on the SPU architecture."));
2079
2080 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2081
2082 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2083 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
2084 buf, 0, (sizeof (buf) - 1));
2085 if (len <= 0)
2086 error (_("Could not read event_status."));
2087 buf[len] = '\0';
2088 event_status = strtoulst ((char *) buf, NULL, 16);
2089
2090 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2091 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
2092 buf, 0, (sizeof (buf) - 1));
2093 if (len <= 0)
2094 error (_("Could not read event_mask."));
2095 buf[len] = '\0';
2096 event_mask = strtoulst ((char *) buf, NULL, 16);
2097
2098 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoEvent");
2099
2100 current_uiout->text (_("Event Status "));
2101 current_uiout->field_fmt ("event_status", "0x%s", phex (event_status, 4));
2102 current_uiout->text ("\n");
2103 current_uiout->text (_("Event Mask "));
2104 current_uiout->field_fmt ("event_mask", "0x%s", phex (event_mask, 4));
2105 current_uiout->text ("\n");
2106 }
2107
2108 static void
2109 info_spu_signal_command (const char *args, int from_tty)
2110 {
2111 struct frame_info *frame = get_selected_frame (NULL);
2112 struct gdbarch *gdbarch = get_frame_arch (frame);
2113 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2114 ULONGEST signal1 = 0;
2115 ULONGEST signal1_type = 0;
2116 int signal1_pending = 0;
2117 ULONGEST signal2 = 0;
2118 ULONGEST signal2_type = 0;
2119 int signal2_pending = 0;
2120 char annex[32];
2121 gdb_byte buf[100];
2122 LONGEST len;
2123 int id;
2124
2125 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2126 error (_("\"info spu\" is only supported on the SPU architecture."));
2127
2128 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2129
2130 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2131 len = target_read (current_top_target (), TARGET_OBJECT_SPU,
2132 annex, buf, 0, 4);
2133 if (len < 0)
2134 error (_("Could not read signal1."));
2135 else if (len == 4)
2136 {
2137 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2138 signal1_pending = 1;
2139 }
2140
2141 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2142 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
2143 buf, 0, (sizeof (buf) - 1));
2144 if (len <= 0)
2145 error (_("Could not read signal1_type."));
2146 buf[len] = '\0';
2147 signal1_type = strtoulst ((char *) buf, NULL, 16);
2148
2149 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2150 len = target_read (current_top_target (), TARGET_OBJECT_SPU,
2151 annex, buf, 0, 4);
2152 if (len < 0)
2153 error (_("Could not read signal2."));
2154 else if (len == 4)
2155 {
2156 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2157 signal2_pending = 1;
2158 }
2159
2160 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2161 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
2162 buf, 0, (sizeof (buf) - 1));
2163 if (len <= 0)
2164 error (_("Could not read signal2_type."));
2165 buf[len] = '\0';
2166 signal2_type = strtoulst ((char *) buf, NULL, 16);
2167
2168 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoSignal");
2169
2170 if (current_uiout->is_mi_like_p ())
2171 {
2172 current_uiout->field_int ("signal1_pending", signal1_pending);
2173 current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
2174 current_uiout->field_int ("signal1_type", signal1_type);
2175 current_uiout->field_int ("signal2_pending", signal2_pending);
2176 current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
2177 current_uiout->field_int ("signal2_type", signal2_type);
2178 }
2179 else
2180 {
2181 if (signal1_pending)
2182 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2183 else
2184 printf_filtered (_("Signal 1 not pending "));
2185
2186 if (signal1_type)
2187 printf_filtered (_("(Type Or)\n"));
2188 else
2189 printf_filtered (_("(Type Overwrite)\n"));
2190
2191 if (signal2_pending)
2192 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2193 else
2194 printf_filtered (_("Signal 2 not pending "));
2195
2196 if (signal2_type)
2197 printf_filtered (_("(Type Or)\n"));
2198 else
2199 printf_filtered (_("(Type Overwrite)\n"));
2200 }
2201 }
2202
2203 static void
2204 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2205 const char *field, const char *msg)
2206 {
2207 int i;
2208
2209 if (nr <= 0)
2210 return;
2211
2212 ui_out_emit_table table_emitter (current_uiout, 1, nr, "mbox");
2213
2214 current_uiout->table_header (32, ui_left, field, msg);
2215 current_uiout->table_body ();
2216
2217 for (i = 0; i < nr; i++)
2218 {
2219 {
2220 ULONGEST val;
2221 ui_out_emit_tuple tuple_emitter (current_uiout, "mbox");
2222 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2223 current_uiout->field_fmt (field, "0x%s", phex (val, 4));
2224 }
2225
2226 current_uiout->text ("\n");
2227 }
2228 }
2229
2230 static void
2231 info_spu_mailbox_command (const char *args, int from_tty)
2232 {
2233 struct frame_info *frame = get_selected_frame (NULL);
2234 struct gdbarch *gdbarch = get_frame_arch (frame);
2235 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2236 char annex[32];
2237 gdb_byte buf[1024];
2238 LONGEST len;
2239 int id;
2240
2241 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2242 error (_("\"info spu\" is only supported on the SPU architecture."));
2243
2244 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2245
