]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stabsread.c
GDB copyright headers update after running GDB's copyright.py script.
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (char **, int, int *, int);
93
94 static struct type *error_type (char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (char **, int *);
103
104 static struct type *read_type (char **, struct objfile *);
105
106 static struct type *read_range_type (char **, int[2], int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int, struct objfile *);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 enum type_code,
140 struct objfile *);
141
142 static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
144
145 static struct field *read_args (char **, int, struct objfile *, int *, int *);
146
147 static void add_undefined_type (struct type *, int[2]);
148
149 static int
150 read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
152
153 static char *find_name_end (char *name);
154
155 static int process_reference (char **string);
156
157 void stabsread_clear_cache (void);
158
159 static const char vptr_name[] = "_vptr$";
160 static const char vb_name[] = "_vb$";
161
162 static void
163 invalid_cpp_abbrev_complaint (const char *arg1)
164 {
165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
166 }
167
168 static void
169 reg_value_complaint (int regnum, int num_regs, const char *sym)
170 {
171 complaint (&symfile_complaints,
172 _("bad register number %d (max %d) in symbol %s"),
173 regnum, num_regs - 1, sym);
174 }
175
176 static void
177 stabs_general_complaint (const char *arg1)
178 {
179 complaint (&symfile_complaints, "%s", arg1);
180 }
181
182 /* Make a list of forward references which haven't been defined. */
183
184 static struct type **undef_types;
185 static int undef_types_allocated;
186 static int undef_types_length;
187 static struct symbol *current_symbol = NULL;
188
189 /* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
192 and type (0,2) is defined only later. */
193
194 struct nat
195 {
196 int typenums[2];
197 struct type *type;
198 };
199 static struct nat *noname_undefs;
200 static int noname_undefs_allocated;
201 static int noname_undefs_length;
202
203 /* Check for and handle cretinous stabs symbol name continuation! */
204 #define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
209
210 /* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216 static struct type **type_vector;
217
218 /* Number of elements allocated for type_vector currently. */
219
220 static int type_vector_length;
221
222 /* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225 #define INITIAL_TYPE_VECTOR_LENGTH 160
226 \f
227
228 /* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
235 static struct type **
236 dbx_lookup_type (int typenums[2], struct objfile *objfile)
237 {
238 int filenum = typenums[0];
239 int index = typenums[1];
240 unsigned old_len;
241 int real_filenum;
242 struct header_file *f;
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
250 complaint (&symfile_complaints,
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
268 temp_type = rs6000_builtin_type (index, objfile);
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = XNEWVEC (struct type *, type_vector_length);
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
298 if (real_filenum >= N_HEADER_FILES (objfile))
299 {
300 static struct type *temp_type;
301
302 warning (_("GDB internal error: bad real_filenum"));
303
304 error_return:
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
307 }
308
309 f = HEADER_FILES (objfile) + real_filenum;
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (int typenums[2], struct objfile *objfile)
335 {
336 struct type **type_addr;
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
343 type_addr = dbx_lookup_type (typenums, objfile);
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354 }
355
356 /* for all the stabs in a given stab vector, build appropriate types
357 and fix their symbols in given symbol vector. */
358
359 static void
360 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
361 struct objfile *objfile)
362 {
363 int ii;
364 char *name;
365 char *pp;
366 struct symbol *sym;
367
368 if (stabs)
369 {
370 /* for all the stab entries, find their corresponding symbols and
371 patch their types! */
372
373 for (ii = 0; ii < stabs->count; ++ii)
374 {
375 name = stabs->stab[ii];
376 pp = (char *) strchr (name, ':');
377 gdb_assert (pp); /* Must find a ':' or game's over. */
378 while (pp[1] == ':')
379 {
380 pp += 2;
381 pp = (char *) strchr (pp, ':');
382 }
383 sym = find_symbol_in_list (symbols, name, pp - name);
384 if (!sym)
385 {
386 /* FIXME-maybe: it would be nice if we noticed whether
387 the variable was defined *anywhere*, not just whether
388 it is defined in this compilation unit. But neither
389 xlc or GCC seem to need such a definition, and until
390 we do psymtabs (so that the minimal symbols from all
391 compilation units are available now), I'm not sure
392 how to get the information. */
393
394 /* On xcoff, if a global is defined and never referenced,
395 ld will remove it from the executable. There is then
396 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
397 sym = allocate_symbol (objfile);
398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
399 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
400 SYMBOL_SET_LINKAGE_NAME
401 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
402 name, pp - name));
403 pp += 2;
404 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
405 {
406 /* I don't think the linker does this with functions,
407 so as far as I know this is never executed.
408 But it doesn't hurt to check. */
409 SYMBOL_TYPE (sym) =
410 lookup_function_type (read_type (&pp, objfile));
411 }
412 else
413 {
414 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
415 }
416 add_symbol_to_list (sym, &global_symbols);
417 }
418 else
419 {
420 pp += 2;
421 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
422 {
423 SYMBOL_TYPE (sym) =
424 lookup_function_type (read_type (&pp, objfile));
425 }
426 else
427 {
428 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
429 }
430 }
431 }
432 }
433 }
434 \f
435
436 /* Read a number by which a type is referred to in dbx data,
437 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
438 Just a single number N is equivalent to (0,N).
439 Return the two numbers by storing them in the vector TYPENUMS.
440 TYPENUMS will then be used as an argument to dbx_lookup_type.
441
442 Returns 0 for success, -1 for error. */
443
444 static int
445 read_type_number (char **pp, int *typenums)
446 {
447 int nbits;
448
449 if (**pp == '(')
450 {
451 (*pp)++;
452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
453 if (nbits != 0)
454 return -1;
455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
456 if (nbits != 0)
457 return -1;
458 }
459 else
460 {
461 typenums[0] = 0;
462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
463 if (nbits != 0)
464 return -1;
465 }
466 return 0;
467 }
468 \f
469
470 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
475 /* Structure for storing pointers to reference definitions for fast lookup
476 during "process_later". */
477
478 struct ref_map
479 {
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483 };
484
485 #define MAX_CHUNK_REFS 100
486 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
489 static struct ref_map *ref_map;
490
491 /* Ptr to free cell in chunk's linked list. */
492 static int ref_count = 0;
493
494 /* Number of chunks malloced. */
495 static int ref_chunk = 0;
496
497 /* This file maintains a cache of stabs aliases found in the symbol
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
500 void
501 stabsread_clear_cache (void)
502 {
503 ref_count = 0;
504 ref_chunk = 0;
505 }
506
507 /* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
511 void
512 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
513 {
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
522
523 ref_map = (struct ref_map *)
524 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
525 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
526 new_chunks * REF_CHUNK_SIZE);
527 ref_chunk += new_chunks;
528 }
529 ref_map[refnum].stabs = stabs;
530 ref_map[refnum].sym = sym;
531 ref_map[refnum].value = value;
532 }
533
534 /* Return defined sym for the reference REFNUM. */
535 struct symbol *
536 ref_search (int refnum)
537 {
538 if (refnum < 0 || refnum > ref_count)
539 return 0;
540 return ref_map[refnum].sym;
541 }
542
543 /* Parse a reference id in STRING and return the resulting
544 reference number. Move STRING beyond the reference id. */
545
546 static int
547 process_reference (char **string)
548 {
549 char *p;
550 int refnum = 0;
551
552 if (**string != '#')
553 return 0;
554
555 /* Advance beyond the initial '#'. */
556 p = *string + 1;
557
558 /* Read number as reference id. */
559 while (*p && isdigit (*p))
560 {
561 refnum = refnum * 10 + *p - '0';
562 p++;
563 }
564 *string = p;
565 return refnum;
566 }
567
568 /* If STRING defines a reference, store away a pointer to the reference
569 definition for later use. Return the reference number. */
570
571 int
572 symbol_reference_defined (char **string)
573 {
574 char *p = *string;
575 int refnum = 0;
576
577 refnum = process_reference (&p);
578
579 /* Defining symbols end in '='. */
580 if (*p == '=')
581 {
582 /* Symbol is being defined here. */
583 *string = p + 1;
584 return refnum;
585 }
586 else
587 {
588 /* Must be a reference. Either the symbol has already been defined,
589 or this is a forward reference to it. */
590 *string = p;
591 return -1;
592 }
593 }
594
595 static int
596 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
597 {
598 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
599
600 if (regno < 0
601 || regno >= (gdbarch_num_regs (gdbarch)
602 + gdbarch_num_pseudo_regs (gdbarch)))
603 {
604 reg_value_complaint (regno,
605 gdbarch_num_regs (gdbarch)
606 + gdbarch_num_pseudo_regs (gdbarch),
607 SYMBOL_PRINT_NAME (sym));
608
609 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
610 }
611
612 return regno;
613 }
614
615 static const struct symbol_register_ops stab_register_funcs = {
616 stab_reg_to_regnum
617 };
618
619 /* The "aclass" indices for computed symbols. */
620
621 static int stab_register_index;
622 static int stab_regparm_index;
623
624 struct symbol *
625 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
626 struct objfile *objfile)
627 {
628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
629 struct symbol *sym;
630 char *p = (char *) find_name_end (string);
631 int deftype;
632 int synonym = 0;
633 int i;
634 char *new_name = NULL;
635
636 /* We would like to eliminate nameless symbols, but keep their types.
637 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
638 to type 2, but, should not create a symbol to address that type. Since
639 the symbol will be nameless, there is no way any user can refer to it. */
640
641 int nameless;
642
643 /* Ignore syms with empty names. */
644 if (string[0] == 0)
645 return 0;
646
647 /* Ignore old-style symbols from cc -go. */
648 if (p == 0)
649 return 0;
650
651 while (p[1] == ':')
652 {
653 p += 2;
654 p = strchr (p, ':');
655 if (p == NULL)
656 {
657 complaint (&symfile_complaints,
658 _("Bad stabs string '%s'"), string);
659 return NULL;
660 }
661 }
662
663 /* If a nameless stab entry, all we need is the type, not the symbol.
664 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
665 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
666
667 current_symbol = sym = allocate_symbol (objfile);
668
669 if (processing_gcc_compilation)
670 {
671 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
672 number of bytes occupied by a type or object, which we ignore. */
673 SYMBOL_LINE (sym) = desc;
674 }
675 else
676 {
677 SYMBOL_LINE (sym) = 0; /* unknown */
678 }
679
680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
681 &objfile->objfile_obstack);
682
683 if (is_cplus_marker (string[0]))
684 {
685 /* Special GNU C++ names. */
686 switch (string[1])
687 {
688 case 't':
689 SYMBOL_SET_LINKAGE_NAME (sym, "this");
690 break;
691
692 case 'v': /* $vtbl_ptr_type */
693 goto normal;
694
695 case 'e':
696 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
697 break;
698
699 case '_':
700 /* This was an anonymous type that was never fixed up. */
701 goto normal;
702
703 case 'X':
704 /* SunPRO (3.0 at least) static variable encoding. */
705 if (gdbarch_static_transform_name_p (gdbarch))
706 goto normal;
707 /* ... fall through ... */
708
709 default:
710 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
711 string);
712 goto normal; /* Do *something* with it. */
713 }
714 }
715 else
716 {
717 normal:
718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
719 {
720 char *name = (char *) alloca (p - string + 1);
721
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
725 }
726 if (new_name != NULL)
727 {
728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
729 xfree (new_name);
730 }
731 else
732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
735 cp_scan_for_anonymous_namespaces (sym, objfile);
736
737 }
738 p++;
739
740 /* Determine the type of name being defined. */
741 #if 0
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
750 #else
751 if (isdigit (*p) || *p == '(' || *p == '-')
752 #endif
753 deftype = 'l';
754 else
755 deftype = *p++;
756
757 switch (deftype)
758 {
759 case 'c':
760 /* c is a special case, not followed by a type-number.
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
766 if (*p != '=')
767 {
768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
771 add_symbol_to_list (sym, &file_symbols);
772 return sym;
773 }
774 ++p;
775 switch (*p++)
776 {
777 case 'r':
778 {
779 double d = atof (p);
780 gdb_byte *dbl_valu;
781 struct type *dbl_type;
782
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
786
787 dbl_type = objfile_type (objfile)->builtin_double;
788 dbl_valu
789 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
790 TYPE_LENGTH (dbl_type));
791 store_typed_floating (dbl_valu, dbl_type, d);
792
793 SYMBOL_TYPE (sym) = dbl_type;
794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
796 }
797 break;
798 case 'i':
799 {
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
806
807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
808 SYMBOL_VALUE (sym) = atoi (p);
809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
810 }
811 break;
812
813 case 'c':
814 {
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
818 }
819 break;
820
821 case 's':
822 {
823 struct type *range_type;
824 int ind = 0;
825 char quote = *p++;
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
828
829 if (quote != '\'' && quote != '"')
830 {
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
835 return sym;
836 }
837
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
840 {
841 if (*p == '\\' && p[1] == quote)
842 {
843 string_local[ind] = (gdb_byte) quote;
844 ind++;
845 p += 2;
846 }
847 else if (*p)
848 {
849 string_local[ind] = (gdb_byte) (*p);
850 ind++;
851 p++;
852 }
853 }
854 if (*p != quote)
855 {
856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
860 return sym;
861 }
862
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
865 range_type
866 = create_static_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
868 0, ind);
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
871 range_type);
872 string_value
873 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
874 memcpy (string_value, string_local, ind + 1);
875 p++;
876
877 SYMBOL_VALUE_BYTES (sym) = string_value;
878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
879 }
880 break;
881
882 case 'e':
883 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
884 can be represented as integral.
885 e.g. "b:c=e6,0" for "const b = blob1"
886 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
887 {
888 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
889 SYMBOL_TYPE (sym) = read_type (&p, objfile);
890
891 if (*p != ',')
892 {
893 SYMBOL_TYPE (sym) = error_type (&p, objfile);
894 break;
895 }
896 ++p;
897
898 /* If the value is too big to fit in an int (perhaps because
899 it is unsigned), or something like that, we silently get
900 a bogus value. The type and everything else about it is
901 correct. Ideally, we should be using whatever we have
902 available for parsing unsigned and long long values,
903 however. */
904 SYMBOL_VALUE (sym) = atoi (p);
905 }
906 break;
907 default:
908 {
909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
910 SYMBOL_TYPE (sym) = error_type (&p, objfile);
911 }
912 }
913 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
914 add_symbol_to_list (sym, &file_symbols);
915 return sym;
916
917 case 'C':
918 /* The name of a caught exception. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
922 SYMBOL_VALUE_ADDRESS (sym) = valu;
923 add_symbol_to_list (sym, &local_symbols);
924 break;
925
926 case 'f':
927 /* A static function definition. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 add_symbol_to_list (sym, &file_symbols);
932 /* fall into process_function_types. */
933
934 process_function_types:
935 /* Function result types are described as the result type in stabs.
936 We need to convert this to the function-returning-type-X type
937 in GDB. E.g. "int" is converted to "function returning int". */
938 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
939 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
940
941 /* All functions in C++ have prototypes. Stabs does not offer an
942 explicit way to identify prototyped or unprototyped functions,
943 but both GCC and Sun CC emit stabs for the "call-as" type rather
944 than the "declared-as" type for unprototyped functions, so
945 we treat all functions as if they were prototyped. This is used
946 primarily for promotion when calling the function from GDB. */
947 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
948
949 /* fall into process_prototype_types. */
950
951 process_prototype_types:
952 /* Sun acc puts declared types of arguments here. */
953 if (*p == ';')
954 {
955 struct type *ftype = SYMBOL_TYPE (sym);
956 int nsemi = 0;
957 int nparams = 0;
958 char *p1 = p;
959
960 /* Obtain a worst case guess for the number of arguments
961 by counting the semicolons. */
962 while (*p1)
963 {
964 if (*p1++ == ';')
965 nsemi++;
966 }
967
968 /* Allocate parameter information fields and fill them in. */
969 TYPE_FIELDS (ftype) = (struct field *)
970 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
971 while (*p++ == ';')
972 {
973 struct type *ptype;
974
975 /* A type number of zero indicates the start of varargs.
