]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "common/pathstuff.h"
61 #include "common/selftest.h"
62 #include "cli/cli-style.h"
63 #include "common/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
151 library symbols are not loaded, commands like "info fun" will *not*
152 report all the functions that are actually present. */
153
154 int auto_solib_add = 1;
155 \f
156
157 /* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
164
165 int
166 print_symbol_loading_p (int from_tty, int exec, int full)
167 {
168 if (!from_tty && !info_verbose)
169 return 0;
170
171 if (exec)
172 {
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
176 }
177 if (full)
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
180 }
181
182 /* True if we are reading a symbol table. */
183
184 int currently_reading_symtab = 0;
185
186 /* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
188
189 scoped_restore_tmpl<int>
190 increment_reading_symtab (void)
191 {
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (&currently_reading_symtab,
194 currently_reading_symtab + 1);
195 }
196
197 /* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
199
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
202
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
205
206 void
207 find_lowest_section (bfd *abfd, asection *sect, void *obj)
208 {
209 asection **lowest = (asection **) obj;
210
211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
212 return;
213 if (!*lowest)
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
220 *lowest = sect;
221 }
222
223 /* Build (allocate and populate) a section_addr_info struct from
224 an existing section table. */
225
226 section_addr_info
227 build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
229 {
230 const struct target_section *stp;
231
232 section_addr_info sap;
233
234 for (stp = start; stp != end; stp++)
235 {
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
238
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
244 }
245
246 return sap;
247 }
248
249 /* Create a section_addr_info from section offsets in ABFD. */
250
251 static section_addr_info
252 build_section_addr_info_from_bfd (bfd *abfd)
253 {
254 struct bfd_section *sec;
255
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
262
263 return sap;
264 }
265
266 /* Create a section_addr_info from section offsets in OBJFILE. */
267
268 section_addr_info
269 build_section_addr_info_from_objfile (const struct objfile *objfile)
270 {
271 int i;
272
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
275 */
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
278 {
279 int sectindex = sap[i].sectindex;
280
281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
282 }
283 return sap;
284 }
285
286 /* Initialize OBJFILE's sect_index_* members. */
287
288 static void
289 init_objfile_sect_indices (struct objfile *objfile)
290 {
291 asection *sect;
292 int i;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
295 if (sect)
296 objfile->sect_index_text = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
299 if (sect)
300 objfile->sect_index_data = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
303 if (sect)
304 objfile->sect_index_bss = sect->index;
305
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
307 if (sect)
308 objfile->sect_index_rodata = sect->index;
309
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
315
316 symfile_find_segment_sections (objfile);
317
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
326
327 for (i = 0; i < objfile->num_sections; i++)
328 {
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
330 {
331 break;
332 }
333 }
334 if (i == objfile->num_sections)
335 {
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
344 }
345 }
346
347 /* The arguments to place_section. */
348
349 struct place_section_arg
350 {
351 struct section_offsets *offsets;
352 CORE_ADDR lowest;
353 };
354
355 /* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
357
358 static void
359 place_section (bfd *abfd, asection *sect, void *obj)
360 {
361 struct place_section_arg *arg = (struct place_section_arg *) obj;
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
363 int done;
364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
365
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
368 return;
369
370 /* If the user specified an offset, honor it. */
371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
372 return;
373
374 /* Otherwise, let's try to find a place for the section. */
375 start_addr = (arg->lowest + align - 1) & -align;
376
377 do {
378 asection *cur_sec;
379
380 done = 1;
381
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
383 {
384 int indx = cur_sec->index;
385
386 /* We don't need to compare against ourself. */
387 if (cur_sec == sect)
388 continue;
389
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
392 continue;
393
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
398 continue;
399
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
403 {
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
406 done = 0;
407 break;
408 }
409
410 /* Otherwise, we appear to be OK. So far. */
411 }
412 }
413 while (!done);
414
415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
416 arg->lowest = start_addr + bfd_get_section_size (sect);
417 }
418
419 /* Store section_addr_info as prepared (made relative and with SECTINDEX
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
421 entries. */
422
423 void
424 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
425 int num_sections,
426 const section_addr_info &addrs)
427 {
428 int i;
429
430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
431
432 /* Now calculate offsets for section that were specified by the caller. */
433 for (i = 0; i < addrs.size (); i++)
434 {
435 const struct other_sections *osp;
436
437 osp = &addrs[i];
438 if (osp->sectindex == -1)
439 continue;
440
441 /* Record all sections in offsets. */
442 /* The section_offsets in the objfile are here filled in using
443 the BFD index. */
444 section_offsets->offsets[osp->sectindex] = osp->addr;
445 }
446 }
447
448 /* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
453
454 static const char *
455 addr_section_name (const char *s)
456 {
457 if (strcmp (s, ".dynbss") == 0)
458 return ".bss";
459 if (strcmp (s, ".sdynbss") == 0)
460 return ".sbss";
461
462 return s;
463 }
464
465 /* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
468
469 static bool
470 addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
472 {
473 int retval;
474
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
477 if (retval != 0)
478 return retval < 0;
479
480 return a->sectindex < b->sectindex;
481 }
482
483 /* Provide sorted array of pointers to sections of ADDRS. */
484
485 static std::vector<const struct other_sections *>
486 addrs_section_sort (const section_addr_info &addrs)
487 {
488 int i;
489
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
493
494 std::sort (array.begin (), array.end (), addrs_section_compar);
495
496 return array;
497 }
498
499 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
502
503 void
504 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
505 {
506 asection *lower_sect;
507 CORE_ADDR lower_offset;
508 int i;
509
510 /* Find lowest loadable section to be used as starting point for
511 continguous sections. */
512 lower_sect = NULL;
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
514 if (lower_sect == NULL)
515 {
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
518 lower_offset = 0;
519 }
520 else
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
522
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
528 order.
529
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
532
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
535
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
539
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
542
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
545
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
548 for (const other_sections *sect : addrs_sorted)
549 {
550 const char *sect_name = addr_section_name (sect->name.c_str ());
551
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
554 sect_name) < 0)
555 abfd_sorted_iter++;
556
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
559 sect_name) == 0)
560 {
561 int index_in_addrs;
562
563 /* Make the found item directly addressable from ADDRS. */
564 index_in_addrs = sect - addrs->data ();
565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
567
568 /* Never use the same ABFD entry twice. */
569 abfd_sorted_iter++;
570 }
571 }
572
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
576
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
582
583 for (i = 0; i < addrs->size (); i++)
584 {
585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
586
587 if (sect)
588 {
589 /* This is the index used by BFD. */
590 (*addrs)[i].sectindex = sect->sectindex;
591
592 if ((*addrs)[i].addr != 0)
593 {
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
596 }
597 else
598 (*addrs)[i].addr = lower_offset;
599 }
600 else
601 {
602 /* addr_section_name transformation is not used for SECT_NAME. */
603 const std::string &sect_name = (*addrs)[i].name;
604
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
607
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
615 created by prelink have no special flags.
616
617 For the sections `.bss' and `.sbss' see addr_section_name. */
618
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".dynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)
625 || (sect_name == ".sbss"
626 && i > 0
627 && (*addrs)[i - 1].name == ".sdynbss"
628 && addrs_to_abfd_addrs[i - 1] != NULL)))
629 warning (_("section %s not found in %s"), sect_name.c_str (),
630 bfd_get_filename (abfd));
631
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
634 }
635 }
636 }
637
638 /* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
643
644 void
645 default_symfile_offsets (struct objfile *objfile,
646 const section_addr_info &addrs)
647 {
648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
654
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
659 small. */
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
661 {
662 struct place_section_arg arg;
663 bfd *abfd = objfile->obfd;
664 asection *cur_sec;
665
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
670 break;
671
672 if (cur_sec == NULL)
673 {
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
675
676 /* Pick non-overlapping offsets for sections the user did not
677 place explicitly. */
678 arg.offsets = objfile->section_offsets;
679 arg.lowest = 0;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
681
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
685
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
688 be assumed.
689
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
693 at address zero.
694
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
701 correct sections.
702
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
706 be eliminated. */
707
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
710 {
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
712 continue;
713
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
715 exec_set_section_address (bfd_get_filename (abfd),
716 cur_sec->index,
717 offsets[cur_sec->index]);
718 offsets[cur_sec->index] = 0;
719 }
720 }
721 }
722
723 /* Remember the bfd indexes for the .text, .data, .bss and
724 .rodata sections. */
725 init_objfile_sect_indices (objfile);
726 }
727
728 /* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
733
734 struct symfile_segment_data *
735 default_symfile_segments (bfd *abfd)
736 {
737 int num_sections, i;
738 asection *sect;
739 struct symfile_segment_data *data;
740 CORE_ADDR low, high;
741
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
744 in segments. */
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
746 return NULL;
747
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
750 {
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
752 continue;
753
754 break;
755 }
756 if (sect == NULL)
757 return NULL;
758
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
761
762 data = XCNEW (struct symfile_segment_data);
763 data->num_segments = 1;
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
766
767 num_sections = bfd_count_sections (abfd);
768 data->segment_info = XCNEWVEC (int, num_sections);
769
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
771 {
772 CORE_ADDR vma;
773
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
775 continue;
776
777 vma = bfd_get_section_vma (abfd, sect);
778 if (vma < low)
779 low = vma;
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
782
783 data->segment_info[i] = 1;
784 }
785
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
788
789 return data;
790 }
791
792 /* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
794
795 static void
796 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
797 {
798 (*objfile->sf->sym_read) (objfile, add_flags);
799 objfile->per_bfd->minsyms_read = true;
800
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
806 {
807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
808
809 if (abfd != NULL)
810 {
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
818 }
819 }
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
822 }
823
824 /* Initialize entry point information for this objfile. */
825
826 static void
827 init_entry_point_info (struct objfile *objfile)
828 {
829 struct entry_info *ei = &objfile->per_bfd->ei;
830
831 if (ei->initialized)
832 return;
833 ei->initialized = 1;
834
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
837
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
839 {
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
844 }
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
847 {
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
853 }
854 else
855 {
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
857 ei->entry_point_p = 0;
858 }
859
860 if (ei->entry_point_p)
861 {
862 struct obj_section *osect;
863 CORE_ADDR entry_point = ei->entry_point;
864 int found;
865
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
868 entry_point
869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
870 entry_point,
871 current_top_target ());
872
873 /* Remove any ISA markers, so that this matches entries in the
874 symbol table. */
875 ei->entry_point
876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
877
878 found = 0;
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
880 {
881 struct bfd_section *sect = osect->the_bfd_section;
882
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
886 {
887 ei->the_bfd_section_index
888 = gdb_bfd_section_index (objfile->obfd, sect);
889 found = 1;
890 break;
891 }
892 }
893
894 if (!found)
895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
896 }
897 }
898
899 /* Process a symbol file, as either the main file or as a dynamically
900 loaded file.
901
902 This function does not set the OBJFILE's entry-point info.
903
904 OBJFILE is where the symbols are to be read from.
905
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
918
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
922
923 static void
924 syms_from_objfile_1 (struct objfile *objfile,
925 section_addr_info *addrs,
926 symfile_add_flags add_flags)
927 {
928 section_addr_info local_addr;
929 const int mainline = add_flags & SYMFILE_MAINLINE;
930
931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
932
933 if (objfile->sf == NULL)
934 {
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
939
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
943 size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
947
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
951
952 std::unique_ptr<struct objfile> objfile_holder (objfile);
953
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
956 no load address was specified. */
957 if (! addrs)
958 addrs = &local_addr;
959
960 if (mainline)
961 {
962 /* We will modify the main symbol table, make sure that all its users
963 will be cleaned up if an error occurs during symbol reading. */
964 defer_clear_users.emplace ((symfile_add_flag) 0);
965
966 /* Since no error yet, throw away the old symbol table. */
967
968 if (symfile_objfile != NULL)
969 {
970 delete symfile_objfile;
971 gdb_assert (symfile_objfile == NULL);
972 }
973
974 /* Currently we keep symbols from the add-symbol-file command.
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
977 (PR 2207). */
978
979 (*objfile->sf->sym_new_init) (objfile);
980 }
981
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
984 and assume that <addr> is where that got loaded.
