]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
PowerPC64 ELFv2 ABI: skip global entry point code
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <string.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 void _initialize_symtab (void);
104
105 /* */
106
107 /* Program space key for finding name and language of "main". */
108
109 static const struct program_space_data *main_progspace_key;
110
111 /* Type of the data stored on the program space. */
112
113 struct main_info
114 {
115 /* Name of "main". */
116
117 char *name_of_main;
118
119 /* Language of "main". */
120
121 enum language language_of_main;
122 };
123
124 /* When non-zero, print debugging messages related to symtab creation. */
125 unsigned int symtab_create_debug = 0;
126
127 /* Non-zero if a file may be known by two different basenames.
128 This is the uncommon case, and significantly slows down gdb.
129 Default set to "off" to not slow down the common case. */
130 int basenames_may_differ = 0;
131
132 /* Allow the user to configure the debugger behavior with respect
133 to multiple-choice menus when more than one symbol matches during
134 a symbol lookup. */
135
136 const char multiple_symbols_ask[] = "ask";
137 const char multiple_symbols_all[] = "all";
138 const char multiple_symbols_cancel[] = "cancel";
139 static const char *const multiple_symbols_modes[] =
140 {
141 multiple_symbols_ask,
142 multiple_symbols_all,
143 multiple_symbols_cancel,
144 NULL
145 };
146 static const char *multiple_symbols_mode = multiple_symbols_all;
147
148 /* Read-only accessor to AUTO_SELECT_MODE. */
149
150 const char *
151 multiple_symbols_select_mode (void)
152 {
153 return multiple_symbols_mode;
154 }
155
156 /* Block in which the most recently searched-for symbol was found.
157 Might be better to make this a parameter to lookup_symbol and
158 value_of_this. */
159
160 const struct block *block_found;
161
162 /* Return the name of a domain_enum. */
163
164 const char *
165 domain_name (domain_enum e)
166 {
167 switch (e)
168 {
169 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
170 case VAR_DOMAIN: return "VAR_DOMAIN";
171 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
172 case LABEL_DOMAIN: return "LABEL_DOMAIN";
173 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
174 default: gdb_assert_not_reached ("bad domain_enum");
175 }
176 }
177
178 /* Return the name of a search_domain . */
179
180 const char *
181 search_domain_name (enum search_domain e)
182 {
183 switch (e)
184 {
185 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
186 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
187 case TYPES_DOMAIN: return "TYPES_DOMAIN";
188 case ALL_DOMAIN: return "ALL_DOMAIN";
189 default: gdb_assert_not_reached ("bad search_domain");
190 }
191 }
192
193 /* Set the primary field in SYMTAB. */
194
195 void
196 set_symtab_primary (struct symtab *symtab, int primary)
197 {
198 symtab->primary = primary;
199
200 if (symtab_create_debug && primary)
201 {
202 fprintf_unfiltered (gdb_stdlog,
203 "Created primary symtab %s for %s.\n",
204 host_address_to_string (symtab),
205 symtab_to_filename_for_display (symtab));
206 }
207 }
208
209 /* See whether FILENAME matches SEARCH_NAME using the rule that we
210 advertise to the user. (The manual's description of linespecs
211 describes what we advertise). Returns true if they match, false
212 otherwise. */
213
214 int
215 compare_filenames_for_search (const char *filename, const char *search_name)
216 {
217 int len = strlen (filename);
218 size_t search_len = strlen (search_name);
219
220 if (len < search_len)
221 return 0;
222
223 /* The tail of FILENAME must match. */
224 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
225 return 0;
226
227 /* Either the names must completely match, or the character
228 preceding the trailing SEARCH_NAME segment of FILENAME must be a
229 directory separator.
230
231 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
232 cannot match FILENAME "/path//dir/file.c" - as user has requested
233 absolute path. The sama applies for "c:\file.c" possibly
234 incorrectly hypothetically matching "d:\dir\c:\file.c".
235
236 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
237 compatible with SEARCH_NAME "file.c". In such case a compiler had
238 to put the "c:file.c" name into debug info. Such compatibility
239 works only on GDB built for DOS host. */
240 return (len == search_len
241 || (!IS_ABSOLUTE_PATH (search_name)
242 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
243 || (HAS_DRIVE_SPEC (filename)
244 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
245 }
246
247 /* Check for a symtab of a specific name by searching some symtabs.
248 This is a helper function for callbacks of iterate_over_symtabs.
249
250 If NAME is not absolute, then REAL_PATH is NULL
251 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
252
253 The return value, NAME, REAL_PATH, CALLBACK, and DATA
254 are identical to the `map_symtabs_matching_filename' method of
255 quick_symbol_functions.
256
257 FIRST and AFTER_LAST indicate the range of symtabs to search.
258 AFTER_LAST is one past the last symtab to search; NULL means to
259 search until the end of the list. */
260
261 int
262 iterate_over_some_symtabs (const char *name,
263 const char *real_path,
264 int (*callback) (struct symtab *symtab,
265 void *data),
266 void *data,
267 struct symtab *first,
268 struct symtab *after_last)
269 {
270 struct symtab *s = NULL;
271 const char* base_name = lbasename (name);
272
273 for (s = first; s != NULL && s != after_last; s = s->next)
274 {
275 if (compare_filenames_for_search (s->filename, name))
276 {
277 if (callback (s, data))
278 return 1;
279 continue;
280 }
281
282 /* Before we invoke realpath, which can get expensive when many
283 files are involved, do a quick comparison of the basenames. */
284 if (! basenames_may_differ
285 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
286 continue;
287
288 if (compare_filenames_for_search (symtab_to_fullname (s), name))
289 {
290 if (callback (s, data))
291 return 1;
292 continue;
293 }
294
295 /* If the user gave us an absolute path, try to find the file in
296 this symtab and use its absolute path. */
297 if (real_path != NULL)
298 {
299 const char *fullname = symtab_to_fullname (s);
300
301 gdb_assert (IS_ABSOLUTE_PATH (real_path));
302 gdb_assert (IS_ABSOLUTE_PATH (name));
303 if (FILENAME_CMP (real_path, fullname) == 0)
304 {
305 if (callback (s, data))
306 return 1;
307 continue;
308 }
309 }
310 }
311
312 return 0;
313 }
314
315 /* Check for a symtab of a specific name; first in symtabs, then in
316 psymtabs. *If* there is no '/' in the name, a match after a '/'
317 in the symtab filename will also work.
318
319 Calls CALLBACK with each symtab that is found and with the supplied
320 DATA. If CALLBACK returns true, the search stops. */
321
322 void
323 iterate_over_symtabs (const char *name,
324 int (*callback) (struct symtab *symtab,
325 void *data),
326 void *data)
327 {
328 struct objfile *objfile;
329 char *real_path = NULL;
330 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
331
332 /* Here we are interested in canonicalizing an absolute path, not
333 absolutizing a relative path. */
334 if (IS_ABSOLUTE_PATH (name))
335 {
336 real_path = gdb_realpath (name);
337 make_cleanup (xfree, real_path);
338 gdb_assert (IS_ABSOLUTE_PATH (real_path));
339 }
340
341 ALL_OBJFILES (objfile)
342 {
343 if (iterate_over_some_symtabs (name, real_path, callback, data,
344 objfile->symtabs, NULL))
345 {
346 do_cleanups (cleanups);
347 return;
348 }
349 }
350
351 /* Same search rules as above apply here, but now we look thru the
352 psymtabs. */
353
354 ALL_OBJFILES (objfile)
355 {
356 if (objfile->sf
357 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
358 name,
359 real_path,
360 callback,
361 data))
362 {
363 do_cleanups (cleanups);
364 return;
365 }
366 }
367
368 do_cleanups (cleanups);
369 }
370
371 /* The callback function used by lookup_symtab. */
372
373 static int
374 lookup_symtab_callback (struct symtab *symtab, void *data)
375 {
376 struct symtab **result_ptr = data;
377
378 *result_ptr = symtab;
379 return 1;
380 }
381
382 /* A wrapper for iterate_over_symtabs that returns the first matching
383 symtab, or NULL. */
384
385 struct symtab *
386 lookup_symtab (const char *name)
387 {
388 struct symtab *result = NULL;
389
390 iterate_over_symtabs (name, lookup_symtab_callback, &result);
391 return result;
392 }
393
394 \f
395 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
396 full method name, which consist of the class name (from T), the unadorned
397 method name from METHOD_ID, and the signature for the specific overload,
398 specified by SIGNATURE_ID. Note that this function is g++ specific. */
399
400 char *
401 gdb_mangle_name (struct type *type, int method_id, int signature_id)
402 {
403 int mangled_name_len;
404 char *mangled_name;
405 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
406 struct fn_field *method = &f[signature_id];
407 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
408 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
409 const char *newname = type_name_no_tag (type);
410
411 /* Does the form of physname indicate that it is the full mangled name
412 of a constructor (not just the args)? */
413 int is_full_physname_constructor;
414
415 int is_constructor;
416 int is_destructor = is_destructor_name (physname);
417 /* Need a new type prefix. */
418 char *const_prefix = method->is_const ? "C" : "";
419 char *volatile_prefix = method->is_volatile ? "V" : "";
420 char buf[20];
421 int len = (newname == NULL ? 0 : strlen (newname));
422
423 /* Nothing to do if physname already contains a fully mangled v3 abi name
424 or an operator name. */
425 if ((physname[0] == '_' && physname[1] == 'Z')
426 || is_operator_name (field_name))
427 return xstrdup (physname);
428
429 is_full_physname_constructor = is_constructor_name (physname);
430
431 is_constructor = is_full_physname_constructor
432 || (newname && strcmp (field_name, newname) == 0);
433
434 if (!is_destructor)
435 is_destructor = (strncmp (physname, "__dt", 4) == 0);
436
437 if (is_destructor || is_full_physname_constructor)
438 {
439 mangled_name = (char *) xmalloc (strlen (physname) + 1);
440 strcpy (mangled_name, physname);
441 return mangled_name;
442 }
443
444 if (len == 0)
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
447 }
448 else if (physname[0] == 't' || physname[0] == 'Q')
449 {
450 /* The physname for template and qualified methods already includes
451 the class name. */
452 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
453 newname = NULL;
454 len = 0;
455 }
456 else
457 {
458 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
459 volatile_prefix, len);
460 }
461 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
462 + strlen (buf) + len + strlen (physname) + 1);
463
464 mangled_name = (char *) xmalloc (mangled_name_len);
465 if (is_constructor)
466 mangled_name[0] = '\0';
467 else
468 strcpy (mangled_name, field_name);
469
470 strcat (mangled_name, buf);
471 /* If the class doesn't have a name, i.e. newname NULL, then we just
472 mangle it using 0 for the length of the class. Thus it gets mangled
473 as something starting with `::' rather than `classname::'. */
474 if (newname != NULL)
475 strcat (mangled_name, newname);
476
477 strcat (mangled_name, physname);
478 return (mangled_name);
479 }
480
481 /* Initialize the cplus_specific structure. 'cplus_specific' should
482 only be allocated for use with cplus symbols. */
483
484 static void
485 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
486 struct obstack *obstack)
487 {
488 /* A language_specific structure should not have been previously
489 initialized. */
490 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
491 gdb_assert (obstack != NULL);
492
493 gsymbol->language_specific.cplus_specific =
494 OBSTACK_ZALLOC (obstack, struct cplus_specific);
495 }
496
497 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
498 correctly allocated. For C++ symbols a cplus_specific struct is
499 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
500 OBJFILE can be NULL. */
501
502 void
503 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
504 const char *name,
505 struct obstack *obstack)
506 {
507 if (gsymbol->language == language_cplus)
508 {
509 if (gsymbol->language_specific.cplus_specific == NULL)
510 symbol_init_cplus_specific (gsymbol, obstack);
511
512 gsymbol->language_specific.cplus_specific->demangled_name = name;
513 }
514 else if (gsymbol->language == language_ada)
515 {
516 if (name == NULL)
517 {
518 gsymbol->ada_mangled = 0;
519 gsymbol->language_specific.obstack = obstack;
520 }
521 else
522 {
523 gsymbol->ada_mangled = 1;
524 gsymbol->language_specific.mangled_lang.demangled_name = name;
525 }
526 }
527 else
528 gsymbol->language_specific.mangled_lang.demangled_name = name;
529 }
530
531 /* Return the demangled name of GSYMBOL. */
532
533 const char *
534 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
535 {
536 if (gsymbol->language == language_cplus)
537 {
538 if (gsymbol->language_specific.cplus_specific != NULL)
539 return gsymbol->language_specific.cplus_specific->demangled_name;
540 else
541 return NULL;
542 }
543 else if (gsymbol->language == language_ada)
544 {
545 if (!gsymbol->ada_mangled)
546 return NULL;
547 /* Fall through. */
548 }
549
550 return gsymbol->language_specific.mangled_lang.demangled_name;
551 }
552
553 \f
554 /* Initialize the language dependent portion of a symbol
555 depending upon the language for the symbol. */
556
557 void
558 symbol_set_language (struct general_symbol_info *gsymbol,
559 enum language language,
560 struct obstack *obstack)
561 {
562 gsymbol->language = language;
563 if (gsymbol->language == language_d
564 || gsymbol->language == language_go
565 || gsymbol->language == language_java
566 || gsymbol->language == language_objc
567 || gsymbol->language == language_fortran)
568 {
569 symbol_set_demangled_name (gsymbol, NULL, obstack);
570 }
571 else if (gsymbol->language == language_ada)
572 {
573 gdb_assert (gsymbol->ada_mangled == 0);
574 gsymbol->language_specific.obstack = obstack;
575 }
576 else if (gsymbol->language == language_cplus)
577 gsymbol->language_specific.cplus_specific = NULL;
578 else
579 {
580 memset (&gsymbol->language_specific, 0,
581 sizeof (gsymbol->language_specific));
582 }
583 }
584
585 /* Functions to initialize a symbol's mangled name. */
586
587 /* Objects of this type are stored in the demangled name hash table. */
588 struct demangled_name_entry
589 {
590 const char *mangled;
591 char demangled[1];
592 };
593
594 /* Hash function for the demangled name hash. */
595
596 static hashval_t
597 hash_demangled_name_entry (const void *data)
598 {
599 const struct demangled_name_entry *e = data;
600
601 return htab_hash_string (e->mangled);
602 }
603
604 /* Equality function for the demangled name hash. */
605
606 static int
607 eq_demangled_name_entry (const void *a, const void *b)
608 {
609 const struct demangled_name_entry *da = a;
610 const struct demangled_name_entry *db = b;
611
612 return strcmp (da->mangled, db->mangled) == 0;
613 }
614
615 /* Create the hash table used for demangled names. Each hash entry is
616 a pair of strings; one for the mangled name and one for the demangled
617 name. The entry is hashed via just the mangled name. */
618
619 static void
620 create_demangled_names_hash (struct objfile *objfile)
621 {
622 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
623 The hash table code will round this up to the next prime number.
624 Choosing a much larger table size wastes memory, and saves only about
625 1% in symbol reading. */
626
627 objfile->per_bfd->demangled_names_hash = htab_create_alloc
628 (256, hash_demangled_name_entry, eq_demangled_name_entry,
629 NULL, xcalloc, xfree);
630 }
631
632 /* Try to determine the demangled name for a symbol, based on the
633 language of that symbol. If the language is set to language_auto,
634 it will attempt to find any demangling algorithm that works and
635 then set the language appropriately. The returned name is allocated
636 by the demangler and should be xfree'd. */
637
638 static char *
639 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
640 const char *mangled)
641 {
642 char *demangled = NULL;
643
644 if (gsymbol->language == language_unknown)
645 gsymbol->language = language_auto;
646
647 if (gsymbol->language == language_objc
648 || gsymbol->language == language_auto)
649 {
650 demangled =
651 objc_demangle (mangled, 0);
652 if (demangled != NULL)
653 {
654 gsymbol->language = language_objc;
655 return demangled;
656 }
657 }
658 if (gsymbol->language == language_cplus
659 || gsymbol->language == language_auto)
660 {
661 demangled =
662 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
663 if (demangled != NULL)
664 {
665 gsymbol->language = language_cplus;
666 return demangled;
667 }
668 }
669 if (gsymbol->language == language_java)
670 {
671 demangled =
672 gdb_demangle (mangled,
673 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
674 if (demangled != NULL)
675 {
676 gsymbol->language = language_java;
677 return demangled;
678 }
679 }
680 if (gsymbol->language == language_d
681 || gsymbol->language == language_auto)
682 {
683 demangled = d_demangle(mangled, 0);
684 if (demangled != NULL)
685 {
686 gsymbol->language = language_d;
687 return demangled;
688 }
689 }
690 /* FIXME(dje): Continually adding languages here is clumsy.
691 Better to just call la_demangle if !auto, and if auto then call
692 a utility routine that tries successive languages in turn and reports
693 which one it finds. I realize the la_demangle options may be different
694 for different languages but there's already a FIXME for that. */
695 if (gsymbol->language == language_go
696 || gsymbol->language == language_auto)
697 {
698 demangled = go_demangle (mangled, 0);
699 if (demangled != NULL)
700 {
701 gsymbol->language = language_go;
702 return demangled;
703 }
704 }
705
706 /* We could support `gsymbol->language == language_fortran' here to provide
707 module namespaces also for inferiors with only minimal symbol table (ELF
708 symbols). Just the mangling standard is not standardized across compilers
709 and there is no DW_AT_producer available for inferiors with only the ELF
710 symbols to check the mangling kind. */
711
712 /* Check for Ada symbols last. See comment below explaining why. */
713
714 if (gsymbol->language == language_auto)
715 {
716 const char *demangled = ada_decode (mangled);
717
718 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
719 {
720 /* Set the gsymbol language to Ada, but still return NULL.
721 Two reasons for that:
722
723 1. For Ada, we prefer computing the symbol's decoded name
724 on the fly rather than pre-compute it, in order to save
725 memory (Ada projects are typically very large).
726
727 2. There are some areas in the definition of the GNAT
728 encoding where, with a bit of bad luck, we might be able
729 to decode a non-Ada symbol, generating an incorrect
730 demangled name (Eg: names ending with "TB" for instance
731 are identified as task bodies and so stripped from
732 the decoded name returned).
733
734 Returning NULL, here, helps us get a little bit of
735 the best of both worlds. Because we're last, we should
736 not affect any of the other languages that were able to
737 demangle the symbol before us; we get to correctly tag
738 Ada symbols as such; and even if we incorrectly tagged
739 a non-Ada symbol, which should be rare, any routing
740 through the Ada language should be transparent (Ada
741 tries to behave much like C/C++ with non-Ada symbols). */
742 gsymbol->language = language_ada;
743 return NULL;
744 }
745 }
746
747 return NULL;
748 }
749
750 /* Set both the mangled and demangled (if any) names for GSYMBOL based
751 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
752 objfile's obstack; but if COPY_NAME is 0 and if NAME is
753 NUL-terminated, then this function assumes that NAME is already
754 correctly saved (either permanently or with a lifetime tied to the
755 objfile), and it will not be copied.
756
757 The hash table corresponding to OBJFILE is used, and the memory
758 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
759 so the pointer can be discarded after calling this function. */
760
761 /* We have to be careful when dealing with Java names: when we run
762 into a Java minimal symbol, we don't know it's a Java symbol, so it
763 gets demangled as a C++ name. This is unfortunate, but there's not
764 much we can do about it: but when demangling partial symbols and
765 regular symbols, we'd better not reuse the wrong demangled name.
