]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
Neaten up a clause in final_link_relocate
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* See symfile.h. */
145
146 bool auto_solib_add = true;
147 \f
148
149 /* Return non-zero if symbol-loading messages should be printed.
150 FROM_TTY is the standard from_tty argument to gdb commands.
151 If EXEC is non-zero the messages are for the executable.
152 Otherwise, messages are for shared libraries.
153 If FULL is non-zero then the caller is printing a detailed message.
154 E.g., the message includes the shared library name.
155 Otherwise, the caller is printing a brief "summary" message. */
156
157 int
158 print_symbol_loading_p (int from_tty, int exec, int full)
159 {
160 if (!from_tty && !info_verbose)
161 return 0;
162
163 if (exec)
164 {
165 /* We don't check FULL for executables, there are few such
166 messages, therefore brief == full. */
167 return print_symbol_loading != print_symbol_loading_off;
168 }
169 if (full)
170 return print_symbol_loading == print_symbol_loading_full;
171 return print_symbol_loading == print_symbol_loading_brief;
172 }
173
174 /* True if we are reading a symbol table. */
175
176 int currently_reading_symtab = 0;
177
178 /* Increment currently_reading_symtab and return a cleanup that can be
179 used to decrement it. */
180
181 scoped_restore_tmpl<int>
182 increment_reading_symtab (void)
183 {
184 gdb_assert (currently_reading_symtab >= 0);
185 return make_scoped_restore (&currently_reading_symtab,
186 currently_reading_symtab + 1);
187 }
188
189 /* Remember the lowest-addressed loadable section we've seen.
190
191 In case of equal vmas, the section with the largest size becomes the
192 lowest-addressed loadable section.
193
194 If the vmas and sizes are equal, the last section is considered the
195 lowest-addressed loadable section. */
196
197 static void
198 find_lowest_section (asection *sect, asection **lowest)
199 {
200 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
201 return;
202 if (!*lowest)
203 *lowest = sect; /* First loadable section */
204 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
205 *lowest = sect; /* A lower loadable section */
206 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
207 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
208 *lowest = sect;
209 }
210
211 /* Build (allocate and populate) a section_addr_info struct from
212 an existing section table. */
213
214 section_addr_info
215 build_section_addr_info_from_section_table (const target_section_table &table)
216 {
217 section_addr_info sap;
218
219 for (const target_section &stp : table)
220 {
221 struct bfd_section *asect = stp.the_bfd_section;
222 bfd *abfd = asect->owner;
223
224 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
225 && sap.size () < table.size ())
226 sap.emplace_back (stp.addr,
227 bfd_section_name (asect),
228 gdb_bfd_section_index (abfd, asect));
229 }
230
231 return sap;
232 }
233
234 /* Create a section_addr_info from section offsets in ABFD. */
235
236 static section_addr_info
237 build_section_addr_info_from_bfd (bfd *abfd)
238 {
239 struct bfd_section *sec;
240
241 section_addr_info sap;
242 for (sec = abfd->sections; sec != NULL; sec = sec->next)
243 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
244 sap.emplace_back (bfd_section_vma (sec),
245 bfd_section_name (sec),
246 gdb_bfd_section_index (abfd, sec));
247
248 return sap;
249 }
250
251 /* Create a section_addr_info from section offsets in OBJFILE. */
252
253 section_addr_info
254 build_section_addr_info_from_objfile (const struct objfile *objfile)
255 {
256 int i;
257
258 /* Before reread_symbols gets rewritten it is not safe to call:
259 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
260 */
261 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
262 for (i = 0; i < sap.size (); i++)
263 {
264 int sectindex = sap[i].sectindex;
265
266 sap[i].addr += objfile->section_offsets[sectindex];
267 }
268 return sap;
269 }
270
271 /* Initialize OBJFILE's sect_index_* members. */
272
273 static void
274 init_objfile_sect_indices (struct objfile *objfile)
275 {
276 asection *sect;
277 int i;
278
279 sect = bfd_get_section_by_name (objfile->obfd, ".text");
280 if (sect)
281 objfile->sect_index_text = sect->index;
282
283 sect = bfd_get_section_by_name (objfile->obfd, ".data");
284 if (sect)
285 objfile->sect_index_data = sect->index;
286
287 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
288 if (sect)
289 objfile->sect_index_bss = sect->index;
290
291 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
292 if (sect)
293 objfile->sect_index_rodata = sect->index;
294
295 /* This is where things get really weird... We MUST have valid
296 indices for the various sect_index_* members or gdb will abort.
297 So if for example, there is no ".text" section, we have to
298 accomodate that. First, check for a file with the standard
299 one or two segments. */
300
301 symfile_find_segment_sections (objfile);
302
303 /* Except when explicitly adding symbol files at some address,
304 section_offsets contains nothing but zeros, so it doesn't matter
305 which slot in section_offsets the individual sect_index_* members
306 index into. So if they are all zero, it is safe to just point
307 all the currently uninitialized indices to the first slot. But
308 beware: if this is the main executable, it may be relocated
309 later, e.g. by the remote qOffsets packet, and then this will
310 be wrong! That's why we try segments first. */
311
312 for (i = 0; i < objfile->section_offsets.size (); i++)
313 {
314 if (objfile->section_offsets[i] != 0)
315 {
316 break;
317 }
318 }
319 if (i == objfile->section_offsets.size ())
320 {
321 if (objfile->sect_index_text == -1)
322 objfile->sect_index_text = 0;
323 if (objfile->sect_index_data == -1)
324 objfile->sect_index_data = 0;
325 if (objfile->sect_index_bss == -1)
326 objfile->sect_index_bss = 0;
327 if (objfile->sect_index_rodata == -1)
328 objfile->sect_index_rodata = 0;
329 }
330 }
331
332 /* Find a unique offset to use for loadable section SECT if
333 the user did not provide an offset. */
334
335 static void
336 place_section (bfd *abfd, asection *sect, section_offsets &offsets,
337 CORE_ADDR &lowest)
338 {
339 CORE_ADDR start_addr;
340 int done;
341 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
342
343 /* We are only interested in allocated sections. */
344 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
345 return;
346
347 /* If the user specified an offset, honor it. */
348 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
349 return;
350
351 /* Otherwise, let's try to find a place for the section. */
352 start_addr = (lowest + align - 1) & -align;
353
354 do {
355 asection *cur_sec;
356
357 done = 1;
358
359 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
360 {
361 int indx = cur_sec->index;
362
363 /* We don't need to compare against ourself. */
364 if (cur_sec == sect)
365 continue;
366
367 /* We can only conflict with allocated sections. */
368 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
369 continue;
370
371 /* If the section offset is 0, either the section has not been placed
372 yet, or it was the lowest section placed (in which case LOWEST
373 will be past its end). */
374 if (offsets[indx] == 0)
375 continue;
376
377 /* If this section would overlap us, then we must move up. */
378 if (start_addr + bfd_section_size (sect) > offsets[indx]
379 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
380 {
381 start_addr = offsets[indx] + bfd_section_size (cur_sec);
382 start_addr = (start_addr + align - 1) & -align;
383 done = 0;
384 break;
385 }
386
387 /* Otherwise, we appear to be OK. So far. */
388 }
389 }
390 while (!done);
391
392 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
393 lowest = start_addr + bfd_section_size (sect);
394 }
395
396 /* Store section_addr_info as prepared (made relative and with SECTINDEX
397 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
398
399 void
400 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
401 const section_addr_info &addrs)
402 {
403 int i;
404
405 section_offsets.assign (section_offsets.size (), 0);
406
407 /* Now calculate offsets for section that were specified by the caller. */
408 for (i = 0; i < addrs.size (); i++)
409 {
410 const struct other_sections *osp;
411
412 osp = &addrs[i];
413 if (osp->sectindex == -1)
414 continue;
415
416 /* Record all sections in offsets. */
417 /* The section_offsets in the objfile are here filled in using
418 the BFD index. */
419 section_offsets[osp->sectindex] = osp->addr;
420 }
421 }
422
423 /* Transform section name S for a name comparison. prelink can split section
424 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
425 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
426 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
427 (`.sbss') section has invalid (increased) virtual address. */
428
429 static const char *
430 addr_section_name (const char *s)
431 {
432 if (strcmp (s, ".dynbss") == 0)
433 return ".bss";
434 if (strcmp (s, ".sdynbss") == 0)
435 return ".sbss";
436
437 return s;
438 }
439
440 /* std::sort comparator for addrs_section_sort. Sort entries in
441 ascending order by their (name, sectindex) pair. sectindex makes
442 the sort by name stable. */
443
444 static bool
445 addrs_section_compar (const struct other_sections *a,
446 const struct other_sections *b)
447 {
448 int retval;
449
450 retval = strcmp (addr_section_name (a->name.c_str ()),
451 addr_section_name (b->name.c_str ()));
452 if (retval != 0)
453 return retval < 0;
454
455 return a->sectindex < b->sectindex;
456 }
457
458 /* Provide sorted array of pointers to sections of ADDRS. */
459
460 static std::vector<const struct other_sections *>
461 addrs_section_sort (const section_addr_info &addrs)
462 {
463 int i;
464
465 std::vector<const struct other_sections *> array (addrs.size ());
466 for (i = 0; i < addrs.size (); i++)
467 array[i] = &addrs[i];
468
469 std::sort (array.begin (), array.end (), addrs_section_compar);
470
471 return array;
472 }
473
474 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
475 also SECTINDEXes specific to ABFD there. This function can be used to
476 rebase ADDRS to start referencing different BFD than before. */
477
478 void
479 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
480 {
481 asection *lower_sect;
482 CORE_ADDR lower_offset;
483 int i;
484
485 /* Find lowest loadable section to be used as starting point for
486 contiguous sections. */
487 lower_sect = NULL;
488 for (asection *iter : gdb_bfd_sections (abfd))
489 find_lowest_section (iter, &lower_sect);
490 if (lower_sect == NULL)
491 {
492 warning (_("no loadable sections found in added symbol-file %s"),
493 bfd_get_filename (abfd));
494 lower_offset = 0;
495 }
496 else
497 lower_offset = bfd_section_vma (lower_sect);
498
499 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
500 in ABFD. Section names are not unique - there can be multiple sections of
501 the same name. Also the sections of the same name do not have to be
502 adjacent to each other. Some sections may be present only in one of the
503 files. Even sections present in both files do not have to be in the same
504 order.
505
506 Use stable sort by name for the sections in both files. Then linearly
507 scan both lists matching as most of the entries as possible. */
508
509 std::vector<const struct other_sections *> addrs_sorted
510 = addrs_section_sort (*addrs);
511
512 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
513 std::vector<const struct other_sections *> abfd_addrs_sorted
514 = addrs_section_sort (abfd_addrs);
515
516 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
517 ABFD_ADDRS_SORTED. */
518
519 std::vector<const struct other_sections *>
520 addrs_to_abfd_addrs (addrs->size (), nullptr);
521
522 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
523 = abfd_addrs_sorted.begin ();
524 for (const other_sections *sect : addrs_sorted)
525 {
526 const char *sect_name = addr_section_name (sect->name.c_str ());
527
528 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
529 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
530 sect_name) < 0)
531 abfd_sorted_iter++;
532
533 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
534 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
535 sect_name) == 0)
536 {
537 int index_in_addrs;
538
539 /* Make the found item directly addressable from ADDRS. */
540 index_in_addrs = sect - addrs->data ();
541 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
542 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
543
544 /* Never use the same ABFD entry twice. */
545 abfd_sorted_iter++;
546 }
547 }
548
549 /* Calculate offsets for the loadable sections.
550 FIXME! Sections must be in order of increasing loadable section
551 so that contiguous sections can use the lower-offset!!!
552
553 Adjust offsets if the segments are not contiguous.
554 If the section is contiguous, its offset should be set to
555 the offset of the highest loadable section lower than it
556 (the loadable section directly below it in memory).
557 this_offset = lower_offset = lower_addr - lower_orig_addr */
558
559 for (i = 0; i < addrs->size (); i++)
560 {
561 const struct other_sections *sect = addrs_to_abfd_addrs[i];
562
563 if (sect)
564 {
565 /* This is the index used by BFD. */
566 (*addrs)[i].sectindex = sect->sectindex;
567
568 if ((*addrs)[i].addr != 0)
569 {
570 (*addrs)[i].addr -= sect->addr;
571 lower_offset = (*addrs)[i].addr;
572 }
573 else
574 (*addrs)[i].addr = lower_offset;
575 }
576 else
577 {
578 /* addr_section_name transformation is not used for SECT_NAME. */
579 const std::string &sect_name = (*addrs)[i].name;
580
581 /* This section does not exist in ABFD, which is normally
582 unexpected and we want to issue a warning.
583
584 However, the ELF prelinker does create a few sections which are
585 marked in the main executable as loadable (they are loaded in
586 memory from the DYNAMIC segment) and yet are not present in
587 separate debug info files. This is fine, and should not cause
588 a warning. Shared libraries contain just the section
589 ".gnu.liblist" but it is not marked as loadable there. There is
590 no other way to identify them than by their name as the sections
591 created by prelink have no special flags.
592
593 For the sections `.bss' and `.sbss' see addr_section_name. */
594
595 if (!(sect_name == ".gnu.liblist"
596 || sect_name == ".gnu.conflict"
597 || (sect_name == ".bss"
598 && i > 0
599 && (*addrs)[i - 1].name == ".dynbss"
600 && addrs_to_abfd_addrs[i - 1] != NULL)
601 || (sect_name == ".sbss"
602 && i > 0
603 && (*addrs)[i - 1].name == ".sdynbss"
604 && addrs_to_abfd_addrs[i - 1] != NULL)))
605 warning (_("section %s not found in %s"), sect_name.c_str (),
606 bfd_get_filename (abfd));
607
608 (*addrs)[i].addr = 0;
609 (*addrs)[i].sectindex = -1;
610 }
611 }
612 }
613
614 /* Parse the user's idea of an offset for dynamic linking, into our idea
615 of how to represent it for fast symbol reading. This is the default
616 version of the sym_fns.sym_offsets function for symbol readers that
617 don't need to do anything special. It allocates a section_offsets table
618 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
619
620 void
621 default_symfile_offsets (struct objfile *objfile,
622 const section_addr_info &addrs)
623 {
624 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
625 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
626
627 /* For relocatable files, all loadable sections will start at zero.
628 The zero is meaningless, so try to pick arbitrary addresses such
629 that no loadable sections overlap. This algorithm is quadratic,
630 but the number of sections in a single object file is generally
631 small. */
632 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
633 {
634 bfd *abfd = objfile->obfd;
635 asection *cur_sec;
636
637 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
638 /* We do not expect this to happen; just skip this step if the
639 relocatable file has a section with an assigned VMA. */
640 if (bfd_section_vma (cur_sec) != 0)
641 break;
642
643 if (cur_sec == NULL)
644 {
645 section_offsets &offsets = objfile->section_offsets;
646
647 /* Pick non-overlapping offsets for sections the user did not
648 place explicitly. */
649 CORE_ADDR lowest = 0;
650 for (asection *sect : gdb_bfd_sections (objfile->obfd))
651 place_section (objfile->obfd, sect, objfile->section_offsets,
652 lowest);
653
654 /* Correctly filling in the section offsets is not quite
655 enough. Relocatable files have two properties that
656 (most) shared objects do not:
657
658 - Their debug information will contain relocations. Some
659 shared libraries do also, but many do not, so this can not
660 be assumed.
