]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
libsframe: fix error code in sframe_decode
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2025 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "arch-utils.h"
23 #include "cli/cli-cmds.h"
24 #include "extract-store-integer.h"
25 #include "gdbsupport/gdb_vecs.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "breakpoint.h"
35 #include "language.h"
36 #include "complaints.h"
37 #include "inferior.h"
38 #include "regcache.h"
39 #include "filenames.h"
40 #include "gdbsupport/gdb_obstack.h"
41 #include "completer.h"
42 #include "readline/tilde.h"
43 #include "block.h"
44 #include "observable.h"
45 #include "exec.h"
46 #include "varobj.h"
47 #include "solib.h"
48 #include "stack.h"
49 #include "gdb_bfd.h"
50 #include "cli/cli-utils.h"
51 #include "gdbsupport/byte-vector.h"
52 #include "gdbsupport/pathstuff.h"
53 #include "gdbsupport/selftest.h"
54 #include "cli/cli-style.h"
55 #include "gdbsupport/forward-scope-exit.h"
56 #include "gdbsupport/buildargv.h"
57
58 #include <sys/types.h>
59 #include <fcntl.h>
60 #include <sys/stat.h>
61 #include <ctype.h>
62 #include <chrono>
63 #include <algorithm>
64
65 int (*deprecated_ui_load_progress_hook) (const char *section,
66 unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74
75 using clear_symtab_users_cleanup
76 = FORWARD_SCOPE_EXIT (clear_symtab_users);
77
78 /* Global variables owned by this file. */
79
80 /* See symfile.h. */
81
82 int readnow_symbol_files;
83
84 /* See symfile.h. */
85
86 int readnever_symbol_files;
87
88 /* Functions this file defines. */
89
90 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
91 objfile_flags flags, CORE_ADDR reloff);
92
93 static const struct sym_fns *find_sym_fns (bfd *);
94
95 static void simple_free_overlay_table (void);
96
97 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
99
100 static int simple_read_overlay_table (void);
101
102 static int simple_overlay_update_1 (struct obj_section *);
103
104 static void symfile_find_segment_sections (struct objfile *objfile);
105
106 /* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
108 prepared to read. */
109
110 struct registered_sym_fns
111 {
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
121 };
122
123 static std::vector<registered_sym_fns> symtab_fns;
124
125 /* Values for "set print symbol-loading". */
126
127 const char print_symbol_loading_off[] = "off";
128 const char print_symbol_loading_brief[] = "brief";
129 const char print_symbol_loading_full[] = "full";
130 static const char *print_symbol_loading_enums[] =
131 {
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136 };
137 static const char *print_symbol_loading = print_symbol_loading_full;
138
139 /* See symfile.h. */
140
141 bool auto_solib_add = true;
142 \f
143
144 /* Return non-zero if symbol-loading messages should be printed.
145 FROM_TTY is the standard from_tty argument to gdb commands.
146 If EXEC is non-zero the messages are for the executable.
147 Otherwise, messages are for shared libraries.
148 If FULL is non-zero then the caller is printing a detailed message.
149 E.g., the message includes the shared library name.
150 Otherwise, the caller is printing a brief "summary" message. */
151
152 int
153 print_symbol_loading_p (int from_tty, int exec, int full)
154 {
155 if (!from_tty && !info_verbose)
156 return 0;
157
158 if (exec)
159 {
160 /* We don't check FULL for executables, there are few such
161 messages, therefore brief == full. */
162 return print_symbol_loading != print_symbol_loading_off;
163 }
164 if (full)
165 return print_symbol_loading == print_symbol_loading_full;
166 return print_symbol_loading == print_symbol_loading_brief;
167 }
168
169 /* True if we are reading a symbol table. */
170
171 int currently_reading_symtab = 0;
172
173 /* Increment currently_reading_symtab and return a cleanup that can be
174 used to decrement it. */
175
176 scoped_restore_tmpl<int>
177 increment_reading_symtab (void)
178 {
179 gdb_assert (currently_reading_symtab >= 0);
180 return make_scoped_restore (&currently_reading_symtab,
181 currently_reading_symtab + 1);
182 }
183
184 /* Remember the lowest-addressed loadable section we've seen.
185
186 In case of equal vmas, the section with the largest size becomes the
187 lowest-addressed loadable section.
188
189 If the vmas and sizes are equal, the last section is considered the
190 lowest-addressed loadable section. */
191
192 static void
193 find_lowest_section (asection *sect, asection **lowest)
194 {
195 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
196 return;
197 if (!*lowest)
198 *lowest = sect; /* First loadable section */
199 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
200 *lowest = sect; /* A lower loadable section */
201 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
202 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
203 *lowest = sect;
204 }
205
206 /* Build (allocate and populate) a section_addr_info struct from
207 an existing section table. */
208
209 section_addr_info
210 build_section_addr_info_from_section_table (const std::vector<target_section> &table)
211 {
212 section_addr_info sap;
213
214 for (const target_section &stp : table)
215 {
216 struct bfd_section *asect = stp.the_bfd_section;
217 bfd *abfd = asect->owner;
218
219 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
220 && sap.size () < table.size ())
221 sap.emplace_back (stp.addr,
222 bfd_section_name (asect),
223 gdb_bfd_section_index (abfd, asect));
224 }
225
226 return sap;
227 }
228
229 /* Create a section_addr_info from section offsets in ABFD. */
230
231 static section_addr_info
232 build_section_addr_info_from_bfd (bfd *abfd)
233 {
234 struct bfd_section *sec;
235
236 section_addr_info sap;
237 for (sec = abfd->sections; sec != NULL; sec = sec->next)
238 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
239 sap.emplace_back (bfd_section_vma (sec),
240 bfd_section_name (sec),
241 gdb_bfd_section_index (abfd, sec));
242
243 return sap;
244 }
245
246 /* Create a section_addr_info from section offsets in OBJFILE. */
247
248 section_addr_info
249 build_section_addr_info_from_objfile (const struct objfile *objfile)
250 {
251 int i;
252
253 /* Before reread_symbols gets rewritten it is not safe to call:
254 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
255 */
256 section_addr_info sap
257 = build_section_addr_info_from_bfd (objfile->obfd.get ());
258 for (i = 0; i < sap.size (); i++)
259 {
260 int sectindex = sap[i].sectindex;
261
262 sap[i].addr += objfile->section_offsets[sectindex];
263 }
264 return sap;
265 }
266
267 /* Initialize OBJFILE's sect_index_* members. */
268
269 static void
270 init_objfile_sect_indices (struct objfile *objfile)
271 {
272 asection *sect;
273 int i;
274
275 sect = bfd_get_section_by_name (objfile->obfd.get (), ".text");
276 if (sect)
277 objfile->sect_index_text = sect->index;
278
279 sect = bfd_get_section_by_name (objfile->obfd.get (), ".data");
280 if (sect)
281 objfile->sect_index_data = sect->index;
282
283 sect = bfd_get_section_by_name (objfile->obfd.get (), ".bss");
284 if (sect)
285 objfile->sect_index_bss = sect->index;
286
287 sect = bfd_get_section_by_name (objfile->obfd.get (), ".rodata");
288 if (sect)
289 objfile->sect_index_rodata = sect->index;
290
291 /* This is where things get really weird... We MUST have valid
292 indices for the various sect_index_* members or gdb will abort.
293 So if for example, there is no ".text" section, we have to
294 accommodate that. First, check for a file with the standard
295 one or two segments. */
296
297 symfile_find_segment_sections (objfile);
298
299 /* Except when explicitly adding symbol files at some address,
300 section_offsets contains nothing but zeros, so it doesn't matter
301 which slot in section_offsets the individual sect_index_* members
302 index into. So if they are all zero, it is safe to just point
303 all the currently uninitialized indices to the first slot. But
304 beware: if this is the main executable, it may be relocated
305 later, e.g. by the remote qOffsets packet, and then this will
306 be wrong! That's why we try segments first. */
307
308 for (i = 0; i < objfile->section_offsets.size (); i++)
309 {
310 if (objfile->section_offsets[i] != 0)
311 {
312 break;
313 }
314 }
315 if (i == objfile->section_offsets.size ())
316 {
317 if (objfile->sect_index_text == -1)
318 objfile->sect_index_text = 0;
319 if (objfile->sect_index_data == -1)
320 objfile->sect_index_data = 0;
321 if (objfile->sect_index_bss == -1)
322 objfile->sect_index_bss = 0;
323 if (objfile->sect_index_rodata == -1)
324 objfile->sect_index_rodata = 0;
325 }
326 }
327
328 /* Find a unique offset to use for loadable section SECT if
329 the user did not provide an offset. */
330
331 static void
332 place_section (bfd *abfd, asection *sect, section_offsets &offsets,
333 CORE_ADDR &lowest)
334 {
335 CORE_ADDR start_addr;
336 int done;
337 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
338
339 /* We are only interested in allocated sections. */
340 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
341 return;
342
343 /* If the user specified an offset, honor it. */
344 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
345 return;
346
347 /* Otherwise, let's try to find a place for the section. */
348 start_addr = (lowest + align - 1) & -align;
349
350 do {
351 asection *cur_sec;
352
353 done = 1;
354
355 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
356 {
357 int indx = cur_sec->index;
358
359 /* We don't need to compare against ourself. */
360 if (cur_sec == sect)
361 continue;
362
363 /* We can only conflict with allocated sections. */
364 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
365 continue;
366
367 /* If the section offset is 0, either the section has not been placed
368 yet, or it was the lowest section placed (in which case LOWEST
369 will be past its end). */
370 if (offsets[indx] == 0)
371 continue;
372
373 /* If this section would overlap us, then we must move up. */
374 if (start_addr + bfd_section_size (sect) > offsets[indx]
375 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
376 {
377 start_addr = offsets[indx] + bfd_section_size (cur_sec);
378 start_addr = (start_addr + align - 1) & -align;
379 done = 0;
380 break;
381 }
382
383 /* Otherwise, we appear to be OK. So far. */
384 }
385 }
386 while (!done);
387
388 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
389 lowest = start_addr + bfd_section_size (sect);
390 }
391
392 /* Store section_addr_info as prepared (made relative and with SECTINDEX
393 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
394
395 void
396 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
397 const section_addr_info &addrs)
398 {
399 int i;
400
401 section_offsets.assign (section_offsets.size (), 0);
402
403 /* Now calculate offsets for section that were specified by the caller. */
404 for (i = 0; i < addrs.size (); i++)
405 {
406 const struct other_sections *osp;
407
408 osp = &addrs[i];
409 if (osp->sectindex == -1)
410 continue;
411
412 /* Record all sections in offsets. */
413 /* The section_offsets in the objfile are here filled in using
414 the BFD index. */
415 section_offsets[osp->sectindex] = osp->addr;
416 }
417 }
418
419 /* Transform section name S for a name comparison. prelink can split section
420 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
421 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
422 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
423 (`.sbss') section has invalid (increased) virtual address. */
424
425 static const char *
426 addr_section_name (const char *s)
427 {
428 if (strcmp (s, ".dynbss") == 0)
429 return ".bss";
430 if (strcmp (s, ".sdynbss") == 0)
431 return ".sbss";
432
433 return s;
434 }
435
436 /* std::sort comparator for addrs_section_sort. Sort entries in
437 ascending order by their (name, sectindex) pair. sectindex makes
438 the sort by name stable. */
439
440 static bool
441 addrs_section_compar (const struct other_sections *a,
442 const struct other_sections *b)
443 {
444 int retval;
445
446 retval = strcmp (addr_section_name (a->name.c_str ()),
447 addr_section_name (b->name.c_str ()));
448 if (retval != 0)
449 return retval < 0;
450
451 return a->sectindex < b->sectindex;
452 }
453
454 /* Provide sorted array of pointers to sections of ADDRS. */
455
456 static std::vector<const struct other_sections *>
457 addrs_section_sort (const section_addr_info &addrs)
458 {
459 int i;
460
461 std::vector<const struct other_sections *> array (addrs.size ());
462 for (i = 0; i < addrs.size (); i++)
463 array[i] = &addrs[i];
464
465 std::sort (array.begin (), array.end (), addrs_section_compar);
466
467 return array;
468 }
469
470 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
471 also SECTINDEXes specific to ABFD there. This function can be used to
472 rebase ADDRS to start referencing different BFD than before. */
473
474 void
475 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
476 {
477 asection *lower_sect;
478 CORE_ADDR lower_offset;
479 int i;
480
481 /* Find lowest loadable section to be used as starting point for
482 contiguous sections. */
483 lower_sect = NULL;
484 for (asection *iter : gdb_bfd_sections (abfd))
485 find_lowest_section (iter, &lower_sect);
486 if (lower_sect == NULL)
487 {
488 warning (_("no loadable sections found in added symbol-file %s"),
489 bfd_get_filename (abfd));
490 lower_offset = 0;
491 }
492 else
493 lower_offset = bfd_section_vma (lower_sect);
494
495 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
496 in ABFD. Section names are not unique - there can be multiple sections of
497 the same name. Also the sections of the same name do not have to be
498 adjacent to each other. Some sections may be present only in one of the
499 files. Even sections present in both files do not have to be in the same
500 order.
501
502 Use stable sort by name for the sections in both files. Then linearly
503 scan both lists matching as most of the entries as possible. */
504
505 std::vector<const struct other_sections *> addrs_sorted
506 = addrs_section_sort (*addrs);
507
508 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
509 std::vector<const struct other_sections *> abfd_addrs_sorted
510 = addrs_section_sort (abfd_addrs);
511
512 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
513 ABFD_ADDRS_SORTED. */
514
515 std::vector<const struct other_sections *>
516 addrs_to_abfd_addrs (addrs->size (), nullptr);
517
518 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
519 = abfd_addrs_sorted.begin ();
520 for (const other_sections *sect : addrs_sorted)
521 {
522 const char *sect_name = addr_section_name (sect->name.c_str ());
523
524 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
525 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
526 sect_name) < 0)
527 abfd_sorted_iter++;
528
529 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
530 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
531 sect_name) == 0)
532 {
533 int index_in_addrs;
534
535 /* Make the found item directly addressable from ADDRS. */
536 index_in_addrs = sect - addrs->data ();
537 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
538 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
539
540 /* Never use the same ABFD entry twice. */
541 abfd_sorted_iter++;
542 }
543 }
544
545 /* Calculate offsets for the loadable sections.
546 FIXME! Sections must be in order of increasing loadable section
547 so that contiguous sections can use the lower-offset!!!
548
549 Adjust offsets if the segments are not contiguous.
550 If the section is contiguous, its offset should be set to
551 the offset of the highest loadable section lower than it
552 (the loadable section directly below it in memory).
553 this_offset = lower_offset = lower_addr - lower_orig_addr */
554
555 for (i = 0; i < addrs->size (); i++)
556 {
557 const struct other_sections *sect = addrs_to_abfd_addrs[i];
558
559 if (sect)
560 {
561 /* This is the index used by BFD. */
562 (*addrs)[i].sectindex = sect->sectindex;
563
564 if ((*addrs)[i].addr != 0)
565 {
566 (*addrs)[i].addr -= sect->addr;
567 lower_offset = (*addrs)[i].addr;
568 }
569 else
570 (*addrs)[i].addr = lower_offset;
571 }
572 else
573 {
574 /* addr_section_name transformation is not used for SECT_NAME. */
575 const std::string &sect_name = (*addrs)[i].name;
576
577 /* This section does not exist in ABFD, which is normally
578 unexpected and we want to issue a warning.
579
580 However, the ELF prelinker does create a few sections which are
581 marked in the main executable as loadable (they are loaded in
582 memory from the DYNAMIC segment) and yet are not present in
583 separate debug info files. This is fine, and should not cause
584 a warning. Shared libraries contain just the section
585 ".gnu.liblist" but it is not marked as loadable there. There is
586 no other way to identify them than by their name as the sections
587 created by prelink have no special flags.
