]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
Add casts to memory allocation related calls
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <time.h>
65 #include "gdb_sys_time.h"
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void decrement_reading_symtab (void *);
95
96 static void overlay_invalidate_all (void);
97
98 static void overlay_auto_command (char *, int);
99
100 static void overlay_manual_command (char *, int);
101
102 static void overlay_off_command (char *, int);
103
104 static void overlay_load_command (char *, int);
105
106 static void overlay_command (char *, int);
107
108 static void simple_free_overlay_table (void);
109
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
112
113 static int simple_read_overlay_table (void);
114
115 static int simple_overlay_update_1 (struct obj_section *);
116
117 static void add_filename_language (char *ext, enum language lang);
118
119 static void info_ext_lang_command (char *args, int from_tty);
120
121 static void init_filename_language_table (void);
122
123 static void symfile_find_segment_sections (struct objfile *objfile);
124
125 void _initialize_symfile (void);
126
127 /* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
129 prepared to read. */
130
131 typedef struct
132 {
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138 } registered_sym_fns;
139
140 DEF_VEC_O (registered_sym_fns);
141
142 static VEC (registered_sym_fns) *symtab_fns = NULL;
143
144 /* Values for "set print symbol-loading". */
145
146 const char print_symbol_loading_off[] = "off";
147 const char print_symbol_loading_brief[] = "brief";
148 const char print_symbol_loading_full[] = "full";
149 static const char *print_symbol_loading_enums[] =
150 {
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155 };
156 static const char *print_symbol_loading = print_symbol_loading_full;
157
158 /* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
165 library symbols are not loaded, commands like "info fun" will *not*
166 report all the functions that are actually present. */
167
168 int auto_solib_add = 1;
169 \f
170
171 /* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179 int
180 print_symbol_loading_p (int from_tty, int exec, int full)
181 {
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194 }
195
196 /* True if we are reading a symbol table. */
197
198 int currently_reading_symtab = 0;
199
200 static void
201 decrement_reading_symtab (void *dummy)
202 {
203 currently_reading_symtab--;
204 gdb_assert (currently_reading_symtab >= 0);
205 }
206
207 /* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
209
210 struct cleanup *
211 increment_reading_symtab (void)
212 {
213 ++currently_reading_symtab;
214 gdb_assert (currently_reading_symtab > 0);
215 return make_cleanup (decrement_reading_symtab, NULL);
216 }
217
218 /* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227 void
228 find_lowest_section (bfd *abfd, asection *sect, void *obj)
229 {
230 asection **lowest = (asection **) obj;
231
232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242 }
243
244 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
247
248 struct section_addr_info *
249 alloc_section_addr_info (size_t num_sections)
250 {
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
258
259 return sap;
260 }
261
262 /* Build (allocate and populate) a section_addr_info struct from
263 an existing section table. */
264
265 extern struct section_addr_info *
266 build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
268 {
269 struct section_addr_info *sap;
270 const struct target_section *stp;
271 int oidx;
272
273 sap = alloc_section_addr_info (end - start);
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 && oidx < end - start)
282 {
283 sap->other[oidx].addr = stp->addr;
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
286 oidx++;
287 }
288 }
289
290 sap->num_sections = oidx;
291
292 return sap;
293 }
294
295 /* Create a section_addr_info from section offsets in ABFD. */
296
297 static struct section_addr_info *
298 build_section_addr_info_from_bfd (bfd *abfd)
299 {
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
307 {
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
311 i++;
312 }
313
314 sap->num_sections = i;
315
316 return sap;
317 }
318
319 /* Create a section_addr_info from section offsets in OBJFILE. */
320
321 struct section_addr_info *
322 build_section_addr_info_from_objfile (const struct objfile *objfile)
323 {
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
331 for (i = 0; i < sap->num_sections; i++)
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338 }
339
340 /* Free all memory allocated by build_section_addr_info_from_section_table. */
341
342 extern void
343 free_section_addr_info (struct section_addr_info *sap)
344 {
345 int idx;
346
347 for (idx = 0; idx < sap->num_sections; idx++)
348 xfree (sap->other[idx].name);
349 xfree (sap);
350 }
351
352 /* Initialize OBJFILE's sect_index_* members. */
353
354 static void
355 init_objfile_sect_indices (struct objfile *objfile)
356 {
357 asection *sect;
358 int i;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
361 if (sect)
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
365 if (sect)
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
369 if (sect)
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
373 if (sect)
374 objfile->sect_index_rodata = sect->index;
375
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
411 }
412
413 /* The arguments to place_section. */
414
415 struct place_section_arg
416 {
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419 };
420
421 /* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
424 static void
425 place_section (bfd *abfd, asection *sect, void *obj)
426 {
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
431
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
434 return;
435
436 /* If the user specified an offset, honor it. */
437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
441 start_addr = (arg->lowest + align - 1) & -align;
442
443 do {
444 asection *cur_sec;
445
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
473 break;
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482 arg->lowest = start_addr + bfd_get_section_size (sect);
483 }
484
485 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
488
489 void
490 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
492 const struct section_addr_info *addrs)
493 {
494 int i;
495
496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
497
498 /* Now calculate offsets for section that were specified by the caller. */
499 for (i = 0; i < addrs->num_sections; i++)
500 {
501 const struct other_sections *osp;
502
503 osp = &addrs->other[i];
504 if (osp->sectindex == -1)
505 continue;
506
507 /* Record all sections in offsets. */
508 /* The section_offsets in the objfile are here filled in using
509 the BFD index. */
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512 }
513
514 /* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520 static const char *
521 addr_section_name (const char *s)
522 {
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529 }
530
531 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534 static int
535 addrs_section_compar (const void *ap, const void *bp)
536 {
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
539 int retval;
540
541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
542 if (retval)
543 return retval;
544
545 return a->sectindex - b->sectindex;
546 }
547
548 /* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551 static struct other_sections **
552 addrs_section_sort (struct section_addr_info *addrs)
553 {
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
559 for (i = 0; i < addrs->num_sections; i++)
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566 }
567
568 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
571
572 void
573 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574 {
575 asection *lower_sect;
576 CORE_ADDR lower_offset;
577 int i;
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
582
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
592 }
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
616
617 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
618 make_cleanup (xfree, addrs_to_abfd_addrs);
619
620 while (*addrs_sorted)
621 {
622 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
623
624 while (*abfd_addrs_sorted
625 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
626 sect_name) < 0)
627 abfd_addrs_sorted++;
628
629 if (*abfd_addrs_sorted
630 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
631 sect_name) == 0)
632 {
633 int index_in_addrs;
634
635 /* Make the found item directly addressable from ADDRS. */
636 index_in_addrs = *addrs_sorted - addrs->other;
637 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
638 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
639
640 /* Never use the same ABFD entry twice. */
641 abfd_addrs_sorted++;
642 }
643
644 addrs_sorted++;
645 }
646
647 /* Calculate offsets for the loadable sections.
648 FIXME! Sections must be in order of increasing loadable section
649 so that contiguous sections can use the lower-offset!!!
650
651 Adjust offsets if the segments are not contiguous.
652 If the section is contiguous, its offset should be set to
653 the offset of the highest loadable section lower than it
654 (the loadable section directly below it in memory).
655 this_offset = lower_offset = lower_addr - lower_orig_addr */
656
657 for (i = 0; i < addrs->num_sections; i++)
658 {
659 struct other_sections *sect = addrs_to_abfd_addrs[i];
660
661 if (sect)
662 {
663 /* This is the index used by BFD. */
664 addrs->other[i].sectindex = sect->sectindex;
665
666 if (addrs->other[i].addr != 0)
667 {
668 addrs->other[i].addr -= sect->addr;
669 lower_offset = addrs->other[i].addr;
670 }
671 else
672 addrs->other[i].addr = lower_offset;
673 }
674 else
675 {
676 /* addr_section_name transformation is not used for SECT_NAME. */
677 const char *sect_name = addrs->other[i].name;
678
679 /* This section does not exist in ABFD, which is normally
680 unexpected and we want to issue a warning.
681
682 However, the ELF prelinker does create a few sections which are
683 marked in the main executable as loadable (they are loaded in
684 memory from the DYNAMIC segment) and yet are not present in
685 separate debug info files. This is fine, and should not cause
686 a warning. Shared libraries contain just the section
687 ".gnu.liblist" but it is not marked as loadable there. There is
688 no other way to identify them than by their name as the sections
689 created by prelink have no special flags.
690
691 For the sections `.bss' and `.sbss' see addr_section_name. */
692
693 if (!(strcmp (sect_name, ".gnu.liblist") == 0
694 || strcmp (sect_name, ".gnu.conflict") == 0
695 || (strcmp (sect_name, ".bss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)
699 || (strcmp (sect_name, ".sbss") == 0
700 && i > 0
701 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
702 && addrs_to_abfd_addrs[i - 1] != NULL)))
703 warning (_("section %s not found in %s"), sect_name,
704 bfd_get_filename (abfd));
705
706 addrs->other[i].addr = 0;
707 addrs->other[i].sectindex = -1;
708 }
709 }
710
711 do_cleanups (my_cleanup);
712 }
713
714 /* Parse the user's idea of an offset for dynamic linking, into our idea
715 of how to represent it for fast symbol reading. This is the default
716 version of the sym_fns.sym_offsets function for symbol readers that
717 don't need to do anything special. It allocates a section_offsets table
718 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
719
720 void
721 default_symfile_offsets (struct objfile *objfile,
722 const struct section_addr_info *addrs)
723 {
724 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
725 objfile->section_offsets = (struct section_offsets *)
726 obstack_alloc (&objfile->objfile_obstack,
727 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
728 relative_addr_info_to_section_offsets (objfile->section_offsets,
729 objfile->num_sections, addrs);
730
731 /* For relocatable files, all loadable sections will start at zero.
732 The zero is meaningless, so try to pick arbitrary addresses such
733 that no loadable sections overlap. This algorithm is quadratic,
734 but the number of sections in a single object file is generally
735 small. */
736 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
737 {
738 struct place_section_arg arg;
739 bfd *abfd = objfile->obfd;
740 asection *cur_sec;
741
742 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
743 /* We do not expect this to happen; just skip this step if the
744 relocatable file has a section with an assigned VMA. */
745 if (bfd_section_vma (abfd, cur_sec) != 0)
746 break;
747
748 if (cur_sec == NULL)
749 {
750 CORE_ADDR *offsets = objfile->section_offsets->offsets;
751
752 /* Pick non-overlapping offsets for sections the user did not
753 place explicitly. */
754 arg.offsets = objfile->section_offsets;
755 arg.lowest = 0;
756 bfd_map_over_sections (objfile->obfd, place_section, &arg);
757
758 /* Correctly filling in the section offsets is not quite
759 enough. Relocatable files have two properties that
760 (most) shared objects do not:
761
762 - Their debug information will contain relocations. Some
763 shared libraries do also, but many do not, so this can not
764 be assumed.
765
766 - If there are multiple code sections they will be loaded
767 at different relative addresses in memory than they are
768 in the objfile, since all sections in the file will start
769 at address zero.
770
771 Because GDB has very limited ability to map from an
772 address in debug info to the correct code section,
773 it relies on adding SECT_OFF_TEXT to things which might be
774 code. If we clear all the section offsets, and set the
775 section VMAs instead, then symfile_relocate_debug_section
776 will return meaningful debug information pointing at the
777 correct sections.
778
779 GDB has too many different data structures for section
780 addresses - a bfd, objfile, and so_list all have section
781 tables, as does exec_ops. Some of these could probably
782 be eliminated. */
783
784 for (cur_sec = abfd->sections; cur_sec != NULL;
785 cur_sec = cur_sec->next)
786 {
787 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
788 continue;
789
790 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
791 exec_set_section_address (bfd_get_filename (abfd),
792 cur_sec->index,
793 offsets[cur_sec->index]);
794 offsets[cur_sec->index] = 0;
795 }
796 }
797 }
798
799 /* Remember the bfd indexes for the .text, .data, .bss and
800 .rodata sections. */
801 init_objfile_sect_indices (objfile);
802 }
803
804 /* Divide the file into segments, which are individual relocatable units.
805 This is the default version of the sym_fns.sym_segments function for
806 symbol readers that do not have an explicit representation of segments.