976 FIXME: GDB currently ignores vararg functions. */
977 if (p[0] == '0' && p[1] == '\0')
978 break;
979 ptype = read_type (&p, objfile);
980
981 /* The Sun compilers mark integer arguments, which should
982 be promoted to the width of the calling conventions, with
983 a type which references itself. This type is turned into
984 a TYPE_CODE_VOID type by read_type, and we have to turn
985 it back into builtin_int here.
986 FIXME: Do we need a new builtin_promoted_int_arg ? */
987 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
988 ptype = objfile_type (objfile)->builtin_int;
989 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
990 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
991 }
992 TYPE_NFIELDS (ftype) = nparams;
993 TYPE_PROTOTYPED (ftype) = 1;
994 }
995 break;
996
997 case 'F':
998 /* A global function definition. */
999 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1000 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1001 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1002 add_symbol_to_list (sym, &global_symbols);
1003 goto process_function_types;
1004
1005 case 'G':
1006 /* For a class G (global) symbol, it appears that the
1007 value is not correct. It is necessary to search for the
1008 corresponding linker definition to find the value.
1009 These definitions appear at the end of the namelist. */
1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1013 /* Don't add symbol references to global_sym_chain.
1014 Symbol references don't have valid names and wont't match up with
1015 minimal symbols when the global_sym_chain is relocated.
1016 We'll fixup symbol references when we fixup the defining symbol. */
1017 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1018 {
1019 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1020 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1021 global_sym_chain[i] = sym;
1022 }
1023 add_symbol_to_list (sym, &global_symbols);
1024 break;
1025
1026 /* This case is faked by a conditional above,
1027 when there is no code letter in the dbx data.
1028 Dbx data never actually contains 'l'. */
1029 case 's':
1030 case 'l':
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1032 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1033 SYMBOL_VALUE (sym) = valu;
1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1035 add_symbol_to_list (sym, &local_symbols);
1036 break;
1037
1038 case 'p':
1039 if (*p == 'F')
1040 /* pF is a two-letter code that means a function parameter in Fortran.
1041 The type-number specifies the type of the return value.
1042 Translate it into a pointer-to-function type. */
1043 {
1044 p++;
1045 SYMBOL_TYPE (sym)
1046 = lookup_pointer_type
1047 (lookup_function_type (read_type (&p, objfile)));
1048 }
1049 else
1050 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1051
1052 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1053 SYMBOL_VALUE (sym) = valu;
1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1055 SYMBOL_IS_ARGUMENT (sym) = 1;
1056 add_symbol_to_list (sym, &local_symbols);
1057
1058 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1059 {
1060 /* On little-endian machines, this crud is never necessary,
1061 and, if the extra bytes contain garbage, is harmful. */
1062 break;
1063 }
1064
1065 /* If it's gcc-compiled, if it says `short', believe it. */
1066 if (processing_gcc_compilation
1067 || gdbarch_believe_pcc_promotion (gdbarch))
1068 break;
1069
1070 if (!gdbarch_believe_pcc_promotion (gdbarch))
1071 {
1072 /* If PCC says a parameter is a short or a char, it is
1073 really an int. */
1074 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1075 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1076 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1077 {
1078 SYMBOL_TYPE (sym) =
1079 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1080 ? objfile_type (objfile)->builtin_unsigned_int
1081 : objfile_type (objfile)->builtin_int;
1082 }
1083 break;
1084 }
1085
1086 case 'P':
1087 /* acc seems to use P to declare the prototypes of functions that
1088 are referenced by this file. gdb is not prepared to deal
1089 with this extra information. FIXME, it ought to. */
1090 if (type == N_FUN)
1091 {
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 goto process_prototype_types;
1094 }
1095 /*FALLTHROUGH */
1096
1097 case 'R':
1098 /* Parameter which is in a register. */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1100 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1101 SYMBOL_IS_ARGUMENT (sym) = 1;
1102 SYMBOL_VALUE (sym) = valu;
1103 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1104 add_symbol_to_list (sym, &local_symbols);
1105 break;
1106
1107 case 'r':
1108 /* Register variable (either global or local). */
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1110 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1111 SYMBOL_VALUE (sym) = valu;
1112 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1113 if (within_function)
1114 {
1115 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1116 the same name to represent an argument passed in a
1117 register. GCC uses 'P' for the same case. So if we find
1118 such a symbol pair we combine it into one 'P' symbol.
1119 For Sun cc we need to do this regardless of
1120 stabs_argument_has_addr, because the compiler puts out
1121 the 'p' symbol even if it never saves the argument onto
1122 the stack.
1123
1124 On most machines, we want to preserve both symbols, so
1125 that we can still get information about what is going on
1126 with the stack (VAX for computing args_printed, using
1127 stack slots instead of saved registers in backtraces,
1128 etc.).
1129
1130 Note that this code illegally combines
1131 main(argc) struct foo argc; { register struct foo argc; }
1132 but this case is considered pathological and causes a warning
1133 from a decent compiler. */
1134
1135 if (local_symbols
1136 && local_symbols->nsyms > 0
1137 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1138 {
1139 struct symbol *prev_sym;
1140
1141 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1142 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1143 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1144 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1145 SYMBOL_LINKAGE_NAME (sym)) == 0)
1146 {
1147 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1148 /* Use the type from the LOC_REGISTER; that is the type
1149 that is actually in that register. */
1150 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1151 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1152 sym = prev_sym;
1153 break;
1154 }
1155 }
1156 add_symbol_to_list (sym, &local_symbols);
1157 }
1158 else
1159 add_symbol_to_list (sym, &file_symbols);
1160 break;
1161
1162 case 'S':
1163 /* Static symbol at top level of file. */
1164 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1165 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1166 SYMBOL_VALUE_ADDRESS (sym) = valu;
1167 if (gdbarch_static_transform_name_p (gdbarch)
1168 && gdbarch_static_transform_name (gdbarch,
1169 SYMBOL_LINKAGE_NAME (sym))
1170 != SYMBOL_LINKAGE_NAME (sym))
1171 {
1172 struct bound_minimal_symbol msym;
1173
1174 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1175 NULL, objfile);
1176 if (msym.minsym != NULL)
1177 {
1178 const char *new_name = gdbarch_static_transform_name
1179 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1180
1181 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1182 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1183 }
1184 }
1185 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1186 add_symbol_to_list (sym, &file_symbols);
1187 break;
1188
1189 case 't':
1190 /* In Ada, there is no distinction between typedef and non-typedef;
1191 any type declaration implicitly has the equivalent of a typedef,
1192 and thus 't' is in fact equivalent to 'Tt'.
1193
1194 Therefore, for Ada units, we check the character immediately
1195 before the 't', and if we do not find a 'T', then make sure to
1196 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1197 will be stored in the VAR_DOMAIN). If the symbol was indeed
1198 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1199 elsewhere, so we don't need to take care of that.
1200
1201 This is important to do, because of forward references:
1202 The cleanup of undefined types stored in undef_types only uses
1203 STRUCT_DOMAIN symbols to perform the replacement. */
1204 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1205
1206 /* Typedef */
1207 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1208
1209 /* For a nameless type, we don't want a create a symbol, thus we
1210 did not use `sym'. Return without further processing. */
1211 if (nameless)
1212 return NULL;
1213
1214 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1215 SYMBOL_VALUE (sym) = valu;
1216 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1217 /* C++ vagaries: we may have a type which is derived from
1218 a base type which did not have its name defined when the
1219 derived class was output. We fill in the derived class's
1220 base part member's name here in that case. */
1221 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1222 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1224 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1225 {
1226 int j;
1227
1228 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1229 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1230 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1231 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1232 }
1233
1234 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1235 {
1236 /* gcc-2.6 or later (when using -fvtable-thunks)
1237 emits a unique named type for a vtable entry.
1238 Some gdb code depends on that specific name. */
1239 extern const char vtbl_ptr_name[];
1240
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1242 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1244 {
1245 /* If we are giving a name to a type such as "pointer to
1246 foo" or "function returning foo", we better not set
1247 the TYPE_NAME. If the program contains "typedef char
1248 *caddr_t;", we don't want all variables of type char
1249 * to print as caddr_t. This is not just a
1250 consequence of GDB's type management; PCC and GCC (at
1251 least through version 2.4) both output variables of
1252 either type char * or caddr_t with the type number
1253 defined in the 't' symbol for caddr_t. If a future
1254 compiler cleans this up it GDB is not ready for it
1255 yet, but if it becomes ready we somehow need to
1256 disable this check (without breaking the PCC/GCC2.4
1257 case).
1258
1259 Sigh.
1260
1261 Fortunately, this check seems not to be necessary
1262 for anything except pointers or functions. */
1263 /* ezannoni: 2000-10-26. This seems to apply for
1264 versions of gcc older than 2.8. This was the original
1265 problem: with the following code gdb would tell that
1266 the type for name1 is caddr_t, and func is char().
1267
1268 typedef char *caddr_t;
1269 char *name2;
1270 struct x
1271 {
1272 char *name1;
1273 } xx;
1274 char *func()
1275 {
1276 }
1277 main () {}
1278 */
1279
1280 /* Pascal accepts names for pointer types. */
1281 if (current_subfile->language == language_pascal)
1282 {
1283 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1284 }
1285 }
1286 else
1287 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1288 }
1289
1290 add_symbol_to_list (sym, &file_symbols);
1291
1292 if (synonym)
1293 {
1294 /* Create the STRUCT_DOMAIN clone. */
1295 struct symbol *struct_sym = allocate_symbol (objfile);
1296
1297 *struct_sym = *sym;
1298 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1299 SYMBOL_VALUE (struct_sym) = valu;
1300 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1301 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1302 TYPE_NAME (SYMBOL_TYPE (sym))
1303 = obconcat (&objfile->objfile_obstack,
1304 SYMBOL_LINKAGE_NAME (sym),
1305 (char *) NULL);
1306 add_symbol_to_list (struct_sym, &file_symbols);
1307 }
1308
1309 break;
1310
1311 case 'T':
1312 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1313 by 't' which means we are typedef'ing it as well. */
1314 synonym = *p == 't';
1315
1316 if (synonym)
1317 p++;
1318
1319 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1320
1321 /* For a nameless type, we don't want a create a symbol, thus we
1322 did not use `sym'. Return without further processing. */
1323 if (nameless)
1324 return NULL;
1325
1326 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1327 SYMBOL_VALUE (sym) = valu;
1328 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1329 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1330 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1331 = obconcat (&objfile->objfile_obstack,
1332 SYMBOL_LINKAGE_NAME (sym),
1333 (char *) NULL);
1334 add_symbol_to_list (sym, &file_symbols);
1335
1336 if (synonym)
1337 {
1338 /* Clone the sym and then modify it. */
1339 struct symbol *typedef_sym = allocate_symbol (objfile);
1340
1341 *typedef_sym = *sym;
1342 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1343 SYMBOL_VALUE (typedef_sym) = valu;
1344 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1349 (char *) NULL);
1350 add_symbol_to_list (typedef_sym, &file_symbols);
1351 }
1352 break;
1353
1354 case 'V':
1355 /* Static symbol of local scope. */
1356 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1357 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1358 SYMBOL_VALUE_ADDRESS (sym) = valu;
1359 if (gdbarch_static_transform_name_p (gdbarch)
1360 && gdbarch_static_transform_name (gdbarch,
1361 SYMBOL_LINKAGE_NAME (sym))
1362 != SYMBOL_LINKAGE_NAME (sym))
1363 {
1364 struct bound_minimal_symbol msym;
1365
1366 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 NULL, objfile);
1368 if (msym.minsym != NULL)
1369 {
1370 const char *new_name = gdbarch_static_transform_name
1371 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1372
1373 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1374 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1375 }
1376 }
1377 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1378 add_symbol_to_list (sym, &local_symbols);
1379 break;
1380
1381 case 'v':
1382 /* Reference parameter */
1383 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1384 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1385 SYMBOL_IS_ARGUMENT (sym) = 1;
1386 SYMBOL_VALUE (sym) = valu;
1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388 add_symbol_to_list (sym, &local_symbols);
1389 break;
1390
1391 case 'a':
1392 /* Reference parameter which is in a register. */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1395 SYMBOL_IS_ARGUMENT (sym) = 1;
1396 SYMBOL_VALUE (sym) = valu;
1397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1398 add_symbol_to_list (sym, &local_symbols);
1399 break;
1400
1401 case 'X':
1402 /* This is used by Sun FORTRAN for "function result value".
1403 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1404 that Pascal uses it too, but when I tried it Pascal used
1405 "x:3" (local symbol) instead. */
1406 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1407 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1408 SYMBOL_VALUE (sym) = valu;
1409 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1410 add_symbol_to_list (sym, &local_symbols);
1411 break;
1412
1413 default:
1414 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1415 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1416 SYMBOL_VALUE (sym) = 0;
1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1418 add_symbol_to_list (sym, &file_symbols);
1419 break;
1420 }
1421
1422 /* Some systems pass variables of certain types by reference instead
1423 of by value, i.e. they will pass the address of a structure (in a
1424 register or on the stack) instead of the structure itself. */
1425
1426 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1427 && SYMBOL_IS_ARGUMENT (sym))
1428 {
1429 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1430 variables passed in a register). */
1431 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1433 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1434 and subsequent arguments on SPARC, for example). */
1435 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1436 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1437 }
1438
1439 return sym;
1440 }
1441
1442 /* Skip rest of this symbol and return an error type.
1443
1444 General notes on error recovery: error_type always skips to the
1445 end of the symbol (modulo cretinous dbx symbol name continuation).
1446 Thus code like this:
1447
1448 if (*(*pp)++ != ';')
1449 return error_type (pp, objfile);
1450
1451 is wrong because if *pp starts out pointing at '\0' (typically as the
1452 result of an earlier error), it will be incremented to point to the
1453 start of the next symbol, which might produce strange results, at least
1454 if you run off the end of the string table. Instead use
1455
1456 if (**pp != ';')
1457 return error_type (pp, objfile);
1458 ++*pp;
1459
1460 or
1461
1462 if (**pp != ';')
1463 foo = error_type (pp, objfile);
1464 else
1465 ++*pp;
1466
1467 And in case it isn't obvious, the point of all this hair is so the compiler
1468 can define new types and new syntaxes, and old versions of the
1469 debugger will be able to read the new symbol tables. */
1470
1471 static struct type *
1472 error_type (char **pp, struct objfile *objfile)
1473 {
1474 complaint (&symfile_complaints,
1475 _("couldn't parse type; debugger out of date?"));
1476 while (1)
1477 {
1478 /* Skip to end of symbol. */
1479 while (**pp != '\0')
1480 {
1481 (*pp)++;
1482 }
1483
1484 /* Check for and handle cretinous dbx symbol name continuation! */
1485 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1486 {
1487 *pp = next_symbol_text (objfile);
1488 }
1489 else
1490 {
1491 break;
1492 }
1493 }
1494 return objfile_type (objfile)->builtin_error;
1495 }
1496 \f
1497
1498 /* Read type information or a type definition; return the type. Even
1499 though this routine accepts either type information or a type
1500 definition, the distinction is relevant--some parts of stabsread.c
1501 assume that type information starts with a digit, '-', or '(' in
1502 deciding whether to call read_type. */
1503
1504 static struct type *
1505 read_type (char **pp, struct objfile *objfile)
1506 {
1507 struct type *type = 0;
1508 struct type *type1;
1509 int typenums[2];
1510 char type_descriptor;
1511
1512 /* Size in bits of type if specified by a type attribute, or -1 if
1513 there is no size attribute. */
1514 int type_size = -1;
1515
1516 /* Used to distinguish string and bitstring from char-array and set. */
1517 int is_string = 0;
1518
1519 /* Used to distinguish vector from array. */
1520 int is_vector = 0;
1521
1522 /* Read type number if present. The type number may be omitted.
1523 for instance in a two-dimensional array declared with type
1524 "ar1;1;10;ar1;1;10;4". */
1525 if ((**pp >= '0' && **pp <= '9')
1526 || **pp == '('
1527 || **pp == '-')
1528 {
1529 if (read_type_number (pp, typenums) != 0)
1530 return error_type (pp, objfile);
1531
1532 if (**pp != '=')
1533 {
1534 /* Type is not being defined here. Either it already
1535 exists, or this is a forward reference to it.