588
589 For the sections `.bss' and `.sbss' see addr_section_name. */
590
591 if (!(sect_name == ".gnu.liblist"
592 || sect_name == ".gnu.conflict"
593 || (sect_name == ".bss"
594 && i > 0
595 && (*addrs)[i - 1].name == ".dynbss"
596 && addrs_to_abfd_addrs[i - 1] != NULL)
597 || (sect_name == ".sbss"
598 && i > 0
599 && (*addrs)[i - 1].name == ".sdynbss"
600 && addrs_to_abfd_addrs[i - 1] != NULL)))
601 warning (_("section %s not found in %s"), sect_name.c_str (),
602 bfd_get_filename (abfd));
603
604 (*addrs)[i].addr = 0;
605 (*addrs)[i].sectindex = -1;
606 }
607 }
608 }
609
610 /* Parse the user's idea of an offset for dynamic linking, into our idea
611 of how to represent it for fast symbol reading. This is the default
612 version of the sym_fns.sym_offsets function for symbol readers that
613 don't need to do anything special. It allocates a section_offsets table
614 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
615
616 void
617 default_symfile_offsets (struct objfile *objfile,
618 const section_addr_info &addrs)
619 {
620 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd.get ()));
621 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
622
623 /* For relocatable files, all loadable sections will start at zero.
624 The zero is meaningless, so try to pick arbitrary addresses such
625 that no loadable sections overlap. This algorithm is quadratic,
626 but the number of sections in a single object file is generally
627 small. */
628 if ((bfd_get_file_flags (objfile->obfd.get ()) & (EXEC_P | DYNAMIC)) == 0)
629 {
630 bfd *abfd = objfile->obfd.get ();
631 asection *cur_sec;
632
633 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
634 /* We do not expect this to happen; just skip this step if the
635 relocatable file has a section with an assigned VMA. */
636 if (bfd_section_vma (cur_sec) != 0)
637 break;
638
639 if (cur_sec == NULL)
640 {
641 section_offsets &offsets = objfile->section_offsets;
642
643 /* Pick non-overlapping offsets for sections the user did not
644 place explicitly. */
645 CORE_ADDR lowest = 0;
646 for (asection *sect : gdb_bfd_sections (objfile->obfd.get ()))
647 place_section (objfile->obfd.get (), sect, objfile->section_offsets,
648 lowest);
649
650 /* Correctly filling in the section offsets is not quite
651 enough. Relocatable files have two properties that
652 (most) shared objects do not:
653
654 - Their debug information will contain relocations. Some
655 shared libraries do also, but many do not, so this can not
656 be assumed.
657
658 - If there are multiple code sections they will be loaded
659 at different relative addresses in memory than they are
660 in the objfile, since all sections in the file will start
661 at address zero.
662
663 Because GDB has very limited ability to map from an
664 address in debug info to the correct code section,
665 it relies on adding SECT_OFF_TEXT to things which might be
666 code. If we clear all the section offsets, and set the
667 section VMAs instead, then symfile_relocate_debug_section
668 will return meaningful debug information pointing at the
669 correct sections.
670
671 GDB has too many different data structures for section
672 addresses - a bfd, objfile, and so_list all have section
673 tables, as does exec_ops. Some of these could probably
674 be eliminated. */
675
676 for (cur_sec = abfd->sections; cur_sec != NULL;
677 cur_sec = cur_sec->next)
678 {
679 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
680 continue;
681
682 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
683 exec_set_section_address (bfd_get_filename (abfd),
684 cur_sec->index,
685 offsets[cur_sec->index]);
686 offsets[cur_sec->index] = 0;
687 }
688 }
689 }
690
691 /* Remember the bfd indexes for the .text, .data, .bss and
692 .rodata sections. */
693 init_objfile_sect_indices (objfile);
694 }
695
696 /* Divide the file into segments, which are individual relocatable units.
697 This is the default version of the sym_fns.sym_segments function for
698 symbol readers that do not have an explicit representation of segments.
699 It assumes that object files do not have segments, and fully linked
700 files have a single segment. */
701
702 symfile_segment_data_up
703 default_symfile_segments (bfd *abfd)
704 {
705 int num_sections, i;
706 asection *sect;
707 CORE_ADDR low, high;
708
709 /* Relocatable files contain enough information to position each
710 loadable section independently; they should not be relocated
711 in segments. */
712 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
713 return NULL;
714
715 /* Make sure there is at least one loadable section in the file. */
716 for (sect = abfd->sections; sect != NULL; sect = sect->next)
717 {
718 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
719 continue;
720
721 break;
722 }
723 if (sect == NULL)
724 return NULL;
725
726 low = bfd_section_vma (sect);
727 high = low + bfd_section_size (sect);
728
729 symfile_segment_data_up data (new symfile_segment_data);
730
731 num_sections = bfd_count_sections (abfd);
732
733 /* All elements are initialized to 0 (map to no segment). */
734 data->segment_info.resize (num_sections);
735
736 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
737 {
738 CORE_ADDR vma;
739
740 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
741 continue;
742
743 vma = bfd_section_vma (sect);
744 if (vma < low)
745 low = vma;
746 if (vma + bfd_section_size (sect) > high)
747 high = vma + bfd_section_size (sect);
748
749 data->segment_info[i] = 1;
750 }
751
752 data->segments.emplace_back (low, high - low);
753
754 return data;
755 }
756
757 /* This is a convenience function to call sym_read for OBJFILE and
758 possibly force the partial symbols to be read. */
759
760 static void
761 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
762 {
763 (*objfile->sf->sym_read) (objfile, add_flags);
764 objfile->per_bfd->minsyms_read = true;
765
766 /* find_separate_debug_file_in_section should be called only if there is
767 single binary with no existing separate debug info file. */
768 if (!objfile->has_partial_symbols ()
769 && objfile->separate_debug_objfile == NULL
770 && objfile->separate_debug_objfile_backlink == NULL)
771 {
772 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
773
774 if (abfd != NULL)
775 {
776 /* find_separate_debug_file_in_section uses the same filename for the
777 virtual section-as-bfd like the bfd filename containing the
778 section. Therefore use also non-canonical name form for the same
779 file containing the section. */
780 symbol_file_add_separate (abfd, bfd_get_filename (abfd.get ()),
781 add_flags | SYMFILE_NOT_FILENAME, objfile);
782 }
783 }
784 }
785
786 /* Initialize entry point information for this objfile. */
787
788 static void
789 init_entry_point_info (struct objfile *objfile)
790 {
791 struct entry_info *ei = &objfile->per_bfd->ei;
792
793 if (ei->initialized)
794 return;
795 ei->initialized = 1;
796
797 /* Save startup file's range of PC addresses to help blockframe.c
798 decide where the bottom of the stack is. */
799
800 if (bfd_get_file_flags (objfile->obfd.get ()) & EXEC_P)
801 {
802 /* Executable file -- record its entry point so we'll recognize
803 the startup file because it contains the entry point. */
804 ei->entry_point = bfd_get_start_address (objfile->obfd.get ());
805 ei->entry_point_p = 1;
806 }
807 else if (bfd_get_file_flags (objfile->obfd.get ()) & DYNAMIC
808 && bfd_get_start_address (objfile->obfd.get ()) != 0)
809 {
810 /* Some shared libraries may have entry points set and be
811 runnable. There's no clear way to indicate this, so just check
812 for values other than zero. */
813 ei->entry_point = bfd_get_start_address (objfile->obfd.get ());
814 ei->entry_point_p = 1;
815 }
816 else
817 {
818 /* Examination of non-executable.o files. Short-circuit this stuff. */
819 ei->entry_point_p = 0;
820 }
821
822 if (ei->entry_point_p)
823 {
824 CORE_ADDR entry_point = ei->entry_point;
825 int found;
826
827 /* Make certain that the address points at real code, and not a
828 function descriptor. */
829 entry_point = gdbarch_convert_from_func_ptr_addr
830 (objfile->arch (), entry_point, current_inferior ()->top_target ());
831
832 /* Remove any ISA markers, so that this matches entries in the
833 symbol table. */
834 ei->entry_point
835 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
836
837 found = 0;
838 for (obj_section *osect : objfile->sections ())
839 {
840 struct bfd_section *sect = osect->the_bfd_section;
841
842 if (entry_point >= bfd_section_vma (sect)
843 && entry_point < (bfd_section_vma (sect)
844 + bfd_section_size (sect)))
845 {
846 ei->the_bfd_section_index
847 = gdb_bfd_section_index (objfile->obfd.get (), sect);
848 found = 1;
849 break;
850 }
851 }
852
853 if (!found)
854 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
855 }
856 }
857
858 /* Process a symbol file, as either the main file or as a dynamically
859 loaded file.
860
861 This function does not set the OBJFILE's entry-point info.
862
863 OBJFILE is where the symbols are to be read from.
864
865 ADDRS is the list of section load addresses. If the user has given
866 an 'add-symbol-file' command, then this is the list of offsets and
867 addresses he or she provided as arguments to the command; or, if
868 we're handling a shared library, these are the actual addresses the
869 sections are loaded at, according to the inferior's dynamic linker
870 (as gleaned by GDB's shared library code). We convert each address
871 into an offset from the section VMA's as it appears in the object
872 file, and then call the file's sym_offsets function to convert this
873 into a format-specific offset table --- a `section_offsets'.
874 The sectindex field is used to control the ordering of sections
875 with the same name. Upon return, it is updated to contain the
876 corresponding BFD section index, or -1 if the section was not found.
877
878 ADD_FLAGS encodes verbosity level, whether this is main symbol or
879 an extra symbol file such as dynamically loaded code, and whether
880 breakpoint reset should be deferred. */
881
882 static void
883 syms_from_objfile_1 (struct objfile *objfile,
884 section_addr_info *addrs,
885 symfile_add_flags add_flags)
886 {
887 section_addr_info local_addr;
888 const int mainline = add_flags & SYMFILE_MAINLINE;
889
890 /* If we can't find a sym_fns struct to read the objfile, we'll error
891 out, and should unlink the objfile from the program space. So this
892 should be declared before a find_sym_fns call. */
893 scoped_objfile_unlinker objfile_holder (objfile);
894
895 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd.get ()));
896 objfile->qf.clear ();
897
898 if (objfile->sf == NULL)
899 {
900 /* No symbols to load, but we still need to make sure
901 that the section_offsets table is allocated. */
902 int num_sections = gdb_bfd_count_sections (objfile->obfd.get ());
903
904 objfile->section_offsets.assign (num_sections, 0);
905
906 /* Release the objfile unique pointer, since nothing went wrong
907 in reading it. */
908 objfile_holder.release ();
909 return;
910 }
911
912 /* Make sure that partially constructed symbol tables will be cleaned up
913 if an error occurs during symbol reading. */
914 std::optional<clear_symtab_users_cleanup> defer_clear_users;
915
916 /* If ADDRS is NULL, put together a dummy address list.
917 We now establish the convention that an addr of zero means
918 no load address was specified. */
919 if (! addrs)
920 addrs = &local_addr;
921
922 if (mainline)
923 {
924 /* We will modify the main symbol table, make sure that all its users
925 will be cleaned up if an error occurs during symbol reading. */
926 defer_clear_users.emplace ((symfile_add_flag) 0);
927
928 /* Since no error yet, throw away the old symbol table. */
929
930 if (current_program_space->symfile_object_file != NULL)
931 {
932 current_program_space->symfile_object_file->unlink ();
933 gdb_assert (current_program_space->symfile_object_file == NULL);
934 }
935
936 /* Currently we keep symbols from the add-symbol-file command.
937 If the user wants to get rid of them, they should do "symbol-file"
938 without arguments first. Not sure this is the best behavior
939 (PR 2207). */
940
941 (*objfile->sf->sym_new_init) (objfile);
942 }
943
944 /* Convert addr into an offset rather than an absolute address.
945 We find the lowest address of a loaded segment in the objfile,
946 and assume that <addr> is where that got loaded.
947
948 We no longer warn if the lowest section is not a text segment (as
949 happens for the PA64 port. */
950 if (addrs->size () > 0)
951 addr_info_make_relative (addrs, objfile->obfd.get ());
952
953 /* Initialize symbol reading routines for this objfile, allow complaints to
954 appear for this new file, and record how verbose to be, then do the
955 initial symbol reading for this file. */
956
957 (*objfile->sf->sym_init) (objfile);
958 clear_complaints ();
959
960 (*objfile->sf->sym_offsets) (objfile, *addrs);
961
962 read_symbols (objfile, add_flags);
963
964 /* Discard cleanups as symbol reading was successful. */
965
966 objfile_holder.release ();
967 if (defer_clear_users)
968 defer_clear_users->release ();
969 }
970
971 /* Same as syms_from_objfile_1, but also initializes the objfile
972 entry-point info. */
973
974 static void
975 syms_from_objfile (struct objfile *objfile,
976 section_addr_info *addrs,
977 symfile_add_flags add_flags)
978 {
979 syms_from_objfile_1 (objfile, addrs, add_flags);
980 init_entry_point_info (objfile);
981 }
982
983 /* Perform required actions after either reading in the initial
984 symbols for a new objfile, or mapping in the symbols from a reusable
985 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
986
987 static void
988 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
989 {
990 /* If this is the main symbol file we have to clean up all users of the
991 old main symbol file. Otherwise it is sufficient to fixup all the
992 breakpoints that may have been redefined by this symbol file. */
993 if (add_flags & SYMFILE_MAINLINE)
994 {
995 /* OK, make it the "real" symbol file. */
996 current_program_space->symfile_object_file = objfile;
997
998 clear_symtab_users (add_flags);
999 }
1000 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1001 {
1002 breakpoint_re_set ();
1003 }
1004
1005 /* We're done reading the symbol file; finish off complaints. */
1006 clear_complaints ();
1007 }
1008
1009 /* Process a symbol file, as either the main file or as a dynamically
1010 loaded file.
1011
1012 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1013 A new reference is acquired by this function.
1014
1015 For NAME description see the objfile constructor.
1016
1017 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1018 extra, such as dynamically loaded code, and what to do with breakpoints.
1019
1020 ADDRS is as described for syms_from_objfile_1, above.
1021 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1022
1023 PARENT is the original objfile if ABFD is a separate debug info file.
1024 Otherwise PARENT is NULL.
1025
1026 Upon success, returns a pointer to the objfile that was added.
1027 Upon failure, jumps back to command level (never returns). */
1028
1029 static struct objfile *
1030 symbol_file_add_with_addrs (const gdb_bfd_ref_ptr &abfd, const char *name,
1031 symfile_add_flags add_flags,
1032 section_addr_info *addrs,
1033 objfile_flags flags, struct objfile *parent)
1034 {
1035 const int from_tty = add_flags & SYMFILE_VERBOSE;
1036 const int mainline = add_flags & SYMFILE_MAINLINE;
1037 const int always_confirm = add_flags & SYMFILE_ALWAYS_CONFIRM;
1038 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1039 && (readnow_symbol_files
1040 || (add_flags & SYMFILE_NO_READ) == 0));
1041
1042 if (readnow_symbol_files)
1043 {
1044 flags |= OBJF_READNOW;
1045 add_flags &= ~SYMFILE_NO_READ;
1046 }
1047 else if (readnever_symbol_files
1048 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1049 {
1050 flags |= OBJF_READNEVER;
1051 add_flags |= SYMFILE_NO_READ;
1052 }
1053 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1054 flags |= OBJF_NOT_FILENAME;
1055
1056 /* Give user a chance to burp if ALWAYS_CONFIRM or we'd be
1057 interactively wiping out any existing symbols. */
1058
1059 if (from_tty
1060 && (always_confirm
1061 || ((have_full_symbols (current_program_space)
1062 || have_partial_symbols (current_program_space))
1063 && mainline))
1064 && !query (_ ("Load new symbol table from \"%s\"? "), name))
1065 error (_("Not confirmed."));
1066
1067 if (mainline)
1068 flags |= OBJF_MAINLINE;
1069
1070 objfile *objfile
1071 = objfile::make (abfd, current_program_space, name, flags, parent);
1072
1073 /* We either created a new mapped symbol table, mapped an existing
1074 symbol table file which has not had initial symbol reading
1075 performed, or need to read an unmapped symbol table. */
1076 if (should_print)
1077 {
1078 if (deprecated_pre_add_symbol_hook)
1079 deprecated_pre_add_symbol_hook (name);
1080 else
1081 gdb_printf (_("Reading symbols from %ps...\n"),
1082 styled_string (file_name_style.style (), name));
1083 }
1084 syms_from_objfile (objfile, addrs, add_flags);
1085
1086 /* We now have at least a partial symbol table. Check to see if the
1087 user requested that all symbols be read on initial access via either
1088 the gdb startup command line or on a per symbol file basis. Expand
1089 all partial symbol tables for this objfile if so. */
1090
1091 if ((flags & OBJF_READNOW))
1092 {
1093 if (should_print)
1094 gdb_printf (_("Expanding full symbols from %ps...\n"),
1095 styled_string (file_name_style.style (), name));
1096
1097 objfile->expand_all_symtabs ();
1098 }
1099
1100 /* Note that we only print a message if we have no symbols and have
1101 no separate debug file. If there is a separate debug file which
1102 does not have symbols, we'll have emitted this message for that
1103 file, and so printing it twice is just redundant. */
1104 if (should_print && !objfile->has_symbols ()
1105 && objfile->separate_debug_objfile == nullptr)
1106 gdb_printf (_("(No debugging symbols found in %ps)\n"),
1107 styled_string (file_name_style.style (), name));
1108
1109 if (should_print)
1110 {
1111 if (deprecated_post_add_symbol_hook)
1112 deprecated_post_add_symbol_hook ();
1113 }
1114
1115 /* We print some messages regardless of whether 'from_tty ||
1116 info_verbose' is true, so make sure they go out at the right
1117 time. */
1118 gdb_flush (gdb_stdout);
1119
1120 if (objfile->sf != nullptr)
1121 finish_new_objfile (objfile, add_flags);
1122
1123 gdb::observers::new_objfile.notify (objfile);
1124
1125 return objfile;
1126 }
1127
1128 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1129 see the objfile constructor. */
1130
1131 void
1132 symbol_file_add_separate (const gdb_bfd_ref_ptr &bfd, const char *name,
1133 symfile_add_flags symfile_flags,
1134 struct objfile *objfile)
1135 {
1136 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1137 because sections of BFD may not match sections of OBJFILE and because
1138 vma may have been modified by tools such as prelink. */
1139 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1140
1141 symbol_file_add_with_addrs
1142 (bfd, name, symfile_flags, &sap,
1143 objfile->flags & (OBJF_SHARED | OBJF_READNOW
1144 | OBJF_USERLOADED | OBJF_MAINLINE),
1145 objfile);
1146 }
1147
1148 /* Process the symbol file ABFD, as either the main file or as a
1149 dynamically loaded file.