766 (See PR gdb/1039.) We solve this by putting a distinctive prefix
767 on Java names when storing them in the hash table. */
768
769 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
770 don't mind the Java prefix so much: different languages have
771 different demangling requirements, so it's only natural that we
772 need to keep language data around in our demangling cache. But
773 it's not good that the minimal symbol has the wrong demangled name.
774 Unfortunately, I can't think of any easy solution to that
775 problem. */
776
777 #define JAVA_PREFIX "##JAVA$$"
778 #define JAVA_PREFIX_LEN 8
779
780 void
781 symbol_set_names (struct general_symbol_info *gsymbol,
782 const char *linkage_name, int len, int copy_name,
783 struct objfile *objfile)
784 {
785 struct demangled_name_entry **slot;
786 /* A 0-terminated copy of the linkage name. */
787 const char *linkage_name_copy;
788 /* A copy of the linkage name that might have a special Java prefix
789 added to it, for use when looking names up in the hash table. */
790 const char *lookup_name;
791 /* The length of lookup_name. */
792 int lookup_len;
793 struct demangled_name_entry entry;
794 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
795
796 if (gsymbol->language == language_ada)
797 {
798 /* In Ada, we do the symbol lookups using the mangled name, so
799 we can save some space by not storing the demangled name.
800
801 As a side note, we have also observed some overlap between
802 the C++ mangling and Ada mangling, similarly to what has
803 been observed with Java. Because we don't store the demangled
804 name with the symbol, we don't need to use the same trick
805 as Java. */
806 if (!copy_name)
807 gsymbol->name = linkage_name;
808 else
809 {
810 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
811
812 memcpy (name, linkage_name, len);
813 name[len] = '\0';
814 gsymbol->name = name;
815 }
816 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
817
818 return;
819 }
820
821 if (per_bfd->demangled_names_hash == NULL)
822 create_demangled_names_hash (objfile);
823
824 /* The stabs reader generally provides names that are not
825 NUL-terminated; most of the other readers don't do this, so we
826 can just use the given copy, unless we're in the Java case. */
827 if (gsymbol->language == language_java)
828 {
829 char *alloc_name;
830
831 lookup_len = len + JAVA_PREFIX_LEN;
832 alloc_name = alloca (lookup_len + 1);
833 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
834 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
839 }
840 else if (linkage_name[len] != '\0')
841 {
842 char *alloc_name;
843
844 lookup_len = len;
845 alloc_name = alloca (lookup_len + 1);
846 memcpy (alloc_name, linkage_name, len);
847 alloc_name[lookup_len] = '\0';
848
849 lookup_name = alloc_name;
850 linkage_name_copy = alloc_name;
851 }
852 else
853 {
854 lookup_len = len;
855 lookup_name = linkage_name;
856 linkage_name_copy = linkage_name;
857 }
858
859 entry.mangled = lookup_name;
860 slot = ((struct demangled_name_entry **)
861 htab_find_slot (per_bfd->demangled_names_hash,
862 &entry, INSERT));
863
864 /* If this name is not in the hash table, add it. */
865 if (*slot == NULL
866 /* A C version of the symbol may have already snuck into the table.
867 This happens to, e.g., main.init (__go_init_main). Cope. */
868 || (gsymbol->language == language_go
869 && (*slot)->demangled[0] == '\0'))
870 {
871 char *demangled_name = symbol_find_demangled_name (gsymbol,
872 linkage_name_copy);
873 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 lookup_name==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && lookup_name == linkage_name)
885 {
886 *slot = obstack_alloc (&per_bfd->storage_obstack,
887 offsetof (struct demangled_name_entry,
888 demangled)
889 + demangled_len + 1);
890 (*slot)->mangled = lookup_name;
891 }
892 else
893 {
894 char *mangled_ptr;
895
896 /* If we must copy the mangled name, put it directly after
897 the demangled name so we can have a single
898 allocation. */
899 *slot = obstack_alloc (&per_bfd->storage_obstack,
900 offsetof (struct demangled_name_entry,
901 demangled)
902 + lookup_len + demangled_len + 2);
903 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
904 strcpy (mangled_ptr, lookup_name);
905 (*slot)->mangled = mangled_ptr;
906 }
907
908 if (demangled_name != NULL)
909 {
910 strcpy ((*slot)->demangled, demangled_name);
911 xfree (demangled_name);
912 }
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916
917 gsymbol->name = (*slot)->mangled + lookup_len - len;
918 if ((*slot)->demangled[0] != '\0')
919 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
920 &per_bfd->storage_obstack);
921 else
922 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
923 }
924
925 /* Return the source code name of a symbol. In languages where
926 demangling is necessary, this is the demangled name. */
927
928 const char *
929 symbol_natural_name (const struct general_symbol_info *gsymbol)
930 {
931 switch (gsymbol->language)
932 {
933 case language_cplus:
934 case language_d:
935 case language_go:
936 case language_java:
937 case language_objc:
938 case language_fortran:
939 if (symbol_get_demangled_name (gsymbol) != NULL)
940 return symbol_get_demangled_name (gsymbol);
941 break;
942 case language_ada:
943 return ada_decode_symbol (gsymbol);
944 default:
945 break;
946 }
947 return gsymbol->name;
948 }
949
950 /* Return the demangled name for a symbol based on the language for
951 that symbol. If no demangled name exists, return NULL. */
952
953 const char *
954 symbol_demangled_name (const struct general_symbol_info *gsymbol)
955 {
956 const char *dem_name = NULL;
957
958 switch (gsymbol->language)
959 {
960 case language_cplus:
961 case language_d:
962 case language_go:
963 case language_java:
964 case language_objc:
965 case language_fortran:
966 dem_name = symbol_get_demangled_name (gsymbol);
967 break;
968 case language_ada:
969 dem_name = ada_decode_symbol (gsymbol);
970 break;
971 default:
972 break;
973 }
974 return dem_name;
975 }
976
977 /* Return the search name of a symbol---generally the demangled or
978 linkage name of the symbol, depending on how it will be searched for.
979 If there is no distinct demangled name, then returns the same value
980 (same pointer) as SYMBOL_LINKAGE_NAME. */
981
982 const char *
983 symbol_search_name (const struct general_symbol_info *gsymbol)
984 {
985 if (gsymbol->language == language_ada)
986 return gsymbol->name;
987 else
988 return symbol_natural_name (gsymbol);
989 }
990
991 /* Initialize the structure fields to zero values. */
992
993 void
994 init_sal (struct symtab_and_line *sal)
995 {
996 sal->pspace = NULL;
997 sal->symtab = 0;
998 sal->section = 0;
999 sal->line = 0;
1000 sal->pc = 0;
1001 sal->end = 0;
1002 sal->explicit_pc = 0;
1003 sal->explicit_line = 0;
1004 sal->probe = NULL;
1005 }
1006 \f
1007
1008 /* Return 1 if the two sections are the same, or if they could
1009 plausibly be copies of each other, one in an original object
1010 file and another in a separated debug file. */
1011
1012 int
1013 matching_obj_sections (struct obj_section *obj_first,
1014 struct obj_section *obj_second)
1015 {
1016 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1017 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1018 struct objfile *obj;
1019
1020 /* If they're the same section, then they match. */
1021 if (first == second)
1022 return 1;
1023
1024 /* If either is NULL, give up. */
1025 if (first == NULL || second == NULL)
1026 return 0;
1027
1028 /* This doesn't apply to absolute symbols. */
1029 if (first->owner == NULL || second->owner == NULL)
1030 return 0;
1031
1032 /* If they're in the same object file, they must be different sections. */
1033 if (first->owner == second->owner)
1034 return 0;
1035
1036 /* Check whether the two sections are potentially corresponding. They must
1037 have the same size, address, and name. We can't compare section indexes,
1038 which would be more reliable, because some sections may have been
1039 stripped. */
1040 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1041 return 0;
1042
1043 /* In-memory addresses may start at a different offset, relativize them. */
1044 if (bfd_get_section_vma (first->owner, first)
1045 - bfd_get_start_address (first->owner)
1046 != bfd_get_section_vma (second->owner, second)
1047 - bfd_get_start_address (second->owner))
1048 return 0;
1049
1050 if (bfd_get_section_name (first->owner, first) == NULL
1051 || bfd_get_section_name (second->owner, second) == NULL
1052 || strcmp (bfd_get_section_name (first->owner, first),
1053 bfd_get_section_name (second->owner, second)) != 0)
1054 return 0;
1055
1056 /* Otherwise check that they are in corresponding objfiles. */
1057
1058 ALL_OBJFILES (obj)
1059 if (obj->obfd == first->owner)
1060 break;
1061 gdb_assert (obj != NULL);
1062
1063 if (obj->separate_debug_objfile != NULL
1064 && obj->separate_debug_objfile->obfd == second->owner)
1065 return 1;
1066 if (obj->separate_debug_objfile_backlink != NULL
1067 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1068 return 1;
1069
1070 return 0;
1071 }
1072
1073 struct symtab *
1074 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1075 {
1076 struct objfile *objfile;
1077 struct minimal_symbol *msymbol;
1078
1079 /* If we know that this is not a text address, return failure. This is
1080 necessary because we loop based on texthigh and textlow, which do
1081 not include the data ranges. */
1082 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
1083 if (msymbol
1084 && (MSYMBOL_TYPE (msymbol) == mst_data
1085 || MSYMBOL_TYPE (msymbol) == mst_bss
1086 || MSYMBOL_TYPE (msymbol) == mst_abs
1087 || MSYMBOL_TYPE (msymbol) == mst_file_data
1088 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1089 return NULL;
1090
1091 ALL_OBJFILES (objfile)
1092 {
1093 struct symtab *result = NULL;
1094
1095 if (objfile->sf)
1096 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1097 pc, section, 0);
1098 if (result)
1099 return result;
1100 }
1101
1102 return NULL;
1103 }
1104 \f
1105 /* Debug symbols usually don't have section information. We need to dig that
1106 out of the minimal symbols and stash that in the debug symbol. */
1107
1108 void
1109 fixup_section (struct general_symbol_info *ginfo,
1110 CORE_ADDR addr, struct objfile *objfile)
1111 {
1112 struct minimal_symbol *msym;
1113
1114 /* First, check whether a minimal symbol with the same name exists
1115 and points to the same address. The address check is required
1116 e.g. on PowerPC64, where the minimal symbol for a function will
1117 point to the function descriptor, while the debug symbol will
1118 point to the actual function code. */
1119 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1120 if (msym)
1121 ginfo->section = SYMBOL_SECTION (msym);
1122 else
1123 {
1124 /* Static, function-local variables do appear in the linker
1125 (minimal) symbols, but are frequently given names that won't
1126 be found via lookup_minimal_symbol(). E.g., it has been
1127 observed in frv-uclinux (ELF) executables that a static,
1128 function-local variable named "foo" might appear in the
1129 linker symbols as "foo.6" or "foo.3". Thus, there is no
1130 point in attempting to extend the lookup-by-name mechanism to
1131 handle this case due to the fact that there can be multiple
1132 names.
1133
1134 So, instead, search the section table when lookup by name has
1135 failed. The ``addr'' and ``endaddr'' fields may have already
1136 been relocated. If so, the relocation offset (i.e. the
1137 ANOFFSET value) needs to be subtracted from these values when
1138 performing the comparison. We unconditionally subtract it,
1139 because, when no relocation has been performed, the ANOFFSET
1140 value will simply be zero.
1141
1142 The address of the symbol whose section we're fixing up HAS
1143 NOT BEEN adjusted (relocated) yet. It can't have been since
1144 the section isn't yet known and knowing the section is
1145 necessary in order to add the correct relocation value. In
1146 other words, we wouldn't even be in this function (attempting
1147 to compute the section) if it were already known.
1148
1149 Note that it is possible to search the minimal symbols
1150 (subtracting the relocation value if necessary) to find the
1151 matching minimal symbol, but this is overkill and much less
1152 efficient. It is not necessary to find the matching minimal
1153 symbol, only its section.
1154
1155 Note that this technique (of doing a section table search)
1156 can fail when unrelocated section addresses overlap. For
1157 this reason, we still attempt a lookup by name prior to doing
1158 a search of the section table. */
1159
1160 struct obj_section *s;
1161 int fallback = -1;
1162
1163 ALL_OBJFILE_OSECTIONS (objfile, s)
1164 {
1165 int idx = s - objfile->sections;
1166 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1167
1168 if (fallback == -1)
1169 fallback = idx;
1170
1171 if (obj_section_addr (s) - offset <= addr
1172 && addr < obj_section_endaddr (s) - offset)
1173 {
1174 ginfo->section = idx;
1175 return;
1176 }
1177 }
1178
1179 /* If we didn't find the section, assume it is in the first
1180 section. If there is no allocated section, then it hardly
1181 matters what we pick, so just pick zero. */
1182 if (fallback == -1)
1183 ginfo->section = 0;
1184 else
1185 ginfo->section = fallback;
1186 }
1187 }
1188
1189 struct symbol *
1190 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1191 {
1192 CORE_ADDR addr;
1193
1194 if (!sym)
1195 return NULL;
1196
1197 /* We either have an OBJFILE, or we can get at it from the sym's
1198 symtab. Anything else is a bug. */
1199 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1200
1201 if (objfile == NULL)
1202 objfile = SYMBOL_SYMTAB (sym)->objfile;
1203
1204 if (SYMBOL_OBJ_SECTION (objfile, sym))
1205 return sym;
1206
1207 /* We should have an objfile by now. */
1208 gdb_assert (objfile);
1209
1210 switch (SYMBOL_CLASS (sym))
1211 {
1212 case LOC_STATIC:
1213 case LOC_LABEL:
1214 addr = SYMBOL_VALUE_ADDRESS (sym);
1215 break;
1216 case LOC_BLOCK:
1217 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1218 break;
1219
1220 default:
1221 /* Nothing else will be listed in the minsyms -- no use looking
1222 it up. */
1223 return sym;
1224 }
1225
1226 fixup_section (&sym->ginfo, addr, objfile);
1227
1228 return sym;
1229 }
1230
1231 /* Compute the demangled form of NAME as used by the various symbol
1232 lookup functions. The result is stored in *RESULT_NAME. Returns a
1233 cleanup which can be used to clean up the result.
1234
1235 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1236 Normally, Ada symbol lookups are performed using the encoded name
1237 rather than the demangled name, and so it might seem to make sense
1238 for this function to return an encoded version of NAME.
1239 Unfortunately, we cannot do this, because this function is used in
1240 circumstances where it is not appropriate to try to encode NAME.
1241 For instance, when displaying the frame info, we demangle the name
1242 of each parameter, and then perform a symbol lookup inside our
1243 function using that demangled name. In Ada, certain functions
1244 have internally-generated parameters whose name contain uppercase
1245 characters. Encoding those name would result in those uppercase
1246 characters to become lowercase, and thus cause the symbol lookup
1247 to fail. */
1248
1249 struct cleanup *
1250 demangle_for_lookup (const char *name, enum language lang,
1251 const char **result_name)
1252 {
1253 char *demangled_name = NULL;
1254 const char *modified_name = NULL;
1255 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1256
1257 modified_name = name;
1258
1259 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1260 lookup, so we can always binary search. */
1261 if (lang == language_cplus)
1262 {
1263 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1264 if (demangled_name)
1265 {
1266 modified_name = demangled_name;
1267 make_cleanup (xfree, demangled_name);
1268 }
1269 else
1270 {
1271 /* If we were given a non-mangled name, canonicalize it
1272 according to the language (so far only for C++). */
1273 demangled_name = cp_canonicalize_string (name);
1274 if (demangled_name)
1275 {
1276 modified_name = demangled_name;
1277 make_cleanup (xfree, demangled_name);
1278 }
1279 }
1280 }
1281 else if (lang == language_java)
1282 {
1283 demangled_name = gdb_demangle (name,
1284 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1285 if (demangled_name)
1286 {
1287 modified_name = demangled_name;
1288 make_cleanup (xfree, demangled_name);
1289 }
1290 }
1291 else if (lang == language_d)
1292 {
1293 demangled_name = d_demangle (name, 0);
1294 if (demangled_name)
1295 {
1296 modified_name = demangled_name;
1297 make_cleanup (xfree, demangled_name);
1298 }
1299 }
1300 else if (lang == language_go)
1301 {
1302 demangled_name = go_demangle (name, 0);
1303 if (demangled_name)
1304 {
1305 modified_name = demangled_name;
1306 make_cleanup (xfree, demangled_name);
1307 }
1308 }
1309
1310 *result_name = modified_name;
1311 return cleanup;
1312 }
1313
1314 /* Find the definition for a specified symbol name NAME
1315 in domain DOMAIN, visible from lexical block BLOCK.