985
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
988 if (addrs->size () > 0)
989 addr_info_make_relative (addrs, objfile->obfd);
990
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
993 initial symbol reading for this file. */
994
995 (*objfile->sf->sym_init) (objfile);
996 clear_complaints ();
997
998 (*objfile->sf->sym_offsets) (objfile, *addrs);
999
1000 read_symbols (objfile, add_flags);
1001
1002 /* Discard cleanups as symbol reading was successful. */
1003
1004 objfile_holder.release ();
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
1007 }
1008
1009 /* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1011
1012 static void
1013 syms_from_objfile (struct objfile *objfile,
1014 section_addr_info *addrs,
1015 symfile_add_flags add_flags)
1016 {
1017 syms_from_objfile_1 (objfile, addrs, add_flags);
1018 init_entry_point_info (objfile);
1019 }
1020
1021 /* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1024
1025 static void
1026 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1027 {
1028 /* If this is the main symbol file we have to clean up all users of the
1029 old main symbol file. Otherwise it is sufficient to fixup all the
1030 breakpoints that may have been redefined by this symbol file. */
1031 if (add_flags & SYMFILE_MAINLINE)
1032 {
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1035
1036 clear_symtab_users (add_flags);
1037 }
1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1039 {
1040 breakpoint_re_set ();
1041 }
1042
1043 /* We're done reading the symbol file; finish off complaints. */
1044 clear_complaints ();
1045 }
1046
1047 /* Process a symbol file, as either the main file or as a dynamically
1048 loaded file.
1049
1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1051 A new reference is acquired by this function.
1052
1053 For NAME description see the objfile constructor.
1054
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
1057
1058 ADDRS is as described for syms_from_objfile_1, above.
1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1060
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1063
1064 Upon success, returns a pointer to the objfile that was added.
1065 Upon failure, jumps back to command level (never returns). */
1066
1067 static struct objfile *
1068 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
1070 section_addr_info *addrs,
1071 objfile_flags flags, struct objfile *parent)
1072 {
1073 struct objfile *objfile;
1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
1075 const int mainline = add_flags & SYMFILE_MAINLINE;
1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
1079
1080 if (readnow_symbol_files)
1081 {
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1084 }
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1087 {
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1090 }
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
1093
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
1098 && mainline
1099 && from_tty
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1102
1103 if (mainline)
1104 flags |= OBJF_MAINLINE;
1105 objfile = new struct objfile (abfd, name, flags);
1106
1107 if (parent)
1108 add_separate_debug_objfile (objfile, parent);
1109
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
1112 performed, or need to read an unmapped symbol table. */
1113 if (should_print)
1114 {
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
1117 else
1118 {
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1122 }
1123 }
1124 syms_from_objfile (objfile, addrs, add_flags);
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1130
1131 if ((flags & OBJF_READNOW))
1132 {
1133 if (should_print)
1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1135
1136 if (objfile->sf)
1137 objfile->sf->qf->expand_all_symtabs (objfile);
1138 }
1139
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1147
1148 if (should_print)
1149 {
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
1152 }
1153
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
1159 if (objfile->sf == NULL)
1160 {
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1163 }
1164
1165 finish_new_objfile (objfile, add_flags);
1166
1167 gdb::observers::new_objfile.notify (objfile);
1168
1169 bfd_cache_close_all ();
1170 return (objfile);
1171 }
1172
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1175
1176 void
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1180 {
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1185
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1189 | OBJF_USERLOADED),
1190 objfile);
1191 }
1192
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1196
1197 struct objfile *
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1202 {
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
1205 }
1206
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1209
1210 struct objfile *
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1213 {
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1215
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
1218 }
1219
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
1227
1228 void
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1230 {
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1232 }
1233
1234 static void
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1237 {
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1239
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
1243
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1250 }
1251
1252 void
1253 symbol_file_clear (int from_tty)
1254 {
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1262
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1266
1267 free_all_objfiles ();
1268
1269 gdb_assert (symfile_objfile == NULL);
1270 if (from_tty)
1271 printf_filtered (_("No symbol file now.\n"));
1272 }
1273
1274 /* See symfile.h. */
1275
1276 int separate_debug_file_debug = 0;
1277
1278 static int
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1281 {
1282 unsigned long file_crc;
1283 int file_crc_p;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1292
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1294 return 0;
1295
1296 if (separate_debug_file_debug)
1297 {
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1300 }
1301
1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1303
1304 if (abfd == NULL)
1305 {
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1308
1309 return 0;
1310 }
1311
1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
1313
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
1322
1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1326 {
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
1329 {
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1332
1333 return 0;
1334 }
1335 verified_as_different = 1;
1336 }
1337 else
1338 verified_as_different = 0;
1339
1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1341
1342 if (!file_crc_p)
1343 {
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1346
1347 return 0;
1348 }
1349
1350 if (crc != file_crc)
1351 {
1352 unsigned long parent_crc;
1353
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
1357
1358 if (!verified_as_different)
1359 {
1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1361 {
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1364
1365 return 0;
1366 }
1367 }
1368
1369 if (verified_as_different || parent_crc != file_crc)
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
1372 name.c_str (), objfile_name (parent_objfile));
1373
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1376
1377 return 0;
1378 }
1379
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1382
1383 return 1;
1384 }
1385
1386 char *debug_file_directory = NULL;
1387 static void
1388 show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1390 {
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
1394 value);
1395 }
1396
1397 #if ! defined (DEBUG_SUBDIRECTORY)
1398 #define DEBUG_SUBDIRECTORY ".debug"
1399 #endif
1400
1401 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
1406 Returns the path of the file with separate debug info, or an empty
1407 string. */
1408
1409 static std::string
1410 find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
1414 {
1415 if (separate_debug_file_debug)
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
1418
1419 /* First try in the same directory as the original file. */
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
1422
1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1424 return debugfile;
1425
1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1427 debugfile = dir;
1428 debugfile += DEBUG_SUBDIRECTORY;
1429 debugfile += "/";
1430 debugfile += debuglink;
1431
1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1433 return debugfile;
1434
1435 /* Then try in the global debugfile directories.
1436
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
1439
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
1444 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1445
1446 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1447 {
1448 debugfile = target_prefix ? "target:" : "";
1449 debugfile += debugdir.get ();
1450 debugfile += "/";
1451 debugfile += dir_notarget;
1452 debugfile += debuglink;
1453
1454 if (separate_debug_file_exists (debugfile, crc32, objfile))
1455 return debugfile;
1456
1457 const char *base_path = NULL;
1458 if (canon_dir != NULL)
1459 {
1460 if (canon_sysroot.get () != NULL)
1461 base_path = child_path (canon_sysroot.get (), canon_dir);
1462 else
1463 base_path = child_path (gdb_sysroot, canon_dir);
1464 }
1465 if (base_path != NULL)
1466 {
1467 /* If the file is in the sysroot, try using its base path in
1468 the global debugfile directory. */
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
1471 debugfile += "/";
1472 debugfile += base_path;
1473 debugfile += "/";
1474 debugfile += debuglink;
1475
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1477 return debugfile;
1478
1479 /* If the file is in the sysroot, try using its base path in
1480 the sysroot's global debugfile directory. */
1481 debugfile = target_prefix ? "target:" : "";
1482 debugfile += gdb_sysroot;
1483 debugfile += debugdir.get ();
1484 debugfile += "/";
1485 debugfile += base_path;
1486 debugfile += "/";
1487 debugfile += debuglink;
1488
1489 if (separate_debug_file_exists (debugfile, crc32, objfile))
1490 return debugfile;
1491 }
1492
1493 }
1494
1495 return std::string ();
1496 }
1497
1498 /* Modify PATH to contain only "[/]directory/" part of PATH.
1499 If there were no directory separators in PATH, PATH will be empty
1500 string on return. */
1501
1502 static void
1503 terminate_after_last_dir_separator (char *path)
1504 {
1505 int i;
1506
1507 /* Strip off the final filename part, leaving the directory name,
1508 followed by a slash. The directory can be relative or absolute. */
1509 for (i = strlen(path) - 1; i >= 0; i--)
1510 if (IS_DIR_SEPARATOR (path[i]))
1511 break;
1512
1513 /* If I is -1 then no directory is present there and DIR will be "". */
1514 path[i + 1] = '\0';
1515 }
1516
1517 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1518 Returns pathname, or an empty string. */
1519
1520 std::string
1521 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1522 {
1523 unsigned long crc32;
1524
1525 gdb::unique_xmalloc_ptr<char> debuglink
1526 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1527
1528 if (debuglink == NULL)
1529 {
1530 /* There's no separate debug info, hence there's no way we could
1531 load it => no warning. */
1532 return std::string ();
1533 }
1534
1535 std::string dir = objfile_name (objfile);
1536 terminate_after_last_dir_separator (&dir[0]);
1537 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1538
1539 std::string debugfile
1540 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1541 debuglink.get (), crc32, objfile);
1542
1543 if (debugfile.empty ())
1544 {
1545 /* For PR gdb/9538, try again with realpath (if different from the
1546 original). */
1547
1548 struct stat st_buf;
1549
1550 if (lstat (objfile_name (objfile), &st_buf) == 0
1551 && S_ISLNK (st_buf.st_mode))
1552 {
1553 gdb::unique_xmalloc_ptr<char> symlink_dir
1554 (lrealpath (objfile_name (objfile)));
1555 if (symlink_dir != NULL)
1556 {
1557 terminate_after_last_dir_separator (symlink_dir.get ());
1558 if (dir != symlink_dir.get ())
1559 {
1560 /* Different directory, so try using it. */
1561 debugfile = find_separate_debug_file (symlink_dir.get (),
1562 symlink_dir.get (),
1563 debuglink.get (),
1564 crc32,
1565 objfile);
1566 }
1567 }
1568 }
1569 }
1570
1571 return debugfile;
1572 }
1573
1574 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1575 simultaneously. */
1576
1577 static void
1578 validate_readnow_readnever (objfile_flags flags)
1579 {
1580 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1581 error (_("-readnow and -readnever cannot be used simultaneously"));
1582 }
1583
1584 /* This is the symbol-file command. Read the file, analyze its
1585 symbols, and add a struct symtab to a symtab list. The syntax of
1586 the command is rather bizarre:
1587
1588 1. The function buildargv implements various quoting conventions
1589 which are undocumented and have little or nothing in common with
1590 the way things are quoted (or not quoted) elsewhere in GDB.
1591
1592 2. Options are used, which are not generally used in GDB (perhaps
1593 "set mapped on", "set readnow on" would be better)
1594
1595 3. The order of options matters, which is contrary to GNU
1596 conventions (because it is confusing and inconvenient). */
1597
1598 void
1599 symbol_file_command (const char *args, int from_tty)
1600 {
1601 dont_repeat ();
1602
1603 if (args == NULL)
1604 {
1605 symbol_file_clear (from_tty);
1606 }
1607 else
1608 {
1609 objfile_flags flags = OBJF_USERLOADED;
1610 symfile_add_flags add_flags = 0;
1611 char *name = NULL;
1612 bool stop_processing_options = false;
1613 CORE_ADDR offset = 0;
1614 int idx;
1615 char *arg;
1616
1617 if (from_tty)
1618 add_flags |= SYMFILE_VERBOSE;
1619
1620 gdb_argv built_argv (args);
1621 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1622 {
1623 if (stop_processing_options || *arg != '-')
1624 {
1625 if (name == NULL)
1626 name = arg;
1627 else
1628 error (_("Unrecognized argument \"%s\""), arg);
1629 }
1630 else if (strcmp (arg, "-readnow") == 0)
1631 flags |= OBJF_READNOW;
1632 else if (strcmp (arg, "-readnever") == 0)
1633 flags |= OBJF_READNEVER;
1634 else if (strcmp (arg, "-o") == 0)
1635 {
1636 arg = built_argv[++idx];
1637 if (arg == NULL)
1638 error (_("Missing argument to -o"));
1639
1640 offset = parse_and_eval_address (arg);
1641 }
1642 else if (strcmp (arg, "--") == 0)
1643 stop_processing_options = true;
1644 else
1645 error (_("Unrecognized argument \"%s\""), arg);
1646 }
1647
1648 if (name == NULL)
1649 error (_("no symbol file name was specified"));
1650
1651 validate_readnow_readnever (flags);
1652
1653 symbol_file_add_main_1 (name, add_flags, flags, offset);
1654 }
1655 }
1656
1657 /* Set the initial language.