661
662 - If there are multiple code sections they will be loaded
663 at different relative addresses in memory than they are
664 in the objfile, since all sections in the file will start
665 at address zero.
666
667 Because GDB has very limited ability to map from an
668 address in debug info to the correct code section,
669 it relies on adding SECT_OFF_TEXT to things which might be
670 code. If we clear all the section offsets, and set the
671 section VMAs instead, then symfile_relocate_debug_section
672 will return meaningful debug information pointing at the
673 correct sections.
674
675 GDB has too many different data structures for section
676 addresses - a bfd, objfile, and so_list all have section
677 tables, as does exec_ops. Some of these could probably
678 be eliminated. */
679
680 for (cur_sec = abfd->sections; cur_sec != NULL;
681 cur_sec = cur_sec->next)
682 {
683 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
684 continue;
685
686 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
687 exec_set_section_address (bfd_get_filename (abfd),
688 cur_sec->index,
689 offsets[cur_sec->index]);
690 offsets[cur_sec->index] = 0;
691 }
692 }
693 }
694
695 /* Remember the bfd indexes for the .text, .data, .bss and
696 .rodata sections. */
697 init_objfile_sect_indices (objfile);
698 }
699
700 /* Divide the file into segments, which are individual relocatable units.
701 This is the default version of the sym_fns.sym_segments function for
702 symbol readers that do not have an explicit representation of segments.
703 It assumes that object files do not have segments, and fully linked
704 files have a single segment. */
705
706 symfile_segment_data_up
707 default_symfile_segments (bfd *abfd)
708 {
709 int num_sections, i;
710 asection *sect;
711 CORE_ADDR low, high;
712
713 /* Relocatable files contain enough information to position each
714 loadable section independently; they should not be relocated
715 in segments. */
716 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
717 return NULL;
718
719 /* Make sure there is at least one loadable section in the file. */
720 for (sect = abfd->sections; sect != NULL; sect = sect->next)
721 {
722 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
723 continue;
724
725 break;
726 }
727 if (sect == NULL)
728 return NULL;
729
730 low = bfd_section_vma (sect);
731 high = low + bfd_section_size (sect);
732
733 symfile_segment_data_up data (new symfile_segment_data);
734
735 num_sections = bfd_count_sections (abfd);
736
737 /* All elements are initialized to 0 (map to no segment). */
738 data->segment_info.resize (num_sections);
739
740 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
741 {
742 CORE_ADDR vma;
743
744 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
745 continue;
746
747 vma = bfd_section_vma (sect);
748 if (vma < low)
749 low = vma;
750 if (vma + bfd_section_size (sect) > high)
751 high = vma + bfd_section_size (sect);
752
753 data->segment_info[i] = 1;
754 }
755
756 data->segments.emplace_back (low, high - low);
757
758 return data;
759 }
760
761 /* This is a convenience function to call sym_read for OBJFILE and
762 possibly force the partial symbols to be read. */
763
764 static void
765 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
766 {
767 (*objfile->sf->sym_read) (objfile, add_flags);
768 objfile->per_bfd->minsyms_read = true;
769
770 /* find_separate_debug_file_in_section should be called only if there is
771 single binary with no existing separate debug info file. */
772 if (!objfile_has_partial_symbols (objfile)
773 && objfile->separate_debug_objfile == NULL
774 && objfile->separate_debug_objfile_backlink == NULL)
775 {
776 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
777
778 if (abfd != NULL)
779 {
780 /* find_separate_debug_file_in_section uses the same filename for the
781 virtual section-as-bfd like the bfd filename containing the
782 section. Therefore use also non-canonical name form for the same
783 file containing the section. */
784 symbol_file_add_separate (abfd.get (),
785 bfd_get_filename (abfd.get ()),
786 add_flags | SYMFILE_NOT_FILENAME, objfile);
787 }
788 }
789 if ((add_flags & SYMFILE_NO_READ) == 0)
790 require_partial_symbols (objfile, false);
791 }
792
793 /* Initialize entry point information for this objfile. */
794
795 static void
796 init_entry_point_info (struct objfile *objfile)
797 {
798 struct entry_info *ei = &objfile->per_bfd->ei;
799
800 if (ei->initialized)
801 return;
802 ei->initialized = 1;
803
804 /* Save startup file's range of PC addresses to help blockframe.c
805 decide where the bottom of the stack is. */
806
807 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
808 {
809 /* Executable file -- record its entry point so we'll recognize
810 the startup file because it contains the entry point. */
811 ei->entry_point = bfd_get_start_address (objfile->obfd);
812 ei->entry_point_p = 1;
813 }
814 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
815 && bfd_get_start_address (objfile->obfd) != 0)
816 {
817 /* Some shared libraries may have entry points set and be
818 runnable. There's no clear way to indicate this, so just check
819 for values other than zero. */
820 ei->entry_point = bfd_get_start_address (objfile->obfd);
821 ei->entry_point_p = 1;
822 }
823 else
824 {
825 /* Examination of non-executable.o files. Short-circuit this stuff. */
826 ei->entry_point_p = 0;
827 }
828
829 if (ei->entry_point_p)
830 {
831 struct obj_section *osect;
832 CORE_ADDR entry_point = ei->entry_point;
833 int found;
834
835 /* Make certain that the address points at real code, and not a
836 function descriptor. */
837 entry_point
838 = gdbarch_convert_from_func_ptr_addr (objfile->arch (),
839 entry_point,
840 current_top_target ());
841
842 /* Remove any ISA markers, so that this matches entries in the
843 symbol table. */
844 ei->entry_point
845 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
846
847 found = 0;
848 ALL_OBJFILE_OSECTIONS (objfile, osect)
849 {
850 struct bfd_section *sect = osect->the_bfd_section;
851
852 if (entry_point >= bfd_section_vma (sect)
853 && entry_point < (bfd_section_vma (sect)
854 + bfd_section_size (sect)))
855 {
856 ei->the_bfd_section_index
857 = gdb_bfd_section_index (objfile->obfd, sect);
858 found = 1;
859 break;
860 }
861 }
862
863 if (!found)
864 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
865 }
866 }
867
868 /* Process a symbol file, as either the main file or as a dynamically
869 loaded file.
870
871 This function does not set the OBJFILE's entry-point info.
872
873 OBJFILE is where the symbols are to be read from.
874
875 ADDRS is the list of section load addresses. If the user has given
876 an 'add-symbol-file' command, then this is the list of offsets and
877 addresses he or she provided as arguments to the command; or, if
878 we're handling a shared library, these are the actual addresses the
879 sections are loaded at, according to the inferior's dynamic linker
880 (as gleaned by GDB's shared library code). We convert each address
881 into an offset from the section VMA's as it appears in the object
882 file, and then call the file's sym_offsets function to convert this
883 into a format-specific offset table --- a `section_offsets'.
884 The sectindex field is used to control the ordering of sections
885 with the same name. Upon return, it is updated to contain the
886 corresponding BFD section index, or -1 if the section was not found.
887
888 ADD_FLAGS encodes verbosity level, whether this is main symbol or
889 an extra symbol file such as dynamically loaded code, and whether
890 breakpoint reset should be deferred. */
891
892 static void
893 syms_from_objfile_1 (struct objfile *objfile,
894 section_addr_info *addrs,
895 symfile_add_flags add_flags)
896 {
897 section_addr_info local_addr;
898 const int mainline = add_flags & SYMFILE_MAINLINE;
899
900 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
901
902 if (objfile->sf == NULL)
903 {
904 /* No symbols to load, but we still need to make sure
905 that the section_offsets table is allocated. */
906 int num_sections = gdb_bfd_count_sections (objfile->obfd);
907
908 objfile->section_offsets.assign (num_sections, 0);
909 return;
910 }
911
912 /* Make sure that partially constructed symbol tables will be cleaned up
913 if an error occurs during symbol reading. */
914 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
915
916 objfile_up objfile_holder (objfile);
917
918 /* If ADDRS is NULL, put together a dummy address list.
919 We now establish the convention that an addr of zero means
920 no load address was specified. */
921 if (! addrs)
922 addrs = &local_addr;
923
924 if (mainline)
925 {
926 /* We will modify the main symbol table, make sure that all its users
927 will be cleaned up if an error occurs during symbol reading. */
928 defer_clear_users.emplace ((symfile_add_flag) 0);
929
930 /* Since no error yet, throw away the old symbol table. */
931
932 if (symfile_objfile != NULL)
933 {
934 symfile_objfile->unlink ();
935 gdb_assert (symfile_objfile == NULL);
936 }
937
938 /* Currently we keep symbols from the add-symbol-file command.
939 If the user wants to get rid of them, they should do "symbol-file"
940 without arguments first. Not sure this is the best behavior
941 (PR 2207). */
942
943 (*objfile->sf->sym_new_init) (objfile);
944 }
945
946 /* Convert addr into an offset rather than an absolute address.
947 We find the lowest address of a loaded segment in the objfile,
948 and assume that <addr> is where that got loaded.
949
950 We no longer warn if the lowest section is not a text segment (as
951 happens for the PA64 port. */
952 if (addrs->size () > 0)
953 addr_info_make_relative (addrs, objfile->obfd);
954
955 /* Initialize symbol reading routines for this objfile, allow complaints to
956 appear for this new file, and record how verbose to be, then do the
957 initial symbol reading for this file. */
958
959 (*objfile->sf->sym_init) (objfile);
960 clear_complaints ();
961
962 (*objfile->sf->sym_offsets) (objfile, *addrs);
963
964 read_symbols (objfile, add_flags);
965
966 /* Discard cleanups as symbol reading was successful. */
967
968 objfile_holder.release ();
969 if (defer_clear_users)
970 defer_clear_users->release ();
971 }
972
973 /* Same as syms_from_objfile_1, but also initializes the objfile
974 entry-point info. */
975
976 static void
977 syms_from_objfile (struct objfile *objfile,
978 section_addr_info *addrs,
979 symfile_add_flags add_flags)
980 {
981 syms_from_objfile_1 (objfile, addrs, add_flags);
982 init_entry_point_info (objfile);
983 }
984
985 /* Perform required actions after either reading in the initial
986 symbols for a new objfile, or mapping in the symbols from a reusable
987 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
988
989 static void
990 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
991 {
992 /* If this is the main symbol file we have to clean up all users of the
993 old main symbol file. Otherwise it is sufficient to fixup all the
994 breakpoints that may have been redefined by this symbol file. */
995 if (add_flags & SYMFILE_MAINLINE)
996 {
997 /* OK, make it the "real" symbol file. */
998 symfile_objfile = objfile;
999
1000 clear_symtab_users (add_flags);
1001 }
1002 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1003 {
1004 breakpoint_re_set ();
1005 }
1006
1007 /* We're done reading the symbol file; finish off complaints. */
1008 clear_complaints ();
1009 }
1010
1011 /* Process a symbol file, as either the main file or as a dynamically
1012 loaded file.
1013
1014 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1015 A new reference is acquired by this function.
1016
1017 For NAME description see the objfile constructor.
1018
1019 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1020 extra, such as dynamically loaded code, and what to do with breakpoints.
1021
1022 ADDRS is as described for syms_from_objfile_1, above.
1023 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1024
1025 PARENT is the original objfile if ABFD is a separate debug info file.
1026 Otherwise PARENT is NULL.
1027
1028 Upon success, returns a pointer to the objfile that was added.
1029 Upon failure, jumps back to command level (never returns). */
1030
1031 static struct objfile *
1032 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1033 symfile_add_flags add_flags,
1034 section_addr_info *addrs,
1035 objfile_flags flags, struct objfile *parent)
1036 {
1037 struct objfile *objfile;
1038 const int from_tty = add_flags & SYMFILE_VERBOSE;
1039 const int mainline = add_flags & SYMFILE_MAINLINE;
1040 const int always_confirm = add_flags & SYMFILE_ALWAYS_CONFIRM;
1041 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1042 && (readnow_symbol_files
1043 || (add_flags & SYMFILE_NO_READ) == 0));
1044
1045 if (readnow_symbol_files)
1046 {
1047 flags |= OBJF_READNOW;
1048 add_flags &= ~SYMFILE_NO_READ;
1049 }
1050 else if (readnever_symbol_files
1051 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1052 {
1053 flags |= OBJF_READNEVER;
1054 add_flags |= SYMFILE_NO_READ;
1055 }
1056 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1057 flags |= OBJF_NOT_FILENAME;
1058
1059 /* Give user a chance to burp if ALWAYS_CONFIRM or we'd be
1060 interactively wiping out any existing symbols. */
1061
1062 if (from_tty
1063 && (always_confirm
1064 || ((have_full_symbols () || have_partial_symbols ())
1065 && mainline))
1066 && !query (_("Load new symbol table from \"%s\"? "), name))
1067 error (_("Not confirmed."));
1068
1069 if (mainline)
1070 flags |= OBJF_MAINLINE;
1071 objfile = objfile::make (abfd, name, flags, parent);
1072
1073 /* We either created a new mapped symbol table, mapped an existing
1074 symbol table file which has not had initial symbol reading
1075 performed, or need to read an unmapped symbol table. */
1076 if (should_print)
1077 {
1078 if (deprecated_pre_add_symbol_hook)
1079 deprecated_pre_add_symbol_hook (name);
1080 else
1081 printf_filtered (_("Reading symbols from %ps...\n"),
1082 styled_string (file_name_style.style (), name));
1083 }
1084 syms_from_objfile (objfile, addrs, add_flags);
1085
1086 /* We now have at least a partial symbol table. Check to see if the
1087 user requested that all symbols be read on initial access via either
1088 the gdb startup command line or on a per symbol file basis. Expand
1089 all partial symbol tables for this objfile if so. */
1090
1091 if ((flags & OBJF_READNOW))
1092 {
1093 if (should_print)
1094 printf_filtered (_("Expanding full symbols from %ps...\n"),
1095 styled_string (file_name_style.style (), name));
1096
1097 if (objfile->sf)
1098 objfile->sf->qf->expand_all_symtabs (objfile);
1099 }
1100
1101 /* Note that we only print a message if we have no symbols and have
1102 no separate debug file. If there is a separate debug file which
1103 does not have symbols, we'll have emitted this message for that
1104 file, and so printing it twice is just redundant. */
1105 if (should_print && !objfile_has_symbols (objfile)
1106 && objfile->separate_debug_objfile == nullptr)
1107 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1108 styled_string (file_name_style.style (), name));
1109
1110 if (should_print)
1111 {
1112 if (deprecated_post_add_symbol_hook)
1113 deprecated_post_add_symbol_hook ();
1114 }
1115
1116 /* We print some messages regardless of whether 'from_tty ||
1117 info_verbose' is true, so make sure they go out at the right
1118 time. */
1119 gdb_flush (gdb_stdout);
1120
1121 if (objfile->sf == NULL)
1122 {
1123 gdb::observers::new_objfile.notify (objfile);
1124 return objfile; /* No symbols. */
1125 }
1126
1127 finish_new_objfile (objfile, add_flags);
1128
1129 gdb::observers::new_objfile.notify (objfile);
1130
1131 bfd_cache_close_all ();
1132 return (objfile);
1133 }
1134
1135 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1136 see the objfile constructor. */
1137
1138 void
1139 symbol_file_add_separate (bfd *bfd, const char *name,
1140 symfile_add_flags symfile_flags,
1141 struct objfile *objfile)
1142 {
1143 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1144 because sections of BFD may not match sections of OBJFILE and because
1145 vma may have been modified by tools such as prelink. */
1146 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1147
1148 symbol_file_add_with_addrs
1149 (bfd, name, symfile_flags, &sap,
1150 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1151 | OBJF_USERLOADED | OBJF_MAINLINE),
1152 objfile);
1153 }
1154
1155 /* Process the symbol file ABFD, as either the main file or as a
1156 dynamically loaded file.
