]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
* gdbarch.sh (target_gdbarch): Remove macro.
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
158 library symbols are not loaded, commands like "info fun" will *not*
159 report all the functions that are actually present. */
160
161 int auto_solib_add = 1;
162 \f
163
164 /* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
166 Note that the string at PTR does not have to be null terminated, I.e. it
167 may be part of a larger string and we are only saving a substring. */
168
169 char *
170 obsavestring (const char *ptr, int size, struct obstack *obstackp)
171 {
172 char *p = (char *) obstack_alloc (obstackp, size + 1);
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
175 inline memcpy? */
176 {
177 const char *p1 = ptr;
178 char *p2 = p;
179 const char *end = ptr + size;
180
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186 }
187
188 /* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
192
193 char *
194 obconcat (struct obstack *obstackp, ...)
195 {
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
212 }
213
214 /* True if we are reading a symbol table. */
215
216 int currently_reading_symtab = 0;
217
218 static void
219 decrement_reading_symtab (void *dummy)
220 {
221 currently_reading_symtab--;
222 }
223
224 /* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226 struct cleanup *
227 increment_reading_symtab (void)
228 {
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
231 }
232
233 /* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242 void
243 find_lowest_section (bfd *abfd, asection *sect, void *obj)
244 {
245 asection **lowest = (asection **) obj;
246
247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257 }
258
259 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261 struct section_addr_info *
262 alloc_section_addr_info (size_t num_sections)
263 {
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274 }
275
276 /* Build (allocate and populate) a section_addr_info struct from
277 an existing section table. */
278
279 extern struct section_addr_info *
280 build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
282 {
283 struct section_addr_info *sap;
284 const struct target_section *stp;
285 int oidx;
286
287 sap = alloc_section_addr_info (end - start);
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
291 if (bfd_get_section_flags (stp->bfd,
292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
293 && oidx < end - start)
294 {
295 sap->other[oidx].addr = stp->addr;
296 sap->other[oidx].name
297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304 }
305
306 /* Create a section_addr_info from section offsets in ABFD. */
307
308 static struct section_addr_info *
309 build_section_addr_info_from_bfd (bfd *abfd)
310 {
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
318 {
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
324 return sap;
325 }
326
327 /* Create a section_addr_info from section offsets in OBJFILE. */
328
329 struct section_addr_info *
330 build_section_addr_info_from_objfile (const struct objfile *objfile)
331 {
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346 }
347
348 /* Free all memory allocated by build_section_addr_info_from_section_table. */
349
350 extern void
351 free_section_addr_info (struct section_addr_info *sap)
352 {
353 int idx;
354
355 for (idx = 0; idx < sap->num_sections; idx++)
356 if (sap->other[idx].name)
357 xfree (sap->other[idx].name);
358 xfree (sap);
359 }
360
361
362 /* Initialize OBJFILE's sect_index_* members. */
363 static void
364 init_objfile_sect_indices (struct objfile *objfile)
365 {
366 asection *sect;
367 int i;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
370 if (sect)
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
374 if (sect)
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
378 if (sect)
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
382 if (sect)
383 objfile->sect_index_rodata = sect->index;
384
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
420 }
421
422 /* The arguments to place_section. */
423
424 struct place_section_arg
425 {
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428 };
429
430 /* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
433 static void
434 place_section (bfd *abfd, asection *sect, void *obj)
435 {
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
440
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
450 start_addr = (arg->lowest + align - 1) & -align;
451
452 do {
453 asection *cur_sec;
454
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
482 break;
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
492 }
493
494 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
497
498 void
499 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
502 {
503 int i;
504
505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
506
507 /* Now calculate offsets for section that were specified by the caller. */
508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
509 {
510 struct other_sections *osp;
511
512 osp = &addrs->other[i];
513 if (osp->sectindex == -1)
514 continue;
515
516 /* Record all sections in offsets. */
517 /* The section_offsets in the objfile are here filled in using
518 the BFD index. */
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521 }
522
523 /* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529 static const char *
530 addr_section_name (const char *s)
531 {
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538 }
539
540 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543 static int
544 addrs_section_compar (const void *ap, const void *bp)
545 {
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
548 int retval;
549
550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
551 if (retval)
552 return retval;
553
554 return a->sectindex - b->sectindex;
555 }
556
557 /* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560 static struct other_sections **
561 addrs_section_sort (struct section_addr_info *addrs)
562 {
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575 }
576
577 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
580
581 void
582 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583 {
584 asection *lower_sect;
585 CORE_ADDR lower_offset;
586 int i;
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
591
592 /* Find lowest loadable section to be used as starting point for
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
601 }
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
633
634 while (*abfd_addrs_sorted
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
669 struct other_sections *sect = addrs_to_abfd_addrs[i];
670
671 if (sect)
672 {
673 /* This is the index used by BFD. */
674 addrs->other[i].sectindex = sect->sectindex;
675
676 if (addrs->other[i].addr != 0)
677 {
678 addrs->other[i].addr -= sect->addr;
679 lower_offset = addrs->other[i].addr;
680 }
681 else
682 addrs->other[i].addr = lower_offset;
683 }
684 else
685 {
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
704 || strcmp (sect_name, ".gnu.conflict") == 0
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
716 addrs->other[i].addr = 0;
717 addrs->other[i].sectindex = -1;
718 }
719 }
720
721 do_cleanups (my_cleanup);
722 }
723
724 /* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730 void
731 default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733 {
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
740
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
805 }
806 }
807 }
808
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812 }
813
814
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
823 {
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877 }
878
879 /* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
882 OBJFILE is where the symbols are to be read from.
883
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
908
909 void
910 syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
914 int add_flags)
915 {
916 struct section_addr_info *local_addr = NULL;
917 struct cleanup *old_chain;
918 const int mainline = add_flags & SYMFILE_MAINLINE;
919
920 gdb_assert (! (addrs && offsets));
921
922 init_entry_point_info (objfile);
923 objfile->sf = find_sym_fns (objfile->obfd);
924
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
927
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 old_chain = make_cleanup_free_objfile (objfile);
931
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
936 {
937 local_addr
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
945 if (mainline)
946 {
947 /* We will modify the main symbol table, make sure that all its users
948 will be cleaned up if an error occurs during symbol reading. */
949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
956 gdb_assert (symfile_objfile == NULL);
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
963
964 (*objfile->sf->sym_new_init) (objfile);
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
969 and assume that <addr> is where that got loaded.
970
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
973 if (addrs && addrs->other[0].name)
974 addr_info_make_relative (addrs, objfile->obfd);
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
979
980 (*objfile->sf->sym_init) (objfile);
981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
982
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
993 obstack_alloc (&objfile->objfile_obstack, size));
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
998
999 (*objfile->sf->sym_read) (objfile, add_flags);
1000
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
1007 xfree (local_addr);
1008 }
1009
1010 /* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1013
1014 void
1015 new_symfile_objfile (struct objfile *objfile, int add_flags)
1016 {
1017 /* If this is the main symbol file we have to clean up all users of the
1018 old main symbol file. Otherwise it is sufficient to fixup all the
1019 breakpoints that may have been redefined by this symbol file. */
1020 if (add_flags & SYMFILE_MAINLINE)
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
1025 clear_symtab_users (add_flags);
1026 }
1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1028 {
1029 breakpoint_re_set ();
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1034 }
1035
1036 /* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1040 A new reference is acquired by this function.
1041
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1048
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
1052 Upon success, returns a pointer to the objfile that was added.
1053 Upon failure, jumps back to command level (never returns). */
1054
1055 static struct objfile *
1056 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
1061 int flags, struct objfile *parent)
1062 {
1063 struct objfile *objfile;
1064 const char *name = bfd_get_filename (abfd);
1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
1066 const int mainline = add_flags & SYMFILE_MAINLINE;
1067 const int should_print = ((from_tty || info_verbose)
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
1070
1071 if (readnow_symbol_files)
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
1076
1077 /* Give user a chance to burp if we'd be
1078 interactively wiping out any existing symbols. */
1079
1080 if ((have_full_symbols () || have_partial_symbols ())
1081 && mainline
1082 && from_tty
1083 && !query (_("Load new symbol table from \"%s\"? "), name))
1084 error (_("Not confirmed."));
1085
1086 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1087
1088 if (parent)
1089 add_separate_debug_objfile (objfile, parent);
1090
1091 /* We either created a new mapped symbol table, mapped an existing
1092 symbol table file which has not had initial symbol reading
1093 performed, or need to read an unmapped symbol table. */
1094 if (should_print)
1095 {
1096 if (deprecated_pre_add_symbol_hook)
1097 deprecated_pre_add_symbol_hook (name);
1098 else
1099 {
1100 printf_unfiltered (_("Reading symbols from %s..."), name);
1101 wrap_here ("");
1102 gdb_flush (gdb_stdout);
1103 }
1104 }
1105 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1106 add_flags);
1107
1108 /* We now have at least a partial symbol table. Check to see if the
1109 user requested that all symbols be read on initial access via either
1110 the gdb startup command line or on a per symbol file basis. Expand
1111 all partial symbol tables for this objfile if so. */
1112
1113 if ((flags & OBJF_READNOW))
1114 {
1115 if (should_print)
1116 {
1117 printf_unfiltered (_("expanding to full symbols..."));
1118 wrap_here ("");
1119 gdb_flush (gdb_stdout);
1120 }
1121
1122 if (objfile->sf)
1123 objfile->sf->qf->expand_all_symtabs (objfile);
1124 }
1125
1126 if (should_print && !objfile_has_symbols (objfile))
1127 {
1128 wrap_here ("");
1129 printf_unfiltered (_("(no debugging symbols found)..."));
1130 wrap_here ("");
1131 }
1132
1133 if (should_print)
1134 {
1135 if (deprecated_post_add_symbol_hook)
1136 deprecated_post_add_symbol_hook ();
1137 else
1138 printf_unfiltered (_("done.\n"));
1139 }
1140
1141 /* We print some messages regardless of whether 'from_tty ||
1142 info_verbose' is true, so make sure they go out at the right
1143 time. */
1144 gdb_flush (gdb_stdout);
1145
1146 if (objfile->sf == NULL)
1147 {
1148 observer_notify_new_objfile (objfile);
1149 return objfile; /* No symbols. */
1150 }
1151
1152 new_symfile_objfile (objfile, add_flags);
1153
1154 observer_notify_new_objfile (objfile);
1155
1156 bfd_cache_close_all ();
1157 return (objfile);
1158 }
1159
1160 /* Add BFD as a separate debug file for OBJFILE. */
1161
1162 void
1163 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1164 {
1165 struct objfile *new_objfile;
1166 struct section_addr_info *sap;
1167 struct cleanup *my_cleanup;
1168
1169 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1170 because sections of BFD may not match sections of OBJFILE and because
1171 vma may have been modified by tools such as prelink. */
1172 sap = build_section_addr_info_from_objfile (objfile);
1173 my_cleanup = make_cleanup_free_section_addr_info (sap);
1174
1175 new_objfile = symbol_file_add_with_addrs_or_offsets
1176 (bfd, symfile_flags,
1177 sap, NULL, 0,
1178 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1179 | OBJF_USERLOADED),
1180 objfile);
1181
1182 do_cleanups (my_cleanup);
1183 }
1184
1185 /* Process the symbol file ABFD, as either the main file or as a
1186 dynamically loaded file.
1187
1188 See symbol_file_add_with_addrs_or_offsets's comments for
1189 details. */
1190 struct objfile *
1191 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1192 struct section_addr_info *addrs,
1193 int flags, struct objfile *parent)
1194 {
1195 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1196 flags, parent);
1197 }
1198
1199
1200 /* Process a symbol file, as either the main file or as a dynamically
1201 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1202 for details. */
1203 struct objfile *
1204 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1205 int flags)
1206 {
1207 bfd *bfd = symfile_bfd_open (name);
1208 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1209 struct objfile *objf;
1210
1211 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1212 do_cleanups (cleanup);
1213 return objf;
1214 }
1215
1216
1217 /* Call symbol_file_add() with default values and update whatever is
1218 affected by the loading of a new main().