1658
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
1667
1668 void
1669 set_initial_language (void)
1670 {
1671 enum language lang = main_language ();
1672
1673 if (lang == language_unknown)
1674 {
1675 char *name = main_name ();
1676 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1677
1678 if (sym != NULL)
1679 lang = SYMBOL_LANGUAGE (sym);
1680 }
1681
1682 if (lang == language_unknown)
1683 {
1684 /* Make C the default language */
1685 lang = language_c;
1686 }
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
1690 }
1691
1692 /* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
1696
1697 gdb_bfd_ref_ptr
1698 symfile_bfd_open (const char *name)
1699 {
1700 int desc = -1;
1701
1702 gdb::unique_xmalloc_ptr<char> absolute_name;
1703 if (!is_target_filename (name))
1704 {
1705 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1706
1707 /* Look down path for it, allocate 2nd new malloc'd copy. */
1708 desc = openp (getenv ("PATH"),
1709 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1710 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1711 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1712 if (desc < 0)
1713 {
1714 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1715
1716 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1717 desc = openp (getenv ("PATH"),
1718 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1719 exename, O_RDONLY | O_BINARY, &absolute_name);
1720 }
1721 #endif
1722 if (desc < 0)
1723 perror_with_name (expanded_name.get ());
1724
1725 name = absolute_name.get ();
1726 }
1727
1728 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1729 if (sym_bfd == NULL)
1730 error (_("`%s': can't open to read symbols: %s."), name,
1731 bfd_errmsg (bfd_get_error ()));
1732
1733 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1734 bfd_set_cacheable (sym_bfd.get (), 1);
1735
1736 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1737 error (_("`%s': can't read symbols: %s."), name,
1738 bfd_errmsg (bfd_get_error ()));
1739
1740 return sym_bfd;
1741 }
1742
1743 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1744 the section was not found. */
1745
1746 int
1747 get_section_index (struct objfile *objfile, const char *section_name)
1748 {
1749 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1750
1751 if (sect)
1752 return sect->index;
1753 else
1754 return -1;
1755 }
1756
1757 /* Link SF into the global symtab_fns list.
1758 FLAVOUR is the file format that SF handles.
1759 Called on startup by the _initialize routine in each object file format
1760 reader, to register information about each format the reader is prepared
1761 to handle. */
1762
1763 void
1764 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1765 {
1766 symtab_fns.emplace_back (flavour, sf);
1767 }
1768
1769 /* Initialize OBJFILE to read symbols from its associated BFD. It
1770 either returns or calls error(). The result is an initialized
1771 struct sym_fns in the objfile structure, that contains cached
1772 information about the symbol file. */
1773
1774 static const struct sym_fns *
1775 find_sym_fns (bfd *abfd)
1776 {
1777 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1778
1779 if (our_flavour == bfd_target_srec_flavour
1780 || our_flavour == bfd_target_ihex_flavour
1781 || our_flavour == bfd_target_tekhex_flavour)
1782 return NULL; /* No symbols. */
1783
1784 for (const registered_sym_fns &rsf : symtab_fns)
1785 if (our_flavour == rsf.sym_flavour)
1786 return rsf.sym_fns;
1787
1788 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1789 bfd_get_target (abfd));
1790 }
1791 \f
1792
1793 /* This function runs the load command of our current target. */
1794
1795 static void
1796 load_command (const char *arg, int from_tty)
1797 {
1798 dont_repeat ();
1799
1800 /* The user might be reloading because the binary has changed. Take
1801 this opportunity to check. */
1802 reopen_exec_file ();
1803 reread_symbols ();
1804
1805 std::string temp;
1806 if (arg == NULL)
1807 {
1808 const char *parg, *prev;
1809
1810 arg = get_exec_file (1);
1811
1812 /* We may need to quote this string so buildargv can pull it
1813 apart. */
1814 prev = parg = arg;
1815 while ((parg = strpbrk (parg, "\\\"'\t ")))
1816 {
1817 temp.append (prev, parg - prev);
1818 prev = parg++;
1819 temp.push_back ('\\');
1820 }
1821 /* If we have not copied anything yet, then we didn't see a
1822 character to quote, and we can just leave ARG unchanged. */
1823 if (!temp.empty ())
1824 {
1825 temp.append (prev);
1826 arg = temp.c_str ();
1827 }
1828 }
1829
1830 target_load (arg, from_tty);
1831
1832 /* After re-loading the executable, we don't really know which
1833 overlays are mapped any more. */
1834 overlay_cache_invalid = 1;
1835 }
1836
1837 /* This version of "load" should be usable for any target. Currently
1838 it is just used for remote targets, not inftarg.c or core files,
1839 on the theory that only in that case is it useful.
1840
1841 Avoiding xmodem and the like seems like a win (a) because we don't have
1842 to worry about finding it, and (b) On VMS, fork() is very slow and so
1843 we don't want to run a subprocess. On the other hand, I'm not sure how
1844 performance compares. */
1845
1846 static int validate_download = 0;
1847
1848 /* Callback service function for generic_load (bfd_map_over_sections). */
1849
1850 static void
1851 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1852 {
1853 bfd_size_type *sum = (bfd_size_type *) data;
1854
1855 *sum += bfd_get_section_size (asec);
1856 }
1857
1858 /* Opaque data for load_progress. */
1859 struct load_progress_data
1860 {
1861 /* Cumulative data. */
1862 unsigned long write_count = 0;
1863 unsigned long data_count = 0;
1864 bfd_size_type total_size = 0;
1865 };
1866
1867 /* Opaque data for load_progress for a single section. */
1868 struct load_progress_section_data
1869 {
1870 load_progress_section_data (load_progress_data *cumulative_,
1871 const char *section_name_, ULONGEST section_size_,
1872 CORE_ADDR lma_, gdb_byte *buffer_)
1873 : cumulative (cumulative_), section_name (section_name_),
1874 section_size (section_size_), lma (lma_), buffer (buffer_)
1875 {}
1876
1877 struct load_progress_data *cumulative;
1878
1879 /* Per-section data. */
1880 const char *section_name;
1881 ULONGEST section_sent = 0;
1882 ULONGEST section_size;
1883 CORE_ADDR lma;
1884 gdb_byte *buffer;
1885 };
1886
1887 /* Opaque data for load_section_callback. */
1888 struct load_section_data
1889 {
1890 load_section_data (load_progress_data *progress_data_)
1891 : progress_data (progress_data_)
1892 {}
1893
1894 ~load_section_data ()
1895 {
1896 for (auto &&request : requests)
1897 {
1898 xfree (request.data);
1899 delete ((load_progress_section_data *) request.baton);
1900 }
1901 }
1902
1903 CORE_ADDR load_offset = 0;
1904 struct load_progress_data *progress_data;
1905 std::vector<struct memory_write_request> requests;
1906 };
1907
1908 /* Target write callback routine for progress reporting. */
1909
1910 static void
1911 load_progress (ULONGEST bytes, void *untyped_arg)
1912 {
1913 struct load_progress_section_data *args
1914 = (struct load_progress_section_data *) untyped_arg;
1915 struct load_progress_data *totals;
1916
1917 if (args == NULL)
1918 /* Writing padding data. No easy way to get at the cumulative
1919 stats, so just ignore this. */
1920 return;
1921
1922 totals = args->cumulative;
1923
1924 if (bytes == 0 && args->section_sent == 0)
1925 {
1926 /* The write is just starting. Let the user know we've started
1927 this section. */
1928 current_uiout->message ("Loading section %s, size %s lma %s\n",
1929 args->section_name,
1930 hex_string (args->section_size),
1931 paddress (target_gdbarch (), args->lma));
1932 return;
1933 }
1934
1935 if (validate_download)
1936 {
1937 /* Broken memories and broken monitors manifest themselves here
1938 when bring new computers to life. This doubles already slow
1939 downloads. */
1940 /* NOTE: cagney/1999-10-18: A more efficient implementation
1941 might add a verify_memory() method to the target vector and
1942 then use that. remote.c could implement that method using
1943 the ``qCRC'' packet. */
1944 gdb::byte_vector check (bytes);
1945
1946 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1947 error (_("Download verify read failed at %s"),
1948 paddress (target_gdbarch (), args->lma));
1949 if (memcmp (args->buffer, check.data (), bytes) != 0)
1950 error (_("Download verify compare failed at %s"),
1951 paddress (target_gdbarch (), args->lma));
1952 }
1953 totals->data_count += bytes;
1954 args->lma += bytes;
1955 args->buffer += bytes;
1956 totals->write_count += 1;
1957 args->section_sent += bytes;
1958 if (check_quit_flag ()
1959 || (deprecated_ui_load_progress_hook != NULL
1960 && deprecated_ui_load_progress_hook (args->section_name,
1961 args->section_sent)))
1962 error (_("Canceled the download"));
1963
1964 if (deprecated_show_load_progress != NULL)
1965 deprecated_show_load_progress (args->section_name,
1966 args->section_sent,
1967 args->section_size,
1968 totals->data_count,
1969 totals->total_size);
1970 }
1971
1972 /* Callback service function for generic_load (bfd_map_over_sections). */
1973
1974 static void
1975 load_section_callback (bfd *abfd, asection *asec, void *data)
1976 {
1977 struct load_section_data *args = (struct load_section_data *) data;
1978 bfd_size_type size = bfd_get_section_size (asec);
1979 const char *sect_name = bfd_get_section_name (abfd, asec);
1980
1981 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1982 return;
1983
1984 if (size == 0)
1985 return;
1986
1987 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1988 ULONGEST end = begin + size;
1989 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1990 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1991
1992 load_progress_section_data *section_data
1993 = new load_progress_section_data (args->progress_data, sect_name, size,
1994 begin, buffer);
1995
1996 args->requests.emplace_back (begin, end, buffer, section_data);
1997 }
1998
1999 static void print_transfer_performance (struct ui_file *stream,
2000 unsigned long data_count,
2001 unsigned long write_count,
2002 std::chrono::steady_clock::duration d);
2003
2004 void
2005 generic_load (const char *args, int from_tty)
2006 {
2007 struct load_progress_data total_progress;
2008 struct load_section_data cbdata (&total_progress);
2009 struct ui_out *uiout = current_uiout;
2010
2011 if (args == NULL)
2012 error_no_arg (_("file to load"));
2013
2014 gdb_argv argv (args);
2015
2016 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2017
2018 if (argv[1] != NULL)
2019 {
2020 const char *endptr;
2021
2022 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2023
2024 /* If the last word was not a valid number then
2025 treat it as a file name with spaces in. */
2026 if (argv[1] == endptr)
2027 error (_("Invalid download offset:%s."), argv[1]);
2028
2029 if (argv[2] != NULL)
2030 error (_("Too many parameters."));
2031 }
2032
2033 /* Open the file for loading. */
2034 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2035 if (loadfile_bfd == NULL)
2036 perror_with_name (filename.get ());
2037
2038 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2039 {
2040 error (_("\"%s\" is not an object file: %s"), filename.get (),
2041 bfd_errmsg (bfd_get_error ()));
2042 }
2043
2044 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2045 (void *) &total_progress.total_size);
2046
2047 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2048
2049 using namespace std::chrono;
2050
2051 steady_clock::time_point start_time = steady_clock::now ();
2052
2053 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2054 load_progress) != 0)
2055 error (_("Load failed"));
2056
2057 steady_clock::time_point end_time = steady_clock::now ();
2058
2059 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2060 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2061 uiout->text ("Start address ");
2062 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2063 uiout->text (", load size ");
2064 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2065 uiout->text ("\n");
2066 regcache_write_pc (get_current_regcache (), entry);
2067
2068 /* Reset breakpoints, now that we have changed the load image. For
2069 instance, breakpoints may have been set (or reset, by
2070 post_create_inferior) while connected to the target but before we
2071 loaded the program. In that case, the prologue analyzer could
2072 have read instructions from the target to find the right
2073 breakpoint locations. Loading has changed the contents of that
2074 memory. */
2075
2076 breakpoint_re_set ();
2077
2078 print_transfer_performance (gdb_stdout, total_progress.data_count,
2079 total_progress.write_count,
2080 end_time - start_time);
2081 }
2082
2083 /* Report on STREAM the performance of a memory transfer operation,
2084 such as 'load'. DATA_COUNT is the number of bytes transferred.