1536 dbx_alloc_type handles both cases. */
1537 type = dbx_alloc_type (typenums, objfile);
1538
1539 /* If this is a forward reference, arrange to complain if it
1540 doesn't get patched up by the time we're done
1541 reading. */
1542 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1543 add_undefined_type (type, typenums);
1544
1545 return type;
1546 }
1547
1548 /* Type is being defined here. */
1549 /* Skip the '='.
1550 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1551 (*pp) += 2;
1552 }
1553 else
1554 {
1555 /* 'typenums=' not present, type is anonymous. Read and return
1556 the definition, but don't put it in the type vector. */
1557 typenums[0] = typenums[1] = -1;
1558 (*pp)++;
1559 }
1560
1561 again:
1562 type_descriptor = (*pp)[-1];
1563 switch (type_descriptor)
1564 {
1565 case 'x':
1566 {
1567 enum type_code code;
1568
1569 /* Used to index through file_symbols. */
1570 struct pending *ppt;
1571 int i;
1572
1573 /* Name including "struct", etc. */
1574 char *type_name;
1575
1576 {
1577 char *from, *to, *p, *q1, *q2;
1578
1579 /* Set the type code according to the following letter. */
1580 switch ((*pp)[0])
1581 {
1582 case 's':
1583 code = TYPE_CODE_STRUCT;
1584 break;
1585 case 'u':
1586 code = TYPE_CODE_UNION;
1587 break;
1588 case 'e':
1589 code = TYPE_CODE_ENUM;
1590 break;
1591 default:
1592 {
1593 /* Complain and keep going, so compilers can invent new
1594 cross-reference types. */
1595 complaint (&symfile_complaints,
1596 _("Unrecognized cross-reference type `%c'"),
1597 (*pp)[0]);
1598 code = TYPE_CODE_STRUCT;
1599 break;
1600 }
1601 }
1602
1603 q1 = strchr (*pp, '<');
1604 p = strchr (*pp, ':');
1605 if (p == NULL)
1606 return error_type (pp, objfile);
1607 if (q1 && p > q1 && p[1] == ':')
1608 {
1609 int nesting_level = 0;
1610
1611 for (q2 = q1; *q2; q2++)
1612 {
1613 if (*q2 == '<')
1614 nesting_level++;
1615 else if (*q2 == '>')
1616 nesting_level--;
1617 else if (*q2 == ':' && nesting_level == 0)
1618 break;
1619 }
1620 p = q2;
1621 if (*p != ':')
1622 return error_type (pp, objfile);
1623 }
1624 type_name = NULL;
1625 if (current_subfile->language == language_cplus)
1626 {
1627 char *new_name, *name = (char *) alloca (p - *pp + 1);
1628
1629 memcpy (name, *pp, p - *pp);
1630 name[p - *pp] = '\0';
1631 new_name = cp_canonicalize_string (name);
1632 if (new_name != NULL)
1633 {
1634 type_name
1635 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1636 new_name, strlen (new_name));
1637 xfree (new_name);
1638 }
1639 }
1640 if (type_name == NULL)
1641 {
1642 to = type_name = (char *)
1643 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1644
1645 /* Copy the name. */
1646 from = *pp + 1;
1647 while (from < p)
1648 *to++ = *from++;
1649 *to = '\0';
1650 }
1651
1652 /* Set the pointer ahead of the name which we just read, and
1653 the colon. */
1654 *pp = p + 1;
1655 }
1656
1657 /* If this type has already been declared, then reuse the same
1658 type, rather than allocating a new one. This saves some
1659 memory. */
1660
1661 for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 for (i = 0; i < ppt->nsyms; i++)
1663 {
1664 struct symbol *sym = ppt->symbol[i];
1665
1666 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1667 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1668 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1669 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1670 {
1671 obstack_free (&objfile->objfile_obstack, type_name);
1672 type = SYMBOL_TYPE (sym);
1673 if (typenums[0] != -1)
1674 *dbx_lookup_type (typenums, objfile) = type;
1675 return type;
1676 }
1677 }
1678
1679 /* Didn't find the type to which this refers, so we must
1680 be dealing with a forward reference. Allocate a type
1681 structure for it, and keep track of it so we can
1682 fill in the rest of the fields when we get the full
1683 type. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = code;
1686 TYPE_TAG_NAME (type) = type_name;
1687 INIT_CPLUS_SPECIFIC (type);
1688 TYPE_STUB (type) = 1;
1689
1690 add_undefined_type (type, typenums);
1691 return type;
1692 }
1693
1694 case '-': /* RS/6000 built-in type */
1695 case '0':
1696 case '1':
1697 case '2':
1698 case '3':
1699 case '4':
1700 case '5':
1701 case '6':
1702 case '7':
1703 case '8':
1704 case '9':
1705 case '(':
1706 (*pp)--;
1707
1708 /* We deal with something like t(1,2)=(3,4)=... which
1709 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1710
1711 /* Allocate and enter the typedef type first.
1712 This handles recursive types. */
1713 type = dbx_alloc_type (typenums, objfile);
1714 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1715 {
1716 struct type *xtype = read_type (pp, objfile);
1717
1718 if (type == xtype)
1719 {
1720 /* It's being defined as itself. That means it is "void". */
1721 TYPE_CODE (type) = TYPE_CODE_VOID;
1722 TYPE_LENGTH (type) = 1;
1723 }
1724 else if (type_size >= 0 || is_string)
1725 {
1726 /* This is the absolute wrong way to construct types. Every
1727 other debug format has found a way around this problem and
1728 the related problems with unnecessarily stubbed types;
1729 someone motivated should attempt to clean up the issue
1730 here as well. Once a type pointed to has been created it
1731 should not be modified.
1732
1733 Well, it's not *absolutely* wrong. Constructing recursive
1734 types (trees, linked lists) necessarily entails modifying
1735 types after creating them. Constructing any loop structure
1736 entails side effects. The Dwarf 2 reader does handle this
1737 more gracefully (it never constructs more than once
1738 instance of a type object, so it doesn't have to copy type
1739 objects wholesale), but it still mutates type objects after
1740 other folks have references to them.
1741
1742 Keep in mind that this circularity/mutation issue shows up
1743 at the source language level, too: C's "incomplete types",
1744 for example. So the proper cleanup, I think, would be to
1745 limit GDB's type smashing to match exactly those required
1746 by the source language. So GDB could have a
1747 "complete_this_type" function, but never create unnecessary
1748 copies of a type otherwise. */
1749 replace_type (type, xtype);
1750 TYPE_NAME (type) = NULL;
1751 TYPE_TAG_NAME (type) = NULL;
1752 }
1753 else
1754 {
1755 TYPE_TARGET_STUB (type) = 1;
1756 TYPE_TARGET_TYPE (type) = xtype;
1757 }
1758 }
1759 break;
1760
1761 /* In the following types, we must be sure to overwrite any existing
1762 type that the typenums refer to, rather than allocating a new one
1763 and making the typenums point to the new one. This is because there
1764 may already be pointers to the existing type (if it had been
1765 forward-referenced), and we must change it to a pointer, function,
1766 reference, or whatever, *in-place*. */
1767
1768 case '*': /* Pointer to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1771 break;
1772
1773 case '&': /* Reference to another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1776 break;
1777
1778 case 'f': /* Function returning another type */
1779 type1 = read_type (pp, objfile);
1780 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1781 break;
1782
1783 case 'g': /* Prototyped function. (Sun) */
1784 {
1785 /* Unresolved questions:
1786
1787 - According to Sun's ``STABS Interface Manual'', for 'f'
1788 and 'F' symbol descriptors, a `0' in the argument type list
1789 indicates a varargs function. But it doesn't say how 'g'
1790 type descriptors represent that info. Someone with access
1791 to Sun's toolchain should try it out.
1792
1793 - According to the comment in define_symbol (search for
1794 `process_prototype_types:'), Sun emits integer arguments as
1795 types which ref themselves --- like `void' types. Do we
1796 have to deal with that here, too? Again, someone with
1797 access to Sun's toolchain should try it out and let us
1798 know. */
1799
1800 const char *type_start = (*pp) - 1;
1801 struct type *return_type = read_type (pp, objfile);
1802 struct type *func_type
1803 = make_function_type (return_type,
1804 dbx_lookup_type (typenums, objfile));
1805 struct type_list {
1806 struct type *type;
1807 struct type_list *next;
1808 } *arg_types = 0;
1809 int num_args = 0;
1810
1811 while (**pp && **pp != '#')
1812 {
1813 struct type *arg_type = read_type (pp, objfile);
1814 struct type_list *newobj = XALLOCA (struct type_list);
1815 newobj->type = arg_type;
1816 newobj->next = arg_types;
1817 arg_types = newobj;
1818 num_args++;
1819 }
1820 if (**pp == '#')
1821 ++*pp;
1822 else
1823 {
1824 complaint (&symfile_complaints,
1825 _("Prototyped function type didn't "
1826 "end arguments with `#':\n%s"),
1827 type_start);
1828 }
1829
1830 /* If there is just one argument whose type is `void', then
1831 that's just an empty argument list. */
1832 if (arg_types
1833 && ! arg_types->next
1834 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835 num_args = 0;
1836
1837 TYPE_FIELDS (func_type)
1838 = (struct field *) TYPE_ALLOC (func_type,
1839 num_args * sizeof (struct field));
1840 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841 {
1842 int i;
1843 struct type_list *t;
1844
1845 /* We stuck each argument type onto the front of the list
1846 when we read it, so the list is reversed. Build the
1847 fields array right-to-left. */
1848 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849 TYPE_FIELD_TYPE (func_type, i) = t->type;
1850 }
1851 TYPE_NFIELDS (func_type) = num_args;
1852 TYPE_PROTOTYPED (func_type) = 1;
1853
1854 type = func_type;
1855 break;
1856 }
1857
1858 case 'k': /* Const qualifier on some type (Sun) */
1859 type = read_type (pp, objfile);
1860 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1861 dbx_lookup_type (typenums, objfile));
1862 break;
1863
1864 case 'B': /* Volatile qual on some type (Sun) */
1865 type = read_type (pp, objfile);
1866 type = make_cv_type (TYPE_CONST (type), 1, type,
1867 dbx_lookup_type (typenums, objfile));
1868 break;
1869
1870 case '@':
1871 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 { /* Member (class & variable) type */
1873 /* FIXME -- we should be doing smash_to_XXX types here. */
1874
1875 struct type *domain = read_type (pp, objfile);
1876 struct type *memtype;
1877
1878 if (**pp != ',')
1879 /* Invalid member type data format. */
1880 return error_type (pp, objfile);
1881 ++*pp;
1882
1883 memtype = read_type (pp, objfile);
1884 type = dbx_alloc_type (typenums, objfile);
1885 smash_to_memberptr_type (type, domain, memtype);
1886 }
1887 else
1888 /* type attribute */
1889 {
1890 char *attr = *pp;
1891
1892 /* Skip to the semicolon. */
1893 while (**pp != ';' && **pp != '\0')
1894 ++(*pp);
1895 if (**pp == '\0')
1896 return error_type (pp, objfile);
1897 else
1898 ++ * pp; /* Skip the semicolon. */
1899
1900 switch (*attr)
1901 {
1902 case 's': /* Size attribute */
1903 type_size = atoi (attr + 1);
1904 if (type_size <= 0)
1905 type_size = -1;
1906 break;
1907
1908 case 'S': /* String attribute */
1909 /* FIXME: check to see if following type is array? */
1910 is_string = 1;
1911 break;
1912
1913 case 'V': /* Vector attribute */
1914 /* FIXME: check to see if following type is array? */
1915 is_vector = 1;
1916 break;
1917
1918 default:
1919 /* Ignore unrecognized type attributes, so future compilers
1920 can invent new ones. */
1921 break;
1922 }
1923 ++*pp;
1924 goto again;
1925 }
1926 break;
1927
1928 case '#': /* Method (class & fn) type */
1929 if ((*pp)[0] == '#')
1930 {
1931 /* We'll get the parameter types from the name. */
1932 struct type *return_type;
1933
1934 (*pp)++;
1935 return_type = read_type (pp, objfile);
1936 if (*(*pp)++ != ';')
1937 complaint (&symfile_complaints,
1938 _("invalid (minimal) member type "
1939 "data format at symtab pos %d."),
1940 symnum);
1941 type = allocate_stub_method (return_type);
1942 if (typenums[0] != -1)
1943 *dbx_lookup_type (typenums, objfile) = type;
1944 }
1945 else
1946 {
1947 struct type *domain = read_type (pp, objfile);
1948 struct type *return_type;
1949 struct field *args;
1950 int nargs, varargs;
1951
1952 if (**pp != ',')
1953 /* Invalid member type data format. */
1954 return error_type (pp, objfile);
1955 else
1956 ++(*pp);
1957
1958 return_type = read_type (pp, objfile);
1959 args = read_args (pp, ';', objfile, &nargs, &varargs);
1960 if (args == NULL)
1961 return error_type (pp, objfile);
1962 type = dbx_alloc_type (typenums, objfile);
1963 smash_to_method_type (type, domain, return_type, args,
1964 nargs, varargs);
1965 }
1966 break;
1967
1968 case 'r': /* Range type */
1969 type = read_range_type (pp, typenums, type_size, objfile);
1970 if (typenums[0] != -1)
1971 *dbx_lookup_type (typenums, objfile) = type;
1972 break;
1973
1974 case 'b':
1975 {
1976 /* Sun ACC builtin int type */
1977 type = read_sun_builtin_type (pp, typenums, objfile);
1978 if (typenums[0] != -1)
1979 *dbx_lookup_type (typenums, objfile) = type;
1980 }
1981 break;
1982
1983 case 'R': /* Sun ACC builtin float type */
1984 type = read_sun_floating_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1987 break;
1988
1989 case 'e': /* Enumeration type */
1990 type = dbx_alloc_type (typenums, objfile);
1991 type = read_enum_type (pp, type, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 break;
1995
1996 case 's': /* Struct type */
1997 case 'u': /* Union type */
1998 {
1999 enum type_code type_code = TYPE_CODE_UNDEF;
2000 type = dbx_alloc_type (typenums, objfile);
2001 switch (type_descriptor)
2002 {
2003 case 's':
2004 type_code = TYPE_CODE_STRUCT;
2005 break;
2006 case 'u':
2007 type_code = TYPE_CODE_UNION;
2008 break;
2009 }
2010 type = read_struct_type (pp, type, type_code, objfile);
2011 break;
2012 }
2013
2014 case 'a': /* Array type */
2015 if (**pp != 'r')
2016 return error_type (pp, objfile);
2017 ++*pp;
2018
2019 type = dbx_alloc_type (typenums, objfile);
2020 type = read_array_type (pp, type, objfile);
2021 if (is_string)
2022 TYPE_CODE (type) = TYPE_CODE_STRING;
2023 if (is_vector)
2024 make_vector_type (type);
2025 break;
2026
2027 case 'S': /* Set type */
2028 type1 = read_type (pp, objfile);
2029 type = create_set_type ((struct type *) NULL, type1);
2030 if (typenums[0] != -1)
2031 *dbx_lookup_type (typenums, objfile) = type;
2032 break;
2033
2034 default:
2035 --*pp; /* Go back to the symbol in error. */
2036 /* Particularly important if it was \0! */
2037 return error_type (pp, objfile);
2038 }
2039
2040 if (type == 0)
2041 {
2042 warning (_("GDB internal error, type is NULL in stabsread.c."));
2043 return error_type (pp, objfile);
2044 }
2045
2046 /* Size specified in a type attribute overrides any other size. */
2047 if (type_size != -1)
2048 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2049
2050 return type;
2051 }
2052 \f
2053 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2054 Return the proper type node for a given builtin type number. */
2055
2056 static const struct objfile_data *rs6000_builtin_type_data;
2057
2058 static struct type *
2059 rs6000_builtin_type (int typenum, struct objfile *objfile)
2060 {
2061 struct type **negative_types
2062 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2063
2064 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2065 #define NUMBER_RECOGNIZED 34
2066 struct type *rettype = NULL;
2067
2068 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2069 {
2070 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2071 return objfile_type (objfile)->builtin_error;
2072 }
2073
2074 if (!negative_types)
2075 {
2076 /* This includes an empty slot for type number -0. */
2077 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2078 NUMBER_RECOGNIZED + 1, struct type *);
2079 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2080 }
2081
2082 if (negative_types[-typenum] != NULL)
2083 return negative_types[-typenum];
2084
2085 #if TARGET_CHAR_BIT != 8
2086 #error This code wrong for TARGET_CHAR_BIT not 8
2087 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2088 that if that ever becomes not true, the correct fix will be to
2089 make the size in the struct type to be in bits, not in units of
2090 TARGET_CHAR_BIT. */
2091 #endif
2092
2093 switch (-typenum)
2094 {
2095 case 1:
2096 /* The size of this and all the other types are fixed, defined
2097 by the debugging format. If there is a type called "int" which
2098 is other than 32 bits, then it should use a new negative type
2099 number (or avoid negative type numbers for that case).