1219 Used when the file is supplied in the gdb command line
1220 and by some targets with special loading requirements.
1221 The auxiliary function, symbol_file_add_main_1(), has the flags
1222 argument for the switches that can only be specified in the symbol_file
1223 command itself. */
1224
1225 void
1226 symbol_file_add_main (char *args, int from_tty)
1227 {
1228 symbol_file_add_main_1 (args, from_tty, 0);
1229 }
1230
1231 static void
1232 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1233 {
1234 const int add_flags = (current_inferior ()->symfile_flags
1235 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1236
1237 symbol_file_add (args, add_flags, NULL, flags);
1238
1239 /* Getting new symbols may change our opinion about
1240 what is frameless. */
1241 reinit_frame_cache ();
1242
1243 if ((flags & SYMFILE_NO_READ) == 0)
1244 set_initial_language ();
1245 }
1246
1247 void
1248 symbol_file_clear (int from_tty)
1249 {
1250 if ((have_full_symbols () || have_partial_symbols ())
1251 && from_tty
1252 && (symfile_objfile
1253 ? !query (_("Discard symbol table from `%s'? "),
1254 symfile_objfile->name)
1255 : !query (_("Discard symbol table? "))))
1256 error (_("Not confirmed."));
1257
1258 /* solib descriptors may have handles to objfiles. Wipe them before their
1259 objfiles get stale by free_all_objfiles. */
1260 no_shared_libraries (NULL, from_tty);
1261
1262 free_all_objfiles ();
1263
1264 gdb_assert (symfile_objfile == NULL);
1265 if (from_tty)
1266 printf_unfiltered (_("No symbol file now.\n"));
1267 }
1268
1269 static char *
1270 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1271 {
1272 asection *sect;
1273 bfd_size_type debuglink_size;
1274 unsigned long crc32;
1275 char *contents;
1276 int crc_offset;
1277
1278 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1279
1280 if (sect == NULL)
1281 return NULL;
1282
1283 debuglink_size = bfd_section_size (objfile->obfd, sect);
1284
1285 contents = xmalloc (debuglink_size);
1286 bfd_get_section_contents (objfile->obfd, sect, contents,
1287 (file_ptr)0, (bfd_size_type)debuglink_size);
1288
1289 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1290 crc_offset = strlen (contents) + 1;
1291 crc_offset = (crc_offset + 3) & ~3;
1292
1293 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1294
1295 *crc32_out = crc32;
1296 return contents;
1297 }
1298
1299 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1300 return 1. Otherwise print a warning and return 0. ABFD seek position is
1301 not preserved. */
1302
1303 static int
1304 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1305 {
1306 unsigned long file_crc = 0;
1307
1308 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1309 {
1310 warning (_("Problem reading \"%s\" for CRC: %s"),
1311 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1312 return 0;
1313 }
1314
1315 for (;;)
1316 {
1317 gdb_byte buffer[8 * 1024];
1318 bfd_size_type count;
1319
1320 count = bfd_bread (buffer, sizeof (buffer), abfd);
1321 if (count == (bfd_size_type) -1)
1322 {
1323 warning (_("Problem reading \"%s\" for CRC: %s"),
1324 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1325 return 0;
1326 }
1327 if (count == 0)
1328 break;
1329 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1330 }
1331
1332 *file_crc_return = file_crc;
1333 return 1;
1334 }
1335
1336 static int
1337 separate_debug_file_exists (const char *name, unsigned long crc,
1338 struct objfile *parent_objfile)
1339 {
1340 unsigned long file_crc;
1341 int file_crc_p;
1342 bfd *abfd;
1343 struct stat parent_stat, abfd_stat;
1344 int verified_as_different;
1345
1346 /* Find a separate debug info file as if symbols would be present in
1347 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1348 section can contain just the basename of PARENT_OBJFILE without any
1349 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1350 the separate debug infos with the same basename can exist. */
1351
1352 if (filename_cmp (name, parent_objfile->name) == 0)
1353 return 0;
1354
1355 abfd = gdb_bfd_open_maybe_remote (name);
1356
1357 if (!abfd)
1358 return 0;
1359
1360 /* Verify symlinks were not the cause of filename_cmp name difference above.
1361
1362 Some operating systems, e.g. Windows, do not provide a meaningful
1363 st_ino; they always set it to zero. (Windows does provide a
1364 meaningful st_dev.) Do not indicate a duplicate library in that
1365 case. While there is no guarantee that a system that provides
1366 meaningful inode numbers will never set st_ino to zero, this is
1367 merely an optimization, so we do not need to worry about false
1368 negatives. */
1369
1370 if (bfd_stat (abfd, &abfd_stat) == 0
1371 && abfd_stat.st_ino != 0
1372 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1373 {
1374 if (abfd_stat.st_dev == parent_stat.st_dev
1375 && abfd_stat.st_ino == parent_stat.st_ino)
1376 {
1377 gdb_bfd_unref (abfd);
1378 return 0;
1379 }
1380 verified_as_different = 1;
1381 }
1382 else
1383 verified_as_different = 0;
1384
1385 file_crc_p = get_file_crc (abfd, &file_crc);
1386
1387 gdb_bfd_unref (abfd);
1388
1389 if (!file_crc_p)
1390 return 0;
1391
1392 if (crc != file_crc)
1393 {
1394 /* If one (or both) the files are accessed for example the via "remote:"
1395 gdbserver way it does not support the bfd_stat operation. Verify
1396 whether those two files are not the same manually. */
1397
1398 if (!verified_as_different && !parent_objfile->crc32_p)
1399 {
1400 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1401 &parent_objfile->crc32);
1402 if (!parent_objfile->crc32_p)
1403 return 0;
1404 }
1405
1406 if (verified_as_different || parent_objfile->crc32 != file_crc)
1407 warning (_("the debug information found in \"%s\""
1408 " does not match \"%s\" (CRC mismatch).\n"),
1409 name, parent_objfile->name);
1410
1411 return 0;
1412 }
1413
1414 return 1;
1415 }
1416
1417 char *debug_file_directory = NULL;
1418 static void
1419 show_debug_file_directory (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file,
1423 _("The directory where separate debug "
1424 "symbols are searched for is \"%s\".\n"),
1425 value);
1426 }
1427
1428 #if ! defined (DEBUG_SUBDIRECTORY)
1429 #define DEBUG_SUBDIRECTORY ".debug"
1430 #endif
1431
1432 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1433 where the original file resides (may not be the same as
1434 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1435 looking for. Returns the name of the debuginfo, of NULL. */
1436
1437 static char *
1438 find_separate_debug_file (const char *dir,
1439 const char *canon_dir,
1440 const char *debuglink,
1441 unsigned long crc32, struct objfile *objfile)
1442 {
1443 char *debugdir;
1444 char *debugfile;
1445 int i;
1446 VEC (char_ptr) *debugdir_vec;
1447 struct cleanup *back_to;
1448 int ix;
1449
1450 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1451 i = strlen (dir);
1452 if (canon_dir != NULL && strlen (canon_dir) > i)
1453 i = strlen (canon_dir);
1454
1455 debugfile = xmalloc (strlen (debug_file_directory) + 1
1456 + i
1457 + strlen (DEBUG_SUBDIRECTORY)
1458 + strlen ("/")
1459 + strlen (debuglink)
1460 + 1);
1461
1462 /* First try in the same directory as the original file. */
1463 strcpy (debugfile, dir);
1464 strcat (debugfile, debuglink);
1465
1466 if (separate_debug_file_exists (debugfile, crc32, objfile))
1467 return debugfile;
1468
1469 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1470 strcpy (debugfile, dir);
1471 strcat (debugfile, DEBUG_SUBDIRECTORY);
1472 strcat (debugfile, "/");
1473 strcat (debugfile, debuglink);
1474
1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1476 return debugfile;
1477
1478 /* Then try in the global debugfile directories.
1479
1480 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1481 cause "/..." lookups. */
1482
1483 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1484 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1485
1486 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1487 {
1488 strcpy (debugfile, debugdir);
1489 strcat (debugfile, "/");
1490 strcat (debugfile, dir);
1491 strcat (debugfile, debuglink);
1492
1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1494 return debugfile;
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
1500 strlen (gdb_sysroot)) == 0
1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1502 {
1503 strcpy (debugfile, debugdir);
1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1505 strcat (debugfile, "/");
1506 strcat (debugfile, debuglink);
1507
1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
1509 return debugfile;
1510 }
1511 }
1512
1513 do_cleanups (back_to);
1514 xfree (debugfile);
1515 return NULL;
1516 }
1517
1518 /* Modify PATH to contain only "directory/" part of PATH.
1519 If there were no directory separators in PATH, PATH will be empty
1520 string on return. */
1521
1522 static void
1523 terminate_after_last_dir_separator (char *path)
1524 {
1525 int i;
1526
1527 /* Strip off the final filename part, leaving the directory name,
1528 followed by a slash. The directory can be relative or absolute. */
1529 for (i = strlen(path) - 1; i >= 0; i--)
1530 if (IS_DIR_SEPARATOR (path[i]))
1531 break;
1532
1533 /* If I is -1 then no directory is present there and DIR will be "". */
1534 path[i + 1] = '\0';
1535 }
1536
1537 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1538 Returns pathname, or NULL. */
1539
1540 char *
1541 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1542 {
1543 char *debuglink;
1544 char *dir, *canon_dir;
1545 char *debugfile;
1546 unsigned long crc32;
1547 struct cleanup *cleanups;
1548
1549 debuglink = get_debug_link_info (objfile, &crc32);
1550
1551 if (debuglink == NULL)
1552 {
1553 /* There's no separate debug info, hence there's no way we could
1554 load it => no warning. */
1555 return NULL;
1556 }
1557
1558 cleanups = make_cleanup (xfree, debuglink);
1559 dir = xstrdup (objfile->name);
1560 make_cleanup (xfree, dir);
1561 terminate_after_last_dir_separator (dir);
1562 canon_dir = lrealpath (dir);
1563
1564 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1565 crc32, objfile);
1566 xfree (canon_dir);
1567
1568 if (debugfile == NULL)
1569 {
1570 #ifdef HAVE_LSTAT
1571 /* For PR gdb/9538, try again with realpath (if different from the
1572 original). */
1573
1574 struct stat st_buf;
1575
1576 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1577 {
1578 char *symlink_dir;
1579
1580 symlink_dir = lrealpath (objfile->name);
1581 if (symlink_dir != NULL)
1582 {
1583 make_cleanup (xfree, symlink_dir);
1584 terminate_after_last_dir_separator (symlink_dir);
1585 if (strcmp (dir, symlink_dir) != 0)
1586 {
1587 /* Different directory, so try using it. */
1588 debugfile = find_separate_debug_file (symlink_dir,
1589 symlink_dir,
1590 debuglink,
1591 crc32,
1592 objfile);
1593 }
1594 }
1595 }
1596 #endif /* HAVE_LSTAT */
1597 }
1598
1599 do_cleanups (cleanups);
1600 return debugfile;
1601 }
1602
1603
1604 /* This is the symbol-file command. Read the file, analyze its
1605 symbols, and add a struct symtab to a symtab list. The syntax of
1606 the command is rather bizarre:
1607
1608 1. The function buildargv implements various quoting conventions
1609 which are undocumented and have little or nothing in common with
1610 the way things are quoted (or not quoted) elsewhere in GDB.
1611
1612 2. Options are used, which are not generally used in GDB (perhaps
1613 "set mapped on", "set readnow on" would be better)
1614
1615 3. The order of options matters, which is contrary to GNU
1616 conventions (because it is confusing and inconvenient). */
1617
1618 void
1619 symbol_file_command (char *args, int from_tty)
1620 {
1621 dont_repeat ();
1622
1623 if (args == NULL)
1624 {
1625 symbol_file_clear (from_tty);
1626 }
1627 else
1628 {
1629 char **argv = gdb_buildargv (args);
1630 int flags = OBJF_USERLOADED;
1631 struct cleanup *cleanups;
1632 char *name = NULL;
1633
1634 cleanups = make_cleanup_freeargv (argv);
1635 while (*argv != NULL)
1636 {
1637 if (strcmp (*argv, "-readnow") == 0)
1638 flags |= OBJF_READNOW;
1639 else if (**argv == '-')
1640 error (_("unknown option `%s'"), *argv);
1641 else
1642 {
1643 symbol_file_add_main_1 (*argv, from_tty, flags);
1644 name = *argv;
1645 }
1646
1647 argv++;
1648 }
1649
1650 if (name == NULL)
1651 error (_("no symbol file name was specified"));
1652
1653 do_cleanups (cleanups);
1654 }
1655 }
1656
1657 /* Set the initial language.