1316 Returns the struct symbol pointer, or zero if no symbol is found.
1317 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1318 NAME is a field of the current implied argument `this'. If so set
1319 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1320 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1321 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1322
1323 /* This function (or rather its subordinates) have a bunch of loops and
1324 it would seem to be attractive to put in some QUIT's (though I'm not really
1325 sure whether it can run long enough to be really important). But there
1326 are a few calls for which it would appear to be bad news to quit
1327 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1328 that there is C++ code below which can error(), but that probably
1329 doesn't affect these calls since they are looking for a known
1330 variable and thus can probably assume it will never hit the C++
1331 code). */
1332
1333 struct symbol *
1334 lookup_symbol_in_language (const char *name, const struct block *block,
1335 const domain_enum domain, enum language lang,
1336 struct field_of_this_result *is_a_field_of_this)
1337 {
1338 const char *modified_name;
1339 struct symbol *returnval;
1340 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1341
1342 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1343 is_a_field_of_this);
1344 do_cleanups (cleanup);
1345
1346 return returnval;
1347 }
1348
1349 /* Behave like lookup_symbol_in_language, but performed with the
1350 current language. */
1351
1352 struct symbol *
1353 lookup_symbol (const char *name, const struct block *block,
1354 domain_enum domain,
1355 struct field_of_this_result *is_a_field_of_this)
1356 {
1357 return lookup_symbol_in_language (name, block, domain,
1358 current_language->la_language,
1359 is_a_field_of_this);
1360 }
1361
1362 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1363 found, or NULL if not found. */
1364
1365 struct symbol *
1366 lookup_language_this (const struct language_defn *lang,
1367 const struct block *block)
1368 {
1369 if (lang->la_name_of_this == NULL || block == NULL)
1370 return NULL;
1371
1372 while (block)
1373 {
1374 struct symbol *sym;
1375
1376 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1377 if (sym != NULL)
1378 {
1379 block_found = block;
1380 return sym;
1381 }
1382 if (BLOCK_FUNCTION (block))
1383 break;
1384 block = BLOCK_SUPERBLOCK (block);
1385 }
1386
1387 return NULL;
1388 }
1389
1390 /* Given TYPE, a structure/union,
1391 return 1 if the component named NAME from the ultimate target
1392 structure/union is defined, otherwise, return 0. */
1393
1394 static int
1395 check_field (struct type *type, const char *name,
1396 struct field_of_this_result *is_a_field_of_this)
1397 {
1398 int i;
1399
1400 /* The type may be a stub. */
1401 CHECK_TYPEDEF (type);
1402
1403 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1404 {
1405 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1406
1407 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1408 {
1409 is_a_field_of_this->type = type;
1410 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1411 return 1;
1412 }
1413 }
1414
1415 /* C++: If it was not found as a data field, then try to return it
1416 as a pointer to a method. */
1417
1418 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1419 {
1420 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1421 {
1422 is_a_field_of_this->type = type;
1423 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1424 return 1;
1425 }
1426 }
1427
1428 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1429 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1430 return 1;
1431
1432 return 0;
1433 }
1434
1435 /* Behave like lookup_symbol except that NAME is the natural name
1436 (e.g., demangled name) of the symbol that we're looking for. */
1437
1438 static struct symbol *
1439 lookup_symbol_aux (const char *name, const struct block *block,
1440 const domain_enum domain, enum language language,
1441 struct field_of_this_result *is_a_field_of_this)
1442 {
1443 struct symbol *sym;
1444 const struct language_defn *langdef;
1445
1446 /* Make sure we do something sensible with is_a_field_of_this, since
1447 the callers that set this parameter to some non-null value will
1448 certainly use it later. If we don't set it, the contents of
1449 is_a_field_of_this are undefined. */
1450 if (is_a_field_of_this != NULL)
1451 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1452
1453 /* Search specified block and its superiors. Don't search
1454 STATIC_BLOCK or GLOBAL_BLOCK. */
1455
1456 sym = lookup_symbol_aux_local (name, block, domain, language);
1457 if (sym != NULL)
1458 return sym;
1459
1460 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1461 check to see if NAME is a field of `this'. */
1462
1463 langdef = language_def (language);
1464
1465 /* Don't do this check if we are searching for a struct. It will
1466 not be found by check_field, but will be found by other
1467 means. */
1468 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1469 {
1470 struct symbol *sym = lookup_language_this (langdef, block);
1471
1472 if (sym)
1473 {
1474 struct type *t = sym->type;
1475
1476 /* I'm not really sure that type of this can ever
1477 be typedefed; just be safe. */
1478 CHECK_TYPEDEF (t);
1479 if (TYPE_CODE (t) == TYPE_CODE_PTR
1480 || TYPE_CODE (t) == TYPE_CODE_REF)
1481 t = TYPE_TARGET_TYPE (t);
1482
1483 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1484 && TYPE_CODE (t) != TYPE_CODE_UNION)
1485 error (_("Internal error: `%s' is not an aggregate"),
1486 langdef->la_name_of_this);
1487
1488 if (check_field (t, name, is_a_field_of_this))
1489 return NULL;
1490 }
1491 }
1492
1493 /* Now do whatever is appropriate for LANGUAGE to look
1494 up static and global variables. */
1495
1496 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1497 if (sym != NULL)
1498 return sym;
1499
1500 /* Now search all static file-level symbols. Not strictly correct,
1501 but more useful than an error. */
1502
1503 return lookup_static_symbol_aux (name, domain);
1504 }
1505
1506 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1507 first, then check the psymtabs. If a psymtab indicates the existence of the
1508 desired name as a file-level static, then do psymtab-to-symtab conversion on
1509 the fly and return the found symbol. */
1510
1511 struct symbol *
1512 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1513 {
1514 struct objfile *objfile;
1515 struct symbol *sym;
1516
1517 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1518 if (sym != NULL)
1519 return sym;
1520
1521 ALL_OBJFILES (objfile)
1522 {
1523 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1524 if (sym != NULL)
1525 return sym;
1526 }
1527
1528 return NULL;
1529 }
1530
1531 /* Check to see if the symbol is defined in BLOCK or its superiors.
1532 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1533
1534 static struct symbol *
1535 lookup_symbol_aux_local (const char *name, const struct block *block,
1536 const domain_enum domain,
1537 enum language language)
1538 {
1539 struct symbol *sym;
1540 const struct block *static_block = block_static_block (block);
1541 const char *scope = block_scope (block);
1542
1543 /* Check if either no block is specified or it's a global block. */
1544
1545 if (static_block == NULL)
1546 return NULL;
1547
1548 while (block != static_block)
1549 {
1550 sym = lookup_symbol_aux_block (name, block, domain);
1551 if (sym != NULL)
1552 return sym;
1553
1554 if (language == language_cplus || language == language_fortran)
1555 {
1556 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1557 domain);
1558 if (sym != NULL)
1559 return sym;
1560 }
1561
1562 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1563 break;
1564 block = BLOCK_SUPERBLOCK (block);
1565 }
1566
1567 /* We've reached the edge of the function without finding a result. */
1568
1569 return NULL;
1570 }
1571
1572 /* Look up OBJFILE to BLOCK. */
1573
1574 struct objfile *
1575 lookup_objfile_from_block (const struct block *block)
1576 {
1577 struct objfile *obj;
1578 struct symtab *s;
1579
1580 if (block == NULL)
1581 return NULL;
1582
1583 block = block_global_block (block);
1584 /* Go through SYMTABS. */
1585 ALL_SYMTABS (obj, s)
1586 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1587 {
1588 if (obj->separate_debug_objfile_backlink)
1589 obj = obj->separate_debug_objfile_backlink;
1590
1591 return obj;
1592 }
1593
1594 return NULL;
1595 }
1596
1597 /* Look up a symbol in a block; if found, fixup the symbol, and set
1598 block_found appropriately. */
1599
1600 struct symbol *
1601 lookup_symbol_aux_block (const char *name, const struct block *block,
1602 const domain_enum domain)
1603 {
1604 struct symbol *sym;
1605
1606 sym = lookup_block_symbol (block, name, domain);
1607 if (sym)
1608 {
1609 block_found = block;
1610 return fixup_symbol_section (sym, NULL);
1611 }
1612
1613 return NULL;
1614 }
1615
1616 /* Check all global symbols in OBJFILE in symtabs and
1617 psymtabs. */
1618
1619 struct symbol *
1620 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1621 const char *name,
1622 const domain_enum domain)
1623 {
1624 const struct objfile *objfile;
1625 struct symbol *sym;
1626 struct blockvector *bv;
1627 const struct block *block;
1628 struct symtab *s;
1629
1630 for (objfile = main_objfile;
1631 objfile;
1632 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1633 {
1634 /* Go through symtabs. */
1635 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1636 {
1637 bv = BLOCKVECTOR (s);
1638 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1639 sym = lookup_block_symbol (block, name, domain);
1640 if (sym)
1641 {
1642 block_found = block;
1643 return fixup_symbol_section (sym, (struct objfile *)objfile);
1644 }
1645 }
1646
1647 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1648 name, domain);
1649 if (sym)
1650 return sym;
1651 }
1652
1653 return NULL;
1654 }
1655
1656 /* Check to see if the symbol is defined in one of the OBJFILE's
1657 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1658 depending on whether or not we want to search global symbols or
1659 static symbols. */
1660
1661 static struct symbol *
1662 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1663 const char *name, const domain_enum domain)
1664 {
1665 struct symbol *sym = NULL;
1666 struct blockvector *bv;
1667 const struct block *block;
1668 struct symtab *s;
1669
1670 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1671 {
1672 bv = BLOCKVECTOR (s);
1673 block = BLOCKVECTOR_BLOCK (bv, block_index);
1674 sym = lookup_block_symbol (block, name, domain);
1675 if (sym)
1676 {
1677 block_found = block;
1678 return fixup_symbol_section (sym, objfile);
1679 }
1680 }
1681
1682 return NULL;
1683 }
1684
1685 /* Same as lookup_symbol_aux_objfile, except that it searches all
1686 objfiles. Return the first match found. */
1687
1688 static struct symbol *
1689 lookup_symbol_aux_symtabs (int block_index, const char *name,
1690 const domain_enum domain)
1691 {
1692 struct symbol *sym;
1693 struct objfile *objfile;
1694
1695 ALL_OBJFILES (objfile)
1696 {
1697 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1698 if (sym)
1699 return sym;
1700 }
1701
1702 return NULL;
1703 }
1704
1705 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1706 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1707 and all related objfiles. */
1708
1709 static struct symbol *
1710 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1711 const char *linkage_name,
1712 domain_enum domain)
1713 {
1714 enum language lang = current_language->la_language;
1715 const char *modified_name;
1716 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1717 &modified_name);
1718 struct objfile *main_objfile, *cur_objfile;
1719
1720 if (objfile->separate_debug_objfile_backlink)
1721 main_objfile = objfile->separate_debug_objfile_backlink;
1722 else
1723 main_objfile = objfile;
1724
1725 for (cur_objfile = main_objfile;
1726 cur_objfile;
1727 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1728 {
1729 struct symbol *sym;
1730
1731 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1732 modified_name, domain);
1733 if (sym == NULL)
1734 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1735 modified_name, domain);
1736 if (sym != NULL)
1737 {
1738 do_cleanups (cleanup);
1739 return sym;
1740 }
1741 }
1742
1743 do_cleanups (cleanup);
1744 return NULL;
1745 }
1746
1747 /* A helper function that throws an exception when a symbol was found
1748 in a psymtab but not in a symtab. */
1749
1750 static void ATTRIBUTE_NORETURN
1751 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1752 {
1753 error (_("\
1754 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1755 %s may be an inlined function, or may be a template function\n \
1756 (if a template, try specifying an instantiation: %s<type>)."),
1757 kind == GLOBAL_BLOCK ? "global" : "static",
1758 name, symtab_to_filename_for_display (symtab), name, name);
1759 }
1760
1761 /* A helper function for lookup_symbol_aux that interfaces with the
1762 "quick" symbol table functions. */
1763
1764 static struct symbol *
1765 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1766 const char *name, const domain_enum domain)
1767 {
1768 struct symtab *symtab;
1769 struct blockvector *bv;
1770 const struct block *block;
1771 struct symbol *sym;
1772
1773 if (!objfile->sf)
1774 return NULL;
1775 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1776 if (!symtab)
1777 return NULL;
1778
1779 bv = BLOCKVECTOR (symtab);
1780 block = BLOCKVECTOR_BLOCK (bv, kind);
1781 sym = lookup_block_symbol (block, name, domain);
1782 if (!sym)
1783 error_in_psymtab_expansion (kind, name, symtab);
1784 return fixup_symbol_section (sym, objfile);
1785 }
1786
1787 /* A default version of lookup_symbol_nonlocal for use by languages
1788 that can't think of anything better to do. This implements the C
1789 lookup rules. */
1790
1791 struct symbol *
1792 basic_lookup_symbol_nonlocal (const char *name,
1793 const struct block *block,
1794 const domain_enum domain)
1795 {
1796 struct symbol *sym;
1797
1798 /* NOTE: carlton/2003-05-19: The comments below were written when
1799 this (or what turned into this) was part of lookup_symbol_aux;
1800 I'm much less worried about these questions now, since these
1801 decisions have turned out well, but I leave these comments here
1802 for posterity. */
1803
1804 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1805 not it would be appropriate to search the current global block
1806 here as well. (That's what this code used to do before the
1807 is_a_field_of_this check was moved up.) On the one hand, it's
1808 redundant with the lookup_symbol_aux_symtabs search that happens
1809 next. On the other hand, if decode_line_1 is passed an argument
1810 like filename:var, then the user presumably wants 'var' to be
1811 searched for in filename. On the third hand, there shouldn't be
1812 multiple global variables all of which are named 'var', and it's
1813 not like decode_line_1 has ever restricted its search to only
1814 global variables in a single filename. All in all, only
1815 searching the static block here seems best: it's correct and it's
1816 cleanest. */
1817
1818 /* NOTE: carlton/2002-12-05: There's also a possible performance
1819 issue here: if you usually search for global symbols in the
1820 current file, then it would be slightly better to search the
1821 current global block before searching all the symtabs. But there
1822 are other factors that have a much greater effect on performance
1823 than that one, so I don't think we should worry about that for
1824 now. */
1825
1826 sym = lookup_symbol_static (name, block, domain);
1827 if (sym != NULL)
1828 return sym;
1829
1830 return lookup_symbol_global (name, block, domain);
1831 }
1832
1833 /* Lookup a symbol in the static block associated to BLOCK, if there
1834 is one; do nothing if BLOCK is NULL or a global block. */
1835
1836 struct symbol *
1837 lookup_symbol_static (const char *name,
1838 const struct block *block,
1839 const domain_enum domain)
1840 {
1841 const struct block *static_block = block_static_block (block);
1842
1843 if (static_block != NULL)
1844 return lookup_symbol_aux_block (name, static_block, domain);
1845 else
1846 return NULL;
1847 }
1848
1849 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1850
1851 struct global_sym_lookup_data
1852 {
1853 /* The name of the symbol we are searching for. */
1854 const char *name;
1855
1856 /* The domain to use for our search. */
1857 domain_enum domain;
1858
1859 /* The field where the callback should store the symbol if found.
1860 It should be initialized to NULL before the search is started. */
1861 struct symbol *result;
1862 };
1863
1864 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1865 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1866 OBJFILE. The arguments for the search are passed via CB_DATA,
1867 which in reality is a pointer to struct global_sym_lookup_data. */
1868
1869 static int
1870 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1871 void *cb_data)
1872 {
1873 struct global_sym_lookup_data *data =
1874 (struct global_sym_lookup_data *) cb_data;
1875
1876 gdb_assert (data->result == NULL);
1877
1878 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1879 data->name, data->domain);
1880 if (data->result == NULL)
1881 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1882 data->name, data->domain);
1883
1884 /* If we found a match, tell the iterator to stop. Otherwise,
1885 keep going. */
1886 return (data->result != NULL);
1887 }
1888
1889 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1890 necessary). */
1891
1892 struct symbol *
1893 lookup_symbol_global (const char *name,
1894 const struct block *block,
1895 const domain_enum domain)
1896 {
1897 struct symbol *sym = NULL;
1898 struct objfile *objfile = NULL;
1899 struct global_sym_lookup_data lookup_data;
1900
1901 /* Call library-specific lookup procedure. */
1902 objfile = lookup_objfile_from_block (block);
1903 if (objfile != NULL)
1904 sym = solib_global_lookup (objfile, name, domain);
1905 if (sym != NULL)
1906 return sym;
1907
1908 memset (&lookup_data, 0, sizeof (lookup_data));
1909 lookup_data.name = name;
1910 lookup_data.domain = domain;
1911 gdbarch_iterate_over_objfiles_in_search_order
1912 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1913 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1914
1915 return lookup_data.result;
1916 }
1917
1918 int
1919 symbol_matches_domain (enum language symbol_language,
1920 domain_enum symbol_domain,
1921 domain_enum domain)
1922 {
1923 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1924 A Java class declaration also defines a typedef for the class.
1925 Similarly, any Ada type declaration implicitly defines a typedef. */
1926 if (symbol_language == language_cplus
1927 || symbol_language == language_d
1928 || symbol_language == language_java
1929 || symbol_language == language_ada)
1930 {
1931 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1932 && symbol_domain == STRUCT_DOMAIN)
1933 return 1;
1934 }
1935 /* For all other languages, strict match is required. */
1936 return (symbol_domain == domain);
1937 }
1938
1939 /* Look up a type named NAME in the struct_domain. The type returned
1940 must not be opaque -- i.e., must have at least one field
1941 defined. */
1942
1943 struct type *
1944 lookup_transparent_type (const char *name)
1945 {
1946 return current_language->la_lookup_transparent_type (name);
1947 }
1948
1949 /* A helper for basic_lookup_transparent_type that interfaces with the
1950 "quick" symbol table functions. */
1951
1952 static struct type *
1953 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1954 const char *name)
1955 {
1956 struct symtab *symtab;
1957 struct blockvector *bv;
1958 struct block *block;
1959 struct symbol *sym;
1960
1961 if (!objfile->sf)
1962 return NULL;
1963 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1964 if (!symtab)
1965 return NULL;
1966
1967 bv = BLOCKVECTOR (symtab);
1968 block = BLOCKVECTOR_BLOCK (bv, kind);
1969 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1970 if (!sym)
1971 error_in_psymtab_expansion (kind, name, symtab);
1972
1973 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1974 return SYMBOL_TYPE (sym);
1975
1976 return NULL;
1977 }
1978
1979 /* The standard implementation of lookup_transparent_type. This code
1980 was modeled on lookup_symbol -- the parts not relevant to looking
1981 up types were just left out. In particular it's assumed here that
1982 types are available in struct_domain and only at file-static or
1983 global blocks. */
1984
1985 struct type *
1986 basic_lookup_transparent_type (const char *name)
1987 {
1988 struct symbol *sym;
1989 struct symtab *s = NULL;
1990 struct blockvector *bv;
1991 struct objfile *objfile;
1992 struct block *block;
1993 struct type *t;
1994
1995 /* Now search all the global symbols. Do the symtab's first, then
1996 check the psymtab's. If a psymtab indicates the existence
1997 of the desired name as a global, then do psymtab-to-symtab
1998 conversion on the fly and return the found symbol. */
1999
2000 ALL_OBJFILES (objfile)
2001 {
2002 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2003 {
2004 bv = BLOCKVECTOR (s);
2005 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2006 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2007 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2008 {
2009 return SYMBOL_TYPE (sym);
2010 }
2011 }
2012 }
2013
2014 ALL_OBJFILES (objfile)
2015 {
2016 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2017 if (t)
2018 return t;
2019 }
2020
2021 /* Now search the static file-level symbols.
2022 Not strictly correct, but more useful than an error.
2023 Do the symtab's first, then
2024 check the psymtab's. If a psymtab indicates the existence
2025 of the desired name as a file-level static, then do psymtab-to-symtab
2026 conversion on the fly and return the found symbol. */
2027
2028 ALL_OBJFILES (objfile)
2029 {
2030 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2031 {
2032 bv = BLOCKVECTOR (s);
2033 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2034 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2035 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2036 {
2037 return SYMBOL_TYPE (sym);
2038 }
2039 }
2040 }
2041
2042 ALL_OBJFILES (objfile)
2043 {
2044 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2045 if (t)
2046 return t;
2047 }
2048
2049 return (struct type *) 0;
2050 }
2051
2052 /* Search BLOCK for symbol NAME in DOMAIN.