1157 See symbol_file_add_with_addrs's comments for details. */
1158
1159 struct objfile *
1160 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1161 symfile_add_flags add_flags,
1162 section_addr_info *addrs,
1163 objfile_flags flags, struct objfile *parent)
1164 {
1165 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1166 parent);
1167 }
1168
1169 /* Process a symbol file, as either the main file or as a dynamically
1170 loaded file. See symbol_file_add_with_addrs's comments for details. */
1171
1172 struct objfile *
1173 symbol_file_add (const char *name, symfile_add_flags add_flags,
1174 section_addr_info *addrs, objfile_flags flags)
1175 {
1176 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1177
1178 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1179 flags, NULL);
1180 }
1181
1182 /* Call symbol_file_add() with default values and update whatever is
1183 affected by the loading of a new main().
1184 Used when the file is supplied in the gdb command line
1185 and by some targets with special loading requirements.
1186 The auxiliary function, symbol_file_add_main_1(), has the flags
1187 argument for the switches that can only be specified in the symbol_file
1188 command itself. */
1189
1190 void
1191 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1192 {
1193 symbol_file_add_main_1 (args, add_flags, 0, 0);
1194 }
1195
1196 static void
1197 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1198 objfile_flags flags, CORE_ADDR reloff)
1199 {
1200 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1201
1202 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1203 if (reloff != 0)
1204 objfile_rebase (objfile, reloff);
1205
1206 /* Getting new symbols may change our opinion about
1207 what is frameless. */
1208 reinit_frame_cache ();
1209
1210 if ((add_flags & SYMFILE_NO_READ) == 0)
1211 set_initial_language ();
1212 }
1213
1214 void
1215 symbol_file_clear (int from_tty)
1216 {
1217 if ((have_full_symbols () || have_partial_symbols ())
1218 && from_tty
1219 && (symfile_objfile
1220 ? !query (_("Discard symbol table from `%s'? "),
1221 objfile_name (symfile_objfile))
1222 : !query (_("Discard symbol table? "))))
1223 error (_("Not confirmed."));
1224
1225 /* solib descriptors may have handles to objfiles. Wipe them before their
1226 objfiles get stale by free_all_objfiles. */
1227 no_shared_libraries (NULL, from_tty);
1228
1229 current_program_space->free_all_objfiles ();
1230
1231 clear_symtab_users (0);
1232
1233 gdb_assert (symfile_objfile == NULL);
1234 if (from_tty)
1235 printf_filtered (_("No symbol file now.\n"));
1236 }
1237
1238 /* See symfile.h. */
1239
1240 bool separate_debug_file_debug = false;
1241
1242 static int
1243 separate_debug_file_exists (const std::string &name, unsigned long crc,
1244 struct objfile *parent_objfile)
1245 {
1246 unsigned long file_crc;
1247 int file_crc_p;
1248 struct stat parent_stat, abfd_stat;
1249 int verified_as_different;
1250
1251 /* Find a separate debug info file as if symbols would be present in
1252 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1253 section can contain just the basename of PARENT_OBJFILE without any
1254 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1255 the separate debug infos with the same basename can exist. */
1256
1257 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1258 return 0;
1259
1260 if (separate_debug_file_debug)
1261 {
1262 printf_filtered (_(" Trying %s..."), name.c_str ());
1263 gdb_flush (gdb_stdout);
1264 }
1265
1266 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget));
1267
1268 if (abfd == NULL)
1269 {
1270 if (separate_debug_file_debug)
1271 printf_filtered (_(" no, unable to open.\n"));
1272
1273 return 0;
1274 }
1275
1276 /* Verify symlinks were not the cause of filename_cmp name difference above.
1277
1278 Some operating systems, e.g. Windows, do not provide a meaningful
1279 st_ino; they always set it to zero. (Windows does provide a
1280 meaningful st_dev.) Files accessed from gdbservers that do not
1281 support the vFile:fstat packet will also have st_ino set to zero.
1282 Do not indicate a duplicate library in either case. While there
1283 is no guarantee that a system that provides meaningful inode
1284 numbers will never set st_ino to zero, this is merely an
1285 optimization, so we do not need to worry about false negatives. */
1286
1287 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1288 && abfd_stat.st_ino != 0
1289 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1290 {
1291 if (abfd_stat.st_dev == parent_stat.st_dev
1292 && abfd_stat.st_ino == parent_stat.st_ino)
1293 {
1294 if (separate_debug_file_debug)
1295 printf_filtered (_(" no, same file as the objfile.\n"));
1296
1297 return 0;
1298 }
1299 verified_as_different = 1;
1300 }
1301 else
1302 verified_as_different = 0;
1303
1304 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1305
1306 if (!file_crc_p)
1307 {
1308 if (separate_debug_file_debug)
1309 printf_filtered (_(" no, error computing CRC.\n"));
1310
1311 return 0;
1312 }
1313
1314 if (crc != file_crc)
1315 {
1316 unsigned long parent_crc;
1317
1318 /* If the files could not be verified as different with
1319 bfd_stat then we need to calculate the parent's CRC
1320 to verify whether the files are different or not. */
1321
1322 if (!verified_as_different)
1323 {
1324 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1325 {
1326 if (separate_debug_file_debug)
1327 printf_filtered (_(" no, error computing CRC.\n"));
1328
1329 return 0;
1330 }
1331 }
1332
1333 if (verified_as_different || parent_crc != file_crc)
1334 warning (_("the debug information found in \"%s\""
1335 " does not match \"%s\" (CRC mismatch).\n"),
1336 name.c_str (), objfile_name (parent_objfile));
1337
1338 if (separate_debug_file_debug)
1339 printf_filtered (_(" no, CRC doesn't match.\n"));
1340
1341 return 0;
1342 }
1343
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" yes!\n"));
1346
1347 return 1;
1348 }
1349
1350 char *debug_file_directory = NULL;
1351 static void
1352 show_debug_file_directory (struct ui_file *file, int from_tty,
1353 struct cmd_list_element *c, const char *value)
1354 {
1355 fprintf_filtered (file,
1356 _("The directory where separate debug "
1357 "symbols are searched for is \"%s\".\n"),
1358 value);
1359 }
1360
1361 #if ! defined (DEBUG_SUBDIRECTORY)
1362 #define DEBUG_SUBDIRECTORY ".debug"
1363 #endif
1364
1365 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1366 where the original file resides (may not be the same as
1367 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1368 looking for. CANON_DIR is the "realpath" form of DIR.
1369 DIR must contain a trailing '/'.
1370 Returns the path of the file with separate debug info, or an empty
1371 string. */
1372
1373 static std::string
1374 find_separate_debug_file (const char *dir,
1375 const char *canon_dir,
1376 const char *debuglink,
1377 unsigned long crc32, struct objfile *objfile)
1378 {
1379 if (separate_debug_file_debug)
1380 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1381 "%s\n"), objfile_name (objfile));
1382
1383 /* First try in the same directory as the original file. */
1384 std::string debugfile = dir;
1385 debugfile += debuglink;
1386
1387 if (separate_debug_file_exists (debugfile, crc32, objfile))
1388 return debugfile;
1389
1390 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1391 debugfile = dir;
1392 debugfile += DEBUG_SUBDIRECTORY;
1393 debugfile += "/";
1394 debugfile += debuglink;
1395
1396 if (separate_debug_file_exists (debugfile, crc32, objfile))
1397 return debugfile;
1398
1399 /* Then try in the global debugfile directories.
1400
1401 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1402 cause "/..." lookups. */
1403
1404 bool target_prefix = startswith (dir, "target:");
1405 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1406 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1407 = dirnames_to_char_ptr_vec (debug_file_directory);
1408 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1409
1410 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1411 convert the drive letter into a one-letter directory, so that the
1412 file name resulting from splicing below will be valid.
1413
1414 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1415 There are various remote-debugging scenarios where such a
1416 transformation of the drive letter might be required when GDB runs
1417 on a Posix host, see
1418
1419 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1420
1421 If some of those scenarios need to be supported, we will need to
1422 use a different condition for HAS_DRIVE_SPEC and a different macro
1423 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1424 std::string drive;
1425 if (HAS_DRIVE_SPEC (dir_notarget))
1426 {
1427 drive = dir_notarget[0];
1428 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1429 }
1430
1431 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1432 {
1433 debugfile = target_prefix ? "target:" : "";
1434 debugfile += debugdir.get ();
1435 debugfile += "/";
1436 debugfile += drive;
1437 debugfile += dir_notarget;
1438 debugfile += debuglink;
1439
1440 if (separate_debug_file_exists (debugfile, crc32, objfile))
1441 return debugfile;
1442
1443 const char *base_path = NULL;
1444 if (canon_dir != NULL)
1445 {
1446 if (canon_sysroot.get () != NULL)
1447 base_path = child_path (canon_sysroot.get (), canon_dir);
1448 else
1449 base_path = child_path (gdb_sysroot, canon_dir);
1450 }
1451 if (base_path != NULL)
1452 {
1453 /* If the file is in the sysroot, try using its base path in
1454 the global debugfile directory. */
1455 debugfile = target_prefix ? "target:" : "";
1456 debugfile += debugdir.get ();
1457 debugfile += "/";
1458 debugfile += base_path;
1459 debugfile += "/";
1460 debugfile += debuglink;
1461
1462 if (separate_debug_file_exists (debugfile, crc32, objfile))
1463 return debugfile;
1464
1465 /* If the file is in the sysroot, try using its base path in
1466 the sysroot's global debugfile directory. */
1467 debugfile = target_prefix ? "target:" : "";
1468 debugfile += gdb_sysroot;
1469 debugfile += debugdir.get ();
1470 debugfile += "/";
1471 debugfile += base_path;
1472 debugfile += "/";
1473 debugfile += debuglink;
1474
1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1476 return debugfile;
1477 }
1478
1479 }
1480
1481 return std::string ();
1482 }
1483
1484 /* Modify PATH to contain only "[/]directory/" part of PATH.
1485 If there were no directory separators in PATH, PATH will be empty
1486 string on return. */
1487
1488 static void
1489 terminate_after_last_dir_separator (char *path)
1490 {
1491 int i;
1492
1493 /* Strip off the final filename part, leaving the directory name,
1494 followed by a slash. The directory can be relative or absolute. */
1495 for (i = strlen(path) - 1; i >= 0; i--)
1496 if (IS_DIR_SEPARATOR (path[i]))
1497 break;
1498
1499 /* If I is -1 then no directory is present there and DIR will be "". */
1500 path[i + 1] = '\0';
1501 }
1502
1503 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1504 Returns pathname, or an empty string. */
1505
1506 std::string
1507 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1508 {
1509 unsigned long crc32;
1510
1511 gdb::unique_xmalloc_ptr<char> debuglink
1512 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1513
1514 if (debuglink == NULL)
1515 {
1516 /* There's no separate debug info, hence there's no way we could
1517 load it => no warning. */
1518 return std::string ();
1519 }
1520
1521 std::string dir = objfile_name (objfile);
1522 terminate_after_last_dir_separator (&dir[0]);
1523 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1524
1525 std::string debugfile
1526 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1527 debuglink.get (), crc32, objfile);
1528
1529 if (debugfile.empty ())
1530 {
1531 /* For PR gdb/9538, try again with realpath (if different from the
1532 original). */
1533
1534 struct stat st_buf;
1535
1536 if (lstat (objfile_name (objfile), &st_buf) == 0
1537 && S_ISLNK (st_buf.st_mode))
1538 {
1539 gdb::unique_xmalloc_ptr<char> symlink_dir
1540 (lrealpath (objfile_name (objfile)));
1541 if (symlink_dir != NULL)
1542 {
1543 terminate_after_last_dir_separator (symlink_dir.get ());
1544 if (dir != symlink_dir.get ())
1545 {
1546 /* Different directory, so try using it. */
1547 debugfile = find_separate_debug_file (symlink_dir.get (),
1548 symlink_dir.get (),
1549 debuglink.get (),
1550 crc32,
1551 objfile);
1552 }
1553 }
1554 }
1555 }
1556
1557 return debugfile;
1558 }
1559
1560 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1561 simultaneously. */
1562
1563 static void
1564 validate_readnow_readnever (objfile_flags flags)
1565 {
1566 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1567 error (_("-readnow and -readnever cannot be used simultaneously"));
1568 }
1569
1570 /* This is the symbol-file command. Read the file, analyze its
1571 symbols, and add a struct symtab to a symtab list. The syntax of
1572 the command is rather bizarre:
1573
1574 1. The function buildargv implements various quoting conventions
1575 which are undocumented and have little or nothing in common with
1576 the way things are quoted (or not quoted) elsewhere in GDB.