1658
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
1667
1668 void
1669 set_initial_language (void)
1670 {
1671 enum language lang = language_unknown;
1672
1673 if (language_of_main != language_unknown)
1674 lang = language_of_main;
1675 else
1676 {
1677 const char *filename;
1678
1679 filename = find_main_filename ();
1680 if (filename != NULL)
1681 lang = deduce_language_from_filename (filename);
1682 }
1683
1684 if (lang == language_unknown)
1685 {
1686 /* Make C the default language */
1687 lang = language_c;
1688 }
1689
1690 set_language (lang);
1691 expected_language = current_language; /* Don't warn the user. */
1692 }
1693
1694 /* If NAME is a remote name open the file using remote protocol, otherwise
1695 open it normally. Returns a new reference to the BFD. On error,
1696 returns NULL with the BFD error set. */
1697
1698 bfd *
1699 gdb_bfd_open_maybe_remote (const char *name)
1700 {
1701 bfd *result;
1702
1703 if (remote_filename_p (name))
1704 result = remote_bfd_open (name, gnutarget);
1705 else
1706 result = gdb_bfd_open (name, gnutarget, -1);
1707
1708 return result;
1709 }
1710
1711
1712 /* Open the file specified by NAME and hand it off to BFD for
1713 preliminary analysis. Return a newly initialized bfd *, which
1714 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1715 absolute). In case of trouble, error() is called. */
1716
1717 bfd *
1718 symfile_bfd_open (char *name)
1719 {
1720 bfd *sym_bfd;
1721 int desc;
1722 char *absolute_name;
1723
1724 if (remote_filename_p (name))
1725 {
1726 sym_bfd = remote_bfd_open (name, gnutarget);
1727 if (!sym_bfd)
1728 error (_("`%s': can't open to read symbols: %s."), name,
1729 bfd_errmsg (bfd_get_error ()));
1730
1731 if (!bfd_check_format (sym_bfd, bfd_object))
1732 {
1733 make_cleanup_bfd_unref (sym_bfd);
1734 error (_("`%s': can't read symbols: %s."), name,
1735 bfd_errmsg (bfd_get_error ()));
1736 }
1737
1738 return sym_bfd;
1739 }
1740
1741 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1742
1743 /* Look down path for it, allocate 2nd new malloc'd copy. */
1744 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1745 O_RDONLY | O_BINARY, &absolute_name);
1746 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1747 if (desc < 0)
1748 {
1749 char *exename = alloca (strlen (name) + 5);
1750
1751 strcat (strcpy (exename, name), ".exe");
1752 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1753 O_RDONLY | O_BINARY, &absolute_name);
1754 }
1755 #endif
1756 if (desc < 0)
1757 {
1758 make_cleanup (xfree, name);
1759 perror_with_name (name);
1760 }
1761
1762 xfree (name);
1763 name = absolute_name;
1764 make_cleanup (xfree, name);
1765
1766 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1767 if (!sym_bfd)
1768 {
1769 make_cleanup (xfree, name);
1770 error (_("`%s': can't open to read symbols: %s."), name,
1771 bfd_errmsg (bfd_get_error ()));
1772 }
1773 bfd_set_cacheable (sym_bfd, 1);
1774
1775 if (!bfd_check_format (sym_bfd, bfd_object))
1776 {
1777 make_cleanup_bfd_unref (sym_bfd);
1778 error (_("`%s': can't read symbols: %s."), name,
1779 bfd_errmsg (bfd_get_error ()));
1780 }
1781
1782 return sym_bfd;
1783 }
1784
1785 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1786 the section was not found. */
1787
1788 int
1789 get_section_index (struct objfile *objfile, char *section_name)
1790 {
1791 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1792
1793 if (sect)
1794 return sect->index;
1795 else
1796 return -1;
1797 }
1798
1799 /* Link SF into the global symtab_fns list. Called on startup by the
1800 _initialize routine in each object file format reader, to register
1801 information about each format the reader is prepared to handle. */
1802
1803 void
1804 add_symtab_fns (const struct sym_fns *sf)
1805 {
1806 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1807 }
1808
1809 /* Initialize OBJFILE to read symbols from its associated BFD. It
1810 either returns or calls error(). The result is an initialized
1811 struct sym_fns in the objfile structure, that contains cached
1812 information about the symbol file. */
1813
1814 static const struct sym_fns *
1815 find_sym_fns (bfd *abfd)
1816 {
1817 const struct sym_fns *sf;
1818 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1819 int i;
1820
1821 if (our_flavour == bfd_target_srec_flavour
1822 || our_flavour == bfd_target_ihex_flavour
1823 || our_flavour == bfd_target_tekhex_flavour)
1824 return NULL; /* No symbols. */
1825
1826 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1827 if (our_flavour == sf->sym_flavour)
1828 return sf;
1829
1830 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1831 bfd_get_target (abfd));
1832 }
1833 \f
1834
1835 /* This function runs the load command of our current target. */
1836
1837 static void
1838 load_command (char *arg, int from_tty)
1839 {
1840 dont_repeat ();
1841
1842 /* The user might be reloading because the binary has changed. Take
1843 this opportunity to check. */
1844 reopen_exec_file ();
1845 reread_symbols ();
1846
1847 if (arg == NULL)
1848 {
1849 char *parg;
1850 int count = 0;
1851
1852 parg = arg = get_exec_file (1);
1853
1854 /* Count how many \ " ' tab space there are in the name. */
1855 while ((parg = strpbrk (parg, "\\\"'\t ")))
1856 {
1857 parg++;
1858 count++;
1859 }
1860
1861 if (count)
1862 {
1863 /* We need to quote this string so buildargv can pull it apart. */
1864 char *temp = xmalloc (strlen (arg) + count + 1 );
1865 char *ptemp = temp;
1866 char *prev;
1867
1868 make_cleanup (xfree, temp);
1869
1870 prev = parg = arg;
1871 while ((parg = strpbrk (parg, "\\\"'\t ")))
1872 {
1873 strncpy (ptemp, prev, parg - prev);
1874 ptemp += parg - prev;
1875 prev = parg++;
1876 *ptemp++ = '\\';
1877 }
1878 strcpy (ptemp, prev);
1879
1880 arg = temp;
1881 }
1882 }
1883
1884 target_load (arg, from_tty);
1885
1886 /* After re-loading the executable, we don't really know which
1887 overlays are mapped any more. */
1888 overlay_cache_invalid = 1;
1889 }
1890
1891 /* This version of "load" should be usable for any target. Currently
1892 it is just used for remote targets, not inftarg.c or core files,
1893 on the theory that only in that case is it useful.
1894
1895 Avoiding xmodem and the like seems like a win (a) because we don't have
1896 to worry about finding it, and (b) On VMS, fork() is very slow and so
1897 we don't want to run a subprocess. On the other hand, I'm not sure how
1898 performance compares. */
1899
1900 static int validate_download = 0;
1901
1902 /* Callback service function for generic_load (bfd_map_over_sections). */
1903
1904 static void
1905 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1906 {
1907 bfd_size_type *sum = data;
1908
1909 *sum += bfd_get_section_size (asec);
1910 }
1911
1912 /* Opaque data for load_section_callback. */
1913 struct load_section_data {
1914 unsigned long load_offset;
1915 struct load_progress_data *progress_data;
1916 VEC(memory_write_request_s) *requests;
1917 };
1918
1919 /* Opaque data for load_progress. */
1920 struct load_progress_data {
1921 /* Cumulative data. */
1922 unsigned long write_count;
1923 unsigned long data_count;
1924 bfd_size_type total_size;
1925 };
1926
1927 /* Opaque data for load_progress for a single section. */
1928 struct load_progress_section_data {
1929 struct load_progress_data *cumulative;
1930
1931 /* Per-section data. */
1932 const char *section_name;
1933 ULONGEST section_sent;
1934 ULONGEST section_size;
1935 CORE_ADDR lma;
1936 gdb_byte *buffer;
1937 };
1938
1939 /* Target write callback routine for progress reporting. */
1940
1941 static void
1942 load_progress (ULONGEST bytes, void *untyped_arg)
1943 {
1944 struct load_progress_section_data *args = untyped_arg;
1945 struct load_progress_data *totals;
1946
1947 if (args == NULL)
1948 /* Writing padding data. No easy way to get at the cumulative
1949 stats, so just ignore this. */
1950 return;
1951
1952 totals = args->cumulative;
1953
1954 if (bytes == 0 && args->section_sent == 0)
1955 {
1956 /* The write is just starting. Let the user know we've started
1957 this section. */
1958 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1959 args->section_name, hex_string (args->section_size),
1960 paddress (target_gdbarch (), args->lma));
1961 return;
1962 }
1963
1964 if (validate_download)
1965 {
1966 /* Broken memories and broken monitors manifest themselves here
1967 when bring new computers to life. This doubles already slow
1968 downloads. */
1969 /* NOTE: cagney/1999-10-18: A more efficient implementation
1970 might add a verify_memory() method to the target vector and
1971 then use that. remote.c could implement that method using
1972 the ``qCRC'' packet. */
1973 gdb_byte *check = xmalloc (bytes);
1974 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1975
1976 if (target_read_memory (args->lma, check, bytes) != 0)
1977 error (_("Download verify read failed at %s"),
1978 paddress (target_gdbarch (), args->lma));
1979 if (memcmp (args->buffer, check, bytes) != 0)
1980 error (_("Download verify compare failed at %s"),
1981 paddress (target_gdbarch (), args->lma));
1982 do_cleanups (verify_cleanups);
1983 }
1984 totals->data_count += bytes;
1985 args->lma += bytes;
1986 args->buffer += bytes;
1987 totals->write_count += 1;
1988 args->section_sent += bytes;
1989 if (check_quit_flag ()
1990 || (deprecated_ui_load_progress_hook != NULL
1991 && deprecated_ui_load_progress_hook (args->section_name,
1992 args->section_sent)))
1993 error (_("Canceled the download"));
1994
1995 if (deprecated_show_load_progress != NULL)
1996 deprecated_show_load_progress (args->section_name,
1997 args->section_sent,
1998 args->section_size,
1999 totals->data_count,
2000 totals->total_size);
2001 }
2002
2003 /* Callback service function for generic_load (bfd_map_over_sections). */
2004
2005 static void
2006 load_section_callback (bfd *abfd, asection *asec, void *data)
2007 {
2008 struct memory_write_request *new_request;
2009 struct load_section_data *args = data;
2010 struct load_progress_section_data *section_data;
2011 bfd_size_type size = bfd_get_section_size (asec);
2012 gdb_byte *buffer;
2013 const char *sect_name = bfd_get_section_name (abfd, asec);
2014
2015 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2016 return;
2017
2018 if (size == 0)
2019 return;
2020
2021 new_request = VEC_safe_push (memory_write_request_s,
2022 args->requests, NULL);
2023 memset (new_request, 0, sizeof (struct memory_write_request));
2024 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2025 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2026 new_request->end = new_request->begin + size; /* FIXME Should size
2027 be in instead? */
2028 new_request->data = xmalloc (size);
2029 new_request->baton = section_data;
2030
2031 buffer = new_request->data;
2032
2033 section_data->cumulative = args->progress_data;
2034 section_data->section_name = sect_name;
2035 section_data->section_size = size;
2036 section_data->lma = new_request->begin;
2037 section_data->buffer = buffer;
2038
2039 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2040 }
2041
2042 /* Clean up an entire memory request vector, including load
2043 data and progress records. */
2044
2045 static void
2046 clear_memory_write_data (void *arg)
2047 {
2048 VEC(memory_write_request_s) **vec_p = arg;