2246 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoMailbox");
2247
2248 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2249 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
2250 buf, 0, sizeof buf);
2251 if (len < 0)
2252 error (_("Could not read mbox_info."));
2253
2254 info_spu_mailbox_list (buf, len / 4, byte_order,
2255 "mbox", "SPU Outbound Mailbox");
2256
2257 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2258 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
2259 buf, 0, sizeof buf);
2260 if (len < 0)
2261 error (_("Could not read ibox_info."));
2262
2263 info_spu_mailbox_list (buf, len / 4, byte_order,
2264 "ibox", "SPU Outbound Interrupt Mailbox");
2265
2266 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2267 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
2268 buf, 0, sizeof buf);
2269 if (len < 0)
2270 error (_("Could not read wbox_info."));
2271
2272 info_spu_mailbox_list (buf, len / 4, byte_order,
2273 "wbox", "SPU Inbound Mailbox");
2274 }
2275
2276 static ULONGEST
2277 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2278 {
2279 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2280 return (word >> (63 - last)) & mask;
2281 }
2282
2283 static void
2284 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2285 {
2286 static const char *spu_mfc_opcode[256] =
2287 {
2288 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2289 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2290 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2291 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2292 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2293 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2294 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2295 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2296 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2297 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2298 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2299 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2300 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2301 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2302 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2303 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2304 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2305 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2306 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2307 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2308 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2309 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2310 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2311 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2312 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2313 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2314 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2315 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2316 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2317 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2318 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2319 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2320 };
2321
2322 int *seq = XALLOCAVEC (int, nr);
2323 int done = 0;
2324 int i, j;
2325
2326
2327 /* Determine sequence in which to display (valid) entries. */
2328 for (i = 0; i < nr; i++)
2329 {
2330 /* Search for the first valid entry all of whose
2331 dependencies are met. */
2332 for (j = 0; j < nr; j++)
2333 {
2334 ULONGEST mfc_cq_dw3;
2335 ULONGEST dependencies;
2336
2337 if (done & (1 << (nr - 1 - j)))
2338 continue;
2339
2340 mfc_cq_dw3
2341 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2342 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2343 continue;
2344
2345 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2346 if ((dependencies & done) != dependencies)
2347 continue;
2348
2349 seq[i] = j;
2350 done |= 1 << (nr - 1 - j);
2351 break;
2352 }
2353
2354 if (j == nr)
2355 break;
2356 }
2357
2358 nr = i;
2359
2360
2361 ui_out_emit_table table_emitter (current_uiout, 10, nr, "dma_cmd");
2362
2363 current_uiout->table_header (7, ui_left, "opcode", "Opcode");
2364 current_uiout->table_header (3, ui_left, "tag", "Tag");
2365 current_uiout->table_header (3, ui_left, "tid", "TId");
2366 current_uiout->table_header (3, ui_left, "rid", "RId");
2367 current_uiout->table_header (18, ui_left, "ea", "EA");
2368 current_uiout->table_header (7, ui_left, "lsa", "LSA");
2369 current_uiout->table_header (7, ui_left, "size", "Size");
2370 current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
2371 current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
2372 current_uiout->table_header (1, ui_left, "error_p", "E");
2373
2374 current_uiout->table_body ();
2375
2376 for (i = 0; i < nr; i++)
2377 {
2378 ULONGEST mfc_cq_dw0;
2379 ULONGEST mfc_cq_dw1;
2380 ULONGEST mfc_cq_dw2;
2381 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2382 int list_lsa, list_size, mfc_lsa, mfc_size;
2383 ULONGEST mfc_ea;
2384 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2385
2386 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2387 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2388
2389 mfc_cq_dw0
2390 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2391 mfc_cq_dw1
2392 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2393 mfc_cq_dw2