1577
1578 2. Options are used, which are not generally used in GDB (perhaps
1579 "set mapped on", "set readnow on" would be better)
1580
1581 3. The order of options matters, which is contrary to GNU
1582 conventions (because it is confusing and inconvenient). */
1583
1584 void
1585 symbol_file_command (const char *args, int from_tty)
1586 {
1587 dont_repeat ();
1588
1589 if (args == NULL)
1590 {
1591 symbol_file_clear (from_tty);
1592 }
1593 else
1594 {
1595 objfile_flags flags = OBJF_USERLOADED;
1596 symfile_add_flags add_flags = 0;
1597 char *name = NULL;
1598 bool stop_processing_options = false;
1599 CORE_ADDR offset = 0;
1600 int idx;
1601 char *arg;
1602
1603 if (from_tty)
1604 add_flags |= SYMFILE_VERBOSE;
1605
1606 gdb_argv built_argv (args);
1607 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1608 {
1609 if (stop_processing_options || *arg != '-')
1610 {
1611 if (name == NULL)
1612 name = arg;
1613 else
1614 error (_("Unrecognized argument \"%s\""), arg);
1615 }
1616 else if (strcmp (arg, "-readnow") == 0)
1617 flags |= OBJF_READNOW;
1618 else if (strcmp (arg, "-readnever") == 0)
1619 flags |= OBJF_READNEVER;
1620 else if (strcmp (arg, "-o") == 0)
1621 {
1622 arg = built_argv[++idx];
1623 if (arg == NULL)
1624 error (_("Missing argument to -o"));
1625
1626 offset = parse_and_eval_address (arg);
1627 }
1628 else if (strcmp (arg, "--") == 0)
1629 stop_processing_options = true;
1630 else
1631 error (_("Unrecognized argument \"%s\""), arg);
1632 }
1633
1634 if (name == NULL)
1635 error (_("no symbol file name was specified"));
1636
1637 validate_readnow_readnever (flags);
1638
1639 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1640 (Position Independent Executable) main symbol file will only be
1641 computed by the solib_create_inferior_hook below. Without it,
1642 breakpoint_re_set would fail to insert the breakpoints with the zero
1643 displacement. */
1644 add_flags |= SYMFILE_DEFER_BP_RESET;
1645
1646 symbol_file_add_main_1 (name, add_flags, flags, offset);
1647
1648 solib_create_inferior_hook (from_tty);
1649
1650 /* Now it's safe to re-add the breakpoints. */
1651 breakpoint_re_set ();
1652 }
1653 }
1654
1655 /* Set the initial language. */
1656
1657 void
1658 set_initial_language (void)
1659 {
1660 if (language_mode == language_mode_manual)
1661 return;
1662 enum language lang = main_language ();
1663 /* Make C the default language. */
1664 enum language default_lang = language_c;
1665
1666 if (lang == language_unknown)
1667 {
1668 const char *name = main_name ();
1669 struct symbol *sym
1670 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1671 NULL).symbol;
1672
1673 if (sym != NULL)
1674 lang = sym->language ();
1675 }
1676
1677 if (lang == language_unknown)
1678 {
1679 lang = default_lang;
1680 }
1681
1682 set_language (lang);
1683 expected_language = current_language; /* Don't warn the user. */
1684 }
1685
1686 /* Open the file specified by NAME and hand it off to BFD for
1687 preliminary analysis. Return a newly initialized bfd *, which
1688 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1689 absolute). In case of trouble, error() is called. */
1690
1691 gdb_bfd_ref_ptr
1692 symfile_bfd_open (const char *name)
1693 {
1694 int desc = -1;
1695
1696 gdb::unique_xmalloc_ptr<char> absolute_name;
1697 if (!is_target_filename (name))
1698 {
1699 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1700
1701 /* Look down path for it, allocate 2nd new malloc'd copy. */
1702 desc = openp (getenv ("PATH"),
1703 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1704 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1705 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1706 if (desc < 0)
1707 {
1708 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1709
1710 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1711 desc = openp (getenv ("PATH"),
1712 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1713 exename, O_RDONLY | O_BINARY, &absolute_name);
1714 }
1715 #endif
1716 if (desc < 0)
1717 perror_with_name (expanded_name.get ());
1718
1719 name = absolute_name.get ();
1720 }
1721
1722 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1723 if (sym_bfd == NULL)
1724 error (_("`%s': can't open to read symbols: %s."), name,
1725 bfd_errmsg (bfd_get_error ()));
1726
1727 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1728 bfd_set_cacheable (sym_bfd.get (), 1);
1729
1730 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733
1734 return sym_bfd;
1735 }
1736
1737 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1738 the section was not found. */
1739
1740 int
1741 get_section_index (struct objfile *objfile, const char *section_name)
1742 {
1743 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1744
1745 if (sect)
1746 return sect->index;
1747 else
1748 return -1;
1749 }
1750
1751 /* Link SF into the global symtab_fns list.
1752 FLAVOUR is the file format that SF handles.
1753 Called on startup by the _initialize routine in each object file format
1754 reader, to register information about each format the reader is prepared
1755 to handle. */
1756
1757 void
1758 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1759 {
1760 symtab_fns.emplace_back (flavour, sf);
1761 }
1762
1763 /* Initialize OBJFILE to read symbols from its associated BFD. It
1764 either returns or calls error(). The result is an initialized
1765 struct sym_fns in the objfile structure, that contains cached
1766 information about the symbol file. */
1767
1768 static const struct sym_fns *
1769 find_sym_fns (bfd *abfd)
1770 {
1771 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1772
1773 if (our_flavour == bfd_target_srec_flavour
1774 || our_flavour == bfd_target_ihex_flavour
1775 || our_flavour == bfd_target_tekhex_flavour)
1776 return NULL; /* No symbols. */
1777
1778 for (const registered_sym_fns &rsf : symtab_fns)
1779 if (our_flavour == rsf.sym_flavour)
1780 return rsf.sym_fns;
1781
1782 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1783 bfd_get_target (abfd));
1784 }
1785 \f
1786
1787 /* This function runs the load command of our current target. */
1788
1789 static void
1790 load_command (const char *arg, int from_tty)
1791 {
1792 dont_repeat ();
1793
1794 /* The user might be reloading because the binary has changed. Take
1795 this opportunity to check. */
1796 reopen_exec_file ();
1797 reread_symbols ();
1798
1799 std::string temp;
1800 if (arg == NULL)
1801 {
1802 const char *parg, *prev;
1803
1804 arg = get_exec_file (1);
1805
1806 /* We may need to quote this string so buildargv can pull it
1807 apart. */
1808 prev = parg = arg;
1809 while ((parg = strpbrk (parg, "\\\"'\t ")))
1810 {
1811 temp.append (prev, parg - prev);
1812 prev = parg++;
1813 temp.push_back ('\\');
1814 }
1815 /* If we have not copied anything yet, then we didn't see a
1816 character to quote, and we can just leave ARG unchanged. */
1817 if (!temp.empty ())
1818 {
1819 temp.append (prev);
1820 arg = temp.c_str ();
1821 }
1822 }
1823
1824 target_load (arg, from_tty);
1825
1826 /* After re-loading the executable, we don't really know which
1827 overlays are mapped any more. */
1828 overlay_cache_invalid = 1;
1829 }
1830
1831 /* This version of "load" should be usable for any target. Currently
1832 it is just used for remote targets, not inftarg.c or core files,
1833 on the theory that only in that case is it useful.
1834
1835 Avoiding xmodem and the like seems like a win (a) because we don't have
1836 to worry about finding it, and (b) On VMS, fork() is very slow and so
1837 we don't want to run a subprocess. On the other hand, I'm not sure how
1838 performance compares. */
1839
1840 static int validate_download = 0;
1841
1842 /* Opaque data for load_progress. */
1843 struct load_progress_data
1844 {
1845 /* Cumulative data. */
1846 unsigned long write_count = 0;
1847 unsigned long data_count = 0;
1848 bfd_size_type total_size = 0;
1849 };
1850
1851 /* Opaque data for load_progress for a single section. */
1852 struct load_progress_section_data
1853 {
1854 load_progress_section_data (load_progress_data *cumulative_,
1855 const char *section_name_, ULONGEST section_size_,
1856 CORE_ADDR lma_, gdb_byte *buffer_)
1857 : cumulative (cumulative_), section_name (section_name_),
1858 section_size (section_size_), lma (lma_), buffer (buffer_)
1859 {}
1860
1861 struct load_progress_data *cumulative;
1862
1863 /* Per-section data. */
1864 const char *section_name;
1865 ULONGEST section_sent = 0;
1866 ULONGEST section_size;
1867 CORE_ADDR lma;
1868 gdb_byte *buffer;
1869 };
1870
1871 /* Opaque data for load_section_callback. */
1872 struct load_section_data
1873 {
1874 load_section_data (load_progress_data *progress_data_)
1875 : progress_data (progress_data_)
1876 {}
1877
1878 ~load_section_data ()
1879 {
1880 for (auto &&request : requests)
1881 {
1882 xfree (request.data);
1883 delete ((load_progress_section_data *) request.baton);
1884 }
1885 }
1886
1887 CORE_ADDR load_offset = 0;
1888 struct load_progress_data *progress_data;
1889 std::vector<struct memory_write_request> requests;
1890 };
1891
1892 /* Target write callback routine for progress reporting. */
1893
1894 static void
1895 load_progress (ULONGEST bytes, void *untyped_arg)
1896 {
1897 struct load_progress_section_data *args
1898 = (struct load_progress_section_data *) untyped_arg;
1899 struct load_progress_data *totals;
1900
1901 if (args == NULL)
1902 /* Writing padding data. No easy way to get at the cumulative
1903 stats, so just ignore this. */
1904 return;
1905
1906 totals = args->cumulative;
1907
1908 if (bytes == 0 && args->section_sent == 0)
1909 {
1910 /* The write is just starting. Let the user know we've started
1911 this section. */
1912 current_uiout->message ("Loading section %s, size %s lma %s\n",
1913 args->section_name,
1914 hex_string (args->section_size),
1915 paddress (target_gdbarch (), args->lma));
1916 return;
1917 }
1918
1919 if (validate_download)
1920 {
1921 /* Broken memories and broken monitors manifest themselves here
1922 when bring new computers to life. This doubles already slow
1923 downloads. */
1924 /* NOTE: cagney/1999-10-18: A more efficient implementation
1925 might add a verify_memory() method to the target vector and
1926 then use that. remote.c could implement that method using
1927 the ``qCRC'' packet. */
1928 gdb::byte_vector check (bytes);
1929
1930 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1931 error (_("Download verify read failed at %s"),
1932 paddress (target_gdbarch (), args->lma));
1933 if (memcmp (args->buffer, check.data (), bytes) != 0)
1934 error (_("Download verify compare failed at %s"),
1935 paddress (target_gdbarch (), args->lma));
1936 }
1937 totals->data_count += bytes;
1938 args->lma += bytes;
1939 args->buffer += bytes;
1940 totals->write_count += 1;
1941 args->section_sent += bytes;
1942 if (check_quit_flag ()
1943 || (deprecated_ui_load_progress_hook != NULL
1944 && deprecated_ui_load_progress_hook (args->section_name,
1945 args->section_sent)))
1946 error (_("Canceled the download"));
1947
1948 if (deprecated_show_load_progress != NULL)
1949 deprecated_show_load_progress (args->section_name,
1950 args->section_sent,
1951 args->section_size,
1952 totals->data_count,
1953 totals->total_size);
1954 }
1955
1956 /* Service function for generic_load. */
1957
1958 static void
1959 load_one_section (bfd *abfd, asection *asec,
1960 struct load_section_data *args)
1961 {
1962 bfd_size_type size = bfd_section_size (asec);
1963 const char *sect_name = bfd_section_name (asec);
1964
1965 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1966 return;
1967
1968 if (size == 0)
1969 return;
1970
1971 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1972 ULONGEST end = begin + size;
1973 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1974 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1975
1976 load_progress_section_data *section_data
1977 = new load_progress_section_data (args->progress_data, sect_name, size,
1978 begin, buffer);
1979
1980 args->requests.emplace_back (begin, end, buffer, section_data);
1981 }
1982
1983 static void print_transfer_performance (struct ui_file *stream,
1984 unsigned long data_count,
1985 unsigned long write_count,
1986 std::chrono::steady_clock::duration d);
1987
1988 /* See symfile.h. */
1989
1990 void
1991 generic_load (const char *args, int from_tty)
1992 {
1993 struct load_progress_data total_progress;
1994 struct load_section_data cbdata (&total_progress);
1995 struct ui_out *uiout = current_uiout;
1996
1997 if (args == NULL)
1998 error_no_arg (_("file to load"));
1999
2000 gdb_argv argv (args);
2001
2002 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2003
2004 if (argv[1] != NULL)
2005 {
2006 const char *endptr;
2007
2008 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2009
2010 /* If the last word was not a valid number then
2011 treat it as a file name with spaces in. */
2012 if (argv[1] == endptr)
2013 error (_("Invalid download offset:%s."), argv[1]);
2014
2015 if (argv[2] != NULL)
2016 error (_("Too many parameters."));
2017 }
2018
2019 /* Open the file for loading. */
2020 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget));
2021 if (loadfile_bfd == NULL)
2022 perror_with_name (filename.get ());
2023
2024 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2025 {
2026 error (_("\"%s\" is not an object file: %s"), filename.get (),
2027 bfd_errmsg (bfd_get_error ()));
2028 }
2029
2030 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2031 total_progress.total_size += bfd_section_size (asec);
2032
2033 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2034 load_one_section (loadfile_bfd.get (), asec, &cbdata);
2035
2036 using namespace std::chrono;
2037
2038 steady_clock::time_point start_time = steady_clock::now ();
2039
2040 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2041 load_progress) != 0)
2042 error (_("Load failed"));
2043
2044 steady_clock::time_point end_time = steady_clock::now ();
2045
2046 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2047 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2048 uiout->text ("Start address ");
2049 uiout->field_core_addr ("address", target_gdbarch (), entry);
2050 uiout->text (", load size ");
2051 uiout->field_unsigned ("load-size", total_progress.data_count);
2052 uiout->text ("\n");
2053 regcache_write_pc (get_current_regcache (), entry);
2054
2055 /* Reset breakpoints, now that we have changed the load image. For
2056 instance, breakpoints may have been set (or reset, by
2057 post_create_inferior) while connected to the target but before we
2058 loaded the program. In that case, the prologue analyzer could
2059 have read instructions from the target to find the right
2060 breakpoint locations. Loading has changed the contents of that
2061 memory. */
2062
2063 breakpoint_re_set ();
2064
2065 print_transfer_performance (gdb_stdout, total_progress.data_count,
2066 total_progress.write_count,
2067 end_time - start_time);
2068 }
2069
2070 /* Report on STREAM the performance of a memory transfer operation,
2071 such as 'load'. DATA_COUNT is the number of bytes transferred.