2049 VEC(memory_write_request_s) *vec = *vec_p;
2050 int i;
2051 struct memory_write_request *mr;
2052
2053 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2054 {
2055 xfree (mr->data);
2056 xfree (mr->baton);
2057 }
2058 VEC_free (memory_write_request_s, vec);
2059 }
2060
2061 void
2062 generic_load (char *args, int from_tty)
2063 {
2064 bfd *loadfile_bfd;
2065 struct timeval start_time, end_time;
2066 char *filename;
2067 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2068 struct load_section_data cbdata;
2069 struct load_progress_data total_progress;
2070 struct ui_out *uiout = current_uiout;
2071
2072 CORE_ADDR entry;
2073 char **argv;
2074
2075 memset (&cbdata, 0, sizeof (cbdata));
2076 memset (&total_progress, 0, sizeof (total_progress));
2077 cbdata.progress_data = &total_progress;
2078
2079 make_cleanup (clear_memory_write_data, &cbdata.requests);
2080
2081 if (args == NULL)
2082 error_no_arg (_("file to load"));
2083
2084 argv = gdb_buildargv (args);
2085 make_cleanup_freeargv (argv);
2086
2087 filename = tilde_expand (argv[0]);
2088 make_cleanup (xfree, filename);
2089
2090 if (argv[1] != NULL)
2091 {
2092 char *endptr;
2093
2094 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2095
2096 /* If the last word was not a valid number then
2097 treat it as a file name with spaces in. */
2098 if (argv[1] == endptr)
2099 error (_("Invalid download offset:%s."), argv[1]);
2100
2101 if (argv[2] != NULL)
2102 error (_("Too many parameters."));
2103 }
2104
2105 /* Open the file for loading. */
2106 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2107 if (loadfile_bfd == NULL)
2108 {
2109 perror_with_name (filename);
2110 return;
2111 }
2112
2113 make_cleanup_bfd_unref (loadfile_bfd);
2114
2115 if (!bfd_check_format (loadfile_bfd, bfd_object))
2116 {
2117 error (_("\"%s\" is not an object file: %s"), filename,
2118 bfd_errmsg (bfd_get_error ()));
2119 }
2120
2121 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2122 (void *) &total_progress.total_size);
2123
2124 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2125
2126 gettimeofday (&start_time, NULL);
2127
2128 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2129 load_progress) != 0)
2130 error (_("Load failed"));
2131
2132 gettimeofday (&end_time, NULL);
2133
2134 entry = bfd_get_start_address (loadfile_bfd);
2135 ui_out_text (uiout, "Start address ");
2136 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2137 ui_out_text (uiout, ", load size ");
2138 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2139 ui_out_text (uiout, "\n");
2140 /* We were doing this in remote-mips.c, I suspect it is right
2141 for other targets too. */
2142 regcache_write_pc (get_current_regcache (), entry);
2143
2144 /* Reset breakpoints, now that we have changed the load image. For
2145 instance, breakpoints may have been set (or reset, by
2146 post_create_inferior) while connected to the target but before we
2147 loaded the program. In that case, the prologue analyzer could
2148 have read instructions from the target to find the right
2149 breakpoint locations. Loading has changed the contents of that
2150 memory. */
2151
2152 breakpoint_re_set ();
2153
2154 /* FIXME: are we supposed to call symbol_file_add or not? According
2155 to a comment from remote-mips.c (where a call to symbol_file_add
2156 was commented out), making the call confuses GDB if more than one
2157 file is loaded in. Some targets do (e.g., remote-vx.c) but
2158 others don't (or didn't - perhaps they have all been deleted). */
2159
2160 print_transfer_performance (gdb_stdout, total_progress.data_count,
2161 total_progress.write_count,
2162 &start_time, &end_time);
2163
2164 do_cleanups (old_cleanups);
2165 }
2166
2167 /* Report how fast the transfer went. */
2168
2169 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2170 replaced by print_transfer_performance (with a very different
2171 function signature). */
2172
2173 void
2174 report_transfer_performance (unsigned long data_count, time_t start_time,
2175 time_t end_time)
2176 {
2177 struct timeval start, end;
2178
2179 start.tv_sec = start_time;
2180 start.tv_usec = 0;
2181 end.tv_sec = end_time;
2182 end.tv_usec = 0;
2183
2184 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2185 }
2186
2187 void
2188 print_transfer_performance (struct ui_file *stream,
2189 unsigned long data_count,
2190 unsigned long write_count,
2191 const struct timeval *start_time,
2192 const struct timeval *end_time)
2193 {
2194 ULONGEST time_count;
2195 struct ui_out *uiout = current_uiout;
2196
2197 /* Compute the elapsed time in milliseconds, as a tradeoff between
2198 accuracy and overflow. */
2199 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2200 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2201
2202 ui_out_text (uiout, "Transfer rate: ");
2203 if (time_count > 0)
2204 {
2205 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2206
2207 if (ui_out_is_mi_like_p (uiout))
2208 {
2209 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2210 ui_out_text (uiout, " bits/sec");
2211 }
2212 else if (rate < 1024)
2213 {
2214 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2215 ui_out_text (uiout, " bytes/sec");
2216 }
2217 else
2218 {
2219 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2220 ui_out_text (uiout, " KB/sec");
2221 }
2222 }
2223 else
2224 {
2225 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2226 ui_out_text (uiout, " bits in <1 sec");
2227 }
2228 if (write_count > 0)
2229 {
2230 ui_out_text (uiout, ", ");
2231 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2232 ui_out_text (uiout, " bytes/write");
2233 }
2234 ui_out_text (uiout, ".\n");
2235 }
2236
2237 /* This function allows the addition of incrementally linked object files.
2238 It does not modify any state in the target, only in the debugger. */
2239 /* Note: ezannoni 2000-04-13 This function/command used to have a
2240 special case syntax for the rombug target (Rombug is the boot
2241 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2242 rombug case, the user doesn't need to supply a text address,
2243 instead a call to target_link() (in target.c) would supply the
2244 value to use. We are now discontinuing this type of ad hoc syntax. */
2245
2246 static void
2247 add_symbol_file_command (char *args, int from_tty)
2248 {
2249 struct gdbarch *gdbarch = get_current_arch ();
2250 char *filename = NULL;
2251 int flags = OBJF_USERLOADED;
2252 char *arg;
2253 int section_index = 0;
2254 int argcnt = 0;
2255 int sec_num = 0;
2256 int i;
2257 int expecting_sec_name = 0;
2258 int expecting_sec_addr = 0;
2259 char **argv;
2260
2261 struct sect_opt
2262 {
2263 char *name;
2264 char *value;
2265 };
2266
2267 struct section_addr_info *section_addrs;
2268 struct sect_opt *sect_opts = NULL;
2269 size_t num_sect_opts = 0;
2270 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2271
2272 num_sect_opts = 16;
2273 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2274 * sizeof (struct sect_opt));
2275
2276 dont_repeat ();
2277
2278 if (args == NULL)
2279 error (_("add-symbol-file takes a file name and an address"));
2280
2281 argv = gdb_buildargv (args);
2282 make_cleanup_freeargv (argv);
2283
2284 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2285 {
2286 /* Process the argument. */
2287 if (argcnt == 0)
2288 {
2289 /* The first argument is the file name. */
2290 filename = tilde_expand (arg);
2291 make_cleanup (xfree, filename);
2292 }
2293 else
2294 if (argcnt == 1)
2295 {
2296 /* The second argument is always the text address at which
2297 to load the program. */
2298 sect_opts[section_index].name = ".text";
2299 sect_opts[section_index].value = arg;
2300 if (++section_index >= num_sect_opts)
2301 {
2302 num_sect_opts *= 2;
2303 sect_opts = ((struct sect_opt *)
2304 xrealloc (sect_opts,
2305 num_sect_opts
2306 * sizeof (struct sect_opt)));
2307 }
2308 }
2309 else
2310 {
2311 /* It's an option (starting with '-') or it's an argument
2312 to an option. */
2313
2314 if (*arg == '-')
2315 {
2316 if (strcmp (arg, "-readnow") == 0)
2317 flags |= OBJF_READNOW;
2318 else if (strcmp (arg, "-s") == 0)
2319 {
2320 expecting_sec_name = 1;
2321 expecting_sec_addr = 1;
2322 }
2323 }
2324 else
2325 {
2326 if (expecting_sec_name)
2327 {
2328 sect_opts[section_index].name = arg;
2329 expecting_sec_name = 0;
2330 }
2331 else
2332 if (expecting_sec_addr)
2333 {
2334 sect_opts[section_index].value = arg;
2335 expecting_sec_addr = 0;
2336 if (++section_index >= num_sect_opts)
2337 {
2338 num_sect_opts *= 2;
2339 sect_opts = ((struct sect_opt *)
2340 xrealloc (sect_opts,
2341 num_sect_opts
2342 * sizeof (struct sect_opt)));
2343 }
2344 }
2345 else
2346 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2347 " [-readnow] [-s <secname> <addr>]*"));
2348 }
2349 }
2350 }
2351
2352 /* This command takes at least two arguments. The first one is a
2353 filename, and the second is the address where this file has been
2354 loaded. Abort now if this address hasn't been provided by the
2355 user. */
2356 if (section_index < 1)
2357 error (_("The address where %s has been loaded is missing"), filename);
2358
2359 /* Print the prompt for the query below. And save the arguments into
2360 a sect_addr_info structure to be passed around to other
2361 functions. We have to split this up into separate print
2362 statements because hex_string returns a local static
2363 string. */
2364
2365 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2366 section_addrs = alloc_section_addr_info (section_index);
2367 make_cleanup (xfree, section_addrs);
2368 for (i = 0; i < section_index; i++)
2369 {
2370 CORE_ADDR addr;
2371 char *val = sect_opts[i].value;
2372 char *sec = sect_opts[i].name;
2373
2374 addr = parse_and_eval_address (val);
2375
2376 /* Here we store the section offsets in the order they were
2377 entered on the command line. */
2378 section_addrs->other[sec_num].name = sec;
2379 section_addrs->other[sec_num].addr = addr;
2380 printf_unfiltered ("\t%s_addr = %s\n", sec,
2381 paddress (gdbarch, addr));
2382 sec_num++;
2383
2384 /* The object's sections are initialized when a
2385 call is made to build_objfile_section_table (objfile).
2386 This happens in reread_symbols.
2387 At this point, we don't know what file type this is,
2388 so we can't determine what section names are valid. */
2389 }
2390
2391 if (from_tty && (!query ("%s", "")))
2392 error (_("Not confirmed."));
2393
2394 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2395 section_addrs, flags);
2396
2397 /* Getting new symbols may change our opinion about what is
2398 frameless. */
2399 reinit_frame_cache ();
2400 do_cleanups (my_cleanups);
2401 }
2402 \f
2403
2404 typedef struct objfile *objfilep;
2405
2406 DEF_VEC_P (objfilep);
2407
2408 /* Re-read symbols if a symbol-file has changed. */
2409 void
2410 reread_symbols (void)
2411 {
2412 struct objfile *objfile;
2413 long new_modtime;
2414 struct stat new_statbuf;
2415 int res;
2416 VEC (objfilep) *new_objfiles = NULL;
2417 struct cleanup *all_cleanups;
2418
2419 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2420
2421 /* With the addition of shared libraries, this should be modified,
2422 the load time should be saved in the partial symbol tables, since
2423 different tables may come from different source files. FIXME.