807 It assumes that object files do not have segments, and fully linked
808 files have a single segment. */
809
810 struct symfile_segment_data *
811 default_symfile_segments (bfd *abfd)
812 {
813 int num_sections, i;
814 asection *sect;
815 struct symfile_segment_data *data;
816 CORE_ADDR low, high;
817
818 /* Relocatable files contain enough information to position each
819 loadable section independently; they should not be relocated
820 in segments. */
821 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
822 return NULL;
823
824 /* Make sure there is at least one loadable section in the file. */
825 for (sect = abfd->sections; sect != NULL; sect = sect->next)
826 {
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 break;
831 }
832 if (sect == NULL)
833 return NULL;
834
835 low = bfd_get_section_vma (abfd, sect);
836 high = low + bfd_get_section_size (sect);
837
838 data = XCNEW (struct symfile_segment_data);
839 data->num_segments = 1;
840 data->segment_bases = XCNEW (CORE_ADDR);
841 data->segment_sizes = XCNEW (CORE_ADDR);
842
843 num_sections = bfd_count_sections (abfd);
844 data->segment_info = XCNEWVEC (int, num_sections);
845
846 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
847 {
848 CORE_ADDR vma;
849
850 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
851 continue;
852
853 vma = bfd_get_section_vma (abfd, sect);
854 if (vma < low)
855 low = vma;
856 if (vma + bfd_get_section_size (sect) > high)
857 high = vma + bfd_get_section_size (sect);
858
859 data->segment_info[i] = 1;
860 }
861
862 data->segment_bases[0] = low;
863 data->segment_sizes[0] = high - low;
864
865 return data;
866 }
867
868 /* This is a convenience function to call sym_read for OBJFILE and
869 possibly force the partial symbols to be read. */
870
871 static void
872 read_symbols (struct objfile *objfile, int add_flags)
873 {
874 (*objfile->sf->sym_read) (objfile, add_flags);
875 objfile->per_bfd->minsyms_read = 1;
876
877 /* find_separate_debug_file_in_section should be called only if there is
878 single binary with no existing separate debug info file. */
879 if (!objfile_has_partial_symbols (objfile)
880 && objfile->separate_debug_objfile == NULL
881 && objfile->separate_debug_objfile_backlink == NULL)
882 {
883 bfd *abfd = find_separate_debug_file_in_section (objfile);
884 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
885
886 if (abfd != NULL)
887 {
888 /* find_separate_debug_file_in_section uses the same filename for the
889 virtual section-as-bfd like the bfd filename containing the
890 section. Therefore use also non-canonical name form for the same
891 file containing the section. */
892 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
893 objfile);
894 }
895
896 do_cleanups (cleanup);
897 }
898 if ((add_flags & SYMFILE_NO_READ) == 0)
899 require_partial_symbols (objfile, 0);
900 }
901
902 /* Initialize entry point information for this objfile. */
903
904 static void
905 init_entry_point_info (struct objfile *objfile)
906 {
907 struct entry_info *ei = &objfile->per_bfd->ei;
908
909 if (ei->initialized)
910 return;
911 ei->initialized = 1;
912
913 /* Save startup file's range of PC addresses to help blockframe.c
914 decide where the bottom of the stack is. */
915
916 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
917 {
918 /* Executable file -- record its entry point so we'll recognize
919 the startup file because it contains the entry point. */
920 ei->entry_point = bfd_get_start_address (objfile->obfd);
921 ei->entry_point_p = 1;
922 }
923 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
924 && bfd_get_start_address (objfile->obfd) != 0)
925 {
926 /* Some shared libraries may have entry points set and be
927 runnable. There's no clear way to indicate this, so just check
928 for values other than zero. */
929 ei->entry_point = bfd_get_start_address (objfile->obfd);
930 ei->entry_point_p = 1;
931 }
932 else
933 {
934 /* Examination of non-executable.o files. Short-circuit this stuff. */
935 ei->entry_point_p = 0;
936 }
937
938 if (ei->entry_point_p)
939 {
940 struct obj_section *osect;
941 CORE_ADDR entry_point = ei->entry_point;
942 int found;
943
944 /* Make certain that the address points at real code, and not a
945 function descriptor. */
946 entry_point
947 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
948 entry_point,
949 &current_target);
950
951 /* Remove any ISA markers, so that this matches entries in the
952 symbol table. */
953 ei->entry_point
954 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
955
956 found = 0;
957 ALL_OBJFILE_OSECTIONS (objfile, osect)
958 {
959 struct bfd_section *sect = osect->the_bfd_section;
960
961 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
962 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
963 + bfd_get_section_size (sect)))
964 {
965 ei->the_bfd_section_index
966 = gdb_bfd_section_index (objfile->obfd, sect);
967 found = 1;
968 break;
969 }
970 }
971
972 if (!found)
973 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
974 }
975 }
976
977 /* Process a symbol file, as either the main file or as a dynamically
978 loaded file.
979
980 This function does not set the OBJFILE's entry-point info.
981
982 OBJFILE is where the symbols are to be read from.
983
984 ADDRS is the list of section load addresses. If the user has given
985 an 'add-symbol-file' command, then this is the list of offsets and
986 addresses he or she provided as arguments to the command; or, if
987 we're handling a shared library, these are the actual addresses the
988 sections are loaded at, according to the inferior's dynamic linker
989 (as gleaned by GDB's shared library code). We convert each address
990 into an offset from the section VMA's as it appears in the object
991 file, and then call the file's sym_offsets function to convert this
992 into a format-specific offset table --- a `struct section_offsets'.
993
994 ADD_FLAGS encodes verbosity level, whether this is main symbol or
995 an extra symbol file such as dynamically loaded code, and wether
996 breakpoint reset should be deferred. */
997
998 static void
999 syms_from_objfile_1 (struct objfile *objfile,
1000 struct section_addr_info *addrs,
1001 int add_flags)
1002 {
1003 struct section_addr_info *local_addr = NULL;
1004 struct cleanup *old_chain;
1005 const int mainline = add_flags & SYMFILE_MAINLINE;
1006
1007 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1008
1009 if (objfile->sf == NULL)
1010 {
1011 /* No symbols to load, but we still need to make sure
1012 that the section_offsets table is allocated. */
1013 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1015
1016 objfile->num_sections = num_sections;
1017 objfile->section_offsets
1018 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1019 size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
1023
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
1026 old_chain = make_cleanup_free_objfile (objfile);
1027
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
1030 no load address was specified. */
1031 if (! addrs)
1032 {
1033 local_addr = alloc_section_addr_info (1);
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
1038 if (mainline)
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
1041 will be cleaned up if an error occurs during symbol reading. */
1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
1049 gdb_assert (symfile_objfile == NULL);
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
1056
1057 (*objfile->sf->sym_new_init) (objfile);
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
1062 and assume that <addr> is where that got loaded.
1063
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
1066 if (addrs->num_sections > 0)
1067 addr_info_make_relative (addrs, objfile->obfd);
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
1071 initial symbol reading for this file. */
1072
1073 (*objfile->sf->sym_init) (objfile);
1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1075
1076 (*objfile->sf->sym_offsets) (objfile, addrs);
1077
1078 read_symbols (objfile, add_flags);
1079
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
1083 xfree (local_addr);
1084 }
1085
1086 /* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
1089 static void
1090 syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
1092 int add_flags)
1093 {
1094 syms_from_objfile_1 (objfile, addrs, add_flags);
1095 init_entry_point_info (objfile);
1096 }
1097
1098 /* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1101
1102 static void
1103 finish_new_objfile (struct objfile *objfile, int add_flags)
1104 {
1105 /* If this is the main symbol file we have to clean up all users of the
1106 old main symbol file. Otherwise it is sufficient to fixup all the
1107 breakpoints that may have been redefined by this symbol file. */
1108 if (add_flags & SYMFILE_MAINLINE)
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
1113 clear_symtab_users (add_flags);
1114 }
1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1116 {
1117 breakpoint_re_set ();
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1122 }
1123
1124 /* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128 A new reference is acquired by this function.
1129
1130 For NAME description see allocate_objfile's definition.
1131
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
1134
1135 ADDRS is as described for syms_from_objfile_1, above.
1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1137
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
1141 Upon success, returns a pointer to the objfile that was added.
1142 Upon failure, jumps back to command level (never returns). */
1143
1144 static struct objfile *
1145 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
1148 {
1149 struct objfile *objfile;
1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
1151 const int mainline = add_flags & SYMFILE_MAINLINE;
1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
1155
1156 if (readnow_symbol_files)
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
1161
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
1166 && mainline
1167 && from_tty
1168 && !query (_("Load new symbol table from \"%s\"? "), name))
1169 error (_("Not confirmed."));
1170
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
1173
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
1179 performed, or need to read an unmapped symbol table. */
1180 if (should_print)
1181 {
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
1184 else
1185 {
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
1189 }
1190 }
1191 syms_from_objfile (objfile, addrs, add_flags);
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
1196 all partial symbol tables for this objfile if so. */
1197
1198 if ((flags & OBJF_READNOW))
1199 {
1200 if (should_print)
1201 {
1202 printf_unfiltered (_("expanding to full symbols..."));
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
1209 }
1210
1211 if (should_print && !objfile_has_symbols (objfile))
1212 {
1213 wrap_here ("");
1214 printf_unfiltered (_("(no debugging symbols found)..."));
1215 wrap_here ("");
1216 }
1217
1218 if (should_print)
1219 {
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
1222 else
1223 printf_unfiltered (_("done.\n"));
1224 }
1225
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
1231 if (objfile->sf == NULL)
1232 {
1233 observer_notify_new_objfile (objfile);
1234 return objfile; /* No symbols. */
1235 }
1236
1237 finish_new_objfile (objfile, add_flags);
1238
1239 observer_notify_new_objfile (objfile);
1240
1241 bfd_cache_close_all ();
1242 return (objfile);
1243 }
1244
1245 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
1247
1248 void
1249 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
1251 {
1252 struct objfile *new_objfile;
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
1261
1262 new_objfile = symbol_file_add_with_addrs
1263 (bfd, name, symfile_flags, sap,
1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1265 | OBJF_USERLOADED),
1266 objfile);
1267
1268 do_cleanups (my_cleanup);
1269 }
1270
1271 /* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
1273 See symbol_file_add_with_addrs's comments for details. */
1274
1275 struct objfile *
1276 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1277 struct section_addr_info *addrs,
1278 int flags, struct objfile *parent)
1279 {
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
1282 }
1283
1284 /* Process a symbol file, as either the main file or as a dynamically
1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
1286
1287 struct objfile *
1288 symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
1290 {
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1296 do_cleanups (cleanup);
1297 return objf;
1298 }
1299
1300 /* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
1307
1308 void
1309 symbol_file_add_main (const char *args, int from_tty)
1310 {
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312 }
1313
1314 static void
1315 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1316 {
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
1320 symbol_file_add (args, add_flags, NULL, flags);
1321
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1328 }
1329
1330 void
1331 symbol_file_clear (int from_tty)
1332 {
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
1337 objfile_name (symfile_objfile))
1338 : !query (_("Discard symbol table? "))))
1339 error (_("Not confirmed."));
1340
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
1343 no_shared_libraries (NULL, from_tty);
1344
1345 free_all_objfiles ();
1346
1347 gdb_assert (symfile_objfile == NULL);
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1350 }
1351
1352 static int
1353 separate_debug_file_exists (const char *name, unsigned long crc,
1354 struct objfile *parent_objfile)
1355 {
1356 unsigned long file_crc;
1357 int file_crc_p;
1358 bfd *abfd;
1359 struct stat parent_stat, abfd_stat;
1360 int verified_as_different;
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1366 the separate debug infos with the same basename can exist. */
1367
1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1369 return 0;
1370
1371 abfd = gdb_bfd_open (name, gnutarget, -1);
1372
1373 if (!abfd)
1374 return 0;
1375
1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Files accessed from gdbservers that do not
1381 support the vFile:fstat packet will also have st_ino set to zero.
1382 Do not indicate a duplicate library in either case. While there
1383 is no guarantee that a system that provides meaningful inode
1384 numbers will never set st_ino to zero, this is merely an
1385 optimization, so we do not need to worry about false negatives. */
1386
1387 if (bfd_stat (abfd, &abfd_stat) == 0
1388 && abfd_stat.st_ino != 0
1389 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1390 {
1391 if (abfd_stat.st_dev == parent_stat.st_dev
1392 && abfd_stat.st_ino == parent_stat.st_ino)
1393 {
1394 gdb_bfd_unref (abfd);
1395 return 0;
1396 }
1397 verified_as_different = 1;
1398 }
1399 else
1400 verified_as_different = 0;
1401
1402 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1403
1404 gdb_bfd_unref (abfd);
1405
1406 if (!file_crc_p)
1407 return 0;
1408
1409 if (crc != file_crc)
1410 {
1411 unsigned long parent_crc;
1412
1413 /* If the files could not be verified as different with
1414 bfd_stat then we need to calculate the parent's CRC
1415 to verify whether the files are different or not. */
1416
1417 if (!verified_as_different)
1418 {
1419 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1420 return 0;
1421 }
1422
1423 if (verified_as_different || parent_crc != file_crc)
1424 warning (_("the debug information found in \"%s\""
1425 " does not match \"%s\" (CRC mismatch).\n"),
1426 name, objfile_name (parent_objfile));
1427
1428 return 0;
1429 }
1430
1431 return 1;
1432 }
1433
1434 char *debug_file_directory = NULL;
1435 static void
1436 show_debug_file_directory (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438 {
1439 fprintf_filtered (file,
1440 _("The directory where separate debug "
1441 "symbols are searched for is \"%s\".\n"),
1442 value);
1443 }
1444
1445 #if ! defined (DEBUG_SUBDIRECTORY)
1446 #define DEBUG_SUBDIRECTORY ".debug"
1447 #endif
1448
1449 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1450 where the original file resides (may not be the same as
1451 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1452 looking for. CANON_DIR is the "realpath" form of DIR.
1453 DIR must contain a trailing '/'.
1454 Returns the path of the file with separate debug info, of NULL. */
1455
1456 static char *
1457 find_separate_debug_file (const char *dir,
1458 const char *canon_dir,
1459 const char *debuglink,
1460 unsigned long crc32, struct objfile *objfile)
1461 {
1462 char *debugdir;
1463 char *debugfile;
1464 int i;
1465 VEC (char_ptr) *debugdir_vec;
1466 struct cleanup *back_to;
1467 int ix;
1468
1469 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1470 i = strlen (dir);
1471 if (canon_dir != NULL && strlen (canon_dir) > i)
1472 i = strlen (canon_dir);
1473
1474 debugfile
1475 = (char *) xmalloc (strlen (debug_file_directory) + 1
1476 + i
1477 + strlen (DEBUG_SUBDIRECTORY)
1478 + strlen ("/")
1479 + strlen (debuglink)
1480 + 1);
1481
1482 /* First try in the same directory as the original file. */
1483 strcpy (debugfile, dir);
1484 strcat (debugfile, debuglink);
1485
1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
1487 return debugfile;
1488
1489 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1490 strcpy (debugfile, dir);
1491 strcat (debugfile, DEBUG_SUBDIRECTORY);
1492 strcat (debugfile, "/");
1493 strcat (debugfile, debuglink);
1494
1495 if (separate_debug_file_exists (debugfile, crc32, objfile))
1496 return debugfile;
1497
1498 /* Then try in the global debugfile directories.