2085 WRITE_COUNT is the number of separate write operations, or 0, if
2086 that information is not available. TIME is how long the operation
2087 lasted. */
2088
2089 static void
2090 print_transfer_performance (struct ui_file *stream,
2091 unsigned long data_count,
2092 unsigned long write_count,
2093 std::chrono::steady_clock::duration time)
2094 {
2095 using namespace std::chrono;
2096 struct ui_out *uiout = current_uiout;
2097
2098 milliseconds ms = duration_cast<milliseconds> (time);
2099
2100 uiout->text ("Transfer rate: ");
2101 if (ms.count () > 0)
2102 {
2103 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2104
2105 if (uiout->is_mi_like_p ())
2106 {
2107 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2108 uiout->text (" bits/sec");
2109 }
2110 else if (rate < 1024)
2111 {
2112 uiout->field_fmt ("transfer-rate", "%lu", rate);
2113 uiout->text (" bytes/sec");
2114 }
2115 else
2116 {
2117 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2118 uiout->text (" KB/sec");
2119 }
2120 }
2121 else
2122 {
2123 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2124 uiout->text (" bits in <1 sec");
2125 }
2126 if (write_count > 0)
2127 {
2128 uiout->text (", ");
2129 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2130 uiout->text (" bytes/write");
2131 }
2132 uiout->text (".\n");
2133 }
2134
2135 /* Add an OFFSET to the start address of each section in OBJF, except
2136 sections that were specified in ADDRS. */
2137
2138 static void
2139 set_objfile_default_section_offset (struct objfile *objf,
2140 const section_addr_info &addrs,
2141 CORE_ADDR offset)
2142 {
2143 /* Add OFFSET to all sections by default. */
2144 std::vector<struct section_offsets> offsets (objf->num_sections,
2145 { { offset } });
2146
2147 /* Create sorted lists of all sections in ADDRS as well as all
2148 sections in OBJF. */
2149
2150 std::vector<const struct other_sections *> addrs_sorted
2151 = addrs_section_sort (addrs);
2152
2153 section_addr_info objf_addrs
2154 = build_section_addr_info_from_objfile (objf);
2155 std::vector<const struct other_sections *> objf_addrs_sorted
2156 = addrs_section_sort (objf_addrs);
2157
2158 /* Walk the BFD section list, and if a matching section is found in
2159 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2160 unchanged.
2161
2162 Note that both lists may contain multiple sections with the same
2163 name, and then the sections from ADDRS are matched in BFD order
2164 (thanks to sectindex). */
2165
2166 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2167 = addrs_sorted.begin ();
2168 for (const other_sections *objf_sect : objf_addrs_sorted)
2169 {
2170 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2171 int cmp = -1;
2172
2173 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2174 {
2175 const struct other_sections *sect = *addrs_sorted_iter;
2176 const char *sect_name = addr_section_name (sect->name.c_str ());
2177 cmp = strcmp (sect_name, objf_name);
2178 if (cmp <= 0)
2179 ++addrs_sorted_iter;
2180 }
2181
2182 if (cmp == 0)
2183 offsets[objf_sect->sectindex].offsets[0] = 0;
2184 }
2185
2186 /* Apply the new section offsets. */
2187 objfile_relocate (objf, offsets.data ());
2188 }
2189
2190 /* This function allows the addition of incrementally linked object files.
2191 It does not modify any state in the target, only in the debugger. */
2192 /* Note: ezannoni 2000-04-13 This function/command used to have a
2193 special case syntax for the rombug target (Rombug is the boot
2194 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2195 rombug case, the user doesn't need to supply a text address,
2196 instead a call to target_link() (in target.c) would supply the
2197 value to use. We are now discontinuing this type of ad hoc syntax. */
2198
2199 static void
2200 add_symbol_file_command (const char *args, int from_tty)
2201 {
2202 struct gdbarch *gdbarch = get_current_arch ();
2203 gdb::unique_xmalloc_ptr<char> filename;
2204 char *arg;
2205 int argcnt = 0;
2206 struct objfile *objf;
2207 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2208 symfile_add_flags add_flags = 0;
2209
2210 if (from_tty)
2211 add_flags |= SYMFILE_VERBOSE;
2212
2213 struct sect_opt
2214 {
2215 const char *name;
2216 const char *value;
2217 };
2218
2219 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2220 bool stop_processing_options = false;
2221 CORE_ADDR offset = 0;
2222
2223 dont_repeat ();
2224
2225 if (args == NULL)
2226 error (_("add-symbol-file takes a file name and an address"));
2227
2228 bool seen_addr = false;
2229 bool seen_offset = false;
2230 gdb_argv argv (args);
2231
2232 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2233 {
2234 if (stop_processing_options || *arg != '-')
2235 {
2236 if (filename == NULL)
2237 {
2238 /* First non-option argument is always the filename. */
2239 filename.reset (tilde_expand (arg));
2240 }
2241 else if (!seen_addr)
2242 {
2243 /* The second non-option argument is always the text
2244 address at which to load the program. */
2245 sect_opts[0].value = arg;
2246 seen_addr = true;
2247 }
2248 else
2249 error (_("Unrecognized argument \"%s\""), arg);
2250 }
2251 else if (strcmp (arg, "-readnow") == 0)
2252 flags |= OBJF_READNOW;
2253 else if (strcmp (arg, "-readnever") == 0)
2254 flags |= OBJF_READNEVER;
2255 else if (strcmp (arg, "-s") == 0)
2256 {
2257 if (argv[argcnt + 1] == NULL)
2258 error (_("Missing section name after \"-s\""));
2259 else if (argv[argcnt + 2] == NULL)
2260 error (_("Missing section address after \"-s\""));
2261
2262 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2263
2264 sect_opts.push_back (sect);
2265 argcnt += 2;
2266 }
2267 else if (strcmp (arg, "-o") == 0)
2268 {
2269 arg = argv[++argcnt];
2270 if (arg == NULL)
2271 error (_("Missing argument to -o"));
2272
2273 offset = parse_and_eval_address (arg);
2274 seen_offset = true;
2275 }
2276 else if (strcmp (arg, "--") == 0)
2277 stop_processing_options = true;
2278 else
2279 error (_("Unrecognized argument \"%s\""), arg);
2280 }
2281
2282 if (filename == NULL)
2283 error (_("You must provide a filename to be loaded."));
2284
2285 validate_readnow_readnever (flags);
2286
2287 /* Print the prompt for the query below. And save the arguments into
2288 a sect_addr_info structure to be passed around to other
2289 functions. We have to split this up into separate print
2290 statements because hex_string returns a local static
2291 string. */
2292
2293 printf_unfiltered (_("add symbol table from file \"%s\""),
2294 filename.get ());
2295 section_addr_info section_addrs;
2296 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2297 if (!seen_addr)
2298 ++it;
2299 for (; it != sect_opts.end (); ++it)
2300 {
2301 CORE_ADDR addr;
2302 const char *val = it->value;
2303 const char *sec = it->name;
2304
2305 if (section_addrs.empty ())
2306 printf_unfiltered (_(" at\n"));
2307 addr = parse_and_eval_address (val);
2308
2309 /* Here we store the section offsets in the order they were
2310 entered on the command line. Every array element is
2311 assigned an ascending section index to preserve the above
2312 order over an unstable sorting algorithm. This dummy
2313 index is not used for any other purpose.
2314 */
2315 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2316 printf_filtered ("\t%s_addr = %s\n", sec,
2317 paddress (gdbarch, addr));
2318
2319 /* The object's sections are initialized when a
2320 call is made to build_objfile_section_table (objfile).
2321 This happens in reread_symbols.
2322 At this point, we don't know what file type this is,
2323 so we can't determine what section names are valid. */
2324 }
2325 if (seen_offset)
2326 printf_unfiltered (_("%s offset by %s\n"),
2327 (section_addrs.empty ()
2328 ? _(" with all sections")
2329 : _("with other sections")),
2330 paddress (gdbarch, offset));
2331 else if (section_addrs.empty ())
2332 printf_unfiltered ("\n");
2333
2334 if (from_tty && (!query ("%s", "")))
2335 error (_("Not confirmed."));
2336
2337 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2338 flags);
2339
2340 if (seen_offset)
2341 set_objfile_default_section_offset (objf, section_addrs, offset);
2342
2343 add_target_sections_of_objfile (objf);
2344
2345 /* Getting new symbols may change our opinion about what is
2346 frameless. */
2347 reinit_frame_cache ();
2348 }
2349 \f
2350
2351 /* This function removes a symbol file that was added via add-symbol-file. */
2352
2353 static void
2354 remove_symbol_file_command (const char *args, int from_tty)
2355 {
2356 struct objfile *objf = NULL;
2357 struct program_space *pspace = current_program_space;
2358
2359 dont_repeat ();
2360
2361 if (args == NULL)
2362 error (_("remove-symbol-file: no symbol file provided"));
2363
2364 gdb_argv argv (args);
2365
2366 if (strcmp (argv[0], "-a") == 0)
2367 {
2368 /* Interpret the next argument as an address. */
2369 CORE_ADDR addr;
2370
2371 if (argv[1] == NULL)
2372 error (_("Missing address argument"));
2373
2374 if (argv[2] != NULL)
2375 error (_("Junk after %s"), argv[1]);
2376
2377 addr = parse_and_eval_address (argv[1]);
2378
2379 for (objfile *objfile : current_program_space->objfiles ())
2380 {
2381 if ((objfile->flags & OBJF_USERLOADED) != 0
2382 && (objfile->flags & OBJF_SHARED) != 0
2383 && objfile->pspace == pspace
2384 && is_addr_in_objfile (addr, objfile))
2385 {
2386 objf = objfile;
2387 break;
2388 }
2389 }
2390 }
2391 else if (argv[0] != NULL)
2392 {
2393 /* Interpret the current argument as a file name. */
2394
2395 if (argv[1] != NULL)
2396 error (_("Junk after %s"), argv[0]);
2397
2398 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2399
2400 for (objfile *objfile : current_program_space->objfiles ())
2401 {
2402 if ((objfile->flags & OBJF_USERLOADED) != 0
2403 && (objfile->flags & OBJF_SHARED) != 0
2404 && objfile->pspace == pspace
2405 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2406 {
2407 objf = objfile;
2408 break;
2409 }
2410 }
2411 }
2412
2413 if (objf == NULL)
2414 error (_("No symbol file found"));
2415
2416 if (from_tty
2417 && !query (_("Remove symbol table from file \"%s\"? "),
2418 objfile_name (objf)))
2419 error (_("Not confirmed."));
2420
2421 delete objf;
2422 clear_symtab_users (0);
2423 }
2424
2425 /* Re-read symbols if a symbol-file has changed. */
2426
2427 void
2428 reread_symbols (void)
2429 {
2430 long new_modtime;
2431 struct stat new_statbuf;
2432 int res;
2433 std::vector<struct objfile *> new_objfiles;
2434
2435 for (objfile *objfile : current_program_space->objfiles ())
2436 {
2437 if (objfile->obfd == NULL)
2438 continue;
2439
2440 /* Separate debug objfiles are handled in the main objfile. */
2441 if (objfile->separate_debug_objfile_backlink)
2442 continue;
2443
2444 /* If this object is from an archive (what you usually create with
2445 `ar', often called a `static library' on most systems, though
2446 a `shared library' on AIX is also an archive), then you should
2447 stat on the archive name, not member name. */
2448 if (objfile->obfd->my_archive)
2449 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2450 else
2451 res = stat (objfile_name (objfile), &new_statbuf);
2452 if (res != 0)
2453 {
2454 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2455 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2456 objfile_name (objfile));
2457 continue;
2458 }
2459 new_modtime = new_statbuf.st_mtime;
2460 if (new_modtime != objfile->mtime)
2461 {
2462 struct section_offsets *offsets;
2463 int num_offsets;
2464
2465 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2466 objfile_name (objfile));
2467
2468 /* There are various functions like symbol_file_add,
2469 symfile_bfd_open, syms_from_objfile, etc., which might
2470 appear to do what we want. But they have various other
2471 effects which we *don't* want. So we just do stuff
2472 ourselves. We don't worry about mapped files (for one thing,
2473 any mapped file will be out of date). */
2474
2475 /* If we get an error, blow away this objfile (not sure if
2476 that is the correct response for things like shared
2477 libraries). */
2478 std::unique_ptr<struct objfile> objfile_holder (objfile);
2479
2480 /* We need to do this whenever any symbols go away. */
2481 clear_symtab_users_cleanup defer_clear_users (0);
2482
2483 if (exec_bfd != NULL
2484 && filename_cmp (bfd_get_filename (objfile->obfd),
2485 bfd_get_filename (exec_bfd)) == 0)
2486 {
2487 /* Reload EXEC_BFD without asking anything. */
2488
2489 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2490 }
2491
2492 /* Keep the calls order approx. the same as in free_objfile. */
2493
2494 /* Free the separate debug objfiles. It will be
2495 automatically recreated by sym_read. */
2496 free_objfile_separate_debug (objfile);
2497
2498 /* Remove any references to this objfile in the global
2499 value lists. */
2500 preserve_values (objfile);
2501
2502 /* Nuke all the state that we will re-read. Much of the following
2503 code which sets things to NULL really is necessary to tell
2504 other parts of GDB that there is nothing currently there.