2424 This routine should then walk down each partial symbol table
2425 and see if the symbol table that it originates from has been changed. */
2426
2427 for (objfile = object_files; objfile; objfile = objfile->next)
2428 {
2429 /* solib-sunos.c creates one objfile with obfd. */
2430 if (objfile->obfd == NULL)
2431 continue;
2432
2433 /* Separate debug objfiles are handled in the main objfile. */
2434 if (objfile->separate_debug_objfile_backlink)
2435 continue;
2436
2437 /* If this object is from an archive (what you usually create with
2438 `ar', often called a `static library' on most systems, though
2439 a `shared library' on AIX is also an archive), then you should
2440 stat on the archive name, not member name. */
2441 if (objfile->obfd->my_archive)
2442 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2443 else
2444 res = stat (objfile->name, &new_statbuf);
2445 if (res != 0)
2446 {
2447 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2448 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2449 objfile->name);
2450 continue;
2451 }
2452 new_modtime = new_statbuf.st_mtime;
2453 if (new_modtime != objfile->mtime)
2454 {
2455 struct cleanup *old_cleanups;
2456 struct section_offsets *offsets;
2457 int num_offsets;
2458 char *obfd_filename;
2459
2460 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2461 objfile->name);
2462
2463 /* There are various functions like symbol_file_add,
2464 symfile_bfd_open, syms_from_objfile, etc., which might
2465 appear to do what we want. But they have various other
2466 effects which we *don't* want. So we just do stuff
2467 ourselves. We don't worry about mapped files (for one thing,
2468 any mapped file will be out of date). */
2469
2470 /* If we get an error, blow away this objfile (not sure if
2471 that is the correct response for things like shared
2472 libraries). */
2473 old_cleanups = make_cleanup_free_objfile (objfile);
2474 /* We need to do this whenever any symbols go away. */
2475 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2476
2477 if (exec_bfd != NULL
2478 && filename_cmp (bfd_get_filename (objfile->obfd),
2479 bfd_get_filename (exec_bfd)) == 0)
2480 {
2481 /* Reload EXEC_BFD without asking anything. */
2482
2483 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2484 }
2485
2486 /* Keep the calls order approx. the same as in free_objfile. */
2487
2488 /* Free the separate debug objfiles. It will be
2489 automatically recreated by sym_read. */
2490 free_objfile_separate_debug (objfile);
2491
2492 /* Remove any references to this objfile in the global
2493 value lists. */
2494 preserve_values (objfile);
2495
2496 /* Nuke all the state that we will re-read. Much of the following
2497 code which sets things to NULL really is necessary to tell
2498 other parts of GDB that there is nothing currently there.
2499
2500 Try to keep the freeing order compatible with free_objfile. */
2501
2502 if (objfile->sf != NULL)
2503 {
2504 (*objfile->sf->sym_finish) (objfile);
2505 }
2506
2507 clear_objfile_data (objfile);
2508
2509 /* Clean up any state BFD has sitting around. */
2510 {
2511 struct bfd *obfd = objfile->obfd;
2512
2513 obfd_filename = bfd_get_filename (objfile->obfd);
2514 /* Open the new BFD before freeing the old one, so that
2515 the filename remains live. */
2516 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2517 if (objfile->obfd == NULL)
2518 {
2519 /* We have to make a cleanup and error here, rather
2520 than erroring later, because once we unref OBFD,
2521 OBFD_FILENAME will be freed. */
2522 make_cleanup_bfd_unref (obfd);
2523 error (_("Can't open %s to read symbols."), obfd_filename);
2524 }
2525 gdb_bfd_unref (obfd);
2526 }
2527
2528 objfile->name = bfd_get_filename (objfile->obfd);
2529 /* bfd_openr sets cacheable to true, which is what we want. */
2530 if (!bfd_check_format (objfile->obfd, bfd_object))
2531 error (_("Can't read symbols from %s: %s."), objfile->name,
2532 bfd_errmsg (bfd_get_error ()));
2533
2534 /* Save the offsets, we will nuke them with the rest of the
2535 objfile_obstack. */
2536 num_offsets = objfile->num_sections;
2537 offsets = ((struct section_offsets *)
2538 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2539 memcpy (offsets, objfile->section_offsets,
2540 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2541
2542 /* FIXME: Do we have to free a whole linked list, or is this
2543 enough? */
2544 if (objfile->global_psymbols.list)
2545 xfree (objfile->global_psymbols.list);
2546 memset (&objfile->global_psymbols, 0,
2547 sizeof (objfile->global_psymbols));
2548 if (objfile->static_psymbols.list)
2549 xfree (objfile->static_psymbols.list);
2550 memset (&objfile->static_psymbols, 0,
2551 sizeof (objfile->static_psymbols));
2552
2553 /* Free the obstacks for non-reusable objfiles. */
2554 psymbol_bcache_free (objfile->psymbol_cache);
2555 objfile->psymbol_cache = psymbol_bcache_init ();
2556 if (objfile->demangled_names_hash != NULL)
2557 {
2558 htab_delete (objfile->demangled_names_hash);
2559 objfile->demangled_names_hash = NULL;
2560 }
2561 obstack_free (&objfile->objfile_obstack, 0);
2562 objfile->sections = NULL;
2563 objfile->symtabs = NULL;
2564 objfile->psymtabs = NULL;
2565 objfile->psymtabs_addrmap = NULL;
2566 objfile->free_psymtabs = NULL;
2567 objfile->template_symbols = NULL;
2568 objfile->msymbols = NULL;
2569 objfile->deprecated_sym_private = NULL;
2570 objfile->minimal_symbol_count = 0;
2571 memset (&objfile->msymbol_hash, 0,
2572 sizeof (objfile->msymbol_hash));
2573 memset (&objfile->msymbol_demangled_hash, 0,
2574 sizeof (objfile->msymbol_demangled_hash));
2575
2576 set_objfile_per_bfd (objfile);
2577
2578 /* obstack_init also initializes the obstack so it is
2579 empty. We could use obstack_specify_allocation but
2580 gdb_obstack.h specifies the alloc/dealloc functions. */
2581 obstack_init (&objfile->objfile_obstack);
2582 build_objfile_section_table (objfile);
2583 terminate_minimal_symbol_table (objfile);
2584
2585 /* We use the same section offsets as from last time. I'm not
2586 sure whether that is always correct for shared libraries. */
2587 objfile->section_offsets = (struct section_offsets *)
2588 obstack_alloc (&objfile->objfile_obstack,
2589 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2590 memcpy (objfile->section_offsets, offsets,
2591 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2592 objfile->num_sections = num_offsets;
2593
2594 /* What the hell is sym_new_init for, anyway? The concept of
2595 distinguishing between the main file and additional files
2596 in this way seems rather dubious. */
2597 if (objfile == symfile_objfile)
2598 {
2599 (*objfile->sf->sym_new_init) (objfile);
2600 }
2601
2602 (*objfile->sf->sym_init) (objfile);
2603 clear_complaints (&symfile_complaints, 1, 1);
2604 /* Do not set flags as this is safe and we don't want to be
2605 verbose. */
2606 (*objfile->sf->sym_read) (objfile, 0);
2607 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2608 {
2609 objfile->flags &= ~OBJF_PSYMTABS_READ;
2610 require_partial_symbols (objfile, 0);
2611 }
2612
2613 if (!objfile_has_symbols (objfile))
2614 {
2615 wrap_here ("");
2616 printf_unfiltered (_("(no debugging symbols found)\n"));
2617 wrap_here ("");
2618 }
2619
2620 /* We're done reading the symbol file; finish off complaints. */
2621 clear_complaints (&symfile_complaints, 0, 1);
2622
2623 /* Getting new symbols may change our opinion about what is
2624 frameless. */
2625
2626 reinit_frame_cache ();
2627
2628 /* Discard cleanups as symbol reading was successful. */
2629 discard_cleanups (old_cleanups);
2630
2631 /* If the mtime has changed between the time we set new_modtime
2632 and now, we *want* this to be out of date, so don't call stat
2633 again now. */
2634 objfile->mtime = new_modtime;
2635 init_entry_point_info (objfile);
2636
2637 VEC_safe_push (objfilep, new_objfiles, objfile);
2638 }
2639 }
2640
2641 if (new_objfiles)
2642 {
2643 int ix;
2644
2645 /* Notify objfiles that we've modified objfile sections. */
2646 objfiles_changed ();
2647
2648 clear_symtab_users (0);
2649
2650 /* clear_objfile_data for each objfile was called before freeing it and
2651 observer_notify_new_objfile (NULL) has been called by
2652 clear_symtab_users above. Notify the new files now. */
2653 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2654 observer_notify_new_objfile (objfile);
2655
2656 /* At least one objfile has changed, so we can consider that
2657 the executable we're debugging has changed too. */
2658 observer_notify_executable_changed ();
2659 }
2660
2661 do_cleanups (all_cleanups);
2662 }
2663 \f
2664
2665
2666 typedef struct
2667 {
2668 char *ext;
2669 enum language lang;
2670 }
2671 filename_language;
2672
2673 static filename_language *filename_language_table;
2674 static int fl_table_size, fl_table_next;
2675
2676 static void
2677 add_filename_language (char *ext, enum language lang)
2678 {
2679 if (fl_table_next >= fl_table_size)
2680 {
2681 fl_table_size += 10;
2682 filename_language_table =
2683 xrealloc (filename_language_table,
2684 fl_table_size * sizeof (*filename_language_table));
2685 }
2686
2687 filename_language_table[fl_table_next].ext = xstrdup (ext);
2688 filename_language_table[fl_table_next].lang = lang;
2689 fl_table_next++;
2690 }
2691
2692 static char *ext_args;
2693 static void
2694 show_ext_args (struct ui_file *file, int from_tty,
2695 struct cmd_list_element *c, const char *value)
2696 {
2697 fprintf_filtered (file,
2698 _("Mapping between filename extension "
2699 "and source language is \"%s\".\n"),
2700 value);
2701 }
2702
2703 static void
2704 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2705 {
2706 int i;
2707 char *cp = ext_args;
2708 enum language lang;
2709
2710 /* First arg is filename extension, starting with '.' */
2711 if (*cp != '.')
2712 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2713
2714 /* Find end of first arg. */
2715 while (*cp && !isspace (*cp))
2716 cp++;
2717
2718 if (*cp == '\0')
2719 error (_("'%s': two arguments required -- "
2720 "filename extension and language"),
2721 ext_args);
2722
2723 /* Null-terminate first arg. */
2724 *cp++ = '\0';
2725
2726 /* Find beginning of second arg, which should be a source language. */
2727 while (*cp && isspace (*cp))
2728 cp++;
2729
2730 if (*cp == '\0')
2731 error (_("'%s': two arguments required -- "
2732 "filename extension and language"),
2733 ext_args);
2734
2735 /* Lookup the language from among those we know. */
2736 lang = language_enum (cp);
2737
2738 /* Now lookup the filename extension: do we already know it? */
2739 for (i = 0; i < fl_table_next; i++)
2740 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2741 break;
2742
2743 if (i >= fl_table_next)
2744 {
2745 /* New file extension. */
2746 add_filename_language (ext_args, lang);
2747 }
2748 else
2749 {
2750 /* Redefining a previously known filename extension. */
2751
2752 /* if (from_tty) */
2753 /* query ("Really make files of type %s '%s'?", */
2754 /* ext_args, language_str (lang)); */
2755
2756 xfree (filename_language_table[i].ext);
2757 filename_language_table[i].ext = xstrdup (ext_args);
2758 filename_language_table[i].lang = lang;
2759 }
2760 }
2761
2762 static void
2763 info_ext_lang_command (char *args, int from_tty)
2764 {
2765 int i;
2766
2767 printf_filtered (_("Filename extensions and the languages they represent:"));
2768 printf_filtered ("\n\n");
2769 for (i = 0; i < fl_table_next; i++)
2770 printf_filtered ("\t%s\t- %s\n",
2771 filename_language_table[i].ext,
2772 language_str (filename_language_table[i].lang));
2773 }
2774
2775 static void
2776 init_filename_language_table (void)
2777 {
2778 if (fl_table_size == 0) /* Protect against repetition. */
2779 {
2780 fl_table_size = 20;
2781 fl_table_next = 0;
2782 filename_language_table =
2783 xmalloc (fl_table_size * sizeof (*filename_language_table));
2784 add_filename_language (".c", language_c);
2785 add_filename_language (".d", language_d);
2786 add_filename_language (".C", language_cplus);
2787 add_filename_language (".cc", language_cplus);
2788 add_filename_language (".cp", language_cplus);
2789 add_filename_language (".cpp", language_cplus);
2790 add_filename_language (".cxx", language_cplus);
2791 add_filename_language (".c++", language_cplus);
2792 add_filename_language (".java", language_java);
2793 add_filename_language (".class", language_java);
2794 add_filename_language (".m", language_objc);
2795 add_filename_language (".f", language_fortran);
2796 add_filename_language (".F", language_fortran);
2797 add_filename_language (".for", language_fortran);
2798 add_filename_language (".FOR", language_fortran);
2799 add_filename_language (".ftn", language_fortran);
2800 add_filename_language (".FTN", language_fortran);
2801 add_filename_language (".fpp", language_fortran);
2802 add_filename_language (".FPP", language_fortran);
2803 add_filename_language (".f90", language_fortran);
2804 add_filename_language (".F90", language_fortran);
2805 add_filename_language (".f95", language_fortran);
2806 add_filename_language (".F95", language_fortran);
2807 add_filename_language (".f03", language_fortran);
2808 add_filename_language (".F03", language_fortran);
2809 add_filename_language (".f08", language_fortran);
2810 add_filename_language (".F08", language_fortran);
2811 add_filename_language (".s", language_asm);
2812 add_filename_language (".sx", language_asm);
2813 add_filename_language (".S", language_asm);
2814 add_filename_language (".pas", language_pascal);
2815 add_filename_language (".p", language_pascal);
2816 add_filename_language (".pp", language_pascal);
2817 add_filename_language (".adb", language_ada);
2818 add_filename_language (".ads", language_ada);
2819 add_filename_language (".a", language_ada);
2820 add_filename_language (".ada", language_ada);
2821 add_filename_language (".dg", language_ada);
2822 }
2823 }
2824
2825 enum language
2826 deduce_language_from_filename (const char *filename)
2827 {
2828 int i;
2829 char *cp;
2830
2831 if (filename != NULL)
2832 if ((cp = strrchr (filename, '.')) != NULL)
2833 for (i = 0; i < fl_table_next; i++)
2834 if (strcmp (cp, filename_language_table[i].ext) == 0)
2835 return filename_language_table[i].lang;
2836
2837 return language_unknown;
2838 }
2839 \f
2840 /* allocate_symtab:
2841
2842 Allocate and partly initialize a new symbol table. Return a pointer
2843 to it. error() if no space.