2394 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2395
2396 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2397 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2398 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2399 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2400 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2401 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2402 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2403
2404 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2405 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2406
2407 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2408 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2409 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2410 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2411 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2412
2413 {
2414 ui_out_emit_tuple tuple_emitter (current_uiout, "cmd");
2415
2416 if (spu_mfc_opcode[mfc_cmd_opcode])
2417 current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2418 else
2419 current_uiout->field_int ("opcode", mfc_cmd_opcode);
2420
2421 current_uiout->field_int ("tag", mfc_cmd_tag);
2422 current_uiout->field_int ("tid", tclass_id);
2423 current_uiout->field_int ("rid", rclass_id);
2424
2425 if (ea_valid_p)
2426 current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
2427 else
2428 current_uiout->field_skip ("ea");
2429
2430 current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
2431 if (qw_valid_p)
2432 current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
2433 else
2434 current_uiout->field_fmt ("size", "0x%05x", mfc_size);
2435
2436 if (list_valid_p)
2437 {
2438 current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
2439 current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
2440 }
2441 else
2442 {
2443 current_uiout->field_skip ("lstaddr");
2444 current_uiout->field_skip ("lstsize");
2445 }
2446
2447 if (cmd_error_p)
2448 current_uiout->field_string ("error_p", "*");
2449 else
2450 current_uiout->field_skip ("error_p");
2451 }
2452
2453 current_uiout->text ("\n");
2454 }
2455 }
2456
2457 static void
2458 info_spu_dma_command (const char *args, int from_tty)
2459 {
2460 struct frame_info *frame = get_selected_frame (NULL);
2461 struct gdbarch *gdbarch = get_frame_arch (frame);
2462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2463 ULONGEST dma_info_type;
2464 ULONGEST dma_info_mask;
2465 ULONGEST dma_info_status;
2466 ULONGEST dma_info_stall_and_notify;
2467 ULONGEST dma_info_atomic_command_status;
2468 char annex[32];
2469 gdb_byte buf[1024];
2470 LONGEST len;
2471 int id;
2472
2473 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2474 error (_("\"info spu\" is only supported on the SPU architecture."));
2475
2476 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2477
2478 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2479 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
2480 buf, 0, 40 + 16 * 32);
2481 if (len <= 0)
2482 error (_("Could not read dma_info."));
2483
2484 dma_info_type
2485 = extract_unsigned_integer (buf, 8, byte_order);
2486 dma_info_mask
2487 = extract_unsigned_integer (buf + 8, 8, byte_order);
2488 dma_info_status
2489 = extract_unsigned_integer (buf + 16, 8, byte_order);
2490 dma_info_stall_and_notify
2491 = extract_unsigned_integer (buf + 24, 8, byte_order);
2492 dma_info_atomic_command_status
2493 = extract_unsigned_integer (buf + 32, 8, byte_order);
2494
2495 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoDMA");
2496
2497 if (current_uiout->is_mi_like_p ())
2498 {
2499 current_uiout->field_fmt ("dma_info_type", "0x%s",
2500 phex_nz (dma_info_type, 4));
2501 current_uiout->field_fmt ("dma_info_mask", "0x%s",
2502 phex_nz (dma_info_mask, 4));
2503 current_uiout->field_fmt ("dma_info_status", "0x%s",
2504 phex_nz (dma_info_status, 4));
2505 current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
2506 phex_nz (dma_info_stall_and_notify, 4));
2507 current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
2508 phex_nz (dma_info_atomic_command_status, 4));
2509 }
2510 else
2511 {
2512 const char *query_msg = _("no query pending");
2513
2514 if (dma_info_type & 4)
2515 switch (dma_info_type & 3)
2516 {
2517 case 1: query_msg = _("'any' query pending"); break;
2518 case 2: query_msg = _("'all' query pending"); break;
2519 default: query_msg = _("undefined query type"); break;
2520 }
2521
2522 printf_filtered (_("Tag-Group Status 0x%s\n"),
2523 phex (dma_info_status, 4));
2524 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2525 phex (dma_info_mask, 4), query_msg);
2526 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2527 phex (dma_info_stall_and_notify, 4));
2528 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2529 phex (dma_info_atomic_command_status, 4));
2530 printf_filtered ("\n");
2531 }
2532
2533 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2534 }
2535
2536 static void
2537 info_spu_proxydma_command (const char *args, int from_tty)
2538 {
2539 struct frame_info *frame = get_selected_frame (NULL);
2540 struct gdbarch *gdbarch = get_frame_arch (frame);
2541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2542 ULONGEST dma_info_type;
2543 ULONGEST dma_info_mask;
2544 ULONGEST dma_info_status;
2545 char annex[32];
2546 gdb_byte buf[1024];
2547 LONGEST len;
2548 int id;
2549