1499
1500 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1501 cause "/..." lookups. */
1502
1503 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1504 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1505
1506 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1507 {
1508 strcpy (debugfile, debugdir);
1509 strcat (debugfile, "/");
1510 strcat (debugfile, dir);
1511 strcat (debugfile, debuglink);
1512
1513 if (separate_debug_file_exists (debugfile, crc32, objfile))
1514 {
1515 do_cleanups (back_to);
1516 return debugfile;
1517 }
1518
1519 /* If the file is in the sysroot, try using its base path in the
1520 global debugfile directory. */
1521 if (canon_dir != NULL
1522 && filename_ncmp (canon_dir, gdb_sysroot,
1523 strlen (gdb_sysroot)) == 0
1524 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1525 {
1526 strcpy (debugfile, debugdir);
1527 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1528 strcat (debugfile, "/");
1529 strcat (debugfile, debuglink);
1530
1531 if (separate_debug_file_exists (debugfile, crc32, objfile))
1532 {
1533 do_cleanups (back_to);
1534 return debugfile;
1535 }
1536 }
1537 }
1538
1539 do_cleanups (back_to);
1540 xfree (debugfile);
1541 return NULL;
1542 }
1543
1544 /* Modify PATH to contain only "[/]directory/" part of PATH.
1545 If there were no directory separators in PATH, PATH will be empty
1546 string on return. */
1547
1548 static void
1549 terminate_after_last_dir_separator (char *path)
1550 {
1551 int i;
1552
1553 /* Strip off the final filename part, leaving the directory name,
1554 followed by a slash. The directory can be relative or absolute. */
1555 for (i = strlen(path) - 1; i >= 0; i--)
1556 if (IS_DIR_SEPARATOR (path[i]))
1557 break;
1558
1559 /* If I is -1 then no directory is present there and DIR will be "". */
1560 path[i + 1] = '\0';
1561 }
1562
1563 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1564 Returns pathname, or NULL. */
1565
1566 char *
1567 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1568 {
1569 char *debuglink;
1570 char *dir, *canon_dir;
1571 char *debugfile;
1572 unsigned long crc32;
1573 struct cleanup *cleanups;
1574
1575 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1576
1577 if (debuglink == NULL)
1578 {
1579 /* There's no separate debug info, hence there's no way we could
1580 load it => no warning. */
1581 return NULL;
1582 }
1583
1584 cleanups = make_cleanup (xfree, debuglink);
1585 dir = xstrdup (objfile_name (objfile));
1586 make_cleanup (xfree, dir);
1587 terminate_after_last_dir_separator (dir);
1588 canon_dir = lrealpath (dir);
1589
1590 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1591 crc32, objfile);
1592 xfree (canon_dir);
1593
1594 if (debugfile == NULL)
1595 {
1596 /* For PR gdb/9538, try again with realpath (if different from the
1597 original). */
1598
1599 struct stat st_buf;
1600
1601 if (lstat (objfile_name (objfile), &st_buf) == 0
1602 && S_ISLNK (st_buf.st_mode))
1603 {
1604 char *symlink_dir;
1605
1606 symlink_dir = lrealpath (objfile_name (objfile));
1607 if (symlink_dir != NULL)
1608 {
1609 make_cleanup (xfree, symlink_dir);
1610 terminate_after_last_dir_separator (symlink_dir);
1611 if (strcmp (dir, symlink_dir) != 0)
1612 {
1613 /* Different directory, so try using it. */
1614 debugfile = find_separate_debug_file (symlink_dir,
1615 symlink_dir,
1616 debuglink,
1617 crc32,
1618 objfile);
1619 }
1620 }
1621 }
1622 }
1623
1624 do_cleanups (cleanups);
1625 return debugfile;
1626 }
1627
1628 /* This is the symbol-file command. Read the file, analyze its
1629 symbols, and add a struct symtab to a symtab list. The syntax of
1630 the command is rather bizarre:
1631
1632 1. The function buildargv implements various quoting conventions
1633 which are undocumented and have little or nothing in common with
1634 the way things are quoted (or not quoted) elsewhere in GDB.
1635
1636 2. Options are used, which are not generally used in GDB (perhaps
1637 "set mapped on", "set readnow on" would be better)
1638
1639 3. The order of options matters, which is contrary to GNU
1640 conventions (because it is confusing and inconvenient). */
1641
1642 void
1643 symbol_file_command (char *args, int from_tty)
1644 {
1645 dont_repeat ();
1646
1647 if (args == NULL)
1648 {
1649 symbol_file_clear (from_tty);
1650 }
1651 else
1652 {
1653 char **argv = gdb_buildargv (args);
1654 int flags = OBJF_USERLOADED;
1655 struct cleanup *cleanups;
1656 char *name = NULL;
1657
1658 cleanups = make_cleanup_freeargv (argv);
1659 while (*argv != NULL)
1660 {
1661 if (strcmp (*argv, "-readnow") == 0)
1662 flags |= OBJF_READNOW;
1663 else if (**argv == '-')
1664 error (_("unknown option `%s'"), *argv);
1665 else
1666 {
1667 symbol_file_add_main_1 (*argv, from_tty, flags);
1668 name = *argv;
1669 }
1670
1671 argv++;
1672 }
1673
1674 if (name == NULL)
1675 error (_("no symbol file name was specified"));
1676
1677 do_cleanups (cleanups);
1678 }
1679 }
1680
1681 /* Set the initial language.
1682
1683 FIXME: A better solution would be to record the language in the
1684 psymtab when reading partial symbols, and then use it (if known) to
1685 set the language. This would be a win for formats that encode the
1686 language in an easily discoverable place, such as DWARF. For
1687 stabs, we can jump through hoops looking for specially named
1688 symbols or try to intuit the language from the specific type of
1689 stabs we find, but we can't do that until later when we read in
1690 full symbols. */
1691
1692 void
1693 set_initial_language (void)
1694 {
1695 enum language lang = main_language ();
1696
1697 if (lang == language_unknown)
1698 {
1699 char *name = main_name ();
1700 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1701
1702 if (sym != NULL)
1703 lang = SYMBOL_LANGUAGE (sym);
1704 }
1705
1706 if (lang == language_unknown)
1707 {
1708 /* Make C the default language */
1709 lang = language_c;
1710 }
1711
1712 set_language (lang);
1713 expected_language = current_language; /* Don't warn the user. */
1714 }
1715
1716 /* Open the file specified by NAME and hand it off to BFD for
1717 preliminary analysis. Return a newly initialized bfd *, which
1718 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1719 absolute). In case of trouble, error() is called. */
1720
1721 bfd *
1722 symfile_bfd_open (const char *name)
1723 {
1724 bfd *sym_bfd;
1725 int desc = -1;
1726 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1727
1728 if (!is_target_filename (name))
1729 {
1730 char *expanded_name, *absolute_name;
1731
1732 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1733
1734 /* Look down path for it, allocate 2nd new malloc'd copy. */
1735 desc = openp (getenv ("PATH"),
1736 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1737 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1738 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1739 if (desc < 0)
1740 {
1741 char *exename = alloca (strlen (expanded_name) + 5);
1742
1743 strcat (strcpy (exename, expanded_name), ".exe");
1744 desc = openp (getenv ("PATH"),
1745 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1746 exename, O_RDONLY | O_BINARY, &absolute_name);
1747 }
1748 #endif
1749 if (desc < 0)
1750 {
1751 make_cleanup (xfree, expanded_name);
1752 perror_with_name (expanded_name);
1753 }
1754
1755 xfree (expanded_name);
1756 make_cleanup (xfree, absolute_name);
1757 name = absolute_name;
1758 }
1759
1760 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1761 if (!sym_bfd)
1762 error (_("`%s': can't open to read symbols: %s."), name,
1763 bfd_errmsg (bfd_get_error ()));
1764
1765 if (!gdb_bfd_has_target_filename (sym_bfd))
1766 bfd_set_cacheable (sym_bfd, 1);
1767
1768 if (!bfd_check_format (sym_bfd, bfd_object))
1769 {
1770 make_cleanup_bfd_unref (sym_bfd);
1771 error (_("`%s': can't read symbols: %s."), name,
1772 bfd_errmsg (bfd_get_error ()));
1773 }
1774
1775 do_cleanups (back_to);
1776
1777 return sym_bfd;
1778 }
1779
1780 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1781 the section was not found. */
1782
1783 int
1784 get_section_index (struct objfile *objfile, char *section_name)
1785 {
1786 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1787
1788 if (sect)
1789 return sect->index;
1790 else
1791 return -1;
1792 }
1793
1794 /* Link SF into the global symtab_fns list.
1795 FLAVOUR is the file format that SF handles.
1796 Called on startup by the _initialize routine in each object file format
1797 reader, to register information about each format the reader is prepared
1798 to handle. */
1799
1800 void
1801 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1802 {
1803 registered_sym_fns fns = { flavour, sf };
1804
1805 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1806 }
1807
1808 /* Initialize OBJFILE to read symbols from its associated BFD. It
1809 either returns or calls error(). The result is an initialized
1810 struct sym_fns in the objfile structure, that contains cached
1811 information about the symbol file. */
1812
1813 static const struct sym_fns *
1814 find_sym_fns (bfd *abfd)
1815 {
1816 registered_sym_fns *rsf;
1817 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1818 int i;
1819
1820 if (our_flavour == bfd_target_srec_flavour
1821 || our_flavour == bfd_target_ihex_flavour
1822 || our_flavour == bfd_target_tekhex_flavour)
1823 return NULL; /* No symbols. */
1824
1825 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1826 if (our_flavour == rsf->sym_flavour)
1827 return rsf->sym_fns;
1828
1829 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1830 bfd_get_target (abfd));
1831 }
1832 \f
1833
1834 /* This function runs the load command of our current target. */
1835
1836 static void
1837 load_command (char *arg, int from_tty)
1838 {
1839 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1840
1841 dont_repeat ();
1842
1843 /* The user might be reloading because the binary has changed. Take
1844 this opportunity to check. */
1845 reopen_exec_file ();
1846 reread_symbols ();
1847
1848 if (arg == NULL)
1849 {
1850 char *parg;
1851 int count = 0;
1852
1853 parg = arg = get_exec_file (1);
1854
1855 /* Count how many \ " ' tab space there are in the name. */
1856 while ((parg = strpbrk (parg, "\\\"'\t ")))
1857 {
1858 parg++;
1859 count++;
1860 }
1861
1862 if (count)
1863 {
1864 /* We need to quote this string so buildargv can pull it apart. */
1865 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1866 char *ptemp = temp;
1867 char *prev;
1868
1869 make_cleanup (xfree, temp);
1870
1871 prev = parg = arg;
1872 while ((parg = strpbrk (parg, "\\\"'\t ")))
1873 {
1874 strncpy (ptemp, prev, parg - prev);
1875 ptemp += parg - prev;
1876 prev = parg++;
1877 *ptemp++ = '\\';
1878 }
1879 strcpy (ptemp, prev);
1880
1881 arg = temp;
1882 }
1883 }
1884
1885 target_load (arg, from_tty);
1886
1887 /* After re-loading the executable, we don't really know which
1888 overlays are mapped any more. */
1889 overlay_cache_invalid = 1;
1890
1891 do_cleanups (cleanup);
1892 }
1893
1894 /* This version of "load" should be usable for any target. Currently
1895 it is just used for remote targets, not inftarg.c or core files,
1896 on the theory that only in that case is it useful.