1150 See symbol_file_add_with_addrs's comments for details. */
1151
1152 struct objfile *
1153 symbol_file_add_from_bfd (const gdb_bfd_ref_ptr &abfd, const char *name,
1154 symfile_add_flags add_flags,
1155 section_addr_info *addrs,
1156 objfile_flags flags, struct objfile *parent)
1157 {
1158 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1159 parent);
1160 }
1161
1162 /* Process a symbol file, as either the main file or as a dynamically
1163 loaded file. See symbol_file_add_with_addrs's comments for details. */
1164
1165 struct objfile *
1166 symbol_file_add (const char *name, symfile_add_flags add_flags,
1167 section_addr_info *addrs, objfile_flags flags)
1168 {
1169 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1170
1171 return symbol_file_add_from_bfd (bfd, name, add_flags, addrs,
1172 flags, NULL);
1173 }
1174
1175 /* Call symbol_file_add() with default values and update whatever is
1176 affected by the loading of a new main().
1177 Used when the file is supplied in the gdb command line
1178 and by some targets with special loading requirements.
1179 The auxiliary function, symbol_file_add_main_1(), has the flags
1180 argument for the switches that can only be specified in the symbol_file
1181 command itself. */
1182
1183 void
1184 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1185 {
1186 symbol_file_add_main_1 (args, add_flags, 0, 0);
1187 }
1188
1189 static void
1190 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1191 objfile_flags flags, CORE_ADDR reloff)
1192 {
1193 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1194
1195 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1196 if (reloff != 0)
1197 objfile_rebase (objfile, reloff);
1198
1199 /* Getting new symbols may change our opinion about
1200 what is frameless. */
1201 reinit_frame_cache ();
1202
1203 if ((add_flags & SYMFILE_NO_READ) == 0)
1204 set_initial_language ();
1205 }
1206
1207 void
1208 symbol_file_clear (int from_tty)
1209 {
1210 if ((have_full_symbols (current_program_space)
1211 || have_partial_symbols (current_program_space))
1212 && from_tty
1213 && (current_program_space->symfile_object_file
1214 ? !query (_("Discard symbol table from `%s'? "),
1215 objfile_name (current_program_space->symfile_object_file))
1216 : !query (_("Discard symbol table? "))))
1217 error (_("Not confirmed."));
1218
1219 /* solib descriptors may have handles to objfiles. Wipe them before their
1220 objfiles get stale by free_all_objfiles. */
1221 no_shared_libraries (current_program_space);
1222
1223 current_program_space->free_all_objfiles ();
1224
1225 clear_symtab_users (0);
1226
1227 gdb_assert (current_program_space->symfile_object_file == NULL);
1228 if (from_tty)
1229 gdb_printf (_("No symbol file now.\n"));
1230 }
1231
1232 /* See symfile.h. */
1233
1234 bool separate_debug_file_debug = false;
1235
1236 static int
1237 separate_debug_file_exists (const std::string &name, unsigned long crc,
1238 struct objfile *parent_objfile,
1239 deferred_warnings *warnings)
1240 {
1241 SEPARATE_DEBUG_FILE_SCOPED_DEBUG_ENTER_EXIT;
1242
1243 unsigned long file_crc;
1244 int file_crc_p;
1245 struct stat parent_stat, abfd_stat;
1246 int verified_as_different;
1247
1248 /* Find a separate debug info file as if symbols would be present in
1249 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1250 section can contain just the basename of PARENT_OBJFILE without any
1251 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1252 the separate debug infos with the same basename can exist. */
1253
1254 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1255 return 0;
1256
1257 separate_debug_file_debug_printf ("Trying %s...", name.c_str ());
1258
1259 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget));
1260
1261 if (abfd == NULL)
1262 {
1263 separate_debug_file_debug_printf ("unable to open file");
1264 return 0;
1265 }
1266
1267 /* Verify symlinks were not the cause of filename_cmp name difference above.
1268
1269 Some operating systems, e.g. Windows, do not provide a meaningful
1270 st_ino; they always set it to zero. (Windows does provide a
1271 meaningful st_dev.) Files accessed from gdbservers that do not
1272 support the vFile:fstat packet will also have st_ino set to zero.
1273 Do not indicate a duplicate library in either case. While there
1274 is no guarantee that a system that provides meaningful inode
1275 numbers will never set st_ino to zero, this is merely an
1276 optimization, so we do not need to worry about false negatives. */
1277
1278 if (gdb_bfd_stat (abfd.get (), &abfd_stat) == 0
1279 && abfd_stat.st_ino != 0
1280 && gdb_bfd_stat (parent_objfile->obfd.get (), &parent_stat) == 0)
1281 {
1282 if (abfd_stat.st_dev == parent_stat.st_dev
1283 && abfd_stat.st_ino == parent_stat.st_ino)
1284 {
1285 separate_debug_file_debug_printf ("same file as the objfile");
1286 return 0;
1287 }
1288 verified_as_different = 1;
1289 }
1290 else
1291 verified_as_different = 0;
1292
1293 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1294
1295 if (!file_crc_p)
1296 {
1297 separate_debug_file_debug_printf ("error computing CRC");
1298 return 0;
1299 }
1300
1301 if (crc != file_crc)
1302 {
1303 unsigned long parent_crc;
1304
1305 /* If the files could not be verified as different with
1306 bfd_stat then we need to calculate the parent's CRC
1307 to verify whether the files are different or not. */
1308
1309 if (!verified_as_different)
1310 {
1311 if (!gdb_bfd_crc (parent_objfile->obfd.get (), &parent_crc))
1312 {
1313 separate_debug_file_debug_printf ("error computing CRC");
1314 return 0;
1315 }
1316 }
1317
1318 if (verified_as_different || parent_crc != file_crc)
1319 {
1320 separate_debug_file_debug_printf
1321 ("the debug information found in \"%s\" does not match "
1322 "\"%s\" (CRC mismatch).", name.c_str (),
1323 objfile_name (parent_objfile));
1324
1325 warnings->warn (_("the debug information found in \"%ps\""
1326 " does not match \"%ps\" (CRC mismatch)."),
1327 styled_string (file_name_style.style (),
1328 name.c_str ()),
1329 styled_string (file_name_style.style (),
1330 objfile_name (parent_objfile)));
1331 }
1332
1333 return 0;
1334 }
1335
1336 separate_debug_file_debug_printf ("found a match");
1337
1338 return 1;
1339 }
1340
1341 std::string debug_file_directory;
1342 static void
1343 show_debug_file_directory (struct ui_file *file, int from_tty,
1344 struct cmd_list_element *c, const char *value)
1345 {
1346 gdb_printf (file,
1347 _("The directory where separate debug "
1348 "symbols are searched for is \"%s\".\n"),
1349 value);
1350 }
1351
1352 #if ! defined (DEBUG_SUBDIRECTORY)
1353 #define DEBUG_SUBDIRECTORY ".debug"
1354 #endif
1355
1356 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1357 where the original file resides (may not be the same as
1358 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1359 looking for. CANON_DIR is the "realpath" form of DIR.
1360 DIR must contain a trailing '/'.
1361 Returns the path of the file with separate debug info, or an empty
1362 string.
1363
1364 Any warnings generated as part of the lookup process are added to
1365 WARNINGS. If some other mechanism can be used to lookup the debug
1366 information then the warning will not be shown, however, if GDB fails to
1367 find suitable debug information using any approach, then any warnings
1368 will be printed. */
1369
1370 static std::string
1371 find_separate_debug_file (const char *dir,
1372 const char *canon_dir,
1373 const char *debuglink,
1374 unsigned long crc32, struct objfile *objfile,
1375 deferred_warnings *warnings)
1376 {
1377 SEPARATE_DEBUG_FILE_SCOPED_DEBUG_START_END
1378 ("looking for separate debug info (debug link) for %s",
1379 objfile_name (objfile));
1380
1381 /* First try in the same directory as the original file. */
1382 std::string debugfile = path_join (dir, debuglink);
1383
1384 if (separate_debug_file_exists (debugfile, crc32, objfile, warnings))
1385 return debugfile;
1386
1387 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1388 debugfile = path_join (dir, DEBUG_SUBDIRECTORY, debuglink);
1389
1390 if (separate_debug_file_exists (debugfile, crc32, objfile, warnings))
1391 return debugfile;
1392
1393 /* Then try in the global debugfile directories.
1394
1395 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1396 cause "/..." lookups. */
1397
1398 bool target_prefix = is_target_filename (dir);
1399 const char *dir_notarget
1400 = target_prefix ? dir + strlen (TARGET_SYSROOT_PREFIX) : dir;
1401 const char *target_prefix_str = target_prefix ? TARGET_SYSROOT_PREFIX : "";
1402 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1403 = dirnames_to_char_ptr_vec (debug_file_directory.c_str ());
1404 const char *sysroot_str = gdb_sysroot.c_str ();
1405 if (is_target_filename (sysroot_str) && target_filesystem_is_local ())
1406 sysroot_str += strlen (TARGET_SYSROOT_PREFIX);
1407 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (sysroot_str);
1408
1409 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1410 convert the drive letter into a one-letter directory, so that the
1411 file name resulting from splicing below will be valid.
1412
1413 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1414 There are various remote-debugging scenarios where such a
1415 transformation of the drive letter might be required when GDB runs
1416 on a Posix host, see
1417
1418 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1419
1420 If some of those scenarios need to be supported, we will need to
1421 use a different condition for HAS_DRIVE_SPEC and a different macro
1422 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1423 std::string drive;
1424 if (HAS_DRIVE_SPEC (dir_notarget))
1425 {
1426 drive = dir_notarget[0];
1427 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1428 }
1429
1430 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1431 {
1432 debugfile = path_join (target_prefix_str, debugdir.get (),
1433 drive.c_str (), dir_notarget, debuglink);
1434
1435 if (separate_debug_file_exists (debugfile, crc32, objfile, warnings))
1436 return debugfile;
1437
1438 const char *base_path = NULL;
1439 if (canon_dir != NULL)
1440 {
1441 if (canon_sysroot.get () != NULL)
1442 base_path = child_path (canon_sysroot.get (), canon_dir);
1443 else
1444 base_path = child_path (gdb_sysroot.c_str (), canon_dir);
1445 }
1446 if (base_path != NULL)
1447 {
1448 /* If the file is in the sysroot, try using its base path in
1449 the global debugfile directory. */
1450 debugfile = path_join (target_prefix_str, debugdir.get (),
1451 base_path, debuglink);
1452
1453 if (separate_debug_file_exists (debugfile, crc32, objfile, warnings))
1454 return debugfile;
1455
1456 /* If the file is in the sysroot, try using its base path in
1457 the sysroot's global debugfile directory. */
1458 if (gdb_sysroot != TARGET_SYSROOT_PREFIX)
1459 {
1460 debugfile = path_join (gdb_sysroot.c_str (), debugdir.get (),
1461 base_path, debuglink);
1462
1463 if (separate_debug_file_exists (debugfile, crc32, objfile,
1464 warnings))
1465 return debugfile;
1466 }
1467 }
1468 }
1469
1470 return std::string ();
1471 }
1472
1473 /* Modify PATH to contain only "[/]directory/" part of PATH.