2100 See stabs.texinfo. */
2101 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2102 break;
2103 case 2:
2104 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2105 break;
2106 case 3:
2107 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2108 break;
2109 case 4:
2110 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2111 break;
2112 case 5:
2113 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2114 "unsigned char", objfile);
2115 break;
2116 case 6:
2117 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2118 break;
2119 case 7:
2120 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2121 "unsigned short", objfile);
2122 break;
2123 case 8:
2124 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2125 "unsigned int", objfile);
2126 break;
2127 case 9:
2128 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2129 "unsigned", objfile);
2130 break;
2131 case 10:
2132 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2133 "unsigned long", objfile);
2134 break;
2135 case 11:
2136 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2137 break;
2138 case 12:
2139 /* IEEE single precision (32 bit). */
2140 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2141 break;
2142 case 13:
2143 /* IEEE double precision (64 bit). */
2144 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2145 break;
2146 case 14:
2147 /* This is an IEEE double on the RS/6000, and different machines with
2148 different sizes for "long double" should use different negative
2149 type numbers. See stabs.texinfo. */
2150 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2151 break;
2152 case 15:
2153 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2154 break;
2155 case 16:
2156 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2157 "boolean", objfile);
2158 break;
2159 case 17:
2160 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2161 break;
2162 case 18:
2163 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2164 break;
2165 case 19:
2166 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2167 break;
2168 case 20:
2169 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2170 "character", objfile);
2171 break;
2172 case 21:
2173 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2174 "logical*1", objfile);
2175 break;
2176 case 22:
2177 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2178 "logical*2", objfile);
2179 break;
2180 case 23:
2181 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2182 "logical*4", objfile);
2183 break;
2184 case 24:
2185 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2186 "logical", objfile);
2187 break;
2188 case 25:
2189 /* Complex type consisting of two IEEE single precision values. */
2190 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2191 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2192 objfile);
2193 break;
2194 case 26:
2195 /* Complex type consisting of two IEEE double precision values. */
2196 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2197 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2198 objfile);
2199 break;
2200 case 27:
2201 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2202 break;
2203 case 28:
2204 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2205 break;
2206 case 29:
2207 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2208 break;
2209 case 30:
2210 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2211 break;
2212 case 31:
2213 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2214 break;
2215 case 32:
2216 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2217 "unsigned long long", objfile);
2218 break;
2219 case 33:
2220 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2221 "logical*8", objfile);
2222 break;
2223 case 34:
2224 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2225 break;
2226 }
2227 negative_types[-typenum] = rettype;
2228 return rettype;
2229 }
2230 \f
2231 /* This page contains subroutines of read_type. */
2232
2233 /* Wrapper around method_name_from_physname to flag a complaint
2234 if there is an error. */
2235
2236 static char *
2237 stabs_method_name_from_physname (const char *physname)
2238 {
2239 char *method_name;
2240
2241 method_name = method_name_from_physname (physname);
2242
2243 if (method_name == NULL)
2244 {
2245 complaint (&symfile_complaints,
2246 _("Method has bad physname %s\n"), physname);
2247 return NULL;
2248 }
2249
2250 return method_name;
2251 }
2252
2253 /* Read member function stabs info for C++ classes. The form of each member
2254 function data is:
2255
2256 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2257
2258 An example with two member functions is:
2259
2260 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2261
2262 For the case of overloaded operators, the format is op$::*.funcs, where
2263 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2264 name (such as `+=') and `.' marks the end of the operator name.
2265
2266 Returns 1 for success, 0 for failure. */
2267
2268 static int
2269 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2270 struct objfile *objfile)
2271 {
2272 int nfn_fields = 0;
2273 int length = 0;
2274 int i;
2275 struct next_fnfield
2276 {
2277 struct next_fnfield *next;
2278 struct fn_field fn_field;
2279 }
2280 *sublist;
2281 struct type *look_ahead_type;
2282 struct next_fnfieldlist *new_fnlist;
2283 struct next_fnfield *new_sublist;
2284 char *main_fn_name;
2285 char *p;
2286
2287 /* Process each list until we find something that is not a member function
2288 or find the end of the functions. */
2289
2290 while (**pp != ';')
2291 {
2292 /* We should be positioned at the start of the function name.
2293 Scan forward to find the first ':' and if it is not the
2294 first of a "::" delimiter, then this is not a member function. */
2295 p = *pp;
2296 while (*p != ':')
2297 {
2298 p++;
2299 }
2300 if (p[1] != ':')
2301 {
2302 break;
2303 }
2304
2305 sublist = NULL;
2306 look_ahead_type = NULL;
2307 length = 0;
2308
2309 new_fnlist = XCNEW (struct next_fnfieldlist);
2310 make_cleanup (xfree, new_fnlist);
2311
2312 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2313 {
2314 /* This is a completely wierd case. In order to stuff in the
2315 names that might contain colons (the usual name delimiter),
2316 Mike Tiemann defined a different name format which is
2317 signalled if the identifier is "op$". In that case, the
2318 format is "op$::XXXX." where XXXX is the name. This is
2319 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2320 /* This lets the user type "break operator+".
2321 We could just put in "+" as the name, but that wouldn't
2322 work for "*". */
2323 static char opname[32] = "op$";
2324 char *o = opname + 3;
2325
2326 /* Skip past '::'. */
2327 *pp = p + 2;
2328
2329 STABS_CONTINUE (pp, objfile);
2330 p = *pp;
2331 while (*p != '.')
2332 {
2333 *o++ = *p++;
2334 }
2335 main_fn_name = savestring (opname, o - opname);
2336 /* Skip past '.' */
2337 *pp = p + 1;
2338 }
2339 else
2340 {
2341 main_fn_name = savestring (*pp, p - *pp);
2342 /* Skip past '::'. */
2343 *pp = p + 2;
2344 }
2345 new_fnlist->fn_fieldlist.name = main_fn_name;
2346
2347 do
2348 {
2349 new_sublist = XCNEW (struct next_fnfield);
2350 make_cleanup (xfree, new_sublist);
2351
2352 /* Check for and handle cretinous dbx symbol name continuation! */
2353 if (look_ahead_type == NULL)
2354 {
2355 /* Normal case. */
2356 STABS_CONTINUE (pp, objfile);
2357
2358 new_sublist->fn_field.type = read_type (pp, objfile);
2359 if (**pp != ':')
2360 {
2361 /* Invalid symtab info for member function. */
2362 return 0;
2363 }
2364 }
2365 else
2366 {
2367 /* g++ version 1 kludge */
2368 new_sublist->fn_field.type = look_ahead_type;
2369 look_ahead_type = NULL;
2370 }
2371
2372 (*pp)++;
2373 p = *pp;
2374 while (*p != ';')
2375 {
2376 p++;
2377 }
2378
2379 /* These are methods, not functions. */
2380 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2381 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2382 else
2383 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2384 == TYPE_CODE_METHOD);
2385
2386 /* If this is just a stub, then we don't have the real name here. */
2387 if (TYPE_STUB (new_sublist->fn_field.type))
2388 {
2389 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2390 set_type_self_type (new_sublist->fn_field.type, type);
2391 new_sublist->fn_field.is_stub = 1;
2392 }
2393
2394 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2395 *pp = p + 1;
2396
2397 /* Set this member function's visibility fields. */
2398 switch (*(*pp)++)
2399 {
2400 case VISIBILITY_PRIVATE:
2401 new_sublist->fn_field.is_private = 1;
2402 break;
2403 case VISIBILITY_PROTECTED:
2404 new_sublist->fn_field.is_protected = 1;
2405 break;
2406 }
2407
2408 STABS_CONTINUE (pp, objfile);
2409 switch (**pp)
2410 {
2411 case 'A': /* Normal functions. */
2412 new_sublist->fn_field.is_const = 0;
2413 new_sublist->fn_field.is_volatile = 0;
2414 (*pp)++;
2415 break;
2416 case 'B': /* `const' member functions. */
2417 new_sublist->fn_field.is_const = 1;
2418 new_sublist->fn_field.is_volatile = 0;
2419 (*pp)++;
2420 break;
2421 case 'C': /* `volatile' member function. */
2422 new_sublist->fn_field.is_const = 0;
2423 new_sublist->fn_field.is_volatile = 1;
2424 (*pp)++;
2425 break;
2426 case 'D': /* `const volatile' member function. */
2427 new_sublist->fn_field.is_const = 1;
2428 new_sublist->fn_field.is_volatile = 1;
2429 (*pp)++;
2430 break;
2431 case '*': /* File compiled with g++ version 1 --
2432 no info. */
2433 case '?':
2434 case '.':
2435 break;
2436 default:
2437 complaint (&symfile_complaints,
2438 _("const/volatile indicator missing, got '%c'"),
2439 **pp);
2440 break;
2441 }
2442
2443 switch (*(*pp)++)
2444 {
2445 case '*':
2446 {
2447 int nbits;
2448 /* virtual member function, followed by index.
2449 The sign bit is set to distinguish pointers-to-methods
2450 from virtual function indicies. Since the array is
2451 in words, the quantity must be shifted left by 1
2452 on 16 bit machine, and by 2 on 32 bit machine, forcing
2453 the sign bit out, and usable as a valid index into
2454 the array. Remove the sign bit here. */
2455 new_sublist->fn_field.voffset =
2456 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2457 if (nbits != 0)
2458 return 0;
2459
2460 STABS_CONTINUE (pp, objfile);
2461 if (**pp == ';' || **pp == '\0')
2462 {
2463 /* Must be g++ version 1. */
2464 new_sublist->fn_field.fcontext = 0;
2465 }
2466 else
2467 {
2468 /* Figure out from whence this virtual function came.
2469 It may belong to virtual function table of
2470 one of its baseclasses. */
2471 look_ahead_type = read_type (pp, objfile);
2472 if (**pp == ':')
2473 {
2474 /* g++ version 1 overloaded methods. */
2475 }
2476 else
2477 {
2478 new_sublist->fn_field.fcontext = look_ahead_type;
2479 if (**pp != ';')
2480 {
2481 return 0;
2482 }
2483 else
2484 {
2485 ++*pp;
2486 }
2487 look_ahead_type = NULL;
2488 }
2489 }
2490 break;
2491 }
2492 case '?':
2493 /* static member function. */
2494 {
2495 int slen = strlen (main_fn_name);
2496
2497 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2498
2499 /* For static member functions, we can't tell if they
2500 are stubbed, as they are put out as functions, and not as
2501 methods.
2502 GCC v2 emits the fully mangled name if
2503 dbxout.c:flag_minimal_debug is not set, so we have to
2504 detect a fully mangled physname here and set is_stub
2505 accordingly. Fully mangled physnames in v2 start with
2506 the member function name, followed by two underscores.
2507 GCC v3 currently always emits stubbed member functions,
2508 but with fully mangled physnames, which start with _Z. */
2509 if (!(strncmp (new_sublist->fn_field.physname,
2510 main_fn_name, slen) == 0
2511 && new_sublist->fn_field.physname[slen] == '_'
2512 && new_sublist->fn_field.physname[slen + 1] == '_'))
2513 {
2514 new_sublist->fn_field.is_stub = 1;
2515 }
2516 break;
2517 }
2518
2519 default:
2520 /* error */
2521 complaint (&symfile_complaints,
2522 _("member function type missing, got '%c'"),
2523 (*pp)[-1]);
2524 /* Fall through into normal member function. */
2525
2526 case '.':
2527 /* normal member function. */
2528 new_sublist->fn_field.voffset = 0;
2529 new_sublist->fn_field.fcontext = 0;
2530 break;
2531 }
2532
2533 new_sublist->next = sublist;
2534 sublist = new_sublist;
2535 length++;
2536 STABS_CONTINUE (pp, objfile);
2537 }
2538 while (**pp != ';' && **pp != '\0');
2539
2540 (*pp)++;
2541 STABS_CONTINUE (pp, objfile);
2542
2543 /* Skip GCC 3.X member functions which are duplicates of the callable
2544 constructor/destructor. */
2545 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2546 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2547 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2548 {
2549 xfree (main_fn_name);
2550 }
2551 else
2552 {
2553 int has_stub = 0;
2554 int has_destructor = 0, has_other = 0;
2555 int is_v3 = 0;
2556 struct next_fnfield *tmp_sublist;
2557
2558 /* Various versions of GCC emit various mostly-useless
2559 strings in the name field for special member functions.
2560
2561 For stub methods, we need to defer correcting the name
2562 until we are ready to unstub the method, because the current
2563 name string is used by gdb_mangle_name. The only stub methods
2564 of concern here are GNU v2 operators; other methods have their
2565 names correct (see caveat below).
2566
2567 For non-stub methods, in GNU v3, we have a complete physname.
2568 Therefore we can safely correct the name now. This primarily
2569 affects constructors and destructors, whose name will be
2570 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2571 operators will also have incorrect names; for instance,
2572 "operator int" will be named "operator i" (i.e. the type is
2573 mangled).
2574
2575 For non-stub methods in GNU v2, we have no easy way to
2576 know if we have a complete physname or not. For most
2577 methods the result depends on the platform (if CPLUS_MARKER
2578 can be `$' or `.', it will use minimal debug information, or
2579 otherwise the full physname will be included).
2580
2581 Rather than dealing with this, we take a different approach.
2582 For v3 mangled names, we can use the full physname; for v2,
2583 we use cplus_demangle_opname (which is actually v2 specific),
2584 because the only interesting names are all operators - once again
2585 barring the caveat below. Skip this process if any method in the
2586 group is a stub, to prevent our fouling up the workings of
2587 gdb_mangle_name.
2588
2589 The caveat: GCC 2.95.x (and earlier?) put constructors and
2590 destructors in the same method group. We need to split this
2591 into two groups, because they should have different names.
2592 So for each method group we check whether it contains both
2593 routines whose physname appears to be a destructor (the physnames
2594 for and destructors are always provided, due to quirks in v2
2595 mangling) and routines whose physname does not appear to be a
2596 destructor. If so then we break up the list into two halves.
2597 Even if the constructors and destructors aren't in the same group
2598 the destructor will still lack the leading tilde, so that also
2599 needs to be fixed.