1897
1898 Avoiding xmodem and the like seems like a win (a) because we don't have
1899 to worry about finding it, and (b) On VMS, fork() is very slow and so
1900 we don't want to run a subprocess. On the other hand, I'm not sure how
1901 performance compares. */
1902
1903 static int validate_download = 0;
1904
1905 /* Callback service function for generic_load (bfd_map_over_sections). */
1906
1907 static void
1908 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1909 {
1910 bfd_size_type *sum = data;
1911
1912 *sum += bfd_get_section_size (asec);
1913 }
1914
1915 /* Opaque data for load_section_callback. */
1916 struct load_section_data {
1917 CORE_ADDR load_offset;
1918 struct load_progress_data *progress_data;
1919 VEC(memory_write_request_s) *requests;
1920 };
1921
1922 /* Opaque data for load_progress. */
1923 struct load_progress_data {
1924 /* Cumulative data. */
1925 unsigned long write_count;
1926 unsigned long data_count;
1927 bfd_size_type total_size;
1928 };
1929
1930 /* Opaque data for load_progress for a single section. */
1931 struct load_progress_section_data {
1932 struct load_progress_data *cumulative;
1933
1934 /* Per-section data. */
1935 const char *section_name;
1936 ULONGEST section_sent;
1937 ULONGEST section_size;
1938 CORE_ADDR lma;
1939 gdb_byte *buffer;
1940 };
1941
1942 /* Target write callback routine for progress reporting. */
1943
1944 static void
1945 load_progress (ULONGEST bytes, void *untyped_arg)
1946 {
1947 struct load_progress_section_data *args = untyped_arg;
1948 struct load_progress_data *totals;
1949
1950 if (args == NULL)
1951 /* Writing padding data. No easy way to get at the cumulative
1952 stats, so just ignore this. */
1953 return;
1954
1955 totals = args->cumulative;
1956
1957 if (bytes == 0 && args->section_sent == 0)
1958 {
1959 /* The write is just starting. Let the user know we've started
1960 this section. */
1961 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1962 args->section_name, hex_string (args->section_size),
1963 paddress (target_gdbarch (), args->lma));
1964 return;
1965 }
1966
1967 if (validate_download)
1968 {
1969 /* Broken memories and broken monitors manifest themselves here
1970 when bring new computers to life. This doubles already slow
1971 downloads. */
1972 /* NOTE: cagney/1999-10-18: A more efficient implementation
1973 might add a verify_memory() method to the target vector and
1974 then use that. remote.c could implement that method using
1975 the ``qCRC'' packet. */
1976 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1977 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1978
1979 if (target_read_memory (args->lma, check, bytes) != 0)
1980 error (_("Download verify read failed at %s"),
1981 paddress (target_gdbarch (), args->lma));
1982 if (memcmp (args->buffer, check, bytes) != 0)
1983 error (_("Download verify compare failed at %s"),
1984 paddress (target_gdbarch (), args->lma));
1985 do_cleanups (verify_cleanups);
1986 }
1987 totals->data_count += bytes;
1988 args->lma += bytes;
1989 args->buffer += bytes;
1990 totals->write_count += 1;
1991 args->section_sent += bytes;
1992 if (check_quit_flag ()
1993 || (deprecated_ui_load_progress_hook != NULL
1994 && deprecated_ui_load_progress_hook (args->section_name,
1995 args->section_sent)))
1996 error (_("Canceled the download"));
1997
1998 if (deprecated_show_load_progress != NULL)
1999 deprecated_show_load_progress (args->section_name,
2000 args->section_sent,
2001 args->section_size,
2002 totals->data_count,
2003 totals->total_size);
2004 }
2005
2006 /* Callback service function for generic_load (bfd_map_over_sections). */
2007
2008 static void
2009 load_section_callback (bfd *abfd, asection *asec, void *data)
2010 {
2011 struct memory_write_request *new_request;
2012 struct load_section_data *args = data;
2013 struct load_progress_section_data *section_data;
2014 bfd_size_type size = bfd_get_section_size (asec);
2015 gdb_byte *buffer;
2016 const char *sect_name = bfd_get_section_name (abfd, asec);
2017
2018 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2019 return;
2020
2021 if (size == 0)
2022 return;
2023
2024 new_request = VEC_safe_push (memory_write_request_s,
2025 args->requests, NULL);
2026 memset (new_request, 0, sizeof (struct memory_write_request));
2027 section_data = XCNEW (struct load_progress_section_data);
2028 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2029 new_request->end = new_request->begin + size; /* FIXME Should size
2030 be in instead? */
2031 new_request->data = (gdb_byte *) xmalloc (size);
2032 new_request->baton = section_data;
2033
2034 buffer = new_request->data;
2035
2036 section_data->cumulative = args->progress_data;
2037 section_data->section_name = sect_name;
2038 section_data->section_size = size;
2039 section_data->lma = new_request->begin;
2040 section_data->buffer = buffer;
2041
2042 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2043 }
2044
2045 /* Clean up an entire memory request vector, including load
2046 data and progress records. */
2047
2048 static void
2049 clear_memory_write_data (void *arg)
2050 {
2051 VEC(memory_write_request_s) **vec_p = arg;
2052 VEC(memory_write_request_s) *vec = *vec_p;
2053 int i;
2054 struct memory_write_request *mr;
2055
2056 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2057 {
2058 xfree (mr->data);
2059 xfree (mr->baton);
2060 }
2061 VEC_free (memory_write_request_s, vec);
2062 }
2063
2064 void
2065 generic_load (const char *args, int from_tty)
2066 {
2067 bfd *loadfile_bfd;
2068 struct timeval start_time, end_time;
2069 char *filename;
2070 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2071 struct load_section_data cbdata;
2072 struct load_progress_data total_progress;
2073 struct ui_out *uiout = current_uiout;
2074
2075 CORE_ADDR entry;
2076 char **argv;
2077
2078 memset (&cbdata, 0, sizeof (cbdata));
2079 memset (&total_progress, 0, sizeof (total_progress));
2080 cbdata.progress_data = &total_progress;
2081
2082 make_cleanup (clear_memory_write_data, &cbdata.requests);
2083
2084 if (args == NULL)
2085 error_no_arg (_("file to load"));
2086
2087 argv = gdb_buildargv (args);
2088 make_cleanup_freeargv (argv);
2089
2090 filename = tilde_expand (argv[0]);
2091 make_cleanup (xfree, filename);
2092
2093 if (argv[1] != NULL)
2094 {
2095 const char *endptr;
2096
2097 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2098
2099 /* If the last word was not a valid number then
2100 treat it as a file name with spaces in. */
2101 if (argv[1] == endptr)
2102 error (_("Invalid download offset:%s."), argv[1]);
2103
2104 if (argv[2] != NULL)
2105 error (_("Too many parameters."));
2106 }
2107
2108 /* Open the file for loading. */
2109 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2110 if (loadfile_bfd == NULL)
2111 {
2112 perror_with_name (filename);
2113 return;
2114 }
2115
2116 make_cleanup_bfd_unref (loadfile_bfd);
2117
2118 if (!bfd_check_format (loadfile_bfd, bfd_object))
2119 {
2120 error (_("\"%s\" is not an object file: %s"), filename,
2121 bfd_errmsg (bfd_get_error ()));
2122 }
2123
2124 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2125 (void *) &total_progress.total_size);
2126
2127 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2128
2129 gettimeofday (&start_time, NULL);
2130
2131 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2132 load_progress) != 0)
2133 error (_("Load failed"));
2134
2135 gettimeofday (&end_time, NULL);
2136
2137 entry = bfd_get_start_address (loadfile_bfd);
2138 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2139 ui_out_text (uiout, "Start address ");
2140 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2141 ui_out_text (uiout, ", load size ");
2142 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2143 ui_out_text (uiout, "\n");
2144 /* We were doing this in remote-mips.c, I suspect it is right
2145 for other targets too. */
2146 regcache_write_pc (get_current_regcache (), entry);
2147
2148 /* Reset breakpoints, now that we have changed the load image. For
2149 instance, breakpoints may have been set (or reset, by
2150 post_create_inferior) while connected to the target but before we
2151 loaded the program. In that case, the prologue analyzer could
2152 have read instructions from the target to find the right
2153 breakpoint locations. Loading has changed the contents of that
2154 memory. */
2155
2156 breakpoint_re_set ();
2157
2158 /* FIXME: are we supposed to call symbol_file_add or not? According
2159 to a comment from remote-mips.c (where a call to symbol_file_add
2160 was commented out), making the call confuses GDB if more than one
2161 file is loaded in. Some targets do (e.g., remote-vx.c) but
2162 others don't (or didn't - perhaps they have all been deleted). */
2163
2164 print_transfer_performance (gdb_stdout, total_progress.data_count,
2165 total_progress.write_count,
2166 &start_time, &end_time);
2167
2168 do_cleanups (old_cleanups);
2169 }
2170
2171 /* Report how fast the transfer went. */
2172
2173 void
2174 print_transfer_performance (struct ui_file *stream,
2175 unsigned long data_count,
2176 unsigned long write_count,
2177 const struct timeval *start_time,
2178 const struct timeval *end_time)
2179 {
2180 ULONGEST time_count;
2181 struct ui_out *uiout = current_uiout;
2182
2183 /* Compute the elapsed time in milliseconds, as a tradeoff between
2184 accuracy and overflow. */
2185 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2186 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2187
2188 ui_out_text (uiout, "Transfer rate: ");
2189 if (time_count > 0)
2190 {
2191 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2192
2193 if (ui_out_is_mi_like_p (uiout))
2194 {
2195 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2196 ui_out_text (uiout, " bits/sec");
2197 }
2198 else if (rate < 1024)
2199 {
2200 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2201 ui_out_text (uiout, " bytes/sec");
2202 }
2203 else
2204 {
2205 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2206 ui_out_text (uiout, " KB/sec");
2207 }
2208 }
2209 else
2210 {
2211 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2212 ui_out_text (uiout, " bits in <1 sec");
2213 }
2214 if (write_count > 0)
2215 {
2216 ui_out_text (uiout, ", ");
2217 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2218 ui_out_text (uiout, " bytes/write");
2219 }
2220 ui_out_text (uiout, ".\n");
2221 }
2222
2223 /* This function allows the addition of incrementally linked object files.
2224 It does not modify any state in the target, only in the debugger. */
2225 /* Note: ezannoni 2000-04-13 This function/command used to have a
2226 special case syntax for the rombug target (Rombug is the boot
2227 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2228 rombug case, the user doesn't need to supply a text address,
2229 instead a call to target_link() (in target.c) would supply the
2230 value to use. We are now discontinuing this type of ad hoc syntax. */
2231
2232 static void
2233 add_symbol_file_command (char *args, int from_tty)
2234 {
2235 struct gdbarch *gdbarch = get_current_arch ();
2236 char *filename = NULL;
2237 int flags = OBJF_USERLOADED | OBJF_SHARED;
2238 char *arg;
2239 int section_index = 0;
2240 int argcnt = 0;
2241 int sec_num = 0;
2242 int i;
2243 int expecting_sec_name = 0;
2244 int expecting_sec_addr = 0;
2245 char **argv;
2246 struct objfile *objf;
2247
2248 struct sect_opt
2249 {
2250 char *name;
2251 char *value;
2252 };
2253
2254 struct section_addr_info *section_addrs;
2255 struct sect_opt *sect_opts = NULL;
2256 size_t num_sect_opts = 0;
2257 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2258
2259 num_sect_opts = 16;
2260 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2261
2262 dont_repeat ();
2263
2264 if (args == NULL)
2265 error (_("add-symbol-file takes a file name and an address"));
2266
2267 argv = gdb_buildargv (args);
2268 make_cleanup_freeargv (argv);
2269
2270 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2271 {
2272 /* Process the argument. */
2273 if (argcnt == 0)
2274 {
2275 /* The first argument is the file name. */
2276 filename = tilde_expand (arg);
2277 make_cleanup (xfree, filename);
2278 }
2279 else if (argcnt == 1)
2280 {
2281 /* The second argument is always the text address at which
2282 to load the program. */
2283 sect_opts[section_index].name = ".text";
2284 sect_opts[section_index].value = arg;
2285 if (++section_index >= num_sect_opts)
2286 {
2287 num_sect_opts *= 2;
2288 sect_opts = ((struct sect_opt *)
2289 xrealloc (sect_opts,
2290 num_sect_opts
2291 * sizeof (struct sect_opt)));
2292 }
2293 }
2294 else
2295 {
2296 /* It's an option (starting with '-') or it's an argument
2297 to an option. */
2298 if (expecting_sec_name)
2299 {
2300 sect_opts[section_index].name = arg;
2301 expecting_sec_name = 0;
2302 }
2303 else if (expecting_sec_addr)
2304 {
2305 sect_opts[section_index].value = arg;
2306 expecting_sec_addr = 0;
2307 if (++section_index >= num_sect_opts)
2308 {
2309 num_sect_opts *= 2;
2310 sect_opts = ((struct sect_opt *)
2311 xrealloc (sect_opts,
2312 num_sect_opts
2313 * sizeof (struct sect_opt)));
2314 }
2315 }
2316 else if (strcmp (arg, "-readnow") == 0)
2317 flags |= OBJF_READNOW;
2318 else if (strcmp (arg, "-s") == 0)
2319 {
2320 expecting_sec_name = 1;
2321 expecting_sec_addr = 1;
2322 }
2323 else
2324 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2325 " [-readnow] [-s <secname> <addr>]*"));
2326 }
2327 }
2328
2329 /* This command takes at least two arguments. The first one is a
2330 filename, and the second is the address where this file has been
2331 loaded. Abort now if this address hasn't been provided by the
2332 user. */
2333 if (section_index < 1)
2334 error (_("The address where %s has been loaded is missing"), filename);
2335
2336 /* Print the prompt for the query below. And save the arguments into
2337 a sect_addr_info structure to be passed around to other
2338 functions. We have to split this up into separate print
2339 statements because hex_string returns a local static
2340 string. */
2341
2342 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2343 section_addrs = alloc_section_addr_info (section_index);
2344 make_cleanup (xfree, section_addrs);
2345 for (i = 0; i < section_index; i++)
2346 {
2347 CORE_ADDR addr;
2348 char *val = sect_opts[i].value;
2349 char *sec = sect_opts[i].name;
2350
2351 addr = parse_and_eval_address (val);
2352
2353 /* Here we store the section offsets in the order they were
2354 entered on the command line. */
2355 section_addrs->other[sec_num].name = sec;
2356 section_addrs->other[sec_num].addr = addr;
2357 printf_unfiltered ("\t%s_addr = %s\n", sec,
2358 paddress (gdbarch, addr));
2359 sec_num++;
2360
2361 /* The object's sections are initialized when a
2362 call is made to build_objfile_section_table (objfile).