2053
2054 Note that if NAME is the demangled form of a C++ symbol, we will fail
2055 to find a match during the binary search of the non-encoded names, but
2056 for now we don't worry about the slight inefficiency of looking for
2057 a match we'll never find, since it will go pretty quick. Once the
2058 binary search terminates, we drop through and do a straight linear
2059 search on the symbols. Each symbol which is marked as being a ObjC/C++
2060 symbol (language_cplus or language_objc set) has both the encoded and
2061 non-encoded names tested for a match. */
2062
2063 struct symbol *
2064 lookup_block_symbol (const struct block *block, const char *name,
2065 const domain_enum domain)
2066 {
2067 struct block_iterator iter;
2068 struct symbol *sym;
2069
2070 if (!BLOCK_FUNCTION (block))
2071 {
2072 for (sym = block_iter_name_first (block, name, &iter);
2073 sym != NULL;
2074 sym = block_iter_name_next (name, &iter))
2075 {
2076 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2077 SYMBOL_DOMAIN (sym), domain))
2078 return sym;
2079 }
2080 return NULL;
2081 }
2082 else
2083 {
2084 /* Note that parameter symbols do not always show up last in the
2085 list; this loop makes sure to take anything else other than
2086 parameter symbols first; it only uses parameter symbols as a
2087 last resort. Note that this only takes up extra computation
2088 time on a match. */
2089
2090 struct symbol *sym_found = NULL;
2091
2092 for (sym = block_iter_name_first (block, name, &iter);
2093 sym != NULL;
2094 sym = block_iter_name_next (name, &iter))
2095 {
2096 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2097 SYMBOL_DOMAIN (sym), domain))
2098 {
2099 sym_found = sym;
2100 if (!SYMBOL_IS_ARGUMENT (sym))
2101 {
2102 break;
2103 }
2104 }
2105 }
2106 return (sym_found); /* Will be NULL if not found. */
2107 }
2108 }
2109
2110 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2111
2112 For each symbol that matches, CALLBACK is called. The symbol and
2113 DATA are passed to the callback.
2114
2115 If CALLBACK returns zero, the iteration ends. Otherwise, the
2116 search continues. */
2117
2118 void
2119 iterate_over_symbols (const struct block *block, const char *name,
2120 const domain_enum domain,
2121 symbol_found_callback_ftype *callback,
2122 void *data)
2123 {
2124 struct block_iterator iter;
2125 struct symbol *sym;
2126
2127 for (sym = block_iter_name_first (block, name, &iter);
2128 sym != NULL;
2129 sym = block_iter_name_next (name, &iter))
2130 {
2131 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2132 SYMBOL_DOMAIN (sym), domain))
2133 {
2134 if (!callback (sym, data))
2135 return;
2136 }
2137 }
2138 }
2139
2140 /* Find the symtab associated with PC and SECTION. Look through the
2141 psymtabs and read in another symtab if necessary. */
2142
2143 struct symtab *
2144 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2145 {
2146 struct block *b;
2147 struct blockvector *bv;
2148 struct symtab *s = NULL;
2149 struct symtab *best_s = NULL;
2150 struct objfile *objfile;
2151 CORE_ADDR distance = 0;
2152 struct minimal_symbol *msymbol;
2153
2154 /* If we know that this is not a text address, return failure. This is
2155 necessary because we loop based on the block's high and low code
2156 addresses, which do not include the data ranges, and because
2157 we call find_pc_sect_psymtab which has a similar restriction based
2158 on the partial_symtab's texthigh and textlow. */
2159 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2160 if (msymbol
2161 && (MSYMBOL_TYPE (msymbol) == mst_data
2162 || MSYMBOL_TYPE (msymbol) == mst_bss
2163 || MSYMBOL_TYPE (msymbol) == mst_abs
2164 || MSYMBOL_TYPE (msymbol) == mst_file_data
2165 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2166 return NULL;
2167
2168 /* Search all symtabs for the one whose file contains our address, and which
2169 is the smallest of all the ones containing the address. This is designed
2170 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2171 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2172 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2173
2174 This happens for native ecoff format, where code from included files
2175 gets its own symtab. The symtab for the included file should have
2176 been read in already via the dependency mechanism.
2177 It might be swifter to create several symtabs with the same name
2178 like xcoff does (I'm not sure).
2179
2180 It also happens for objfiles that have their functions reordered.
2181 For these, the symtab we are looking for is not necessarily read in. */
2182
2183 ALL_PRIMARY_SYMTABS (objfile, s)
2184 {
2185 bv = BLOCKVECTOR (s);
2186 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2187
2188 if (BLOCK_START (b) <= pc
2189 && BLOCK_END (b) > pc
2190 && (distance == 0
2191 || BLOCK_END (b) - BLOCK_START (b) < distance))
2192 {
2193 /* For an objfile that has its functions reordered,
2194 find_pc_psymtab will find the proper partial symbol table
2195 and we simply return its corresponding symtab. */
2196 /* In order to better support objfiles that contain both
2197 stabs and coff debugging info, we continue on if a psymtab
2198 can't be found. */
2199 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2200 {
2201 struct symtab *result;
2202
2203 result
2204 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2205 msymbol,
2206 pc, section,
2207 0);
2208 if (result)
2209 return result;
2210 }
2211 if (section != 0)
2212 {
2213 struct block_iterator iter;
2214 struct symbol *sym = NULL;
2215
2216 ALL_BLOCK_SYMBOLS (b, iter, sym)
2217 {
2218 fixup_symbol_section (sym, objfile);
2219 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2220 section))
2221 break;
2222 }
2223 if (sym == NULL)
2224 continue; /* No symbol in this symtab matches
2225 section. */
2226 }
2227 distance = BLOCK_END (b) - BLOCK_START (b);
2228 best_s = s;
2229 }
2230 }
2231
2232 if (best_s != NULL)
2233 return (best_s);
2234
2235 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2236
2237 ALL_OBJFILES (objfile)
2238 {
2239 struct symtab *result;
2240
2241 if (!objfile->sf)
2242 continue;
2243 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2244 msymbol,
2245 pc, section,
2246 1);
2247 if (result)
2248 return result;
2249 }
2250
2251 return NULL;
2252 }
2253
2254 /* Find the symtab associated with PC. Look through the psymtabs and read
2255 in another symtab if necessary. Backward compatibility, no section. */
2256
2257 struct symtab *
2258 find_pc_symtab (CORE_ADDR pc)
2259 {
2260 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2261 }
2262 \f
2263
2264 /* Find the source file and line number for a given PC value and SECTION.
2265 Return a structure containing a symtab pointer, a line number,
2266 and a pc range for the entire source line.
2267 The value's .pc field is NOT the specified pc.
2268 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2269 use the line that ends there. Otherwise, in that case, the line
2270 that begins there is used. */
2271
2272 /* The big complication here is that a line may start in one file, and end just
2273 before the start of another file. This usually occurs when you #include
2274 code in the middle of a subroutine. To properly find the end of a line's PC
2275 range, we must search all symtabs associated with this compilation unit, and
2276 find the one whose first PC is closer than that of the next line in this
2277 symtab. */
2278
2279 /* If it's worth the effort, we could be using a binary search. */
2280
2281 struct symtab_and_line
2282 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2283 {
2284 struct symtab *s;
2285 struct linetable *l;
2286 int len;
2287 int i;
2288 struct linetable_entry *item;
2289 struct symtab_and_line val;
2290 struct blockvector *bv;
2291 struct bound_minimal_symbol msymbol;
2292 struct minimal_symbol *mfunsym;
2293 struct objfile *objfile;
2294
2295 /* Info on best line seen so far, and where it starts, and its file. */
2296
2297 struct linetable_entry *best = NULL;
2298 CORE_ADDR best_end = 0;
2299 struct symtab *best_symtab = 0;
2300
2301 /* Store here the first line number
2302 of a file which contains the line at the smallest pc after PC.
2303 If we don't find a line whose range contains PC,
2304 we will use a line one less than this,
2305 with a range from the start of that file to the first line's pc. */
2306 struct linetable_entry *alt = NULL;
2307
2308 /* Info on best line seen in this file. */
2309
2310 struct linetable_entry *prev;
2311
2312 /* If this pc is not from the current frame,
2313 it is the address of the end of a call instruction.
2314 Quite likely that is the start of the following statement.
2315 But what we want is the statement containing the instruction.
2316 Fudge the pc to make sure we get that. */
2317
2318 init_sal (&val); /* initialize to zeroes */
2319
2320 val.pspace = current_program_space;
2321
2322 /* It's tempting to assume that, if we can't find debugging info for
2323 any function enclosing PC, that we shouldn't search for line
2324 number info, either. However, GAS can emit line number info for
2325 assembly files --- very helpful when debugging hand-written
2326 assembly code. In such a case, we'd have no debug info for the
2327 function, but we would have line info. */
2328
2329 if (notcurrent)
2330 pc -= 1;
2331
2332 /* elz: added this because this function returned the wrong
2333 information if the pc belongs to a stub (import/export)
2334 to call a shlib function. This stub would be anywhere between
2335 two functions in the target, and the line info was erroneously
2336 taken to be the one of the line before the pc. */
2337
2338 /* RT: Further explanation:
2339
2340 * We have stubs (trampolines) inserted between procedures.
2341 *
2342 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2343 * exists in the main image.
2344 *
2345 * In the minimal symbol table, we have a bunch of symbols
2346 * sorted by start address. The stubs are marked as "trampoline",
2347 * the others appear as text. E.g.:
2348 *
2349 * Minimal symbol table for main image
2350 * main: code for main (text symbol)
2351 * shr1: stub (trampoline symbol)
2352 * foo: code for foo (text symbol)
2353 * ...
2354 * Minimal symbol table for "shr1" image:
2355 * ...
2356 * shr1: code for shr1 (text symbol)
2357 * ...
2358 *
2359 * So the code below is trying to detect if we are in the stub
2360 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2361 * and if found, do the symbolization from the real-code address
2362 * rather than the stub address.
2363 *
2364 * Assumptions being made about the minimal symbol table:
2365 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2366 * if we're really in the trampoline.s If we're beyond it (say
2367 * we're in "foo" in the above example), it'll have a closer
2368 * symbol (the "foo" text symbol for example) and will not
2369 * return the trampoline.
2370 * 2. lookup_minimal_symbol_text() will find a real text symbol
2371 * corresponding to the trampoline, and whose address will
2372 * be different than the trampoline address. I put in a sanity
2373 * check for the address being the same, to avoid an
2374 * infinite recursion.
2375 */
2376 msymbol = lookup_minimal_symbol_by_pc (pc);
2377 if (msymbol.minsym != NULL)
2378 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2379 {
2380 mfunsym
2381 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2382 NULL);
2383 if (mfunsym == NULL)
2384 /* I eliminated this warning since it is coming out
2385 * in the following situation:
2386 * gdb shmain // test program with shared libraries
2387 * (gdb) break shr1 // function in shared lib
2388 * Warning: In stub for ...
2389 * In the above situation, the shared lib is not loaded yet,
2390 * so of course we can't find the real func/line info,
2391 * but the "break" still works, and the warning is annoying.
2392 * So I commented out the warning. RT */
2393 /* warning ("In stub for %s; unable to find real function/line info",
2394 SYMBOL_LINKAGE_NAME (msymbol)); */
2395 ;
2396 /* fall through */
2397 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2398 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2399 /* Avoid infinite recursion */
2400 /* See above comment about why warning is commented out. */
2401 /* warning ("In stub for %s; unable to find real function/line info",
2402 SYMBOL_LINKAGE_NAME (msymbol)); */
2403 ;
2404 /* fall through */
2405 else
2406 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2407 }
2408
2409
2410 s = find_pc_sect_symtab (pc, section);
2411 if (!s)
2412 {
2413 /* If no symbol information, return previous pc. */
2414 if (notcurrent)
2415 pc++;
2416 val.pc = pc;
2417 return val;
2418 }
2419
2420 bv = BLOCKVECTOR (s);
2421 objfile = s->objfile;
2422
2423 /* Look at all the symtabs that share this blockvector.
2424 They all have the same apriori range, that we found was right;
2425 but they have different line tables. */
2426
2427 ALL_OBJFILE_SYMTABS (objfile, s)
2428 {
2429 if (BLOCKVECTOR (s) != bv)
2430 continue;
2431
2432 /* Find the best line in this symtab. */
2433 l = LINETABLE (s);
2434 if (!l)
2435 continue;
2436 len = l->nitems;
2437 if (len <= 0)
2438 {
2439 /* I think len can be zero if the symtab lacks line numbers
2440 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2441 I'm not sure which, and maybe it depends on the symbol
2442 reader). */
2443 continue;
2444 }
2445
2446 prev = NULL;
2447 item = l->item; /* Get first line info. */
2448
2449 /* Is this file's first line closer than the first lines of other files?
2450 If so, record this file, and its first line, as best alternate. */
2451 if (item->pc > pc && (!alt || item->pc < alt->pc))
2452 alt = item;
2453
2454 for (i = 0; i < len; i++, item++)
2455 {
2456 /* Leave prev pointing to the linetable entry for the last line
2457 that started at or before PC. */
2458 if (item->pc > pc)
2459 break;
2460
2461 prev = item;
2462 }
2463
2464 /* At this point, prev points at the line whose start addr is <= pc, and
2465 item points at the next line. If we ran off the end of the linetable
2466 (pc >= start of the last line), then prev == item. If pc < start of
2467 the first line, prev will not be set. */
2468
2469 /* Is this file's best line closer than the best in the other files?
2470 If so, record this file, and its best line, as best so far. Don't
2471 save prev if it represents the end of a function (i.e. line number
2472 0) instead of a real line. */
2473
2474 if (prev && prev->line && (!best || prev->pc > best->pc))
2475 {
2476 best = prev;
2477 best_symtab = s;
2478
2479 /* Discard BEST_END if it's before the PC of the current BEST. */
2480 if (best_end <= best->pc)
2481 best_end = 0;
2482 }
2483
2484 /* If another line (denoted by ITEM) is in the linetable and its
2485 PC is after BEST's PC, but before the current BEST_END, then
2486 use ITEM's PC as the new best_end. */
2487 if (best && i < len && item->pc > best->pc
2488 && (best_end == 0 || best_end > item->pc))
2489 best_end = item->pc;
2490 }
2491
2492 if (!best_symtab)
2493 {
2494 /* If we didn't find any line number info, just return zeros.
2495 We used to return alt->line - 1 here, but that could be
2496 anywhere; if we don't have line number info for this PC,
2497 don't make some up. */
2498 val.pc = pc;
2499 }
2500 else if (best->line == 0)
2501 {
2502 /* If our best fit is in a range of PC's for which no line
2503 number info is available (line number is zero) then we didn't
2504 find any valid line information. */
2505 val.pc = pc;
2506 }
2507 else
2508 {
2509 val.symtab = best_symtab;
2510 val.line = best->line;
2511 val.pc = best->pc;
2512 if (best_end && (!alt || best_end < alt->pc))
2513 val.end = best_end;
2514 else if (alt)
2515 val.end = alt->pc;
2516 else
2517 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2518 }
2519 val.section = section;
2520 return val;
2521 }
2522
2523 /* Backward compatibility (no section). */
2524
2525 struct symtab_and_line
2526 find_pc_line (CORE_ADDR pc, int notcurrent)
2527 {
2528 struct obj_section *section;
2529
2530 section = find_pc_overlay (pc);
2531 if (pc_in_unmapped_range (pc, section))
2532 pc = overlay_mapped_address (pc, section);
2533 return find_pc_sect_line (pc, section, notcurrent);
2534 }
2535 \f
2536 /* Find line number LINE in any symtab whose name is the same as
2537 SYMTAB.
2538
2539 If found, return the symtab that contains the linetable in which it was
2540 found, set *INDEX to the index in the linetable of the best entry
2541 found, and set *EXACT_MATCH nonzero if the value returned is an
2542 exact match.
2543
2544 If not found, return NULL. */
2545
2546 struct symtab *
2547 find_line_symtab (struct symtab *symtab, int line,
2548 int *index, int *exact_match)
2549 {
2550 int exact = 0; /* Initialized here to avoid a compiler warning. */
2551
2552 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2553 so far seen. */
2554
2555 int best_index;
2556 struct linetable *best_linetable;
2557 struct symtab *best_symtab;
2558
2559 /* First try looking it up in the given symtab. */
2560 best_linetable = LINETABLE (symtab);
2561 best_symtab = symtab;
2562 best_index = find_line_common (best_linetable, line, &exact, 0);
2563 if (best_index < 0 || !exact)
2564 {
2565 /* Didn't find an exact match. So we better keep looking for
2566 another symtab with the same name. In the case of xcoff,
2567 multiple csects for one source file (produced by IBM's FORTRAN
2568 compiler) produce multiple symtabs (this is unavoidable
2569 assuming csects can be at arbitrary places in memory and that
2570 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2571
2572 /* BEST is the smallest linenumber > LINE so far seen,
2573 or 0 if none has been seen so far.
2574 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2575 int best;
2576
2577 struct objfile *objfile;
2578 struct symtab *s;
2579
2580 if (best_index >= 0)
2581 best = best_linetable->item[best_index].line;
2582 else
2583 best = 0;
2584
2585 ALL_OBJFILES (objfile)
2586 {
2587 if (objfile->sf)
2588 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2589 symtab_to_fullname (symtab));
2590 }
2591
2592 ALL_SYMTABS (objfile, s)
2593 {
2594 struct linetable *l;
2595 int ind;
2596
2597 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2598 continue;
2599 if (FILENAME_CMP (symtab_to_fullname (symtab),
2600 symtab_to_fullname (s)) != 0)
2601 continue;
2602 l = LINETABLE (s);
2603 ind = find_line_common (l, line, &exact, 0);
2604 if (ind >= 0)
2605 {
2606 if (exact)
2607 {
2608 best_index = ind;
2609 best_linetable = l;
2610 best_symtab = s;
2611 goto done;
2612 }
2613 if (best == 0 || l->item[ind].line < best)
2614 {
2615 best = l->item[ind].line;
2616 best_index = ind;
2617 best_linetable = l;
2618 best_symtab = s;
2619 }
2620 }
2621 }
2622 }
2623 done:
2624 if (best_index < 0)
2625 return NULL;
2626
2627 if (index)
2628 *index = best_index;
2629 if (exact_match)
2630 *exact_match = exact;
2631
2632 return best_symtab;
2633 }
2634
2635 /* Given SYMTAB, returns all the PCs function in the symtab that
2636 exactly match LINE. Returns NULL if there are no exact matches,
2637 but updates BEST_ITEM in this case. */
2638
2639 VEC (CORE_ADDR) *
2640 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2641 struct linetable_entry **best_item)
2642 {
2643 int start = 0;
2644 VEC (CORE_ADDR) *result = NULL;
2645
2646 /* First, collect all the PCs that are at this line. */
2647 while (1)
2648 {
2649 int was_exact;
2650 int idx;
2651
2652 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2653 if (idx < 0)
2654 break;
2655
2656 if (!was_exact)
2657 {
2658 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2659
2660 if (*best_item == NULL || item->line < (*best_item)->line)
2661 *best_item = item;
2662
2663 break;
2664 }
2665
2666 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2667 start = idx + 1;
2668 }
2669
2670 return result;
2671 }
2672
2673 \f
2674 /* Set the PC value for a given source file and line number and return true.
2675 Returns zero for invalid line number (and sets the PC to 0).
2676 The source file is specified with a struct symtab. */
2677
2678 int
2679 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2680 {
2681 struct linetable *l;
2682 int ind;
2683
2684 *pc = 0;
2685 if (symtab == 0)
2686 return 0;
2687
2688 symtab = find_line_symtab (symtab, line, &ind, NULL);
2689 if (symtab != NULL)
2690 {
2691 l = LINETABLE (symtab);
2692 *pc = l->item[ind].pc;
2693 return 1;
2694 }
2695 else
2696 return 0;
2697 }
2698
2699 /* Find the range of pc values in a line.
2700 Store the starting pc of the line into *STARTPTR
2701 and the ending pc (start of next line) into *ENDPTR.
2702 Returns 1 to indicate success.
2703 Returns 0 if could not find the specified line. */
2704
2705 int
2706 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2707 CORE_ADDR *endptr)
2708 {
2709 CORE_ADDR startaddr;
2710 struct symtab_and_line found_sal;
2711
2712 startaddr = sal.pc;
2713 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2714 return 0;
2715
2716 /* This whole function is based on address. For example, if line 10 has
2717 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2718 "info line *0x123" should say the line goes from 0x100 to 0x200
2719 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2720 This also insures that we never give a range like "starts at 0x134
2721 and ends at 0x12c". */
2722
2723 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2724 if (found_sal.line != sal.line)
2725 {
2726 /* The specified line (sal) has zero bytes. */
2727 *startptr = found_sal.pc;
2728 *endptr = found_sal.pc;
2729 }
2730 else
2731 {
2732 *startptr = found_sal.pc;
2733 *endptr = found_sal.end;
2734 }
2735 return 1;
2736 }
2737
2738 /* Given a line table and a line number, return the index into the line
2739 table for the pc of the nearest line whose number is >= the specified one.
