]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stap-probe.c
Fix PR breakpoints/16889: gdb segfaults when printing ASM SDT arguments
[thirdparty/binutils-gdb.git] / gdb / stap-probe.c
1 /* SystemTap probe support for GDB.
2
3 Copyright (C) 2012-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "stap-probe.h"
22 #include "probe.h"
23 #include "vec.h"
24 #include "ui-out.h"
25 #include "objfiles.h"
26 #include "arch-utils.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "filenames.h"
30 #include "value.h"
31 #include "exceptions.h"
32 #include "ax.h"
33 #include "ax-gdb.h"
34 #include "complaints.h"
35 #include "cli/cli-utils.h"
36 #include "linespec.h"
37 #include "user-regs.h"
38 #include "parser-defs.h"
39 #include "language.h"
40 #include "elf-bfd.h"
41
42 #include <ctype.h>
43
44 /* The name of the SystemTap section where we will find information about
45 the probes. */
46
47 #define STAP_BASE_SECTION_NAME ".stapsdt.base"
48
49 /* Forward declaration. */
50
51 static const struct probe_ops stap_probe_ops;
52
53 /* Should we display debug information for the probe's argument expression
54 parsing? */
55
56 static unsigned int stap_expression_debug = 0;
57
58 /* The various possibilities of bitness defined for a probe's argument.
59
60 The relationship is:
61
62 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
63 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
64 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
65 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
66 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
67
68 enum stap_arg_bitness
69 {
70 STAP_ARG_BITNESS_UNDEFINED,
71 STAP_ARG_BITNESS_32BIT_UNSIGNED,
72 STAP_ARG_BITNESS_32BIT_SIGNED,
73 STAP_ARG_BITNESS_64BIT_UNSIGNED,
74 STAP_ARG_BITNESS_64BIT_SIGNED,
75 };
76
77 /* The following structure represents a single argument for the probe. */
78
79 struct stap_probe_arg
80 {
81 /* The bitness of this argument. */
82 enum stap_arg_bitness bitness;
83
84 /* The corresponding `struct type *' to the bitness. */
85 struct type *atype;
86
87 /* The argument converted to an internal GDB expression. */
88 struct expression *aexpr;
89 };
90
91 typedef struct stap_probe_arg stap_probe_arg_s;
92 DEF_VEC_O (stap_probe_arg_s);
93
94 struct stap_probe
95 {
96 /* Generic information about the probe. This shall be the first element
97 of this struct, in order to maintain binary compatibility with the
98 `struct probe' and be able to fully abstract it. */
99 struct probe p;
100
101 /* If the probe has a semaphore associated, then this is the value of
102 it, relative to SECT_OFF_DATA. */
103 CORE_ADDR sem_addr;
104
105 /* One if the arguments have been parsed. */
106 unsigned int args_parsed : 1;
107
108 union
109 {
110 const char *text;
111
112 /* Information about each argument. This is an array of `stap_probe_arg',
113 with each entry representing one argument. */
114 VEC (stap_probe_arg_s) *vec;
115 }
116 args_u;
117 };
118
119 /* When parsing the arguments, we have to establish different precedences
120 for the various kinds of asm operators. This enumeration represents those
121 precedences.
122
123 This logic behind this is available at
124 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
125 the command "info '(as)Infix Ops'". */
126
127 enum stap_operand_prec
128 {
129 /* Lowest precedence, used for non-recognized operands or for the beginning
130 of the parsing process. */
131 STAP_OPERAND_PREC_NONE = 0,
132
133 /* Precedence of logical OR. */
134 STAP_OPERAND_PREC_LOGICAL_OR,
135
136 /* Precedence of logical AND. */
137 STAP_OPERAND_PREC_LOGICAL_AND,
138
139 /* Precedence of additive (plus, minus) and comparative (equal, less,
140 greater-than, etc) operands. */
141 STAP_OPERAND_PREC_ADD_CMP,
142
143 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
144 logical NOT). */
145 STAP_OPERAND_PREC_BITWISE,
146
147 /* Precedence of multiplicative operands (multiplication, division,
148 remainder, left shift and right shift). */
149 STAP_OPERAND_PREC_MUL
150 };
151
152 static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
153 enum stap_operand_prec prec);
154
155 static void stap_parse_argument_conditionally (struct stap_parse_info *p);
156
157 /* Returns 1 if *S is an operator, zero otherwise. */
158
159 static int stap_is_operator (const char *op);
160
161 static void
162 show_stapexpressiondebug (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164 {
165 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
166 value);
167 }
168
169 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
170 if the operator code was not recognized. */
171
172 static enum stap_operand_prec
173 stap_get_operator_prec (enum exp_opcode op)
174 {
175 switch (op)
176 {
177 case BINOP_LOGICAL_OR:
178 return STAP_OPERAND_PREC_LOGICAL_OR;
179
180 case BINOP_LOGICAL_AND:
181 return STAP_OPERAND_PREC_LOGICAL_AND;
182
183 case BINOP_ADD:
184 case BINOP_SUB:
185 case BINOP_EQUAL:
186 case BINOP_NOTEQUAL:
187 case BINOP_LESS:
188 case BINOP_LEQ:
189 case BINOP_GTR:
190 case BINOP_GEQ:
191 return STAP_OPERAND_PREC_ADD_CMP;
192
193 case BINOP_BITWISE_IOR:
194 case BINOP_BITWISE_AND:
195 case BINOP_BITWISE_XOR:
196 case UNOP_LOGICAL_NOT:
197 return STAP_OPERAND_PREC_BITWISE;
198
199 case BINOP_MUL:
200 case BINOP_DIV:
201 case BINOP_REM:
202 case BINOP_LSH:
203 case BINOP_RSH:
204 return STAP_OPERAND_PREC_MUL;
205
206 default:
207 return STAP_OPERAND_PREC_NONE;
208 }
209 }
210
211 /* Given S, read the operator in it and fills the OP pointer with its code.