2844
2845 Caller must set these fields:
2846 LINETABLE(symtab)
2847 symtab->blockvector
2848 symtab->dirname
2849 symtab->free_code
2850 symtab->free_ptr
2851 */
2852
2853 struct symtab *
2854 allocate_symtab (const char *filename, struct objfile *objfile)
2855 {
2856 struct symtab *symtab;
2857
2858 symtab = (struct symtab *)
2859 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2860 memset (symtab, 0, sizeof (*symtab));
2861 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2862 objfile->per_bfd->filename_cache);
2863 symtab->fullname = NULL;
2864 symtab->language = deduce_language_from_filename (filename);
2865 symtab->debugformat = "unknown";
2866
2867 /* Hook it to the objfile it comes from. */
2868
2869 symtab->objfile = objfile;
2870 symtab->next = objfile->symtabs;
2871 objfile->symtabs = symtab;
2872
2873 if (symtab_create_debug)
2874 {
2875 /* Be a bit clever with debugging messages, and don't print objfile
2876 every time, only when it changes. */
2877 static char *last_objfile_name = NULL;
2878
2879 if (last_objfile_name == NULL
2880 || strcmp (last_objfile_name, objfile->name) != 0)
2881 {
2882 xfree (last_objfile_name);
2883 last_objfile_name = xstrdup (objfile->name);
2884 fprintf_unfiltered (gdb_stdlog,
2885 "Creating one or more symtabs for objfile %s ...\n",
2886 last_objfile_name);
2887 }
2888 fprintf_unfiltered (gdb_stdlog,
2889 "Created symtab %s for module %s.\n",
2890 host_address_to_string (symtab), filename);
2891 }
2892
2893 return (symtab);
2894 }
2895 \f
2896
2897 /* Reset all data structures in gdb which may contain references to symbol
2898 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2899
2900 void
2901 clear_symtab_users (int add_flags)
2902 {
2903 /* Someday, we should do better than this, by only blowing away
2904 the things that really need to be blown. */
2905
2906 /* Clear the "current" symtab first, because it is no longer valid.
2907 breakpoint_re_set may try to access the current symtab. */
2908 clear_current_source_symtab_and_line ();
2909
2910 clear_displays ();
2911 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2912 breakpoint_re_set ();
2913 clear_last_displayed_sal ();
2914 clear_pc_function_cache ();
2915 observer_notify_new_objfile (NULL);
2916
2917 /* Clear globals which might have pointed into a removed objfile.
2918 FIXME: It's not clear which of these are supposed to persist
2919 between expressions and which ought to be reset each time. */
2920 expression_context_block = NULL;
2921 innermost_block = NULL;
2922
2923 /* Varobj may refer to old symbols, perform a cleanup. */
2924 varobj_invalidate ();
2925
2926 }
2927
2928 static void
2929 clear_symtab_users_cleanup (void *ignore)
2930 {
2931 clear_symtab_users (0);
2932 }
2933 \f
2934 /* OVERLAYS:
2935 The following code implements an abstraction for debugging overlay sections.
2936
2937 The target model is as follows:
2938 1) The gnu linker will permit multiple sections to be mapped into the
2939 same VMA, each with its own unique LMA (or load address).
2940 2) It is assumed that some runtime mechanism exists for mapping the
2941 sections, one by one, from the load address into the VMA address.
2942 3) This code provides a mechanism for gdb to keep track of which
2943 sections should be considered to be mapped from the VMA to the LMA.
2944 This information is used for symbol lookup, and memory read/write.
2945 For instance, if a section has been mapped then its contents
2946 should be read from the VMA, otherwise from the LMA.
2947
2948 Two levels of debugger support for overlays are available. One is
2949 "manual", in which the debugger relies on the user to tell it which
2950 overlays are currently mapped. This level of support is
2951 implemented entirely in the core debugger, and the information about
2952 whether a section is mapped is kept in the objfile->obj_section table.
2953
2954 The second level of support is "automatic", and is only available if
2955 the target-specific code provides functionality to read the target's
2956 overlay mapping table, and translate its contents for the debugger
2957 (by updating the mapped state information in the obj_section tables).
2958
2959 The interface is as follows:
2960 User commands:
2961 overlay map <name> -- tell gdb to consider this section mapped
2962 overlay unmap <name> -- tell gdb to consider this section unmapped
2963 overlay list -- list the sections that GDB thinks are mapped
2964 overlay read-target -- get the target's state of what's mapped
2965 overlay off/manual/auto -- set overlay debugging state
2966 Functional interface:
2967 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2968 section, return that section.
2969 find_pc_overlay(pc): find any overlay section that contains
2970 the pc, either in its VMA or its LMA
2971 section_is_mapped(sect): true if overlay is marked as mapped
2972 section_is_overlay(sect): true if section's VMA != LMA
2973 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2974 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2975 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2976 overlay_mapped_address(...): map an address from section's LMA to VMA
2977 overlay_unmapped_address(...): map an address from section's VMA to LMA
2978 symbol_overlayed_address(...): Return a "current" address for symbol:
2979 either in VMA or LMA depending on whether
2980 the symbol's section is currently mapped. */
2981
2982 /* Overlay debugging state: */
2983
2984 enum overlay_debugging_state overlay_debugging = ovly_off;
2985 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2986
2987 /* Function: section_is_overlay (SECTION)
2988 Returns true if SECTION has VMA not equal to LMA, ie.
2989 SECTION is loaded at an address different from where it will "run". */
2990
2991 int
2992 section_is_overlay (struct obj_section *section)
2993 {
2994 if (overlay_debugging && section)
2995 {
2996 bfd *abfd = section->objfile->obfd;
2997 asection *bfd_section = section->the_bfd_section;
2998
2999 if (bfd_section_lma (abfd, bfd_section) != 0
3000 && bfd_section_lma (abfd, bfd_section)
3001 != bfd_section_vma (abfd, bfd_section))
3002 return 1;
3003 }
3004
3005 return 0;
3006 }
3007
3008 /* Function: overlay_invalidate_all (void)
3009 Invalidate the mapped state of all overlay sections (mark it as stale). */
3010
3011 static void
3012 overlay_invalidate_all (void)
3013 {
3014 struct objfile *objfile;
3015 struct obj_section *sect;
3016
3017 ALL_OBJSECTIONS (objfile, sect)
3018 if (section_is_overlay (sect))
3019 sect->ovly_mapped = -1;
3020 }
3021
3022 /* Function: section_is_mapped (SECTION)
3023 Returns true if section is an overlay, and is currently mapped.
3024
3025 Access to the ovly_mapped flag is restricted to this function, so
3026 that we can do automatic update. If the global flag
3027 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3028 overlay_invalidate_all. If the mapped state of the particular
3029 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3030
3031 int
3032 section_is_mapped (struct obj_section *osect)
3033 {
3034 struct gdbarch *gdbarch;
3035
3036 if (osect == 0 || !section_is_overlay (osect))
3037 return 0;
3038
3039 switch (overlay_debugging)
3040 {
3041 default:
3042 case ovly_off:
3043 return 0; /* overlay debugging off */
3044 case ovly_auto: /* overlay debugging automatic */
3045 /* Unles there is a gdbarch_overlay_update function,
3046 there's really nothing useful to do here (can't really go auto). */
3047 gdbarch = get_objfile_arch (osect->objfile);
3048 if (gdbarch_overlay_update_p (gdbarch))
3049 {
3050 if (overlay_cache_invalid)
3051 {
3052 overlay_invalidate_all ();
3053 overlay_cache_invalid = 0;
3054 }
3055 if (osect->ovly_mapped == -1)
3056 gdbarch_overlay_update (gdbarch, osect);
3057 }
3058 /* fall thru to manual case */
3059 case ovly_on: /* overlay debugging manual */
3060 return osect->ovly_mapped == 1;
3061 }
3062 }
3063
3064 /* Function: pc_in_unmapped_range
3065 If PC falls into the lma range of SECTION, return true, else false. */
3066
3067 CORE_ADDR
3068 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3069 {
3070 if (section_is_overlay (section))
3071 {
3072 bfd *abfd = section->objfile->obfd;
3073 asection *bfd_section = section->the_bfd_section;
3074
3075 /* We assume the LMA is relocated by the same offset as the VMA. */
3076 bfd_vma size = bfd_get_section_size (bfd_section);
3077 CORE_ADDR offset = obj_section_offset (section);
3078
3079 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3080 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3081 return 1;
3082 }
3083
3084 return 0;
3085 }
3086
3087 /* Function: pc_in_mapped_range
3088 If PC falls into the vma range of SECTION, return true, else false. */
3089
3090 CORE_ADDR
3091 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3092 {
3093 if (section_is_overlay (section))
3094 {
3095 if (obj_section_addr (section) <= pc
3096 && pc < obj_section_endaddr (section))
3097 return 1;
3098 }
3099
3100 return 0;
3101 }
3102
3103
3104 /* Return true if the mapped ranges of sections A and B overlap, false
3105 otherwise. */
3106 static int
3107 sections_overlap (struct obj_section *a, struct obj_section *b)
3108 {
3109 CORE_ADDR a_start = obj_section_addr (a);
3110 CORE_ADDR a_end = obj_section_endaddr (a);
3111 CORE_ADDR b_start = obj_section_addr (b);
3112 CORE_ADDR b_end = obj_section_endaddr (b);
3113
3114 return (a_start < b_end && b_start < a_end);
3115 }
3116
3117 /* Function: overlay_unmapped_address (PC, SECTION)
3118 Returns the address corresponding to PC in the unmapped (load) range.
3119 May be the same as PC. */
3120
3121 CORE_ADDR
3122 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3123 {
3124 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3125 {
3126 bfd *abfd = section->objfile->obfd;
3127 asection *bfd_section = section->the_bfd_section;
3128
3129 return pc + bfd_section_lma (abfd, bfd_section)
3130 - bfd_section_vma (abfd, bfd_section);
3131 }
3132
3133 return pc;
3134 }
3135
3136 /* Function: overlay_mapped_address (PC, SECTION)
3137 Returns the address corresponding to PC in the mapped (runtime) range.
3138 May be the same as PC. */
3139
3140 CORE_ADDR
3141 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3142 {
3143 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3144 {
3145 bfd *abfd = section->objfile->obfd;
3146 asection *bfd_section = section->the_bfd_section;
3147
3148 return pc + bfd_section_vma (abfd, bfd_section)
3149 - bfd_section_lma (abfd, bfd_section);
3150 }
3151
3152 return pc;
3153 }
3154
3155
3156 /* Function: symbol_overlayed_address
3157 Return one of two addresses (relative to the VMA or to the LMA),
3158 depending on whether the section is mapped or not. */
3159
3160 CORE_ADDR
3161 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3162 {
3163 if (overlay_debugging)
3164 {
3165 /* If the symbol has no section, just return its regular address. */
3166 if (section == 0)
3167 return address;
3168 /* If the symbol's section is not an overlay, just return its
3169 address. */
3170 if (!section_is_overlay (section))
3171 return address;
3172 /* If the symbol's section is mapped, just return its address. */
3173 if (section_is_mapped (section))
3174 return address;
3175 /*
3176 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3177 * then return its LOADED address rather than its vma address!!