2505
2506 Try to keep the freeing order compatible with free_objfile. */
2507
2508 if (objfile->sf != NULL)
2509 {
2510 (*objfile->sf->sym_finish) (objfile);
2511 }
2512
2513 clear_objfile_data (objfile);
2514
2515 /* Clean up any state BFD has sitting around. */
2516 {
2517 gdb_bfd_ref_ptr obfd (objfile->obfd);
2518 char *obfd_filename;
2519
2520 obfd_filename = bfd_get_filename (objfile->obfd);
2521 /* Open the new BFD before freeing the old one, so that
2522 the filename remains live. */
2523 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2524 objfile->obfd = temp.release ();
2525 if (objfile->obfd == NULL)
2526 error (_("Can't open %s to read symbols."), obfd_filename);
2527 }
2528
2529 std::string original_name = objfile->original_name;
2530
2531 /* bfd_openr sets cacheable to true, which is what we want. */
2532 if (!bfd_check_format (objfile->obfd, bfd_object))
2533 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2534 bfd_errmsg (bfd_get_error ()));
2535
2536 /* Save the offsets, we will nuke them with the rest of the
2537 objfile_obstack. */
2538 num_offsets = objfile->num_sections;
2539 offsets = ((struct section_offsets *)
2540 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2541 memcpy (offsets, objfile->section_offsets,
2542 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2543
2544 objfile->reset_psymtabs ();
2545
2546 /* NB: after this call to obstack_free, objfiles_changed
2547 will need to be called (see discussion below). */
2548 obstack_free (&objfile->objfile_obstack, 0);
2549 objfile->sections = NULL;
2550 objfile->compunit_symtabs = NULL;
2551 objfile->template_symbols = NULL;
2552 objfile->static_links = NULL;
2553
2554 /* obstack_init also initializes the obstack so it is
2555 empty. We could use obstack_specify_allocation but
2556 gdb_obstack.h specifies the alloc/dealloc functions. */
2557 obstack_init (&objfile->objfile_obstack);
2558
2559 /* set_objfile_per_bfd potentially allocates the per-bfd
2560 data on the objfile's obstack (if sharing data across
2561 multiple users is not possible), so it's important to
2562 do it *after* the obstack has been initialized. */
2563 set_objfile_per_bfd (objfile);
2564
2565 objfile->original_name
2566 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2567 original_name.c_str (),
2568 original_name.size ());
2569
2570 /* Reset the sym_fns pointer. The ELF reader can change it
2571 based on whether .gdb_index is present, and we need it to
2572 start over. PR symtab/15885 */
2573 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2574
2575 build_objfile_section_table (objfile);
2576
2577 /* We use the same section offsets as from last time. I'm not
2578 sure whether that is always correct for shared libraries. */
2579 objfile->section_offsets = (struct section_offsets *)
2580 obstack_alloc (&objfile->objfile_obstack,
2581 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2582 memcpy (objfile->section_offsets, offsets,
2583 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2584 objfile->num_sections = num_offsets;
2585
2586 /* What the hell is sym_new_init for, anyway? The concept of
2587 distinguishing between the main file and additional files
2588 in this way seems rather dubious. */
2589 if (objfile == symfile_objfile)
2590 {
2591 (*objfile->sf->sym_new_init) (objfile);
2592 }
2593
2594 (*objfile->sf->sym_init) (objfile);
2595 clear_complaints ();
2596
2597 objfile->flags &= ~OBJF_PSYMTABS_READ;
2598
2599 /* We are about to read new symbols and potentially also
2600 DWARF information. Some targets may want to pass addresses
2601 read from DWARF DIE's through an adjustment function before
2602 saving them, like MIPS, which may call into
2603 "find_pc_section". When called, that function will make
2604 use of per-objfile program space data.
2605
2606 Since we discarded our section information above, we have
2607 dangling pointers in the per-objfile program space data
2608 structure. Force GDB to update the section mapping
2609 information by letting it know the objfile has changed,
2610 making the dangling pointers point to correct data
2611 again. */
2612
2613 objfiles_changed ();
2614
2615 read_symbols (objfile, 0);
2616
2617 if (!objfile_has_symbols (objfile))
2618 {
2619 wrap_here ("");
2620 printf_filtered (_("(no debugging symbols found)\n"));
2621 wrap_here ("");
2622 }
2623
2624 /* We're done reading the symbol file; finish off complaints. */
2625 clear_complaints ();
2626
2627 /* Getting new symbols may change our opinion about what is
2628 frameless. */
2629
2630 reinit_frame_cache ();
2631
2632 /* Discard cleanups as symbol reading was successful. */
2633 objfile_holder.release ();
2634 defer_clear_users.release ();
2635
2636 /* If the mtime has changed between the time we set new_modtime
2637 and now, we *want* this to be out of date, so don't call stat
2638 again now. */
2639 objfile->mtime = new_modtime;
2640 init_entry_point_info (objfile);
2641
2642 new_objfiles.push_back (objfile);
2643 }
2644 }
2645
2646 if (!new_objfiles.empty ())
2647 {
2648 clear_symtab_users (0);
2649
2650 /* clear_objfile_data for each objfile was called before freeing it and
2651 gdb::observers::new_objfile.notify (NULL) has been called by
2652 clear_symtab_users above. Notify the new files now. */
2653 for (auto iter : new_objfiles)
2654 gdb::observers::new_objfile.notify (iter);
2655
2656 /* At least one objfile has changed, so we can consider that
2657 the executable we're debugging has changed too. */
2658 gdb::observers::executable_changed.notify ();
2659 }
2660 }
2661 \f
2662
2663 struct filename_language
2664 {
2665 filename_language (const std::string &ext_, enum language lang_)
2666 : ext (ext_), lang (lang_)
2667 {}
2668
2669 std::string ext;
2670 enum language lang;
2671 };
2672
2673 static std::vector<filename_language> filename_language_table;
2674
2675 /* See symfile.h. */
2676
2677 void
2678 add_filename_language (const char *ext, enum language lang)
2679 {
2680 filename_language_table.emplace_back (ext, lang);
2681 }
2682
2683 static char *ext_args;
2684 static void
2685 show_ext_args (struct ui_file *file, int from_tty,
2686 struct cmd_list_element *c, const char *value)
2687 {
2688 fprintf_filtered (file,
2689 _("Mapping between filename extension "
2690 "and source language is \"%s\".\n"),
2691 value);
2692 }
2693
2694 static void
2695 set_ext_lang_command (const char *args,
2696 int from_tty, struct cmd_list_element *e)
2697 {
2698 char *cp = ext_args;
2699 enum language lang;
2700
2701 /* First arg is filename extension, starting with '.' */
2702 if (*cp != '.')
2703 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2704
2705 /* Find end of first arg. */
2706 while (*cp && !isspace (*cp))
2707 cp++;
2708
2709 if (*cp == '\0')
2710 error (_("'%s': two arguments required -- "
2711 "filename extension and language"),
2712 ext_args);
2713
2714 /* Null-terminate first arg. */
2715 *cp++ = '\0';
2716
2717 /* Find beginning of second arg, which should be a source language. */
2718 cp = skip_spaces (cp);
2719
2720 if (*cp == '\0')
2721 error (_("'%s': two arguments required -- "
2722 "filename extension and language"),
2723 ext_args);
2724
2725 /* Lookup the language from among those we know. */
2726 lang = language_enum (cp);
2727
2728 auto it = filename_language_table.begin ();
2729 /* Now lookup the filename extension: do we already know it? */
2730 for (; it != filename_language_table.end (); it++)
2731 {
2732 if (it->ext == ext_args)
2733 break;
2734 }
2735
2736 if (it == filename_language_table.end ())
2737 {
2738 /* New file extension. */
2739 add_filename_language (ext_args, lang);
2740 }
2741 else
2742 {
2743 /* Redefining a previously known filename extension. */
2744
2745 /* if (from_tty) */
2746 /* query ("Really make files of type %s '%s'?", */
2747 /* ext_args, language_str (lang)); */
2748
2749 it->lang = lang;
2750 }
2751 }
2752
2753 static void
2754 info_ext_lang_command (const char *args, int from_tty)
2755 {
2756 printf_filtered (_("Filename extensions and the languages they represent:"));
2757 printf_filtered ("\n\n");
2758 for (const filename_language &entry : filename_language_table)
2759 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2760 language_str (entry.lang));
2761 }
2762
2763 enum language
2764 deduce_language_from_filename (const char *filename)
2765 {
2766 const char *cp;
2767
2768 if (filename != NULL)
2769 if ((cp = strrchr (filename, '.')) != NULL)
2770 {
2771 for (const filename_language &entry : filename_language_table)
2772 if (entry.ext == cp)
2773 return entry.lang;
2774 }
2775
2776 return language_unknown;
2777 }
2778 \f
2779 /* Allocate and initialize a new symbol table.
2780 CUST is from the result of allocate_compunit_symtab. */
2781
2782 struct symtab *
2783 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2784 {
2785 struct objfile *objfile = cust->objfile;
2786 struct symtab *symtab
2787 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2788
2789 symtab->filename
2790 = ((const char *) objfile->per_bfd->filename_cache.insert
2791 (filename, strlen (filename) + 1));
2792 symtab->fullname = NULL;
2793 symtab->language = deduce_language_from_filename (filename);
2794
2795 /* This can be very verbose with lots of headers.
2796 Only print at higher debug levels. */
2797 if (symtab_create_debug >= 2)
2798 {
2799 /* Be a bit clever with debugging messages, and don't print objfile
2800 every time, only when it changes. */
2801 static char *last_objfile_name = NULL;
2802
2803 if (last_objfile_name == NULL
2804 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2805 {
2806 xfree (last_objfile_name);
2807 last_objfile_name = xstrdup (objfile_name (objfile));
2808 fprintf_filtered (gdb_stdlog,
2809 "Creating one or more symtabs for objfile %s ...\n",
2810 last_objfile_name);
2811 }
2812 fprintf_filtered (gdb_stdlog,
2813 "Created symtab %s for module %s.\n",
2814 host_address_to_string (symtab), filename);
2815 }
2816
2817 /* Add it to CUST's list of symtabs. */
2818 if (cust->filetabs == NULL)
2819 {
2820 cust->filetabs = symtab;
2821 cust->last_filetab = symtab;
2822 }
2823 else
2824 {
2825 cust->last_filetab->next = symtab;
2826 cust->last_filetab = symtab;
2827 }
2828
2829 /* Backlink to the containing compunit symtab. */
2830 symtab->compunit_symtab = cust;
2831
2832 return symtab;
2833 }
2834
2835 /* Allocate and initialize a new compunit.
2836 NAME is the name of the main source file, if there is one, or some
2837 descriptive text if there are no source files. */
2838
2839 struct compunit_symtab *
2840 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2841 {
2842 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2843 struct compunit_symtab);
2844 const char *saved_name;
2845
2846 cu->objfile = objfile;
2847
2848 /* The name we record here is only for display/debugging purposes.
2849 Just save the basename to avoid path issues (too long for display,
2850 relative vs absolute, etc.). */
2851 saved_name = lbasename (name);
2852 cu->name
2853 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2854 strlen (saved_name));
2855
2856 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2857
2858 if (symtab_create_debug)
2859 {
2860 fprintf_filtered (gdb_stdlog,
2861 "Created compunit symtab %s for %s.\n",
2862 host_address_to_string (cu),
2863 cu->name);
2864 }
2865
2866 return cu;
2867 }
2868
2869 /* Hook CU to the objfile it comes from. */
2870
2871 void
2872 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2873 {
2874 cu->next = cu->objfile->compunit_symtabs;
2875 cu->objfile->compunit_symtabs = cu;
2876 }
2877 \f
2878
2879 /* Reset all data structures in gdb which may contain references to
2880 symbol table data. */
2881
2882 void
2883 clear_symtab_users (symfile_add_flags add_flags)
2884 {
2885 /* Someday, we should do better than this, by only blowing away
2886 the things that really need to be blown. */
2887
2888 /* Clear the "current" symtab first, because it is no longer valid.