212 Return 1 on success, zero if the operator was not recognized. */
213
214 static enum exp_opcode
215 stap_get_opcode (const char **s)
216 {
217 const char c = **s;
218 enum exp_opcode op;
219
220 *s += 1;
221
222 switch (c)
223 {
224 case '*':
225 op = BINOP_MUL;
226 break;
227
228 case '/':
229 op = BINOP_DIV;
230 break;
231
232 case '%':
233 op = BINOP_REM;
234 break;
235
236 case '<':
237 op = BINOP_LESS;
238 if (**s == '<')
239 {
240 *s += 1;
241 op = BINOP_LSH;
242 }
243 else if (**s == '=')
244 {
245 *s += 1;
246 op = BINOP_LEQ;
247 }
248 else if (**s == '>')
249 {
250 *s += 1;
251 op = BINOP_NOTEQUAL;
252 }
253 break;
254
255 case '>':
256 op = BINOP_GTR;
257 if (**s == '>')
258 {
259 *s += 1;
260 op = BINOP_RSH;
261 }
262 else if (**s == '=')
263 {
264 *s += 1;
265 op = BINOP_GEQ;
266 }
267 break;
268
269 case '|':
270 op = BINOP_BITWISE_IOR;
271 if (**s == '|')
272 {
273 *s += 1;
274 op = BINOP_LOGICAL_OR;
275 }
276 break;
277
278 case '&':
279 op = BINOP_BITWISE_AND;
280 if (**s == '&')
281 {
282 *s += 1;
283 op = BINOP_LOGICAL_AND;
284 }
285 break;
286
287 case '^':
288 op = BINOP_BITWISE_XOR;
289 break;
290
291 case '!':
292 op = UNOP_LOGICAL_NOT;
293 break;
294
295 case '+':
296 op = BINOP_ADD;
297 break;
298
299 case '-':
300 op = BINOP_SUB;
301 break;
302
303 case '=':
304 gdb_assert (**s == '=');
305 op = BINOP_EQUAL;
306 break;
307
308 default:
309 internal_error (__FILE__, __LINE__,
310 _("Invalid opcode in expression `%s' for SystemTap"
311 "probe"), *s);
312 }
313
314 return op;
315 }
316
317 /* Given the bitness of the argument, represented by B, return the
318 corresponding `struct type *'. */
319
320 static struct type *
321 stap_get_expected_argument_type (struct gdbarch *gdbarch,
322 enum stap_arg_bitness b)
323 {
324 switch (b)
325 {
326 case STAP_ARG_BITNESS_UNDEFINED:
327 if (gdbarch_addr_bit (gdbarch) == 32)
328 return builtin_type (gdbarch)->builtin_uint32;
329 else
330 return builtin_type (gdbarch)->builtin_uint64;
331
332 case STAP_ARG_BITNESS_32BIT_SIGNED:
333 return builtin_type (gdbarch)->builtin_int32;
334
335 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
336 return builtin_type (gdbarch)->builtin_uint32;
337
338 case STAP_ARG_BITNESS_64BIT_SIGNED:
339 return builtin_type (gdbarch)->builtin_int64;
340
341 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
342 return builtin_type (gdbarch)->builtin_uint64;
343
344 default:
345 internal_error (__FILE__, __LINE__,
346 _("Undefined bitness for probe."));
347 break;
348 }
349 }
350
351 /* Helper function to check for a generic list of prefixes. GDBARCH
352 is the current gdbarch being used. S is the expression being
353 analyzed. If R is not NULL, it will be used to return the found
354 prefix. PREFIXES is the list of expected prefixes.
355
356 This function does a case-insensitive match.
357
358 Return 1 if any prefix has been found, zero otherwise. */
359
360 static int
361 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
362 const char **r, const char *const *prefixes)
363 {
364 const char *const *p;
365
366 if (prefixes == NULL)
367 {
368 if (r != NULL)
369 *r = "";
370
371 return 1;
372 }
373
374 for (p = prefixes; *p != NULL; ++p)
375 if (strncasecmp (s, *p, strlen (*p)) == 0)
376 {
377 if (r != NULL)
378 *r = *p;
379
380 return 1;
381 }
382
383 return 0;
384 }
385
386 /* Return 1 if S points to a register prefix, zero otherwise. For a
387 description of the arguments, look at stap_is_generic_prefix. */
388
389 static int
390 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
391 const char **r)
392 {
393 const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
394
395 return stap_is_generic_prefix (gdbarch, s, r, t);
396 }
397
398 /* Return 1 if S points to a register indirection prefix, zero
399 otherwise. For a description of the arguments, look at
400 stap_is_generic_prefix. */
401
402 static int
403 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
404 const char **r)
405 {
406 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
407
408 return stap_is_generic_prefix (gdbarch, s, r, t);
409 }
410
411 /* Return 1 if S points to an integer prefix, zero otherwise. For a
412 description of the arguments, look at stap_is_generic_prefix.
413
414 This function takes care of analyzing whether we are dealing with
415 an expected integer prefix, or, if there is no integer prefix to be
416 expected, whether we are dealing with a digit. It does a
417 case-insensitive match. */
418
419 static int
420 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
421 const char **r)
422 {
423 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
424 const char *const *p;
425
426 if (t == NULL)
427 {
428 /* A NULL value here means that integers do not have a prefix.
429 We just check for a digit then. */
430 if (r != NULL)
431 *r = "";
432
433 return isdigit (*s);
434 }
435
436 for (p = t; *p != NULL; ++p)
437 {
438 size_t len = strlen (*p);
439
440 if ((len == 0 && isdigit (*s))
441 || (len > 0 && strncasecmp (s, *p, len) == 0))
442 {
443 /* Integers may or may not have a prefix. The "len == 0"
444 check covers the case when integers do not have a prefix
445 (therefore, we just check if we have a digit). The call
446 to "strncasecmp" covers the case when they have a
447 prefix. */
448 if (r != NULL)
449 *r = *p;
450
451 return 1;
452 }
453 }
454
455 return 0;
456 }
457
458 /* Helper function to check for a generic list of suffixes. If we are
459 not expecting any suffixes, then it just returns 1. If we are
460 expecting at least one suffix, then it returns 1 if a suffix has
461 been found, zero otherwise. GDBARCH is the current gdbarch being
462 used. S is the expression being analyzed. If R is not NULL, it
463 will be used to return the found suffix. SUFFIXES is the list of
464 expected suffixes. This function does a case-insensitive
465 match. */
466
467 static int
468 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
469 const char **r, const char *const *suffixes)
470 {
471 const char *const *p;
472 int found = 0;
473
474 if (suffixes == NULL)
475 {
476 if (r != NULL)
477 *r = "";
478
479 return 1;
480 }
481
482 for (p = suffixes; *p != NULL; ++p)
483 if (strncasecmp (s, *p, strlen (*p)) == 0)
484 {
485 if (r != NULL)
486 *r = *p;
487
488 found = 1;
489 break;
490 }
491
492 return found;
493 }
494
495 /* Return 1 if S points to an integer suffix, zero otherwise. For a
496 description of the arguments, look at
497 stap_generic_check_suffix. */
498
499 static int
500 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
501 const char **r)
502 {
503 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
504
505 return stap_generic_check_suffix (gdbarch, s, r, p);
506 }
507
508 /* Return 1 if S points to a register suffix, zero otherwise. For a
509 description of the arguments, look at
510 stap_generic_check_suffix. */
511
512 static int