1474 If there were no directory separators in PATH, PATH will be empty
1475 string on return. */
1476
1477 static void
1478 terminate_after_last_dir_separator (char *path)
1479 {
1480 int i;
1481
1482 /* Strip off the final filename part, leaving the directory name,
1483 followed by a slash. The directory can be relative or absolute. */
1484 for (i = strlen(path) - 1; i >= 0; i--)
1485 if (IS_DIR_SEPARATOR (path[i]))
1486 break;
1487
1488 /* If I is -1 then no directory is present there and DIR will be "". */
1489 path[i + 1] = '\0';
1490 }
1491
1492 /* See symtab.h. */
1493
1494 std::string
1495 find_separate_debug_file_by_debuglink
1496 (struct objfile *objfile, deferred_warnings *warnings)
1497 {
1498 uint32_t crc32;
1499
1500 gdb::unique_xmalloc_ptr<char> debuglink
1501 (bfd_get_debug_link_info (objfile->obfd.get (), &crc32));
1502
1503 if (debuglink == NULL)
1504 {
1505 /* There's no separate debug info, hence there's no way we could
1506 load it => no warning. */
1507 return std::string ();
1508 }
1509
1510 std::string dir = objfile_name (objfile);
1511 terminate_after_last_dir_separator (&dir[0]);
1512 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1513
1514 std::string debugfile
1515 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1516 debuglink.get (), crc32, objfile,
1517 warnings);
1518
1519 if (debugfile.empty ())
1520 {
1521 /* For PR gdb/9538, try again with realpath (if different from the
1522 original). */
1523
1524 struct stat st_buf;
1525
1526 if (lstat (objfile_name (objfile), &st_buf) == 0
1527 && S_ISLNK (st_buf.st_mode))
1528 {
1529 gdb::unique_xmalloc_ptr<char> symlink_dir
1530 (lrealpath (objfile_name (objfile)));
1531 if (symlink_dir != NULL)
1532 {
1533 terminate_after_last_dir_separator (symlink_dir.get ());
1534 if (dir != symlink_dir.get ())
1535 {
1536 /* Different directory, so try using it. */
1537 debugfile = find_separate_debug_file (symlink_dir.get (),
1538 symlink_dir.get (),
1539 debuglink.get (),
1540 crc32,
1541 objfile,
1542 warnings);
1543 }
1544 }
1545 }
1546 }
1547
1548 return debugfile;
1549 }
1550
1551 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1552 simultaneously. */
1553
1554 static void
1555 validate_readnow_readnever (objfile_flags flags)
1556 {
1557 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1558 error (_("-readnow and -readnever cannot be used simultaneously"));
1559 }
1560
1561 /* See symfile.h. */
1562
1563 void
1564 symbol_file_command (const char *args, int from_tty)
1565 {
1566 dont_repeat ();
1567
1568 if (args == NULL)
1569 {
1570 symbol_file_clear (from_tty);
1571 }
1572 else
1573 {
1574 objfile_flags flags = OBJF_USERLOADED;
1575 symfile_add_flags add_flags = 0;
1576 char *name = NULL;
1577 bool stop_processing_options = false;
1578 CORE_ADDR offset = 0;
1579 int idx;
1580 char *arg;
1581
1582 if (from_tty)
1583 add_flags |= SYMFILE_VERBOSE;
1584
1585 gdb_argv built_argv (args);
1586 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1587 {
1588 if (stop_processing_options || *arg != '-')
1589 {
1590 if (name == NULL)
1591 name = arg;
1592 else
1593 error (_("Unrecognized argument \"%s\""), arg);
1594 }
1595 else if (strcmp (arg, "-readnow") == 0)
1596 flags |= OBJF_READNOW;
1597 else if (strcmp (arg, "-readnever") == 0)
1598 flags |= OBJF_READNEVER;
1599 else if (strcmp (arg, "-o") == 0)
1600 {
1601 arg = built_argv[++idx];
1602 if (arg == NULL)
1603 error (_("Missing argument to -o"));
1604
1605 offset = parse_and_eval_address (arg);
1606 }
1607 else if (strcmp (arg, "--") == 0)
1608 stop_processing_options = true;
1609 else
1610 error (_("Unrecognized argument \"%s\""), arg);
1611 }
1612
1613 if (name == NULL)
1614 error (_("no symbol file name was specified"));
1615
1616 validate_readnow_readnever (flags);
1617
1618 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1619 (Position Independent Executable) main symbol file will only be
1620 computed by the solib_create_inferior_hook below. Without it,
1621 breakpoint_re_set would fail to insert the breakpoints with the zero
1622 displacement. */
1623 add_flags |= SYMFILE_DEFER_BP_RESET;
1624
1625 symbol_file_add_main_1 (name, add_flags, flags, offset);
1626
1627 solib_create_inferior_hook (from_tty);
1628
1629 /* Now it's safe to re-add the breakpoints. */
1630 breakpoint_re_set ();
1631
1632 /* Also, it's safe to re-add varobjs. */
1633 varobj_re_set ();
1634 }
1635 }
1636
1637 /* Lazily set the initial language. */
1638
1639 static void
1640 set_initial_language_callback ()
1641 {
1642 enum language lang = main_language ();
1643 /* Make C the default language. */
1644 enum language default_lang = language_c;
1645
1646 if (lang == language_unknown)
1647 {
1648 const char *name = main_name ();
1649 struct symbol *sym
1650 = lookup_symbol_in_language (name, nullptr, SEARCH_FUNCTION_DOMAIN,
1651 default_lang, nullptr).symbol;
1652
1653 if (sym != NULL)
1654 lang = sym->language ();
1655 }
1656
1657 if (lang == language_unknown)
1658 {
1659 lang = default_lang;
1660 }
1661
1662 set_language (lang);
1663 expected_language = current_language; /* Don't warn the user. */
1664 }
1665
1666 /* Set the initial language. */
1667
1668 void
1669 set_initial_language (void)
1670 {
1671 if (language_mode == language_mode_manual)
1672 return;
1673 lazily_set_language (set_initial_language_callback);
1674 }
1675
1676 /* Open the file specified by NAME and hand it off to BFD for
1677 preliminary analysis. Return a newly initialized bfd *, which
1678 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1679 absolute). In case of trouble, error() is called. */
1680
1681 gdb_bfd_ref_ptr
1682 symfile_bfd_open (const char *name)
1683 {
1684 int desc = -1;
1685
1686 gdb::unique_xmalloc_ptr<char> absolute_name;
1687 if (!is_target_filename (name))
1688 {
1689 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1690
1691 /* Look down path for it, allocate 2nd new malloc'd copy. */
1692 desc = openp (getenv ("PATH"),
1693 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1694 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1695 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1696 if (desc < 0)
1697 {
1698 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1699
1700 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1701 desc = openp (getenv ("PATH"),
1702 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1703 exename, O_RDONLY | O_BINARY, &absolute_name);
1704 }
1705 #endif
1706 if (desc < 0)
1707 perror_with_name (expanded_name.get ());
1708
1709 name = absolute_name.get ();
1710 }
1711
1712 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1713 if (sym_bfd == NULL)
1714 error (_("`%s': can't open to read symbols: %s."), name,
1715 bfd_errmsg (bfd_get_error ()));
1716
1717 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1718 error (_("`%s': can't read symbols: %s."), name,
1719 bfd_errmsg (bfd_get_error ()));
1720
1721 return sym_bfd;
1722 }
1723
1724 /* See symfile.h. */
1725
1726 gdb_bfd_ref_ptr
1727 symfile_bfd_open_no_error (const char *name) noexcept
1728 {
1729 try
1730 {
1731 return symfile_bfd_open (name);
1732 }
1733 catch (const gdb_exception_error &err)
1734 {
1735 warning ("%s", err.what ());
1736 }
1737
1738 return nullptr;
1739 }
1740
1741 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1742 the section was not found. */
1743
1744 int
1745 get_section_index (struct objfile *objfile, const char *section_name)
1746 {
1747 asection *sect = bfd_get_section_by_name (objfile->obfd.get (), section_name);
1748
1749 if (sect)
1750 return sect->index;
1751 else
1752 return -1;
1753 }
1754
1755 /* Link SF into the global symtab_fns list.
1756 FLAVOUR is the file format that SF handles.
1757 Called on startup by the _initialize routine in each object file format
1758 reader, to register information about each format the reader is prepared
1759 to handle. */
1760
1761 void
1762 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1763 {
1764 symtab_fns.emplace_back (flavour, sf);
1765 }
1766
1767 /* Initialize OBJFILE to read symbols from its associated BFD. It
1768 either returns or calls error(). The result is an initialized
1769 struct sym_fns in the objfile structure, that contains cached
1770 information about the symbol file. */
1771
1772 static const struct sym_fns *
1773 find_sym_fns (bfd *abfd)
1774 {
1775 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1776
1777 if (our_flavour == bfd_target_srec_flavour
1778 || our_flavour == bfd_target_ihex_flavour
1779 || our_flavour == bfd_target_tekhex_flavour)
1780 return NULL; /* No symbols. */
1781
1782 for (const registered_sym_fns &rsf : symtab_fns)
1783 if (our_flavour == rsf.sym_flavour)
1784 return rsf.sym_fns;
1785
1786 error (_("Object file %s could not be read. Symbol format `%s' unknown."),
1787 abfd->filename, bfd_get_target (abfd));
1788 }
1789 \f
1790
1791 /* This function runs the load command of our current target. */
1792
1793 static void
1794 load_command (const char *arg, int from_tty)
1795 {
1796 dont_repeat ();
1797
1798 /* The user might be reloading because the binary has changed. Take
1799 this opportunity to check. */
1800 reopen_exec_file ();
1801 reread_symbols (from_tty);
1802
1803 std::string temp;
1804 if (arg == NULL)
1805 {
1806 const char *parg, *prev;
1807
1808 arg = current_program_space->exec_filename ();
1809 if (arg == nullptr)
1810 no_executable_specified_error ();
1811
1812 /* We may need to quote this string so buildargv can pull it
1813 apart. */
1814 prev = parg = arg;
1815 while ((parg = strpbrk (parg, "\\\"'\t ")))
1816 {
1817 temp.append (prev, parg - prev);
1818 prev = parg++;
1819 temp.push_back ('\\');
1820 }
1821 /* If we have not copied anything yet, then we didn't see a
1822 character to quote, and we can just leave ARG unchanged. */
1823 if (!temp.empty ())
1824 {
1825 temp.append (prev);
1826 arg = temp.c_str ();
1827 }
1828 }
1829
1830 target_load (arg, from_tty);
1831
1832 /* After re-loading the executable, we don't really know which
1833 overlays are mapped any more. */
1834 overlay_cache_invalid = 1;
1835 }
1836
1837 /* This version of "load" should be usable for any target. Currently
1838 it is just used for remote targets, not inftarg.c or core files,
1839 on the theory that only in that case is it useful.
1840
1841 Avoiding xmodem and the like seems like a win (a) because we don't have
1842 to worry about finding it, and (b) On VMS, fork() is very slow and so
1843 we don't want to run a subprocess. On the other hand, I'm not sure how
1844 performance compares. */
1845
1846 static int validate_download = 0;
1847
1848 /* Opaque data for load_progress. */
1849 struct load_progress_data
1850 {
1851 /* Cumulative data. */
1852 unsigned long write_count = 0;
1853 unsigned long data_count = 0;
1854 bfd_size_type total_size = 0;
1855 };
1856
1857 /* Opaque data for load_progress for a single section. */
1858 struct load_progress_section_data
1859 {
1860 load_progress_section_data (load_progress_data *cumulative_,
1861 const char *section_name_, ULONGEST section_size_,
1862 CORE_ADDR lma_, gdb_byte *buffer_)
1863 : cumulative (cumulative_), section_name (section_name_),
1864 section_size (section_size_), lma (lma_), buffer (buffer_)
1865 {}
1866
1867 struct load_progress_data *cumulative;
1868
1869 /* Per-section data. */
1870 const char *section_name;
1871 ULONGEST section_sent = 0;
1872 ULONGEST section_size;
1873 CORE_ADDR lma;
1874 gdb_byte *buffer;
1875 };
1876
1877 /* Opaque data for load_section_callback. */
1878 struct load_section_data
1879 {
1880 load_section_data (load_progress_data *progress_data_)
1881 : progress_data (progress_data_)
1882 {}
1883
1884 ~load_section_data ()
1885 {
1886 for (auto &&request : requests)
1887 {
1888 xfree (request.data);
1889 delete ((load_progress_section_data *) request.baton);
1890 }
1891 }
1892
1893 CORE_ADDR load_offset = 0;
1894 struct load_progress_data *progress_data;
1895 std::vector<struct memory_write_request> requests;
1896 };
1897
1898 /* Target write callback routine for progress reporting. */
1899
1900 static void
1901 load_progress (ULONGEST bytes, void *untyped_arg)
1902 {
1903 struct load_progress_section_data *args
1904 = (struct load_progress_section_data *) untyped_arg;
1905 struct load_progress_data *totals;
1906
1907 if (args == NULL)
1908 /* Writing padding data. No easy way to get at the cumulative
1909 stats, so just ignore this. */
1910 return;
1911
1912 totals = args->cumulative;
1913
1914 if (bytes == 0 && args->section_sent == 0)
1915 {
1916 /* The write is just starting. Let the user know we've started
1917 this section. */
1918 current_uiout->message ("Loading section %s, size %s lma %s\n",
1919 args->section_name,
1920 hex_string (args->section_size),
1921 paddress (current_inferior ()->arch (),
1922 args->lma));
1923 return;
1924 }
1925
1926 if (validate_download)
1927 {
1928 /* Broken memories and broken monitors manifest themselves here
1929 when bring new computers to life. This doubles already slow
1930 downloads. */
1931 /* NOTE: cagney/1999-10-18: A more efficient implementation
1932 might add a verify_memory() method to the target vector and
1933 then use that. remote.c could implement that method using
1934 the ``qCRC'' packet. */
1935 gdb::byte_vector check (bytes);
1936
1937 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1938 error (_("Download verify read failed at %s"),
1939 paddress (current_inferior ()->arch (), args->lma));
1940 if (memcmp (args->buffer, check.data (), bytes) != 0)
1941 error (_("Download verify compare failed at %s"),
1942 paddress (current_inferior ()->arch (), args->lma));
1943 }
1944 totals->data_count += bytes;
1945 args->lma += bytes;
1946 args->buffer += bytes;
1947 totals->write_count += 1;
1948 args->section_sent += bytes;
1949 if (check_quit_flag ()
1950 || (deprecated_ui_load_progress_hook != NULL
1951 && deprecated_ui_load_progress_hook (args->section_name,
1952 args->section_sent)))
1953 error (_("Canceled the download"));
1954
1955 if (deprecated_show_load_progress != NULL)
1956 deprecated_show_load_progress (args->section_name,
1957 args->section_sent,
1958 args->section_size,
1959 totals->data_count,
1960 totals->total_size);
1961 }
1962
1963 /* Service function for generic_load. */
1964
1965 static void
1966 load_one_section (bfd *abfd, asection *asec,
1967 struct load_section_data *args)
1968 {
1969 bfd_size_type size = bfd_section_size (asec);
1970 const char *sect_name = bfd_section_name (asec);
1971
1972 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1973 return;
1974
1975 if (size == 0)
1976 return;
1977
1978 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1979 ULONGEST end = begin + size;
1980 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1981 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1982
1983 load_progress_section_data *section_data
1984 = new load_progress_section_data (args->progress_data, sect_name, size,
1985 begin, buffer);
1986
1987 args->requests.emplace_back (begin, end, buffer, section_data);
1988 }
1989
1990 static void print_transfer_performance (struct ui_file *stream,
1991 unsigned long data_count,
1992 unsigned long write_count,
1993 std::chrono::steady_clock::duration d);
1994
1995 /* See symfile.h. */
1996
1997 void
1998 generic_load (const char *args, int from_tty)
1999 {
2000 struct load_progress_data total_progress;
2001 struct load_section_data cbdata (&total_progress);
2002 struct ui_out *uiout = current_uiout;
2003
2004 if (args == NULL)
2005 error_no_arg (_("file to load"));
2006
2007 gdb_argv argv (args);
2008
2009 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2010
2011 if (argv[1] != NULL)
2012 {
2013 const char *endptr;
2014
2015 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2016
2017 /* If the last word was not a valid number then
2018 treat it as a file name with spaces in. */
2019 if (argv[1] == endptr)
2020 error (_("Invalid download offset:%s."), argv[1]);
2021
2022 if (argv[2] != NULL)
2023 error (_("Too many parameters."));
2024 }
2025
2026 /* Open the file for loading. */
2027 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget));
2028 if (loadfile_bfd == NULL)
2029 perror_with_name (filename.get ());
2030
2031 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2032 {
2033 error (_("\"%s\" is not an object file: %s"), filename.get (),
2034 bfd_errmsg (bfd_get_error ()));
2035 }
2036
2037 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2038 total_progress.total_size += bfd_section_size (asec);
2039
2040 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2041 load_one_section (loadfile_bfd.get (), asec, &cbdata);
2042
2043 using namespace std::chrono;
2044
2045 steady_clock::time_point start_time = steady_clock::now ();
2046
2047 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2048 load_progress) != 0)
2049 error (_("Load failed"));
2050
2051 steady_clock::time_point end_time = steady_clock::now ();
2052
2053 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2054 entry = gdbarch_addr_bits_remove (current_inferior ()->arch (), entry);
2055 uiout->text ("Start address ");
2056 uiout->field_core_addr ("address", current_inferior ()->arch (), entry);
2057 uiout->text (", load size ");
2058 uiout->field_unsigned ("load-size", total_progress.data_count);
2059 uiout->text ("\n");
2060 regcache_write_pc (get_thread_regcache (inferior_thread ()), entry);
2061
2062 /* Reset breakpoints, now that we have changed the load image. For
2063 instance, breakpoints may have been set (or reset, by
2064 post_create_inferior) while connected to the target but before we
2065 loaded the program. In that case, the prologue analyzer could
2066 have read instructions from the target to find the right
2067 breakpoint locations. Loading has changed the contents of that
2068 memory. */
2069
2070 breakpoint_re_set ();
2071
2072 print_transfer_performance (gdb_stdout, total_progress.data_count,
2073 total_progress.write_count,
2074 end_time - start_time);
2075 }
2076
2077 /* Report on STREAM the performance of a memory transfer operation,
2078 such as 'load'. DATA_COUNT is the number of bytes transferred.