2889 breakpoint_re_set may try to access the current symtab. */
2890 clear_current_source_symtab_and_line ();
2891
2892 clear_displays ();
2893 clear_last_displayed_sal ();
2894 clear_pc_function_cache ();
2895 gdb::observers::new_objfile.notify (NULL);
2896
2897 /* Varobj may refer to old symbols, perform a cleanup. */
2898 varobj_invalidate ();
2899
2900 /* Now that the various caches have been cleared, we can re_set
2901 our breakpoints without risking it using stale data. */
2902 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2903 breakpoint_re_set ();
2904 }
2905 \f
2906 /* OVERLAYS:
2907 The following code implements an abstraction for debugging overlay sections.
2908
2909 The target model is as follows:
2910 1) The gnu linker will permit multiple sections to be mapped into the
2911 same VMA, each with its own unique LMA (or load address).
2912 2) It is assumed that some runtime mechanism exists for mapping the
2913 sections, one by one, from the load address into the VMA address.
2914 3) This code provides a mechanism for gdb to keep track of which
2915 sections should be considered to be mapped from the VMA to the LMA.
2916 This information is used for symbol lookup, and memory read/write.
2917 For instance, if a section has been mapped then its contents
2918 should be read from the VMA, otherwise from the LMA.
2919
2920 Two levels of debugger support for overlays are available. One is
2921 "manual", in which the debugger relies on the user to tell it which
2922 overlays are currently mapped. This level of support is
2923 implemented entirely in the core debugger, and the information about
2924 whether a section is mapped is kept in the objfile->obj_section table.
2925
2926 The second level of support is "automatic", and is only available if
2927 the target-specific code provides functionality to read the target's
2928 overlay mapping table, and translate its contents for the debugger
2929 (by updating the mapped state information in the obj_section tables).
2930
2931 The interface is as follows:
2932 User commands:
2933 overlay map <name> -- tell gdb to consider this section mapped
2934 overlay unmap <name> -- tell gdb to consider this section unmapped
2935 overlay list -- list the sections that GDB thinks are mapped
2936 overlay read-target -- get the target's state of what's mapped
2937 overlay off/manual/auto -- set overlay debugging state
2938 Functional interface:
2939 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2940 section, return that section.
2941 find_pc_overlay(pc): find any overlay section that contains
2942 the pc, either in its VMA or its LMA
2943 section_is_mapped(sect): true if overlay is marked as mapped
2944 section_is_overlay(sect): true if section's VMA != LMA
2945 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2946 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2947 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2948 overlay_mapped_address(...): map an address from section's LMA to VMA
2949 overlay_unmapped_address(...): map an address from section's VMA to LMA
2950 symbol_overlayed_address(...): Return a "current" address for symbol:
2951 either in VMA or LMA depending on whether
2952 the symbol's section is currently mapped. */
2953
2954 /* Overlay debugging state: */
2955
2956 enum overlay_debugging_state overlay_debugging = ovly_off;
2957 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2958
2959 /* Function: section_is_overlay (SECTION)
2960 Returns true if SECTION has VMA not equal to LMA, ie.
2961 SECTION is loaded at an address different from where it will "run". */
2962
2963 int
2964 section_is_overlay (struct obj_section *section)
2965 {
2966 if (overlay_debugging && section)
2967 {
2968 asection *bfd_section = section->the_bfd_section;
2969
2970 if (bfd_section_lma (abfd, bfd_section) != 0
2971 && bfd_section_lma (abfd, bfd_section)
2972 != bfd_section_vma (abfd, bfd_section))
2973 return 1;
2974 }
2975
2976 return 0;
2977 }
2978
2979 /* Function: overlay_invalidate_all (void)
2980 Invalidate the mapped state of all overlay sections (mark it as stale). */
2981
2982 static void
2983 overlay_invalidate_all (void)
2984 {
2985 struct obj_section *sect;
2986
2987 for (objfile *objfile : current_program_space->objfiles ())
2988 ALL_OBJFILE_OSECTIONS (objfile, sect)
2989 if (section_is_overlay (sect))
2990 sect->ovly_mapped = -1;
2991 }
2992
2993 /* Function: section_is_mapped (SECTION)
2994 Returns true if section is an overlay, and is currently mapped.
2995
2996 Access to the ovly_mapped flag is restricted to this function, so
2997 that we can do automatic update. If the global flag
2998 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2999 overlay_invalidate_all. If the mapped state of the particular
3000 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3001
3002 int
3003 section_is_mapped (struct obj_section *osect)
3004 {
3005 struct gdbarch *gdbarch;
3006
3007 if (osect == 0 || !section_is_overlay (osect))
3008 return 0;
3009
3010 switch (overlay_debugging)
3011 {
3012 default:
3013 case ovly_off:
3014 return 0; /* overlay debugging off */
3015 case ovly_auto: /* overlay debugging automatic */
3016 /* Unles there is a gdbarch_overlay_update function,
3017 there's really nothing useful to do here (can't really go auto). */
3018 gdbarch = get_objfile_arch (osect->objfile);
3019 if (gdbarch_overlay_update_p (gdbarch))
3020 {
3021 if (overlay_cache_invalid)
3022 {
3023 overlay_invalidate_all ();
3024 overlay_cache_invalid = 0;
3025 }
3026 if (osect->ovly_mapped == -1)
3027 gdbarch_overlay_update (gdbarch, osect);
3028 }
3029 /* fall thru */
3030 case ovly_on: /* overlay debugging manual */
3031 return osect->ovly_mapped == 1;
3032 }
3033 }
3034
3035 /* Function: pc_in_unmapped_range
3036 If PC falls into the lma range of SECTION, return true, else false. */
3037
3038 CORE_ADDR
3039 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3040 {
3041 if (section_is_overlay (section))
3042 {
3043 bfd *abfd = section->objfile->obfd;
3044 asection *bfd_section = section->the_bfd_section;
3045
3046 /* We assume the LMA is relocated by the same offset as the VMA. */
3047 bfd_vma size = bfd_get_section_size (bfd_section);
3048 CORE_ADDR offset = obj_section_offset (section);
3049
3050 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3051 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3052 return 1;
3053 }
3054
3055 return 0;
3056 }
3057
3058 /* Function: pc_in_mapped_range
3059 If PC falls into the vma range of SECTION, return true, else false. */
3060
3061 CORE_ADDR
3062 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3063 {
3064 if (section_is_overlay (section))
3065 {
3066 if (obj_section_addr (section) <= pc
3067 && pc < obj_section_endaddr (section))
3068 return 1;
3069 }
3070
3071 return 0;
3072 }
3073
3074 /* Return true if the mapped ranges of sections A and B overlap, false
3075 otherwise. */
3076
3077 static int
3078 sections_overlap (struct obj_section *a, struct obj_section *b)
3079 {
3080 CORE_ADDR a_start = obj_section_addr (a);
3081 CORE_ADDR a_end = obj_section_endaddr (a);
3082 CORE_ADDR b_start = obj_section_addr (b);
3083 CORE_ADDR b_end = obj_section_endaddr (b);
3084
3085 return (a_start < b_end && b_start < a_end);
3086 }
3087
3088 /* Function: overlay_unmapped_address (PC, SECTION)
3089 Returns the address corresponding to PC in the unmapped (load) range.
3090 May be the same as PC. */
3091
3092 CORE_ADDR
3093 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3094 {
3095 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3096 {
3097 asection *bfd_section = section->the_bfd_section;
3098
3099 return pc + bfd_section_lma (abfd, bfd_section)
3100 - bfd_section_vma (abfd, bfd_section);
3101 }
3102
3103 return pc;
3104 }
3105
3106 /* Function: overlay_mapped_address (PC, SECTION)
3107 Returns the address corresponding to PC in the mapped (runtime) range.
3108 May be the same as PC. */
3109
3110 CORE_ADDR
3111 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3112 {
3113 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3114 {
3115 asection *bfd_section = section->the_bfd_section;
3116
3117 return pc + bfd_section_vma (abfd, bfd_section)
3118 - bfd_section_lma (abfd, bfd_section);
3119 }
3120
3121 return pc;
3122 }
3123
3124 /* Function: symbol_overlayed_address
3125 Return one of two addresses (relative to the VMA or to the LMA),
3126 depending on whether the section is mapped or not. */
3127
3128 CORE_ADDR
3129 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3130 {
3131 if (overlay_debugging)
3132 {
3133 /* If the symbol has no section, just return its regular address. */
3134 if (section == 0)
3135 return address;
3136 /* If the symbol's section is not an overlay, just return its
3137 address. */
3138 if (!section_is_overlay (section))
3139 return address;
3140 /* If the symbol's section is mapped, just return its address. */
3141 if (section_is_mapped (section))
3142 return address;
3143 /*
3144 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3145 * then return its LOADED address rather than its vma address!!
3146 */
3147 return overlay_unmapped_address (address, section);
3148 }
3149 return address;
3150 }
3151
3152 /* Function: find_pc_overlay (PC)
3153 Return the best-match overlay section for PC:
3154 If PC matches a mapped overlay section's VMA, return that section.
3155 Else if PC matches an unmapped section's VMA, return that section.
3156 Else if PC matches an unmapped section's LMA, return that section. */
3157
3158 struct obj_section *
3159 find_pc_overlay (CORE_ADDR pc)
3160 {
3161 struct obj_section *osect, *best_match = NULL;
3162
3163 if (overlay_debugging)
3164 {
3165 for (objfile *objfile : current_program_space->objfiles ())
3166 ALL_OBJFILE_OSECTIONS (objfile, osect)
3167 if (section_is_overlay (osect))
3168 {
3169 if (pc_in_mapped_range (pc, osect))
3170 {
3171 if (section_is_mapped (osect))
3172 return osect;
3173 else
3174 best_match = osect;
3175 }
3176 else if (pc_in_unmapped_range (pc, osect))
3177 best_match = osect;
3178 }
3179 }
3180 return best_match;
3181 }
3182
3183 /* Function: find_pc_mapped_section (PC)
3184 If PC falls into the VMA address range of an overlay section that is
3185 currently marked as MAPPED, return that section. Else return NULL. */
3186
3187 struct obj_section *
3188 find_pc_mapped_section (CORE_ADDR pc)
3189 {
3190 struct obj_section *osect;
3191
3192 if (overlay_debugging)
3193 {
3194 for (objfile *objfile : current_program_space->objfiles ())
3195 ALL_OBJFILE_OSECTIONS (objfile, osect)
3196 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3197 return osect;
3198 }
3199
3200 return NULL;
3201 }
3202
3203 /* Function: list_overlays_command
3204 Print a list of mapped sections and their PC ranges. */
3205
3206 static void
3207 list_overlays_command (const char *args, int from_tty)
3208 {
3209 int nmapped = 0;
3210 struct obj_section *osect;
3211
3212 if (overlay_debugging)
3213 {
3214 for (objfile *objfile : current_program_space->objfiles ())
3215 ALL_OBJFILE_OSECTIONS (objfile, osect)
3216 if (section_is_mapped (osect))
3217 {
3218 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3219 const char *name;
3220 bfd_vma lma, vma;
3221 int size;
3222
3223 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3224 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3225 size = bfd_get_section_size (osect->the_bfd_section);
3226 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3227
3228 printf_filtered ("Section %s, loaded at ", name);
3229 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3230 puts_filtered (" - ");
3231 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3232 printf_filtered (", mapped at ");
3233 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3234 puts_filtered (" - ");
3235 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3236 puts_filtered ("\n");
3237
3238 nmapped++;
3239 }
3240 }
3241 if (nmapped == 0)
3242 printf_filtered (_("No sections are mapped.\n"));
3243 }
3244
3245 /* Function: map_overlay_command
3246 Mark the named section as mapped (ie. residing at its VMA address). */
3247
3248 static void
3249 map_overlay_command (const char *args, int from_tty)
3250 {
3251 struct obj_section *sec, *sec2;
3252
3253 if (!overlay_debugging)
3254 error (_("Overlay debugging not enabled. Use "
3255 "either the 'overlay auto' or\n"
3256 "the 'overlay manual' command."));
3257
3258 if (args == 0 || *args == 0)
3259 error (_("Argument required: name of an overlay section"));
3260
3261 /* First, find a section matching the user supplied argument. */
3262 for (objfile *obj_file : current_program_space->objfiles ())
3263 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3264 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3265 args))
3266 {
3267 /* Now, check to see if the section is an overlay. */
3268 if (!section_is_overlay (sec))
3269 continue; /* not an overlay section */
3270
3271 /* Mark the overlay as "mapped". */
3272 sec->ovly_mapped = 1;
3273
3274 /* Next, make a pass and unmap any sections that are
3275 overlapped by this new section: */
3276 for (objfile *objfile2 : current_program_space->objfiles ())
3277 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3278 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3279 sec2))
3280 {
3281 if (info_verbose)
3282 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3283 bfd_section_name (obj_file->obfd,
3284 sec2->the_bfd_section));
3285 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3286 }
3287 return;
3288 }
3289 error (_("No overlay section called %s"), args);
3290 }
3291
3292 /* Function: unmap_overlay_command
3293 Mark the overlay section as unmapped
3294 (ie. resident in its LMA address range, rather than the VMA range). */
3295
3296 static void
3297 unmap_overlay_command (const char *args, int from_tty)
3298 {
3299 struct obj_section *sec = NULL;
3300
3301 if (!overlay_debugging)
3302 error (_("Overlay debugging not enabled. "
3303 "Use either the 'overlay auto' or\n"
3304 "the 'overlay manual' command."));
3305
3306 if (args == 0 || *args == 0)
3307 error (_("Argument required: name of an overlay section"));
3308
3309 /* First, find a section matching the user supplied argument. */
3310 for (objfile *objfile : current_program_space->objfiles ())
3311 ALL_OBJFILE_OSECTIONS (objfile, sec)
3312 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3313 {
3314 if (!sec->ovly_mapped)
3315 error (_("Section %s is not mapped"), args);
3316 sec->ovly_mapped = 0;
3317 return;
3318 }
3319 error (_("No overlay section called %s"), args);