2550 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2551 error (_("\"info spu\" is only supported on the SPU architecture."));
2552
2553 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2554
2555 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2556 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
2557 buf, 0, 24 + 8 * 32);
2558 if (len <= 0)
2559 error (_("Could not read proxydma_info."));
2560
2561 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2562 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2563 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2564
2565 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoProxyDMA");
2566
2567 if (current_uiout->is_mi_like_p ())
2568 {
2569 current_uiout->field_fmt ("proxydma_info_type", "0x%s",
2570 phex_nz (dma_info_type, 4));
2571 current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
2572 phex_nz (dma_info_mask, 4));
2573 current_uiout->field_fmt ("proxydma_info_status", "0x%s",
2574 phex_nz (dma_info_status, 4));
2575 }
2576 else
2577 {
2578 const char *query_msg;
2579
2580 switch (dma_info_type & 3)
2581 {
2582 case 0: query_msg = _("no query pending"); break;
2583 case 1: query_msg = _("'any' query pending"); break;
2584 case 2: query_msg = _("'all' query pending"); break;
2585 default: query_msg = _("undefined query type"); break;
2586 }
2587
2588 printf_filtered (_("Tag-Group Status 0x%s\n"),
2589 phex (dma_info_status, 4));
2590 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2591 phex (dma_info_mask, 4), query_msg);
2592 printf_filtered ("\n");
2593 }
2594
2595 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2596 }
2597
2598 static void
2599 info_spu_command (const char *args, int from_tty)
2600 {
2601 printf_unfiltered (_("\"info spu\" must be followed by "
2602 "the name of an SPU facility.\n"));
2603 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2604 }
2605
2606
2607 /* Root of all "set spu "/"show spu " commands. */
2608
2609 static void
2610 show_spu_command (const char *args, int from_tty)
2611 {
2612 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2613 }
2614
2615 static void
2616 set_spu_command (const char *args, int from_tty)
2617 {
2618 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2619 }
2620
2621 static void
2622 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2623 struct cmd_list_element *c, const char *value)
2624 {
2625 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2626 value);
2627 }
2628
2629 static void
2630 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2631 struct cmd_list_element *c, const char *value)
2632 {
2633 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2634 value);
2635 }
2636
2637
2638 /* Set up gdbarch struct. */
2639
2640 static struct gdbarch *
2641 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2642 {
2643 struct gdbarch *gdbarch;
2644 struct gdbarch_tdep *tdep;
2645 int id = -1;
2646
2647 /* Which spufs ID was requested as address space? */
2648 if (info.id)
2649 id = *info.id;
2650 /* For objfile architectures of SPU solibs, decode the ID from the name.
2651 This assumes the filename convention employed by solib-spu.c. */
2652 else if (info.abfd)
2653 {
2654 const char *name = strrchr (info.abfd->filename, '@');
2655 if (name)
2656 sscanf (name, "@0x%*x <%d>", &id);
2657 }
2658
2659 /* Find a candidate among extant architectures. */
2660 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2661 arches != NULL;
2662 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2663 {
2664 tdep = gdbarch_tdep (arches->gdbarch);
2665 if (tdep && tdep->id == id)
2666 return arches->gdbarch;
2667 }
2668
2669 /* None found, so create a new architecture. */
2670 tdep = XCNEW (struct gdbarch_tdep);
2671 tdep->id = id;
2672 gdbarch = gdbarch_alloc (&info, tdep);
2673
2674 /* Disassembler. */
2675 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2676
2677 /* Registers. */
2678 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2679 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2680 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2681 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2682 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2683 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2684 set_gdbarch_register_name (gdbarch, spu_register_name);
2685 set_gdbarch_register_type (gdbarch, spu_register_type);
2686 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2687 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2688 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2689 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2690 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2691 set_gdbarch_ax_pseudo_register_collect
2692 (gdbarch, spu_ax_pseudo_register_collect);
2693 set_gdbarch_ax_pseudo_register_push_stack
2694 (gdbarch, spu_ax_pseudo_register_push_stack);
2695
2696 /* Data types. */
2697 set_gdbarch_char_signed (gdbarch, 0);
2698 set_gdbarch_ptr_bit (gdbarch, 32);
2699 set_gdbarch_addr_bit (gdbarch, 32);
2700 set_gdbarch_short_bit (gdbarch, 16);
2701 set_gdbarch_int_bit (gdbarch, 32);
2702 set_gdbarch_long_bit (gdbarch, 32);
2703 set_gdbarch_long_long_bit (gdbarch, 64);
2704 set_gdbarch_float_bit (gdbarch, 32);
2705 set_gdbarch_double_bit (gdbarch, 64);
2706 set_gdbarch_long_double_bit (gdbarch, 64);
2707 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2708 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2709 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2710