2600
2601 So, to summarize what we expect and handle here:
2602
2603 Given Given Real Real Action
2604 method name physname physname method name
2605
2606 __opi [none] __opi__3Foo operator int opname
2607 [now or later]
2608 Foo _._3Foo _._3Foo ~Foo separate and
2609 rename
2610 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2611 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2612 */
2613
2614 tmp_sublist = sublist;
2615 while (tmp_sublist != NULL)
2616 {
2617 if (tmp_sublist->fn_field.is_stub)
2618 has_stub = 1;
2619 if (tmp_sublist->fn_field.physname[0] == '_'
2620 && tmp_sublist->fn_field.physname[1] == 'Z')
2621 is_v3 = 1;
2622
2623 if (is_destructor_name (tmp_sublist->fn_field.physname))
2624 has_destructor++;
2625 else
2626 has_other++;
2627
2628 tmp_sublist = tmp_sublist->next;
2629 }
2630
2631 if (has_destructor && has_other)
2632 {
2633 struct next_fnfieldlist *destr_fnlist;
2634 struct next_fnfield *last_sublist;
2635
2636 /* Create a new fn_fieldlist for the destructors. */
2637
2638 destr_fnlist = XCNEW (struct next_fnfieldlist);
2639 make_cleanup (xfree, destr_fnlist);
2640
2641 destr_fnlist->fn_fieldlist.name
2642 = obconcat (&objfile->objfile_obstack, "~",
2643 new_fnlist->fn_fieldlist.name, (char *) NULL);
2644
2645 destr_fnlist->fn_fieldlist.fn_fields =
2646 XOBNEWVEC (&objfile->objfile_obstack,
2647 struct fn_field, has_destructor);
2648 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2649 sizeof (struct fn_field) * has_destructor);
2650 tmp_sublist = sublist;
2651 last_sublist = NULL;
2652 i = 0;
2653 while (tmp_sublist != NULL)
2654 {
2655 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2656 {
2657 tmp_sublist = tmp_sublist->next;
2658 continue;
2659 }
2660
2661 destr_fnlist->fn_fieldlist.fn_fields[i++]
2662 = tmp_sublist->fn_field;
2663 if (last_sublist)
2664 last_sublist->next = tmp_sublist->next;
2665 else
2666 sublist = tmp_sublist->next;
2667 last_sublist = tmp_sublist;
2668 tmp_sublist = tmp_sublist->next;
2669 }
2670
2671 destr_fnlist->fn_fieldlist.length = has_destructor;
2672 destr_fnlist->next = fip->fnlist;
2673 fip->fnlist = destr_fnlist;
2674 nfn_fields++;
2675 length -= has_destructor;
2676 }
2677 else if (is_v3)
2678 {
2679 /* v3 mangling prevents the use of abbreviated physnames,
2680 so we can do this here. There are stubbed methods in v3
2681 only:
2682 - in -gstabs instead of -gstabs+
2683 - or for static methods, which are output as a function type
2684 instead of a method type. */
2685 char *new_method_name =
2686 stabs_method_name_from_physname (sublist->fn_field.physname);
2687
2688 if (new_method_name != NULL
2689 && strcmp (new_method_name,
2690 new_fnlist->fn_fieldlist.name) != 0)
2691 {
2692 new_fnlist->fn_fieldlist.name = new_method_name;
2693 xfree (main_fn_name);
2694 }
2695 else
2696 xfree (new_method_name);
2697 }
2698 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2699 {
2700 new_fnlist->fn_fieldlist.name =
2701 obconcat (&objfile->objfile_obstack,
2702 "~", main_fn_name, (char *)NULL);
2703 xfree (main_fn_name);
2704 }
2705 else if (!has_stub)
2706 {
2707 char dem_opname[256];
2708 int ret;
2709
2710 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2711 dem_opname, DMGL_ANSI);
2712 if (!ret)
2713 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2714 dem_opname, 0);
2715 if (ret)
2716 new_fnlist->fn_fieldlist.name
2717 = ((const char *)
2718 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2719 strlen (dem_opname)));
2720 xfree (main_fn_name);
2721 }
2722
2723 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2724 obstack_alloc (&objfile->objfile_obstack,
2725 sizeof (struct fn_field) * length);
2726 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2727 sizeof (struct fn_field) * length);
2728 for (i = length; (i--, sublist); sublist = sublist->next)
2729 {
2730 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2731 }
2732
2733 new_fnlist->fn_fieldlist.length = length;
2734 new_fnlist->next = fip->fnlist;
2735 fip->fnlist = new_fnlist;
2736 nfn_fields++;
2737 }
2738 }
2739
2740 if (nfn_fields)
2741 {
2742 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2743 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2744 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2745 memset (TYPE_FN_FIELDLISTS (type), 0,
2746 sizeof (struct fn_fieldlist) * nfn_fields);
2747 TYPE_NFN_FIELDS (type) = nfn_fields;
2748 }
2749
2750 return 1;
2751 }
2752
2753 /* Special GNU C++ name.
2754
2755 Returns 1 for success, 0 for failure. "failure" means that we can't
2756 keep parsing and it's time for error_type(). */
2757
2758 static int
2759 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2760 struct objfile *objfile)
2761 {
2762 char *p;
2763 const char *name;
2764 char cpp_abbrev;
2765 struct type *context;
2766
2767 p = *pp;
2768 if (*++p == 'v')
2769 {
2770 name = NULL;
2771 cpp_abbrev = *++p;
2772
2773 *pp = p + 1;
2774
2775 /* At this point, *pp points to something like "22:23=*22...",
2776 where the type number before the ':' is the "context" and
2777 everything after is a regular type definition. Lookup the
2778 type, find it's name, and construct the field name. */
2779
2780 context = read_type (pp, objfile);
2781
2782 switch (cpp_abbrev)
2783 {
2784 case 'f': /* $vf -- a virtual function table pointer */
2785 name = type_name_no_tag (context);
2786 if (name == NULL)
2787 {
2788 name = "";
2789 }
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2791 vptr_name, name, (char *) NULL);
2792 break;
2793
2794 case 'b': /* $vb -- a virtual bsomethingorother */
2795 name = type_name_no_tag (context);
2796 if (name == NULL)
2797 {
2798 complaint (&symfile_complaints,
2799 _("C++ abbreviated type name "
2800 "unknown at symtab pos %d"),
2801 symnum);
2802 name = "FOO";
2803 }
2804 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2805 name, (char *) NULL);
2806 break;
2807
2808 default:
2809 invalid_cpp_abbrev_complaint (*pp);
2810 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2811 "INVALID_CPLUSPLUS_ABBREV",
2812 (char *) NULL);
2813 break;
2814 }
2815
2816 /* At this point, *pp points to the ':'. Skip it and read the
2817 field type. */
2818
2819 p = ++(*pp);
2820 if (p[-1] != ':')
2821 {
2822 invalid_cpp_abbrev_complaint (*pp);
2823 return 0;
2824 }
2825 fip->list->field.type = read_type (pp, objfile);
2826 if (**pp == ',')
2827 (*pp)++; /* Skip the comma. */
2828 else
2829 return 0;
2830
2831 {
2832 int nbits;
2833
2834 SET_FIELD_BITPOS (fip->list->field,
2835 read_huge_number (pp, ';', &nbits, 0));
2836 if (nbits != 0)
2837 return 0;
2838 }
2839 /* This field is unpacked. */
2840 FIELD_BITSIZE (fip->list->field) = 0;
2841 fip->list->visibility = VISIBILITY_PRIVATE;
2842 }
2843 else
2844 {
2845 invalid_cpp_abbrev_complaint (*pp);
2846 /* We have no idea what syntax an unrecognized abbrev would have, so
2847 better return 0. If we returned 1, we would need to at least advance
2848 *pp to avoid an infinite loop. */
2849 return 0;
2850 }
2851 return 1;
2852 }
2853
2854 static void
2855 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2856 struct type *type, struct objfile *objfile)
2857 {
2858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2859
2860 fip->list->field.name
2861 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2862 *pp = p + 1;
2863
2864 /* This means we have a visibility for a field coming. */
2865 if (**pp == '/')
2866 {
2867 (*pp)++;
2868 fip->list->visibility = *(*pp)++;
2869 }
2870 else
2871 {
2872 /* normal dbx-style format, no explicit visibility */
2873 fip->list->visibility = VISIBILITY_PUBLIC;
2874 }
2875
2876 fip->list->field.type = read_type (pp, objfile);
2877 if (**pp == ':')
2878 {
2879 p = ++(*pp);
2880 #if 0
2881 /* Possible future hook for nested types. */
2882 if (**pp == '!')
2883 {
2884 fip->list->field.bitpos = (long) -2; /* nested type */
2885 p = ++(*pp);
2886 }
2887 else
2888 ...;
2889 #endif
2890 while (*p != ';')
2891 {
2892 p++;
2893 }
2894 /* Static class member. */
2895 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2896 *pp = p + 1;
2897 return;
2898 }
2899 else if (**pp != ',')
2900 {
2901 /* Bad structure-type format. */
2902 stabs_general_complaint ("bad structure-type format");
2903 return;
2904 }
2905
2906 (*pp)++; /* Skip the comma. */
2907
2908 {
2909 int nbits;
2910
2911 SET_FIELD_BITPOS (fip->list->field,
2912 read_huge_number (pp, ',', &nbits, 0));
2913 if (nbits != 0)
2914 {
2915 stabs_general_complaint ("bad structure-type format");
2916 return;
2917 }
2918 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2919 if (nbits != 0)
2920 {
2921 stabs_general_complaint ("bad structure-type format");
2922 return;
2923 }
2924 }
2925
2926 if (FIELD_BITPOS (fip->list->field) == 0
2927 && FIELD_BITSIZE (fip->list->field) == 0)
2928 {
2929 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2930 it is a field which has been optimized out. The correct stab for
2931 this case is to use VISIBILITY_IGNORE, but that is a recent
2932 invention. (2) It is a 0-size array. For example
2933 union { int num; char str[0]; } foo. Printing _("<no value>" for
2934 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2935 will continue to work, and a 0-size array as a whole doesn't
2936 have any contents to print.
2937
2938 I suspect this probably could also happen with gcc -gstabs (not
2939 -gstabs+) for static fields, and perhaps other C++ extensions.
2940 Hopefully few people use -gstabs with gdb, since it is intended
2941 for dbx compatibility. */
2942
2943 /* Ignore this field. */
2944 fip->list->visibility = VISIBILITY_IGNORE;
2945 }
2946 else
2947 {
2948 /* Detect an unpacked field and mark it as such.
2949 dbx gives a bit size for all fields.
2950 Note that forward refs cannot be packed,
2951 and treat enums as if they had the width of ints. */
2952
2953 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2954
2955 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2956 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2957 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2958 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2959 {
2960 FIELD_BITSIZE (fip->list->field) = 0;
2961 }
2962 if ((FIELD_BITSIZE (fip->list->field)
2963 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2964 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2965 && FIELD_BITSIZE (fip->list->field)
2966 == gdbarch_int_bit (gdbarch))
2967 )
2968 &&
2969 FIELD_BITPOS (fip->list->field) % 8 == 0)
2970 {
2971 FIELD_BITSIZE (fip->list->field) = 0;
2972 }
2973 }
2974 }
2975
2976
2977 /* Read struct or class data fields. They have the form:
2978
2979 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2980
2981 At the end, we see a semicolon instead of a field.
2982
2983 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2984 a static field.
2985
2986 The optional VISIBILITY is one of:
2987
2988 '/0' (VISIBILITY_PRIVATE)
2989 '/1' (VISIBILITY_PROTECTED)
2990 '/2' (VISIBILITY_PUBLIC)
2991 '/9' (VISIBILITY_IGNORE)
2992
2993 or nothing, for C style fields with public visibility.
2994
2995 Returns 1 for success, 0 for failure. */
2996
2997 static int
2998 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2999 struct objfile *objfile)
3000 {
3001 char *p;
3002 struct nextfield *newobj;
3003
3004 /* We better set p right now, in case there are no fields at all... */
3005
3006 p = *pp;
3007
3008 /* Read each data member type until we find the terminating ';' at the end of
3009 the data member list, or break for some other reason such as finding the
3010 start of the member function list. */
3011 /* Stab string for structure/union does not end with two ';' in
3012 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3013
3014 while (**pp != ';' && **pp != '\0')
3015 {
3016 STABS_CONTINUE (pp, objfile);
3017 /* Get space to record the next field's data. */
3018 newobj = XCNEW (struct nextfield);
3019 make_cleanup (xfree, newobj);
3020
3021 newobj->next = fip->list;
3022 fip->list = newobj;
3023
3024 /* Get the field name. */
3025 p = *pp;
3026
3027 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3028 unless the CPLUS_MARKER is followed by an underscore, in
3029 which case it is just the name of an anonymous type, which we
3030 should handle like any other type name. */
3031
3032 if (is_cplus_marker (p[0]) && p[1] != '_')
3033 {
3034 if (!read_cpp_abbrev (fip, pp, type, objfile))
3035 return 0;
3036 continue;
3037 }
3038
3039 /* Look for the ':' that separates the field name from the field
3040 values. Data members are delimited by a single ':', while member
3041 functions are delimited by a pair of ':'s. When we hit the member
3042 functions (if any), terminate scan loop and return. */
3043
3044 while (*p != ':' && *p != '\0')
3045 {
3046 p++;
3047 }
3048 if (*p == '\0')
3049 return 0;
3050
3051 /* Check to see if we have hit the member functions yet. */
3052 if (p[1] == ':')
3053 {
3054 break;
3055 }
3056 read_one_struct_field (fip, pp, p, type, objfile);
3057 }
3058 if (p[0] == ':' && p[1] == ':')
3059 {
3060 /* (the deleted) chill the list of fields: the last entry (at
3061 the head) is a partially constructed entry which we now
3062 scrub. */
3063 fip->list = fip->list->next;
3064 }
3065 return 1;
3066 }
3067 /* *INDENT-OFF* */
3068 /* The stabs for C++ derived classes contain baseclass information which
3069 is marked by a '!' character after the total size. This function is
3070 called when we encounter the baseclass marker, and slurps up all the
3071 baseclass information.
3072
3073 Immediately following the '!' marker is the number of base classes that
3074 the class is derived from, followed by information for each base class.
3075 For each base class, there are two visibility specifiers, a bit offset
3076 to the base class information within the derived class, a reference to
3077 the type for the base class, and a terminating semicolon.
3078
3079 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3080 ^^ ^ ^ ^ ^ ^ ^
3081 Baseclass information marker __________________|| | | | | | |
3082 Number of baseclasses __________________________| | | | | | |
3083 Visibility specifiers (2) ________________________| | | | | |
3084 Offset in bits from start of class _________________| | | | |
3085 Type number for base class ___________________________| | | |
3086 Visibility specifiers (2) _______________________________| | |
3087 Offset in bits from start of class ________________________| |
3088 Type number of base class ____________________________________|
3089
3090 Return 1 for success, 0 for (error-type-inducing) failure. */
3091 /* *INDENT-ON* */
3092
3093
3094
3095 static int
3096 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3097 struct objfile *objfile)
3098 {
3099 int i;
3100 struct nextfield *newobj;
3101
3102 if (**pp != '!')
3103 {
3104 return 1;
3105 }
3106 else
3107 {
3108 /* Skip the '!' baseclass information marker. */
3109 (*pp)++;
3110 }
3111
3112 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3113 {
3114 int nbits;
3115
3116 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3117 if (nbits != 0)
3118 return 0;
3119 }
3120
3121 #if 0
3122 /* Some stupid compilers have trouble with the following, so break
3123 it up into simpler expressions. */
3124 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3125 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3126 #else
3127 {
3128 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3129 char *pointer;
3130
3131 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3132 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3133 }
3134 #endif /* 0 */
3135
3136 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3137
3138 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3139 {
3140 newobj = XCNEW (struct nextfield);
3141 make_cleanup (xfree, newobj);
3142
3143 newobj->next = fip->list;
3144 fip->list = newobj;
3145 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3146 field! */
3147
3148 STABS_CONTINUE (pp, objfile);
3149 switch (**pp)
3150 {
3151 case '0':
3152 /* Nothing to do. */
3153 break;
3154 case '1':
3155 SET_TYPE_FIELD_VIRTUAL (type, i);
3156 break;
3157 default:
3158 /* Unknown character. Complain and treat it as non-virtual. */
3159 {
3160 complaint (&symfile_complaints,
3161 _("Unknown virtual character `%c' for baseclass"),
3162 **pp);
3163 }
3164 }
3165 ++(*pp);
3166
3167 newobj->visibility = *(*pp)++;
3168 switch (newobj->visibility)
3169 {
3170 case VISIBILITY_PRIVATE:
3171 case VISIBILITY_PROTECTED:
3172 case VISIBILITY_PUBLIC:
3173 break;
3174 default:
3175 /* Bad visibility format. Complain and treat it as
3176 public. */
3177 {
3178 complaint (&symfile_complaints,
3179 _("Unknown visibility `%c' for baseclass"),
3180 newobj->visibility);
3181 newobj->visibility = VISIBILITY_PUBLIC;
3182 }
3183 }
3184
3185 {
3186 int nbits;
3187
3188 /* The remaining value is the bit offset of the portion of the object
3189 corresponding to this baseclass. Always zero in the absence of
3190 multiple inheritance. */
3191
3192 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3193 if (nbits != 0)
3194 return 0;
3195 }
3196
3197 /* The last piece of baseclass information is the type of the
3198 base class. Read it, and remember it's type name as this
3199 field's name. */
3200
3201 newobj->field.type = read_type (pp, objfile);
3202 newobj->field.name = type_name_no_tag (newobj->field.type);
3203
3204 /* Skip trailing ';' and bump count of number of fields seen. */
3205 if (**pp == ';')
3206 (*pp)++;
3207 else
3208 return 0;
3209 }
3210 return 1;
3211 }
3212
3213 /* The tail end of stabs for C++ classes that contain a virtual function
3214 pointer contains a tilde, a %, and a type number.