2072 WRITE_COUNT is the number of separate write operations, or 0, if
2073 that information is not available. TIME is how long the operation
2074 lasted. */
2075
2076 static void
2077 print_transfer_performance (struct ui_file *stream,
2078 unsigned long data_count,
2079 unsigned long write_count,
2080 std::chrono::steady_clock::duration time)
2081 {
2082 using namespace std::chrono;
2083 struct ui_out *uiout = current_uiout;
2084
2085 milliseconds ms = duration_cast<milliseconds> (time);
2086
2087 uiout->text ("Transfer rate: ");
2088 if (ms.count () > 0)
2089 {
2090 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2091
2092 if (uiout->is_mi_like_p ())
2093 {
2094 uiout->field_unsigned ("transfer-rate", rate * 8);
2095 uiout->text (" bits/sec");
2096 }
2097 else if (rate < 1024)
2098 {
2099 uiout->field_unsigned ("transfer-rate", rate);
2100 uiout->text (" bytes/sec");
2101 }
2102 else
2103 {
2104 uiout->field_unsigned ("transfer-rate", rate / 1024);
2105 uiout->text (" KB/sec");
2106 }
2107 }
2108 else
2109 {
2110 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2111 uiout->text (" bits in <1 sec");
2112 }
2113 if (write_count > 0)
2114 {
2115 uiout->text (", ");
2116 uiout->field_unsigned ("write-rate", data_count / write_count);
2117 uiout->text (" bytes/write");
2118 }
2119 uiout->text (".\n");
2120 }
2121
2122 /* Add an OFFSET to the start address of each section in OBJF, except
2123 sections that were specified in ADDRS. */
2124
2125 static void
2126 set_objfile_default_section_offset (struct objfile *objf,
2127 const section_addr_info &addrs,
2128 CORE_ADDR offset)
2129 {
2130 /* Add OFFSET to all sections by default. */
2131 section_offsets offsets (objf->section_offsets.size (), offset);
2132
2133 /* Create sorted lists of all sections in ADDRS as well as all
2134 sections in OBJF. */
2135
2136 std::vector<const struct other_sections *> addrs_sorted
2137 = addrs_section_sort (addrs);
2138
2139 section_addr_info objf_addrs
2140 = build_section_addr_info_from_objfile (objf);
2141 std::vector<const struct other_sections *> objf_addrs_sorted
2142 = addrs_section_sort (objf_addrs);
2143
2144 /* Walk the BFD section list, and if a matching section is found in
2145 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2146 unchanged.
2147
2148 Note that both lists may contain multiple sections with the same
2149 name, and then the sections from ADDRS are matched in BFD order
2150 (thanks to sectindex). */
2151
2152 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2153 = addrs_sorted.begin ();
2154 for (const other_sections *objf_sect : objf_addrs_sorted)
2155 {
2156 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2157 int cmp = -1;
2158
2159 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2160 {
2161 const struct other_sections *sect = *addrs_sorted_iter;
2162 const char *sect_name = addr_section_name (sect->name.c_str ());
2163 cmp = strcmp (sect_name, objf_name);
2164 if (cmp <= 0)
2165 ++addrs_sorted_iter;
2166 }
2167
2168 if (cmp == 0)
2169 offsets[objf_sect->sectindex] = 0;
2170 }
2171
2172 /* Apply the new section offsets. */
2173 objfile_relocate (objf, offsets);
2174 }
2175
2176 /* This function allows the addition of incrementally linked object files.
2177 It does not modify any state in the target, only in the debugger. */
2178
2179 static void
2180 add_symbol_file_command (const char *args, int from_tty)
2181 {
2182 struct gdbarch *gdbarch = get_current_arch ();
2183 gdb::unique_xmalloc_ptr<char> filename;
2184 char *arg;
2185 int argcnt = 0;
2186 struct objfile *objf;
2187 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2188 symfile_add_flags add_flags = 0;
2189
2190 if (from_tty)
2191 add_flags |= SYMFILE_VERBOSE;
2192
2193 struct sect_opt
2194 {
2195 const char *name;
2196 const char *value;
2197 };
2198
2199 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2200 bool stop_processing_options = false;
2201 CORE_ADDR offset = 0;
2202
2203 dont_repeat ();
2204
2205 if (args == NULL)
2206 error (_("add-symbol-file takes a file name and an address"));
2207
2208 bool seen_addr = false;
2209 bool seen_offset = false;
2210 gdb_argv argv (args);
2211
2212 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2213 {
2214 if (stop_processing_options || *arg != '-')
2215 {
2216 if (filename == NULL)
2217 {
2218 /* First non-option argument is always the filename. */
2219 filename.reset (tilde_expand (arg));
2220 }
2221 else if (!seen_addr)
2222 {
2223 /* The second non-option argument is always the text
2224 address at which to load the program. */
2225 sect_opts[0].value = arg;
2226 seen_addr = true;
2227 }
2228 else
2229 error (_("Unrecognized argument \"%s\""), arg);
2230 }
2231 else if (strcmp (arg, "-readnow") == 0)
2232 flags |= OBJF_READNOW;
2233 else if (strcmp (arg, "-readnever") == 0)
2234 flags |= OBJF_READNEVER;
2235 else if (strcmp (arg, "-s") == 0)
2236 {
2237 if (argv[argcnt + 1] == NULL)
2238 error (_("Missing section name after \"-s\""));
2239 else if (argv[argcnt + 2] == NULL)
2240 error (_("Missing section address after \"-s\""));
2241
2242 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2243
2244 sect_opts.push_back (sect);
2245 argcnt += 2;
2246 }
2247 else if (strcmp (arg, "-o") == 0)
2248 {
2249 arg = argv[++argcnt];
2250 if (arg == NULL)
2251 error (_("Missing argument to -o"));
2252
2253 offset = parse_and_eval_address (arg);
2254 seen_offset = true;
2255 }
2256 else if (strcmp (arg, "--") == 0)
2257 stop_processing_options = true;
2258 else
2259 error (_("Unrecognized argument \"%s\""), arg);
2260 }
2261
2262 if (filename == NULL)
2263 error (_("You must provide a filename to be loaded."));
2264
2265 validate_readnow_readnever (flags);
2266
2267 /* Print the prompt for the query below. And save the arguments into
2268 a sect_addr_info structure to be passed around to other
2269 functions. We have to split this up into separate print
2270 statements because hex_string returns a local static
2271 string. */
2272
2273 printf_unfiltered (_("add symbol table from file \"%s\""),
2274 filename.get ());
2275 section_addr_info section_addrs;
2276 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2277 if (!seen_addr)
2278 ++it;
2279 for (; it != sect_opts.end (); ++it)
2280 {
2281 CORE_ADDR addr;
2282 const char *val = it->value;
2283 const char *sec = it->name;
2284
2285 if (section_addrs.empty ())
2286 printf_unfiltered (_(" at\n"));
2287 addr = parse_and_eval_address (val);
2288
2289 /* Here we store the section offsets in the order they were
2290 entered on the command line. Every array element is
2291 assigned an ascending section index to preserve the above
2292 order over an unstable sorting algorithm. This dummy
2293 index is not used for any other purpose.
2294 */
2295 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2296 printf_filtered ("\t%s_addr = %s\n", sec,
2297 paddress (gdbarch, addr));
2298
2299 /* The object's sections are initialized when a
2300 call is made to build_objfile_section_table (objfile).
2301 This happens in reread_symbols.
2302 At this point, we don't know what file type this is,
2303 so we can't determine what section names are valid. */
2304 }
2305 if (seen_offset)
2306 printf_unfiltered (_("%s offset by %s\n"),
2307 (section_addrs.empty ()
2308 ? _(" with all sections")
2309 : _("with other sections")),
2310 paddress (gdbarch, offset));
2311 else if (section_addrs.empty ())
2312 printf_unfiltered ("\n");
2313
2314 if (from_tty && (!query ("%s", "")))
2315 error (_("Not confirmed."));
2316
2317 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2318 flags);
2319 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2320 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2321 filename.get ());
2322
2323 if (seen_offset)
2324 set_objfile_default_section_offset (objf, section_addrs, offset);
2325
2326 add_target_sections_of_objfile (objf);
2327
2328 /* Getting new symbols may change our opinion about what is
2329 frameless. */
2330 reinit_frame_cache ();
2331 }
2332 \f
2333
2334 /* This function removes a symbol file that was added via add-symbol-file. */
2335
2336 static void
2337 remove_symbol_file_command (const char *args, int from_tty)
2338 {
2339 struct objfile *objf = NULL;
2340 struct program_space *pspace = current_program_space;
2341
2342 dont_repeat ();
2343
2344 if (args == NULL)
2345 error (_("remove-symbol-file: no symbol file provided"));
2346
2347 gdb_argv argv (args);
2348
2349 if (strcmp (argv[0], "-a") == 0)
2350 {
2351 /* Interpret the next argument as an address. */
2352 CORE_ADDR addr;
2353
2354 if (argv[1] == NULL)
2355 error (_("Missing address argument"));
2356
2357 if (argv[2] != NULL)
2358 error (_("Junk after %s"), argv[1]);
2359
2360 addr = parse_and_eval_address (argv[1]);
2361
2362 for (objfile *objfile : current_program_space->objfiles ())
2363 {
2364 if ((objfile->flags & OBJF_USERLOADED) != 0
2365 && (objfile->flags & OBJF_SHARED) != 0
2366 && objfile->pspace == pspace
2367 && is_addr_in_objfile (addr, objfile))
2368 {
2369 objf = objfile;
2370 break;
2371 }
2372 }
2373 }
2374 else if (argv[0] != NULL)
2375 {
2376 /* Interpret the current argument as a file name. */
2377
2378 if (argv[1] != NULL)
2379 error (_("Junk after %s"), argv[0]);
2380
2381 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2382
2383 for (objfile *objfile : current_program_space->objfiles ())
2384 {
2385 if ((objfile->flags & OBJF_USERLOADED) != 0
2386 && (objfile->flags & OBJF_SHARED) != 0
2387 && objfile->pspace == pspace
2388 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2389 {
2390 objf = objfile;
2391 break;
2392 }
2393 }
2394 }
2395
2396 if (objf == NULL)
2397 error (_("No symbol file found"));
2398
2399 if (from_tty
2400 && !query (_("Remove symbol table from file \"%s\"? "),
2401 objfile_name (objf)))
2402 error (_("Not confirmed."));
2403
2404 objf->unlink ();
2405 clear_symtab_users (0);
2406 }
2407
2408 /* Re-read symbols if a symbol-file has changed. */
2409
2410 void
2411 reread_symbols (void)
2412 {
2413 long new_modtime;
2414 struct stat new_statbuf;
2415 int res;
2416 std::vector<struct objfile *> new_objfiles;
2417
2418 for (objfile *objfile : current_program_space->objfiles ())
2419 {
2420 if (objfile->obfd == NULL)
2421 continue;
2422
2423 /* Separate debug objfiles are handled in the main objfile. */
2424 if (objfile->separate_debug_objfile_backlink)
2425 continue;
2426
2427 /* If this object is from an archive (what you usually create with
2428 `ar', often called a `static library' on most systems, though
2429 a `shared library' on AIX is also an archive), then you should
2430 stat on the archive name, not member name. */
2431 if (objfile->obfd->my_archive)
2432 res = stat (bfd_get_filename (objfile->obfd->my_archive), &new_statbuf);
2433 else
2434 res = stat (objfile_name (objfile), &new_statbuf);
2435 if (res != 0)
2436 {
2437 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2438 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2439 objfile_name (objfile));
2440 continue;
2441 }
2442 new_modtime = new_statbuf.st_mtime;
2443 if (new_modtime != objfile->mtime)
2444 {
2445 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2446 objfile_name (objfile));
2447
2448 /* There are various functions like symbol_file_add,
2449 symfile_bfd_open, syms_from_objfile, etc., which might
2450 appear to do what we want. But they have various other
2451 effects which we *don't* want. So we just do stuff
2452 ourselves. We don't worry about mapped files (for one thing,
2453 any mapped file will be out of date). */
2454
2455 /* If we get an error, blow away this objfile (not sure if
2456 that is the correct response for things like shared
2457 libraries). */
2458 objfile_up objfile_holder (objfile);
2459
2460 /* We need to do this whenever any symbols go away. */
2461 clear_symtab_users_cleanup defer_clear_users (0);
2462
2463 if (exec_bfd != NULL
2464 && filename_cmp (bfd_get_filename (objfile->obfd),
2465 bfd_get_filename (exec_bfd)) == 0)
2466 {
2467 /* Reload EXEC_BFD without asking anything. */
2468
2469 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2470 }
2471
2472 /* Keep the calls order approx. the same as in free_objfile. */
2473
2474 /* Free the separate debug objfiles. It will be
2475 automatically recreated by sym_read. */
2476 free_objfile_separate_debug (objfile);
2477
2478 /* Clear the stale source cache. */
2479 forget_cached_source_info ();
2480
2481 /* Remove any references to this objfile in the global
2482 value lists. */
2483 preserve_values (objfile);
2484
2485 /* Nuke all the state that we will re-read. Much of the following
2486 code which sets things to NULL really is necessary to tell
2487 other parts of GDB that there is nothing currently there.
2488
2489 Try to keep the freeing order compatible with free_objfile. */
2490
2491 if (objfile->sf != NULL)
2492 {
2493 (*objfile->sf->sym_finish) (objfile);
2494 }
2495
2496 clear_objfile_data (objfile);
2497
2498 /* Clean up any state BFD has sitting around. */
2499 {
2500 gdb_bfd_ref_ptr obfd (objfile->obfd);
2501 const char *obfd_filename;
2502
2503 obfd_filename = bfd_get_filename (objfile->obfd);
2504 /* Open the new BFD before freeing the old one, so that
2505 the filename remains live. */
2506 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget));
2507 objfile->obfd = temp.release ();
2508 if (objfile->obfd == NULL)
2509 error (_("Can't open %s to read symbols."), obfd_filename);
2510 }
2511
2512 std::string original_name = objfile->original_name;
2513
2514 /* bfd_openr sets cacheable to true, which is what we want. */
2515 if (!bfd_check_format (objfile->obfd, bfd_object))
2516 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2517 bfd_errmsg (bfd_get_error ()));
2518
2519 objfile->reset_psymtabs ();
2520
2521 /* NB: after this call to obstack_free, objfiles_changed
2522 will need to be called (see discussion below). */
2523 obstack_free (&objfile->objfile_obstack, 0);
2524 objfile->sections = NULL;
2525 objfile->section_offsets.clear ();
2526 objfile->sect_index_bss = -1;
2527 objfile->sect_index_data = -1;
2528 objfile->sect_index_rodata = -1;
2529 objfile->sect_index_text = -1;
2530 objfile->compunit_symtabs = NULL;
2531 objfile->template_symbols = NULL;
2532 objfile->static_links.reset (nullptr);
2533
2534 /* obstack_init also initializes the obstack so it is
2535 empty. We could use obstack_specify_allocation but
2536 gdb_obstack.h specifies the alloc/dealloc functions. */
2537 obstack_init (&objfile->objfile_obstack);
2538
2539 /* set_objfile_per_bfd potentially allocates the per-bfd
2540 data on the objfile's obstack (if sharing data across
2541 multiple users is not possible), so it's important to
2542 do it *after* the obstack has been initialized. */
2543 set_objfile_per_bfd (objfile);
2544
2545 objfile->original_name
2546 = obstack_strdup (&objfile->objfile_obstack, original_name);
2547
2548 /* Reset the sym_fns pointer. The ELF reader can change it
2549 based on whether .gdb_index is present, and we need it to
2550 start over. PR symtab/15885 */
2551 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2552
2553 build_objfile_section_table (objfile);
2554
2555 /* What the hell is sym_new_init for, anyway? The concept of
2556 distinguishing between the main file and additional files
2557 in this way seems rather dubious. */
2558 if (objfile == symfile_objfile)
2559 {
2560 (*objfile->sf->sym_new_init) (objfile);
2561 }
2562
2563 (*objfile->sf->sym_init) (objfile);
2564 clear_complaints ();
2565
2566 objfile->flags &= ~OBJF_PSYMTABS_READ;
2567
2568 /* We are about to read new symbols and potentially also
2569 DWARF information. Some targets may want to pass addresses
2570 read from DWARF DIE's through an adjustment function before
2571 saving them, like MIPS, which may call into
2572 "find_pc_section". When called, that function will make
2573 use of per-objfile program space data.