3178 */
3179 return overlay_unmapped_address (address, section);
3180 }
3181 return address;
3182 }
3183
3184 /* Function: find_pc_overlay (PC)
3185 Return the best-match overlay section for PC:
3186 If PC matches a mapped overlay section's VMA, return that section.
3187 Else if PC matches an unmapped section's VMA, return that section.
3188 Else if PC matches an unmapped section's LMA, return that section. */
3189
3190 struct obj_section *
3191 find_pc_overlay (CORE_ADDR pc)
3192 {
3193 struct objfile *objfile;
3194 struct obj_section *osect, *best_match = NULL;
3195
3196 if (overlay_debugging)
3197 ALL_OBJSECTIONS (objfile, osect)
3198 if (section_is_overlay (osect))
3199 {
3200 if (pc_in_mapped_range (pc, osect))
3201 {
3202 if (section_is_mapped (osect))
3203 return osect;
3204 else
3205 best_match = osect;
3206 }
3207 else if (pc_in_unmapped_range (pc, osect))
3208 best_match = osect;
3209 }
3210 return best_match;
3211 }
3212
3213 /* Function: find_pc_mapped_section (PC)
3214 If PC falls into the VMA address range of an overlay section that is
3215 currently marked as MAPPED, return that section. Else return NULL. */
3216
3217 struct obj_section *
3218 find_pc_mapped_section (CORE_ADDR pc)
3219 {
3220 struct objfile *objfile;
3221 struct obj_section *osect;
3222
3223 if (overlay_debugging)
3224 ALL_OBJSECTIONS (objfile, osect)
3225 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3226 return osect;
3227
3228 return NULL;
3229 }
3230
3231 /* Function: list_overlays_command
3232 Print a list of mapped sections and their PC ranges. */
3233
3234 void
3235 list_overlays_command (char *args, int from_tty)
3236 {
3237 int nmapped = 0;
3238 struct objfile *objfile;
3239 struct obj_section *osect;
3240
3241 if (overlay_debugging)
3242 ALL_OBJSECTIONS (objfile, osect)
3243 if (section_is_mapped (osect))
3244 {
3245 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3246 const char *name;
3247 bfd_vma lma, vma;
3248 int size;
3249
3250 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3251 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3252 size = bfd_get_section_size (osect->the_bfd_section);
3253 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3254
3255 printf_filtered ("Section %s, loaded at ", name);
3256 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3257 puts_filtered (" - ");
3258 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3259 printf_filtered (", mapped at ");
3260 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3261 puts_filtered (" - ");
3262 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3263 puts_filtered ("\n");
3264
3265 nmapped++;
3266 }
3267 if (nmapped == 0)
3268 printf_filtered (_("No sections are mapped.\n"));
3269 }
3270
3271 /* Function: map_overlay_command
3272 Mark the named section as mapped (ie. residing at its VMA address). */
3273
3274 void
3275 map_overlay_command (char *args, int from_tty)
3276 {
3277 struct objfile *objfile, *objfile2;
3278 struct obj_section *sec, *sec2;
3279
3280 if (!overlay_debugging)
3281 error (_("Overlay debugging not enabled. Use "
3282 "either the 'overlay auto' or\n"
3283 "the 'overlay manual' command."));
3284
3285 if (args == 0 || *args == 0)
3286 error (_("Argument required: name of an overlay section"));
3287
3288 /* First, find a section matching the user supplied argument. */
3289 ALL_OBJSECTIONS (objfile, sec)
3290 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3291 {
3292 /* Now, check to see if the section is an overlay. */
3293 if (!section_is_overlay (sec))
3294 continue; /* not an overlay section */
3295
3296 /* Mark the overlay as "mapped". */
3297 sec->ovly_mapped = 1;
3298
3299 /* Next, make a pass and unmap any sections that are
3300 overlapped by this new section: */
3301 ALL_OBJSECTIONS (objfile2, sec2)
3302 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3303 {
3304 if (info_verbose)
3305 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3306 bfd_section_name (objfile->obfd,
3307 sec2->the_bfd_section));
3308 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3309 }
3310 return;
3311 }
3312 error (_("No overlay section called %s"), args);
3313 }
3314
3315 /* Function: unmap_overlay_command
3316 Mark the overlay section as unmapped
3317 (ie. resident in its LMA address range, rather than the VMA range). */
3318
3319 void
3320 unmap_overlay_command (char *args, int from_tty)
3321 {
3322 struct objfile *objfile;
3323 struct obj_section *sec;
3324
3325 if (!overlay_debugging)
3326 error (_("Overlay debugging not enabled. "
3327 "Use either the 'overlay auto' or\n"
3328 "the 'overlay manual' command."));
3329
3330 if (args == 0 || *args == 0)
3331 error (_("Argument required: name of an overlay section"));
3332
3333 /* First, find a section matching the user supplied argument. */
3334 ALL_OBJSECTIONS (objfile, sec)
3335 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3336 {
3337 if (!sec->ovly_mapped)
3338 error (_("Section %s is not mapped"), args);
3339 sec->ovly_mapped = 0;
3340 return;
3341 }
3342 error (_("No overlay section called %s"), args);
3343 }
3344
3345 /* Function: overlay_auto_command
3346 A utility command to turn on overlay debugging.
3347 Possibly this should be done via a set/show command. */
3348
3349 static void
3350 overlay_auto_command (char *args, int from_tty)
3351 {
3352 overlay_debugging = ovly_auto;
3353 enable_overlay_breakpoints ();
3354 if (info_verbose)
3355 printf_unfiltered (_("Automatic overlay debugging enabled."));
3356 }
3357
3358 /* Function: overlay_manual_command
3359 A utility command to turn on overlay debugging.
3360 Possibly this should be done via a set/show command. */
3361
3362 static void
3363 overlay_manual_command (char *args, int from_tty)
3364 {
3365 overlay_debugging = ovly_on;
3366 disable_overlay_breakpoints ();
3367 if (info_verbose)
3368 printf_unfiltered (_("Overlay debugging enabled."));
3369 }
3370
3371 /* Function: overlay_off_command
3372 A utility command to turn on overlay debugging.
3373 Possibly this should be done via a set/show command. */
3374
3375 static void
3376 overlay_off_command (char *args, int from_tty)
3377 {
3378 overlay_debugging = ovly_off;
3379 disable_overlay_breakpoints ();
3380 if (info_verbose)
3381 printf_unfiltered (_("Overlay debugging disabled."));
3382 }
3383
3384 static void
3385 overlay_load_command (char *args, int from_tty)
3386 {
3387 struct gdbarch *gdbarch = get_current_arch ();
3388
3389 if (gdbarch_overlay_update_p (gdbarch))
3390 gdbarch_overlay_update (gdbarch, NULL);
3391 else
3392 error (_("This target does not know how to read its overlay state."));
3393 }
3394
3395 /* Function: overlay_command
3396 A place-holder for a mis-typed command. */
3397
3398 /* Command list chain containing all defined "overlay" subcommands. */
3399 static struct cmd_list_element *overlaylist;
3400
3401 static void
3402 overlay_command (char *args, int from_tty)
3403 {
3404 printf_unfiltered
3405 ("\"overlay\" must be followed by the name of an overlay command.\n");
3406 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3407 }
3408
3409
3410 /* Target Overlays for the "Simplest" overlay manager:
3411
3412 This is GDB's default target overlay layer. It works with the
3413 minimal overlay manager supplied as an example by Cygnus. The
3414 entry point is via a function pointer "gdbarch_overlay_update",
3415 so targets that use a different runtime overlay manager can
3416 substitute their own overlay_update function and take over the
3417 function pointer.
3418
3419 The overlay_update function pokes around in the target's data structures
3420 to see what overlays are mapped, and updates GDB's overlay mapping with
3421 this information.
3422
3423 In this simple implementation, the target data structures are as follows:
3424 unsigned _novlys; /# number of overlay sections #/
3425 unsigned _ovly_table[_novlys][4] = {
3426 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3427 {..., ..., ..., ...},
3428 }
3429 unsigned _novly_regions; /# number of overlay regions #/
3430 unsigned _ovly_region_table[_novly_regions][3] = {
3431 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3432 {..., ..., ...},
3433 }
3434 These functions will attempt to update GDB's mappedness state in the
3435 symbol section table, based on the target's mappedness state.
3436
3437 To do this, we keep a cached copy of the target's _ovly_table, and
3438 attempt to detect when the cached copy is invalidated. The main
3439 entry point is "simple_overlay_update(SECT), which looks up SECT in
3440 the cached table and re-reads only the entry for that section from
3441 the target (whenever possible). */
3442
3443 /* Cached, dynamically allocated copies of the target data structures: */
3444 static unsigned (*cache_ovly_table)[4] = 0;
3445 static unsigned cache_novlys = 0;
3446 static CORE_ADDR cache_ovly_table_base = 0;
3447 enum ovly_index
3448 {
3449 VMA, SIZE, LMA, MAPPED
3450 };
3451
3452 /* Throw away the cached copy of _ovly_table. */
3453 static void
3454 simple_free_overlay_table (void)
3455 {
3456 if (cache_ovly_table)
3457 xfree (cache_ovly_table);
3458 cache_novlys = 0;
3459 cache_ovly_table = NULL;
3460 cache_ovly_table_base = 0;
3461 }
3462
3463 /* Read an array of ints of size SIZE from the target into a local buffer.
3464 Convert to host order. int LEN is number of ints. */
3465 static void
3466 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3467 int len, int size, enum bfd_endian byte_order)
3468 {
3469 /* FIXME (alloca): Not safe if array is very large. */
3470 gdb_byte *buf = alloca (len * size);
3471 int i;
3472
3473 read_memory (memaddr, buf, len * size);
3474 for (i = 0; i < len; i++)
3475 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3476 }
3477
3478 /* Find and grab a copy of the target _ovly_table
3479 (and _novlys, which is needed for the table's size). */
3480 static int
3481 simple_read_overlay_table (void)
3482 {
3483 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3484 struct gdbarch *gdbarch;
3485 int word_size;
3486 enum bfd_endian byte_order;
3487
3488 simple_free_overlay_table ();
3489 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3490 if (! novlys_msym)
3491 {
3492 error (_("Error reading inferior's overlay table: "
3493 "couldn't find `_novlys' variable\n"
3494 "in inferior. Use `overlay manual' mode."));
3495 return 0;
3496 }
3497
3498 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3499 if (! ovly_table_msym)
3500 {
3501 error (_("Error reading inferior's overlay table: couldn't find "
3502 "`_ovly_table' array\n"
3503 "in inferior. Use `overlay manual' mode."));
3504 return 0;
3505 }
3506
3507 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3508 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3509 byte_order = gdbarch_byte_order (gdbarch);
3510
3511 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3512 4, byte_order);
3513 cache_ovly_table
3514 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3515 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3516 read_target_long_array (cache_ovly_table_base,
3517 (unsigned int *) cache_ovly_table,
3518 cache_novlys * 4, word_size, byte_order);
3519
3520 return 1; /* SUCCESS */
3521 }
3522
3523 /* Function: simple_overlay_update_1
3524 A helper function for simple_overlay_update. Assuming a cached copy
3525 of _ovly_table exists, look through it to find an entry whose vma,
3526 lma and size match those of OSECT. Re-read the entry and make sure
3527 it still matches OSECT (else the table may no longer be valid).