513 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
514 const char **r)
515 {
516 const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
517
518 return stap_generic_check_suffix (gdbarch, s, r, p);
519 }
520
521 /* Return 1 if S points to a register indirection suffix, zero
522 otherwise. For a description of the arguments, look at
523 stap_generic_check_suffix. */
524
525 static int
526 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
527 const char **r)
528 {
529 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
530
531 return stap_generic_check_suffix (gdbarch, s, r, p);
532 }
533
534 /* Function responsible for parsing a register operand according to
535 SystemTap parlance. Assuming:
536
537 RP = register prefix
538 RS = register suffix
539 RIP = register indirection prefix
540 RIS = register indirection suffix
541
542 Then a register operand can be:
543
544 [RIP] [RP] REGISTER [RS] [RIS]
545
546 This function takes care of a register's indirection, displacement and
547 direct access. It also takes into consideration the fact that some
548 registers are named differently inside and outside GDB, e.g., PPC's
549 general-purpose registers are represented by integers in the assembly
550 language (e.g., `15' is the 15th general-purpose register), but inside
551 GDB they have a prefix (the letter `r') appended. */
552
553 static void
554 stap_parse_register_operand (struct stap_parse_info *p)
555 {
556 /* Simple flag to indicate whether we have seen a minus signal before
557 certain number. */
558 int got_minus = 0;
559 /* Flags to indicate whether this register access is being displaced and/or
560 indirected. */
561 int disp_p = 0, indirect_p = 0;
562 struct gdbarch *gdbarch = p->gdbarch;
563 /* Needed to generate the register name as a part of an expression. */
564 struct stoken str;
565 /* Variables used to extract the register name from the probe's
566 argument. */
567 const char *start;
568 char *regname;
569 int len;
570 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
571 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
572 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
573 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
574 const char *reg_prefix;
575 const char *reg_ind_prefix;
576 const char *reg_suffix;
577 const char *reg_ind_suffix;
578
579 /* Checking for a displacement argument. */
580 if (*p->arg == '+')
581 {
582 /* If it's a plus sign, we don't need to do anything, just advance the
583 pointer. */
584 ++p->arg;
585 }
586
587 if (*p->arg == '-')
588 {
589 got_minus = 1;
590 ++p->arg;
591 }
592
593 if (isdigit (*p->arg))
594 {
595 /* The value of the displacement. */
596 long displacement;
597 char *endp;
598
599 disp_p = 1;
600 displacement = strtol (p->arg, &endp, 10);
601 p->arg = endp;
602
603 /* Generating the expression for the displacement. */
604 write_exp_elt_opcode (&p->pstate, OP_LONG);
605 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
606 write_exp_elt_longcst (&p->pstate, displacement);
607 write_exp_elt_opcode (&p->pstate, OP_LONG);
608 if (got_minus)
609 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
610 }
611
612 /* Getting rid of register indirection prefix. */
613 if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
614 {
615 indirect_p = 1;
616 p->arg += strlen (reg_ind_prefix);
617 }
618
619 if (disp_p && !indirect_p)
620 error (_("Invalid register displacement syntax on expression `%s'."),
621 p->saved_arg);
622
623 /* Getting rid of register prefix. */
624 if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
625 p->arg += strlen (reg_prefix);
626
627 /* Now we should have only the register name. Let's extract it and get
628 the associated number. */
629 start = p->arg;
630
631 /* We assume the register name is composed by letters and numbers. */
632 while (isalnum (*p->arg))
633 ++p->arg;
634
635 len = p->arg - start;
636
637 regname = alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
638 regname[0] = '\0';
639
640 /* We only add the GDB's register prefix/suffix if we are dealing with
641 a numeric register. */
642 if (gdb_reg_prefix && isdigit (*start))
643 {
644 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
645 strncpy (regname + gdb_reg_prefix_len, start, len);
646
647 if (gdb_reg_suffix)
648 strncpy (regname + gdb_reg_prefix_len + len,
649 gdb_reg_suffix, gdb_reg_suffix_len);
650
651 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
652 }
653 else
654 strncpy (regname, start, len);
655
656 regname[len] = '\0';
657
658 /* Is this a valid register name? */
659 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
660 error (_("Invalid register name `%s' on expression `%s'."),
661 regname, p->saved_arg);
662
663 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
664 str.ptr = regname;
665 str.length = len;
666 write_exp_string (&p->pstate, str);
667 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
668
669 if (indirect_p)
670 {
671 if (disp_p)
672 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
673
674 /* Casting to the expected type. */
675 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
676 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
677 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
678
679 write_exp_elt_opcode (&p->pstate, UNOP_IND);
680 }
681
682 /* Getting rid of the register name suffix. */
683 if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
684 p->arg += strlen (reg_suffix);
685 else
686 error (_("Missing register name suffix on expression `%s'."),
687 p->saved_arg);
688
689 /* Getting rid of the register indirection suffix. */
690 if (indirect_p)
691 {
692 if (stap_check_register_indirection_suffix (gdbarch, p->arg,
693 &reg_ind_suffix))
694 p->arg += strlen (reg_ind_suffix);
695 else
696 error (_("Missing indirection suffix on expression `%s'."),
697 p->saved_arg);
698 }
699 }
700
701 /* This function is responsible for parsing a single operand.
702
703 A single operand can be:
704
705 - an unary operation (e.g., `-5', `~2', or even with subexpressions
706 like `-(2 + 1)')
707 - a register displacement, which will be treated as a register
708 operand (e.g., `-4(%eax)' on x86)
709 - a numeric constant, or
710 - a register operand (see function `stap_parse_register_operand')
711
712 The function also calls special-handling functions to deal with
713 unrecognized operands, allowing arch-specific parsers to be
714 created. */
715
716 static void
717 stap_parse_single_operand (struct stap_parse_info *p)
718 {
719 struct gdbarch *gdbarch = p->gdbarch;
720 const char *int_prefix = NULL;
721
722 /* We first try to parse this token as a "special token". */
723 if (gdbarch_stap_parse_special_token_p (gdbarch))
724 if (gdbarch_stap_parse_special_token (gdbarch, p) != 0)
725 {
726 /* If the return value of the above function is not zero,
727 it means it successfully parsed the special token.