2740 Return -1 if none is found. The value is >= 0 if it is an index.
2741 START is the index at which to start searching the line table.
2742
2743 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2744
2745 static int
2746 find_line_common (struct linetable *l, int lineno,
2747 int *exact_match, int start)
2748 {
2749 int i;
2750 int len;
2751
2752 /* BEST is the smallest linenumber > LINENO so far seen,
2753 or 0 if none has been seen so far.
2754 BEST_INDEX identifies the item for it. */
2755
2756 int best_index = -1;
2757 int best = 0;
2758
2759 *exact_match = 0;
2760
2761 if (lineno <= 0)
2762 return -1;
2763 if (l == 0)
2764 return -1;
2765
2766 len = l->nitems;
2767 for (i = start; i < len; i++)
2768 {
2769 struct linetable_entry *item = &(l->item[i]);
2770
2771 if (item->line == lineno)
2772 {
2773 /* Return the first (lowest address) entry which matches. */
2774 *exact_match = 1;
2775 return i;
2776 }
2777
2778 if (item->line > lineno && (best == 0 || item->line < best))
2779 {
2780 best = item->line;
2781 best_index = i;
2782 }
2783 }
2784
2785 /* If we got here, we didn't get an exact match. */
2786 return best_index;
2787 }
2788
2789 int
2790 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2791 {
2792 struct symtab_and_line sal;
2793
2794 sal = find_pc_line (pc, 0);
2795 *startptr = sal.pc;
2796 *endptr = sal.end;
2797 return sal.symtab != 0;
2798 }
2799
2800 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2801 address for that function that has an entry in SYMTAB's line info
2802 table. If such an entry cannot be found, return FUNC_ADDR
2803 unaltered. */
2804
2805 static CORE_ADDR
2806 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2807 {
2808 CORE_ADDR func_start, func_end;
2809 struct linetable *l;
2810 int i;
2811
2812 /* Give up if this symbol has no lineinfo table. */
2813 l = LINETABLE (symtab);
2814 if (l == NULL)
2815 return func_addr;
2816
2817 /* Get the range for the function's PC values, or give up if we
2818 cannot, for some reason. */
2819 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2820 return func_addr;
2821
2822 /* Linetable entries are ordered by PC values, see the commentary in
2823 symtab.h where `struct linetable' is defined. Thus, the first
2824 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2825 address we are looking for. */
2826 for (i = 0; i < l->nitems; i++)
2827 {
2828 struct linetable_entry *item = &(l->item[i]);
2829
2830 /* Don't use line numbers of zero, they mark special entries in
2831 the table. See the commentary on symtab.h before the
2832 definition of struct linetable. */
2833 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2834 return item->pc;
2835 }
2836
2837 return func_addr;
2838 }
2839
2840 /* Given a function symbol SYM, find the symtab and line for the start
2841 of the function.
2842 If the argument FUNFIRSTLINE is nonzero, we want the first line
2843 of real code inside the function. */
2844
2845 struct symtab_and_line
2846 find_function_start_sal (struct symbol *sym, int funfirstline)
2847 {
2848 struct symtab_and_line sal;
2849
2850 fixup_symbol_section (sym, NULL);
2851 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2852 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2853
2854 /* We always should have a line for the function start address.
2855 If we don't, something is odd. Create a plain SAL refering
2856 just the PC and hope that skip_prologue_sal (if requested)
2857 can find a line number for after the prologue. */
2858 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2859 {
2860 init_sal (&sal);
2861 sal.pspace = current_program_space;
2862 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2863 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2864 }
2865
2866 if (funfirstline)
2867 skip_prologue_sal (&sal);
2868
2869 return sal;
2870 }
2871
2872 /* Adjust SAL to the first instruction past the function prologue.
2873 If the PC was explicitly specified, the SAL is not changed.
2874 If the line number was explicitly specified, at most the SAL's PC
2875 is updated. If SAL is already past the prologue, then do nothing. */
2876
2877 void
2878 skip_prologue_sal (struct symtab_and_line *sal)
2879 {
2880 struct symbol *sym;
2881 struct symtab_and_line start_sal;
2882 struct cleanup *old_chain;
2883 CORE_ADDR pc, saved_pc;
2884 struct obj_section *section;
2885 const char *name;
2886 struct objfile *objfile;
2887 struct gdbarch *gdbarch;
2888 struct block *b, *function_block;
2889 int force_skip, skip;
2890
2891 /* Do not change the SAL if PC was specified explicitly. */
2892 if (sal->explicit_pc)
2893 return;
2894
2895 old_chain = save_current_space_and_thread ();
2896 switch_to_program_space_and_thread (sal->pspace);
2897
2898 sym = find_pc_sect_function (sal->pc, sal->section);
2899 if (sym != NULL)
2900 {
2901 fixup_symbol_section (sym, NULL);
2902
2903 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2904 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2905 name = SYMBOL_LINKAGE_NAME (sym);
2906 objfile = SYMBOL_SYMTAB (sym)->objfile;
2907 }
2908 else
2909 {
2910 struct bound_minimal_symbol msymbol
2911 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2912
2913 if (msymbol.minsym == NULL)
2914 {
2915 do_cleanups (old_chain);
2916 return;
2917 }
2918
2919 objfile = msymbol.objfile;
2920 pc = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
2921 section = SYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2922 name = SYMBOL_LINKAGE_NAME (msymbol.minsym);
2923 }
2924
2925 gdbarch = get_objfile_arch (objfile);
2926
2927 /* Process the prologue in two passes. In the first pass try to skip the
2928 prologue (SKIP is true) and verify there is a real need for it (indicated
2929 by FORCE_SKIP). If no such reason was found run a second pass where the
2930 prologue is not skipped (SKIP is false). */
2931
2932 skip = 1;
2933 force_skip = 1;
2934
2935 /* Be conservative - allow direct PC (without skipping prologue) only if we
2936 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2937 have to be set by the caller so we use SYM instead. */
2938 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2939 force_skip = 0;
2940
2941 saved_pc = pc;
2942 do
2943 {
2944 pc = saved_pc;
2945
2946 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2947 so that gdbarch_skip_prologue has something unique to work on. */
2948 if (section_is_overlay (section) && !section_is_mapped (section))
2949 pc = overlay_unmapped_address (pc, section);
2950
2951 /* Skip "first line" of function (which is actually its prologue). */
2952 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2953 if (gdbarch_skip_entrypoint_p (gdbarch))
2954 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2955 if (skip)
2956 pc = gdbarch_skip_prologue (gdbarch, pc);
2957
2958 /* For overlays, map pc back into its mapped VMA range. */
2959 pc = overlay_mapped_address (pc, section);
2960
2961 /* Calculate line number. */
2962 start_sal = find_pc_sect_line (pc, section, 0);
2963
2964 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2965 line is still part of the same function. */
2966 if (skip && start_sal.pc != pc
2967 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2968 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2969 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2970 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2971 {
2972 /* First pc of next line */
2973 pc = start_sal.end;
2974 /* Recalculate the line number (might not be N+1). */
2975 start_sal = find_pc_sect_line (pc, section, 0);
2976 }
2977
2978 /* On targets with executable formats that don't have a concept of
2979 constructors (ELF with .init has, PE doesn't), gcc emits a call
2980 to `__main' in `main' between the prologue and before user
2981 code. */
2982 if (gdbarch_skip_main_prologue_p (gdbarch)
2983 && name && strcmp_iw (name, "main") == 0)
2984 {
2985 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2986 /* Recalculate the line number (might not be N+1). */
2987 start_sal = find_pc_sect_line (pc, section, 0);
2988 force_skip = 1;
2989 }
2990 }
2991 while (!force_skip && skip--);
2992
2993 /* If we still don't have a valid source line, try to find the first
2994 PC in the lineinfo table that belongs to the same function. This
2995 happens with COFF debug info, which does not seem to have an
2996 entry in lineinfo table for the code after the prologue which has
2997 no direct relation to source. For example, this was found to be
2998 the case with the DJGPP target using "gcc -gcoff" when the
2999 compiler inserted code after the prologue to make sure the stack
3000 is aligned. */
3001 if (!force_skip && sym && start_sal.symtab == NULL)
3002 {
3003 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
3004 /* Recalculate the line number. */
3005 start_sal = find_pc_sect_line (pc, section, 0);
3006 }
3007
3008 do_cleanups (old_chain);
3009
3010 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3011 forward SAL to the end of the prologue. */
3012 if (sal->pc >= pc)
3013 return;
3014
3015 sal->pc = pc;
3016 sal->section = section;
3017
3018 /* Unless the explicit_line flag was set, update the SAL line
3019 and symtab to correspond to the modified PC location. */
3020 if (sal->explicit_line)
3021 return;
3022
3023 sal->symtab = start_sal.symtab;
3024 sal->line = start_sal.line;
3025 sal->end = start_sal.end;
3026
3027 /* Check if we are now inside an inlined function. If we can,
3028 use the call site of the function instead. */
3029 b = block_for_pc_sect (sal->pc, sal->section);
3030 function_block = NULL;
3031 while (b != NULL)
3032 {
3033 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3034 function_block = b;
3035 else if (BLOCK_FUNCTION (b) != NULL)
3036 break;
3037 b = BLOCK_SUPERBLOCK (b);
3038 }
3039 if (function_block != NULL
3040 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3041 {
3042 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3043 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3044 }
3045 }
3046
3047 /* If P is of the form "operator[ \t]+..." where `...' is
3048 some legitimate operator text, return a pointer to the
3049 beginning of the substring of the operator text.
3050 Otherwise, return "". */
3051
3052 static char *
3053 operator_chars (char *p, char **end)
3054 {
3055 *end = "";
3056 if (strncmp (p, "operator", 8))
3057 return *end;
3058 p += 8;
3059
3060 /* Don't get faked out by `operator' being part of a longer
3061 identifier. */
3062 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3063 return *end;
3064
3065 /* Allow some whitespace between `operator' and the operator symbol. */
3066 while (*p == ' ' || *p == '\t')
3067 p++;
3068
3069 /* Recognize 'operator TYPENAME'. */
3070
3071 if (isalpha (*p) || *p == '_' || *p == '$')
3072 {
3073 char *q = p + 1;
3074
3075 while (isalnum (*q) || *q == '_' || *q == '$')
3076 q++;
3077 *end = q;
3078 return p;
3079 }
3080
3081 while (*p)
3082 switch (*p)
3083 {
3084 case '\\': /* regexp quoting */
3085 if (p[1] == '*')
3086 {
3087 if (p[2] == '=') /* 'operator\*=' */
3088 *end = p + 3;
3089 else /* 'operator\*' */
3090 *end = p + 2;
3091 return p;
3092 }
3093 else if (p[1] == '[')
3094 {
3095 if (p[2] == ']')
3096 error (_("mismatched quoting on brackets, "
3097 "try 'operator\\[\\]'"));
3098 else if (p[2] == '\\' && p[3] == ']')
3099 {
3100 *end = p + 4; /* 'operator\[\]' */
3101 return p;
3102 }
3103 else
3104 error (_("nothing is allowed between '[' and ']'"));
3105 }
3106 else
3107 {
3108 /* Gratuitous qoute: skip it and move on. */
3109 p++;
3110 continue;
3111 }
3112 break;
3113 case '!':
3114 case '=':
3115 case '*':
3116 case '/':
3117 case '%':
3118 case '^':
3119 if (p[1] == '=')
3120 *end = p + 2;
3121 else
3122 *end = p + 1;
3123 return p;
3124 case '<':
3125 case '>':
3126 case '+':
3127 case '-':
3128 case '&':
3129 case '|':
3130 if (p[0] == '-' && p[1] == '>')
3131 {
3132 /* Struct pointer member operator 'operator->'. */
3133 if (p[2] == '*')
3134 {
3135 *end = p + 3; /* 'operator->*' */
3136 return p;
3137 }
3138 else if (p[2] == '\\')
3139 {
3140 *end = p + 4; /* Hopefully 'operator->\*' */
3141 return p;
3142 }
3143 else
3144 {
3145 *end = p + 2; /* 'operator->' */
3146 return p;
3147 }
3148 }
3149 if (p[1] == '=' || p[1] == p[0])
3150 *end = p + 2;
3151 else
3152 *end = p + 1;
3153 return p;
3154 case '~':
3155 case ',':
3156 *end = p + 1;
3157 return p;
3158 case '(':
3159 if (p[1] != ')')
3160 error (_("`operator ()' must be specified "
3161 "without whitespace in `()'"));
3162 *end = p + 2;
3163 return p;
3164 case '?':
3165 if (p[1] != ':')
3166 error (_("`operator ?:' must be specified "
3167 "without whitespace in `?:'"));
3168 *end = p + 2;
3169 return p;
3170 case '[':
3171 if (p[1] != ']')
3172 error (_("`operator []' must be specified "
3173 "without whitespace in `[]'"));
3174 *end = p + 2;
3175 return p;
3176 default:
3177 error (_("`operator %s' not supported"), p);
3178 break;
3179 }
3180
3181 *end = "";
3182 return *end;
3183 }
3184 \f
3185
3186 /* Cache to watch for file names already seen by filename_seen. */
3187
3188 struct filename_seen_cache
3189 {
3190 /* Table of files seen so far. */
3191 htab_t tab;
3192 /* Initial size of the table. It automagically grows from here. */
3193 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3194 };
3195
3196 /* filename_seen_cache constructor. */
3197
3198 static struct filename_seen_cache *
3199 create_filename_seen_cache (void)
3200 {
3201 struct filename_seen_cache *cache;
3202
3203 cache = XNEW (struct filename_seen_cache);
3204 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3205 filename_hash, filename_eq,
3206 NULL, xcalloc, xfree);
3207
3208 return cache;
3209 }
3210
3211 /* Empty the cache, but do not delete it. */
3212
3213 static void
3214 clear_filename_seen_cache (struct filename_seen_cache *cache)
3215 {
3216 htab_empty (cache->tab);
3217 }
3218
3219 /* filename_seen_cache destructor.
3220 This takes a void * argument as it is generally used as a cleanup. */
3221
3222 static void
3223 delete_filename_seen_cache (void *ptr)
3224 {
3225 struct filename_seen_cache *cache = ptr;
3226
3227 htab_delete (cache->tab);
3228 xfree (cache);
3229 }
3230
3231 /* If FILE is not already in the table of files in CACHE, return zero;
3232 otherwise return non-zero. Optionally add FILE to the table if ADD
3233 is non-zero.
3234
3235 NOTE: We don't manage space for FILE, we assume FILE lives as long
3236 as the caller needs. */
3237
3238 static int
3239 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3240 {
3241 void **slot;
3242
3243 /* Is FILE in tab? */
3244 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3245 if (*slot != NULL)
3246 return 1;
3247
3248 /* No; maybe add it to tab. */
3249 if (add)
3250 *slot = (char *) file;
3251
3252 return 0;
3253 }
3254
3255 /* Data structure to maintain printing state for output_source_filename. */
3256
3257 struct output_source_filename_data
3258 {
3259 /* Cache of what we've seen so far. */
3260 struct filename_seen_cache *filename_seen_cache;
3261
3262 /* Flag of whether we're printing the first one. */
3263 int first;
3264 };
3265
3266 /* Slave routine for sources_info. Force line breaks at ,'s.
3267 NAME is the name to print.
3268 DATA contains the state for printing and watching for duplicates. */
3269
3270 static void
3271 output_source_filename (const char *name,
3272 struct output_source_filename_data *data)
3273 {
3274 /* Since a single source file can result in several partial symbol
3275 tables, we need to avoid printing it more than once. Note: if
3276 some of the psymtabs are read in and some are not, it gets
3277 printed both under "Source files for which symbols have been
3278 read" and "Source files for which symbols will be read in on
3279 demand". I consider this a reasonable way to deal with the
3280 situation. I'm not sure whether this can also happen for
3281 symtabs; it doesn't hurt to check. */
3282
3283 /* Was NAME already seen? */
3284 if (filename_seen (data->filename_seen_cache, name, 1))
3285 {
3286 /* Yes; don't print it again. */
3287 return;
3288 }
3289
3290 /* No; print it and reset *FIRST. */
3291 if (! data->first)
3292 printf_filtered (", ");
3293 data->first = 0;
3294
3295 wrap_here ("");
3296 fputs_filtered (name, gdb_stdout);
3297 }
3298
3299 /* A callback for map_partial_symbol_filenames. */
3300
3301 static void
3302 output_partial_symbol_filename (const char *filename, const char *fullname,
3303 void *data)
3304 {
3305 output_source_filename (fullname ? fullname : filename, data);
3306 }
3307
3308 static void
3309 sources_info (char *ignore, int from_tty)
3310 {
3311 struct symtab *s;
3312 struct objfile *objfile;
3313 struct output_source_filename_data data;
3314 struct cleanup *cleanups;
3315
3316 if (!have_full_symbols () && !have_partial_symbols ())
3317 {
3318 error (_("No symbol table is loaded. Use the \"file\" command."));
3319 }
3320
3321 data.filename_seen_cache = create_filename_seen_cache ();
3322 cleanups = make_cleanup (delete_filename_seen_cache,
3323 data.filename_seen_cache);
3324
3325 printf_filtered ("Source files for which symbols have been read in:\n\n");
3326
3327 data.first = 1;
3328 ALL_SYMTABS (objfile, s)
3329 {
3330 const char *fullname = symtab_to_fullname (s);
3331
3332 output_source_filename (fullname, &data);
3333 }
3334 printf_filtered ("\n\n");
3335
3336 printf_filtered ("Source files for which symbols "
3337 "will be read in on demand:\n\n");
3338
3339 clear_filename_seen_cache (data.filename_seen_cache);
3340 data.first = 1;
3341 map_symbol_filenames (output_partial_symbol_filename, &data,
3342 1 /*need_fullname*/);
3343 printf_filtered ("\n");
3344
3345 do_cleanups (cleanups);
3346 }
3347
3348 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3349 non-zero compare only lbasename of FILES. */
3350
3351 static int
3352 file_matches (const char *file, char *files[], int nfiles, int basenames)
3353 {
3354 int i;
3355
3356 if (file != NULL && nfiles != 0)
3357 {
3358 for (i = 0; i < nfiles; i++)
3359 {
3360 if (compare_filenames_for_search (file, (basenames
3361 ? lbasename (files[i])
3362 : files[i])))
3363 return 1;
3364 }
3365 }
3366 else if (nfiles == 0)
3367 return 1;
3368 return 0;
3369 }
3370
3371 /* Free any memory associated with a search. */
3372
3373 void
3374 free_search_symbols (struct symbol_search *symbols)
3375 {
3376 struct symbol_search *p;
3377 struct symbol_search *next;
3378
3379 for (p = symbols; p != NULL; p = next)
3380 {
3381 next = p->next;
3382 xfree (p);
3383 }
3384 }
3385
3386 static void
3387 do_free_search_symbols_cleanup (void *symbolsp)
3388 {
3389 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3390
3391 free_search_symbols (symbols);
3392 }
3393
3394 struct cleanup *
3395 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3396 {
3397 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3398 }
3399
3400 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3401 sort symbols, not minimal symbols. */
3402
3403 static int
3404 compare_search_syms (const void *sa, const void *sb)
3405 {
3406 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3407 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3408 int c;
3409
3410 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3411 if (c != 0)
3412 return c;
3413
3414 if (sym_a->block != sym_b->block)
3415 return sym_a->block - sym_b->block;
3416
3417 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3418 SYMBOL_PRINT_NAME (sym_b->symbol));
3419 }
3420
3421 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3422 The duplicates are freed, and the new list is returned in
3423 *NEW_HEAD, *NEW_TAIL. */
3424
3425 static void
3426 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3427 struct symbol_search **new_head,
3428 struct symbol_search **new_tail)
3429 {
3430 struct symbol_search **symbols, *symp, *old_next;
3431 int i, j, nunique;
3432
3433 gdb_assert (found != NULL && nfound > 0);
3434
3435 /* Build an array out of the list so we can easily sort them. */
3436 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3437 * nfound);
3438 symp = found;
3439 for (i = 0; i < nfound; i++)
3440 {
3441 gdb_assert (symp != NULL);
3442 gdb_assert (symp->block >= 0 && symp->block <= 1);
3443 symbols[i] = symp;
3444 symp = symp->next;
3445 }
3446 gdb_assert (symp == NULL);
3447
3448 qsort (symbols, nfound, sizeof (struct symbol_search *),
3449 compare_search_syms);
3450
3451 /* Collapse out the dups. */
3452 for (i = 1, j = 1; i < nfound; ++i)
3453 {
3454 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3455 symbols[j++] = symbols[i];
3456 else
3457 xfree (symbols[i]);
3458 }
3459 nunique = j;
3460 symbols[j - 1]->next = NULL;
3461
3462 /* Rebuild the linked list. */
3463 for (i = 0; i < nunique - 1; i++)
3464 symbols[i]->next = symbols[i + 1];
3465 symbols[nunique - 1]->next = NULL;
3466
3467 *new_head = symbols[0];
3468 *new_tail = symbols[nunique - 1];
3469 xfree (symbols);
3470 }
3471
3472 /* An object of this type is passed as the user_data to the
3473 expand_symtabs_matching method. */
3474 struct search_symbols_data
3475 {
3476 int nfiles;
3477 char **files;
3478
3479 /* It is true if PREG contains valid data, false otherwise. */
3480 unsigned preg_p : 1;
3481 regex_t preg;
3482 };
3483
3484 /* A callback for expand_symtabs_matching. */
3485
3486 static int
3487 search_symbols_file_matches (const char *filename, void *user_data,
3488 int basenames)
3489 {
3490 struct search_symbols_data *data = user_data;
3491
3492 return file_matches (filename, data->files, data->nfiles, basenames);
3493 }
3494
3495 /* A callback for expand_symtabs_matching. */
3496
3497 static int
3498 search_symbols_name_matches (const char *symname, void *user_data)
3499 {
3500 struct search_symbols_data *data = user_data;
3501
3502 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3503 }
3504
3505 /* Search the symbol table for matches to the regular expression REGEXP,
3506 returning the results in *MATCHES.