2363 This happens in reread_symbols.
2364 At this point, we don't know what file type this is,
2365 so we can't determine what section names are valid. */
2366 }
2367 section_addrs->num_sections = sec_num;
2368
2369 if (from_tty && (!query ("%s", "")))
2370 error (_("Not confirmed."));
2371
2372 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2373 section_addrs, flags);
2374
2375 add_target_sections_of_objfile (objf);
2376
2377 /* Getting new symbols may change our opinion about what is
2378 frameless. */
2379 reinit_frame_cache ();
2380 do_cleanups (my_cleanups);
2381 }
2382 \f
2383
2384 /* This function removes a symbol file that was added via add-symbol-file. */
2385
2386 static void
2387 remove_symbol_file_command (char *args, int from_tty)
2388 {
2389 char **argv;
2390 struct objfile *objf = NULL;
2391 struct cleanup *my_cleanups;
2392 struct program_space *pspace = current_program_space;
2393 struct gdbarch *gdbarch = get_current_arch ();
2394
2395 dont_repeat ();
2396
2397 if (args == NULL)
2398 error (_("remove-symbol-file: no symbol file provided"));
2399
2400 my_cleanups = make_cleanup (null_cleanup, NULL);
2401
2402 argv = gdb_buildargv (args);
2403
2404 if (strcmp (argv[0], "-a") == 0)
2405 {
2406 /* Interpret the next argument as an address. */
2407 CORE_ADDR addr;
2408
2409 if (argv[1] == NULL)
2410 error (_("Missing address argument"));
2411
2412 if (argv[2] != NULL)
2413 error (_("Junk after %s"), argv[1]);
2414
2415 addr = parse_and_eval_address (argv[1]);
2416
2417 ALL_OBJFILES (objf)
2418 {
2419 if ((objf->flags & OBJF_USERLOADED) != 0
2420 && (objf->flags & OBJF_SHARED) != 0
2421 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2422 break;
2423 }
2424 }
2425 else if (argv[0] != NULL)
2426 {
2427 /* Interpret the current argument as a file name. */
2428 char *filename;
2429
2430 if (argv[1] != NULL)
2431 error (_("Junk after %s"), argv[0]);
2432
2433 filename = tilde_expand (argv[0]);
2434 make_cleanup (xfree, filename);
2435
2436 ALL_OBJFILES (objf)
2437 {
2438 if ((objf->flags & OBJF_USERLOADED) != 0
2439 && (objf->flags & OBJF_SHARED) != 0
2440 && objf->pspace == pspace
2441 && filename_cmp (filename, objfile_name (objf)) == 0)
2442 break;
2443 }
2444 }
2445
2446 if (objf == NULL)
2447 error (_("No symbol file found"));
2448
2449 if (from_tty
2450 && !query (_("Remove symbol table from file \"%s\"? "),
2451 objfile_name (objf)))
2452 error (_("Not confirmed."));
2453
2454 free_objfile (objf);
2455 clear_symtab_users (0);
2456
2457 do_cleanups (my_cleanups);
2458 }
2459
2460 typedef struct objfile *objfilep;
2461
2462 DEF_VEC_P (objfilep);
2463
2464 /* Re-read symbols if a symbol-file has changed. */
2465
2466 void
2467 reread_symbols (void)
2468 {
2469 struct objfile *objfile;
2470 long new_modtime;
2471 struct stat new_statbuf;
2472 int res;
2473 VEC (objfilep) *new_objfiles = NULL;
2474 struct cleanup *all_cleanups;
2475
2476 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2477
2478 /* With the addition of shared libraries, this should be modified,
2479 the load time should be saved in the partial symbol tables, since
2480 different tables may come from different source files. FIXME.
2481 This routine should then walk down each partial symbol table
2482 and see if the symbol table that it originates from has been changed. */
2483
2484 for (objfile = object_files; objfile; objfile = objfile->next)
2485 {
2486 if (objfile->obfd == NULL)
2487 continue;
2488
2489 /* Separate debug objfiles are handled in the main objfile. */
2490 if (objfile->separate_debug_objfile_backlink)
2491 continue;
2492
2493 /* If this object is from an archive (what you usually create with
2494 `ar', often called a `static library' on most systems, though
2495 a `shared library' on AIX is also an archive), then you should
2496 stat on the archive name, not member name. */
2497 if (objfile->obfd->my_archive)
2498 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2499 else
2500 res = stat (objfile_name (objfile), &new_statbuf);
2501 if (res != 0)
2502 {
2503 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2504 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2505 objfile_name (objfile));
2506 continue;
2507 }
2508 new_modtime = new_statbuf.st_mtime;
2509 if (new_modtime != objfile->mtime)
2510 {
2511 struct cleanup *old_cleanups;
2512 struct section_offsets *offsets;
2513 int num_offsets;
2514 char *original_name;
2515
2516 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2517 objfile_name (objfile));
2518
2519 /* There are various functions like symbol_file_add,
2520 symfile_bfd_open, syms_from_objfile, etc., which might
2521 appear to do what we want. But they have various other
2522 effects which we *don't* want. So we just do stuff
2523 ourselves. We don't worry about mapped files (for one thing,
2524 any mapped file will be out of date). */
2525
2526 /* If we get an error, blow away this objfile (not sure if
2527 that is the correct response for things like shared
2528 libraries). */
2529 old_cleanups = make_cleanup_free_objfile (objfile);
2530 /* We need to do this whenever any symbols go away. */
2531 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2532
2533 if (exec_bfd != NULL
2534 && filename_cmp (bfd_get_filename (objfile->obfd),
2535 bfd_get_filename (exec_bfd)) == 0)
2536 {
2537 /* Reload EXEC_BFD without asking anything. */
2538
2539 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2540 }
2541
2542 /* Keep the calls order approx. the same as in free_objfile. */
2543
2544 /* Free the separate debug objfiles. It will be
2545 automatically recreated by sym_read. */
2546 free_objfile_separate_debug (objfile);
2547
2548 /* Remove any references to this objfile in the global
2549 value lists. */
2550 preserve_values (objfile);
2551
2552 /* Nuke all the state that we will re-read. Much of the following
2553 code which sets things to NULL really is necessary to tell
2554 other parts of GDB that there is nothing currently there.
2555
2556 Try to keep the freeing order compatible with free_objfile. */
2557
2558 if (objfile->sf != NULL)
2559 {
2560 (*objfile->sf->sym_finish) (objfile);
2561 }
2562
2563 clear_objfile_data (objfile);
2564
2565 /* Clean up any state BFD has sitting around. */
2566 {
2567 struct bfd *obfd = objfile->obfd;
2568 char *obfd_filename;
2569
2570 obfd_filename = bfd_get_filename (objfile->obfd);
2571 /* Open the new BFD before freeing the old one, so that
2572 the filename remains live. */
2573 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
2574 if (objfile->obfd == NULL)
2575 {
2576 /* We have to make a cleanup and error here, rather
2577 than erroring later, because once we unref OBFD,
2578 OBFD_FILENAME will be freed. */
2579 make_cleanup_bfd_unref (obfd);
2580 error (_("Can't open %s to read symbols."), obfd_filename);
2581 }
2582 gdb_bfd_unref (obfd);
2583 }
2584
2585 original_name = xstrdup (objfile->original_name);
2586 make_cleanup (xfree, original_name);
2587
2588 /* bfd_openr sets cacheable to true, which is what we want. */
2589 if (!bfd_check_format (objfile->obfd, bfd_object))
2590 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2591 bfd_errmsg (bfd_get_error ()));
2592
2593 /* Save the offsets, we will nuke them with the rest of the
2594 objfile_obstack. */
2595 num_offsets = objfile->num_sections;
2596 offsets = ((struct section_offsets *)
2597 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2598 memcpy (offsets, objfile->section_offsets,
2599 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2600
2601 /* FIXME: Do we have to free a whole linked list, or is this
2602 enough? */
2603 if (objfile->global_psymbols.list)
2604 xfree (objfile->global_psymbols.list);
2605 memset (&objfile->global_psymbols, 0,
2606 sizeof (objfile->global_psymbols));
2607 if (objfile->static_psymbols.list)
2608 xfree (objfile->static_psymbols.list);
2609 memset (&objfile->static_psymbols, 0,
2610 sizeof (objfile->static_psymbols));
2611
2612 /* Free the obstacks for non-reusable objfiles. */
2613 psymbol_bcache_free (objfile->psymbol_cache);
2614 objfile->psymbol_cache = psymbol_bcache_init ();
2615 obstack_free (&objfile->objfile_obstack, 0);
2616 objfile->sections = NULL;
2617 objfile->compunit_symtabs = NULL;
2618 objfile->psymtabs = NULL;
2619 objfile->psymtabs_addrmap = NULL;
2620 objfile->free_psymtabs = NULL;
2621 objfile->template_symbols = NULL;
2622
2623 /* obstack_init also initializes the obstack so it is
2624 empty. We could use obstack_specify_allocation but
2625 gdb_obstack.h specifies the alloc/dealloc functions. */
2626 obstack_init (&objfile->objfile_obstack);
2627
2628 /* set_objfile_per_bfd potentially allocates the per-bfd
2629 data on the objfile's obstack (if sharing data across
2630 multiple users is not possible), so it's important to
2631 do it *after* the obstack has been initialized. */
2632 set_objfile_per_bfd (objfile);
2633
2634 objfile->original_name
2635 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2636 strlen (original_name));
2637
2638 /* Reset the sym_fns pointer. The ELF reader can change it
2639 based on whether .gdb_index is present, and we need it to
2640 start over. PR symtab/15885 */
2641 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2642
2643 build_objfile_section_table (objfile);
2644 terminate_minimal_symbol_table (objfile);
2645
2646 /* We use the same section offsets as from last time. I'm not
2647 sure whether that is always correct for shared libraries. */
2648 objfile->section_offsets = (struct section_offsets *)
2649 obstack_alloc (&objfile->objfile_obstack,
2650 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2651 memcpy (objfile->section_offsets, offsets,
2652 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2653 objfile->num_sections = num_offsets;
2654
2655 /* What the hell is sym_new_init for, anyway? The concept of
2656 distinguishing between the main file and additional files
2657 in this way seems rather dubious. */
2658 if (objfile == symfile_objfile)
2659 {
2660 (*objfile->sf->sym_new_init) (objfile);
2661 }
2662
2663 (*objfile->sf->sym_init) (objfile);
2664 clear_complaints (&symfile_complaints, 1, 1);
2665
2666 objfile->flags &= ~OBJF_PSYMTABS_READ;
2667 read_symbols (objfile, 0);
2668
2669 if (!objfile_has_symbols (objfile))
2670 {
2671 wrap_here ("");
2672 printf_unfiltered (_("(no debugging symbols found)\n"));
2673 wrap_here ("");
2674 }
2675
2676 /* We're done reading the symbol file; finish off complaints. */
2677 clear_complaints (&symfile_complaints, 0, 1);
2678
2679 /* Getting new symbols may change our opinion about what is
2680 frameless. */
2681
2682 reinit_frame_cache ();
2683
2684 /* Discard cleanups as symbol reading was successful. */
2685 discard_cleanups (old_cleanups);
2686
2687 /* If the mtime has changed between the time we set new_modtime
2688 and now, we *want* this to be out of date, so don't call stat
2689 again now. */
2690 objfile->mtime = new_modtime;
2691 init_entry_point_info (objfile);
2692
2693 VEC_safe_push (objfilep, new_objfiles, objfile);
2694 }
2695 }
2696
2697 if (new_objfiles)
2698 {
2699 int ix;
2700
2701 /* Notify objfiles that we've modified objfile sections. */
2702 objfiles_changed ();
2703
2704 clear_symtab_users (0);
2705
2706 /* clear_objfile_data for each objfile was called before freeing it and
2707 observer_notify_new_objfile (NULL) has been called by
2708 clear_symtab_users above. Notify the new files now. */
2709 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2710 observer_notify_new_objfile (objfile);
2711
2712 /* At least one objfile has changed, so we can consider that
2713 the executable we're debugging has changed too. */
2714 observer_notify_executable_changed ();
2715 }
2716
2717 do_cleanups (all_cleanups);
2718 }
2719 \f
2720
2721 typedef struct
2722 {
2723 char *ext;
2724 enum language lang;
2725 }
2726 filename_language;
2727
2728 static filename_language *filename_language_table;
2729 static int fl_table_size, fl_table_next;
2730
2731 static void
2732 add_filename_language (char *ext, enum language lang)
2733 {
2734 if (fl_table_next >= fl_table_size)
2735 {
2736 fl_table_size += 10;
2737 filename_language_table = XRESIZEVEC (filename_language,
2738 filename_language_table,
2739 fl_table_size);
2740 }
2741
2742 filename_language_table[fl_table_next].ext = xstrdup (ext);
2743 filename_language_table[fl_table_next].lang = lang;
2744 fl_table_next++;
2745 }
2746
2747 static char *ext_args;
2748 static void
2749 show_ext_args (struct ui_file *file, int from_tty,
2750 struct cmd_list_element *c, const char *value)
2751 {
2752 fprintf_filtered (file,
2753 _("Mapping between filename extension "
2754 "and source language is \"%s\".\n"),
2755 value);
2756 }
2757
2758 static void
2759 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2760 {
2761 int i;
2762 char *cp = ext_args;
2763 enum language lang;
2764
2765 /* First arg is filename extension, starting with '.' */
2766 if (*cp != '.')