728
729 If it is NULL, we try to parse it using our method. */
730 return;
731 }
732
733 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
734 {
735 char c = *p->arg;
736 int number;
737 /* We use this variable to do a lookahead. */
738 const char *tmp = p->arg;
739
740 /* Skipping signal. */
741 ++tmp;
742
743 /* This is an unary operation. Here is a list of allowed tokens
744 here:
745
746 - numeric literal;
747 - number (from register displacement)
748 - subexpression (beginning with `(')
749
750 We handle the register displacement here, and the other cases
751 recursively. */
752 if (p->inside_paren_p)
753 tmp = skip_spaces_const (tmp);
754
755 if (isdigit (*tmp))
756 {
757 char *endp;
758
759 number = strtol (tmp, &endp, 10);
760 tmp = endp;
761 }
762
763 if (!stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
764 {
765 /* This is not a displacement. We skip the operator, and deal
766 with it later. */
767 ++p->arg;
768 stap_parse_argument_conditionally (p);
769 if (c == '-')
770 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
771 else if (c == '~')
772 write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT);
773 }
774 else
775 {
776 /* If we are here, it means it is a displacement. The only
777 operations allowed here are `-' and `+'. */
778 if (c == '~')
779 error (_("Invalid operator `%c' for register displacement "
780 "on expression `%s'."), c, p->saved_arg);
781
782 stap_parse_register_operand (p);
783 }
784 }
785 else if (isdigit (*p->arg))
786 {
787 /* A temporary variable, needed for lookahead. */
788 const char *tmp = p->arg;
789 char *endp;
790 long number;
791
792 /* We can be dealing with a numeric constant, or with a register
793 displacement. */
794 number = strtol (tmp, &endp, 10);
795 tmp = endp;
796
797 if (p->inside_paren_p)
798 tmp = skip_spaces_const (tmp);
799
800 /* If "stap_is_integer_prefix" returns true, it means we can
801 accept integers without a prefix here. But we also need to
802 check whether the next token (i.e., "tmp") is not a register
803 indirection prefix. */
804 if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
805 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
806 {
807 const char *int_suffix;
808
809 /* We are dealing with a numeric constant. */
810 write_exp_elt_opcode (&p->pstate, OP_LONG);
811 write_exp_elt_type (&p->pstate,
812 builtin_type (gdbarch)->builtin_long);
813 write_exp_elt_longcst (&p->pstate, number);
814 write_exp_elt_opcode (&p->pstate, OP_LONG);
815
816 p->arg = tmp;
817
818 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
819 p->arg += strlen (int_suffix);
820 else
821 error (_("Invalid constant suffix on expression `%s'."),
822 p->saved_arg);
823 }
824 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
825 stap_parse_register_operand (p);
826 else
827 error (_("Unknown numeric token on expression `%s'."),
828 p->saved_arg);
829 }
830 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
831 {
832 /* We are dealing with a numeric constant. */
833 long number;
834 char *endp;
835 const char *int_suffix;
836
837 p->arg += strlen (int_prefix);
838 number = strtol (p->arg, &endp, 10);
839 p->arg = endp;
840
841 write_exp_elt_opcode (&p->pstate, OP_LONG);
842 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
843 write_exp_elt_longcst (&p->pstate, number);
844 write_exp_elt_opcode (&p->pstate, OP_LONG);
845
846 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
847 p->arg += strlen (int_suffix);
848 else
849 error (_("Invalid constant suffix on expression `%s'."),
850 p->saved_arg);
851 }
852 else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
853 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
854 stap_parse_register_operand (p);
855 else
856 error (_("Operator `%c' not recognized on expression `%s'."),
857 *p->arg, p->saved_arg);
858 }
859
860 /* This function parses an argument conditionally, based on single or
861 non-single operands. A non-single operand would be a parenthesized
862 expression (e.g., `(2 + 1)'), and a single operand is anything that
863 starts with `-', `~', `+' (i.e., unary operators), a digit, or
864 something recognized by `gdbarch_stap_is_single_operand'. */
865
866 static void
867 stap_parse_argument_conditionally (struct stap_parse_info *p)
868 {
869 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
870
871 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
872 || isdigit (*p->arg)
873 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
874 stap_parse_single_operand (p);
875 else if (*p->arg == '(')
876 {
877 /* We are dealing with a parenthesized operand. It means we
878 have to parse it as it was a separate expression, without
879 left-side or precedence. */
880 ++p->arg;
881 p->arg = skip_spaces_const (p->arg);
882 ++p->inside_paren_p;
883
884 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
885
886 --p->inside_paren_p;
887 if (*p->arg != ')')
888 error (_("Missign close-paren on expression `%s'."),
889 p->saved_arg);
890
891 ++p->arg;
892 if (p->inside_paren_p)
893 p->arg = skip_spaces_const (p->arg);
894 }
895 else
896 error (_("Cannot parse expression `%s'."), p->saved_arg);
897 }
898
899 /* Helper function for `stap_parse_argument'. Please, see its comments to
900 better understand what this function does. */
901
902 static void
903 stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
904 enum stap_operand_prec prec)
905 {
906 /* This is an operator-precedence parser.
907
908 We work with left- and right-sides of expressions, and
909 parse them depending on the precedence of the operators
910 we find. */
911
912 gdb_assert (p->arg != NULL);
913
914 if (p->inside_paren_p)
915 p->arg = skip_spaces_const (p->arg);
916
917 if (!has_lhs)
918 {
919 /* We were called without a left-side, either because this is the
920 first call, or because we were called to parse a parenthesized
921 expression. It doesn't really matter; we have to parse the
922 left-side in order to continue the process. */
923 stap_parse_argument_conditionally (p);
924 }
925
926 /* Start to parse the right-side, and to "join" left and right sides
927 depending on the operation specified.
928
929 This loop shall continue until we run out of characters in the input,
930 or until we find a close-parenthesis, which means that we've reached
931 the end of a sub-expression. */
932 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
933 {
934 const char *tmp_exp_buf;
935 enum exp_opcode opcode;
936 enum stap_operand_prec cur_prec;
937
938 if (!stap_is_operator (p->arg))
939 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
940 p->saved_arg);
941
942 /* We have to save the current value of the expression buffer because
943 the `stap_get_opcode' modifies it in order to get the current
944 operator. If this operator's precedence is lower than PREC, we
945 should return and not advance the expression buffer pointer. */
946 tmp_exp_buf = p->arg;
947 opcode = stap_get_opcode (&tmp_exp_buf);
948
949 cur_prec = stap_get_operator_prec (opcode);
950 if (cur_prec < prec)
951 {
952 /* If the precedence of the operator that we are seeing now is
953 lower than the precedence of the first operator seen before
954 this parsing process began, it means we should stop parsing
955 and return. */
956 break;
957 }
958
959 p->arg = tmp_exp_buf;
960 if (p->inside_paren_p)
961 p->arg = skip_spaces_const (p->arg);
962
963 /* Parse the right-side of the expression. */
964 stap_parse_argument_conditionally (p);
965
966 /* While we still have operators, try to parse another
967 right-side, but using the current right-side as a left-side. */
968 while (*p->arg != '\0' && stap_is_operator (p->arg))
969 {
970 enum exp_opcode lookahead_opcode;
971 enum stap_operand_prec lookahead_prec;
972
973 /* Saving the current expression buffer position. The explanation
974 is the same as above. */
975 tmp_exp_buf = p->arg;
976 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
977 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
978
979 if (lookahead_prec <= prec)
980 {
981 /* If we are dealing with an operator whose precedence is lower
982 than the first one, just abandon the attempt. */
983 break;
984 }
985
986 /* Parse the right-side of the expression, but since we already
987 have a left-side at this point, set `has_lhs' to 1. */
988 stap_parse_argument_1 (p, 1, lookahead_prec);
989 }
990
991 write_exp_elt_opcode (&p->pstate, opcode);
992 }
993 }
994
995 /* Parse a probe's argument.