3215 The type number refers to the base class (possibly this class itself) which
3216 contains the vtable pointer for the current class.
3217
3218 This function is called when we have parsed all the method declarations,
3219 so we can look for the vptr base class info. */
3220
3221 static int
3222 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3223 struct objfile *objfile)
3224 {
3225 char *p;
3226
3227 STABS_CONTINUE (pp, objfile);
3228
3229 /* If we are positioned at a ';', then skip it. */
3230 if (**pp == ';')
3231 {
3232 (*pp)++;
3233 }
3234
3235 if (**pp == '~')
3236 {
3237 (*pp)++;
3238
3239 if (**pp == '=' || **pp == '+' || **pp == '-')
3240 {
3241 /* Obsolete flags that used to indicate the presence
3242 of constructors and/or destructors. */
3243 (*pp)++;
3244 }
3245
3246 /* Read either a '%' or the final ';'. */
3247 if (*(*pp)++ == '%')
3248 {
3249 /* The next number is the type number of the base class
3250 (possibly our own class) which supplies the vtable for
3251 this class. Parse it out, and search that class to find
3252 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3253 and TYPE_VPTR_FIELDNO. */
3254
3255 struct type *t;
3256 int i;
3257
3258 t = read_type (pp, objfile);
3259 p = (*pp)++;
3260 while (*p != '\0' && *p != ';')
3261 {
3262 p++;
3263 }
3264 if (*p == '\0')
3265 {
3266 /* Premature end of symbol. */
3267 return 0;
3268 }
3269
3270 set_type_vptr_basetype (type, t);
3271 if (type == t) /* Our own class provides vtbl ptr. */
3272 {
3273 for (i = TYPE_NFIELDS (t) - 1;
3274 i >= TYPE_N_BASECLASSES (t);
3275 --i)
3276 {
3277 const char *name = TYPE_FIELD_NAME (t, i);
3278
3279 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3280 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3281 {
3282 set_type_vptr_fieldno (type, i);
3283 goto gotit;
3284 }
3285 }
3286 /* Virtual function table field not found. */
3287 complaint (&symfile_complaints,
3288 _("virtual function table pointer "
3289 "not found when defining class `%s'"),
3290 TYPE_NAME (type));
3291 return 0;
3292 }
3293 else
3294 {
3295 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3296 }
3297
3298 gotit:
3299 *pp = p + 1;
3300 }
3301 }
3302 return 1;
3303 }
3304
3305 static int
3306 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3307 {
3308 int n;
3309
3310 for (n = TYPE_NFN_FIELDS (type);
3311 fip->fnlist != NULL;
3312 fip->fnlist = fip->fnlist->next)
3313 {
3314 --n; /* Circumvent Sun3 compiler bug. */
3315 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3316 }
3317 return 1;
3318 }
3319
3320 /* Create the vector of fields, and record how big it is.
3321 We need this info to record proper virtual function table information
3322 for this class's virtual functions. */
3323
3324 static int
3325 attach_fields_to_type (struct field_info *fip, struct type *type,
3326 struct objfile *objfile)
3327 {
3328 int nfields = 0;
3329 int non_public_fields = 0;
3330 struct nextfield *scan;
3331
3332 /* Count up the number of fields that we have, as well as taking note of
3333 whether or not there are any non-public fields, which requires us to
3334 allocate and build the private_field_bits and protected_field_bits
3335 bitfields. */
3336
3337 for (scan = fip->list; scan != NULL; scan = scan->next)
3338 {
3339 nfields++;
3340 if (scan->visibility != VISIBILITY_PUBLIC)
3341 {
3342 non_public_fields++;
3343 }
3344 }
3345
3346 /* Now we know how many fields there are, and whether or not there are any
3347 non-public fields. Record the field count, allocate space for the
3348 array of fields, and create blank visibility bitfields if necessary. */
3349
3350 TYPE_NFIELDS (type) = nfields;
3351 TYPE_FIELDS (type) = (struct field *)
3352 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3353 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3354
3355 if (non_public_fields)
3356 {
3357 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3358
3359 TYPE_FIELD_PRIVATE_BITS (type) =
3360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3361 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3362
3363 TYPE_FIELD_PROTECTED_BITS (type) =
3364 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3365 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3366
3367 TYPE_FIELD_IGNORE_BITS (type) =
3368 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3369 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3370 }
3371
3372 /* Copy the saved-up fields into the field vector. Start from the
3373 head of the list, adding to the tail of the field array, so that
3374 they end up in the same order in the array in which they were
3375 added to the list. */
3376
3377 while (nfields-- > 0)
3378 {
3379 TYPE_FIELD (type, nfields) = fip->list->field;
3380 switch (fip->list->visibility)
3381 {
3382 case VISIBILITY_PRIVATE:
3383 SET_TYPE_FIELD_PRIVATE (type, nfields);
3384 break;
3385
3386 case VISIBILITY_PROTECTED:
3387 SET_TYPE_FIELD_PROTECTED (type, nfields);
3388 break;
3389
3390 case VISIBILITY_IGNORE:
3391 SET_TYPE_FIELD_IGNORE (type, nfields);
3392 break;
3393
3394 case VISIBILITY_PUBLIC:
3395 break;
3396
3397 default:
3398 /* Unknown visibility. Complain and treat it as public. */
3399 {
3400 complaint (&symfile_complaints,
3401 _("Unknown visibility `%c' for field"),
3402 fip->list->visibility);
3403 }
3404 break;
3405 }
3406 fip->list = fip->list->next;
3407 }
3408 return 1;
3409 }
3410
3411
3412 /* Complain that the compiler has emitted more than one definition for the
3413 structure type TYPE. */
3414 static void
3415 complain_about_struct_wipeout (struct type *type)
3416 {
3417 const char *name = "";
3418 const char *kind = "";
3419
3420 if (TYPE_TAG_NAME (type))
3421 {
3422 name = TYPE_TAG_NAME (type);
3423 switch (TYPE_CODE (type))
3424 {
3425 case TYPE_CODE_STRUCT: kind = "struct "; break;
3426 case TYPE_CODE_UNION: kind = "union "; break;
3427 case TYPE_CODE_ENUM: kind = "enum "; break;
3428 default: kind = "";
3429 }
3430 }
3431 else if (TYPE_NAME (type))
3432 {
3433 name = TYPE_NAME (type);
3434 kind = "";
3435 }
3436 else
3437 {
3438 name = "<unknown>";
3439 kind = "";
3440 }
3441
3442 complaint (&symfile_complaints,
3443 _("struct/union type gets multiply defined: %s%s"), kind, name);
3444 }
3445
3446 /* Set the length for all variants of a same main_type, which are
3447 connected in the closed chain.
3448
3449 This is something that needs to be done when a type is defined *after*
3450 some cross references to this type have already been read. Consider
3451 for instance the following scenario where we have the following two
3452 stabs entries:
3453
3454 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3455 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3456
3457 A stubbed version of type dummy is created while processing the first
3458 stabs entry. The length of that type is initially set to zero, since
3459 it is unknown at this point. Also, a "constant" variation of type
3460 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3461 the stabs line).
3462
3463 The second stabs entry allows us to replace the stubbed definition
3464 with the real definition. However, we still need to adjust the length
3465 of the "constant" variation of that type, as its length was left
3466 untouched during the main type replacement... */
3467
3468 static void
3469 set_length_in_type_chain (struct type *type)
3470 {
3471 struct type *ntype = TYPE_CHAIN (type);
3472
3473 while (ntype != type)
3474 {
3475 if (TYPE_LENGTH(ntype) == 0)
3476 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3477 else
3478 complain_about_struct_wipeout (ntype);
3479 ntype = TYPE_CHAIN (ntype);
3480 }
3481 }
3482
3483 /* Read the description of a structure (or union type) and return an object
3484 describing the type.
3485
3486 PP points to a character pointer that points to the next unconsumed token
3487 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3488 *PP will point to "4a:1,0,32;;".
3489
3490 TYPE points to an incomplete type that needs to be filled in.
3491
3492 OBJFILE points to the current objfile from which the stabs information is
3493 being read. (Note that it is redundant in that TYPE also contains a pointer
3494 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3495 */
3496
3497 static struct type *
3498 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3499 struct objfile *objfile)
3500 {
3501 struct cleanup *back_to;
3502 struct field_info fi;
3503
3504 fi.list = NULL;
3505 fi.fnlist = NULL;
3506
3507 /* When describing struct/union/class types in stabs, G++ always drops
3508 all qualifications from the name. So if you've got:
3509 struct A { ... struct B { ... }; ... };
3510 then G++ will emit stabs for `struct A::B' that call it simply
3511 `struct B'. Obviously, if you've got a real top-level definition for
3512 `struct B', or other nested definitions, this is going to cause
3513 problems.
3514
3515 Obviously, GDB can't fix this by itself, but it can at least avoid
3516 scribbling on existing structure type objects when new definitions
3517 appear. */
3518 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3519 || TYPE_STUB (type)))
3520 {
3521 complain_about_struct_wipeout (type);
3522
3523 /* It's probably best to return the type unchanged. */
3524 return type;
3525 }
3526
3527 back_to = make_cleanup (null_cleanup, 0);
3528
3529 INIT_CPLUS_SPECIFIC (type);
3530 TYPE_CODE (type) = type_code;
3531 TYPE_STUB (type) = 0;
3532
3533 /* First comes the total size in bytes. */
3534
3535 {
3536 int nbits;
3537
3538 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3539 if (nbits != 0)
3540 {
3541 do_cleanups (back_to);
3542 return error_type (pp, objfile);
3543 }
3544 set_length_in_type_chain (type);
3545 }
3546
3547 /* Now read the baseclasses, if any, read the regular C struct or C++
3548 class member fields, attach the fields to the type, read the C++
3549 member functions, attach them to the type, and then read any tilde
3550 field (baseclass specifier for the class holding the main vtable). */
3551
3552 if (!read_baseclasses (&fi, pp, type, objfile)
3553 || !read_struct_fields (&fi, pp, type, objfile)
3554 || !attach_fields_to_type (&fi, type, objfile)
3555 || !read_member_functions (&fi, pp, type, objfile)
3556 || !attach_fn_fields_to_type (&fi, type)
3557 || !read_tilde_fields (&fi, pp, type, objfile))
3558 {
3559 type = error_type (pp, objfile);
3560 }
3561
3562 do_cleanups (back_to);
3563 return (type);
3564 }
3565
3566 /* Read a definition of an array type,
3567 and create and return a suitable type object.
3568 Also creates a range type which represents the bounds of that
3569 array. */
3570
3571 static struct type *
3572 read_array_type (char **pp, struct type *type,
3573 struct objfile *objfile)
3574 {
3575 struct type *index_type, *element_type, *range_type;
3576 int lower, upper;
3577 int adjustable = 0;
3578 int nbits;
3579
3580 /* Format of an array type:
3581 "ar<index type>;lower;upper;<array_contents_type>".
3582 OS9000: "arlower,upper;<array_contents_type>".
3583
3584 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3585 for these, produce a type like float[][]. */
3586
3587 {
3588 index_type = read_type (pp, objfile);
3589 if (**pp != ';')
3590 /* Improper format of array type decl. */
3591 return error_type (pp, objfile);
3592 ++*pp;
3593 }
3594
3595 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3596 {
3597 (*pp)++;
3598 adjustable = 1;
3599 }
3600 lower = read_huge_number (pp, ';', &nbits, 0);
3601
3602 if (nbits != 0)
3603 return error_type (pp, objfile);
3604
3605 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3606 {
3607 (*pp)++;
3608 adjustable = 1;
3609 }
3610 upper = read_huge_number (pp, ';', &nbits, 0);
3611 if (nbits != 0)
3612 return error_type (pp, objfile);
3613
3614 element_type = read_type (pp, objfile);
3615
3616 if (adjustable)
3617 {
3618 lower = 0;
3619 upper = -1;
3620 }
3621
3622 range_type =
3623 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3624 type = create_array_type (type, element_type, range_type);
3625
3626 return type;
3627 }
3628
3629
3630 /* Read a definition of an enumeration type,
3631 and create and return a suitable type object.
3632 Also defines the symbols that represent the values of the type. */
3633
3634 static struct type *
3635 read_enum_type (char **pp, struct type *type,
3636 struct objfile *objfile)
3637 {
3638 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3639 char *p;
3640 char *name;
3641 long n;
3642 struct symbol *sym;
3643 int nsyms = 0;
3644 struct pending **symlist;
3645 struct pending *osyms, *syms;
3646 int o_nsyms;
3647 int nbits;
3648 int unsigned_enum = 1;
3649
3650 #if 0
3651 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3652 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3653 to do? For now, force all enum values to file scope. */
3654 if (within_function)
3655 symlist = &local_symbols;
3656 else
3657 #endif
3658 symlist = &file_symbols;
3659 osyms = *symlist;
3660 o_nsyms = osyms ? osyms->nsyms : 0;
3661
3662 /* The aix4 compiler emits an extra field before the enum members;
3663 my guess is it's a type of some sort. Just ignore it. */
3664 if (**pp == '-')
3665 {
3666 /* Skip over the type. */
3667 while (**pp != ':')
3668 (*pp)++;
3669
3670 /* Skip over the colon. */
3671 (*pp)++;
3672 }
3673
3674 /* Read the value-names and their values.
3675 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3676 A semicolon or comma instead of a NAME means the end. */
3677 while (**pp && **pp != ';' && **pp != ',')
3678 {
3679 STABS_CONTINUE (pp, objfile);
3680 p = *pp;
3681 while (*p != ':')
3682 p++;
3683 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3684 *pp = p + 1;
3685 n = read_huge_number (pp, ',', &nbits, 0);
3686 if (nbits != 0)
3687 return error_type (pp, objfile);
3688
3689 sym = allocate_symbol (objfile);
3690 SYMBOL_SET_LINKAGE_NAME (sym, name);
3691 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3692 &objfile->objfile_obstack);
3693 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3694 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3695 SYMBOL_VALUE (sym) = n;
3696 if (n < 0)
3697 unsigned_enum = 0;
3698 add_symbol_to_list (sym, symlist);
3699 nsyms++;
3700 }
3701
3702 if (**pp == ';')
3703 (*pp)++; /* Skip the semicolon. */
3704
3705 /* Now fill in the fields of the type-structure. */
3706
3707 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3708 set_length_in_type_chain (type);
3709 TYPE_CODE (type) = TYPE_CODE_ENUM;
3710 TYPE_STUB (type) = 0;
3711 if (unsigned_enum)
3712 TYPE_UNSIGNED (type) = 1;
3713 TYPE_NFIELDS (type) = nsyms;
3714 TYPE_FIELDS (type) = (struct field *)
3715 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3716 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3717
3718 /* Find the symbols for the values and put them into the type.