3507
3508 Only symbols of KIND are searched:
3509 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3510 and constants (enums)
3511 FUNCTIONS_DOMAIN - search all functions
3512 TYPES_DOMAIN - search all type names
3513 ALL_DOMAIN - an internal error for this function
3514
3515 free_search_symbols should be called when *MATCHES is no longer needed.
3516
3517 Within each file the results are sorted locally; each symtab's global and
3518 static blocks are separately alphabetized.
3519 Duplicate entries are removed. */
3520
3521 void
3522 search_symbols (char *regexp, enum search_domain kind,
3523 int nfiles, char *files[],
3524 struct symbol_search **matches)
3525 {
3526 struct symtab *s;
3527 struct blockvector *bv;
3528 struct block *b;
3529 int i = 0;
3530 struct block_iterator iter;
3531 struct symbol *sym;
3532 struct objfile *objfile;
3533 struct minimal_symbol *msymbol;
3534 int found_misc = 0;
3535 static const enum minimal_symbol_type types[]
3536 = {mst_data, mst_text, mst_abs};
3537 static const enum minimal_symbol_type types2[]
3538 = {mst_bss, mst_file_text, mst_abs};
3539 static const enum minimal_symbol_type types3[]
3540 = {mst_file_data, mst_solib_trampoline, mst_abs};
3541 static const enum minimal_symbol_type types4[]
3542 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3543 enum minimal_symbol_type ourtype;
3544 enum minimal_symbol_type ourtype2;
3545 enum minimal_symbol_type ourtype3;
3546 enum minimal_symbol_type ourtype4;
3547 struct symbol_search *found;
3548 struct symbol_search *tail;
3549 struct search_symbols_data datum;
3550 int nfound;
3551
3552 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3553 CLEANUP_CHAIN is freed only in the case of an error. */
3554 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3555 struct cleanup *retval_chain;
3556
3557 gdb_assert (kind <= TYPES_DOMAIN);
3558
3559 ourtype = types[kind];
3560 ourtype2 = types2[kind];
3561 ourtype3 = types3[kind];
3562 ourtype4 = types4[kind];
3563
3564 *matches = NULL;
3565 datum.preg_p = 0;
3566
3567 if (regexp != NULL)
3568 {
3569 /* Make sure spacing is right for C++ operators.
3570 This is just a courtesy to make the matching less sensitive
3571 to how many spaces the user leaves between 'operator'
3572 and <TYPENAME> or <OPERATOR>. */
3573 char *opend;
3574 char *opname = operator_chars (regexp, &opend);
3575 int errcode;
3576
3577 if (*opname)
3578 {
3579 int fix = -1; /* -1 means ok; otherwise number of
3580 spaces needed. */
3581
3582 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3583 {
3584 /* There should 1 space between 'operator' and 'TYPENAME'. */
3585 if (opname[-1] != ' ' || opname[-2] == ' ')
3586 fix = 1;
3587 }
3588 else
3589 {
3590 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3591 if (opname[-1] == ' ')
3592 fix = 0;
3593 }
3594 /* If wrong number of spaces, fix it. */
3595 if (fix >= 0)
3596 {
3597 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3598
3599 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3600 regexp = tmp;
3601 }
3602 }
3603
3604 errcode = regcomp (&datum.preg, regexp,
3605 REG_NOSUB | (case_sensitivity == case_sensitive_off
3606 ? REG_ICASE : 0));
3607 if (errcode != 0)
3608 {
3609 char *err = get_regcomp_error (errcode, &datum.preg);
3610
3611 make_cleanup (xfree, err);
3612 error (_("Invalid regexp (%s): %s"), err, regexp);
3613 }
3614 datum.preg_p = 1;
3615 make_regfree_cleanup (&datum.preg);
3616 }
3617
3618 /* Search through the partial symtabs *first* for all symbols
3619 matching the regexp. That way we don't have to reproduce all of
3620 the machinery below. */
3621
3622 datum.nfiles = nfiles;
3623 datum.files = files;
3624 expand_symtabs_matching ((nfiles == 0
3625 ? NULL
3626 : search_symbols_file_matches),
3627 search_symbols_name_matches,
3628 kind, &datum);
3629
3630 /* Here, we search through the minimal symbol tables for functions
3631 and variables that match, and force their symbols to be read.
3632 This is in particular necessary for demangled variable names,
3633 which are no longer put into the partial symbol tables.
3634 The symbol will then be found during the scan of symtabs below.
3635
3636 For functions, find_pc_symtab should succeed if we have debug info
3637 for the function, for variables we have to call
3638 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3639 has debug info.
3640 If the lookup fails, set found_misc so that we will rescan to print
3641 any matching symbols without debug info.
3642 We only search the objfile the msymbol came from, we no longer search
3643 all objfiles. In large programs (1000s of shared libs) searching all
3644 objfiles is not worth the pain. */
3645
3646 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3647 {
3648 ALL_MSYMBOLS (objfile, msymbol)
3649 {
3650 QUIT;
3651
3652 if (msymbol->created_by_gdb)
3653 continue;
3654
3655 if (MSYMBOL_TYPE (msymbol) == ourtype
3656 || MSYMBOL_TYPE (msymbol) == ourtype2
3657 || MSYMBOL_TYPE (msymbol) == ourtype3
3658 || MSYMBOL_TYPE (msymbol) == ourtype4)
3659 {
3660 if (!datum.preg_p
3661 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3662 NULL, 0) == 0)
3663 {
3664 /* Note: An important side-effect of these lookup functions
3665 is to expand the symbol table if msymbol is found, for the
3666 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3667 if (kind == FUNCTIONS_DOMAIN
3668 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3669 : (lookup_symbol_in_objfile_from_linkage_name
3670 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3671 == NULL))
3672 found_misc = 1;
3673 }
3674 }
3675 }
3676 }
3677
3678 found = NULL;
3679 tail = NULL;
3680 nfound = 0;
3681 retval_chain = make_cleanup_free_search_symbols (&found);
3682
3683 ALL_PRIMARY_SYMTABS (objfile, s)
3684 {
3685 bv = BLOCKVECTOR (s);
3686 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3687 {
3688 b = BLOCKVECTOR_BLOCK (bv, i);
3689 ALL_BLOCK_SYMBOLS (b, iter, sym)
3690 {
3691 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3692
3693 QUIT;
3694
3695 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3696 a substring of symtab_to_fullname as it may contain "./" etc. */
3697 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3698 || ((basenames_may_differ
3699 || file_matches (lbasename (real_symtab->filename),
3700 files, nfiles, 1))
3701 && file_matches (symtab_to_fullname (real_symtab),
3702 files, nfiles, 0)))
3703 && ((!datum.preg_p
3704 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3705 NULL, 0) == 0)
3706 && ((kind == VARIABLES_DOMAIN
3707 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3708 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3709 && SYMBOL_CLASS (sym) != LOC_BLOCK
3710 /* LOC_CONST can be used for more than just enums,
3711 e.g., c++ static const members.
3712 We only want to skip enums here. */
3713 && !(SYMBOL_CLASS (sym) == LOC_CONST
3714 && TYPE_CODE (SYMBOL_TYPE (sym))
3715 == TYPE_CODE_ENUM))
3716 || (kind == FUNCTIONS_DOMAIN
3717 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3718 || (kind == TYPES_DOMAIN
3719 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3720 {
3721 /* match */
3722 struct symbol_search *psr = (struct symbol_search *)
3723 xmalloc (sizeof (struct symbol_search));
3724 psr->block = i;
3725 psr->symtab = real_symtab;
3726 psr->symbol = sym;
3727 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3728 psr->next = NULL;
3729 if (tail == NULL)
3730 found = psr;
3731 else
3732 tail->next = psr;
3733 tail = psr;
3734 nfound ++;
3735 }
3736 }
3737 }
3738 }
3739
3740 if (found != NULL)
3741 {
3742 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3743 /* Note: nfound is no longer useful beyond this point. */
3744 }
3745
3746 /* If there are no eyes, avoid all contact. I mean, if there are
3747 no debug symbols, then print directly from the msymbol_vector. */
3748
3749 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3750 {
3751 ALL_MSYMBOLS (objfile, msymbol)
3752 {
3753 QUIT;
3754
3755 if (msymbol->created_by_gdb)
3756 continue;
3757
3758 if (MSYMBOL_TYPE (msymbol) == ourtype
3759 || MSYMBOL_TYPE (msymbol) == ourtype2
3760 || MSYMBOL_TYPE (msymbol) == ourtype3
3761 || MSYMBOL_TYPE (msymbol) == ourtype4)
3762 {
3763 if (!datum.preg_p
3764 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3765 NULL, 0) == 0)
3766 {
3767 /* For functions we can do a quick check of whether the
3768 symbol might be found via find_pc_symtab. */
3769 if (kind != FUNCTIONS_DOMAIN
3770 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3771 {
3772 if (lookup_symbol_in_objfile_from_linkage_name
3773 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3774 == NULL)
3775 {
3776 /* match */
3777 struct symbol_search *psr = (struct symbol_search *)
3778 xmalloc (sizeof (struct symbol_search));
3779 psr->block = i;
3780 psr->msymbol.minsym = msymbol;
3781 psr->msymbol.objfile = objfile;
3782 psr->symtab = NULL;
3783 psr->symbol = NULL;
3784 psr->next = NULL;
3785 if (tail == NULL)
3786 found = psr;
3787 else
3788 tail->next = psr;
3789 tail = psr;
3790 }
3791 }
3792 }
3793 }
3794 }
3795 }
3796
3797 discard_cleanups (retval_chain);
3798 do_cleanups (old_chain);
3799 *matches = found;
3800 }
3801
3802 /* Helper function for symtab_symbol_info, this function uses
3803 the data returned from search_symbols() to print information
3804 regarding the match to gdb_stdout. */
3805
3806 static void
3807 print_symbol_info (enum search_domain kind,
3808 struct symtab *s, struct symbol *sym,
3809 int block, const char *last)
3810 {
3811 const char *s_filename = symtab_to_filename_for_display (s);
3812
3813 if (last == NULL || filename_cmp (last, s_filename) != 0)
3814 {
3815 fputs_filtered ("\nFile ", gdb_stdout);
3816 fputs_filtered (s_filename, gdb_stdout);
3817 fputs_filtered (":\n", gdb_stdout);
3818 }
3819
3820 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3821 printf_filtered ("static ");
3822
3823 /* Typedef that is not a C++ class. */
3824 if (kind == TYPES_DOMAIN
3825 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3826 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3827 /* variable, func, or typedef-that-is-c++-class. */
3828 else if (kind < TYPES_DOMAIN
3829 || (kind == TYPES_DOMAIN
3830 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3831 {
3832 type_print (SYMBOL_TYPE (sym),
3833 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3834 ? "" : SYMBOL_PRINT_NAME (sym)),
3835 gdb_stdout, 0);
3836
3837 printf_filtered (";\n");
3838 }
3839 }
3840
3841 /* This help function for symtab_symbol_info() prints information
3842 for non-debugging symbols to gdb_stdout. */
3843
3844 static void
3845 print_msymbol_info (struct bound_minimal_symbol msymbol)
3846 {
3847 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3848 char *tmp;
3849
3850 if (gdbarch_addr_bit (gdbarch) <= 32)
3851 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym)
3852 & (CORE_ADDR) 0xffffffff,
3853 8);
3854 else
3855 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym),
3856 16);
3857 printf_filtered ("%s %s\n",
3858 tmp, SYMBOL_PRINT_NAME (msymbol.minsym));
3859 }
3860
3861 /* This is the guts of the commands "info functions", "info types", and
3862 "info variables". It calls search_symbols to find all matches and then
3863 print_[m]symbol_info to print out some useful information about the
3864 matches. */
3865
3866 static void
3867 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3868 {
3869 static const char * const classnames[] =
3870 {"variable", "function", "type"};
3871 struct symbol_search *symbols;
3872 struct symbol_search *p;
3873 struct cleanup *old_chain;
3874 const char *last_filename = NULL;
3875 int first = 1;
3876
3877 gdb_assert (kind <= TYPES_DOMAIN);
3878
3879 /* Must make sure that if we're interrupted, symbols gets freed. */
3880 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3881 old_chain = make_cleanup_free_search_symbols (&symbols);
3882
3883 if (regexp != NULL)
3884 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3885 classnames[kind], regexp);
3886 else
3887 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3888
3889 for (p = symbols; p != NULL; p = p->next)
3890 {
3891 QUIT;
3892
3893 if (p->msymbol.minsym != NULL)
3894 {
3895 if (first)
3896 {
3897 printf_filtered (_("\nNon-debugging symbols:\n"));
3898 first = 0;
3899 }
3900 print_msymbol_info (p->msymbol);
3901 }
3902 else
3903 {
3904 print_symbol_info (kind,
3905 p->symtab,
3906 p->symbol,
3907 p->block,
3908 last_filename);
3909 last_filename = symtab_to_filename_for_display (p->symtab);
3910 }
3911 }
3912
3913 do_cleanups (old_chain);
3914 }
3915
3916 static void
3917 variables_info (char *regexp, int from_tty)
3918 {
3919 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3920 }
3921
3922 static void
3923 functions_info (char *regexp, int from_tty)
3924 {
3925 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3926 }
3927
3928
3929 static void
3930 types_info (char *regexp, int from_tty)
3931 {
3932 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3933 }
3934
3935 /* Breakpoint all functions matching regular expression. */
3936
3937 void
3938 rbreak_command_wrapper (char *regexp, int from_tty)
3939 {
3940 rbreak_command (regexp, from_tty);
3941 }
3942
3943 /* A cleanup function that calls end_rbreak_breakpoints. */
3944
3945 static void
3946 do_end_rbreak_breakpoints (void *ignore)
3947 {
3948 end_rbreak_breakpoints ();
3949 }
3950
3951 static void
3952 rbreak_command (char *regexp, int from_tty)
3953 {
3954 struct symbol_search *ss;
3955 struct symbol_search *p;
3956 struct cleanup *old_chain;
3957 char *string = NULL;
3958 int len = 0;
3959 char **files = NULL, *file_name;
3960 int nfiles = 0;
3961
3962 if (regexp)
3963 {
3964 char *colon = strchr (regexp, ':');
3965
3966 if (colon && *(colon + 1) != ':')
3967 {
3968 int colon_index;
3969
3970 colon_index = colon - regexp;
3971 file_name = alloca (colon_index + 1);
3972 memcpy (file_name, regexp, colon_index);
3973 file_name[colon_index--] = 0;
3974 while (isspace (file_name[colon_index]))
3975 file_name[colon_index--] = 0;
3976 files = &file_name;
3977 nfiles = 1;
3978 regexp = skip_spaces (colon + 1);
3979 }
3980 }
3981
3982 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3983 old_chain = make_cleanup_free_search_symbols (&ss);
3984 make_cleanup (free_current_contents, &string);
3985
3986 start_rbreak_breakpoints ();
3987 make_cleanup (do_end_rbreak_breakpoints, NULL);
3988 for (p = ss; p != NULL; p = p->next)
3989 {
3990 if (p->msymbol.minsym == NULL)
3991 {
3992 const char *fullname = symtab_to_fullname (p->symtab);
3993
3994 int newlen = (strlen (fullname)
3995 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3996 + 4);
3997
3998 if (newlen > len)
3999 {
4000 string = xrealloc (string, newlen);
4001 len = newlen;
4002 }
4003 strcpy (string, fullname);
4004 strcat (string, ":'");
4005 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4006 strcat (string, "'");
4007 break_command (string, from_tty);
4008 print_symbol_info (FUNCTIONS_DOMAIN,
4009 p->symtab,
4010 p->symbol,
4011 p->block,
4012 symtab_to_filename_for_display (p->symtab));
4013 }
4014 else
4015 {
4016 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4017
4018 if (newlen > len)
4019 {
4020 string = xrealloc (string, newlen);
4021 len = newlen;
4022 }
4023 strcpy (string, "'");
4024 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4025 strcat (string, "'");
4026
4027 break_command (string, from_tty);
4028 printf_filtered ("<function, no debug info> %s;\n",
4029 SYMBOL_PRINT_NAME (p->msymbol.minsym));
4030 }
4031 }
4032
4033 do_cleanups (old_chain);
4034 }
4035 \f
4036
4037 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4038
4039 Either sym_text[sym_text_len] != '(' and then we search for any
4040 symbol starting with SYM_TEXT text.
4041
4042 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4043 be terminated at that point. Partial symbol tables do not have parameters
4044 information. */
4045
4046 static int
4047 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4048 {
4049 int (*ncmp) (const char *, const char *, size_t);
4050
4051 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4052
4053 if (ncmp (name, sym_text, sym_text_len) != 0)
4054 return 0;
4055
4056 if (sym_text[sym_text_len] == '(')
4057 {
4058 /* User searches for `name(someth...'. Require NAME to be terminated.