996
997 Assuming that:
998
999 LP = literal integer prefix
1000 LS = literal integer suffix
1001
1002 RP = register prefix
1003 RS = register suffix
1004
1005 RIP = register indirection prefix
1006 RIS = register indirection suffix
1007
1008 This routine assumes that arguments' tokens are of the form:
1009
1010 - [LP] NUMBER [LS]
1011 - [RP] REGISTER [RS]
1012 - [RIP] [RP] REGISTER [RS] [RIS]
1013 - If we find a number without LP, we try to parse it as a literal integer
1014 constant (if LP == NULL), or as a register displacement.
1015 - We count parenthesis, and only skip whitespaces if we are inside them.
1016 - If we find an operator, we skip it.
1017
1018 This function can also call a special function that will try to match
1019 unknown tokens. It will return 1 if the argument has been parsed
1020 successfully, or zero otherwise. */
1021
1022 static struct expression *
1023 stap_parse_argument (const char **arg, struct type *atype,
1024 struct gdbarch *gdbarch)
1025 {
1026 struct stap_parse_info p;
1027 struct cleanup *back_to;
1028
1029 /* We need to initialize the expression buffer, in order to begin
1030 our parsing efforts. The language here does not matter, since we
1031 are using our own parser. */
1032 initialize_expout (&p.pstate, 10, current_language, gdbarch);
1033 back_to = make_cleanup (free_current_contents, &p.pstate.expout);
1034
1035 p.saved_arg = *arg;
1036 p.arg = *arg;
1037 p.arg_type = atype;
1038 p.gdbarch = gdbarch;
1039 p.inside_paren_p = 0;
1040
1041 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
1042
1043 discard_cleanups (back_to);
1044
1045 gdb_assert (p.inside_paren_p == 0);
1046
1047 /* Casting the final expression to the appropriate type. */
1048 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1049 write_exp_elt_type (&p.pstate, atype);
1050 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1051
1052 reallocate_expout (&p.pstate);
1053
1054 p.arg = skip_spaces_const (p.arg);
1055 *arg = p.arg;
1056
1057 /* We can safely return EXPOUT here. */
1058 return p.pstate.expout;
1059 }
1060
1061 /* Function which parses an argument string from PROBE, correctly splitting
1062 the arguments and storing their information in properly ways.
1063
1064 Consider the following argument string (x86 syntax):
1065
1066 `4@%eax 4@$10'
1067
1068 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness.
1069 This function basically handles them, properly filling some structures with
1070 this information. */
1071
1072 static void
1073 stap_parse_probe_arguments (struct stap_probe *probe, struct gdbarch *gdbarch)
1074 {
1075 const char *cur;
1076
1077 gdb_assert (!probe->args_parsed);
1078 cur = probe->args_u.text;
1079 probe->args_parsed = 1;
1080 probe->args_u.vec = NULL;
1081
1082 if (cur == NULL || *cur == '\0' || *cur == ':')
1083 return;
1084
1085 while (*cur != '\0')
1086 {
1087 struct stap_probe_arg arg;
1088 enum stap_arg_bitness b;
1089 int got_minus = 0;
1090 struct expression *expr;
1091
1092 memset (&arg, 0, sizeof (arg));
1093
1094 /* We expect to find something like:
1095
1096 N@OP
1097
1098 Where `N' can be [+,-][4,8]. This is not mandatory, so
1099 we check it here. If we don't find it, go to the next
1100 state. */
1101 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1102 || (isdigit (cur[0]) && cur[1] == '@'))
1103 {
1104 if (*cur == '-')
1105 {
1106 /* Discard the `-'. */
1107 ++cur;
1108 got_minus = 1;
1109 }
1110
1111 if (*cur == '4')
1112 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1113 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1114 else if (*cur == '8')
1115 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1116 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1117 else
1118 {
1119 /* We have an error, because we don't expect anything
1120 except 4 and 8. */
1121 complaint (&symfile_complaints,
1122 _("unrecognized bitness `%c' for probe `%s'"),
1123 *cur, probe->p.name);
1124 return;
1125 }
1126
1127 arg.bitness = b;
1128
1129 /* Discard the number and the `@' sign. */
1130 cur += 2;
1131 }
1132 else
1133 arg.bitness = STAP_ARG_BITNESS_UNDEFINED;
1134
1135 arg.atype = stap_get_expected_argument_type (gdbarch, arg.bitness);
1136
1137 expr = stap_parse_argument (&cur, arg.atype, gdbarch);
1138
1139 if (stap_expression_debug)
1140 dump_raw_expression (expr, gdb_stdlog,
1141 "before conversion to prefix form");
1142
1143 prefixify_expression (expr);
1144
1145 if (stap_expression_debug)
1146 dump_prefix_expression (expr, gdb_stdlog);
1147
1148 arg.aexpr = expr;
1149
1150 /* Start it over again. */
1151 cur = skip_spaces_const (cur);
1152
1153 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg);
1154 }
1155 }
1156
1157 /* Implementation of the get_probe_address method. */
1158
1159 static CORE_ADDR
1160 stap_get_probe_address (struct probe *probe, struct objfile *objfile)
1161 {
1162 return probe->address + ANOFFSET (objfile->section_offsets,
1163 SECT_OFF_DATA (objfile));
1164 }
1165
1166 /* Given PROBE, returns the number of arguments present in that probe's
1167 argument string. */
1168
1169 static unsigned
1170 stap_get_probe_argument_count (struct probe *probe_generic,
1171 struct frame_info *frame)
1172 {
1173 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1174 struct gdbarch *gdbarch = get_frame_arch (frame);
1175
1176 gdb_assert (probe_generic->pops == &stap_probe_ops);
1177
1178 if (!probe->args_parsed)
1179 {
1180 if (can_evaluate_probe_arguments (probe_generic))
1181 stap_parse_probe_arguments (probe, gdbarch);
1182 else
1183 {
1184 static int have_warned_stap_incomplete = 0;
1185
1186 if (!have_warned_stap_incomplete)
1187 {
1188 warning (_(
1189 "The SystemTap SDT probe support is not fully implemented on this target;\n"
1190 "you will not be able to inspect the arguments of the probes.\n"
1191 "Please report a bug against GDB requesting a port to this target."));
1192 have_warned_stap_incomplete = 1;
1193 }
1194
1195 /* Marking the arguments as "already parsed". */
1196 probe->args_u.vec = NULL;
1197 probe->args_parsed = 1;
1198 }
1199 }
1200
1201 gdb_assert (probe->args_parsed);
1202 return VEC_length (stap_probe_arg_s, probe->args_u.vec);
1203 }
1204
1205 /* Return 1 if OP is a valid operator inside a probe argument, or zero
1206 otherwise. */
1207
1208 static int
1209 stap_is_operator (const char *op)
1210 {
1211 int ret = 1;
1212
1213 switch (*op)
1214 {
1215 case '*':
1216 case '/':
1217 case '%':
1218 case '^':
1219 case '!':
1220 case '+':
1221 case '-':
1222 case '<':
1223 case '>':
1224 case '|':
1225 case '&':
1226 break;
1227
1228 case '=':
1229 if (op[1] != '=')