2079 WRITE_COUNT is the number of separate write operations, or 0, if
2080 that information is not available. TIME is how long the operation
2081 lasted. */
2082
2083 static void
2084 print_transfer_performance (struct ui_file *stream,
2085 unsigned long data_count,
2086 unsigned long write_count,
2087 std::chrono::steady_clock::duration time)
2088 {
2089 using namespace std::chrono;
2090 struct ui_out *uiout = current_uiout;
2091
2092 milliseconds ms = duration_cast<milliseconds> (time);
2093
2094 uiout->text ("Transfer rate: ");
2095 if (ms.count () > 0)
2096 {
2097 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2098
2099 if (uiout->is_mi_like_p ())
2100 {
2101 uiout->field_unsigned ("transfer-rate", rate * 8);
2102 uiout->text (" bits/sec");
2103 }
2104 else if (rate < 1024)
2105 {
2106 uiout->field_unsigned ("transfer-rate", rate);
2107 uiout->text (" bytes/sec");
2108 }
2109 else
2110 {
2111 uiout->field_unsigned ("transfer-rate", rate / 1024);
2112 uiout->text (" KB/sec");
2113 }
2114 }
2115 else
2116 {
2117 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2118 uiout->text (" bits in <1 sec");
2119 }
2120 if (write_count > 0)
2121 {
2122 uiout->text (", ");
2123 uiout->field_unsigned ("write-rate", data_count / write_count);
2124 uiout->text (" bytes/write");
2125 }
2126 uiout->text (".\n");
2127 }
2128
2129 /* Add an OFFSET to the start address of each section in OBJF, except
2130 sections that were specified in ADDRS. */
2131
2132 static void
2133 set_objfile_default_section_offset (struct objfile *objf,
2134 const section_addr_info &addrs,
2135 CORE_ADDR offset)
2136 {
2137 /* Add OFFSET to all sections by default. */
2138 section_offsets offsets (objf->section_offsets.size (), offset);
2139
2140 /* Create sorted lists of all sections in ADDRS as well as all
2141 sections in OBJF. */
2142
2143 std::vector<const struct other_sections *> addrs_sorted
2144 = addrs_section_sort (addrs);
2145
2146 section_addr_info objf_addrs
2147 = build_section_addr_info_from_objfile (objf);
2148 std::vector<const struct other_sections *> objf_addrs_sorted
2149 = addrs_section_sort (objf_addrs);
2150
2151 /* Walk the BFD section list, and if a matching section is found in
2152 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2153 unchanged.
2154
2155 Note that both lists may contain multiple sections with the same
2156 name, and then the sections from ADDRS are matched in BFD order
2157 (thanks to sectindex). */
2158
2159 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2160 = addrs_sorted.begin ();
2161 for (const other_sections *objf_sect : objf_addrs_sorted)
2162 {
2163 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2164 int cmp = -1;
2165
2166 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2167 {
2168 const struct other_sections *sect = *addrs_sorted_iter;
2169 const char *sect_name = addr_section_name (sect->name.c_str ());
2170 cmp = strcmp (sect_name, objf_name);
2171 if (cmp <= 0)
2172 ++addrs_sorted_iter;
2173 }
2174
2175 if (cmp == 0)
2176 offsets[objf_sect->sectindex] = 0;
2177 }
2178
2179 /* Apply the new section offsets. */
2180 objfile_relocate (objf, offsets);
2181 }
2182
2183 /* This function allows the addition of incrementally linked object files.
2184 It does not modify any state in the target, only in the debugger. */
2185
2186 static void
2187 add_symbol_file_command (const char *args, int from_tty)
2188 {
2189 struct gdbarch *gdbarch = get_current_arch ();
2190 gdb::unique_xmalloc_ptr<char> filename;
2191 char *arg;
2192 int argcnt = 0;
2193 struct objfile *objf;
2194 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2195 symfile_add_flags add_flags = 0;
2196
2197 if (from_tty)
2198 add_flags |= SYMFILE_VERBOSE;
2199
2200 struct sect_opt
2201 {
2202 const char *name;
2203 const char *value;
2204 };
2205
2206 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2207 bool stop_processing_options = false;
2208 CORE_ADDR offset = 0;
2209
2210 dont_repeat ();
2211
2212 if (args == NULL)
2213 error (_("add-symbol-file takes a file name and an address"));
2214
2215 bool seen_addr = false;
2216 bool seen_offset = false;
2217 gdb_argv argv (args);
2218
2219 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2220 {
2221 if (stop_processing_options || *arg != '-')
2222 {
2223 if (filename == NULL)
2224 {
2225 /* First non-option argument is always the filename. */
2226 filename.reset (tilde_expand (arg));
2227 }
2228 else if (!seen_addr)
2229 {
2230 /* The second non-option argument is always the text
2231 address at which to load the program. */
2232 sect_opts[0].value = arg;
2233 seen_addr = true;
2234 }
2235 else
2236 error (_("Unrecognized argument \"%s\""), arg);
2237 }
2238 else if (strcmp (arg, "-readnow") == 0)
2239 flags |= OBJF_READNOW;
2240 else if (strcmp (arg, "-readnever") == 0)
2241 flags |= OBJF_READNEVER;
2242 else if (strcmp (arg, "-s") == 0)
2243 {
2244 if (argv[argcnt + 1] == NULL)
2245 error (_("Missing section name after \"-s\""));
2246 else if (argv[argcnt + 2] == NULL)
2247 error (_("Missing section address after \"-s\""));
2248
2249 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2250
2251 sect_opts.push_back (sect);
2252 argcnt += 2;
2253 }
2254 else if (strcmp (arg, "-o") == 0)
2255 {
2256 arg = argv[++argcnt];
2257 if (arg == NULL)
2258 error (_("Missing argument to -o"));
2259
2260 offset = parse_and_eval_address (arg);
2261 seen_offset = true;
2262 }
2263 else if (strcmp (arg, "--") == 0)
2264 stop_processing_options = true;
2265 else
2266 error (_("Unrecognized argument \"%s\""), arg);
2267 }
2268
2269 if (filename == NULL)
2270 error (_("You must provide a filename to be loaded."));
2271
2272 validate_readnow_readnever (flags);
2273
2274 /* Print the prompt for the query below. And save the arguments into
2275 a sect_addr_info structure to be passed around to other
2276 functions. We have to split this up into separate print
2277 statements because hex_string returns a local static
2278 string. */
2279
2280 gdb_printf (_("add symbol table from file \"%ps\""),
2281 styled_string (file_name_style.style (), filename.get ()));
2282 section_addr_info section_addrs;
2283 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2284 if (!seen_addr)
2285 ++it;
2286 for (; it != sect_opts.end (); ++it)
2287 {
2288 CORE_ADDR addr;
2289 const char *val = it->value;
2290 const char *sec = it->name;
2291
2292 if (section_addrs.empty ())
2293 gdb_printf (_(" at\n"));
2294 addr = parse_and_eval_address (val);
2295
2296 /* Here we store the section offsets in the order they were
2297 entered on the command line. Every array element is
2298 assigned an ascending section index to preserve the above
2299 order over an unstable sorting algorithm. This dummy
2300 index is not used for any other purpose.
2301 */
2302 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2303 gdb_printf ("\t%s_addr = %s\n", sec,
2304 paddress (gdbarch, addr));
2305
2306 /* The object's sections are initialized when a
2307 call is made to build_objfile_section_table (objfile).
2308 This happens in reread_symbols.
2309 At this point, we don't know what file type this is,
2310 so we can't determine what section names are valid. */
2311 }
2312 if (seen_offset)
2313 gdb_printf (_("%s offset by %s\n"),
2314 (section_addrs.empty ()
2315 ? _(" with all sections")
2316 : _("with other sections")),
2317 paddress (gdbarch, offset));
2318 else if (section_addrs.empty ())
2319 gdb_printf ("\n");
2320
2321 if (from_tty && (!query ("%s", "")))
2322 error (_("Not confirmed."));
2323
2324 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2325 flags);
2326 if (!objf->has_symbols () && objf->per_bfd->minimal_symbol_count <= 0)
2327 warning (_("newly-added symbol file \"%ps\" does not provide any symbols"),
2328 styled_string (file_name_style.style (), filename.get ()));
2329
2330 if (seen_offset)
2331 set_objfile_default_section_offset (objf, section_addrs, offset);
2332
2333 current_program_space->add_target_sections (objf);
2334
2335 /* Getting new symbols may change our opinion about what is
2336 frameless. */
2337 reinit_frame_cache ();
2338 }
2339 \f
2340
2341 /* Option support for 'remove-symbol-file' command. */
2342
2343 struct remove_symbol_file_options
2344 {
2345 /* True when the '-a' flag was passed. */
2346 bool address_flag = false;
2347 };
2348
2349 using remove_symbol_file_options_opt_def
2350 = gdb::option::flag_option_def<remove_symbol_file_options>;
2351
2352 static const gdb::option::option_def remove_symbol_file_opt_defs[] = {
2353 remove_symbol_file_options_opt_def {
2354 "a",
2355 [] (remove_symbol_file_options *opt) { return &opt->address_flag; },
2356 N_("Select a symbol file containing ADDRESS.")
2357 },
2358 };
2359
2360 static inline gdb::option::option_def_group
2361 make_remove_symbol_file_def_group (remove_symbol_file_options *opts)
2362 {
2363 return {{remove_symbol_file_opt_defs}, opts};
2364 }
2365
2366 /* Completion function for 'remove-symbol-file' command. */
2367
2368 static void
2369 remove_symbol_file_command_completer (struct cmd_list_element *ignore,
2370 completion_tracker &tracker,
2371 const char *text, const char * /* word */)
2372 {
2373 /* Unlike many command completion functions we do gather the option
2374 values here. How we complete the rest of the command depends on
2375 whether the '-a' flag has been given or not. */
2376 remove_symbol_file_options opts;
2377 auto grp = make_remove_symbol_file_def_group (&opts);
2378 if (gdb::option::complete_options
2379 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, grp))
2380 return;
2381
2382 /* Complete the rest of the command line as either a filename or an
2383 expression (which will evaluate to an address) if the '-a' flag was
2384 given. */
2385 if (!opts.address_flag)
2386 {
2387 const char *word
2388 = advance_to_filename_maybe_quoted_complete_word_point (tracker, text);
2389 filename_maybe_quoted_completer (ignore, tracker, text, word);
2390 }
2391 else
2392 {
2393 const char *word
2394 = advance_to_expression_complete_word_point (tracker, text);
2395 symbol_completer (ignore, tracker, text, word);
2396 }
2397 }
2398
2399 /* This function removes a symbol file that was added via add-symbol-file. */
2400
2401 static void
2402 remove_symbol_file_command (const char *args, int from_tty)
2403 {
2404 dont_repeat ();
2405
2406 remove_symbol_file_options opts;
2407 auto grp = make_remove_symbol_file_def_group (&opts);
2408 gdb::option::process_options
2409 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, grp);
2410
2411 struct objfile *objf = nullptr;
2412
2413 if (opts.address_flag)
2414 {
2415 if (args == nullptr || *args == '\0')
2416 error (_("remove-symbol-file: no address provided"));
2417
2418 CORE_ADDR addr = parse_and_eval_address (args);
2419
2420 for (objfile *objfile : current_program_space->objfiles ())
2421 {
2422 if ((objfile->flags & OBJF_USERLOADED) != 0
2423 && (objfile->flags & OBJF_SHARED) != 0
2424 && objfile->pspace () == current_program_space
2425 && is_addr_in_objfile (addr, objfile))
2426 {
2427 objf = objfile;
2428 break;
2429 }
2430 }
2431 }
2432 else
2433 {
2434 std::string filename = extract_single_filename_arg (args);
2435 if (filename.empty ())
2436 error (_("remove-symbol-file: no symbol file provided"));
2437
2438 for (objfile *objfile : current_program_space->objfiles ())
2439 {
2440 if ((objfile->flags & OBJF_USERLOADED) != 0
2441 && (objfile->flags & OBJF_SHARED) != 0
2442 && objfile->pspace () == current_program_space
2443 && filename_cmp (filename.c_str (), objfile_name (objfile)) == 0)
2444 {
2445 objf = objfile;
2446 break;
2447 }
2448 }
2449 }
2450
2451 if (objf == NULL)
2452 error (_("No symbol file found"));
2453
2454 if (from_tty
2455 && !query (_("Remove symbol table from file \"%s\"? "),
2456 objfile_name (objf)))
2457 error (_("Not confirmed."));
2458
2459 objf->unlink ();
2460 clear_symtab_users (0);
2461 }
2462
2463 /* Re-read symbols if a symbol-file has changed. */
2464
2465 void
2466 reread_symbols (int from_tty)
2467 {
2468 std::vector<struct objfile *> new_objfiles;
2469
2470 /* Check to see if the executable has changed, and if so reopen it. The
2471 executable might not be in the list of objfiles (if the user set
2472 different values for 'exec-file' and 'symbol-file'), and even if it
2473 is, then we use a separate timestamp (within the program_space) to
2474 indicate when the executable was last reloaded. */
2475 reopen_exec_file ();
2476
2477 for (objfile *objfile : current_program_space->objfiles ())
2478 {
2479 if (objfile->obfd.get () == NULL)
2480 continue;
2481
2482 /* Separate debug objfiles are handled in the main objfile. */
2483 if (objfile->separate_debug_objfile_backlink)
2484 continue;
2485
2486 /* When a in-memory BFD is initially created, it's mtime (as
2487 returned by bfd_get_mtime) is the creation time of the BFD.
2488 However, we call bfd_stat here as we want to see if the
2489 underlying file has changed, and in this case an in-memory BFD
2490 will return an st_mtime of zero, so it appears that the in-memory
2491 file has changed, which isn't what we want here -- this code is
2492 about reloading BFDs that changed on disk.
2493
2494 Just skip any in-memory BFD. */
2495 if (objfile->obfd.get ()->flags & BFD_IN_MEMORY)
2496 continue;
2497
2498 struct stat new_statbuf;
2499 int res = gdb_bfd_stat (objfile->obfd.get (), &new_statbuf);
2500 if (res != 0)
2501 {
2502 /* If this object is from an archive (what you usually create
2503 with `ar', often called a `static library' on most systems,
2504 though a `shared library' on AIX is also an archive), then you
2505 should stat on the archive name, not member name. */
2506 const char *filename;
2507 if (objfile->obfd->my_archive)
2508 filename = bfd_get_filename (objfile->obfd->my_archive);
2509 else
2510 filename = objfile_name (objfile);
2511
2512 warning (_("`%ps' has disappeared; keeping its symbols."),
2513 styled_string (file_name_style.style (), filename));
2514 continue;
2515 }
2516 time_t new_modtime = new_statbuf.st_mtime;
2517 if (new_modtime != objfile->mtime)
2518 {
2519 gdb_printf (_("`%ps' has changed; re-reading symbols.\n"),
2520 styled_string (file_name_style.style (),
2521 objfile_name (objfile)));
2522
2523 /* There are various functions like symbol_file_add,
2524 symfile_bfd_open, syms_from_objfile, etc., which might
2525 appear to do what we want. But they have various other
2526 effects which we *don't* want. So we just do stuff
2527 ourselves. We don't worry about mapped files (for one thing,
2528 any mapped file will be out of date). */
2529
2530 /* If we get an error, blow away this objfile (not sure if
2531 that is the correct response for things like shared
2532 libraries). */
2533 scoped_objfile_unlinker objfile_holder (objfile);
2534
2535 /* We need to do this whenever any symbols go away. */
2536 clear_symtab_users_cleanup defer_clear_users (0);
2537
2538 /* Keep the calls order approx. the same as in free_objfile. */
2539
2540 /* Free the separate debug objfiles. It will be
2541 automatically recreated by sym_read. */
2542 free_objfile_separate_debug (objfile);
2543
2544 /* Clear the stale source cache. */
2545 forget_cached_source_info ();
2546
2547 /* Remove any references to this objfile in the global
2548 value lists. */
2549 preserve_values (objfile);
2550
2551 /* Nuke all the state that we will re-read. Much of the following
2552 code which sets things to NULL really is necessary to tell
2553 other parts of GDB that there is nothing currently there.