2574
2575 Since we discarded our section information above, we have
2576 dangling pointers in the per-objfile program space data
2577 structure. Force GDB to update the section mapping
2578 information by letting it know the objfile has changed,
2579 making the dangling pointers point to correct data
2580 again. */
2581
2582 objfiles_changed ();
2583
2584 /* Recompute section offsets and section indices. */
2585 objfile->sf->sym_offsets (objfile, {});
2586
2587 read_symbols (objfile, 0);
2588
2589 if (!objfile_has_symbols (objfile))
2590 {
2591 wrap_here ("");
2592 printf_filtered (_("(no debugging symbols found)\n"));
2593 wrap_here ("");
2594 }
2595
2596 /* We're done reading the symbol file; finish off complaints. */
2597 clear_complaints ();
2598
2599 /* Getting new symbols may change our opinion about what is
2600 frameless. */
2601
2602 reinit_frame_cache ();
2603
2604 /* Discard cleanups as symbol reading was successful. */
2605 objfile_holder.release ();
2606 defer_clear_users.release ();
2607
2608 /* If the mtime has changed between the time we set new_modtime
2609 and now, we *want* this to be out of date, so don't call stat
2610 again now. */
2611 objfile->mtime = new_modtime;
2612 init_entry_point_info (objfile);
2613
2614 new_objfiles.push_back (objfile);
2615 }
2616 }
2617
2618 if (!new_objfiles.empty ())
2619 {
2620 clear_symtab_users (0);
2621
2622 /* clear_objfile_data for each objfile was called before freeing it and
2623 gdb::observers::new_objfile.notify (NULL) has been called by
2624 clear_symtab_users above. Notify the new files now. */
2625 for (auto iter : new_objfiles)
2626 gdb::observers::new_objfile.notify (iter);
2627
2628 /* At least one objfile has changed, so we can consider that
2629 the executable we're debugging has changed too. */
2630 gdb::observers::executable_changed.notify ();
2631 }
2632 }
2633 \f
2634
2635 struct filename_language
2636 {
2637 filename_language (const std::string &ext_, enum language lang_)
2638 : ext (ext_), lang (lang_)
2639 {}
2640
2641 std::string ext;
2642 enum language lang;
2643 };
2644
2645 static std::vector<filename_language> filename_language_table;
2646
2647 /* See symfile.h. */
2648
2649 void
2650 add_filename_language (const char *ext, enum language lang)
2651 {
2652 gdb_assert (ext != nullptr);
2653 filename_language_table.emplace_back (ext, lang);
2654 }
2655
2656 static char *ext_args;
2657 static void
2658 show_ext_args (struct ui_file *file, int from_tty,
2659 struct cmd_list_element *c, const char *value)
2660 {
2661 fprintf_filtered (file,
2662 _("Mapping between filename extension "
2663 "and source language is \"%s\".\n"),
2664 value);
2665 }
2666
2667 static void
2668 set_ext_lang_command (const char *args,
2669 int from_tty, struct cmd_list_element *e)
2670 {
2671 char *cp = ext_args;
2672 enum language lang;
2673
2674 /* First arg is filename extension, starting with '.' */
2675 if (*cp != '.')
2676 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2677
2678 /* Find end of first arg. */
2679 while (*cp && !isspace (*cp))
2680 cp++;
2681
2682 if (*cp == '\0')
2683 error (_("'%s': two arguments required -- "
2684 "filename extension and language"),
2685 ext_args);
2686
2687 /* Null-terminate first arg. */
2688 *cp++ = '\0';
2689
2690 /* Find beginning of second arg, which should be a source language. */
2691 cp = skip_spaces (cp);
2692
2693 if (*cp == '\0')
2694 error (_("'%s': two arguments required -- "
2695 "filename extension and language"),
2696 ext_args);
2697
2698 /* Lookup the language from among those we know. */
2699 lang = language_enum (cp);
2700
2701 auto it = filename_language_table.begin ();
2702 /* Now lookup the filename extension: do we already know it? */
2703 for (; it != filename_language_table.end (); it++)
2704 {
2705 if (it->ext == ext_args)
2706 break;
2707 }
2708
2709 if (it == filename_language_table.end ())
2710 {
2711 /* New file extension. */
2712 add_filename_language (ext_args, lang);
2713 }
2714 else
2715 {
2716 /* Redefining a previously known filename extension. */
2717
2718 /* if (from_tty) */
2719 /* query ("Really make files of type %s '%s'?", */
2720 /* ext_args, language_str (lang)); */
2721
2722 it->lang = lang;
2723 }
2724 }
2725
2726 static void
2727 info_ext_lang_command (const char *args, int from_tty)
2728 {
2729 printf_filtered (_("Filename extensions and the languages they represent:"));
2730 printf_filtered ("\n\n");
2731 for (const filename_language &entry : filename_language_table)
2732 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2733 language_str (entry.lang));
2734 }
2735
2736 enum language
2737 deduce_language_from_filename (const char *filename)
2738 {
2739 const char *cp;
2740
2741 if (filename != NULL)
2742 if ((cp = strrchr (filename, '.')) != NULL)
2743 {
2744 for (const filename_language &entry : filename_language_table)
2745 if (entry.ext == cp)
2746 return entry.lang;
2747 }
2748
2749 return language_unknown;
2750 }
2751 \f
2752 /* Allocate and initialize a new symbol table.
2753 CUST is from the result of allocate_compunit_symtab. */
2754
2755 struct symtab *
2756 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2757 {
2758 struct objfile *objfile = cust->objfile;
2759 struct symtab *symtab
2760 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2761
2762 symtab->filename = objfile->intern (filename);
2763 symtab->fullname = NULL;
2764 symtab->language = deduce_language_from_filename (filename);
2765
2766 /* This can be very verbose with lots of headers.
2767 Only print at higher debug levels. */
2768 if (symtab_create_debug >= 2)
2769 {
2770 /* Be a bit clever with debugging messages, and don't print objfile
2771 every time, only when it changes. */
2772 static char *last_objfile_name = NULL;
2773
2774 if (last_objfile_name == NULL
2775 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2776 {
2777 xfree (last_objfile_name);
2778 last_objfile_name = xstrdup (objfile_name (objfile));
2779 fprintf_filtered (gdb_stdlog,
2780 "Creating one or more symtabs for objfile %s ...\n",
2781 last_objfile_name);
2782 }
2783 fprintf_filtered (gdb_stdlog,
2784 "Created symtab %s for module %s.\n",
2785 host_address_to_string (symtab), filename);
2786 }
2787
2788 /* Add it to CUST's list of symtabs. */
2789 if (cust->filetabs == NULL)
2790 {
2791 cust->filetabs = symtab;
2792 cust->last_filetab = symtab;
2793 }
2794 else
2795 {
2796 cust->last_filetab->next = symtab;
2797 cust->last_filetab = symtab;
2798 }
2799
2800 /* Backlink to the containing compunit symtab. */
2801 symtab->compunit_symtab = cust;
2802
2803 return symtab;
2804 }
2805
2806 /* Allocate and initialize a new compunit.
2807 NAME is the name of the main source file, if there is one, or some
2808 descriptive text if there are no source files. */
2809
2810 struct compunit_symtab *
2811 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2812 {
2813 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2814 struct compunit_symtab);
2815 const char *saved_name;
2816
2817 cu->objfile = objfile;
2818
2819 /* The name we record here is only for display/debugging purposes.
2820 Just save the basename to avoid path issues (too long for display,
2821 relative vs absolute, etc.). */
2822 saved_name = lbasename (name);
2823 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2824
2825 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2826
2827 if (symtab_create_debug)
2828 {
2829 fprintf_filtered (gdb_stdlog,
2830 "Created compunit symtab %s for %s.\n",
2831 host_address_to_string (cu),
2832 cu->name);
2833 }
2834
2835 return cu;
2836 }
2837
2838 /* Hook CU to the objfile it comes from. */
2839
2840 void
2841 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2842 {
2843 cu->next = cu->objfile->compunit_symtabs;
2844 cu->objfile->compunit_symtabs = cu;
2845 }
2846 \f
2847
2848 /* Reset all data structures in gdb which may contain references to
2849 symbol table data. */
2850
2851 void
2852 clear_symtab_users (symfile_add_flags add_flags)
2853 {
2854 /* Someday, we should do better than this, by only blowing away
2855 the things that really need to be blown. */
2856
2857 /* Clear the "current" symtab first, because it is no longer valid.
2858 breakpoint_re_set may try to access the current symtab. */
2859 clear_current_source_symtab_and_line ();
2860
2861 clear_displays ();
2862 clear_last_displayed_sal ();
2863 clear_pc_function_cache ();
2864 gdb::observers::new_objfile.notify (NULL);
2865
2866 /* Varobj may refer to old symbols, perform a cleanup. */
2867 varobj_invalidate ();
2868
2869 /* Now that the various caches have been cleared, we can re_set
2870 our breakpoints without risking it using stale data. */
2871 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2872 breakpoint_re_set ();
2873 }
2874 \f
2875 /* OVERLAYS:
2876 The following code implements an abstraction for debugging overlay sections.
2877
2878 The target model is as follows:
2879 1) The gnu linker will permit multiple sections to be mapped into the
2880 same VMA, each with its own unique LMA (or load address).
2881 2) It is assumed that some runtime mechanism exists for mapping the
2882 sections, one by one, from the load address into the VMA address.
2883 3) This code provides a mechanism for gdb to keep track of which
2884 sections should be considered to be mapped from the VMA to the LMA.
2885 This information is used for symbol lookup, and memory read/write.
2886 For instance, if a section has been mapped then its contents
2887 should be read from the VMA, otherwise from the LMA.
2888
2889 Two levels of debugger support for overlays are available. One is
2890 "manual", in which the debugger relies on the user to tell it which
2891 overlays are currently mapped. This level of support is
2892 implemented entirely in the core debugger, and the information about
2893 whether a section is mapped is kept in the objfile->obj_section table.
2894
2895 The second level of support is "automatic", and is only available if
2896 the target-specific code provides functionality to read the target's
2897 overlay mapping table, and translate its contents for the debugger
2898 (by updating the mapped state information in the obj_section tables).
2899
2900 The interface is as follows:
2901 User commands:
2902 overlay map <name> -- tell gdb to consider this section mapped
2903 overlay unmap <name> -- tell gdb to consider this section unmapped
2904 overlay list -- list the sections that GDB thinks are mapped
2905 overlay read-target -- get the target's state of what's mapped
2906 overlay off/manual/auto -- set overlay debugging state
2907 Functional interface:
2908 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2909 section, return that section.
2910 find_pc_overlay(pc): find any overlay section that contains
2911 the pc, either in its VMA or its LMA
2912 section_is_mapped(sect): true if overlay is marked as mapped
2913 section_is_overlay(sect): true if section's VMA != LMA
2914 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2915 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2916 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2917 overlay_mapped_address(...): map an address from section's LMA to VMA
2918 overlay_unmapped_address(...): map an address from section's VMA to LMA
2919 symbol_overlayed_address(...): Return a "current" address for symbol:
2920 either in VMA or LMA depending on whether
2921 the symbol's section is currently mapped. */
2922
2923 /* Overlay debugging state: */
2924
2925 enum overlay_debugging_state overlay_debugging = ovly_off;
2926 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2927
2928 /* Function: section_is_overlay (SECTION)
2929 Returns true if SECTION has VMA not equal to LMA, ie.
2930 SECTION is loaded at an address different from where it will "run". */
2931
2932 int
2933 section_is_overlay (struct obj_section *section)
2934 {
2935 if (overlay_debugging && section)
2936 {
2937 asection *bfd_section = section->the_bfd_section;
2938
2939 if (bfd_section_lma (bfd_section) != 0
2940 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2941 return 1;
2942 }
2943
2944 return 0;
2945 }
2946
2947 /* Function: overlay_invalidate_all (void)
2948 Invalidate the mapped state of all overlay sections (mark it as stale). */
2949
2950 static void
2951 overlay_invalidate_all (void)
2952 {
2953 struct obj_section *sect;
2954
2955 for (objfile *objfile : current_program_space->objfiles ())
2956 ALL_OBJFILE_OSECTIONS (objfile, sect)
2957 if (section_is_overlay (sect))
2958 sect->ovly_mapped = -1;
2959 }
2960
2961 /* Function: section_is_mapped (SECTION)
2962 Returns true if section is an overlay, and is currently mapped.
2963
2964 Access to the ovly_mapped flag is restricted to this function, so
2965 that we can do automatic update. If the global flag
2966 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2967 overlay_invalidate_all. If the mapped state of the particular
2968 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2969
2970 int
2971 section_is_mapped (struct obj_section *osect)
2972 {
2973 struct gdbarch *gdbarch;
2974
2975 if (osect == 0 || !section_is_overlay (osect))
2976 return 0;
2977
2978 switch (overlay_debugging)
2979 {
2980 default:
2981 case ovly_off:
2982 return 0; /* overlay debugging off */
2983 case ovly_auto: /* overlay debugging automatic */
2984 /* Unles there is a gdbarch_overlay_update function,
2985 there's really nothing useful to do here (can't really go auto). */
2986 gdbarch = osect->objfile->arch ();
2987 if (gdbarch_overlay_update_p (gdbarch))
2988 {
2989 if (overlay_cache_invalid)
2990 {
2991 overlay_invalidate_all ();
2992 overlay_cache_invalid = 0;
2993 }
2994 if (osect->ovly_mapped == -1)
2995 gdbarch_overlay_update (gdbarch, osect);
2996 }
2997 /* fall thru */
2998 case ovly_on: /* overlay debugging manual */
2999 return osect->ovly_mapped == 1;
3000 }
3001 }
3002
3003 /* Function: pc_in_unmapped_range
3004 If PC falls into the lma range of SECTION, return true, else false. */
3005
3006 CORE_ADDR
3007 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3008 {
3009 if (section_is_overlay (section))
3010 {
3011 asection *bfd_section = section->the_bfd_section;
3012
3013 /* We assume the LMA is relocated by the same offset as the VMA. */
3014 bfd_vma size = bfd_section_size (bfd_section);
3015 CORE_ADDR offset = obj_section_offset (section);
3016
3017 if (bfd_section_lma (bfd_section) + offset <= pc
3018 && pc < bfd_section_lma (bfd_section) + offset + size)
3019 return 1;
3020 }
3021
3022 return 0;
3023 }
3024
3025 /* Function: pc_in_mapped_range
3026 If PC falls into the vma range of SECTION, return true, else false. */
3027
3028 CORE_ADDR
3029 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3030 {
3031 if (section_is_overlay (section))
3032 {
3033 if (obj_section_addr (section) <= pc
3034 && pc < obj_section_endaddr (section))
3035 return 1;
3036 }
3037
3038 return 0;
3039 }
3040
3041 /* Return true if the mapped ranges of sections A and B overlap, false
3042 otherwise. */
3043
3044 static int
3045 sections_overlap (struct obj_section *a, struct obj_section *b)
3046 {
3047 CORE_ADDR a_start = obj_section_addr (a);
3048 CORE_ADDR a_end = obj_section_endaddr (a);
3049 CORE_ADDR b_start = obj_section_addr (b);
3050 CORE_ADDR b_end = obj_section_endaddr (b);
3051
3052 return (a_start < b_end && b_start < a_end);
3053 }
3054
3055 /* Function: overlay_unmapped_address (PC, SECTION)
3056 Returns the address corresponding to PC in the unmapped (load) range.
3057 May be the same as PC. */
3058
3059 CORE_ADDR
3060 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3061 {
3062 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3063 {
3064 asection *bfd_section = section->the_bfd_section;
3065
3066 return (pc + bfd_section_lma (bfd_section)
3067 - bfd_section_vma (bfd_section));
3068 }
3069
3070 return pc;
3071 }
3072
3073 /* Function: overlay_mapped_address (PC, SECTION)
3074 Returns the address corresponding to PC in the mapped (runtime) range.
3075 May be the same as PC. */
3076
3077 CORE_ADDR
3078 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3079 {
3080 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3081 {
3082 asection *bfd_section = section->the_bfd_section;
3083
3084 return (pc + bfd_section_vma (bfd_section)
3085 - bfd_section_lma (bfd_section));
3086 }
3087
3088 return pc;
3089 }
3090
3091 /* Function: symbol_overlayed_address
3092 Return one of two addresses (relative to the VMA or to the LMA),
3093 depending on whether the section is mapped or not. */
3094
3095 CORE_ADDR
3096 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3097 {
3098 if (overlay_debugging)
3099 {
3100 /* If the symbol has no section, just return its regular address. */
3101 if (section == 0)
3102 return address;
3103 /* If the symbol's section is not an overlay, just return its
3104 address. */
3105 if (!section_is_overlay (section))
3106 return address;
3107 /* If the symbol's section is mapped, just return its address. */
3108 if (section_is_mapped (section))
3109 return address;
3110 /*
3111 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3112 * then return its LOADED address rather than its vma address!!