3320 }
3321
3322 /* Function: overlay_auto_command
3323 A utility command to turn on overlay debugging.
3324 Possibly this should be done via a set/show command. */
3325
3326 static void
3327 overlay_auto_command (const char *args, int from_tty)
3328 {
3329 overlay_debugging = ovly_auto;
3330 enable_overlay_breakpoints ();
3331 if (info_verbose)
3332 printf_unfiltered (_("Automatic overlay debugging enabled."));
3333 }
3334
3335 /* Function: overlay_manual_command
3336 A utility command to turn on overlay debugging.
3337 Possibly this should be done via a set/show command. */
3338
3339 static void
3340 overlay_manual_command (const char *args, int from_tty)
3341 {
3342 overlay_debugging = ovly_on;
3343 disable_overlay_breakpoints ();
3344 if (info_verbose)
3345 printf_unfiltered (_("Overlay debugging enabled."));
3346 }
3347
3348 /* Function: overlay_off_command
3349 A utility command to turn on overlay debugging.
3350 Possibly this should be done via a set/show command. */
3351
3352 static void
3353 overlay_off_command (const char *args, int from_tty)
3354 {
3355 overlay_debugging = ovly_off;
3356 disable_overlay_breakpoints ();
3357 if (info_verbose)
3358 printf_unfiltered (_("Overlay debugging disabled."));
3359 }
3360
3361 static void
3362 overlay_load_command (const char *args, int from_tty)
3363 {
3364 struct gdbarch *gdbarch = get_current_arch ();
3365
3366 if (gdbarch_overlay_update_p (gdbarch))
3367 gdbarch_overlay_update (gdbarch, NULL);
3368 else
3369 error (_("This target does not know how to read its overlay state."));
3370 }
3371
3372 /* Function: overlay_command
3373 A place-holder for a mis-typed command. */
3374
3375 /* Command list chain containing all defined "overlay" subcommands. */
3376 static struct cmd_list_element *overlaylist;
3377
3378 static void
3379 overlay_command (const char *args, int from_tty)
3380 {
3381 printf_unfiltered
3382 ("\"overlay\" must be followed by the name of an overlay command.\n");
3383 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3384 }
3385
3386 /* Target Overlays for the "Simplest" overlay manager:
3387
3388 This is GDB's default target overlay layer. It works with the
3389 minimal overlay manager supplied as an example by Cygnus. The
3390 entry point is via a function pointer "gdbarch_overlay_update",
3391 so targets that use a different runtime overlay manager can
3392 substitute their own overlay_update function and take over the
3393 function pointer.
3394
3395 The overlay_update function pokes around in the target's data structures
3396 to see what overlays are mapped, and updates GDB's overlay mapping with
3397 this information.
3398
3399 In this simple implementation, the target data structures are as follows:
3400 unsigned _novlys; /# number of overlay sections #/
3401 unsigned _ovly_table[_novlys][4] = {
3402 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3403 {..., ..., ..., ...},
3404 }
3405 unsigned _novly_regions; /# number of overlay regions #/
3406 unsigned _ovly_region_table[_novly_regions][3] = {
3407 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3408 {..., ..., ...},
3409 }
3410 These functions will attempt to update GDB's mappedness state in the
3411 symbol section table, based on the target's mappedness state.
3412
3413 To do this, we keep a cached copy of the target's _ovly_table, and
3414 attempt to detect when the cached copy is invalidated. The main
3415 entry point is "simple_overlay_update(SECT), which looks up SECT in
3416 the cached table and re-reads only the entry for that section from
3417 the target (whenever possible). */
3418
3419 /* Cached, dynamically allocated copies of the target data structures: */
3420 static unsigned (*cache_ovly_table)[4] = 0;
3421 static unsigned cache_novlys = 0;
3422 static CORE_ADDR cache_ovly_table_base = 0;
3423 enum ovly_index
3424 {
3425 VMA, OSIZE, LMA, MAPPED
3426 };
3427
3428 /* Throw away the cached copy of _ovly_table. */
3429
3430 static void
3431 simple_free_overlay_table (void)
3432 {
3433 if (cache_ovly_table)
3434 xfree (cache_ovly_table);
3435 cache_novlys = 0;
3436 cache_ovly_table = NULL;
3437 cache_ovly_table_base = 0;
3438 }
3439
3440 /* Read an array of ints of size SIZE from the target into a local buffer.
3441 Convert to host order. int LEN is number of ints. */
3442
3443 static void
3444 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3445 int len, int size, enum bfd_endian byte_order)
3446 {
3447 /* FIXME (alloca): Not safe if array is very large. */
3448 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3449 int i;
3450
3451 read_memory (memaddr, buf, len * size);
3452 for (i = 0; i < len; i++)
3453 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3454 }
3455
3456 /* Find and grab a copy of the target _ovly_table
3457 (and _novlys, which is needed for the table's size). */
3458
3459 static int
3460 simple_read_overlay_table (void)
3461 {
3462 struct bound_minimal_symbol novlys_msym;
3463 struct bound_minimal_symbol ovly_table_msym;
3464 struct gdbarch *gdbarch;
3465 int word_size;
3466 enum bfd_endian byte_order;
3467
3468 simple_free_overlay_table ();
3469 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3470 if (! novlys_msym.minsym)
3471 {
3472 error (_("Error reading inferior's overlay table: "
3473 "couldn't find `_novlys' variable\n"
3474 "in inferior. Use `overlay manual' mode."));
3475 return 0;
3476 }
3477
3478 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3479 if (! ovly_table_msym.minsym)
3480 {
3481 error (_("Error reading inferior's overlay table: couldn't find "
3482 "`_ovly_table' array\n"
3483 "in inferior. Use `overlay manual' mode."));
3484 return 0;
3485 }
3486
3487 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3488 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3489 byte_order = gdbarch_byte_order (gdbarch);
3490
3491 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3492 4, byte_order);
3493 cache_ovly_table
3494 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3495 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3496 read_target_long_array (cache_ovly_table_base,
3497 (unsigned int *) cache_ovly_table,
3498 cache_novlys * 4, word_size, byte_order);
3499
3500 return 1; /* SUCCESS */
3501 }
3502
3503 /* Function: simple_overlay_update_1
3504 A helper function for simple_overlay_update. Assuming a cached copy
3505 of _ovly_table exists, look through it to find an entry whose vma,
3506 lma and size match those of OSECT. Re-read the entry and make sure
3507 it still matches OSECT (else the table may no longer be valid).
3508 Set OSECT's mapped state to match the entry. Return: 1 for
3509 success, 0 for failure. */
3510
3511 static int
3512 simple_overlay_update_1 (struct obj_section *osect)
3513 {
3514 int i;
3515 asection *bsect = osect->the_bfd_section;
3516 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3517 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3518 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3519
3520 for (i = 0; i < cache_novlys; i++)
3521 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3522 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3523 {
3524 read_target_long_array (cache_ovly_table_base + i * word_size,
3525 (unsigned int *) cache_ovly_table[i],
3526 4, word_size, byte_order);
3527 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3528 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3529 {
3530 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3531 return 1;
3532 }
3533 else /* Warning! Warning! Target's ovly table has changed! */
3534 return 0;
3535 }
3536 return 0;
3537 }
3538
3539 /* Function: simple_overlay_update
3540 If OSECT is NULL, then update all sections' mapped state
3541 (after re-reading the entire target _ovly_table).
3542 If OSECT is non-NULL, then try to find a matching entry in the
3543 cached ovly_table and update only OSECT's mapped state.
3544 If a cached entry can't be found or the cache isn't valid, then
3545 re-read the entire cache, and go ahead and update all sections. */
3546
3547 void
3548 simple_overlay_update (struct obj_section *osect)
3549 {
3550 /* Were we given an osect to look up? NULL means do all of them. */
3551 if (osect)
3552 /* Have we got a cached copy of the target's overlay table? */
3553 if (cache_ovly_table != NULL)
3554 {
3555 /* Does its cached location match what's currently in the
3556 symtab? */
3557 struct bound_minimal_symbol minsym
3558 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3559
3560 if (minsym.minsym == NULL)
3561 error (_("Error reading inferior's overlay table: couldn't "
3562 "find `_ovly_table' array\n"
3563 "in inferior. Use `overlay manual' mode."));
3564
3565 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3566 /* Then go ahead and try to look up this single section in
3567 the cache. */
3568 if (simple_overlay_update_1 (osect))
3569 /* Found it! We're done. */
3570 return;
3571 }
3572
3573 /* Cached table no good: need to read the entire table anew.
3574 Or else we want all the sections, in which case it's actually
3575 more efficient to read the whole table in one block anyway. */
3576
3577 if (! simple_read_overlay_table ())
3578 return;
3579
3580 /* Now may as well update all sections, even if only one was requested. */
3581 for (objfile *objfile : current_program_space->objfiles ())
3582 ALL_OBJFILE_OSECTIONS (objfile, osect)
3583 if (section_is_overlay (osect))
3584 {
3585 int i;
3586 asection *bsect = osect->the_bfd_section;
3587
3588 for (i = 0; i < cache_novlys; i++)
3589 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3590 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3591 { /* obj_section matches i'th entry in ovly_table. */
3592 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3593 break; /* finished with inner for loop: break out. */
3594 }
3595 }
3596 }
3597
3598 /* Set the output sections and output offsets for section SECTP in
3599 ABFD. The relocation code in BFD will read these offsets, so we
3600 need to be sure they're initialized. We map each section to itself,
3601 with no offset; this means that SECTP->vma will be honored. */
3602
3603 static void
3604 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3605 {
3606 sectp->output_section = sectp;
3607 sectp->output_offset = 0;
3608 }
3609
3610 /* Default implementation for sym_relocate. */
3611
3612 bfd_byte *
3613 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3614 bfd_byte *buf)
3615 {
3616 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3617 DWO file. */
3618 bfd *abfd = sectp->owner;
3619
3620 /* We're only interested in sections with relocation
3621 information. */
3622 if ((sectp->flags & SEC_RELOC) == 0)
3623 return NULL;
3624
3625 /* We will handle section offsets properly elsewhere, so relocate as if
3626 all sections begin at 0. */
3627 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3628
3629 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3630 }
3631
3632 /* Relocate the contents of a debug section SECTP in ABFD. The
3633 contents are stored in BUF if it is non-NULL, or returned in a
3634 malloc'd buffer otherwise.
3635
3636 For some platforms and debug info formats, shared libraries contain
3637 relocations against the debug sections (particularly for DWARF-2;
3638 one affected platform is PowerPC GNU/Linux, although it depends on
3639 the version of the linker in use). Also, ELF object files naturally
3640 have unresolved relocations for their debug sections. We need to apply
3641 the relocations in order to get the locations of symbols correct.