1230 ret = 0;
1231 break;
1232
1233 default:
1234 /* We didn't find any operator. */
1235 ret = 0;
1236 }
1237
1238 return ret;
1239 }
1240
1241 static struct stap_probe_arg *
1242 stap_get_arg (struct stap_probe *probe, unsigned n, struct gdbarch *gdbarch)
1243 {
1244 if (!probe->args_parsed)
1245 stap_parse_probe_arguments (probe, gdbarch);
1246
1247 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n);
1248 }
1249
1250 /* Implement the `can_evaluate_probe_arguments' method of probe_ops. */
1251
1252 static int
1253 stap_can_evaluate_probe_arguments (struct probe *probe_generic)
1254 {
1255 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1256 struct gdbarch *gdbarch = stap_probe->p.arch;
1257
1258 /* For SystemTap probes, we have to guarantee that the method
1259 stap_is_single_operand is defined on gdbarch. If it is not, then it
1260 means that argument evaluation is not implemented on this target. */
1261 return gdbarch_stap_is_single_operand_p (gdbarch);
1262 }
1263
1264 /* Evaluate the probe's argument N (indexed from 0), returning a value
1265 corresponding to it. Assertion is thrown if N does not exist. */
1266
1267 static struct value *
1268 stap_evaluate_probe_argument (struct probe *probe_generic, unsigned n,
1269 struct frame_info *frame)
1270 {
1271 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1272 struct gdbarch *gdbarch = get_frame_arch (frame);
1273 struct stap_probe_arg *arg;
1274 int pos = 0;
1275
1276 gdb_assert (probe_generic->pops == &stap_probe_ops);
1277
1278 arg = stap_get_arg (stap_probe, n, gdbarch);
1279 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL);
1280 }
1281
1282 /* Compile the probe's argument N (indexed from 0) to agent expression.
1283 Assertion is thrown if N does not exist. */
1284
1285 static void
1286 stap_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr,
1287 struct axs_value *value, unsigned n)
1288 {
1289 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1290 struct stap_probe_arg *arg;
1291 union exp_element *pc;
1292
1293 gdb_assert (probe_generic->pops == &stap_probe_ops);
1294
1295 arg = stap_get_arg (stap_probe, n, expr->gdbarch);
1296
1297 pc = arg->aexpr->elts;
1298 gen_expr (arg->aexpr, &pc, expr, value);
1299
1300 require_rvalue (expr, value);
1301 value->type = arg->atype;
1302 }
1303
1304 /* Destroy (free) the data related to PROBE. PROBE memory itself is not feed
1305 as it is allocated on an obstack. */
1306
1307 static void
1308 stap_probe_destroy (struct probe *probe_generic)
1309 {
1310 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1311
1312 gdb_assert (probe_generic->pops == &stap_probe_ops);
1313
1314 if (probe->args_parsed)
1315 {
1316 struct stap_probe_arg *arg;
1317 int ix;
1318
1319 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg);
1320 ++ix)
1321 xfree (arg->aexpr);
1322 VEC_free (stap_probe_arg_s, probe->args_u.vec);
1323 }
1324 }
1325
1326 \f
1327
1328 /* This is called to compute the value of one of the $_probe_arg*
1329 convenience variables. */
1330
1331 static struct value *
1332 compute_probe_arg (struct gdbarch *arch, struct internalvar *ivar,
1333 void *data)
1334 {
1335 struct frame_info *frame = get_selected_frame (_("No frame selected"));
1336 CORE_ADDR pc = get_frame_pc (frame);
1337 int sel = (int) (uintptr_t) data;
1338 struct bound_probe pc_probe;
1339 const struct sym_probe_fns *pc_probe_fns;
1340 unsigned n_args;
1341
1342 /* SEL == -1 means "_probe_argc". */
1343 gdb_assert (sel >= -1);
1344
1345 pc_probe = find_probe_by_pc (pc);
1346 if (pc_probe.probe == NULL)
1347 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1348
1349 n_args = get_probe_argument_count (pc_probe.probe, frame);
1350 if (sel == -1)
1351 return value_from_longest (builtin_type (arch)->builtin_int, n_args);
1352
1353 if (sel >= n_args)
1354 error (_("Invalid probe argument %d -- probe has %u arguments available"),
1355 sel, n_args);
1356
1357 return evaluate_probe_argument (pc_probe.probe, sel, frame);
1358 }
1359
1360 /* This is called to compile one of the $_probe_arg* convenience
1361 variables into an agent expression. */
1362
1363 static void
1364 compile_probe_arg (struct internalvar *ivar, struct agent_expr *expr,
1365 struct axs_value *value, void *data)
1366 {
1367 CORE_ADDR pc = expr->scope;
1368 int sel = (int) (uintptr_t) data;
1369 struct bound_probe pc_probe;
1370 const struct sym_probe_fns *pc_probe_fns;
1371 int n_args;
1372 struct frame_info *frame = get_selected_frame (NULL);
1373
1374 /* SEL == -1 means "_probe_argc". */
1375 gdb_assert (sel >= -1);
1376
1377 pc_probe = find_probe_by_pc (pc);
1378 if (pc_probe.probe == NULL)
1379 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1380
1381 n_args = get_probe_argument_count (pc_probe.probe, frame);
1382
1383 if (sel == -1)
1384 {
1385 value->kind = axs_rvalue;
1386 value->type = builtin_type (expr->gdbarch)->builtin_int;
1387 ax_const_l (expr, n_args);
1388 return;
1389 }
1390
1391 gdb_assert (sel >= 0);
1392 if (sel >= n_args)
1393 error (_("Invalid probe argument %d -- probe has %d arguments available"),
1394 sel, n_args);
1395
1396 pc_probe.probe->pops->compile_to_ax (pc_probe.probe, expr, value, sel);
1397 }
1398
1399 \f
1400
1401 /* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1402 address. SET is zero if the semaphore should be cleared, or one
1403 if it should be set. This is a helper function for `stap_semaphore_down'
1404 and `stap_semaphore_up'. */
1405
1406 static void
1407 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1408 {
1409 gdb_byte bytes[sizeof (LONGEST)];
1410 /* The ABI specifies "unsigned short". */
1411 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1412 ULONGEST value;
1413
1414 if (address == 0)
1415 return;
1416
1417 /* Swallow errors. */
1418 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1419 {
1420 warning (_("Could not read the value of a SystemTap semaphore."));
1421 return;
1422 }
1423
1424 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1425 gdbarch_byte_order (gdbarch));
1426 /* Note that we explicitly don't worry about overflow or
1427 underflow. */
1428 if (set)
1429 ++value;
1430 else
1431 --value;
1432
1433 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1434 gdbarch_byte_order (gdbarch), value);
1435
1436 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1437 warning (_("Could not write the value of a SystemTap semaphore."));
1438 }
1439
1440 /* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores
1441 act as reference counters, so calls to this function must be paired with
1442 calls to `stap_semaphore_down'.