3113 */
3114 return overlay_unmapped_address (address, section);
3115 }
3116 return address;
3117 }
3118
3119 /* Function: find_pc_overlay (PC)
3120 Return the best-match overlay section for PC:
3121 If PC matches a mapped overlay section's VMA, return that section.
3122 Else if PC matches an unmapped section's VMA, return that section.
3123 Else if PC matches an unmapped section's LMA, return that section. */
3124
3125 struct obj_section *
3126 find_pc_overlay (CORE_ADDR pc)
3127 {
3128 struct obj_section *osect, *best_match = NULL;
3129
3130 if (overlay_debugging)
3131 {
3132 for (objfile *objfile : current_program_space->objfiles ())
3133 ALL_OBJFILE_OSECTIONS (objfile, osect)
3134 if (section_is_overlay (osect))
3135 {
3136 if (pc_in_mapped_range (pc, osect))
3137 {
3138 if (section_is_mapped (osect))
3139 return osect;
3140 else
3141 best_match = osect;
3142 }
3143 else if (pc_in_unmapped_range (pc, osect))
3144 best_match = osect;
3145 }
3146 }
3147 return best_match;
3148 }
3149
3150 /* Function: find_pc_mapped_section (PC)
3151 If PC falls into the VMA address range of an overlay section that is
3152 currently marked as MAPPED, return that section. Else return NULL. */
3153
3154 struct obj_section *
3155 find_pc_mapped_section (CORE_ADDR pc)
3156 {
3157 struct obj_section *osect;
3158
3159 if (overlay_debugging)
3160 {
3161 for (objfile *objfile : current_program_space->objfiles ())
3162 ALL_OBJFILE_OSECTIONS (objfile, osect)
3163 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3164 return osect;
3165 }
3166
3167 return NULL;
3168 }
3169
3170 /* Function: list_overlays_command
3171 Print a list of mapped sections and their PC ranges. */
3172
3173 static void
3174 list_overlays_command (const char *args, int from_tty)
3175 {
3176 int nmapped = 0;
3177 struct obj_section *osect;
3178
3179 if (overlay_debugging)
3180 {
3181 for (objfile *objfile : current_program_space->objfiles ())
3182 ALL_OBJFILE_OSECTIONS (objfile, osect)
3183 if (section_is_mapped (osect))
3184 {
3185 struct gdbarch *gdbarch = objfile->arch ();
3186 const char *name;
3187 bfd_vma lma, vma;
3188 int size;
3189
3190 vma = bfd_section_vma (osect->the_bfd_section);
3191 lma = bfd_section_lma (osect->the_bfd_section);
3192 size = bfd_section_size (osect->the_bfd_section);
3193 name = bfd_section_name (osect->the_bfd_section);
3194
3195 printf_filtered ("Section %s, loaded at ", name);
3196 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3197 puts_filtered (" - ");
3198 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3199 printf_filtered (", mapped at ");
3200 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3201 puts_filtered (" - ");
3202 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3203 puts_filtered ("\n");
3204
3205 nmapped++;
3206 }
3207 }
3208 if (nmapped == 0)
3209 printf_filtered (_("No sections are mapped.\n"));
3210 }
3211
3212 /* Function: map_overlay_command
3213 Mark the named section as mapped (ie. residing at its VMA address). */
3214
3215 static void
3216 map_overlay_command (const char *args, int from_tty)
3217 {
3218 struct obj_section *sec, *sec2;
3219
3220 if (!overlay_debugging)
3221 error (_("Overlay debugging not enabled. Use "
3222 "either the 'overlay auto' or\n"
3223 "the 'overlay manual' command."));
3224
3225 if (args == 0 || *args == 0)
3226 error (_("Argument required: name of an overlay section"));
3227
3228 /* First, find a section matching the user supplied argument. */
3229 for (objfile *obj_file : current_program_space->objfiles ())
3230 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3231 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3232 {
3233 /* Now, check to see if the section is an overlay. */
3234 if (!section_is_overlay (sec))
3235 continue; /* not an overlay section */
3236
3237 /* Mark the overlay as "mapped". */
3238 sec->ovly_mapped = 1;
3239
3240 /* Next, make a pass and unmap any sections that are
3241 overlapped by this new section: */
3242 for (objfile *objfile2 : current_program_space->objfiles ())
3243 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3244 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3245 sec2))
3246 {
3247 if (info_verbose)
3248 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3249 bfd_section_name (sec2->the_bfd_section));
3250 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3251 }
3252 return;
3253 }
3254 error (_("No overlay section called %s"), args);
3255 }
3256
3257 /* Function: unmap_overlay_command
3258 Mark the overlay section as unmapped
3259 (ie. resident in its LMA address range, rather than the VMA range). */
3260
3261 static void
3262 unmap_overlay_command (const char *args, int from_tty)
3263 {
3264 struct obj_section *sec = NULL;
3265
3266 if (!overlay_debugging)
3267 error (_("Overlay debugging not enabled. "
3268 "Use either the 'overlay auto' or\n"
3269 "the 'overlay manual' command."));
3270
3271 if (args == 0 || *args == 0)
3272 error (_("Argument required: name of an overlay section"));
3273
3274 /* First, find a section matching the user supplied argument. */
3275 for (objfile *objfile : current_program_space->objfiles ())
3276 ALL_OBJFILE_OSECTIONS (objfile, sec)
3277 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3278 {
3279 if (!sec->ovly_mapped)
3280 error (_("Section %s is not mapped"), args);
3281 sec->ovly_mapped = 0;
3282 return;
3283 }
3284 error (_("No overlay section called %s"), args);
3285 }
3286
3287 /* Function: overlay_auto_command
3288 A utility command to turn on overlay debugging.
3289 Possibly this should be done via a set/show command. */
3290
3291 static void
3292 overlay_auto_command (const char *args, int from_tty)
3293 {
3294 overlay_debugging = ovly_auto;
3295 enable_overlay_breakpoints ();
3296 if (info_verbose)
3297 printf_unfiltered (_("Automatic overlay debugging enabled."));
3298 }
3299
3300 /* Function: overlay_manual_command
3301 A utility command to turn on overlay debugging.
3302 Possibly this should be done via a set/show command. */
3303
3304 static void
3305 overlay_manual_command (const char *args, int from_tty)
3306 {
3307 overlay_debugging = ovly_on;
3308 disable_overlay_breakpoints ();
3309 if (info_verbose)
3310 printf_unfiltered (_("Overlay debugging enabled."));
3311 }
3312
3313 /* Function: overlay_off_command
3314 A utility command to turn on overlay debugging.
3315 Possibly this should be done via a set/show command. */
3316
3317 static void
3318 overlay_off_command (const char *args, int from_tty)
3319 {
3320 overlay_debugging = ovly_off;
3321 disable_overlay_breakpoints ();
3322 if (info_verbose)
3323 printf_unfiltered (_("Overlay debugging disabled."));
3324 }
3325
3326 static void
3327 overlay_load_command (const char *args, int from_tty)
3328 {
3329 struct gdbarch *gdbarch = get_current_arch ();
3330
3331 if (gdbarch_overlay_update_p (gdbarch))
3332 gdbarch_overlay_update (gdbarch, NULL);
3333 else
3334 error (_("This target does not know how to read its overlay state."));
3335 }
3336
3337 /* Command list chain containing all defined "overlay" subcommands. */
3338 static struct cmd_list_element *overlaylist;
3339
3340 /* Target Overlays for the "Simplest" overlay manager:
3341
3342 This is GDB's default target overlay layer. It works with the
3343 minimal overlay manager supplied as an example by Cygnus. The
3344 entry point is via a function pointer "gdbarch_overlay_update",
3345 so targets that use a different runtime overlay manager can
3346 substitute their own overlay_update function and take over the
3347 function pointer.
3348
3349 The overlay_update function pokes around in the target's data structures
3350 to see what overlays are mapped, and updates GDB's overlay mapping with
3351 this information.
3352
3353 In this simple implementation, the target data structures are as follows:
3354 unsigned _novlys; /# number of overlay sections #/
3355 unsigned _ovly_table[_novlys][4] = {
3356 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3357 {..., ..., ..., ...},
3358 }
3359 unsigned _novly_regions; /# number of overlay regions #/
3360 unsigned _ovly_region_table[_novly_regions][3] = {
3361 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3362 {..., ..., ...},
3363 }
3364 These functions will attempt to update GDB's mappedness state in the
3365 symbol section table, based on the target's mappedness state.
3366
3367 To do this, we keep a cached copy of the target's _ovly_table, and
3368 attempt to detect when the cached copy is invalidated. The main
3369 entry point is "simple_overlay_update(SECT), which looks up SECT in
3370 the cached table and re-reads only the entry for that section from
3371 the target (whenever possible). */
3372
3373 /* Cached, dynamically allocated copies of the target data structures: */
3374 static unsigned (*cache_ovly_table)[4] = 0;
3375 static unsigned cache_novlys = 0;
3376 static CORE_ADDR cache_ovly_table_base = 0;
3377 enum ovly_index
3378 {
3379 VMA, OSIZE, LMA, MAPPED
3380 };
3381
3382 /* Throw away the cached copy of _ovly_table. */
3383
3384 static void
3385 simple_free_overlay_table (void)
3386 {
3387 xfree (cache_ovly_table);
3388 cache_novlys = 0;
3389 cache_ovly_table = NULL;
3390 cache_ovly_table_base = 0;
3391 }
3392
3393 /* Read an array of ints of size SIZE from the target into a local buffer.
3394 Convert to host order. int LEN is number of ints. */
3395
3396 static void
3397 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3398 int len, int size, enum bfd_endian byte_order)
3399 {
3400 /* FIXME (alloca): Not safe if array is very large. */
3401 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3402 int i;
3403
3404 read_memory (memaddr, buf, len * size);
3405 for (i = 0; i < len; i++)
3406 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3407 }
3408
3409 /* Find and grab a copy of the target _ovly_table
3410 (and _novlys, which is needed for the table's size). */
3411
3412 static int
3413 simple_read_overlay_table (void)
3414 {
3415 struct bound_minimal_symbol novlys_msym;
3416 struct bound_minimal_symbol ovly_table_msym;
3417 struct gdbarch *gdbarch;
3418 int word_size;
3419 enum bfd_endian byte_order;
3420
3421 simple_free_overlay_table ();
3422 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3423 if (! novlys_msym.minsym)
3424 {
3425 error (_("Error reading inferior's overlay table: "
3426 "couldn't find `_novlys' variable\n"
3427 "in inferior. Use `overlay manual' mode."));
3428 return 0;
3429 }
3430
3431 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3432 if (! ovly_table_msym.minsym)
3433 {
3434 error (_("Error reading inferior's overlay table: couldn't find "
3435 "`_ovly_table' array\n"
3436 "in inferior. Use `overlay manual' mode."));
3437 return 0;
3438 }
3439
3440 gdbarch = ovly_table_msym.objfile->arch ();
3441 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3442 byte_order = gdbarch_byte_order (gdbarch);
3443
3444 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3445 4, byte_order);
3446 cache_ovly_table
3447 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3448 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3449 read_target_long_array (cache_ovly_table_base,
3450 (unsigned int *) cache_ovly_table,
3451 cache_novlys * 4, word_size, byte_order);
3452
3453 return 1; /* SUCCESS */
3454 }
3455
3456 /* Function: simple_overlay_update_1
3457 A helper function for simple_overlay_update. Assuming a cached copy
3458 of _ovly_table exists, look through it to find an entry whose vma,
3459 lma and size match those of OSECT. Re-read the entry and make sure
3460 it still matches OSECT (else the table may no longer be valid).
3461 Set OSECT's mapped state to match the entry. Return: 1 for
3462 success, 0 for failure. */
3463
3464 static int
3465 simple_overlay_update_1 (struct obj_section *osect)
3466 {
3467 int i;
3468 asection *bsect = osect->the_bfd_section;
3469 struct gdbarch *gdbarch = osect->objfile->arch ();
3470 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3471 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3472
3473 for (i = 0; i < cache_novlys; i++)
3474 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3475 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3476 {
3477 read_target_long_array (cache_ovly_table_base + i * word_size,
3478 (unsigned int *) cache_ovly_table[i],
3479 4, word_size, byte_order);
3480 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3481 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3482 {
3483 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3484 return 1;
3485 }
3486 else /* Warning! Warning! Target's ovly table has changed! */
3487 return 0;
3488 }
3489 return 0;
3490 }
3491
3492 /* Function: simple_overlay_update
3493 If OSECT is NULL, then update all sections' mapped state
3494 (after re-reading the entire target _ovly_table).
3495 If OSECT is non-NULL, then try to find a matching entry in the
3496 cached ovly_table and update only OSECT's mapped state.