2767 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2768
2769 /* Find end of first arg. */
2770 while (*cp && !isspace (*cp))
2771 cp++;
2772
2773 if (*cp == '\0')
2774 error (_("'%s': two arguments required -- "
2775 "filename extension and language"),
2776 ext_args);
2777
2778 /* Null-terminate first arg. */
2779 *cp++ = '\0';
2780
2781 /* Find beginning of second arg, which should be a source language. */
2782 cp = skip_spaces (cp);
2783
2784 if (*cp == '\0')
2785 error (_("'%s': two arguments required -- "
2786 "filename extension and language"),
2787 ext_args);
2788
2789 /* Lookup the language from among those we know. */
2790 lang = language_enum (cp);
2791
2792 /* Now lookup the filename extension: do we already know it? */
2793 for (i = 0; i < fl_table_next; i++)
2794 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2795 break;
2796
2797 if (i >= fl_table_next)
2798 {
2799 /* New file extension. */
2800 add_filename_language (ext_args, lang);
2801 }
2802 else
2803 {
2804 /* Redefining a previously known filename extension. */
2805
2806 /* if (from_tty) */
2807 /* query ("Really make files of type %s '%s'?", */
2808 /* ext_args, language_str (lang)); */
2809
2810 xfree (filename_language_table[i].ext);
2811 filename_language_table[i].ext = xstrdup (ext_args);
2812 filename_language_table[i].lang = lang;
2813 }
2814 }
2815
2816 static void
2817 info_ext_lang_command (char *args, int from_tty)
2818 {
2819 int i;
2820
2821 printf_filtered (_("Filename extensions and the languages they represent:"));
2822 printf_filtered ("\n\n");
2823 for (i = 0; i < fl_table_next; i++)
2824 printf_filtered ("\t%s\t- %s\n",
2825 filename_language_table[i].ext,
2826 language_str (filename_language_table[i].lang));
2827 }
2828
2829 static void
2830 init_filename_language_table (void)
2831 {
2832 if (fl_table_size == 0) /* Protect against repetition. */
2833 {
2834 fl_table_size = 20;
2835 fl_table_next = 0;
2836 filename_language_table = XNEWVEC (filename_language, fl_table_size);
2837
2838 add_filename_language (".c", language_c);
2839 add_filename_language (".d", language_d);
2840 add_filename_language (".C", language_cplus);
2841 add_filename_language (".cc", language_cplus);
2842 add_filename_language (".cp", language_cplus);
2843 add_filename_language (".cpp", language_cplus);
2844 add_filename_language (".cxx", language_cplus);
2845 add_filename_language (".c++", language_cplus);
2846 add_filename_language (".java", language_java);
2847 add_filename_language (".class", language_java);
2848 add_filename_language (".m", language_objc);
2849 add_filename_language (".f", language_fortran);
2850 add_filename_language (".F", language_fortran);
2851 add_filename_language (".for", language_fortran);
2852 add_filename_language (".FOR", language_fortran);
2853 add_filename_language (".ftn", language_fortran);
2854 add_filename_language (".FTN", language_fortran);
2855 add_filename_language (".fpp", language_fortran);
2856 add_filename_language (".FPP", language_fortran);
2857 add_filename_language (".f90", language_fortran);
2858 add_filename_language (".F90", language_fortran);
2859 add_filename_language (".f95", language_fortran);
2860 add_filename_language (".F95", language_fortran);
2861 add_filename_language (".f03", language_fortran);
2862 add_filename_language (".F03", language_fortran);
2863 add_filename_language (".f08", language_fortran);
2864 add_filename_language (".F08", language_fortran);
2865 add_filename_language (".s", language_asm);
2866 add_filename_language (".sx", language_asm);
2867 add_filename_language (".S", language_asm);
2868 add_filename_language (".pas", language_pascal);
2869 add_filename_language (".p", language_pascal);
2870 add_filename_language (".pp", language_pascal);
2871 add_filename_language (".adb", language_ada);
2872 add_filename_language (".ads", language_ada);
2873 add_filename_language (".a", language_ada);
2874 add_filename_language (".ada", language_ada);
2875 add_filename_language (".dg", language_ada);
2876 }
2877 }
2878
2879 enum language
2880 deduce_language_from_filename (const char *filename)
2881 {
2882 int i;
2883 char *cp;
2884
2885 if (filename != NULL)
2886 if ((cp = strrchr (filename, '.')) != NULL)
2887 for (i = 0; i < fl_table_next; i++)
2888 if (strcmp (cp, filename_language_table[i].ext) == 0)
2889 return filename_language_table[i].lang;
2890
2891 return language_unknown;
2892 }
2893 \f
2894 /* Allocate and initialize a new symbol table.
2895 CUST is from the result of allocate_compunit_symtab. */
2896
2897 struct symtab *
2898 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2899 {
2900 struct objfile *objfile = cust->objfile;
2901 struct symtab *symtab
2902 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2903
2904 symtab->filename = bcache (filename, strlen (filename) + 1,
2905 objfile->per_bfd->filename_cache);
2906 symtab->fullname = NULL;
2907 symtab->language = deduce_language_from_filename (filename);
2908
2909 /* This can be very verbose with lots of headers.
2910 Only print at higher debug levels. */
2911 if (symtab_create_debug >= 2)
2912 {
2913 /* Be a bit clever with debugging messages, and don't print objfile
2914 every time, only when it changes. */
2915 static char *last_objfile_name = NULL;
2916
2917 if (last_objfile_name == NULL
2918 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2919 {
2920 xfree (last_objfile_name);
2921 last_objfile_name = xstrdup (objfile_name (objfile));
2922 fprintf_unfiltered (gdb_stdlog,
2923 "Creating one or more symtabs for objfile %s ...\n",
2924 last_objfile_name);
2925 }
2926 fprintf_unfiltered (gdb_stdlog,
2927 "Created symtab %s for module %s.\n",
2928 host_address_to_string (symtab), filename);
2929 }
2930
2931 /* Add it to CUST's list of symtabs. */
2932 if (cust->filetabs == NULL)
2933 {
2934 cust->filetabs = symtab;
2935 cust->last_filetab = symtab;
2936 }
2937 else
2938 {
2939 cust->last_filetab->next = symtab;
2940 cust->last_filetab = symtab;
2941 }
2942
2943 /* Backlink to the containing compunit symtab. */
2944 symtab->compunit_symtab = cust;
2945
2946 return symtab;
2947 }
2948
2949 /* Allocate and initialize a new compunit.
2950 NAME is the name of the main source file, if there is one, or some
2951 descriptive text if there are no source files. */
2952
2953 struct compunit_symtab *
2954 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2955 {
2956 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2957 struct compunit_symtab);
2958 const char *saved_name;
2959
2960 cu->objfile = objfile;
2961
2962 /* The name we record here is only for display/debugging purposes.
2963 Just save the basename to avoid path issues (too long for display,
2964 relative vs absolute, etc.). */
2965 saved_name = lbasename (name);
2966 cu->name
2967 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2968 strlen (saved_name));
2969
2970 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2971
2972 if (symtab_create_debug)
2973 {
2974 fprintf_unfiltered (gdb_stdlog,
2975 "Created compunit symtab %s for %s.\n",
2976 host_address_to_string (cu),
2977 cu->name);
2978 }
2979
2980 return cu;
2981 }
2982
2983 /* Hook CU to the objfile it comes from. */
2984
2985 void
2986 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2987 {
2988 cu->next = cu->objfile->compunit_symtabs;
2989 cu->objfile->compunit_symtabs = cu;
2990 }
2991 \f
2992
2993 /* Reset all data structures in gdb which may contain references to symbol
2994 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2995
2996 void
2997 clear_symtab_users (int add_flags)
2998 {
2999 /* Someday, we should do better than this, by only blowing away
3000 the things that really need to be blown. */
3001
3002 /* Clear the "current" symtab first, because it is no longer valid.
3003 breakpoint_re_set may try to access the current symtab. */
3004 clear_current_source_symtab_and_line ();
3005
3006 clear_displays ();
3007 clear_last_displayed_sal ();
3008 clear_pc_function_cache ();
3009 observer_notify_new_objfile (NULL);
3010
3011 /* Clear globals which might have pointed into a removed objfile.
3012 FIXME: It's not clear which of these are supposed to persist
3013 between expressions and which ought to be reset each time. */
3014 expression_context_block = NULL;
3015 innermost_block = NULL;
3016
3017 /* Varobj may refer to old symbols, perform a cleanup. */
3018 varobj_invalidate ();
3019
3020 /* Now that the various caches have been cleared, we can re_set
3021 our breakpoints without risking it using stale data. */
3022 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3023 breakpoint_re_set ();
3024 }
3025
3026 static void
3027 clear_symtab_users_cleanup (void *ignore)
3028 {
3029 clear_symtab_users (0);
3030 }
3031 \f
3032 /* OVERLAYS:
3033 The following code implements an abstraction for debugging overlay sections.
3034
3035 The target model is as follows:
3036 1) The gnu linker will permit multiple sections to be mapped into the
3037 same VMA, each with its own unique LMA (or load address).
3038 2) It is assumed that some runtime mechanism exists for mapping the
3039 sections, one by one, from the load address into the VMA address.
3040 3) This code provides a mechanism for gdb to keep track of which
3041 sections should be considered to be mapped from the VMA to the LMA.
3042 This information is used for symbol lookup, and memory read/write.
3043 For instance, if a section has been mapped then its contents
3044 should be read from the VMA, otherwise from the LMA.
3045
3046 Two levels of debugger support for overlays are available. One is
3047 "manual", in which the debugger relies on the user to tell it which
3048 overlays are currently mapped. This level of support is
3049 implemented entirely in the core debugger, and the information about
3050 whether a section is mapped is kept in the objfile->obj_section table.
3051
3052 The second level of support is "automatic", and is only available if
3053 the target-specific code provides functionality to read the target's
3054 overlay mapping table, and translate its contents for the debugger
3055 (by updating the mapped state information in the obj_section tables).
3056
3057 The interface is as follows:
3058 User commands:
3059 overlay map <name> -- tell gdb to consider this section mapped
3060 overlay unmap <name> -- tell gdb to consider this section unmapped
3061 overlay list -- list the sections that GDB thinks are mapped
3062 overlay read-target -- get the target's state of what's mapped
3063 overlay off/manual/auto -- set overlay debugging state
3064 Functional interface:
3065 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3066 section, return that section.
3067 find_pc_overlay(pc): find any overlay section that contains
3068 the pc, either in its VMA or its LMA
3069 section_is_mapped(sect): true if overlay is marked as mapped
3070 section_is_overlay(sect): true if section's VMA != LMA
3071 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3072 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3073 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3074 overlay_mapped_address(...): map an address from section's LMA to VMA
3075 overlay_unmapped_address(...): map an address from section's VMA to LMA
3076 symbol_overlayed_address(...): Return a "current" address for symbol:
3077 either in VMA or LMA depending on whether
3078 the symbol's section is currently mapped. */
3079
3080 /* Overlay debugging state: */
3081
3082 enum overlay_debugging_state overlay_debugging = ovly_off;
3083 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3084
3085 /* Function: section_is_overlay (SECTION)
3086 Returns true if SECTION has VMA not equal to LMA, ie.
3087 SECTION is loaded at an address different from where it will "run". */
3088
3089 int
3090 section_is_overlay (struct obj_section *section)
3091 {
3092 if (overlay_debugging && section)
3093 {
3094 bfd *abfd = section->objfile->obfd;
3095 asection *bfd_section = section->the_bfd_section;
3096
3097 if (bfd_section_lma (abfd, bfd_section) != 0
3098 && bfd_section_lma (abfd, bfd_section)
3099 != bfd_section_vma (abfd, bfd_section))
3100 return 1;
3101 }
3102
3103 return 0;
3104 }
3105
3106 /* Function: overlay_invalidate_all (void)
3107 Invalidate the mapped state of all overlay sections (mark it as stale). */
3108
3109 static void
3110 overlay_invalidate_all (void)
3111 {
3112 struct objfile *objfile;
3113 struct obj_section *sect;
3114
3115 ALL_OBJSECTIONS (objfile, sect)
3116 if (section_is_overlay (sect))
3117 sect->ovly_mapped = -1;
3118 }
3119
3120 /* Function: section_is_mapped (SECTION)
3121 Returns true if section is an overlay, and is currently mapped.
3122
3123 Access to the ovly_mapped flag is restricted to this function, so
3124 that we can do automatic update. If the global flag
3125 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3126 overlay_invalidate_all. If the mapped state of the particular
3127 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3128
3129 int
3130 section_is_mapped (struct obj_section *osect)
3131 {
3132 struct gdbarch *gdbarch;
3133
3134 if (osect == 0 || !section_is_overlay (osect))
3135 return 0;
3136
3137 switch (overlay_debugging)
3138 {
3139 default:
3140 case ovly_off:
3141 return 0; /* overlay debugging off */
3142 case ovly_auto: /* overlay debugging automatic */
3143 /* Unles there is a gdbarch_overlay_update function,
3144 there's really nothing useful to do here (can't really go auto). */
3145 gdbarch = get_objfile_arch (osect->objfile);
3146 if (gdbarch_overlay_update_p (gdbarch))
3147 {
3148 if (overlay_cache_invalid)
3149 {
3150 overlay_invalidate_all ();
3151 overlay_cache_invalid = 0;
3152 }
3153 if (osect->ovly_mapped == -1)
3154 gdbarch_overlay_update (gdbarch, osect);
3155 }
3156 /* fall thru to manual case */
3157 case ovly_on: /* overlay debugging manual */
3158 return osect->ovly_mapped == 1;
3159 }
3160 }
3161
3162 /* Function: pc_in_unmapped_range
3163 If PC falls into the lma range of SECTION, return true, else false. */
3164
3165 CORE_ADDR
3166 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3167 {
3168 if (section_is_overlay (section))
3169 {
3170 bfd *abfd = section->objfile->obfd;
3171 asection *bfd_section = section->the_bfd_section;
3172
3173 /* We assume the LMA is relocated by the same offset as the VMA. */
3174 bfd_vma size = bfd_get_section_size (bfd_section);
3175 CORE_ADDR offset = obj_section_offset (section);
3176
3177 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3178 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3179 return 1;
3180 }
3181
3182 return 0;
3183 }
3184
3185 /* Function: pc_in_mapped_range
3186 If PC falls into the vma range of SECTION, return true, else false. */
3187
3188 CORE_ADDR
3189 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3190 {
3191 if (section_is_overlay (section))
3192 {
3193 if (obj_section_addr (section) <= pc
3194 && pc < obj_section_endaddr (section))
3195 return 1;
3196 }
3197
3198 return 0;
3199 }
3200
3201 /* Return true if the mapped ranges of sections A and B overlap, false
3202 otherwise. */
3203
3204 static int
3205 sections_overlap (struct obj_section *a, struct obj_section *b)
3206 {
3207 CORE_ADDR a_start = obj_section_addr (a);
3208 CORE_ADDR a_end = obj_section_endaddr (a);
3209 CORE_ADDR b_start = obj_section_addr (b);
3210 CORE_ADDR b_end = obj_section_endaddr (b);
3211
3212 return (a_start < b_end && b_start < a_end);
3213 }
3214
3215 /* Function: overlay_unmapped_address (PC, SECTION)
3216 Returns the address corresponding to PC in the unmapped (load) range.
3217 May be the same as PC. */
3218
3219 CORE_ADDR
3220 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3221 {
3222 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3223 {
3224 bfd *abfd = section->objfile->obfd;
3225 asection *bfd_section = section->the_bfd_section;
3226
3227 return pc + bfd_section_lma (abfd, bfd_section)
3228 - bfd_section_vma (abfd, bfd_section);
3229 }
3230
3231 return pc;
3232 }
3233
3234 /* Function: overlay_mapped_address (PC, SECTION)
3235 Returns the address corresponding to PC in the mapped (runtime) range.
3236 May be the same as PC. */
3237
3238 CORE_ADDR
3239 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3240 {
3241 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3242 {
3243 bfd *abfd = section->objfile->obfd;
3244 asection *bfd_section = section->the_bfd_section;
3245
3246 return pc + bfd_section_vma (abfd, bfd_section)
3247 - bfd_section_lma (abfd, bfd_section);
3248 }
3249
3250 return pc;
3251 }
3252
3253 /* Function: symbol_overlayed_address
3254 Return one of two addresses (relative to the VMA or to the LMA),
3255 depending on whether the section is mapped or not. */
3256
3257 CORE_ADDR
3258 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3259 {
3260 if (overlay_debugging)
3261 {
3262 /* If the symbol has no section, just return its regular address. */
3263 if (section == 0)
3264 return address;
3265 /* If the symbol's section is not an overlay, just return its
3266 address. */
3267 if (!section_is_overlay (section))
3268 return address;
3269 /* If the symbol's section is mapped, just return its address. */
3270 if (section_is_mapped (section))
3271 return address;
3272 /*
3273 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3274 * then return its LOADED address rather than its vma address!!