4059 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4060 present but accept even parameters presence. In this case this
4061 function is in fact strcmp_iw but whitespace skipping is not supported
4062 for tab completion. */
4063
4064 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4065 return 0;
4066 }
4067
4068 return 1;
4069 }
4070
4071 /* Free any memory associated with a completion list. */
4072
4073 static void
4074 free_completion_list (VEC (char_ptr) **list_ptr)
4075 {
4076 int i;
4077 char *p;
4078
4079 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4080 xfree (p);
4081 VEC_free (char_ptr, *list_ptr);
4082 }
4083
4084 /* Callback for make_cleanup. */
4085
4086 static void
4087 do_free_completion_list (void *list)
4088 {
4089 free_completion_list (list);
4090 }
4091
4092 /* Helper routine for make_symbol_completion_list. */
4093
4094 static VEC (char_ptr) *return_val;
4095
4096 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4097 completion_list_add_name \
4098 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4099
4100 /* Test to see if the symbol specified by SYMNAME (which is already
4101 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4102 characters. If so, add it to the current completion list. */
4103
4104 static void
4105 completion_list_add_name (const char *symname,
4106 const char *sym_text, int sym_text_len,
4107 const char *text, const char *word)
4108 {
4109 /* Clip symbols that cannot match. */
4110 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4111 return;
4112
4113 /* We have a match for a completion, so add SYMNAME to the current list
4114 of matches. Note that the name is moved to freshly malloc'd space. */
4115
4116 {
4117 char *new;
4118
4119 if (word == sym_text)
4120 {
4121 new = xmalloc (strlen (symname) + 5);
4122 strcpy (new, symname);
4123 }
4124 else if (word > sym_text)
4125 {
4126 /* Return some portion of symname. */
4127 new = xmalloc (strlen (symname) + 5);
4128 strcpy (new, symname + (word - sym_text));
4129 }
4130 else
4131 {
4132 /* Return some of SYM_TEXT plus symname. */
4133 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4134 strncpy (new, word, sym_text - word);
4135 new[sym_text - word] = '\0';
4136 strcat (new, symname);
4137 }
4138
4139 VEC_safe_push (char_ptr, return_val, new);
4140 }
4141 }
4142
4143 /* ObjC: In case we are completing on a selector, look as the msymbol
4144 again and feed all the selectors into the mill. */
4145
4146 static void
4147 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4148 const char *sym_text, int sym_text_len,
4149 const char *text, const char *word)
4150 {
4151 static char *tmp = NULL;
4152 static unsigned int tmplen = 0;
4153
4154 const char *method, *category, *selector;
4155 char *tmp2 = NULL;
4156
4157 method = SYMBOL_NATURAL_NAME (msymbol);
4158
4159 /* Is it a method? */
4160 if ((method[0] != '-') && (method[0] != '+'))
4161 return;
4162
4163 if (sym_text[0] == '[')
4164 /* Complete on shortened method method. */
4165 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4166
4167 while ((strlen (method) + 1) >= tmplen)
4168 {
4169 if (tmplen == 0)
4170 tmplen = 1024;
4171 else
4172 tmplen *= 2;
4173 tmp = xrealloc (tmp, tmplen);
4174 }
4175 selector = strchr (method, ' ');
4176 if (selector != NULL)
4177 selector++;
4178
4179 category = strchr (method, '(');
4180
4181 if ((category != NULL) && (selector != NULL))
4182 {
4183 memcpy (tmp, method, (category - method));
4184 tmp[category - method] = ' ';
4185 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4186 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4187 if (sym_text[0] == '[')
4188 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4189 }
4190
4191 if (selector != NULL)
4192 {
4193 /* Complete on selector only. */
4194 strcpy (tmp, selector);
4195 tmp2 = strchr (tmp, ']');
4196 if (tmp2 != NULL)
4197 *tmp2 = '\0';
4198
4199 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4200 }
4201 }
4202
4203 /* Break the non-quoted text based on the characters which are in
4204 symbols. FIXME: This should probably be language-specific. */
4205
4206 static const char *
4207 language_search_unquoted_string (const char *text, const char *p)
4208 {
4209 for (; p > text; --p)
4210 {
4211 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4212 continue;
4213 else
4214 {
4215 if ((current_language->la_language == language_objc))
4216 {
4217 if (p[-1] == ':') /* Might be part of a method name. */
4218 continue;
4219 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4220 p -= 2; /* Beginning of a method name. */
4221 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4222 { /* Might be part of a method name. */
4223 const char *t = p;
4224
4225 /* Seeing a ' ' or a '(' is not conclusive evidence
4226 that we are in the middle of a method name. However,
4227 finding "-[" or "+[" should be pretty un-ambiguous.
4228 Unfortunately we have to find it now to decide. */
4229
4230 while (t > text)
4231 if (isalnum (t[-1]) || t[-1] == '_' ||
4232 t[-1] == ' ' || t[-1] == ':' ||
4233 t[-1] == '(' || t[-1] == ')')
4234 --t;
4235 else
4236 break;
4237
4238 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4239 p = t - 2; /* Method name detected. */
4240 /* Else we leave with p unchanged. */
4241 }
4242 }
4243 break;
4244 }
4245 }
4246 return p;
4247 }
4248
4249 static void
4250 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4251 int sym_text_len, const char *text,
4252 const char *word)
4253 {
4254 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4255 {
4256 struct type *t = SYMBOL_TYPE (sym);
4257 enum type_code c = TYPE_CODE (t);
4258 int j;
4259
4260 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4261 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4262 if (TYPE_FIELD_NAME (t, j))
4263 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4264 sym_text, sym_text_len, text, word);
4265 }
4266 }
4267
4268 /* Type of the user_data argument passed to add_macro_name or
4269 symbol_completion_matcher. The contents are simply whatever is
4270 needed by completion_list_add_name. */
4271 struct add_name_data
4272 {
4273 const char *sym_text;
4274 int sym_text_len;
4275 const char *text;
4276 const char *word;
4277 };
4278
4279 /* A callback used with macro_for_each and macro_for_each_in_scope.
4280 This adds a macro's name to the current completion list. */
4281
4282 static void
4283 add_macro_name (const char *name, const struct macro_definition *ignore,
4284 struct macro_source_file *ignore2, int ignore3,
4285 void *user_data)
4286 {
4287 struct add_name_data *datum = (struct add_name_data *) user_data;
4288
4289 completion_list_add_name ((char *) name,
4290 datum->sym_text, datum->sym_text_len,
4291 datum->text, datum->word);
4292 }
4293
4294 /* A callback for expand_symtabs_matching. */
4295
4296 static int
4297 symbol_completion_matcher (const char *name, void *user_data)
4298 {
4299 struct add_name_data *datum = (struct add_name_data *) user_data;
4300
4301 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4302 }
4303
4304 VEC (char_ptr) *
4305 default_make_symbol_completion_list_break_on (const char *text,
4306 const char *word,
4307 const char *break_on,
4308 enum type_code code)
4309 {
4310 /* Problem: All of the symbols have to be copied because readline
4311 frees them. I'm not going to worry about this; hopefully there
4312 won't be that many. */
4313
4314 struct symbol *sym;
4315 struct symtab *s;
4316 struct minimal_symbol *msymbol;
4317 struct objfile *objfile;
4318 struct block *b;
4319 const struct block *surrounding_static_block, *surrounding_global_block;
4320 struct block_iterator iter;
4321 /* The symbol we are completing on. Points in same buffer as text. */
4322 const char *sym_text;
4323 /* Length of sym_text. */
4324 int sym_text_len;
4325 struct add_name_data datum;
4326 struct cleanup *back_to;
4327
4328 /* Now look for the symbol we are supposed to complete on. */
4329 {
4330 const char *p;
4331 char quote_found;
4332 const char *quote_pos = NULL;
4333
4334 /* First see if this is a quoted string. */
4335 quote_found = '\0';
4336 for (p = text; *p != '\0'; ++p)
4337 {
4338 if (quote_found != '\0')
4339 {
4340 if (*p == quote_found)
4341 /* Found close quote. */
4342 quote_found = '\0';
4343 else if (*p == '\\' && p[1] == quote_found)
4344 /* A backslash followed by the quote character
4345 doesn't end the string. */
4346 ++p;
4347 }
4348 else if (*p == '\'' || *p == '"')
4349 {
4350 quote_found = *p;
4351 quote_pos = p;
4352 }
4353 }
4354 if (quote_found == '\'')
4355 /* A string within single quotes can be a symbol, so complete on it. */
4356 sym_text = quote_pos + 1;
4357 else if (quote_found == '"')
4358 /* A double-quoted string is never a symbol, nor does it make sense
4359 to complete it any other way. */
4360 {
4361 return NULL;
4362 }
4363 else
4364 {
4365 /* It is not a quoted string. Break it based on the characters
4366 which are in symbols. */
4367 while (p > text)
4368 {
4369 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4370 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4371 --p;
4372 else
4373 break;
4374 }
4375 sym_text = p;
4376 }
4377 }
4378
4379 sym_text_len = strlen (sym_text);
4380
4381 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4382
4383 if (current_language->la_language == language_cplus
4384 || current_language->la_language == language_java
4385 || current_language->la_language == language_fortran)
4386 {
4387 /* These languages may have parameters entered by user but they are never
4388 present in the partial symbol tables. */
4389
4390 const char *cs = memchr (sym_text, '(', sym_text_len);
4391
4392 if (cs)
4393 sym_text_len = cs - sym_text;
4394 }
4395 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4396
4397 return_val = NULL;
4398 back_to = make_cleanup (do_free_completion_list, &return_val);
4399
4400 datum.sym_text = sym_text;
4401 datum.sym_text_len = sym_text_len;
4402 datum.text = text;
4403 datum.word = word;
4404
4405 /* Look through the partial symtabs for all symbols which begin
4406 by matching SYM_TEXT. Expand all CUs that you find to the list.
4407 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4408 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4409 &datum);
4410
4411 /* At this point scan through the misc symbol vectors and add each
4412 symbol you find to the list. Eventually we want to ignore
4413 anything that isn't a text symbol (everything else will be
4414 handled by the psymtab code above). */
4415
4416 if (code == TYPE_CODE_UNDEF)
4417 {
4418 ALL_MSYMBOLS (objfile, msymbol)
4419 {
4420 QUIT;
4421 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4422 word);
4423
4424 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4425 word);
4426 }
4427 }
4428
4429 /* Search upwards from currently selected frame (so that we can
4430 complete on local vars). Also catch fields of types defined in
4431 this places which match our text string. Only complete on types
4432 visible from current context. */
4433
4434 b = get_selected_block (0);
4435 surrounding_static_block = block_static_block (b);
4436 surrounding_global_block = block_global_block (b);
4437 if (surrounding_static_block != NULL)
4438 while (b != surrounding_static_block)
4439 {
4440 QUIT;
4441
4442 ALL_BLOCK_SYMBOLS (b, iter, sym)
4443 {
4444 if (code == TYPE_CODE_UNDEF)
4445 {
4446 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4447 word);
4448 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4449 word);
4450 }
4451 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4452 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4453 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4454 word);
4455 }
4456
4457 /* Stop when we encounter an enclosing function. Do not stop for
4458 non-inlined functions - the locals of the enclosing function
4459 are in scope for a nested function. */
4460 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4461 break;
4462 b = BLOCK_SUPERBLOCK (b);
4463 }
4464
4465 /* Add fields from the file's types; symbols will be added below. */
4466
4467 if (code == TYPE_CODE_UNDEF)
4468 {
4469 if (surrounding_static_block != NULL)
4470 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4471 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4472
4473 if (surrounding_global_block != NULL)
4474 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4475 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4476 }
4477
4478 /* Go through the symtabs and check the externs and statics for
4479 symbols which match. */
4480
4481 ALL_PRIMARY_SYMTABS (objfile, s)
4482 {
4483 QUIT;
4484 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4485 ALL_BLOCK_SYMBOLS (b, iter, sym)
4486 {
4487 if (code == TYPE_CODE_UNDEF
4488 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4489 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4490 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4491 }
4492 }
4493
4494 ALL_PRIMARY_SYMTABS (objfile, s)
4495 {
4496 QUIT;
4497 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4498 ALL_BLOCK_SYMBOLS (b, iter, sym)
4499 {
4500 if (code == TYPE_CODE_UNDEF
4501 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4502 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4503 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4504 }
4505 }
4506
4507 /* Skip macros if we are completing a struct tag -- arguable but
4508 usually what is expected. */
4509 if (current_language->la_macro_expansion == macro_expansion_c
4510 && code == TYPE_CODE_UNDEF)
4511 {
4512 struct macro_scope *scope;
4513
4514 /* Add any macros visible in the default scope. Note that this
4515 may yield the occasional wrong result, because an expression
4516 might be evaluated in a scope other than the default. For
4517 example, if the user types "break file:line if <TAB>", the
4518 resulting expression will be evaluated at "file:line" -- but
4519 at there does not seem to be a way to detect this at
4520 completion time. */
4521 scope = default_macro_scope ();
4522 if (scope)
4523 {
4524 macro_for_each_in_scope (scope->file, scope->line,
4525 add_macro_name, &datum);
4526 xfree (scope);
4527 }
4528
4529 /* User-defined macros are always visible. */
4530 macro_for_each (macro_user_macros, add_macro_name, &datum);
4531 }
4532
4533 discard_cleanups (back_to);
4534 return (return_val);
4535 }
4536
4537 VEC (char_ptr) *
4538 default_make_symbol_completion_list (const char *text, const char *word,
4539 enum type_code code)
4540 {
4541 return default_make_symbol_completion_list_break_on (text, word, "", code);
4542 }
4543
4544 /* Return a vector of all symbols (regardless of class) which begin by
4545 matching TEXT. If the answer is no symbols, then the return value
4546 is NULL. */
4547
4548 VEC (char_ptr) *
4549 make_symbol_completion_list (const char *text, const char *word)
4550 {
4551 return current_language->la_make_symbol_completion_list (text, word,
4552 TYPE_CODE_UNDEF);
4553 }
4554
4555 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4556 symbols whose type code is CODE. */
4557
4558 VEC (char_ptr) *
4559 make_symbol_completion_type (const char *text, const char *word,
4560 enum type_code code)
4561 {
4562 gdb_assert (code == TYPE_CODE_UNION
4563 || code == TYPE_CODE_STRUCT
4564 || code == TYPE_CODE_CLASS
4565 || code == TYPE_CODE_ENUM);
4566 return current_language->la_make_symbol_completion_list (text, word, code);
4567 }
4568
4569 /* Like make_symbol_completion_list, but suitable for use as a
4570 completion function. */
4571
4572 VEC (char_ptr) *
4573 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4574 const char *text, const char *word)
4575 {
4576 return make_symbol_completion_list (text, word);
4577 }
4578
4579 /* Like make_symbol_completion_list, but returns a list of symbols
4580 defined in a source file FILE. */
4581
4582 VEC (char_ptr) *
4583 make_file_symbol_completion_list (const char *text, const char *word,
4584 const char *srcfile)
4585 {
4586 struct symbol *sym;
4587 struct symtab *s;
4588 struct block *b;
4589 struct block_iterator iter;
4590 /* The symbol we are completing on. Points in same buffer as text. */
4591 const char *sym_text;
4592 /* Length of sym_text. */
4593 int sym_text_len;
4594
4595 /* Now look for the symbol we are supposed to complete on.
4596 FIXME: This should be language-specific. */
4597 {
4598 const char *p;
4599 char quote_found;
4600 const char *quote_pos = NULL;
4601
4602 /* First see if this is a quoted string. */
4603 quote_found = '\0';
4604 for (p = text; *p != '\0'; ++p)
4605 {
4606 if (quote_found != '\0')
4607 {
4608 if (*p == quote_found)
4609 /* Found close quote. */
4610 quote_found = '\0';
4611 else if (*p == '\\' && p[1] == quote_found)
4612 /* A backslash followed by the quote character
4613 doesn't end the string. */
4614 ++p;
4615 }
4616 else if (*p == '\'' || *p == '"')
4617 {
4618 quote_found = *p;
4619 quote_pos = p;
4620 }
4621 }
4622 if (quote_found == '\'')
4623 /* A string within single quotes can be a symbol, so complete on it. */
4624 sym_text = quote_pos + 1;
4625 else if (quote_found == '"')
4626 /* A double-quoted string is never a symbol, nor does it make sense
4627 to complete it any other way. */
4628 {
4629 return NULL;
4630 }
4631 else
4632 {
4633 /* Not a quoted string. */
4634 sym_text = language_search_unquoted_string (text, p);
4635 }
4636 }
4637
4638 sym_text_len = strlen (sym_text);
4639
4640 return_val = NULL;
4641
4642 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4643 in). */
4644 s = lookup_symtab (srcfile);
4645 if (s == NULL)
4646 {
4647 /* Maybe they typed the file with leading directories, while the
4648 symbol tables record only its basename. */
4649 const char *tail = lbasename (srcfile);
4650
4651 if (tail > srcfile)
4652 s = lookup_symtab (tail);
4653 }
4654
4655 /* If we have no symtab for that file, return an empty list. */
4656 if (s == NULL)
4657 return (return_val);
4658
4659 /* Go through this symtab and check the externs and statics for
4660 symbols which match. */
4661
4662 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4663 ALL_BLOCK_SYMBOLS (b, iter, sym)
4664 {
4665 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4666 }
4667
4668 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4669 ALL_BLOCK_SYMBOLS (b, iter, sym)
4670 {
4671 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4672 }
4673
4674 return (return_val);
4675 }
4676
4677 /* A helper function for make_source_files_completion_list. It adds
4678 another file name to a list of possible completions, growing the
4679 list as necessary. */
4680
4681 static void
4682 add_filename_to_list (const char *fname, const char *text, const char *word,
4683 VEC (char_ptr) **list)
4684 {
4685 char *new;
4686 size_t fnlen = strlen (fname);
4687
4688 if (word == text)
4689 {
4690 /* Return exactly fname. */
4691 new = xmalloc (fnlen + 5);
4692 strcpy (new, fname);
4693 }
4694 else if (word > text)
4695 {
4696 /* Return some portion of fname. */
4697 new = xmalloc (fnlen + 5);
4698 strcpy (new, fname + (word - text));
4699 }
4700 else
4701 {
4702 /* Return some of TEXT plus fname. */
4703 new = xmalloc (fnlen + (text - word) + 5);
4704 strncpy (new, word, text - word);
4705 new[text - word] = '\0';
4706 strcat (new, fname);
4707 }
4708 VEC_safe_push (char_ptr, *list, new);
4709 }
4710
4711 static int
4712 not_interesting_fname (const char *fname)
4713 {
4714 static const char *illegal_aliens[] = {
4715 "_globals_", /* inserted by coff_symtab_read */
4716 NULL
4717 };
4718 int i;
4719
4720 for (i = 0; illegal_aliens[i]; i++)
4721 {
4722 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4723 return 1;
4724 }
4725 return 0;
4726 }
4727
4728 /* An object of this type is passed as the user_data argument to
4729 map_partial_symbol_filenames. */
4730 struct add_partial_filename_data
4731 {
4732 struct filename_seen_cache *filename_seen_cache;
4733 const char *text;
4734 const char *word;
4735 int text_len;
4736 VEC (char_ptr) **list;
4737 };
4738
4739 /* A callback for map_partial_symbol_filenames. */
4740
4741 static void
4742 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4743 void *user_data)
4744 {
4745 struct add_partial_filename_data *data = user_data;
4746
4747 if (not_interesting_fname (filename))
4748 return;
4749 if (!filename_seen (data->filename_seen_cache, filename, 1)
4750 && filename_ncmp (filename, data->text, data->text_len) == 0)
4751 {
4752 /* This file matches for a completion; add it to the
4753 current list of matches. */
4754 add_filename_to_list (filename, data->text, data->word, data->list);
4755 }
4756 else
4757 {
4758 const char *base_name = lbasename (filename);
4759
4760 if (base_name != filename
4761 && !filename_seen (data->filename_seen_cache, base_name, 1)
4762 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4763 add_filename_to_list (base_name, data->text, data->word, data->list);
4764 }
4765 }
4766
4767 /* Return a vector of all source files whose names begin with matching
4768 TEXT. The file names are looked up in the symbol tables of this
4769 program. If the answer is no matchess, then the return value is
4770 NULL. */
4771
4772 VEC (char_ptr) *
4773 make_source_files_completion_list (const char *text, const char *word)
4774 {
4775 struct symtab *s;
4776 struct objfile *objfile;
4777 size_t text_len = strlen (text);
4778 VEC (char_ptr) *list = NULL;
4779 const char *base_name;
4780 struct add_partial_filename_data datum;
4781 struct filename_seen_cache *filename_seen_cache;
4782 struct cleanup *back_to, *cache_cleanup;
4783
4784 if (!have_full_symbols () && !have_partial_symbols ())
4785 return list;
4786
4787 back_to = make_cleanup (do_free_completion_list, &list);
4788
4789 filename_seen_cache = create_filename_seen_cache ();
4790 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4791 filename_seen_cache);
4792
4793 ALL_SYMTABS (objfile, s)
4794 {
4795 if (not_interesting_fname (s->filename))
4796 continue;
4797 if (!filename_seen (filename_seen_cache, s->filename, 1)
4798 && filename_ncmp (s->filename, text, text_len) == 0)
4799 {
4800 /* This file matches for a completion; add it to the current
4801 list of matches. */
4802 add_filename_to_list (s->filename, text, word, &list);
4803 }
4804 else
4805 {
4806 /* NOTE: We allow the user to type a base name when the
4807 debug info records leading directories, but not the other
4808 way around. This is what subroutines of breakpoint
4809 command do when they parse file names. */
4810 base_name = lbasename (s->filename);
4811 if (base_name != s->filename
4812 && !filename_seen (filename_seen_cache, base_name, 1)
4813 && filename_ncmp (base_name, text, text_len) == 0)
4814 add_filename_to_list (base_name, text, word, &list);
4815 }
4816 }
4817
4818 datum.filename_seen_cache = filename_seen_cache;
4819 datum.text = text;
4820 datum.word = word;
4821 datum.text_len = text_len;
4822 datum.list = &list;
4823 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4824 0 /*need_fullname*/);
4825
4826 do_cleanups (cache_cleanup);
4827 discard_cleanups (back_to);
4828
4829 return list;
4830 }
4831
4832 /* Determine if PC is in the prologue of a function. The prologue is the area
4833 between the first instruction of a function, and the first executable line.