2711 /* Address handling. */
2712 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2713 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2714 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2715 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2716 set_gdbarch_address_class_type_flags_to_name
2717 (gdbarch, spu_address_class_type_flags_to_name);
2718 set_gdbarch_address_class_name_to_type_flags
2719 (gdbarch, spu_address_class_name_to_type_flags);
2720
2721 /* We need to support more than "addr_bit" significant address bits
2722 in order to support SPUADDR_ADDR encoded values. */
2723 set_gdbarch_significant_addr_bit (gdbarch, 64);
2724
2725 /* Inferior function calls. */
2726 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2727 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2728 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2729 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2730 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2731 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2732 set_gdbarch_return_value (gdbarch, spu_return_value);
2733
2734 /* Frame handling. */
2735 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2736 dwarf2_append_unwinders (gdbarch);
2737 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2738 frame_base_set_default (gdbarch, &spu_frame_base);
2739 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2740 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2741 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2742 set_gdbarch_frame_args_skip (gdbarch, 0);
2743 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2744 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2745
2746 /* Cell/B.E. cross-architecture unwinder support. */
2747 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2748
2749 /* Breakpoints. */
2750 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2751 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2752 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
2753 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2754 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2755 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2756
2757 /* Overlays. */
2758 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2759
2760 return gdbarch;
2761 }
2762
2763 void
2764 _initialize_spu_tdep (void)
2765 {
2766 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2767
2768 /* Add ourselves to objfile event chain. */
2769 gdb::observers::new_objfile.attach (spu_overlay_new_objfile);
2770 spu_overlay_data = register_objfile_data ();
2771
2772 /* Install spu stop-on-load handler. */
2773 gdb::observers::new_objfile.attach (spu_catch_start);
2774
2775 /* Add ourselves to normal_stop event chain. */
2776 gdb::observers::normal_stop.attach (spu_attach_normal_stop);
2777
2778 /* Add root prefix command for all "set spu"/"show spu" commands. */
2779 add_prefix_cmd ("spu", no_class, set_spu_command,
2780 _("Various SPU specific commands."),
2781 &setspucmdlist, "set spu ", 0, &setlist);
2782 add_prefix_cmd ("spu", no_class, show_spu_command,
2783 _("Various SPU specific commands."),
2784 &showspucmdlist, "show spu ", 0, &showlist);
2785
2786 /* Toggle whether or not to add a temporary breakpoint at the "main"
2787 function of new SPE contexts. */
2788 add_setshow_boolean_cmd ("stop-on-load", class_support,
2789 &spu_stop_on_load_p, _("\
2790 Set whether to stop for new SPE threads."),
2791 _("\
2792 Show whether to stop for new SPE threads."),
2793 _("\
2794 Use \"on\" to give control to the user when a new SPE thread\n\
2795 enters its \"main\" function.\n\
2796 Use \"off\" to disable stopping for new SPE threads."),
2797 NULL,
2798 show_spu_stop_on_load,
2799 &setspucmdlist, &showspucmdlist);
2800
2801 /* Toggle whether or not to automatically flush the software-managed
2802 cache whenever SPE execution stops. */
2803 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2804 &spu_auto_flush_cache_p, _("\
2805 Set whether to automatically flush the software-managed cache."),
2806 _("\
2807 Show whether to automatically flush the software-managed cache."),
2808 _("\
2809 Use \"on\" to automatically flush the software-managed cache\n\
2810 whenever SPE execution stops.\n\
2811 Use \"off\" to never automatically flush the software-managed cache."),
2812 NULL,
2813 show_spu_auto_flush_cache,
2814 &setspucmdlist, &showspucmdlist);
2815
2816 /* Add root prefix command for all "info spu" commands. */
2817 add_prefix_cmd ("spu", class_info, info_spu_command,
2818 _("Various SPU specific commands."),
2819 &infospucmdlist, "info spu ", 0, &infolist);
2820
2821 /* Add various "info spu" commands. */
2822 add_cmd ("event", class_info, info_spu_event_command,
2823 _("Display SPU event facility status.\n"),
2824 &infospucmdlist);
2825 add_cmd ("signal", class_info, info_spu_signal_command,
2826 _("Display SPU signal notification facility status.\n"),
2827 &infospucmdlist);
2828 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2829 _("Display SPU mailbox facility status.\n"),
2830 &infospucmdlist);
2831 add_cmd ("dma", class_info, info_spu_dma_command,
2832 _("Display MFC DMA status.\n"),
2833 &infospucmdlist);
2834 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2835 _("Display MFC Proxy-DMA status.\n"),
2836 &infospucmdlist);
2837 }