3275 */
3276 return overlay_unmapped_address (address, section);
3277 }
3278 return address;
3279 }
3280
3281 /* Function: find_pc_overlay (PC)
3282 Return the best-match overlay section for PC:
3283 If PC matches a mapped overlay section's VMA, return that section.
3284 Else if PC matches an unmapped section's VMA, return that section.
3285 Else if PC matches an unmapped section's LMA, return that section. */
3286
3287 struct obj_section *
3288 find_pc_overlay (CORE_ADDR pc)
3289 {
3290 struct objfile *objfile;
3291 struct obj_section *osect, *best_match = NULL;
3292
3293 if (overlay_debugging)
3294 ALL_OBJSECTIONS (objfile, osect)
3295 if (section_is_overlay (osect))
3296 {
3297 if (pc_in_mapped_range (pc, osect))
3298 {
3299 if (section_is_mapped (osect))
3300 return osect;
3301 else
3302 best_match = osect;
3303 }
3304 else if (pc_in_unmapped_range (pc, osect))
3305 best_match = osect;
3306 }
3307 return best_match;
3308 }
3309
3310 /* Function: find_pc_mapped_section (PC)
3311 If PC falls into the VMA address range of an overlay section that is
3312 currently marked as MAPPED, return that section. Else return NULL. */
3313
3314 struct obj_section *
3315 find_pc_mapped_section (CORE_ADDR pc)
3316 {
3317 struct objfile *objfile;
3318 struct obj_section *osect;
3319
3320 if (overlay_debugging)
3321 ALL_OBJSECTIONS (objfile, osect)
3322 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3323 return osect;
3324
3325 return NULL;
3326 }
3327
3328 /* Function: list_overlays_command
3329 Print a list of mapped sections and their PC ranges. */
3330
3331 static void
3332 list_overlays_command (char *args, int from_tty)
3333 {
3334 int nmapped = 0;
3335 struct objfile *objfile;
3336 struct obj_section *osect;
3337
3338 if (overlay_debugging)
3339 ALL_OBJSECTIONS (objfile, osect)
3340 if (section_is_mapped (osect))
3341 {
3342 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3343 const char *name;
3344 bfd_vma lma, vma;
3345 int size;
3346
3347 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3348 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3349 size = bfd_get_section_size (osect->the_bfd_section);
3350 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3351
3352 printf_filtered ("Section %s, loaded at ", name);
3353 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3354 puts_filtered (" - ");
3355 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3356 printf_filtered (", mapped at ");
3357 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3358 puts_filtered (" - ");
3359 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3360 puts_filtered ("\n");
3361
3362 nmapped++;
3363 }
3364 if (nmapped == 0)
3365 printf_filtered (_("No sections are mapped.\n"));
3366 }
3367
3368 /* Function: map_overlay_command
3369 Mark the named section as mapped (ie. residing at its VMA address). */
3370
3371 static void
3372 map_overlay_command (char *args, int from_tty)
3373 {
3374 struct objfile *objfile, *objfile2;
3375 struct obj_section *sec, *sec2;
3376
3377 if (!overlay_debugging)
3378 error (_("Overlay debugging not enabled. Use "
3379 "either the 'overlay auto' or\n"
3380 "the 'overlay manual' command."));
3381
3382 if (args == 0 || *args == 0)
3383 error (_("Argument required: name of an overlay section"));
3384
3385 /* First, find a section matching the user supplied argument. */
3386 ALL_OBJSECTIONS (objfile, sec)
3387 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3388 {
3389 /* Now, check to see if the section is an overlay. */
3390 if (!section_is_overlay (sec))
3391 continue; /* not an overlay section */
3392
3393 /* Mark the overlay as "mapped". */
3394 sec->ovly_mapped = 1;
3395
3396 /* Next, make a pass and unmap any sections that are
3397 overlapped by this new section: */
3398 ALL_OBJSECTIONS (objfile2, sec2)
3399 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3400 {
3401 if (info_verbose)
3402 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3403 bfd_section_name (objfile->obfd,
3404 sec2->the_bfd_section));
3405 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3406 }
3407 return;
3408 }
3409 error (_("No overlay section called %s"), args);
3410 }
3411
3412 /* Function: unmap_overlay_command
3413 Mark the overlay section as unmapped
3414 (ie. resident in its LMA address range, rather than the VMA range). */
3415
3416 static void
3417 unmap_overlay_command (char *args, int from_tty)
3418 {
3419 struct objfile *objfile;
3420 struct obj_section *sec = NULL;
3421
3422 if (!overlay_debugging)
3423 error (_("Overlay debugging not enabled. "
3424 "Use either the 'overlay auto' or\n"
3425 "the 'overlay manual' command."));
3426
3427 if (args == 0 || *args == 0)
3428 error (_("Argument required: name of an overlay section"));
3429
3430 /* First, find a section matching the user supplied argument. */
3431 ALL_OBJSECTIONS (objfile, sec)
3432 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3433 {
3434 if (!sec->ovly_mapped)
3435 error (_("Section %s is not mapped"), args);
3436 sec->ovly_mapped = 0;
3437 return;
3438 }
3439 error (_("No overlay section called %s"), args);
3440 }
3441
3442 /* Function: overlay_auto_command
3443 A utility command to turn on overlay debugging.
3444 Possibly this should be done via a set/show command. */
3445
3446 static void
3447 overlay_auto_command (char *args, int from_tty)
3448 {
3449 overlay_debugging = ovly_auto;
3450 enable_overlay_breakpoints ();
3451 if (info_verbose)
3452 printf_unfiltered (_("Automatic overlay debugging enabled."));
3453 }
3454
3455 /* Function: overlay_manual_command
3456 A utility command to turn on overlay debugging.
3457 Possibly this should be done via a set/show command. */
3458
3459 static void
3460 overlay_manual_command (char *args, int from_tty)
3461 {
3462 overlay_debugging = ovly_on;
3463 disable_overlay_breakpoints ();
3464 if (info_verbose)
3465 printf_unfiltered (_("Overlay debugging enabled."));
3466 }
3467
3468 /* Function: overlay_off_command
3469 A utility command to turn on overlay debugging.
3470 Possibly this should be done via a set/show command. */
3471
3472 static void
3473 overlay_off_command (char *args, int from_tty)
3474 {
3475 overlay_debugging = ovly_off;
3476 disable_overlay_breakpoints ();
3477 if (info_verbose)
3478 printf_unfiltered (_("Overlay debugging disabled."));
3479 }
3480
3481 static void
3482 overlay_load_command (char *args, int from_tty)
3483 {
3484 struct gdbarch *gdbarch = get_current_arch ();
3485
3486 if (gdbarch_overlay_update_p (gdbarch))
3487 gdbarch_overlay_update (gdbarch, NULL);
3488 else
3489 error (_("This target does not know how to read its overlay state."));
3490 }
3491
3492 /* Function: overlay_command
3493 A place-holder for a mis-typed command. */
3494
3495 /* Command list chain containing all defined "overlay" subcommands. */
3496 static struct cmd_list_element *overlaylist;
3497
3498 static void
3499 overlay_command (char *args, int from_tty)
3500 {
3501 printf_unfiltered
3502 ("\"overlay\" must be followed by the name of an overlay command.\n");
3503 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3504 }
3505
3506 /* Target Overlays for the "Simplest" overlay manager:
3507
3508 This is GDB's default target overlay layer. It works with the
3509 minimal overlay manager supplied as an example by Cygnus. The
3510 entry point is via a function pointer "gdbarch_overlay_update",
3511 so targets that use a different runtime overlay manager can
3512 substitute their own overlay_update function and take over the
3513 function pointer.
3514
3515 The overlay_update function pokes around in the target's data structures
3516 to see what overlays are mapped, and updates GDB's overlay mapping with
3517 this information.
3518
3519 In this simple implementation, the target data structures are as follows:
3520 unsigned _novlys; /# number of overlay sections #/
3521 unsigned _ovly_table[_novlys][4] = {
3522 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3523 {..., ..., ..., ...},
3524 }
3525 unsigned _novly_regions; /# number of overlay regions #/
3526 unsigned _ovly_region_table[_novly_regions][3] = {
3527 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3528 {..., ..., ...},
3529 }
3530 These functions will attempt to update GDB's mappedness state in the
3531 symbol section table, based on the target's mappedness state.
3532
3533 To do this, we keep a cached copy of the target's _ovly_table, and
3534 attempt to detect when the cached copy is invalidated. The main
3535 entry point is "simple_overlay_update(SECT), which looks up SECT in
3536 the cached table and re-reads only the entry for that section from
3537 the target (whenever possible). */
3538
3539 /* Cached, dynamically allocated copies of the target data structures: */
3540 static unsigned (*cache_ovly_table)[4] = 0;
3541 static unsigned cache_novlys = 0;
3542 static CORE_ADDR cache_ovly_table_base = 0;
3543 enum ovly_index
3544 {
3545 VMA, OSIZE, LMA, MAPPED
3546 };
3547
3548 /* Throw away the cached copy of _ovly_table. */
3549
3550 static void
3551 simple_free_overlay_table (void)
3552 {
3553 if (cache_ovly_table)
3554 xfree (cache_ovly_table);
3555 cache_novlys = 0;
3556 cache_ovly_table = NULL;
3557 cache_ovly_table_base = 0;
3558 }
3559
3560 /* Read an array of ints of size SIZE from the target into a local buffer.
3561 Convert to host order. int LEN is number of ints. */
3562
3563 static void
3564 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3565 int len, int size, enum bfd_endian byte_order)
3566 {
3567 /* FIXME (alloca): Not safe if array is very large. */
3568 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3569 int i;
3570
3571 read_memory (memaddr, buf, len * size);
3572 for (i = 0; i < len; i++)
3573 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3574 }
3575
3576 /* Find and grab a copy of the target _ovly_table
3577 (and _novlys, which is needed for the table's size). */
3578
3579 static int
3580 simple_read_overlay_table (void)
3581 {
3582 struct bound_minimal_symbol novlys_msym;
3583 struct bound_minimal_symbol ovly_table_msym;
3584 struct gdbarch *gdbarch;
3585 int word_size;
3586 enum bfd_endian byte_order;
3587
3588 simple_free_overlay_table ();
3589 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3590 if (! novlys_msym.minsym)
3591 {
3592 error (_("Error reading inferior's overlay table: "
3593 "couldn't find `_novlys' variable\n"
3594 "in inferior. Use `overlay manual' mode."));
3595 return 0;
3596 }
3597
3598 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3599 if (! ovly_table_msym.minsym)
3600 {
3601 error (_("Error reading inferior's overlay table: couldn't find "
3602 "`_ovly_table' array\n"
3603 "in inferior. Use `overlay manual' mode."));
3604 return 0;
3605 }
3606
3607 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3608 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3609 byte_order = gdbarch_byte_order (gdbarch);
3610
3611 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3612 4, byte_order);
3613 cache_ovly_table
3614 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3615 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3616 read_target_long_array (cache_ovly_table_base,
3617 (unsigned int *) cache_ovly_table,
3618 cache_novlys * 4, word_size, byte_order);
3619
3620 return 1; /* SUCCESS */
3621 }
3622
3623 /* Function: simple_overlay_update_1
3624 A helper function for simple_overlay_update. Assuming a cached copy
3625 of _ovly_table exists, look through it to find an entry whose vma,
3626 lma and size match those of OSECT. Re-read the entry and make sure
3627 it still matches OSECT (else the table may no longer be valid).