2554
2555 Try to keep the freeing order compatible with free_objfile. */
2556
2557 if (objfile->sf != NULL)
2558 {
2559 (*objfile->sf->sym_finish) (objfile);
2560 }
2561
2562 objfile->registry_fields.clear_registry ();
2563
2564 /* Clean up any state BFD has sitting around. */
2565 {
2566 gdb_bfd_ref_ptr obfd = objfile->obfd;
2567 const char *obfd_filename;
2568
2569 obfd_filename = bfd_get_filename (objfile->obfd.get ());
2570 /* Open the new BFD before freeing the old one, so that
2571 the filename remains live. */
2572 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget));
2573 objfile->obfd = std::move (temp);
2574 if (objfile->obfd == NULL)
2575 error (_("Can't open %s to read symbols."), obfd_filename);
2576 }
2577
2578 std::string original_name = objfile->original_name;
2579
2580 /* bfd_openr sets cacheable to true, which is what we want. */
2581 if (!bfd_check_format (objfile->obfd.get (), bfd_object))
2582 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2583 bfd_errmsg (bfd_get_error ()));
2584
2585 /* NB: after this call to obstack_free, objfiles_changed
2586 will need to be called (see discussion below). */
2587 obstack_free (&objfile->objfile_obstack, 0);
2588 objfile->sections_start = NULL;
2589 objfile->section_offsets.clear ();
2590 objfile->sect_index_bss = -1;
2591 objfile->sect_index_data = -1;
2592 objfile->sect_index_rodata = -1;
2593 objfile->sect_index_text = -1;
2594 objfile->compunit_symtabs = NULL;
2595 objfile->template_symbols = NULL;
2596 objfile->static_links.clear ();
2597
2598 /* obstack_init also initializes the obstack so it is
2599 empty. We could use obstack_specify_allocation but
2600 gdb_obstack.h specifies the alloc/dealloc functions. */
2601 obstack_init (&objfile->objfile_obstack);
2602
2603 /* set_objfile_per_bfd potentially allocates the per-bfd
2604 data on the objfile's obstack (if sharing data across
2605 multiple users is not possible), so it's important to
2606 do it *after* the obstack has been initialized. */
2607 set_objfile_per_bfd (objfile);
2608
2609 objfile->original_name
2610 = obstack_strdup (&objfile->objfile_obstack, original_name);
2611
2612 /* Reset the sym_fns pointer. The ELF reader can change it
2613 based on whether .gdb_index is present, and we need it to
2614 start over. PR symtab/15885 */
2615 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd.get ()));
2616 objfile->qf.clear ();
2617
2618 build_objfile_section_table (objfile);
2619
2620 /* What the hell is sym_new_init for, anyway? The concept of
2621 distinguishing between the main file and additional files
2622 in this way seems rather dubious. */
2623 if (objfile == current_program_space->symfile_object_file)
2624 {
2625 (*objfile->sf->sym_new_init) (objfile);
2626 }
2627
2628 (*objfile->sf->sym_init) (objfile);
2629 clear_complaints ();
2630
2631 /* We are about to read new symbols and potentially also
2632 DWARF information. Some targets may want to pass addresses
2633 read from DWARF DIE's through an adjustment function before
2634 saving them, like MIPS, which may call into
2635 "find_pc_section". When called, that function will make
2636 use of per-objfile program space data.
2637
2638 Since we discarded our section information above, we have
2639 dangling pointers in the per-objfile program space data
2640 structure. Force GDB to update the section mapping
2641 information by letting it know the objfile has changed,
2642 making the dangling pointers point to correct data
2643 again. */
2644
2645 objfiles_changed (current_program_space);
2646
2647 /* Recompute section offsets and section indices. */
2648 objfile->sf->sym_offsets (objfile, {});
2649
2650 read_symbols (objfile, 0);
2651
2652 if ((objfile->flags & OBJF_READNOW))
2653 {
2654 const int mainline = objfile->flags & OBJF_MAINLINE;
2655 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
2656 && readnow_symbol_files);
2657 if (should_print)
2658 gdb_printf (_("Expanding full symbols from %ps...\n"),
2659 styled_string (file_name_style.style (),
2660 objfile_name (objfile)));
2661
2662 objfile->expand_all_symtabs ();
2663 }
2664
2665 if (!objfile->has_symbols ())
2666 {
2667 gdb_stdout->wrap_here (0);
2668 gdb_printf (_("(no debugging symbols found)\n"));
2669 gdb_stdout->wrap_here (0);
2670 }
2671
2672 /* We're done reading the symbol file; finish off complaints. */
2673 clear_complaints ();
2674
2675 /* Getting new symbols may change our opinion about what is
2676 frameless. */
2677
2678 reinit_frame_cache ();
2679
2680 /* Discard cleanups as symbol reading was successful. */
2681 objfile_holder.release ();
2682 defer_clear_users.release ();
2683
2684 /* If the mtime has changed between the time we set new_modtime
2685 and now, we *want* this to be out of date, so don't call stat
2686 again now. */
2687 objfile->mtime = new_modtime;
2688 init_entry_point_info (objfile);
2689
2690 new_objfiles.push_back (objfile);
2691 }
2692 }
2693
2694 if (!new_objfiles.empty ())
2695 {
2696 clear_symtab_users (0);
2697
2698 /* The registry for each objfile was cleared and
2699 gdb::observers::new_objfile.notify (NULL) has been called by
2700 clear_symtab_users above. Notify the new files now. */
2701 for (auto iter : new_objfiles)
2702 gdb::observers::new_objfile.notify (iter);
2703 }
2704 }
2705 \f
2706
2707 struct filename_language
2708 {
2709 filename_language (const std::string &ext_, enum language lang_)
2710 : ext (ext_), lang (lang_)
2711 {}
2712
2713 std::string ext;
2714 enum language lang;
2715 };
2716
2717 static std::vector<filename_language> filename_language_table;
2718
2719 /* See symfile.h. */
2720
2721 void
2722 add_filename_language (const char *ext, enum language lang)
2723 {
2724 gdb_assert (ext != nullptr);
2725 filename_language_table.emplace_back (ext, lang);
2726 }
2727
2728 static std::string ext_args;
2729 static void
2730 show_ext_args (struct ui_file *file, int from_tty,
2731 struct cmd_list_element *c, const char *value)
2732 {
2733 gdb_printf (file,
2734 _("Mapping between filename extension "
2735 "and source language is \"%s\".\n"),
2736 value);
2737 }
2738
2739 static void
2740 set_ext_lang_command (const char *args,
2741 int from_tty, struct cmd_list_element *e)
2742 {
2743 const char *begin = ext_args.c_str ();
2744 const char *end = ext_args.c_str ();
2745
2746 /* First arg is filename extension, starting with '.' */
2747 if (*end != '.')
2748 error (_("'%s': Filename extension must begin with '.'"), ext_args.c_str ());
2749
2750 /* Find end of first arg. */
2751 while (*end != '\0' && !isspace (*end))
2752 end++;
2753
2754 if (*end == '\0')
2755 error (_("'%s': two arguments required -- "
2756 "filename extension and language"),
2757 ext_args.c_str ());
2758
2759 /* Extract first arg, the extension. */
2760 std::string extension = ext_args.substr (0, end - begin);
2761
2762 /* Find beginning of second arg, which should be a source language. */
2763 begin = skip_spaces (end);
2764
2765 if (*begin == '\0')
2766 error (_("'%s': two arguments required -- "
2767 "filename extension and language"),
2768 ext_args.c_str ());
2769
2770 /* Lookup the language from among those we know. */
2771 language lang = language_enum (begin);
2772
2773 auto it = filename_language_table.begin ();
2774 /* Now lookup the filename extension: do we already know it? */
2775 for (; it != filename_language_table.end (); it++)
2776 {
2777 if (it->ext == extension)
2778 break;
2779 }
2780
2781 if (it == filename_language_table.end ())
2782 {
2783 /* New file extension. */
2784 add_filename_language (extension.data (), lang);
2785 }
2786 else
2787 {
2788 /* Redefining a previously known filename extension. */
2789
2790 /* if (from_tty) */
2791 /* query ("Really make files of type %s '%s'?", */
2792 /* ext_args, language_str (lang)); */
2793
2794 it->lang = lang;
2795 }
2796 }
2797
2798 static void
2799 info_ext_lang_command (const char *args, int from_tty)
2800 {
2801 gdb_printf (_("Filename extensions and the languages they represent:"));
2802 gdb_printf ("\n\n");
2803 for (const filename_language &entry : filename_language_table)
2804 gdb_printf ("\t%s\t- %s\n", entry.ext.c_str (),
2805 language_str (entry.lang));
2806 }
2807
2808 enum language
2809 deduce_language_from_filename (const char *filename)
2810 {
2811 const char *cp;
2812
2813 if (filename != NULL)
2814 if ((cp = strrchr (filename, '.')) != NULL)
2815 {
2816 for (const filename_language &entry : filename_language_table)
2817 if (entry.ext == cp)
2818 return entry.lang;
2819 }
2820
2821 return language_unknown;
2822 }
2823 \f
2824 /* Allocate and initialize a new symbol table.
2825 CUST is from the result of allocate_compunit_symtab. */
2826
2827 struct symtab *
2828 allocate_symtab (struct compunit_symtab *cust, const char *filename,
2829 const char *filename_for_id)
2830 {
2831 struct objfile *objfile = cust->objfile ();
2832 struct symtab *symtab
2833 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2834
2835 symtab->filename = objfile->intern (filename);
2836 symtab->filename_for_id = objfile->intern (filename_for_id);
2837 symtab->set_language (deduce_language_from_filename (filename));
2838
2839 /* This can be very verbose with lots of headers.
2840 Only print at higher debug levels. */
2841 if (symtab_create_debug >= 2)
2842 {
2843 /* Be a bit clever with debugging messages, and don't print objfile
2844 every time, only when it changes. */
2845 static std::string last_objfile_name;
2846 const char *this_objfile_name = objfile_name (objfile);
2847
2848 if (last_objfile_name.empty () || last_objfile_name != this_objfile_name)
2849 {
2850 last_objfile_name = this_objfile_name;
2851
2852 symtab_create_debug_printf_v
2853 ("creating one or more symtabs for objfile %s", this_objfile_name);
2854 }
2855
2856 symtab_create_debug_printf_v ("created symtab %s for module %s",
2857 host_address_to_string (symtab), filename);
2858 }
2859
2860 /* Add it to CUST's list of symtabs. */
2861 cust->add_filetab (symtab);
2862
2863 /* Backlink to the containing compunit symtab. */
2864 symtab->set_compunit (cust);
2865
2866 return symtab;
2867 }
2868
2869 /* Allocate and initialize a new compunit.
2870 NAME is the name of the main source file, if there is one, or some
2871 descriptive text if there are no source files. */
2872
2873 struct compunit_symtab *
2874 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2875 {
2876 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2877 struct compunit_symtab);
2878 const char *saved_name;
2879
2880 cu->set_objfile (objfile);
2881
2882 /* The name we record here is only for display/debugging purposes.
2883 Just save the basename to avoid path issues (too long for display,
2884 relative vs absolute, etc.). */
2885 saved_name = lbasename (name);
2886 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2887
2888 cu->set_debugformat ("unknown");
2889
2890 symtab_create_debug_printf_v ("created compunit symtab %s for %s",
2891 host_address_to_string (cu),
2892 cu->name);
2893
2894 return cu;
2895 }
2896
2897 /* Hook CU to the objfile it comes from. */
2898
2899 void
2900 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2901 {
2902 cu->next = cu->objfile ()->compunit_symtabs;
2903 cu->objfile ()->compunit_symtabs = cu;
2904 }
2905 \f
2906
2907 /* Reset all data structures in gdb which may contain references to
2908 symbol table data. */
2909
2910 void
2911 clear_symtab_users (symfile_add_flags add_flags)
2912 {
2913 /* Someday, we should do better than this, by only blowing away
2914 the things that really need to be blown. */
2915
2916 /* Clear the "current" symtab first, because it is no longer valid.
2917 breakpoint_re_set may try to access the current symtab. */
2918 clear_current_source_symtab_and_line (current_program_space);
2919
2920 clear_displays ();
2921 clear_last_displayed_sal ();
2922 clear_pc_function_cache ();
2923 gdb::observers::all_objfiles_removed.notify (current_program_space);
2924
2925 /* Now that the various caches have been cleared, we can re_set
2926 our breakpoints without risking it using stale data. */
2927 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2928 breakpoint_re_set ();
2929 }
2930 \f
2931 /* OVERLAYS:
2932 The following code implements an abstraction for debugging overlay sections.
2933
2934 The target model is as follows:
2935 1) The gnu linker will permit multiple sections to be mapped into the
2936 same VMA, each with its own unique LMA (or load address).
2937 2) It is assumed that some runtime mechanism exists for mapping the
2938 sections, one by one, from the load address into the VMA address.
2939 3) This code provides a mechanism for gdb to keep track of which
2940 sections should be considered to be mapped from the VMA to the LMA.
2941 This information is used for symbol lookup, and memory read/write.
2942 For instance, if a section has been mapped then its contents
2943 should be read from the VMA, otherwise from the LMA.
2944
2945 Two levels of debugger support for overlays are available. One is
2946 "manual", in which the debugger relies on the user to tell it which
2947 overlays are currently mapped. This level of support is
2948 implemented entirely in the core debugger, and the information about
2949 whether a section is mapped is kept in the objfile->obj_section table.
2950
2951 The second level of support is "automatic", and is only available if
2952 the target-specific code provides functionality to read the target's
2953 overlay mapping table, and translate its contents for the debugger
2954 (by updating the mapped state information in the obj_section tables).
2955
2956 The interface is as follows:
2957 User commands:
2958 overlay map <name> -- tell gdb to consider this section mapped
2959 overlay unmap <name> -- tell gdb to consider this section unmapped
2960 overlay list -- list the sections that GDB thinks are mapped
2961 overlay read-target -- get the target's state of what's mapped
2962 overlay off/manual/auto -- set overlay debugging state
2963 Functional interface:
2964 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2965 section, return that section.
2966 find_pc_overlay(pc): find any overlay section that contains
2967 the pc, either in its VMA or its LMA
2968 section_is_mapped(sect): true if overlay is marked as mapped
2969 section_is_overlay(sect): true if section's VMA != LMA
2970 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2971 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2972 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2973 overlay_mapped_address(...): map an address from section's LMA to VMA
2974 overlay_unmapped_address(...): map an address from section's VMA to LMA
2975 symbol_overlayed_address(...): Return a "current" address for symbol:
2976 either in VMA or LMA depending on whether
2977 the symbol's section is currently mapped. */
2978
2979 /* Overlay debugging state: */
2980
2981 enum overlay_debugging_state overlay_debugging = ovly_off;
2982 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2983
2984 /* Function: section_is_overlay (SECTION)
2985 Returns true if SECTION has VMA not equal to LMA, ie.
2986 SECTION is loaded at an address different from where it will "run". */
2987
2988 int
2989 section_is_overlay (struct obj_section *section)
2990 {
2991 if (overlay_debugging && section)
2992 {
2993 asection *bfd_section = section->the_bfd_section;
2994
2995 if (bfd_section_lma (bfd_section) != 0
2996 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2997 return 1;
2998 }
2999
3000 return 0;
3001 }
3002
3003 /* Invalidate the mapped state of all overlay sections (mark it as stale) in
3004 PSPACE. */
3005
3006 static void
3007 overlay_invalidate_all (program_space *pspace)
3008 {
3009 for (objfile *objfile : pspace->objfiles ())
3010 for (obj_section *sect : objfile->sections ())
3011 if (section_is_overlay (sect))
3012 sect->ovly_mapped = -1;
3013 }
3014
3015 /* Function: section_is_mapped (SECTION)