1443
1444 This function and `stap_semaphore_down' race with another tool changing
1445 the probes, but that is too rare to care. */
1446
1447 static void
1448 stap_set_semaphore (struct probe *probe_generic, struct objfile *objfile,
1449 struct gdbarch *gdbarch)
1450 {
1451 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1452 CORE_ADDR addr;
1453
1454 gdb_assert (probe_generic->pops == &stap_probe_ops);
1455
1456 addr = (probe->sem_addr
1457 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1458 stap_modify_semaphore (addr, 1, gdbarch);
1459 }
1460
1461 /* Clear a SystemTap semaphore. SEM is the semaphore's address. */
1462
1463 static void
1464 stap_clear_semaphore (struct probe *probe_generic, struct objfile *objfile,
1465 struct gdbarch *gdbarch)
1466 {
1467 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1468 CORE_ADDR addr;
1469
1470 gdb_assert (probe_generic->pops == &stap_probe_ops);
1471
1472 addr = (probe->sem_addr
1473 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1474 stap_modify_semaphore (addr, 0, gdbarch);
1475 }
1476
1477 /* Implementation of `$_probe_arg*' set of variables. */
1478
1479 static const struct internalvar_funcs probe_funcs =
1480 {
1481 compute_probe_arg,
1482 compile_probe_arg,
1483 NULL
1484 };
1485
1486 /* Helper function that parses the information contained in a
1487 SystemTap's probe. Basically, the information consists in:
1488
1489 - Probe's PC address;
1490 - Link-time section address of `.stapsdt.base' section;
1491 - Link-time address of the semaphore variable, or ZERO if the
1492 probe doesn't have an associated semaphore;
1493 - Probe's provider name;
1494 - Probe's name;
1495 - Probe's argument format
1496
1497 This function returns 1 if the handling was successful, and zero
1498 otherwise. */
1499
1500 static void
1501 handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1502 VEC (probe_p) **probesp, CORE_ADDR base)
1503 {
1504 bfd *abfd = objfile->obfd;
1505 int size = bfd_get_arch_size (abfd) / 8;
1506 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1507 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1508 CORE_ADDR base_ref;
1509 const char *probe_args = NULL;
1510 struct stap_probe *ret;
1511
1512 ret = obstack_alloc (&objfile->per_bfd->storage_obstack, sizeof (*ret));
1513 ret->p.pops = &stap_probe_ops;
1514 ret->p.arch = gdbarch;
1515
1516 /* Provider and the name of the probe. */
1517 ret->p.provider = (char *) &el->data[3 * size];
1518 ret->p.name = memchr (ret->p.provider, '\0',
1519 (char *) el->data + el->size - ret->p.provider);
1520 /* Making sure there is a name. */
1521 if (ret->p.name == NULL)
1522 {
1523 complaint (&symfile_complaints, _("corrupt probe name when "
1524 "reading `%s'"),
1525 objfile_name (objfile));
1526
1527 /* There is no way to use a probe without a name or a provider, so
1528 returning zero here makes sense. */
1529 return;
1530 }
1531 else
1532 ++ret->p.name;
1533
1534 /* Retrieving the probe's address. */
1535 ret->p.address = extract_typed_address (&el->data[0], ptr_type);
1536
1537 /* Link-time sh_addr of `.stapsdt.base' section. */
1538 base_ref = extract_typed_address (&el->data[size], ptr_type);
1539
1540 /* Semaphore address. */
1541 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1542
1543 ret->p.address += base - base_ref;
1544 if (ret->sem_addr != 0)
1545 ret->sem_addr += base - base_ref;
1546
1547 /* Arguments. We can only extract the argument format if there is a valid
1548 name for this probe. */
1549 probe_args = memchr (ret->p.name, '\0',
1550 (char *) el->data + el->size - ret->p.name);
1551
1552 if (probe_args != NULL)
1553 ++probe_args;
1554
1555 if (probe_args == NULL
1556 || (memchr (probe_args, '\0', (char *) el->data + el->size - ret->p.name)
1557 != el->data + el->size - 1))
1558 {
1559 complaint (&symfile_complaints, _("corrupt probe argument when "
1560 "reading `%s'"),
1561 objfile_name (objfile));
1562 /* If the argument string is NULL, it means some problem happened with
1563 it. So we return 0. */
1564 return;
1565 }
1566
1567 ret->args_parsed = 0;
1568 ret->args_u.text = (void *) probe_args;
1569
1570 /* Successfully created probe. */
1571 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
1572 }
1573
1574 /* Helper function which tries to find the base address of the SystemTap
1575 base section named STAP_BASE_SECTION_NAME. */
1576
1577 static void
1578 get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1579 {
1580 asection **ret = obj;
1581
1582 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1583 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1584 *ret = sect;
1585 }
1586
1587 /* Helper function which iterates over every section in the BFD file,
1588 trying to find the base address of the SystemTap base section.