3719 The symbols can be found in the symlist that we put them on
3720 to cause them to be defined. osyms contains the old value
3721 of that symlist; everything up to there was defined by us. */
3722 /* Note that we preserve the order of the enum constants, so
3723 that in something like "enum {FOO, LAST_THING=FOO}" we print
3724 FOO, not LAST_THING. */
3725
3726 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3727 {
3728 int last = syms == osyms ? o_nsyms : 0;
3729 int j = syms->nsyms;
3730
3731 for (; --j >= last; --n)
3732 {
3733 struct symbol *xsym = syms->symbol[j];
3734
3735 SYMBOL_TYPE (xsym) = type;
3736 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3737 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3738 TYPE_FIELD_BITSIZE (type, n) = 0;
3739 }
3740 if (syms == osyms)
3741 break;
3742 }
3743
3744 return type;
3745 }
3746
3747 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3748 typedefs in every file (for int, long, etc):
3749
3750 type = b <signed> <width> <format type>; <offset>; <nbits>
3751 signed = u or s.
3752 optional format type = c or b for char or boolean.
3753 offset = offset from high order bit to start bit of type.
3754 width is # bytes in object of this type, nbits is # bits in type.
3755
3756 The width/offset stuff appears to be for small objects stored in
3757 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3758 FIXME. */
3759
3760 static struct type *
3761 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3762 {
3763 int type_bits;
3764 int nbits;
3765 int signed_type;
3766 enum type_code code = TYPE_CODE_INT;
3767
3768 switch (**pp)
3769 {
3770 case 's':
3771 signed_type = 1;
3772 break;
3773 case 'u':
3774 signed_type = 0;
3775 break;
3776 default:
3777 return error_type (pp, objfile);
3778 }
3779 (*pp)++;
3780
3781 /* For some odd reason, all forms of char put a c here. This is strange
3782 because no other type has this honor. We can safely ignore this because
3783 we actually determine 'char'acterness by the number of bits specified in
3784 the descriptor.
3785 Boolean forms, e.g Fortran logical*X, put a b here. */
3786
3787 if (**pp == 'c')
3788 (*pp)++;
3789 else if (**pp == 'b')
3790 {
3791 code = TYPE_CODE_BOOL;
3792 (*pp)++;
3793 }
3794
3795 /* The first number appears to be the number of bytes occupied
3796 by this type, except that unsigned short is 4 instead of 2.
3797 Since this information is redundant with the third number,
3798 we will ignore it. */
3799 read_huge_number (pp, ';', &nbits, 0);
3800 if (nbits != 0)
3801 return error_type (pp, objfile);
3802
3803 /* The second number is always 0, so ignore it too. */
3804 read_huge_number (pp, ';', &nbits, 0);
3805 if (nbits != 0)
3806 return error_type (pp, objfile);
3807
3808 /* The third number is the number of bits for this type. */
3809 type_bits = read_huge_number (pp, 0, &nbits, 0);
3810 if (nbits != 0)
3811 return error_type (pp, objfile);
3812 /* The type *should* end with a semicolon. If it are embedded
3813 in a larger type the semicolon may be the only way to know where
3814 the type ends. If this type is at the end of the stabstring we
3815 can deal with the omitted semicolon (but we don't have to like
3816 it). Don't bother to complain(), Sun's compiler omits the semicolon
3817 for "void". */
3818 if (**pp == ';')
3819 ++(*pp);
3820
3821 if (type_bits == 0)
3822 return init_type (TYPE_CODE_VOID, 1,
3823 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3824 objfile);
3825 else
3826 return init_type (code,
3827 type_bits / TARGET_CHAR_BIT,
3828 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3829 objfile);
3830 }
3831
3832 static struct type *
3833 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3834 {
3835 int nbits;
3836 int details;
3837 int nbytes;
3838 struct type *rettype;
3839
3840 /* The first number has more details about the type, for example
3841 FN_COMPLEX. */
3842 details = read_huge_number (pp, ';', &nbits, 0);
3843 if (nbits != 0)
3844 return error_type (pp, objfile);
3845
3846 /* The second number is the number of bytes occupied by this type. */
3847 nbytes = read_huge_number (pp, ';', &nbits, 0);
3848 if (nbits != 0)
3849 return error_type (pp, objfile);
3850
3851 if (details == NF_COMPLEX || details == NF_COMPLEX16
3852 || details == NF_COMPLEX32)
3853 {
3854 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3855 TYPE_TARGET_TYPE (rettype)
3856 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3857 return rettype;
3858 }
3859
3860 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3861 }
3862
3863 /* Read a number from the string pointed to by *PP.
3864 The value of *PP is advanced over the number.
3865 If END is nonzero, the character that ends the
3866 number must match END, or an error happens;
3867 and that character is skipped if it does match.
3868 If END is zero, *PP is left pointing to that character.
3869
3870 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3871 the number is represented in an octal representation, assume that
3872 it is represented in a 2's complement representation with a size of
3873 TWOS_COMPLEMENT_BITS.
3874
3875 If the number fits in a long, set *BITS to 0 and return the value.
3876 If not, set *BITS to be the number of bits in the number and return 0.
3877
3878 If encounter garbage, set *BITS to -1 and return 0. */
3879
3880 static long
3881 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3882 {
3883 char *p = *pp;
3884 int sign = 1;
3885 int sign_bit = 0;
3886 long n = 0;
3887 int radix = 10;
3888 char overflow = 0;
3889 int nbits = 0;
3890 int c;
3891 long upper_limit;
3892 int twos_complement_representation = 0;
3893
3894 if (*p == '-')
3895 {
3896 sign = -1;
3897 p++;
3898 }
3899
3900 /* Leading zero means octal. GCC uses this to output values larger
3901 than an int (because that would be hard in decimal). */
3902 if (*p == '0')
3903 {
3904 radix = 8;
3905 p++;
3906 }
3907
3908 /* Skip extra zeros. */
3909 while (*p == '0')
3910 p++;
3911
3912 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3913 {
3914 /* Octal, possibly signed. Check if we have enough chars for a
3915 negative number. */
3916
3917 size_t len;
3918 char *p1 = p;
3919
3920 while ((c = *p1) >= '0' && c < '8')
3921 p1++;
3922
3923 len = p1 - p;
3924 if (len > twos_complement_bits / 3
3925 || (twos_complement_bits % 3 == 0
3926 && len == twos_complement_bits / 3))
3927 {
3928 /* Ok, we have enough characters for a signed value, check
3929 for signness by testing if the sign bit is set. */
3930 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3931 c = *p - '0';
3932 if (c & (1 << sign_bit))
3933 {
3934 /* Definitely signed. */
3935 twos_complement_representation = 1;
3936 sign = -1;
3937 }
3938 }
3939 }
3940
3941 upper_limit = LONG_MAX / radix;
3942
3943 while ((c = *p++) >= '0' && c < ('0' + radix))
3944 {
3945 if (n <= upper_limit)
3946 {
3947 if (twos_complement_representation)
3948 {
3949 /* Octal, signed, twos complement representation. In
3950 this case, n is the corresponding absolute value. */
3951 if (n == 0)
3952 {
3953 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3954
3955 n = -sn;
3956 }
3957 else
3958 {
3959 n *= radix;
3960 n -= c - '0';
3961 }
3962 }
3963 else
3964 {
3965 /* unsigned representation */
3966 n *= radix;
3967 n += c - '0'; /* FIXME this overflows anyway. */
3968 }
3969 }
3970 else
3971 overflow = 1;
3972
3973 /* This depends on large values being output in octal, which is
3974 what GCC does. */
3975 if (radix == 8)
3976 {
3977 if (nbits == 0)
3978 {
3979 if (c == '0')
3980 /* Ignore leading zeroes. */
3981 ;
3982 else if (c == '1')
3983 nbits = 1;
3984 else if (c == '2' || c == '3')
3985 nbits = 2;
3986 else
3987 nbits = 3;
3988 }
3989 else
3990 nbits += 3;
3991 }
3992 }
3993 if (end)
3994 {
3995 if (c && c != end)
3996 {
3997 if (bits != NULL)
3998 *bits = -1;
3999 return 0;
4000 }
4001 }
4002 else
4003 --p;
4004
4005 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4006 {
4007 /* We were supposed to parse a number with maximum
4008 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4009 if (bits != NULL)
4010 *bits = -1;
4011 return 0;
4012 }
4013
4014 *pp = p;
4015 if (overflow)
4016 {
4017 if (nbits == 0)
4018 {
4019 /* Large decimal constants are an error (because it is hard to
4020 count how many bits are in them). */
4021 if (bits != NULL)
4022 *bits = -1;
4023 return 0;
4024 }
4025
4026 /* -0x7f is the same as 0x80. So deal with it by adding one to
4027 the number of bits. Two's complement represention octals
4028 can't have a '-' in front. */
4029 if (sign == -1 && !twos_complement_representation)
4030 ++nbits;
4031 if (bits)
4032 *bits = nbits;
4033 }
4034 else
4035 {
4036 if (bits)
4037 *bits = 0;
4038 return n * sign;
4039 }
4040 /* It's *BITS which has the interesting information. */
4041 return 0;
4042 }
4043
4044 static struct type *
4045 read_range_type (char **pp, int typenums[2], int type_size,
4046 struct objfile *objfile)
4047 {
4048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4049 char *orig_pp = *pp;
4050 int rangenums[2];
4051 long n2, n3;
4052 int n2bits, n3bits;
4053 int self_subrange;
4054 struct type *result_type;
4055 struct type *index_type = NULL;
4056
4057 /* First comes a type we are a subrange of.
4058 In C it is usually 0, 1 or the type being defined. */
4059 if (read_type_number (pp, rangenums) != 0)
4060 return error_type (pp, objfile);
4061 self_subrange = (rangenums[0] == typenums[0] &&
4062 rangenums[1] == typenums[1]);
4063
4064 if (**pp == '=')
4065 {
4066 *pp = orig_pp;
4067 index_type = read_type (pp, objfile);
4068 }
4069
4070 /* A semicolon should now follow; skip it. */
4071 if (**pp == ';')
4072 (*pp)++;
4073
4074 /* The remaining two operands are usually lower and upper bounds
4075 of the range. But in some special cases they mean something else. */
4076 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4077 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4078
4079 if (n2bits == -1 || n3bits == -1)
4080 return error_type (pp, objfile);
4081
4082 if (index_type)
4083 goto handle_true_range;
4084
4085 /* If limits are huge, must be large integral type. */
4086 if (n2bits != 0 || n3bits != 0)
4087 {
4088 char got_signed = 0;
4089 char got_unsigned = 0;
4090 /* Number of bits in the type. */
4091 int nbits = 0;
4092
4093 /* If a type size attribute has been specified, the bounds of
4094 the range should fit in this size. If the lower bounds needs
4095 more bits than the upper bound, then the type is signed. */
4096 if (n2bits <= type_size && n3bits <= type_size)
4097 {
4098 if (n2bits == type_size && n2bits > n3bits)
4099 got_signed = 1;
4100 else
4101 got_unsigned = 1;
4102 nbits = type_size;
4103 }
4104 /* Range from 0 to <large number> is an unsigned large integral type. */
4105 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4106 {
4107 got_unsigned = 1;
4108 nbits = n3bits;
4109 }
4110 /* Range from <large number> to <large number>-1 is a large signed
4111 integral type. Take care of the case where <large number> doesn't
4112 fit in a long but <large number>-1 does. */
4113 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4114 || (n2bits != 0 && n3bits == 0
4115 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4116 && n3 == LONG_MAX))
4117 {
4118 got_signed = 1;
4119 nbits = n2bits;
4120 }
4121
4122 if (got_signed || got_unsigned)
4123 {
4124 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4125 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4126 objfile);
4127 }
4128 else
4129 return error_type (pp, objfile);
4130 }
4131
4132 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4133 if (self_subrange && n2 == 0 && n3 == 0)
4134 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4135
4136 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4137 is the width in bytes.
4138
4139 Fortran programs appear to use this for complex types also. To
4140 distinguish between floats and complex, g77 (and others?) seem
4141 to use self-subranges for the complexes, and subranges of int for
4142 the floats.
4143
4144 Also note that for complexes, g77 sets n2 to the size of one of
4145 the member floats, not the whole complex beast. My guess is that
4146 this was to work well with pre-COMPLEX versions of gdb. */
4147
4148 if (n3 == 0 && n2 > 0)
4149 {
4150 struct type *float_type
4151 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4152
4153 if (self_subrange)
4154 {
4155 struct type *complex_type =
4156 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4157
4158 TYPE_TARGET_TYPE (complex_type) = float_type;
4159 return complex_type;
4160 }
4161 else
4162 return float_type;
4163 }
4164
4165 /* If the upper bound is -1, it must really be an unsigned integral. */
4166
4167 else if (n2 == 0 && n3 == -1)
4168 {
4169 int bits = type_size;
4170
4171 if (bits <= 0)
4172 {
4173 /* We don't know its size. It is unsigned int or unsigned
4174 long. GCC 2.3.3 uses this for long long too, but that is
4175 just a GDB 3.5 compatibility hack. */
4176 bits = gdbarch_int_bit (gdbarch);
4177 }
4178
4179 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4180 TYPE_FLAG_UNSIGNED, NULL, objfile);
4181 }
4182
4183 /* Special case: char is defined (Who knows why) as a subrange of
4184 itself with range 0-127. */
4185 else if (self_subrange && n2 == 0 && n3 == 127)
4186 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4187
4188 /* We used to do this only for subrange of self or subrange of int. */
4189 else if (n2 == 0)
4190 {
4191 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4192 "unsigned long", and we already checked for that,
4193 so don't need to test for it here. */
4194
4195 if (n3 < 0)
4196 /* n3 actually gives the size. */
4197 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4198 NULL, objfile);
4199
4200 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4201 unsigned n-byte integer. But do require n to be a power of
4202 two; we don't want 3- and 5-byte integers flying around. */
4203 {
4204 int bytes;
4205 unsigned long bits;
4206
4207 bits = n3;
4208 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4209 bits >>= 8;
4210 if (bits == 0
4211 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4212 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4213 objfile);
4214 }
4215 }
4216 /* I think this is for Convex "long long". Since I don't know whether
4217 Convex sets self_subrange, I also accept that particular size regardless
4218 of self_subrange. */
4219 else if (n3 == 0 && n2 < 0
4220 && (self_subrange
4221 || n2 == -gdbarch_long_long_bit
4222 (gdbarch) / TARGET_CHAR_BIT))
4223 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4224 else if (n2 == -n3 - 1)
4225 {
4226 if (n3 == 0x7f)
4227 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4228 if (n3 == 0x7fff)
4229 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4230 if (n3 == 0x7fffffff)
4231 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4232 }
4233
4234 /* We have a real range type on our hands. Allocate space and
4235 return a real pointer. */
4236 handle_true_range:
4237
4238 if (self_subrange)
4239 index_type = objfile_type (objfile)->builtin_int;
4240 else
4241 index_type = *dbx_lookup_type (rangenums, objfile);
4242 if (index_type == NULL)
4243 {
4244 /* Does this actually ever happen? Is that why we are worrying
4245 about dealing with it rather than just calling error_type? */
4246
4247 complaint (&symfile_complaints,
4248 _("base type %d of range type is not defined"), rangenums[1]);
4249
4250 index_type = objfile_type (objfile)->builtin_int;
4251 }
4252
4253 result_type
4254 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4255 return (result_type);
4256 }
4257
4258 /* Read in an argument list. This is a list of types, separated by commas
4259 and terminated with END. Return the list of types read in, or NULL
4260 if there is an error. */
4261
4262 static struct field *
4263 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4264 int *varargsp)
4265 {
4266 /* FIXME! Remove this arbitrary limit! */
4267 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4268 int n = 0, i;
4269 struct field *rval;
4270
4271 while (**pp != end)
4272 {
4273 if (**pp != ',')
4274 /* Invalid argument list: no ','. */
4275 return NULL;
4276 (*pp)++;
4277 STABS_CONTINUE (pp, objfile);
4278 types[n++] = read_type (pp, objfile);
4279 }
4280 (*pp)++; /* get past `end' (the ':' character). */
4281
4282 if (n == 0)
4283 {
4284 /* We should read at least the THIS parameter here. Some broken stabs
4285 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4286 have been present ";-16,(0,43)" reference instead. This way the
4287 excessive ";" marker prematurely stops the parameters parsing. */
4288
4289 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4290 *varargsp = 0;
4291 }
4292 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4293 *varargsp = 1;
4294 else
4295 {
4296 n--;
4297 *varargsp = 0;
4298 }
4299
4300 rval = XCNEWVEC (struct field, n);
4301 for (i = 0; i < n; i++)
4302 rval[i].type = types[i];
4303 *nargsp = n;
4304 return rval;
4305 }
4306 \f
4307 /* Common block handling. */
4308
4309 /* List of symbols declared since the last BCOMM. This list is a tail
4310 of local_symbols. When ECOMM is seen, the symbols on the list
4311 are noted so their proper addresses can be filled in later,
4312 using the common block base address gotten from the assembler
4313 stabs. */
4314
4315 static struct pending *common_block;
4316 static int common_block_i;
4317
4318 /* Name of the current common block. We get it from the BCOMM instead of the
4319 ECOMM to match IBM documentation (even though IBM puts the name both places
4320 like everyone else). */
4321 static char *common_block_name;
4322
4323 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4324 to remain after this function returns. */
4325
4326 void
4327 common_block_start (char *name, struct objfile *objfile)
4328 {
4329 if (common_block_name != NULL)
4330 {
4331 complaint (&symfile_complaints,
4332 _("Invalid symbol data: common block within common block"));
4333 }
4334 common_block = local_symbols;
4335 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4336 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4337 strlen (name));
4338 }
4339
4340 /* Process a N_ECOMM symbol. */
4341
4342 void
4343 common_block_end (struct objfile *objfile)
4344 {
4345 /* Symbols declared since the BCOMM are to have the common block
4346 start address added in when we know it. common_block and
4347 common_block_i point to the first symbol after the BCOMM in
4348 the local_symbols list; copy the list and hang it off the
4349 symbol for the common block name for later fixup. */
4350 int i;
4351 struct symbol *sym;
4352 struct pending *newobj = 0;
4353 struct pending *next;
4354 int j;
4355
4356 if (common_block_name == NULL)
4357 {
4358 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4359 return;
4360 }
4361
4362 sym = allocate_symbol (objfile);
4363 /* Note: common_block_name already saved on objfile_obstack. */
4364 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4365 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4366
4367 /* Now we copy all the symbols which have been defined since the BCOMM. */
4368
4369 /* Copy all the struct pendings before common_block. */
4370 for (next = local_symbols;
4371 next != NULL && next != common_block;
4372 next = next->next)
4373 {
4374 for (j = 0; j < next->nsyms; j++)
4375 add_symbol_to_list (next->symbol[j], &newobj);
4376 }
4377
4378 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4379 NULL, it means copy all the local symbols (which we already did
4380 above). */
4381
4382 if (common_block != NULL)
4383 for (j = common_block_i; j < common_block->nsyms; j++)
4384 add_symbol_to_list (common_block->symbol[j], &newobj);
4385
4386 SYMBOL_TYPE (sym) = (struct type *) newobj;
4387
4388 /* Should we be putting local_symbols back to what it was?