3016 Returns true if section is an overlay, and is currently mapped.
3017
3018 Access to the ovly_mapped flag is restricted to this function, so
3019 that we can do automatic update. If the global flag
3020 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3021 overlay_invalidate_all. If the mapped state of the particular
3022 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3023
3024 int
3025 section_is_mapped (struct obj_section *osect)
3026 {
3027 struct gdbarch *gdbarch;
3028
3029 if (osect == 0 || !section_is_overlay (osect))
3030 return 0;
3031
3032 switch (overlay_debugging)
3033 {
3034 default:
3035 case ovly_off:
3036 return 0; /* overlay debugging off */
3037 case ovly_auto: /* overlay debugging automatic */
3038 /* Unless there is a gdbarch_overlay_update function,
3039 there's really nothing useful to do here (can't really go auto). */
3040 gdbarch = osect->objfile->arch ();
3041 if (gdbarch_overlay_update_p (gdbarch))
3042 {
3043 if (overlay_cache_invalid)
3044 {
3045 overlay_invalidate_all (current_program_space);
3046 overlay_cache_invalid = 0;
3047 }
3048 if (osect->ovly_mapped == -1)
3049 gdbarch_overlay_update (gdbarch, osect);
3050 }
3051 [[fallthrough]];
3052 case ovly_on: /* overlay debugging manual */
3053 return osect->ovly_mapped == 1;
3054 }
3055 }
3056
3057 /* Function: pc_in_unmapped_range
3058 If PC falls into the lma range of SECTION, return true, else false. */
3059
3060 bool
3061 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3062 {
3063 if (section_is_overlay (section))
3064 {
3065 asection *bfd_section = section->the_bfd_section;
3066
3067 /* We assume the LMA is relocated by the same offset as the VMA. */
3068 bfd_vma size = bfd_section_size (bfd_section);
3069 CORE_ADDR offset = section->offset ();
3070
3071 if (bfd_section_lma (bfd_section) + offset <= pc
3072 && pc < bfd_section_lma (bfd_section) + offset + size)
3073 return true;
3074 }
3075
3076 return false;
3077 }
3078
3079 /* Function: pc_in_mapped_range
3080 If PC falls into the vma range of SECTION, return true, else false. */
3081
3082 bool
3083 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3084 {
3085 if (section_is_overlay (section))
3086 {
3087 if (section->contains (pc))
3088 return true;
3089 }
3090
3091 return false;
3092 }
3093
3094 /* Return true if the mapped ranges of sections A and B overlap, false
3095 otherwise. */
3096
3097 static int
3098 sections_overlap (struct obj_section *a, struct obj_section *b)
3099 {
3100 CORE_ADDR a_start = a->addr ();
3101 CORE_ADDR a_end = a->endaddr ();
3102 CORE_ADDR b_start = b->addr ();
3103 CORE_ADDR b_end = b->endaddr ();
3104
3105 return (a_start < b_end && b_start < a_end);
3106 }
3107
3108 /* Function: overlay_unmapped_address (PC, SECTION)
3109 Returns the address corresponding to PC in the unmapped (load) range.
3110 May be the same as PC. */
3111
3112 CORE_ADDR
3113 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3114 {
3115 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3116 {
3117 asection *bfd_section = section->the_bfd_section;
3118
3119 return (pc + bfd_section_lma (bfd_section)
3120 - bfd_section_vma (bfd_section));
3121 }
3122
3123 return pc;
3124 }
3125
3126 /* Function: overlay_mapped_address (PC, SECTION)
3127 Returns the address corresponding to PC in the mapped (runtime) range.
3128 May be the same as PC. */
3129
3130 CORE_ADDR
3131 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3132 {
3133 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3134 {
3135 asection *bfd_section = section->the_bfd_section;
3136
3137 return (pc + bfd_section_vma (bfd_section)
3138 - bfd_section_lma (bfd_section));
3139 }
3140
3141 return pc;
3142 }
3143
3144 /* Function: symbol_overlayed_address
3145 Return one of two addresses (relative to the VMA or to the LMA),
3146 depending on whether the section is mapped or not. */
3147
3148 CORE_ADDR
3149 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3150 {
3151 if (overlay_debugging)
3152 {
3153 /* If the symbol has no section, just return its regular address. */
3154 if (section == 0)
3155 return address;
3156 /* If the symbol's section is not an overlay, just return its
3157 address. */
3158 if (!section_is_overlay (section))
3159 return address;
3160 /* If the symbol's section is mapped, just return its address. */
3161 if (section_is_mapped (section))
3162 return address;
3163 /*
3164 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3165 * then return its LOADED address rather than its vma address!!
3166 */
3167 return overlay_unmapped_address (address, section);
3168 }
3169 return address;
3170 }
3171
3172 /* Function: find_pc_overlay (PC)
3173 Return the best-match overlay section for PC:
3174 If PC matches a mapped overlay section's VMA, return that section.
3175 Else if PC matches an unmapped section's VMA, return that section.
3176 Else if PC matches an unmapped section's LMA, return that section. */
3177
3178 struct obj_section *
3179 find_pc_overlay (CORE_ADDR pc)
3180 {
3181 struct obj_section *best_match = NULL;
3182
3183 if (overlay_debugging)
3184 {
3185 for (objfile *objfile : current_program_space->objfiles ())
3186 for (obj_section *osect : objfile->sections ())
3187 if (section_is_overlay (osect))
3188 {
3189 if (pc_in_mapped_range (pc, osect))
3190 {
3191 if (section_is_mapped (osect))
3192 return osect;
3193 else
3194 best_match = osect;
3195 }
3196 else if (pc_in_unmapped_range (pc, osect))
3197 best_match = osect;
3198 }
3199 }
3200 return best_match;
3201 }
3202
3203 /* Function: find_pc_mapped_section (PC)
3204 If PC falls into the VMA address range of an overlay section that is
3205 currently marked as MAPPED, return that section. Else return NULL. */
3206
3207 struct obj_section *
3208 find_pc_mapped_section (CORE_ADDR pc)
3209 {
3210 if (overlay_debugging)
3211 {
3212 for (objfile *objfile : current_program_space->objfiles ())
3213 for (obj_section *osect : objfile->sections ())
3214 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3215 return osect;
3216 }
3217
3218 return NULL;
3219 }
3220
3221 /* Function: list_overlays_command
3222 Print a list of mapped sections and their PC ranges. */
3223
3224 static void
3225 list_overlays_command (const char *args, int from_tty)
3226 {
3227 int nmapped = 0;
3228
3229 if (overlay_debugging)
3230 {
3231 for (objfile *objfile : current_program_space->objfiles ())
3232 for (obj_section *osect : objfile->sections ())
3233 if (section_is_mapped (osect))
3234 {
3235 struct gdbarch *gdbarch = objfile->arch ();
3236 const char *name;
3237 bfd_vma lma, vma;
3238 int size;
3239
3240 vma = bfd_section_vma (osect->the_bfd_section);
3241 lma = bfd_section_lma (osect->the_bfd_section);
3242 size = bfd_section_size (osect->the_bfd_section);
3243 name = bfd_section_name (osect->the_bfd_section);
3244
3245 gdb_printf ("Section %s, loaded at ", name);
3246 gdb_puts (paddress (gdbarch, lma));
3247 gdb_puts (" - ");
3248 gdb_puts (paddress (gdbarch, lma + size));
3249 gdb_printf (", mapped at ");
3250 gdb_puts (paddress (gdbarch, vma));
3251 gdb_puts (" - ");
3252 gdb_puts (paddress (gdbarch, vma + size));
3253 gdb_puts ("\n");
3254
3255 nmapped++;
3256 }
3257 }
3258 if (nmapped == 0)
3259 gdb_printf (_("No sections are mapped.\n"));
3260 }
3261
3262 /* Function: map_overlay_command
3263 Mark the named section as mapped (ie. residing at its VMA address). */
3264
3265 static void
3266 map_overlay_command (const char *args, int from_tty)
3267 {
3268 if (!overlay_debugging)
3269 error (_("Overlay debugging not enabled. Use "
3270 "either the 'overlay auto' or\n"
3271 "the 'overlay manual' command."));
3272
3273 if (args == 0 || *args == 0)
3274 error (_("Argument required: name of an overlay section"));
3275
3276 /* First, find a section matching the user supplied argument. */
3277 for (objfile *obj_file : current_program_space->objfiles ())
3278 for (obj_section *sec : obj_file->sections ())
3279 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3280 {
3281 /* Now, check to see if the section is an overlay. */
3282 if (!section_is_overlay (sec))
3283 continue; /* not an overlay section */
3284
3285 /* Mark the overlay as "mapped". */
3286 sec->ovly_mapped = 1;
3287
3288 /* Next, make a pass and unmap any sections that are
3289 overlapped by this new section: */
3290 for (objfile *objfile2 : current_program_space->objfiles ())
3291 for (obj_section *sec2 : objfile2->sections ())
3292 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3293 sec2))
3294 {
3295 if (info_verbose)
3296 gdb_printf (_("Note: section %s unmapped by overlap\n"),
3297 bfd_section_name (sec2->the_bfd_section));
3298 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3299 }
3300 return;
3301 }
3302 error (_("No overlay section called %s"), args);
3303 }
3304
3305 /* Function: unmap_overlay_command
3306 Mark the overlay section as unmapped
3307 (ie. resident in its LMA address range, rather than the VMA range). */
3308
3309 static void
3310 unmap_overlay_command (const char *args, int from_tty)
3311 {
3312 if (!overlay_debugging)
3313 error (_("Overlay debugging not enabled. "
3314 "Use either the 'overlay auto' or\n"
3315 "the 'overlay manual' command."));
3316
3317 if (args == 0 || *args == 0)
3318 error (_("Argument required: name of an overlay section"));
3319
3320 /* First, find a section matching the user supplied argument. */
3321 for (objfile *objfile : current_program_space->objfiles ())
3322 for (obj_section *sec : objfile->sections ())
3323 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3324 {
3325 if (!sec->ovly_mapped)
3326 error (_("Section %s is not mapped"), args);
3327 sec->ovly_mapped = 0;
3328 return;
3329 }
3330 error (_("No overlay section called %s"), args);
3331 }
3332
3333 /* Function: overlay_auto_command
3334 A utility command to turn on overlay debugging.
3335 Possibly this should be done via a set/show command. */
3336
3337 static void
3338 overlay_auto_command (const char *args, int from_tty)
3339 {
3340 overlay_debugging = ovly_auto;
3341 enable_overlay_breakpoints ();
3342 if (info_verbose)
3343 gdb_printf (_("Automatic overlay debugging enabled."));
3344 }
3345
3346 /* Function: overlay_manual_command
3347 A utility command to turn on overlay debugging.
3348 Possibly this should be done via a set/show command. */
3349
3350 static void
3351 overlay_manual_command (const char *args, int from_tty)
3352 {
3353 overlay_debugging = ovly_on;
3354 disable_overlay_breakpoints ();
3355 if (info_verbose)
3356 gdb_printf (_("Overlay debugging enabled."));
3357 }
3358
3359 /* Function: overlay_off_command
3360 A utility command to turn on overlay debugging.
3361 Possibly this should be done via a set/show command. */
3362
3363 static void
3364 overlay_off_command (const char *args, int from_tty)
3365 {
3366 overlay_debugging = ovly_off;
3367 disable_overlay_breakpoints ();
3368 if (info_verbose)
3369 gdb_printf (_("Overlay debugging disabled."));
3370 }
3371
3372 static void
3373 overlay_load_command (const char *args, int from_tty)
3374 {
3375 struct gdbarch *gdbarch = get_current_arch ();
3376
3377 if (gdbarch_overlay_update_p (gdbarch))
3378 gdbarch_overlay_update (gdbarch, NULL);
3379 else
3380 error (_("This target does not know how to read its overlay state."));
3381 }
3382
3383 /* Command list chain containing all defined "overlay" subcommands. */
3384 static struct cmd_list_element *overlaylist;
3385
3386 /* Target Overlays for the "Simplest" overlay manager:
3387
3388 This is GDB's default target overlay layer. It works with the
3389 minimal overlay manager supplied as an example by Cygnus. The
3390 entry point is via a function pointer "gdbarch_overlay_update",
3391 so targets that use a different runtime overlay manager can
3392 substitute their own overlay_update function and take over the
3393 function pointer.
3394
3395 The overlay_update function pokes around in the target's data structures
3396 to see what overlays are mapped, and updates GDB's overlay mapping with
3397 this information.
3398
3399 In this simple implementation, the target data structures are as follows:
3400 unsigned _novlys; /# number of overlay sections #/
3401 unsigned _ovly_table[_novlys][4] = {
3402 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3403 {..., ..., ..., ...},
3404 }
3405 unsigned _novly_regions; /# number of overlay regions #/
3406 unsigned _ovly_region_table[_novly_regions][3] = {
3407 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3408 {..., ..., ...},
3409 }
3410 These functions will attempt to update GDB's mappedness state in the
3411 symbol section table, based on the target's mappedness state.
3412
3413 To do this, we keep a cached copy of the target's _ovly_table, and
3414 attempt to detect when the cached copy is invalidated. The main
3415 entry point is "simple_overlay_update(SECT), which looks up SECT in
3416 the cached table and re-reads only the entry for that section from
3417 the target (whenever possible). */
3418
3419 /* Cached, dynamically allocated copies of the target data structures: */
3420 static unsigned (*cache_ovly_table)[4] = 0;
3421 static unsigned cache_novlys = 0;
3422 static CORE_ADDR cache_ovly_table_base = 0;
3423 enum ovly_index
3424 {
3425 VMA, OSIZE, LMA, MAPPED
3426 };
3427
3428 /* Throw away the cached copy of _ovly_table. */
3429
3430 static void
3431 simple_free_overlay_table (void)
3432 {
3433 xfree (cache_ovly_table);
3434 cache_novlys = 0;
3435 cache_ovly_table = NULL;
3436 cache_ovly_table_base = 0;
3437 }
3438
3439 /* Read an array of ints of size SIZE from the target into a local buffer.
3440 Convert to host order. int LEN is number of ints. */
3441
3442 static void
3443 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3444 int len, int size, enum bfd_endian byte_order)
3445 {
3446 /* FIXME (alloca): Not safe if array is very large. */
3447 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3448 int i;
3449
3450 read_memory (memaddr, buf, len * size);
3451 for (i = 0; i < len; i++)
3452 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3453 }
3454
3455 /* Find and grab a copy of the target _ovly_table
3456 (and _novlys, which is needed for the table's size). */
3457
3458 static int
3459 simple_read_overlay_table (void)
3460 {
3461 struct gdbarch *gdbarch;
3462 int word_size;
3463 enum bfd_endian byte_order;
3464
3465 simple_free_overlay_table ();
3466 bound_minimal_symbol novlys_msym
3467 = lookup_minimal_symbol (current_program_space, "_novlys");
3468 if (! novlys_msym.minsym)
3469 {
3470 error (_("Error reading inferior's overlay table: "
3471 "couldn't find `_novlys' variable\n"
3472 "in inferior. Use `overlay manual' mode."));
3473 return 0;
3474 }
3475
3476 bound_minimal_symbol ovly_table_msym
3477 = lookup_minimal_symbol (current_program_space, "_ovly_table");
3478 if (! ovly_table_msym.minsym)
3479 {
3480 error (_("Error reading inferior's overlay table: couldn't find "
3481 "`_ovly_table' array\n"
3482 "in inferior. Use `overlay manual' mode."));
3483 return 0;
3484 }
3485
3486 gdbarch = ovly_table_msym.objfile->arch ();
3487 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3488 byte_order = gdbarch_byte_order (gdbarch);
3489
3490 cache_novlys = read_memory_integer (novlys_msym.value_address (),
3491 4, byte_order);
3492 cache_ovly_table
3493 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3494 cache_ovly_table_base = ovly_table_msym.value_address ();
3495 read_target_long_array (cache_ovly_table_base,
3496 (unsigned int *) cache_ovly_table,
3497 cache_novlys * 4, word_size, byte_order);
3498
3499 return 1; /* SUCCESS */
3500 }
3501
3502 /* Function: simple_overlay_update_1
3503 A helper function for simple_overlay_update. Assuming a cached copy
3504 of _ovly_table exists, look through it to find an entry whose vma,
3505 lma and size match those of OSECT. Re-read the entry and make sure
3506 it still matches OSECT (else the table may no longer be valid).
3507 Set OSECT's mapped state to match the entry. Return: 1 for
3508 success, 0 for failure. */
3509
3510 static int
3511 simple_overlay_update_1 (struct obj_section *osect)
3512 {
3513 int i;
3514 asection *bsect = osect->the_bfd_section;
3515 struct gdbarch *gdbarch = osect->objfile->arch ();
3516 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3517 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3518
3519 for (i = 0; i < cache_novlys; i++)
3520 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3521 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3522 {
3523 read_target_long_array (cache_ovly_table_base + i * word_size,
3524 (unsigned int *) cache_ovly_table[i],
3525 4, word_size, byte_order);
3526 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3527 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3528 {
3529 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3530 return 1;
3531 }
3532 else /* Warning! Warning! Target's ovly table has changed! */
3533 return 0;
3534 }
3535 return 0;
3536 }
3537
3538 /* Function: simple_overlay_update
3539 If OSECT is NULL, then update all sections' mapped state
3540 (after re-reading the entire target _ovly_table).