3528 Set OSECT's mapped state to match the entry. Return: 1 for
3529 success, 0 for failure. */
3530
3531 static int
3532 simple_overlay_update_1 (struct obj_section *osect)
3533 {
3534 int i, size;
3535 bfd *obfd = osect->objfile->obfd;
3536 asection *bsect = osect->the_bfd_section;
3537 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3538 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3540
3541 size = bfd_get_section_size (osect->the_bfd_section);
3542 for (i = 0; i < cache_novlys; i++)
3543 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3544 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3545 /* && cache_ovly_table[i][SIZE] == size */ )
3546 {
3547 read_target_long_array (cache_ovly_table_base + i * word_size,
3548 (unsigned int *) cache_ovly_table[i],
3549 4, word_size, byte_order);
3550 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3551 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3552 /* && cache_ovly_table[i][SIZE] == size */ )
3553 {
3554 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3555 return 1;
3556 }
3557 else /* Warning! Warning! Target's ovly table has changed! */
3558 return 0;
3559 }
3560 return 0;
3561 }
3562
3563 /* Function: simple_overlay_update
3564 If OSECT is NULL, then update all sections' mapped state
3565 (after re-reading the entire target _ovly_table).
3566 If OSECT is non-NULL, then try to find a matching entry in the
3567 cached ovly_table and update only OSECT's mapped state.
3568 If a cached entry can't be found or the cache isn't valid, then
3569 re-read the entire cache, and go ahead and update all sections. */
3570
3571 void
3572 simple_overlay_update (struct obj_section *osect)
3573 {
3574 struct objfile *objfile;
3575
3576 /* Were we given an osect to look up? NULL means do all of them. */
3577 if (osect)
3578 /* Have we got a cached copy of the target's overlay table? */
3579 if (cache_ovly_table != NULL)
3580 {
3581 /* Does its cached location match what's currently in the
3582 symtab? */
3583 struct minimal_symbol *minsym
3584 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3585
3586 if (minsym == NULL)
3587 error (_("Error reading inferior's overlay table: couldn't "
3588 "find `_ovly_table' array\n"
3589 "in inferior. Use `overlay manual' mode."));
3590
3591 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3592 /* Then go ahead and try to look up this single section in
3593 the cache. */
3594 if (simple_overlay_update_1 (osect))
3595 /* Found it! We're done. */
3596 return;
3597 }
3598
3599 /* Cached table no good: need to read the entire table anew.
3600 Or else we want all the sections, in which case it's actually
3601 more efficient to read the whole table in one block anyway. */
3602
3603 if (! simple_read_overlay_table ())
3604 return;
3605
3606 /* Now may as well update all sections, even if only one was requested. */
3607 ALL_OBJSECTIONS (objfile, osect)
3608 if (section_is_overlay (osect))
3609 {
3610 int i, size;
3611 bfd *obfd = osect->objfile->obfd;
3612 asection *bsect = osect->the_bfd_section;
3613
3614 size = bfd_get_section_size (bsect);
3615 for (i = 0; i < cache_novlys; i++)
3616 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3617 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3618 /* && cache_ovly_table[i][SIZE] == size */ )
3619 { /* obj_section matches i'th entry in ovly_table. */
3620 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3621 break; /* finished with inner for loop: break out. */
3622 }
3623 }
3624 }
3625
3626 /* Set the output sections and output offsets for section SECTP in
3627 ABFD. The relocation code in BFD will read these offsets, so we
3628 need to be sure they're initialized. We map each section to itself,
3629 with no offset; this means that SECTP->vma will be honored. */
3630
3631 static void
3632 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3633 {
3634 sectp->output_section = sectp;
3635 sectp->output_offset = 0;
3636 }
3637
3638 /* Default implementation for sym_relocate. */
3639
3640
3641 bfd_byte *
3642 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3643 bfd_byte *buf)
3644 {
3645 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3646 DWO file. */
3647 bfd *abfd = sectp->owner;
3648
3649 /* We're only interested in sections with relocation
3650 information. */
3651 if ((sectp->flags & SEC_RELOC) == 0)
3652 return NULL;
3653
3654 /* We will handle section offsets properly elsewhere, so relocate as if
3655 all sections begin at 0. */
3656 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3657
3658 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3659 }
3660
3661 /* Relocate the contents of a debug section SECTP in ABFD. The
3662 contents are stored in BUF if it is non-NULL, or returned in a
3663 malloc'd buffer otherwise.
3664
3665 For some platforms and debug info formats, shared libraries contain
3666 relocations against the debug sections (particularly for DWARF-2;
3667 one affected platform is PowerPC GNU/Linux, although it depends on
3668 the version of the linker in use). Also, ELF object files naturally
3669 have unresolved relocations for their debug sections. We need to apply
3670 the relocations in order to get the locations of symbols correct.
3671 Another example that may require relocation processing, is the
3672 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3673 debug section. */
3674
3675 bfd_byte *
3676 symfile_relocate_debug_section (struct objfile *objfile,
3677 asection *sectp, bfd_byte *buf)
3678 {
3679 gdb_assert (objfile->sf->sym_relocate);
3680
3681 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3682 }
3683
3684 struct symfile_segment_data *
3685 get_symfile_segment_data (bfd *abfd)
3686 {
3687 const struct sym_fns *sf = find_sym_fns (abfd);
3688
3689 if (sf == NULL)
3690 return NULL;
3691
3692 return sf->sym_segments (abfd);
3693 }
3694
3695 void
3696 free_symfile_segment_data (struct symfile_segment_data *data)
3697 {
3698 xfree (data->segment_bases);
3699 xfree (data->segment_sizes);
3700 xfree (data->segment_info);
3701 xfree (data);
3702 }
3703
3704
3705 /* Given:
3706 - DATA, containing segment addresses from the object file ABFD, and
3707 the mapping from ABFD's sections onto the segments that own them,
3708 and
3709 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3710 segment addresses reported by the target,
3711 store the appropriate offsets for each section in OFFSETS.
3712
3713 If there are fewer entries in SEGMENT_BASES than there are segments
3714 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3715
3716 If there are more entries, then ignore the extra. The target may
3717 not be able to distinguish between an empty data segment and a
3718 missing data segment; a missing text segment is less plausible. */
3719 int
3720 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3721 struct section_offsets *offsets,
3722 int num_segment_bases,
3723 const CORE_ADDR *segment_bases)
3724 {
3725 int i;
3726 asection *sect;
3727
3728 /* It doesn't make sense to call this function unless you have some
3729 segment base addresses. */
3730 gdb_assert (num_segment_bases > 0);
3731
3732 /* If we do not have segment mappings for the object file, we
3733 can not relocate it by segments. */
3734 gdb_assert (data != NULL);
3735 gdb_assert (data->num_segments > 0);
3736
3737 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3738 {
3739 int which = data->segment_info[i];
3740
3741 gdb_assert (0 <= which && which <= data->num_segments);
3742
3743 /* Don't bother computing offsets for sections that aren't
3744 loaded as part of any segment. */
3745 if (! which)
3746 continue;
3747
3748 /* Use the last SEGMENT_BASES entry as the address of any extra
3749 segments mentioned in DATA->segment_info. */
3750 if (which > num_segment_bases)
3751 which = num_segment_bases;
3752
3753 offsets->offsets[i] = (segment_bases[which - 1]
3754 - data->segment_bases[which - 1]);
3755 }
3756
3757 return 1;
3758 }
3759
3760 static void
3761 symfile_find_segment_sections (struct objfile *objfile)
3762 {
3763 bfd *abfd = objfile->obfd;
3764 int i;
3765 asection *sect;
3766 struct symfile_segment_data *data;
3767
3768 data = get_symfile_segment_data (objfile->obfd);
3769 if (data == NULL)
3770 return;
3771
3772 if (data->num_segments != 1 && data->num_segments != 2)
3773 {
3774 free_symfile_segment_data (data);
3775 return;
3776 }
3777
3778 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3779 {
3780 int which = data->segment_info[i];
3781
3782 if (which == 1)
3783 {
3784 if (objfile->sect_index_text == -1)
3785 objfile->sect_index_text = sect->index;
3786
3787 if (objfile->sect_index_rodata == -1)
3788 objfile->sect_index_rodata = sect->index;
3789 }
3790 else if (which == 2)
3791 {
3792 if (objfile->sect_index_data == -1)
3793 objfile->sect_index_data = sect->index;
3794
3795 if (objfile->sect_index_bss == -1)
3796 objfile->sect_index_bss = sect->index;
3797 }
3798 }
3799
3800 free_symfile_segment_data (data);
3801 }
3802
3803 void
3804 _initialize_symfile (void)
3805 {
3806 struct cmd_list_element *c;
3807
3808 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3809 Load symbol table from executable file FILE.\n\
3810 The `file' command can also load symbol tables, as well as setting the file\n\
3811 to execute."), &cmdlist);
3812 set_cmd_completer (c, filename_completer);
3813
3814 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3815 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3816 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3817 ...]\nADDR is the starting address of the file's text.\n\
3818 The optional arguments are section-name section-address pairs and\n\
3819 should be specified if the data and bss segments are not contiguous\n\
3820 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3821 &cmdlist);
3822 set_cmd_completer (c, filename_completer);
3823
3824 c = add_cmd ("load", class_files, load_command, _("\
3825 Dynamically load FILE into the running program, and record its symbols\n\
3826 for access from GDB.\n\
3827 A load OFFSET may also be given."), &cmdlist);
3828 set_cmd_completer (c, filename_completer);
3829
3830 add_prefix_cmd ("overlay", class_support, overlay_command,
3831 _("Commands for debugging overlays."), &overlaylist,
3832 "overlay ", 0, &cmdlist);
3833
3834 add_com_alias ("ovly", "overlay", class_alias, 1);
3835 add_com_alias ("ov", "overlay", class_alias, 1);
3836
3837 add_cmd ("map-overlay", class_support, map_overlay_command,
3838 _("Assert that an overlay section is mapped."), &overlaylist);
3839
3840 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3841 _("Assert that an overlay section is unmapped."), &overlaylist);
3842
3843 add_cmd ("list-overlays", class_support, list_overlays_command,
3844 _("List mappings of overlay sections."), &overlaylist);
3845
3846 add_cmd ("manual", class_support, overlay_manual_command,
3847 _("Enable overlay debugging."), &overlaylist);
3848 add_cmd ("off", class_support, overlay_off_command,
3849 _("Disable overlay debugging."), &overlaylist);
3850 add_cmd ("auto", class_support, overlay_auto_command,
3851 _("Enable automatic overlay debugging."), &overlaylist);
3852 add_cmd ("load-target", class_support, overlay_load_command,
3853 _("Read the overlay mapping state from the target."), &overlaylist);
3854
3855 /* Filename extension to source language lookup table: */
3856 init_filename_language_table ();
3857 add_setshow_string_noescape_cmd ("extension-language", class_files,
3858 &ext_args, _("\
3859 Set mapping between filename extension and source language."), _("\
3860 Show mapping between filename extension and source language."), _("\
3861 Usage: set extension-language .foo bar"),
3862 set_ext_lang_command,
3863 show_ext_args,
3864 &setlist, &showlist);
3865
3866 add_info ("extensions", info_ext_lang_command,
3867 _("All filename extensions associated with a source language."));
3868
3869 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3870 &debug_file_directory, _("\
3871 Set the directories where separate debug symbols are searched for."), _("\
3872 Show the directories where separate debug symbols are searched for."), _("\
3873 Separate debug symbols are first searched for in the same\n\
3874 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3875 and lastly at the path of the directory of the binary with\n\
3876 each global debug-file-directory component prepended."),
3877 NULL,
3878 show_debug_file_directory,
3879 &setlist, &showlist);
3880 }