3628 Set OSECT's mapped state to match the entry. Return: 1 for
3629 success, 0 for failure. */
3630
3631 static int
3632 simple_overlay_update_1 (struct obj_section *osect)
3633 {
3634 int i, size;
3635 bfd *obfd = osect->objfile->obfd;
3636 asection *bsect = osect->the_bfd_section;
3637 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3638 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3639 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3640
3641 size = bfd_get_section_size (osect->the_bfd_section);
3642 for (i = 0; i < cache_novlys; i++)
3643 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3644 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3645 /* && cache_ovly_table[i][OSIZE] == size */ )
3646 {
3647 read_target_long_array (cache_ovly_table_base + i * word_size,
3648 (unsigned int *) cache_ovly_table[i],
3649 4, word_size, byte_order);
3650 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3651 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3652 /* && cache_ovly_table[i][OSIZE] == size */ )
3653 {
3654 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3655 return 1;
3656 }
3657 else /* Warning! Warning! Target's ovly table has changed! */
3658 return 0;
3659 }
3660 return 0;
3661 }
3662
3663 /* Function: simple_overlay_update
3664 If OSECT is NULL, then update all sections' mapped state
3665 (after re-reading the entire target _ovly_table).
3666 If OSECT is non-NULL, then try to find a matching entry in the
3667 cached ovly_table and update only OSECT's mapped state.
3668 If a cached entry can't be found or the cache isn't valid, then
3669 re-read the entire cache, and go ahead and update all sections. */
3670
3671 void
3672 simple_overlay_update (struct obj_section *osect)
3673 {
3674 struct objfile *objfile;
3675
3676 /* Were we given an osect to look up? NULL means do all of them. */
3677 if (osect)
3678 /* Have we got a cached copy of the target's overlay table? */
3679 if (cache_ovly_table != NULL)
3680 {
3681 /* Does its cached location match what's currently in the
3682 symtab? */
3683 struct bound_minimal_symbol minsym
3684 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3685
3686 if (minsym.minsym == NULL)
3687 error (_("Error reading inferior's overlay table: couldn't "
3688 "find `_ovly_table' array\n"
3689 "in inferior. Use `overlay manual' mode."));
3690
3691 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3692 /* Then go ahead and try to look up this single section in
3693 the cache. */
3694 if (simple_overlay_update_1 (osect))
3695 /* Found it! We're done. */
3696 return;
3697 }
3698
3699 /* Cached table no good: need to read the entire table anew.
3700 Or else we want all the sections, in which case it's actually
3701 more efficient to read the whole table in one block anyway. */
3702
3703 if (! simple_read_overlay_table ())
3704 return;
3705
3706 /* Now may as well update all sections, even if only one was requested. */
3707 ALL_OBJSECTIONS (objfile, osect)
3708 if (section_is_overlay (osect))
3709 {
3710 int i, size;
3711 bfd *obfd = osect->objfile->obfd;
3712 asection *bsect = osect->the_bfd_section;
3713
3714 size = bfd_get_section_size (bsect);
3715 for (i = 0; i < cache_novlys; i++)
3716 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3717 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3718 /* && cache_ovly_table[i][OSIZE] == size */ )
3719 { /* obj_section matches i'th entry in ovly_table. */
3720 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3721 break; /* finished with inner for loop: break out. */
3722 }
3723 }
3724 }
3725
3726 /* Set the output sections and output offsets for section SECTP in
3727 ABFD. The relocation code in BFD will read these offsets, so we
3728 need to be sure they're initialized. We map each section to itself,
3729 with no offset; this means that SECTP->vma will be honored. */
3730
3731 static void
3732 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3733 {
3734 sectp->output_section = sectp;
3735 sectp->output_offset = 0;
3736 }
3737
3738 /* Default implementation for sym_relocate. */
3739
3740 bfd_byte *
3741 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3742 bfd_byte *buf)
3743 {
3744 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3745 DWO file. */
3746 bfd *abfd = sectp->owner;
3747
3748 /* We're only interested in sections with relocation
3749 information. */
3750 if ((sectp->flags & SEC_RELOC) == 0)
3751 return NULL;
3752
3753 /* We will handle section offsets properly elsewhere, so relocate as if
3754 all sections begin at 0. */
3755 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3756
3757 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3758 }
3759
3760 /* Relocate the contents of a debug section SECTP in ABFD. The
3761 contents are stored in BUF if it is non-NULL, or returned in a
3762 malloc'd buffer otherwise.
3763
3764 For some platforms and debug info formats, shared libraries contain
3765 relocations against the debug sections (particularly for DWARF-2;
3766 one affected platform is PowerPC GNU/Linux, although it depends on
3767 the version of the linker in use). Also, ELF object files naturally
3768 have unresolved relocations for their debug sections. We need to apply
3769 the relocations in order to get the locations of symbols correct.
3770 Another example that may require relocation processing, is the
3771 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3772 debug section. */
3773
3774 bfd_byte *
3775 symfile_relocate_debug_section (struct objfile *objfile,
3776 asection *sectp, bfd_byte *buf)
3777 {
3778 gdb_assert (objfile->sf->sym_relocate);
3779
3780 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3781 }
3782
3783 struct symfile_segment_data *
3784 get_symfile_segment_data (bfd *abfd)
3785 {
3786 const struct sym_fns *sf = find_sym_fns (abfd);
3787
3788 if (sf == NULL)
3789 return NULL;
3790
3791 return sf->sym_segments (abfd);
3792 }
3793
3794 void
3795 free_symfile_segment_data (struct symfile_segment_data *data)
3796 {
3797 xfree (data->segment_bases);
3798 xfree (data->segment_sizes);
3799 xfree (data->segment_info);
3800 xfree (data);
3801 }
3802
3803 /* Given:
3804 - DATA, containing segment addresses from the object file ABFD, and
3805 the mapping from ABFD's sections onto the segments that own them,
3806 and
3807 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3808 segment addresses reported by the target,
3809 store the appropriate offsets for each section in OFFSETS.
3810
3811 If there are fewer entries in SEGMENT_BASES than there are segments
3812 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3813
3814 If there are more entries, then ignore the extra. The target may
3815 not be able to distinguish between an empty data segment and a
3816 missing data segment; a missing text segment is less plausible. */
3817
3818 int
3819 symfile_map_offsets_to_segments (bfd *abfd,
3820 const struct symfile_segment_data *data,
3821 struct section_offsets *offsets,
3822 int num_segment_bases,
3823 const CORE_ADDR *segment_bases)
3824 {
3825 int i;
3826 asection *sect;
3827
3828 /* It doesn't make sense to call this function unless you have some
3829 segment base addresses. */
3830 gdb_assert (num_segment_bases > 0);
3831
3832 /* If we do not have segment mappings for the object file, we
3833 can not relocate it by segments. */
3834 gdb_assert (data != NULL);
3835 gdb_assert (data->num_segments > 0);
3836
3837 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3838 {
3839 int which = data->segment_info[i];
3840
3841 gdb_assert (0 <= which && which <= data->num_segments);
3842
3843 /* Don't bother computing offsets for sections that aren't
3844 loaded as part of any segment. */
3845 if (! which)
3846 continue;
3847
3848 /* Use the last SEGMENT_BASES entry as the address of any extra
3849 segments mentioned in DATA->segment_info. */
3850 if (which > num_segment_bases)
3851 which = num_segment_bases;
3852
3853 offsets->offsets[i] = (segment_bases[which - 1]
3854 - data->segment_bases[which - 1]);
3855 }
3856
3857 return 1;
3858 }
3859
3860 static void
3861 symfile_find_segment_sections (struct objfile *objfile)
3862 {
3863 bfd *abfd = objfile->obfd;
3864 int i;
3865 asection *sect;
3866 struct symfile_segment_data *data;
3867
3868 data = get_symfile_segment_data (objfile->obfd);
3869 if (data == NULL)
3870 return;
3871
3872 if (data->num_segments != 1 && data->num_segments != 2)
3873 {
3874 free_symfile_segment_data (data);
3875 return;
3876 }
3877
3878 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3879 {
3880 int which = data->segment_info[i];
3881
3882 if (which == 1)
3883 {
3884 if (objfile->sect_index_text == -1)
3885 objfile->sect_index_text = sect->index;
3886
3887 if (objfile->sect_index_rodata == -1)
3888 objfile->sect_index_rodata = sect->index;
3889 }
3890 else if (which == 2)
3891 {
3892 if (objfile->sect_index_data == -1)
3893 objfile->sect_index_data = sect->index;
3894
3895 if (objfile->sect_index_bss == -1)
3896 objfile->sect_index_bss = sect->index;
3897 }
3898 }
3899
3900 free_symfile_segment_data (data);
3901 }
3902
3903 /* Listen for free_objfile events. */
3904
3905 static void
3906 symfile_free_objfile (struct objfile *objfile)
3907 {
3908 /* Remove the target sections owned by this objfile. */
3909 if (objfile != NULL)
3910 remove_target_sections ((void *) objfile);
3911 }
3912
3913 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3914 Expand all symtabs that match the specified criteria.
3915 See quick_symbol_functions.expand_symtabs_matching for details. */
3916
3917 void
3918 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3919 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3920 expand_symtabs_exp_notify_ftype *expansion_notify,
3921 enum search_domain kind,
3922 void *data)
3923 {
3924 struct objfile *objfile;
3925
3926 ALL_OBJFILES (objfile)
3927 {
3928 if (objfile->sf)
3929 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3930 symbol_matcher,
3931 expansion_notify, kind,
3932 data);
3933 }
3934 }
3935
3936 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3937 Map function FUN over every file.
3938 See quick_symbol_functions.map_symbol_filenames for details. */
3939
3940 void
3941 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3942 int need_fullname)
3943 {
3944 struct objfile *objfile;
3945
3946 ALL_OBJFILES (objfile)
3947 {
3948 if (objfile->sf)
3949 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3950 need_fullname);
3951 }
3952 }
3953
3954 void
3955 _initialize_symfile (void)
3956 {
3957 struct cmd_list_element *c;
3958
3959 observer_attach_free_objfile (symfile_free_objfile);
3960
3961 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3962 Load symbol table from executable file FILE.\n\
3963 The `file' command can also load symbol tables, as well as setting the file\n\
3964 to execute."), &cmdlist);
3965 set_cmd_completer (c, filename_completer);
3966
3967 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3968 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3969 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3970 ...]\nADDR is the starting address of the file's text.\n\
3971 The optional arguments are section-name section-address pairs and\n\
3972 should be specified if the data and bss segments are not contiguous\n\
3973 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3974 &cmdlist);
3975 set_cmd_completer (c, filename_completer);
3976
3977 c = add_cmd ("remove-symbol-file", class_files,
3978 remove_symbol_file_command, _("\
3979 Remove a symbol file added via the add-symbol-file command.\n\
3980 Usage: remove-symbol-file FILENAME\n\
3981 remove-symbol-file -a ADDRESS\n\
3982 The file to remove can be identified by its filename or by an address\n\
3983 that lies within the boundaries of this symbol file in memory."),
3984 &cmdlist);
3985
3986 c = add_cmd ("load", class_files, load_command, _("\
3987 Dynamically load FILE into the running program, and record its symbols\n\
3988 for access from GDB.\n\
3989 A load OFFSET may also be given."), &cmdlist);
3990 set_cmd_completer (c, filename_completer);
3991
3992 add_prefix_cmd ("overlay", class_support, overlay_command,
3993 _("Commands for debugging overlays."), &overlaylist,
3994 "overlay ", 0, &cmdlist);
3995
3996 add_com_alias ("ovly", "overlay", class_alias, 1);
3997 add_com_alias ("ov", "overlay", class_alias, 1);
3998
3999 add_cmd ("map-overlay", class_support, map_overlay_command,
4000 _("Assert that an overlay section is mapped."), &overlaylist);
4001
4002 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4003 _("Assert that an overlay section is unmapped."), &overlaylist);
4004
4005 add_cmd ("list-overlays", class_support, list_overlays_command,
4006 _("List mappings of overlay sections."), &overlaylist);
4007
4008 add_cmd ("manual", class_support, overlay_manual_command,
4009 _("Enable overlay debugging."), &overlaylist);
4010 add_cmd ("off", class_support, overlay_off_command,
4011 _("Disable overlay debugging."), &overlaylist);
4012 add_cmd ("auto", class_support, overlay_auto_command,
4013 _("Enable automatic overlay debugging."), &overlaylist);
4014 add_cmd ("load-target", class_support, overlay_load_command,
4015 _("Read the overlay mapping state from the target."), &overlaylist);
4016
4017 /* Filename extension to source language lookup table: */
4018 init_filename_language_table ();
4019 add_setshow_string_noescape_cmd ("extension-language", class_files,
4020 &ext_args, _("\
4021 Set mapping between filename extension and source language."), _("\
4022 Show mapping between filename extension and source language."), _("\
4023 Usage: set extension-language .foo bar"),
4024 set_ext_lang_command,
4025 show_ext_args,
4026 &setlist, &showlist);
4027
4028 add_info ("extensions", info_ext_lang_command,
4029 _("All filename extensions associated with a source language."));
4030
4031 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4032 &debug_file_directory, _("\
4033 Set the directories where separate debug symbols are searched for."), _("\
4034 Show the directories where separate debug symbols are searched for."), _("\
4035 Separate debug symbols are first searched for in the same\n\
4036 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4037 and lastly at the path of the directory of the binary with\n\
4038 each global debug-file-directory component prepended."),
4039 NULL,
4040 show_debug_file_directory,
4041 &setlist, &showlist);
4042
4043 add_setshow_enum_cmd ("symbol-loading", no_class,
4044 print_symbol_loading_enums, &print_symbol_loading,
4045 _("\
4046 Set printing of symbol loading messages."), _("\
4047 Show printing of symbol loading messages."), _("\
4048 off == turn all messages off\n\
4049 brief == print messages for the executable,\n\
4050 and brief messages for shared libraries\n\
4051 full == print messages for the executable,\n\
4052 and messages for each shared library."),
4053 NULL,
4054 NULL,
4055 &setprintlist, &showprintlist);
4056 }