3541 If OSECT is non-NULL, then try to find a matching entry in the
3542 cached ovly_table and update only OSECT's mapped state.
3543 If a cached entry can't be found or the cache isn't valid, then
3544 re-read the entire cache, and go ahead and update all sections. */
3545
3546 void
3547 simple_overlay_update (struct obj_section *osect)
3548 {
3549 /* Were we given an osect to look up? NULL means do all of them. */
3550 if (osect)
3551 /* Have we got a cached copy of the target's overlay table? */
3552 if (cache_ovly_table != NULL)
3553 {
3554 /* Does its cached location match what's currently in the
3555 symtab? */
3556 bound_minimal_symbol minsym
3557 = lookup_minimal_symbol (current_program_space, "_ovly_table");
3558
3559 if (minsym.minsym == NULL)
3560 error (_("Error reading inferior's overlay table: couldn't "
3561 "find `_ovly_table' array\n"
3562 "in inferior. Use `overlay manual' mode."));
3563
3564 if (cache_ovly_table_base == minsym.value_address ())
3565 /* Then go ahead and try to look up this single section in
3566 the cache. */
3567 if (simple_overlay_update_1 (osect))
3568 /* Found it! We're done. */
3569 return;
3570 }
3571
3572 /* Cached table no good: need to read the entire table anew.
3573 Or else we want all the sections, in which case it's actually
3574 more efficient to read the whole table in one block anyway. */
3575
3576 if (! simple_read_overlay_table ())
3577 return;
3578
3579 /* Now may as well update all sections, even if only one was requested. */
3580 for (objfile *objfile : current_program_space->objfiles ())
3581 for (obj_section *sect : objfile->sections ())
3582 if (section_is_overlay (sect))
3583 {
3584 int i;
3585 asection *bsect = sect->the_bfd_section;
3586
3587 for (i = 0; i < cache_novlys; i++)
3588 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3589 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3590 { /* obj_section matches i'th entry in ovly_table. */
3591 sect->ovly_mapped = cache_ovly_table[i][MAPPED];
3592 break; /* finished with inner for loop: break out. */
3593 }
3594 }
3595 }
3596
3597 /* Default implementation for sym_relocate. */
3598
3599 bfd_byte *
3600 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3601 bfd_byte *buf)
3602 {
3603 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3604 DWO file. */
3605 bfd *abfd = sectp->owner;
3606
3607 /* We're only interested in sections with relocation
3608 information. */
3609 if ((sectp->flags & SEC_RELOC) == 0)
3610 return NULL;
3611
3612 /* We will handle section offsets properly elsewhere, so relocate as if
3613 all sections begin at 0. */
3614 for (asection *sect : gdb_bfd_sections (abfd))
3615 {
3616 sect->output_section = sect;
3617 sect->output_offset = 0;
3618 }
3619
3620 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3621 }
3622
3623 /* Relocate the contents of a debug section SECTP in ABFD. The
3624 contents are stored in BUF if it is non-NULL, or returned in a
3625 malloc'd buffer otherwise.
3626
3627 For some platforms and debug info formats, shared libraries contain
3628 relocations against the debug sections (particularly for DWARF-2;
3629 one affected platform is PowerPC GNU/Linux, although it depends on
3630 the version of the linker in use). Also, ELF object files naturally
3631 have unresolved relocations for their debug sections. We need to apply
3632 the relocations in order to get the locations of symbols correct.
3633 Another example that may require relocation processing, is the
3634 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3635 debug section. */
3636
3637 bfd_byte *
3638 symfile_relocate_debug_section (struct objfile *objfile,
3639 asection *sectp, bfd_byte *buf)
3640 {
3641 gdb_assert (objfile->sf->sym_relocate);
3642
3643 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3644 }
3645
3646 symfile_segment_data_up
3647 get_symfile_segment_data (bfd *abfd)
3648 {
3649 const struct sym_fns *sf = find_sym_fns (abfd);
3650
3651 if (sf == NULL)
3652 return NULL;
3653
3654 return sf->sym_segments (abfd);
3655 }
3656
3657 /* Given:
3658 - DATA, containing segment addresses from the object file ABFD, and
3659 the mapping from ABFD's sections onto the segments that own them,
3660 and
3661 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3662 segment addresses reported by the target,
3663 store the appropriate offsets for each section in OFFSETS.
3664
3665 If there are fewer entries in SEGMENT_BASES than there are segments
3666 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3667
3668 If there are more entries, then ignore the extra. The target may
3669 not be able to distinguish between an empty data segment and a
3670 missing data segment; a missing text segment is less plausible. */
3671
3672 int
3673 symfile_map_offsets_to_segments (bfd *abfd,
3674 const struct symfile_segment_data *data,
3675 section_offsets &offsets,
3676 int num_segment_bases,
3677 const CORE_ADDR *segment_bases)
3678 {
3679 int i;
3680 asection *sect;
3681
3682 /* It doesn't make sense to call this function unless you have some
3683 segment base addresses. */
3684 gdb_assert (num_segment_bases > 0);
3685
3686 /* If we do not have segment mappings for the object file, we
3687 can not relocate it by segments. */
3688 gdb_assert (data != NULL);
3689 gdb_assert (data->segments.size () > 0);
3690
3691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3692 {
3693 int which = data->segment_info[i];
3694
3695 gdb_assert (0 <= which && which <= data->segments.size ());
3696
3697 /* Don't bother computing offsets for sections that aren't
3698 loaded as part of any segment. */
3699 if (! which)
3700 continue;
3701
3702 /* Use the last SEGMENT_BASES entry as the address of any extra
3703 segments mentioned in DATA->segment_info. */
3704 if (which > num_segment_bases)
3705 which = num_segment_bases;
3706
3707 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base;
3708 }
3709
3710 return 1;
3711 }
3712
3713 static void
3714 symfile_find_segment_sections (struct objfile *objfile)
3715 {
3716 bfd *abfd = objfile->obfd.get ();
3717 int i;
3718 asection *sect;
3719
3720 symfile_segment_data_up data = get_symfile_segment_data (abfd);
3721 if (data == NULL)
3722 return;
3723
3724 if (data->segments.size () != 1 && data->segments.size () != 2)
3725 return;
3726
3727 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3728 {
3729 int which = data->segment_info[i];
3730
3731 if (which == 1)
3732 {
3733 if (objfile->sect_index_text == -1)
3734 objfile->sect_index_text = sect->index;
3735
3736 if (objfile->sect_index_rodata == -1)
3737 objfile->sect_index_rodata = sect->index;
3738 }
3739 else if (which == 2)
3740 {
3741 if (objfile->sect_index_data == -1)
3742 objfile->sect_index_data = sect->index;
3743
3744 if (objfile->sect_index_bss == -1)
3745 objfile->sect_index_bss = sect->index;
3746 }
3747 }
3748 }
3749
3750 /* Listen for free_objfile events. */
3751
3752 static void
3753 symfile_free_objfile (struct objfile *objfile)
3754 {
3755 /* Remove the target sections owned by this objfile. */
3756 objfile->pspace ()->remove_target_sections (objfile);
3757 }
3758
3759 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3760 Expand all symtabs that match the specified criteria.
3761 See quick_symbol_functions.expand_symtabs_matching for details. */
3762
3763 bool
3764 expand_symtabs_matching (expand_symtabs_file_matcher file_matcher,
3765 const lookup_name_info &lookup_name,
3766 expand_symtabs_symbol_matcher symbol_matcher,
3767 expand_symtabs_expansion_listener expansion_notify,
3768 block_search_flags search_flags,
3769 domain_search_flags domain,
3770 expand_symtabs_lang_matcher lang_matcher)
3771 {
3772 for (objfile *objfile : current_program_space->objfiles ())
3773 if (!objfile->expand_symtabs_matching (file_matcher,
3774 &lookup_name,
3775 symbol_matcher,
3776 expansion_notify,
3777 search_flags,
3778 domain,
3779 lang_matcher))
3780 return false;
3781 return true;
3782 }
3783
3784 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3785 Map function FUN over every file.
3786 See quick_symbol_functions.map_symbol_filenames for details. */
3787
3788 void
3789 map_symbol_filenames (symbol_filename_listener fun, bool need_fullname)
3790 {
3791 for (objfile *objfile : current_program_space->objfiles ())
3792 objfile->map_symbol_filenames (fun, need_fullname);
3793 }
3794
3795 #if GDB_SELF_TEST
3796
3797 namespace selftests {
3798 namespace filename_language {
3799
3800 static void test_filename_language ()
3801 {
3802 /* This test messes up the filename_language_table global. */
3803 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3804
3805 /* Test deducing an unknown extension. */
3806 language lang = deduce_language_from_filename ("myfile.blah");
3807 SELF_CHECK (lang == language_unknown);
3808
3809 /* Test deducing a known extension. */
3810 lang = deduce_language_from_filename ("myfile.c");
3811 SELF_CHECK (lang == language_c);
3812
3813 /* Test adding a new extension using the internal API. */
3814 add_filename_language (".blah", language_pascal);
3815 lang = deduce_language_from_filename ("myfile.blah");
3816 SELF_CHECK (lang == language_pascal);
3817 }
3818
3819 static void
3820 test_set_ext_lang_command ()
3821 {
3822 /* This test messes up the filename_language_table global. */
3823 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3824
3825 /* Confirm that the .hello extension is not known. */
3826 language lang = deduce_language_from_filename ("cake.hello");
3827 SELF_CHECK (lang == language_unknown);
3828
3829 /* Test adding a new extension using the CLI command. */
3830 ext_args = ".hello rust";
3831 set_ext_lang_command (NULL, 1, NULL);
3832
3833 lang = deduce_language_from_filename ("cake.hello");
3834 SELF_CHECK (lang == language_rust);
3835
3836 /* Test overriding an existing extension using the CLI command. */
3837 int size_before = filename_language_table.size ();
3838 ext_args = ".hello pascal";
3839 set_ext_lang_command (NULL, 1, NULL);
3840 int size_after = filename_language_table.size ();
3841
3842 lang = deduce_language_from_filename ("cake.hello");
3843 SELF_CHECK (lang == language_pascal);
3844 SELF_CHECK (size_before == size_after);
3845 }
3846
3847 } /* namespace filename_language */
3848 } /* namespace selftests */
3849
3850 #endif /* GDB_SELF_TEST */
3851
3852 INIT_GDB_FILE (symfile)
3853 {
3854 struct cmd_list_element *c;
3855
3856 gdb::observers::free_objfile.attach (symfile_free_objfile, "symfile");
3857
3858 #define READNOW_READNEVER_HELP \
3859 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3860 immediately. This makes the command slower, but may make future operations\n\
3861 faster.\n\
3862 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3863 symbolic debug information."
3864
3865 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3866 Load symbol table from executable file FILE.\n\
3867 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3868 OFF is an optional offset which is added to each section address.\n\
3869 The `file' command can also load symbol tables, as well as setting the file\n\
3870 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3871 set_cmd_completer (c, filename_maybe_quoted_completer);
3872
3873 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3874 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3875 Usage: add-symbol-file FILE [-readnow|-readnever] [-o OFF] [ADDR]\n\
3876 [-s SECT-NAME SECT-ADDR]...\n\
3877 ADDR is the starting address of the file's text.\n\
3878 Each '-s' argument provides a section name and address, and\n\
3879 should be specified if the data and bss segments are not contiguous\n\
3880 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3881 OFF is an optional offset which is added to the default load addresses\n\
3882 of all sections for which no other address was specified.\n"
3883 READNOW_READNEVER_HELP),
3884 &cmdlist);
3885 set_cmd_completer (c, filename_maybe_quoted_completer);
3886
3887 const auto remove_symbol_file_opts
3888 = make_remove_symbol_file_def_group (nullptr);
3889 static std::string remove_symbol_file_cmd_help
3890 = gdb::option::build_help (_("\
3891 Remove a symbol file added via the add-symbol-file command.\n\
3892 Usage: remove-symbol-file FILENAME\n\
3893 remove-symbol-file -a ADDRESS\n\
3894 The file to remove can be identified by its filename or by an address\n\
3895 that lies within the boundaries of this symbol file in memory.\n\
3896 Options:\n\
3897 %OPTIONS%"), remove_symbol_file_opts);
3898 c = add_cmd ("remove-symbol-file", class_files,
3899 remove_symbol_file_command,
3900 remove_symbol_file_cmd_help.c_str (),
3901 &cmdlist);
3902 set_cmd_completer_handle_brkchars (c, remove_symbol_file_command_completer);
3903
3904 c = add_cmd ("load", class_files, load_command, _("\
3905 Dynamically load FILE into the running program.\n\
3906 FILE symbols are recorded for access from GDB.\n\
3907 Usage: load [FILE] [OFFSET]\n\
3908 An optional load OFFSET may also be given as a literal address.\n\
3909 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3910 on its own."), &cmdlist);
3911 set_cmd_completer (c, deprecated_filename_completer);
3912
3913 cmd_list_element *overlay_cmd
3914 = add_basic_prefix_cmd ("overlay", class_support,
3915 _("Commands for debugging overlays."), &overlaylist,
3916 0, &cmdlist);
3917
3918 add_com_alias ("ovly", overlay_cmd, class_support, 1);
3919 add_com_alias ("ov", overlay_cmd, class_support, 1);
3920
3921 add_cmd ("map-overlay", class_support, map_overlay_command,
3922 _("Assert that an overlay section is mapped."), &overlaylist);
3923
3924 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3925 _("Assert that an overlay section is unmapped."), &overlaylist);
3926
3927 add_cmd ("list-overlays", class_support, list_overlays_command,
3928 _("List mappings of overlay sections."), &overlaylist);
3929
3930 add_cmd ("manual", class_support, overlay_manual_command,
3931 _("Enable overlay debugging."), &overlaylist);
3932 add_cmd ("off", class_support, overlay_off_command,
3933 _("Disable overlay debugging."), &overlaylist);
3934 add_cmd ("auto", class_support, overlay_auto_command,
3935 _("Enable automatic overlay debugging."), &overlaylist);
3936 add_cmd ("load-target", class_support, overlay_load_command,
3937 _("Read the overlay mapping state from the target."), &overlaylist);
3938
3939 /* Filename extension to source language lookup table: */
3940 add_setshow_string_noescape_cmd ("extension-language", class_files,
3941 &ext_args, _("\
3942 Set mapping between filename extension and source language."), _("\
3943 Show mapping between filename extension and source language."), _("\
3944 Usage: set extension-language .foo bar"),
3945 set_ext_lang_command,
3946 show_ext_args,
3947 &setlist, &showlist);
3948
3949 add_info ("extensions", info_ext_lang_command,
3950 _("All filename extensions associated with a source language."));
3951
3952 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3953 &debug_file_directory, _("\
3954 Set the directories where separate debug symbols are searched for."), _("\
3955 Show the directories where separate debug symbols are searched for."), _("\
3956 Separate debug symbols are first searched for in the same\n\
3957 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3958 and lastly at the path of the directory of the binary with\n\
3959 each global debug-file-directory component prepended."),
3960 NULL,
3961 show_debug_file_directory,
3962 &setlist, &showlist);
3963
3964 add_setshow_enum_cmd ("symbol-loading", no_class,
3965 print_symbol_loading_enums, &print_symbol_loading,
3966 _("\
3967 Set printing of symbol loading messages."), _("\
3968 Show printing of symbol loading messages."), _("\
3969 off == turn all messages off\n\
3970 brief == print messages for the executable,\n\
3971 and brief messages for shared libraries\n\
3972 full == print messages for the executable,\n\
3973 and messages for each shared library."),
3974 NULL,
3975 NULL,
3976 &setprintlist, &showprintlist);
3977
3978 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3979 &separate_debug_file_debug, _("\
3980 Set printing of separate debug info file search debug."), _("\
3981 Show printing of separate debug info file search debug."), _("\
3982 When on, GDB prints the searched locations while looking for separate\n\
3983 debug info files."),
3984 NULL, NULL, &setdebuglist, &showdebuglist);
3985
3986 #if GDB_SELF_TEST
3987 selftests::register_test
3988 ("filename_language", selftests::filename_language::test_filename_language);
3989 selftests::register_test
3990 ("set_ext_lang_command",
3991 selftests::filename_language::test_set_ext_lang_command);
3992 #endif
3993 }