3642 Another example that may require relocation processing, is the
3643 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3644 debug section. */
3645
3646 bfd_byte *
3647 symfile_relocate_debug_section (struct objfile *objfile,
3648 asection *sectp, bfd_byte *buf)
3649 {
3650 gdb_assert (objfile->sf->sym_relocate);
3651
3652 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3653 }
3654
3655 struct symfile_segment_data *
3656 get_symfile_segment_data (bfd *abfd)
3657 {
3658 const struct sym_fns *sf = find_sym_fns (abfd);
3659
3660 if (sf == NULL)
3661 return NULL;
3662
3663 return sf->sym_segments (abfd);
3664 }
3665
3666 void
3667 free_symfile_segment_data (struct symfile_segment_data *data)
3668 {
3669 xfree (data->segment_bases);
3670 xfree (data->segment_sizes);
3671 xfree (data->segment_info);
3672 xfree (data);
3673 }
3674
3675 /* Given:
3676 - DATA, containing segment addresses from the object file ABFD, and
3677 the mapping from ABFD's sections onto the segments that own them,
3678 and
3679 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3680 segment addresses reported by the target,
3681 store the appropriate offsets for each section in OFFSETS.
3682
3683 If there are fewer entries in SEGMENT_BASES than there are segments
3684 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3685
3686 If there are more entries, then ignore the extra. The target may
3687 not be able to distinguish between an empty data segment and a
3688 missing data segment; a missing text segment is less plausible. */
3689
3690 int
3691 symfile_map_offsets_to_segments (bfd *abfd,
3692 const struct symfile_segment_data *data,
3693 struct section_offsets *offsets,
3694 int num_segment_bases,
3695 const CORE_ADDR *segment_bases)
3696 {
3697 int i;
3698 asection *sect;
3699
3700 /* It doesn't make sense to call this function unless you have some
3701 segment base addresses. */
3702 gdb_assert (num_segment_bases > 0);
3703
3704 /* If we do not have segment mappings for the object file, we
3705 can not relocate it by segments. */
3706 gdb_assert (data != NULL);
3707 gdb_assert (data->num_segments > 0);
3708
3709 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3710 {
3711 int which = data->segment_info[i];
3712
3713 gdb_assert (0 <= which && which <= data->num_segments);
3714
3715 /* Don't bother computing offsets for sections that aren't
3716 loaded as part of any segment. */
3717 if (! which)
3718 continue;
3719
3720 /* Use the last SEGMENT_BASES entry as the address of any extra
3721 segments mentioned in DATA->segment_info. */
3722 if (which > num_segment_bases)
3723 which = num_segment_bases;
3724
3725 offsets->offsets[i] = (segment_bases[which - 1]
3726 - data->segment_bases[which - 1]);
3727 }
3728
3729 return 1;
3730 }
3731
3732 static void
3733 symfile_find_segment_sections (struct objfile *objfile)
3734 {
3735 bfd *abfd = objfile->obfd;
3736 int i;
3737 asection *sect;
3738 struct symfile_segment_data *data;
3739
3740 data = get_symfile_segment_data (objfile->obfd);
3741 if (data == NULL)
3742 return;
3743
3744 if (data->num_segments != 1 && data->num_segments != 2)
3745 {
3746 free_symfile_segment_data (data);
3747 return;
3748 }
3749
3750 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3751 {
3752 int which = data->segment_info[i];
3753
3754 if (which == 1)
3755 {
3756 if (objfile->sect_index_text == -1)
3757 objfile->sect_index_text = sect->index;
3758
3759 if (objfile->sect_index_rodata == -1)
3760 objfile->sect_index_rodata = sect->index;
3761 }
3762 else if (which == 2)
3763 {
3764 if (objfile->sect_index_data == -1)
3765 objfile->sect_index_data = sect->index;
3766
3767 if (objfile->sect_index_bss == -1)
3768 objfile->sect_index_bss = sect->index;
3769 }
3770 }
3771
3772 free_symfile_segment_data (data);
3773 }
3774
3775 /* Listen for free_objfile events. */
3776
3777 static void
3778 symfile_free_objfile (struct objfile *objfile)
3779 {
3780 /* Remove the target sections owned by this objfile. */
3781 if (objfile != NULL)
3782 remove_target_sections ((void *) objfile);
3783 }
3784
3785 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3786 Expand all symtabs that match the specified criteria.
3787 See quick_symbol_functions.expand_symtabs_matching for details. */
3788
3789 void
3790 expand_symtabs_matching
3791 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3792 const lookup_name_info &lookup_name,
3793 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3794 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3795 enum search_domain kind)
3796 {
3797 for (objfile *objfile : current_program_space->objfiles ())
3798 {
3799 if (objfile->sf)
3800 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3801 lookup_name,
3802 symbol_matcher,
3803 expansion_notify, kind);
3804 }
3805 }
3806
3807 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3808 Map function FUN over every file.
3809 See quick_symbol_functions.map_symbol_filenames for details. */
3810
3811 void
3812 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3813 int need_fullname)
3814 {
3815 for (objfile *objfile : current_program_space->objfiles ())
3816 {
3817 if (objfile->sf)
3818 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3819 need_fullname);
3820 }
3821 }
3822
3823 #if GDB_SELF_TEST
3824
3825 namespace selftests {
3826 namespace filename_language {
3827
3828 static void test_filename_language ()
3829 {
3830 /* This test messes up the filename_language_table global. */
3831 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3832
3833 /* Test deducing an unknown extension. */
3834 language lang = deduce_language_from_filename ("myfile.blah");
3835 SELF_CHECK (lang == language_unknown);
3836
3837 /* Test deducing a known extension. */
3838 lang = deduce_language_from_filename ("myfile.c");
3839 SELF_CHECK (lang == language_c);
3840
3841 /* Test adding a new extension using the internal API. */
3842 add_filename_language (".blah", language_pascal);
3843 lang = deduce_language_from_filename ("myfile.blah");
3844 SELF_CHECK (lang == language_pascal);
3845 }
3846
3847 static void
3848 test_set_ext_lang_command ()
3849 {
3850 /* This test messes up the filename_language_table global. */
3851 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3852
3853 /* Confirm that the .hello extension is not known. */
3854 language lang = deduce_language_from_filename ("cake.hello");
3855 SELF_CHECK (lang == language_unknown);
3856
3857 /* Test adding a new extension using the CLI command. */
3858 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3859 ext_args = args_holder.get ();
3860 set_ext_lang_command (NULL, 1, NULL);
3861
3862 lang = deduce_language_from_filename ("cake.hello");
3863 SELF_CHECK (lang == language_rust);
3864
3865 /* Test overriding an existing extension using the CLI command. */
3866 int size_before = filename_language_table.size ();
3867 args_holder.reset (xstrdup (".hello pascal"));
3868 ext_args = args_holder.get ();
3869 set_ext_lang_command (NULL, 1, NULL);
3870 int size_after = filename_language_table.size ();
3871
3872 lang = deduce_language_from_filename ("cake.hello");
3873 SELF_CHECK (lang == language_pascal);
3874 SELF_CHECK (size_before == size_after);
3875 }
3876
3877 } /* namespace filename_language */
3878 } /* namespace selftests */
3879
3880 #endif /* GDB_SELF_TEST */
3881
3882 void
3883 _initialize_symfile (void)
3884 {
3885 struct cmd_list_element *c;
3886
3887 gdb::observers::free_objfile.attach (symfile_free_objfile);
3888
3889 #define READNOW_READNEVER_HELP \
3890 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3891 immediately. This makes the command slower, but may make future operations\n\
3892 faster.\n\
3893 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3894 symbolic debug information."
3895
3896 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3897 Load symbol table from executable file FILE.\n\
3898 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3899 OFF is an optional offset which is added to each section address.\n\
3900 The `file' command can also load symbol tables, as well as setting the file\n\
3901 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3902 set_cmd_completer (c, filename_completer);
3903
3904 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3905 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3906 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3907 [-s SECT-NAME SECT-ADDR]...\n\
3908 ADDR is the starting address of the file's text.\n\
3909 Each '-s' argument provides a section name and address, and\n\
3910 should be specified if the data and bss segments are not contiguous\n\
3911 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3912 OFF is an optional offset which is added to the default load addresses\n\
3913 of all sections for which no other address was specified.\n"
3914 READNOW_READNEVER_HELP),
3915 &cmdlist);
3916 set_cmd_completer (c, filename_completer);
3917
3918 c = add_cmd ("remove-symbol-file", class_files,
3919 remove_symbol_file_command, _("\
3920 Remove a symbol file added via the add-symbol-file command.\n\
3921 Usage: remove-symbol-file FILENAME\n\
3922 remove-symbol-file -a ADDRESS\n\
3923 The file to remove can be identified by its filename or by an address\n\
3924 that lies within the boundaries of this symbol file in memory."),
3925 &cmdlist);
3926
3927 c = add_cmd ("load", class_files, load_command, _("\
3928 Dynamically load FILE into the running program, and record its symbols\n\
3929 for access from GDB.\n\
3930 Usage: load [FILE] [OFFSET]\n\
3931 An optional load OFFSET may also be given as a literal address.\n\
3932 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3933 on its own."), &cmdlist);
3934 set_cmd_completer (c, filename_completer);
3935
3936 add_prefix_cmd ("overlay", class_support, overlay_command,
3937 _("Commands for debugging overlays."), &overlaylist,
3938 "overlay ", 0, &cmdlist);
3939
3940 add_com_alias ("ovly", "overlay", class_alias, 1);
3941 add_com_alias ("ov", "overlay", class_alias, 1);
3942
3943 add_cmd ("map-overlay", class_support, map_overlay_command,
3944 _("Assert that an overlay section is mapped."), &overlaylist);
3945
3946 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3947 _("Assert that an overlay section is unmapped."), &overlaylist);
3948
3949 add_cmd ("list-overlays", class_support, list_overlays_command,
3950 _("List mappings of overlay sections."), &overlaylist);
3951
3952 add_cmd ("manual", class_support, overlay_manual_command,
3953 _("Enable overlay debugging."), &overlaylist);
3954 add_cmd ("off", class_support, overlay_off_command,
3955 _("Disable overlay debugging."), &overlaylist);
3956 add_cmd ("auto", class_support, overlay_auto_command,
3957 _("Enable automatic overlay debugging."), &overlaylist);
3958 add_cmd ("load-target", class_support, overlay_load_command,
3959 _("Read the overlay mapping state from the target."), &overlaylist);
3960
3961 /* Filename extension to source language lookup table: */
3962 add_setshow_string_noescape_cmd ("extension-language", class_files,
3963 &ext_args, _("\
3964 Set mapping between filename extension and source language."), _("\
3965 Show mapping between filename extension and source language."), _("\
3966 Usage: set extension-language .foo bar"),
3967 set_ext_lang_command,
3968 show_ext_args,
3969 &setlist, &showlist);
3970
3971 add_info ("extensions", info_ext_lang_command,
3972 _("All filename extensions associated with a source language."));
3973
3974 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3975 &debug_file_directory, _("\
3976 Set the directories where separate debug symbols are searched for."), _("\
3977 Show the directories where separate debug symbols are searched for."), _("\
3978 Separate debug symbols are first searched for in the same\n\
3979 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3980 and lastly at the path of the directory of the binary with\n\
3981 each global debug-file-directory component prepended."),
3982 NULL,
3983 show_debug_file_directory,
3984 &setlist, &showlist);
3985
3986 add_setshow_enum_cmd ("symbol-loading", no_class,
3987 print_symbol_loading_enums, &print_symbol_loading,
3988 _("\
3989 Set printing of symbol loading messages."), _("\
3990 Show printing of symbol loading messages."), _("\
3991 off == turn all messages off\n\
3992 brief == print messages for the executable,\n\
3993 and brief messages for shared libraries\n\
3994 full == print messages for the executable,\n\
3995 and messages for each shared library."),
3996 NULL,
3997 NULL,
3998 &setprintlist, &showprintlist);
3999
4000 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4001 &separate_debug_file_debug, _("\
4002 Set printing of separate debug info file search debug."), _("\
4003 Show printing of separate debug info file search debug."), _("\
4004 When on, GDB prints the searched locations while looking for separate debug \
4005 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4006
4007 #if GDB_SELF_TEST
4008 selftests::register_test
4009 ("filename_language", selftests::filename_language::test_filename_language);
4010 selftests::register_test
4011 ("set_ext_lang_command",
4012 selftests::filename_language::test_set_ext_lang_command);
4013 #endif
4014 }