1589 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1590
1591 static int
1592 get_stap_base_address (bfd *obfd, bfd_vma *base)
1593 {
1594 asection *ret = NULL;
1595
1596 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1597
1598 if (ret == NULL)
1599 {
1600 complaint (&symfile_complaints, _("could not obtain base address for "
1601 "SystemTap section on objfile `%s'."),
1602 obfd->filename);
1603 return 0;
1604 }
1605
1606 if (base != NULL)
1607 *base = ret->vma;
1608
1609 return 1;
1610 }
1611
1612 /* Helper function for `elf_get_probes', which gathers information about all
1613 SystemTap probes from OBJFILE. */
1614
1615 static void
1616 stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
1617 {
1618 /* If we are here, then this is the first time we are parsing the
1619 SystemTap probe's information. We basically have to count how many
1620 probes the objfile has, and then fill in the necessary information
1621 for each one. */
1622 bfd *obfd = objfile->obfd;
1623 bfd_vma base;
1624 struct sdt_note *iter;
1625 unsigned save_probesp_len = VEC_length (probe_p, *probesp);
1626
1627 if (objfile->separate_debug_objfile_backlink != NULL)
1628 {
1629 /* This is a .debug file, not the objfile itself. */
1630 return;
1631 }
1632
1633 if (elf_tdata (obfd)->sdt_note_head == NULL)
1634 {
1635 /* There isn't any probe here. */
1636 return;
1637 }
1638
1639 if (!get_stap_base_address (obfd, &base))
1640 {
1641 /* There was an error finding the base address for the section.
1642 Just return NULL. */
1643 return;
1644 }
1645
1646 /* Parsing each probe's information. */
1647 for (iter = elf_tdata (obfd)->sdt_note_head;
1648 iter != NULL;
1649 iter = iter->next)
1650 {
1651 /* We first have to handle all the information about the
1652 probe which is present in the section. */
1653 handle_stap_probe (objfile, iter, probesp, base);
1654 }
1655
1656 if (save_probesp_len == VEC_length (probe_p, *probesp))
1657 {
1658 /* If we are here, it means we have failed to parse every known
1659 probe. */
1660 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) "
1661 "from inferior"));
1662 return;
1663 }
1664 }
1665
1666 static int
1667 stap_probe_is_linespec (const char **linespecp)
1668 {
1669 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1670
1671 return probe_is_linespec_by_keyword (linespecp, keywords);
1672 }
1673
1674 static void
1675 stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
1676 {
1677 info_probe_column_s stap_probe_column;
1678
1679 stap_probe_column.field_name = "semaphore";
1680 stap_probe_column.print_name = _("Semaphore");
1681
1682 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column);
1683 }
1684
1685 static void
1686 stap_gen_info_probes_table_values (struct probe *probe_generic,
1687 VEC (const_char_ptr) **ret)
1688 {
1689 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1690 struct gdbarch *gdbarch;
1691 const char *val = NULL;
1692
1693 gdb_assert (probe_generic->pops == &stap_probe_ops);
1694
1695 gdbarch = probe->p.arch;
1696
1697 if (probe->sem_addr != 0)
1698 val = print_core_address (gdbarch, probe->sem_addr);
1699
1700 VEC_safe_push (const_char_ptr, *ret, val);
1701 }
1702
1703 /* SystemTap probe_ops. */
1704
1705 static const struct probe_ops stap_probe_ops =
1706 {
1707 stap_probe_is_linespec,
1708 stap_get_probes,
1709 stap_get_probe_address,
1710 stap_get_probe_argument_count,
1711 stap_can_evaluate_probe_arguments,
1712 stap_evaluate_probe_argument,
1713 stap_compile_to_ax,
1714 stap_set_semaphore,
1715 stap_clear_semaphore,
1716 stap_probe_destroy,
1717 stap_gen_info_probes_table_header,
1718 stap_gen_info_probes_table_values,
1719 };
1720
1721 /* Implementation of the `info probes stap' command. */
1722
1723 static void
1724 info_probes_stap_command (char *arg, int from_tty)
1725 {
1726 info_probes_for_ops (arg, from_tty, &stap_probe_ops);
1727 }
1728
1729 void _initialize_stap_probe (void);
1730
1731 void
1732 _initialize_stap_probe (void)
1733 {
1734 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops);
1735
1736 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1737 &stap_expression_debug,
1738 _("Set SystemTap expression debugging."),
1739 _("Show SystemTap expression debugging."),
1740 _("When non-zero, the internal representation "
1741 "of SystemTap expressions will be printed."),
1742 NULL,
1743 show_stapexpressiondebug,
1744 &setdebuglist, &showdebuglist);
1745
1746 create_internalvar_type_lazy ("_probe_argc", &probe_funcs,
1747 (void *) (uintptr_t) -1);
1748 create_internalvar_type_lazy ("_probe_arg0", &probe_funcs,
1749 (void *) (uintptr_t) 0);
1750 create_internalvar_type_lazy ("_probe_arg1", &probe_funcs,
1751 (void *) (uintptr_t) 1);
1752 create_internalvar_type_lazy ("_probe_arg2", &probe_funcs,
1753 (void *) (uintptr_t) 2);
1754 create_internalvar_type_lazy ("_probe_arg3", &probe_funcs,
1755 (void *) (uintptr_t) 3);
1756 create_internalvar_type_lazy ("_probe_arg4", &probe_funcs,
1757 (void *) (uintptr_t) 4);
1758 create_internalvar_type_lazy ("_probe_arg5", &probe_funcs,
1759 (void *) (uintptr_t) 5);
1760 create_internalvar_type_lazy ("_probe_arg6", &probe_funcs,
1761 (void *) (uintptr_t) 6);
1762 create_internalvar_type_lazy ("_probe_arg7", &probe_funcs,
1763 (void *) (uintptr_t) 7);
1764 create_internalvar_type_lazy ("_probe_arg8", &probe_funcs,
1765 (void *) (uintptr_t) 8);
1766 create_internalvar_type_lazy ("_probe_arg9", &probe_funcs,
1767 (void *) (uintptr_t) 9);
1768 create_internalvar_type_lazy ("_probe_arg10", &probe_funcs,
1769 (void *) (uintptr_t) 10);
1770 create_internalvar_type_lazy ("_probe_arg11", &probe_funcs,
1771 (void *) (uintptr_t) 11);
1772
1773 add_cmd ("stap", class_info, info_probes_stap_command,
1774 _("\
1775 Show information about SystemTap static probes.\n\
1776 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1777 Each argument is a regular expression, used to select probes.\n\
1778 PROVIDER matches probe provider names.\n\
1779 NAME matches the probe names.\n\
1780 OBJECT matches the executable or shared library name."),
1781 info_probes_cmdlist_get ());
1782
1783 }