4389 Does it matter? */
4390
4391 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4392 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4393 global_sym_chain[i] = sym;
4394 common_block_name = NULL;
4395 }
4396
4397 /* Add a common block's start address to the offset of each symbol
4398 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4399 the common block name). */
4400
4401 static void
4402 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4403 {
4404 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4405
4406 for (; next; next = next->next)
4407 {
4408 int j;
4409
4410 for (j = next->nsyms - 1; j >= 0; j--)
4411 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4412 }
4413 }
4414 \f
4415
4416
4417 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4418 See add_undefined_type for more details. */
4419
4420 static void
4421 add_undefined_type_noname (struct type *type, int typenums[2])
4422 {
4423 struct nat nat;
4424
4425 nat.typenums[0] = typenums [0];
4426 nat.typenums[1] = typenums [1];
4427 nat.type = type;
4428
4429 if (noname_undefs_length == noname_undefs_allocated)
4430 {
4431 noname_undefs_allocated *= 2;
4432 noname_undefs = (struct nat *)
4433 xrealloc ((char *) noname_undefs,
4434 noname_undefs_allocated * sizeof (struct nat));
4435 }
4436 noname_undefs[noname_undefs_length++] = nat;
4437 }
4438
4439 /* Add TYPE to the UNDEF_TYPES vector.
4440 See add_undefined_type for more details. */
4441
4442 static void
4443 add_undefined_type_1 (struct type *type)
4444 {
4445 if (undef_types_length == undef_types_allocated)
4446 {
4447 undef_types_allocated *= 2;
4448 undef_types = (struct type **)
4449 xrealloc ((char *) undef_types,
4450 undef_types_allocated * sizeof (struct type *));
4451 }
4452 undef_types[undef_types_length++] = type;
4453 }
4454
4455 /* What about types defined as forward references inside of a small lexical
4456 scope? */
4457 /* Add a type to the list of undefined types to be checked through
4458 once this file has been read in.
4459
4460 In practice, we actually maintain two such lists: The first list
4461 (UNDEF_TYPES) is used for types whose name has been provided, and
4462 concerns forward references (eg 'xs' or 'xu' forward references);
4463 the second list (NONAME_UNDEFS) is used for types whose name is
4464 unknown at creation time, because they were referenced through
4465 their type number before the actual type was declared.
4466 This function actually adds the given type to the proper list. */
4467
4468 static void
4469 add_undefined_type (struct type *type, int typenums[2])
4470 {
4471 if (TYPE_TAG_NAME (type) == NULL)
4472 add_undefined_type_noname (type, typenums);
4473 else
4474 add_undefined_type_1 (type);
4475 }
4476
4477 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4478
4479 static void
4480 cleanup_undefined_types_noname (struct objfile *objfile)
4481 {
4482 int i;
4483
4484 for (i = 0; i < noname_undefs_length; i++)
4485 {
4486 struct nat nat = noname_undefs[i];
4487 struct type **type;
4488
4489 type = dbx_lookup_type (nat.typenums, objfile);
4490 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4491 {
4492 /* The instance flags of the undefined type are still unset,
4493 and needs to be copied over from the reference type.
4494 Since replace_type expects them to be identical, we need
4495 to set these flags manually before hand. */
4496 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4497 replace_type (nat.type, *type);
4498 }
4499 }
4500
4501 noname_undefs_length = 0;
4502 }
4503
4504 /* Go through each undefined type, see if it's still undefined, and fix it
4505 up if possible. We have two kinds of undefined types:
4506
4507 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4508 Fix: update array length using the element bounds
4509 and the target type's length.
4510 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4511 yet defined at the time a pointer to it was made.
4512 Fix: Do a full lookup on the struct/union tag. */
4513
4514 static void
4515 cleanup_undefined_types_1 (void)
4516 {
4517 struct type **type;
4518
4519 /* Iterate over every undefined type, and look for a symbol whose type
4520 matches our undefined type. The symbol matches if:
4521 1. It is a typedef in the STRUCT domain;
4522 2. It has the same name, and same type code;
4523 3. The instance flags are identical.
4524
4525 It is important to check the instance flags, because we have seen
4526 examples where the debug info contained definitions such as:
4527
4528 "foo_t:t30=B31=xefoo_t:"
4529
4530 In this case, we have created an undefined type named "foo_t" whose
4531 instance flags is null (when processing "xefoo_t"), and then created
4532 another type with the same name, but with different instance flags
4533 ('B' means volatile). I think that the definition above is wrong,
4534 since the same type cannot be volatile and non-volatile at the same
4535 time, but we need to be able to cope with it when it happens. The
4536 approach taken here is to treat these two types as different. */
4537
4538 for (type = undef_types; type < undef_types + undef_types_length; type++)
4539 {
4540 switch (TYPE_CODE (*type))
4541 {
4542
4543 case TYPE_CODE_STRUCT:
4544 case TYPE_CODE_UNION:
4545 case TYPE_CODE_ENUM:
4546 {
4547 /* Check if it has been defined since. Need to do this here
4548 as well as in check_typedef to deal with the (legitimate in
4549 C though not C++) case of several types with the same name
4550 in different source files. */
4551 if (TYPE_STUB (*type))
4552 {
4553 struct pending *ppt;
4554 int i;
4555 /* Name of the type, without "struct" or "union". */
4556 const char *type_name = TYPE_TAG_NAME (*type);
4557
4558 if (type_name == NULL)
4559 {
4560 complaint (&symfile_complaints, _("need a type name"));
4561 break;
4562 }
4563 for (ppt = file_symbols; ppt; ppt = ppt->next)
4564 {
4565 for (i = 0; i < ppt->nsyms; i++)
4566 {
4567 struct symbol *sym = ppt->symbol[i];
4568
4569 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4570 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4571 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4572 TYPE_CODE (*type))
4573 && (TYPE_INSTANCE_FLAGS (*type) ==
4574 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4575 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4576 type_name) == 0)
4577 replace_type (*type, SYMBOL_TYPE (sym));
4578 }
4579 }
4580 }
4581 }
4582 break;
4583
4584 default:
4585 {
4586 complaint (&symfile_complaints,
4587 _("forward-referenced types left unresolved, "
4588 "type code %d."),
4589 TYPE_CODE (*type));
4590 }
4591 break;
4592 }
4593 }
4594
4595 undef_types_length = 0;
4596 }
4597
4598 /* Try to fix all the undefined types we ecountered while processing
4599 this unit. */
4600
4601 void
4602 cleanup_undefined_stabs_types (struct objfile *objfile)
4603 {
4604 cleanup_undefined_types_1 ();
4605 cleanup_undefined_types_noname (objfile);
4606 }
4607
4608 /* Scan through all of the global symbols defined in the object file,
4609 assigning values to the debugging symbols that need to be assigned
4610 to. Get these symbols from the minimal symbol table. */
4611
4612 void
4613 scan_file_globals (struct objfile *objfile)
4614 {
4615 int hash;
4616 struct minimal_symbol *msymbol;
4617 struct symbol *sym, *prev;
4618 struct objfile *resolve_objfile;
4619
4620 /* SVR4 based linkers copy referenced global symbols from shared
4621 libraries to the main executable.
4622 If we are scanning the symbols for a shared library, try to resolve
4623 them from the minimal symbols of the main executable first. */
4624
4625 if (symfile_objfile && objfile != symfile_objfile)
4626 resolve_objfile = symfile_objfile;
4627 else
4628 resolve_objfile = objfile;
4629
4630 while (1)
4631 {
4632 /* Avoid expensive loop through all minimal symbols if there are
4633 no unresolved symbols. */
4634 for (hash = 0; hash < HASHSIZE; hash++)
4635 {
4636 if (global_sym_chain[hash])
4637 break;
4638 }
4639 if (hash >= HASHSIZE)
4640 return;
4641
4642 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4643 {
4644 QUIT;
4645
4646 /* Skip static symbols. */
4647 switch (MSYMBOL_TYPE (msymbol))
4648 {
4649 case mst_file_text:
4650 case mst_file_data:
4651 case mst_file_bss:
4652 continue;
4653 default:
4654 break;
4655 }
4656
4657 prev = NULL;
4658
4659 /* Get the hash index and check all the symbols
4660 under that hash index. */
4661
4662 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4663
4664 for (sym = global_sym_chain[hash]; sym;)
4665 {
4666 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4667 SYMBOL_LINKAGE_NAME (sym)) == 0)
4668 {
4669 /* Splice this symbol out of the hash chain and
4670 assign the value we have to it. */
4671 if (prev)
4672 {
4673 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4674 }
4675 else
4676 {
4677 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4678 }
4679
4680 /* Check to see whether we need to fix up a common block. */
4681 /* Note: this code might be executed several times for
4682 the same symbol if there are multiple references. */
4683 if (sym)
4684 {
4685 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4686 {
4687 fix_common_block (sym,
4688 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4689 msymbol));
4690 }
4691 else
4692 {
4693 SYMBOL_VALUE_ADDRESS (sym)
4694 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4695 }
4696 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4697 }
4698
4699 if (prev)
4700 {
4701 sym = SYMBOL_VALUE_CHAIN (prev);
4702 }
4703 else
4704 {
4705 sym = global_sym_chain[hash];
4706 }
4707 }
4708 else
4709 {
4710 prev = sym;
4711 sym = SYMBOL_VALUE_CHAIN (sym);
4712 }
4713 }
4714 }
4715 if (resolve_objfile == objfile)
4716 break;
4717 resolve_objfile = objfile;
4718 }
4719
4720 /* Change the storage class of any remaining unresolved globals to
4721 LOC_UNRESOLVED and remove them from the chain. */
4722 for (hash = 0; hash < HASHSIZE; hash++)
4723 {
4724 sym = global_sym_chain[hash];
4725 while (sym)
4726 {
4727 prev = sym;
4728 sym = SYMBOL_VALUE_CHAIN (sym);
4729
4730 /* Change the symbol address from the misleading chain value
4731 to address zero. */
4732 SYMBOL_VALUE_ADDRESS (prev) = 0;
4733
4734 /* Complain about unresolved common block symbols. */
4735 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4736 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4737 else
4738 complaint (&symfile_complaints,
4739 _("%s: common block `%s' from "
4740 "global_sym_chain unresolved"),
4741 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4742 }
4743 }
4744 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4745 }
4746
4747 /* Initialize anything that needs initializing when starting to read
4748 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4749 to a psymtab. */
4750
4751 void
4752 stabsread_init (void)
4753 {
4754 }
4755
4756 /* Initialize anything that needs initializing when a completely new
4757 symbol file is specified (not just adding some symbols from another
4758 file, e.g. a shared library). */
4759
4760 void
4761 stabsread_new_init (void)
4762 {
4763 /* Empty the hash table of global syms looking for values. */
4764 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4765 }
4766
4767 /* Initialize anything that needs initializing at the same time as
4768 start_symtab() is called. */
4769
4770 void
4771 start_stabs (void)
4772 {
4773 global_stabs = NULL; /* AIX COFF */
4774 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4775 n_this_object_header_files = 1;
4776 type_vector_length = 0;
4777 type_vector = (struct type **) 0;
4778
4779 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4780 common_block_name = NULL;
4781 }
4782
4783 /* Call after end_symtab(). */
4784
4785 void
4786 end_stabs (void)
4787 {
4788 if (type_vector)
4789 {
4790 xfree (type_vector);
4791 }
4792 type_vector = 0;
4793 type_vector_length = 0;
4794 previous_stab_code = 0;
4795 }
4796
4797 void
4798 finish_global_stabs (struct objfile *objfile)
4799 {
4800 if (global_stabs)
4801 {
4802 patch_block_stabs (global_symbols, global_stabs, objfile);
4803 xfree (global_stabs);
4804 global_stabs = NULL;
4805 }
4806 }
4807
4808 /* Find the end of the name, delimited by a ':', but don't match
4809 ObjC symbols which look like -[Foo bar::]:bla. */
4810 static char *
4811 find_name_end (char *name)
4812 {
4813 char *s = name;
4814
4815 if (s[0] == '-' || *s == '+')
4816 {
4817 /* Must be an ObjC method symbol. */
4818 if (s[1] != '[')
4819 {
4820 error (_("invalid symbol name \"%s\""), name);
4821 }
4822 s = strchr (s, ']');
4823 if (s == NULL)
4824 {
4825 error (_("invalid symbol name \"%s\""), name);
4826 }
4827 return strchr (s, ':');
4828 }
4829 else
4830 {
4831 return strchr (s, ':');
4832 }
4833 }
4834
4835 /* Initializer for this module. */
4836
4837 void
4838 _initialize_stabsread (void)
4839 {
4840 rs6000_builtin_type_data = register_objfile_data ();
4841
4842 undef_types_allocated = 20;
4843 undef_types_length = 0;
4844 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4845
4846 noname_undefs_allocated = 20;
4847 noname_undefs_length = 0;
4848 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4849
4850 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4851 &stab_register_funcs);
4852 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4853 &stab_register_funcs);
4854 }