3497 If a cached entry can't be found or the cache isn't valid, then
3498 re-read the entire cache, and go ahead and update all sections. */
3499
3500 void
3501 simple_overlay_update (struct obj_section *osect)
3502 {
3503 /* Were we given an osect to look up? NULL means do all of them. */
3504 if (osect)
3505 /* Have we got a cached copy of the target's overlay table? */
3506 if (cache_ovly_table != NULL)
3507 {
3508 /* Does its cached location match what's currently in the
3509 symtab? */
3510 struct bound_minimal_symbol minsym
3511 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3512
3513 if (minsym.minsym == NULL)
3514 error (_("Error reading inferior's overlay table: couldn't "
3515 "find `_ovly_table' array\n"
3516 "in inferior. Use `overlay manual' mode."));
3517
3518 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3519 /* Then go ahead and try to look up this single section in
3520 the cache. */
3521 if (simple_overlay_update_1 (osect))
3522 /* Found it! We're done. */
3523 return;
3524 }
3525
3526 /* Cached table no good: need to read the entire table anew.
3527 Or else we want all the sections, in which case it's actually
3528 more efficient to read the whole table in one block anyway. */
3529
3530 if (! simple_read_overlay_table ())
3531 return;
3532
3533 /* Now may as well update all sections, even if only one was requested. */
3534 for (objfile *objfile : current_program_space->objfiles ())
3535 ALL_OBJFILE_OSECTIONS (objfile, osect)
3536 if (section_is_overlay (osect))
3537 {
3538 int i;
3539 asection *bsect = osect->the_bfd_section;
3540
3541 for (i = 0; i < cache_novlys; i++)
3542 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3543 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3544 { /* obj_section matches i'th entry in ovly_table. */
3545 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3546 break; /* finished with inner for loop: break out. */
3547 }
3548 }
3549 }
3550
3551 /* Default implementation for sym_relocate. */
3552
3553 bfd_byte *
3554 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3555 bfd_byte *buf)
3556 {
3557 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3558 DWO file. */
3559 bfd *abfd = sectp->owner;
3560
3561 /* We're only interested in sections with relocation
3562 information. */
3563 if ((sectp->flags & SEC_RELOC) == 0)
3564 return NULL;
3565
3566 /* We will handle section offsets properly elsewhere, so relocate as if
3567 all sections begin at 0. */
3568 for (asection *sect : gdb_bfd_sections (abfd))
3569 {
3570 sect->output_section = sect;
3571 sect->output_offset = 0;
3572 }
3573
3574 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3575 }
3576
3577 /* Relocate the contents of a debug section SECTP in ABFD. The
3578 contents are stored in BUF if it is non-NULL, or returned in a
3579 malloc'd buffer otherwise.
3580
3581 For some platforms and debug info formats, shared libraries contain
3582 relocations against the debug sections (particularly for DWARF-2;
3583 one affected platform is PowerPC GNU/Linux, although it depends on
3584 the version of the linker in use). Also, ELF object files naturally
3585 have unresolved relocations for their debug sections. We need to apply
3586 the relocations in order to get the locations of symbols correct.
3587 Another example that may require relocation processing, is the
3588 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3589 debug section. */
3590
3591 bfd_byte *
3592 symfile_relocate_debug_section (struct objfile *objfile,
3593 asection *sectp, bfd_byte *buf)
3594 {
3595 gdb_assert (objfile->sf->sym_relocate);
3596
3597 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3598 }
3599
3600 symfile_segment_data_up
3601 get_symfile_segment_data (bfd *abfd)
3602 {
3603 const struct sym_fns *sf = find_sym_fns (abfd);
3604
3605 if (sf == NULL)
3606 return NULL;
3607
3608 return sf->sym_segments (abfd);
3609 }
3610
3611 /* Given:
3612 - DATA, containing segment addresses from the object file ABFD, and
3613 the mapping from ABFD's sections onto the segments that own them,
3614 and
3615 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3616 segment addresses reported by the target,
3617 store the appropriate offsets for each section in OFFSETS.
3618
3619 If there are fewer entries in SEGMENT_BASES than there are segments
3620 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3621
3622 If there are more entries, then ignore the extra. The target may
3623 not be able to distinguish between an empty data segment and a
3624 missing data segment; a missing text segment is less plausible. */
3625
3626 int
3627 symfile_map_offsets_to_segments (bfd *abfd,
3628 const struct symfile_segment_data *data,
3629 section_offsets &offsets,
3630 int num_segment_bases,
3631 const CORE_ADDR *segment_bases)
3632 {
3633 int i;
3634 asection *sect;
3635
3636 /* It doesn't make sense to call this function unless you have some
3637 segment base addresses. */
3638 gdb_assert (num_segment_bases > 0);
3639
3640 /* If we do not have segment mappings for the object file, we
3641 can not relocate it by segments. */
3642 gdb_assert (data != NULL);
3643 gdb_assert (data->segments.size () > 0);
3644
3645 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3646 {
3647 int which = data->segment_info[i];
3648
3649 gdb_assert (0 <= which && which <= data->segments.size ());
3650
3651 /* Don't bother computing offsets for sections that aren't
3652 loaded as part of any segment. */
3653 if (! which)
3654 continue;
3655
3656 /* Use the last SEGMENT_BASES entry as the address of any extra
3657 segments mentioned in DATA->segment_info. */
3658 if (which > num_segment_bases)
3659 which = num_segment_bases;
3660
3661 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base;
3662 }
3663
3664 return 1;
3665 }
3666
3667 static void
3668 symfile_find_segment_sections (struct objfile *objfile)
3669 {
3670 bfd *abfd = objfile->obfd;
3671 int i;
3672 asection *sect;
3673
3674 symfile_segment_data_up data
3675 = get_symfile_segment_data (objfile->obfd);
3676 if (data == NULL)
3677 return;
3678
3679 if (data->segments.size () != 1 && data->segments.size () != 2)
3680 return;
3681
3682 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3683 {
3684 int which = data->segment_info[i];
3685
3686 if (which == 1)
3687 {
3688 if (objfile->sect_index_text == -1)
3689 objfile->sect_index_text = sect->index;
3690
3691 if (objfile->sect_index_rodata == -1)
3692 objfile->sect_index_rodata = sect->index;
3693 }
3694 else if (which == 2)
3695 {
3696 if (objfile->sect_index_data == -1)
3697 objfile->sect_index_data = sect->index;
3698
3699 if (objfile->sect_index_bss == -1)
3700 objfile->sect_index_bss = sect->index;
3701 }
3702 }
3703 }
3704
3705 /* Listen for free_objfile events. */
3706
3707 static void
3708 symfile_free_objfile (struct objfile *objfile)
3709 {
3710 /* Remove the target sections owned by this objfile. */
3711 if (objfile != NULL)
3712 remove_target_sections ((void *) objfile);
3713 }
3714
3715 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3716 Expand all symtabs that match the specified criteria.
3717 See quick_symbol_functions.expand_symtabs_matching for details. */
3718
3719 void
3720 expand_symtabs_matching
3721 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3722 const lookup_name_info &lookup_name,
3723 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3724 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3725 enum search_domain kind)
3726 {
3727 for (objfile *objfile : current_program_space->objfiles ())
3728 {
3729 if (objfile->sf)
3730 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3731 &lookup_name,
3732 symbol_matcher,
3733 expansion_notify, kind);
3734 }
3735 }
3736
3737 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3738 Map function FUN over every file.
3739 See quick_symbol_functions.map_symbol_filenames for details. */
3740
3741 void
3742 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3743 int need_fullname)
3744 {
3745 for (objfile *objfile : current_program_space->objfiles ())
3746 {
3747 if (objfile->sf)
3748 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3749 need_fullname);
3750 }
3751 }
3752
3753 #if GDB_SELF_TEST
3754
3755 namespace selftests {
3756 namespace filename_language {
3757
3758 static void test_filename_language ()
3759 {
3760 /* This test messes up the filename_language_table global. */
3761 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3762
3763 /* Test deducing an unknown extension. */
3764 language lang = deduce_language_from_filename ("myfile.blah");
3765 SELF_CHECK (lang == language_unknown);
3766
3767 /* Test deducing a known extension. */
3768 lang = deduce_language_from_filename ("myfile.c");
3769 SELF_CHECK (lang == language_c);
3770
3771 /* Test adding a new extension using the internal API. */
3772 add_filename_language (".blah", language_pascal);
3773 lang = deduce_language_from_filename ("myfile.blah");
3774 SELF_CHECK (lang == language_pascal);
3775 }
3776
3777 static void
3778 test_set_ext_lang_command ()
3779 {
3780 /* This test messes up the filename_language_table global. */
3781 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3782
3783 /* Confirm that the .hello extension is not known. */
3784 language lang = deduce_language_from_filename ("cake.hello");
3785 SELF_CHECK (lang == language_unknown);
3786
3787 /* Test adding a new extension using the CLI command. */
3788 auto args_holder = make_unique_xstrdup (".hello rust");
3789 ext_args = args_holder.get ();
3790 set_ext_lang_command (NULL, 1, NULL);
3791
3792 lang = deduce_language_from_filename ("cake.hello");
3793 SELF_CHECK (lang == language_rust);
3794
3795 /* Test overriding an existing extension using the CLI command. */
3796 int size_before = filename_language_table.size ();
3797 args_holder.reset (xstrdup (".hello pascal"));
3798 ext_args = args_holder.get ();
3799 set_ext_lang_command (NULL, 1, NULL);
3800 int size_after = filename_language_table.size ();
3801
3802 lang = deduce_language_from_filename ("cake.hello");
3803 SELF_CHECK (lang == language_pascal);
3804 SELF_CHECK (size_before == size_after);
3805 }
3806
3807 } /* namespace filename_language */
3808 } /* namespace selftests */
3809
3810 #endif /* GDB_SELF_TEST */
3811
3812 void _initialize_symfile ();
3813 void
3814 _initialize_symfile ()
3815 {
3816 struct cmd_list_element *c;
3817
3818 gdb::observers::free_objfile.attach (symfile_free_objfile);
3819
3820 #define READNOW_READNEVER_HELP \
3821 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3822 immediately. This makes the command slower, but may make future operations\n\
3823 faster.\n\
3824 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3825 symbolic debug information."
3826
3827 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3828 Load symbol table from executable file FILE.\n\
3829 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3830 OFF is an optional offset which is added to each section address.\n\
3831 The `file' command can also load symbol tables, as well as setting the file\n\
3832 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3833 set_cmd_completer (c, filename_completer);
3834
3835 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3836 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3837 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3838 [-s SECT-NAME SECT-ADDR]...\n\
3839 ADDR is the starting address of the file's text.\n\
3840 Each '-s' argument provides a section name and address, and\n\
3841 should be specified if the data and bss segments are not contiguous\n\
3842 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3843 OFF is an optional offset which is added to the default load addresses\n\
3844 of all sections for which no other address was specified.\n"
3845 READNOW_READNEVER_HELP),
3846 &cmdlist);
3847 set_cmd_completer (c, filename_completer);
3848
3849 c = add_cmd ("remove-symbol-file", class_files,
3850 remove_symbol_file_command, _("\
3851 Remove a symbol file added via the add-symbol-file command.\n\
3852 Usage: remove-symbol-file FILENAME\n\
3853 remove-symbol-file -a ADDRESS\n\
3854 The file to remove can be identified by its filename or by an address\n\
3855 that lies within the boundaries of this symbol file in memory."),
3856 &cmdlist);
3857
3858 c = add_cmd ("load", class_files, load_command, _("\
3859 Dynamically load FILE into the running program.\n\
3860 FILE symbols are recorded for access from GDB.\n\
3861 Usage: load [FILE] [OFFSET]\n\
3862 An optional load OFFSET may also be given as a literal address.\n\
3863 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3864 on its own."), &cmdlist);
3865 set_cmd_completer (c, filename_completer);
3866
3867 add_basic_prefix_cmd ("overlay", class_support,
3868 _("Commands for debugging overlays."), &overlaylist,
3869 "overlay ", 0, &cmdlist);
3870
3871 add_com_alias ("ovly", "overlay", class_support, 1);
3872 add_com_alias ("ov", "overlay", class_support, 1);
3873
3874 add_cmd ("map-overlay", class_support, map_overlay_command,
3875 _("Assert that an overlay section is mapped."), &overlaylist);
3876
3877 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3878 _("Assert that an overlay section is unmapped."), &overlaylist);
3879
3880 add_cmd ("list-overlays", class_support, list_overlays_command,
3881 _("List mappings of overlay sections."), &overlaylist);
3882
3883 add_cmd ("manual", class_support, overlay_manual_command,
3884 _("Enable overlay debugging."), &overlaylist);
3885 add_cmd ("off", class_support, overlay_off_command,
3886 _("Disable overlay debugging."), &overlaylist);
3887 add_cmd ("auto", class_support, overlay_auto_command,
3888 _("Enable automatic overlay debugging."), &overlaylist);
3889 add_cmd ("load-target", class_support, overlay_load_command,
3890 _("Read the overlay mapping state from the target."), &overlaylist);
3891
3892 /* Filename extension to source language lookup table: */
3893 add_setshow_string_noescape_cmd ("extension-language", class_files,
3894 &ext_args, _("\
3895 Set mapping between filename extension and source language."), _("\
3896 Show mapping between filename extension and source language."), _("\
3897 Usage: set extension-language .foo bar"),
3898 set_ext_lang_command,
3899 show_ext_args,
3900 &setlist, &showlist);
3901
3902 add_info ("extensions", info_ext_lang_command,
3903 _("All filename extensions associated with a source language."));
3904
3905 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3906 &debug_file_directory, _("\
3907 Set the directories where separate debug symbols are searched for."), _("\
3908 Show the directories where separate debug symbols are searched for."), _("\
3909 Separate debug symbols are first searched for in the same\n\
3910 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3911 and lastly at the path of the directory of the binary with\n\
3912 each global debug-file-directory component prepended."),
3913 NULL,
3914 show_debug_file_directory,
3915 &setlist, &showlist);
3916
3917 add_setshow_enum_cmd ("symbol-loading", no_class,
3918 print_symbol_loading_enums, &print_symbol_loading,
3919 _("\
3920 Set printing of symbol loading messages."), _("\
3921 Show printing of symbol loading messages."), _("\
3922 off == turn all messages off\n\
3923 brief == print messages for the executable,\n\
3924 and brief messages for shared libraries\n\
3925 full == print messages for the executable,\n\
3926 and messages for each shared library."),
3927 NULL,
3928 NULL,
3929 &setprintlist, &showprintlist);
3930
3931 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3932 &separate_debug_file_debug, _("\
3933 Set printing of separate debug info file search debug."), _("\
3934 Show printing of separate debug info file search debug."), _("\
3935 When on, GDB prints the searched locations while looking for separate debug \
3936 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3937
3938 #if GDB_SELF_TEST
3939 selftests::register_test
3940 ("filename_language", selftests::filename_language::test_filename_language);
3941 selftests::register_test
3942 ("set_ext_lang_command",
3943 selftests::filename_language::test_set_ext_lang_command);
3944 #endif
3945 }