4834 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4835
4836 If non-zero, func_start is where we think the prologue starts, possibly
4837 by previous examination of symbol table information. */
4838
4839 int
4840 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4841 {
4842 struct symtab_and_line sal;
4843 CORE_ADDR func_addr, func_end;
4844
4845 /* We have several sources of information we can consult to figure
4846 this out.
4847 - Compilers usually emit line number info that marks the prologue
4848 as its own "source line". So the ending address of that "line"
4849 is the end of the prologue. If available, this is the most
4850 reliable method.
4851 - The minimal symbols and partial symbols, which can usually tell
4852 us the starting and ending addresses of a function.
4853 - If we know the function's start address, we can call the
4854 architecture-defined gdbarch_skip_prologue function to analyze the
4855 instruction stream and guess where the prologue ends.
4856 - Our `func_start' argument; if non-zero, this is the caller's
4857 best guess as to the function's entry point. At the time of
4858 this writing, handle_inferior_event doesn't get this right, so
4859 it should be our last resort. */
4860
4861 /* Consult the partial symbol table, to find which function
4862 the PC is in. */
4863 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4864 {
4865 CORE_ADDR prologue_end;
4866
4867 /* We don't even have minsym information, so fall back to using
4868 func_start, if given. */
4869 if (! func_start)
4870 return 1; /* We *might* be in a prologue. */
4871
4872 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4873
4874 return func_start <= pc && pc < prologue_end;
4875 }
4876
4877 /* If we have line number information for the function, that's
4878 usually pretty reliable. */
4879 sal = find_pc_line (func_addr, 0);
4880
4881 /* Now sal describes the source line at the function's entry point,
4882 which (by convention) is the prologue. The end of that "line",
4883 sal.end, is the end of the prologue.
4884
4885 Note that, for functions whose source code is all on a single
4886 line, the line number information doesn't always end up this way.
4887 So we must verify that our purported end-of-prologue address is
4888 *within* the function, not at its start or end. */
4889 if (sal.line == 0
4890 || sal.end <= func_addr
4891 || func_end <= sal.end)
4892 {
4893 /* We don't have any good line number info, so use the minsym
4894 information, together with the architecture-specific prologue
4895 scanning code. */
4896 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4897
4898 return func_addr <= pc && pc < prologue_end;
4899 }
4900
4901 /* We have line number info, and it looks good. */
4902 return func_addr <= pc && pc < sal.end;
4903 }
4904
4905 /* Given PC at the function's start address, attempt to find the
4906 prologue end using SAL information. Return zero if the skip fails.
4907
4908 A non-optimized prologue traditionally has one SAL for the function
4909 and a second for the function body. A single line function has
4910 them both pointing at the same line.
4911
4912 An optimized prologue is similar but the prologue may contain
4913 instructions (SALs) from the instruction body. Need to skip those
4914 while not getting into the function body.
4915
4916 The functions end point and an increasing SAL line are used as
4917 indicators of the prologue's endpoint.
4918
4919 This code is based on the function refine_prologue_limit
4920 (found in ia64). */
4921
4922 CORE_ADDR
4923 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4924 {
4925 struct symtab_and_line prologue_sal;
4926 CORE_ADDR start_pc;
4927 CORE_ADDR end_pc;
4928 struct block *bl;
4929
4930 /* Get an initial range for the function. */
4931 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4932 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4933
4934 prologue_sal = find_pc_line (start_pc, 0);
4935 if (prologue_sal.line != 0)
4936 {
4937 /* For languages other than assembly, treat two consecutive line
4938 entries at the same address as a zero-instruction prologue.
4939 The GNU assembler emits separate line notes for each instruction
4940 in a multi-instruction macro, but compilers generally will not
4941 do this. */
4942 if (prologue_sal.symtab->language != language_asm)
4943 {
4944 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4945 int idx = 0;
4946
4947 /* Skip any earlier lines, and any end-of-sequence marker
4948 from a previous function. */
4949 while (linetable->item[idx].pc != prologue_sal.pc
4950 || linetable->item[idx].line == 0)
4951 idx++;
4952
4953 if (idx+1 < linetable->nitems
4954 && linetable->item[idx+1].line != 0
4955 && linetable->item[idx+1].pc == start_pc)
4956 return start_pc;
4957 }
4958
4959 /* If there is only one sal that covers the entire function,
4960 then it is probably a single line function, like
4961 "foo(){}". */
4962 if (prologue_sal.end >= end_pc)
4963 return 0;
4964
4965 while (prologue_sal.end < end_pc)
4966 {
4967 struct symtab_and_line sal;
4968
4969 sal = find_pc_line (prologue_sal.end, 0);
4970 if (sal.line == 0)
4971 break;
4972 /* Assume that a consecutive SAL for the same (or larger)
4973 line mark the prologue -> body transition. */
4974 if (sal.line >= prologue_sal.line)
4975 break;
4976 /* Likewise if we are in a different symtab altogether
4977 (e.g. within a file included via #include).  */
4978 if (sal.symtab != prologue_sal.symtab)
4979 break;
4980
4981 /* The line number is smaller. Check that it's from the
4982 same function, not something inlined. If it's inlined,
4983 then there is no point comparing the line numbers. */
4984 bl = block_for_pc (prologue_sal.end);
4985 while (bl)
4986 {
4987 if (block_inlined_p (bl))
4988 break;
4989 if (BLOCK_FUNCTION (bl))
4990 {
4991 bl = NULL;
4992 break;
4993 }
4994 bl = BLOCK_SUPERBLOCK (bl);
4995 }
4996 if (bl != NULL)
4997 break;
4998
4999 /* The case in which compiler's optimizer/scheduler has
5000 moved instructions into the prologue. We look ahead in
5001 the function looking for address ranges whose
5002 corresponding line number is less the first one that we
5003 found for the function. This is more conservative then
5004 refine_prologue_limit which scans a large number of SALs
5005 looking for any in the prologue. */
5006 prologue_sal = sal;
5007 }
5008 }
5009
5010 if (prologue_sal.end < end_pc)
5011 /* Return the end of this line, or zero if we could not find a
5012 line. */
5013 return prologue_sal.end;
5014 else
5015 /* Don't return END_PC, which is past the end of the function. */
5016 return prologue_sal.pc;
5017 }
5018 \f
5019 /* Track MAIN */
5020
5021 /* Return the "main_info" object for the current program space. If
5022 the object has not yet been created, create it and fill in some
5023 default values. */
5024
5025 static struct main_info *
5026 get_main_info (void)
5027 {
5028 struct main_info *info = program_space_data (current_program_space,
5029 main_progspace_key);
5030
5031 if (info == NULL)
5032 {
5033 /* It may seem strange to store the main name in the progspace
5034 and also in whatever objfile happens to see a main name in
5035 its debug info. The reason for this is mainly historical:
5036 gdb returned "main" as the name even if no function named
5037 "main" was defined the program; and this approach lets us
5038 keep compatibility. */
5039 info = XCNEW (struct main_info);
5040 info->language_of_main = language_unknown;
5041 set_program_space_data (current_program_space, main_progspace_key,
5042 info);
5043 }
5044
5045 return info;
5046 }
5047
5048 /* A cleanup to destroy a struct main_info when a progspace is
5049 destroyed. */
5050
5051 static void
5052 main_info_cleanup (struct program_space *pspace, void *data)
5053 {
5054 struct main_info *info = data;
5055
5056 if (info != NULL)
5057 xfree (info->name_of_main);
5058 xfree (info);
5059 }
5060
5061 static void
5062 set_main_name (const char *name, enum language lang)
5063 {
5064 struct main_info *info = get_main_info ();
5065
5066 if (info->name_of_main != NULL)
5067 {
5068 xfree (info->name_of_main);
5069 info->name_of_main = NULL;
5070 info->language_of_main = language_unknown;
5071 }
5072 if (name != NULL)
5073 {
5074 info->name_of_main = xstrdup (name);
5075 info->language_of_main = lang;
5076 }
5077 }
5078
5079 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5080 accordingly. */
5081
5082 static void
5083 find_main_name (void)
5084 {
5085 const char *new_main_name;
5086 struct objfile *objfile;
5087
5088 /* First check the objfiles to see whether a debuginfo reader has
5089 picked up the appropriate main name. Historically the main name
5090 was found in a more or less random way; this approach instead
5091 relies on the order of objfile creation -- which still isn't
5092 guaranteed to get the correct answer, but is just probably more
5093 accurate. */
5094 ALL_OBJFILES (objfile)
5095 {
5096 if (objfile->per_bfd->name_of_main != NULL)
5097 {
5098 set_main_name (objfile->per_bfd->name_of_main,
5099 objfile->per_bfd->language_of_main);
5100 return;
5101 }
5102 }
5103
5104 /* Try to see if the main procedure is in Ada. */
5105 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5106 be to add a new method in the language vector, and call this
5107 method for each language until one of them returns a non-empty
5108 name. This would allow us to remove this hard-coded call to
5109 an Ada function. It is not clear that this is a better approach
5110 at this point, because all methods need to be written in a way
5111 such that false positives never be returned. For instance, it is
5112 important that a method does not return a wrong name for the main
5113 procedure if the main procedure is actually written in a different
5114 language. It is easy to guaranty this with Ada, since we use a
5115 special symbol generated only when the main in Ada to find the name
5116 of the main procedure. It is difficult however to see how this can
5117 be guarantied for languages such as C, for instance. This suggests
5118 that order of call for these methods becomes important, which means
5119 a more complicated approach. */
5120 new_main_name = ada_main_name ();
5121 if (new_main_name != NULL)
5122 {
5123 set_main_name (new_main_name, language_ada);
5124 return;
5125 }
5126
5127 new_main_name = d_main_name ();
5128 if (new_main_name != NULL)
5129 {
5130 set_main_name (new_main_name, language_d);
5131 return;
5132 }
5133
5134 new_main_name = go_main_name ();
5135 if (new_main_name != NULL)
5136 {
5137 set_main_name (new_main_name, language_go);
5138 return;
5139 }
5140
5141 new_main_name = pascal_main_name ();
5142 if (new_main_name != NULL)
5143 {
5144 set_main_name (new_main_name, language_pascal);
5145 return;
5146 }
5147
5148 /* The languages above didn't identify the name of the main procedure.
5149 Fallback to "main". */
5150 set_main_name ("main", language_unknown);
5151 }
5152
5153 char *
5154 main_name (void)
5155 {
5156 struct main_info *info = get_main_info ();
5157
5158 if (info->name_of_main == NULL)
5159 find_main_name ();
5160
5161 return info->name_of_main;
5162 }
5163
5164 /* Return the language of the main function. If it is not known,
5165 return language_unknown. */
5166
5167 enum language
5168 main_language (void)
5169 {
5170 struct main_info *info = get_main_info ();
5171
5172 if (info->name_of_main == NULL)
5173 find_main_name ();
5174
5175 return info->language_of_main;
5176 }
5177
5178 /* Handle ``executable_changed'' events for the symtab module. */
5179
5180 static void
5181 symtab_observer_executable_changed (void)
5182 {
5183 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5184 set_main_name (NULL, language_unknown);
5185 }
5186
5187 /* Return 1 if the supplied producer string matches the ARM RealView
5188 compiler (armcc). */
5189
5190 int
5191 producer_is_realview (const char *producer)
5192 {
5193 static const char *const arm_idents[] = {
5194 "ARM C Compiler, ADS",
5195 "Thumb C Compiler, ADS",
5196 "ARM C++ Compiler, ADS",
5197 "Thumb C++ Compiler, ADS",
5198 "ARM/Thumb C/C++ Compiler, RVCT",
5199 "ARM C/C++ Compiler, RVCT"
5200 };
5201 int i;
5202
5203 if (producer == NULL)
5204 return 0;
5205
5206 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5207 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5208 return 1;
5209
5210 return 0;
5211 }
5212
5213 \f
5214
5215 /* The next index to hand out in response to a registration request. */
5216
5217 static int next_aclass_value = LOC_FINAL_VALUE;
5218
5219 /* The maximum number of "aclass" registrations we support. This is
5220 constant for convenience. */
5221 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5222
5223 /* The objects representing the various "aclass" values. The elements
5224 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5225 elements are those registered at gdb initialization time. */
5226
5227 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5228
5229 /* The globally visible pointer. This is separate from 'symbol_impl'
5230 so that it can be const. */
5231
5232 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5233
5234 /* Make sure we saved enough room in struct symbol. */
5235
5236 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5237
5238 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5239 is the ops vector associated with this index. This returns the new
5240 index, which should be used as the aclass_index field for symbols
5241 of this type. */
5242
5243 int
5244 register_symbol_computed_impl (enum address_class aclass,
5245 const struct symbol_computed_ops *ops)
5246 {
5247 int result = next_aclass_value++;
5248
5249 gdb_assert (aclass == LOC_COMPUTED);
5250 gdb_assert (result < MAX_SYMBOL_IMPLS);
5251 symbol_impl[result].aclass = aclass;
5252 symbol_impl[result].ops_computed = ops;
5253
5254 /* Sanity check OPS. */
5255 gdb_assert (ops != NULL);
5256 gdb_assert (ops->tracepoint_var_ref != NULL);
5257 gdb_assert (ops->describe_location != NULL);
5258 gdb_assert (ops->read_needs_frame != NULL);
5259 gdb_assert (ops->read_variable != NULL);
5260
5261 return result;
5262 }
5263
5264 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5265 OPS is the ops vector associated with this index. This returns the
5266 new index, which should be used as the aclass_index field for symbols
5267 of this type. */
5268
5269 int
5270 register_symbol_block_impl (enum address_class aclass,
5271 const struct symbol_block_ops *ops)
5272 {
5273 int result = next_aclass_value++;
5274
5275 gdb_assert (aclass == LOC_BLOCK);
5276 gdb_assert (result < MAX_SYMBOL_IMPLS);
5277 symbol_impl[result].aclass = aclass;
5278 symbol_impl[result].ops_block = ops;
5279
5280 /* Sanity check OPS. */
5281 gdb_assert (ops != NULL);
5282 gdb_assert (ops->find_frame_base_location != NULL);
5283
5284 return result;
5285 }
5286
5287 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5288 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5289 this index. This returns the new index, which should be used as
5290 the aclass_index field for symbols of this type. */
5291
5292 int
5293 register_symbol_register_impl (enum address_class aclass,
5294 const struct symbol_register_ops *ops)
5295 {
5296 int result = next_aclass_value++;
5297
5298 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5299 gdb_assert (result < MAX_SYMBOL_IMPLS);
5300 symbol_impl[result].aclass = aclass;
5301 symbol_impl[result].ops_register = ops;
5302
5303 return result;
5304 }
5305
5306 /* Initialize elements of 'symbol_impl' for the constants in enum
5307 address_class. */
5308
5309 static void
5310 initialize_ordinary_address_classes (void)
5311 {
5312 int i;
5313
5314 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5315 symbol_impl[i].aclass = i;
5316 }
5317
5318 \f
5319
5320 /* Initialize the symbol SYM. */
5321
5322 void
5323 initialize_symbol (struct symbol *sym)
5324 {
5325 memset (sym, 0, sizeof (*sym));
5326 SYMBOL_SECTION (sym) = -1;
5327 }
5328
5329 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5330 obstack. */
5331
5332 struct symbol *
5333 allocate_symbol (struct objfile *objfile)
5334 {
5335 struct symbol *result;
5336
5337 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5338 SYMBOL_SECTION (result) = -1;
5339
5340 return result;
5341 }
5342
5343 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5344 obstack. */
5345
5346 struct template_symbol *
5347 allocate_template_symbol (struct objfile *objfile)
5348 {
5349 struct template_symbol *result;
5350
5351 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5352 SYMBOL_SECTION (&result->base) = -1;
5353
5354 return result;
5355 }
5356
5357 \f
5358
5359 void
5360 _initialize_symtab (void)
5361 {
5362 initialize_ordinary_address_classes ();
5363
5364 main_progspace_key
5365 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5366
5367 add_info ("variables", variables_info, _("\
5368 All global and static variable names, or those matching REGEXP."));
5369 if (dbx_commands)
5370 add_com ("whereis", class_info, variables_info, _("\
5371 All global and static variable names, or those matching REGEXP."));
5372
5373 add_info ("functions", functions_info,
5374 _("All function names, or those matching REGEXP."));
5375
5376 /* FIXME: This command has at least the following problems:
5377 1. It prints builtin types (in a very strange and confusing fashion).
5378 2. It doesn't print right, e.g. with
5379 typedef struct foo *FOO
5380 type_print prints "FOO" when we want to make it (in this situation)
5381 print "struct foo *".
5382 I also think "ptype" or "whatis" is more likely to be useful (but if
5383 there is much disagreement "info types" can be fixed). */
5384 add_info ("types", types_info,
5385 _("All type names, or those matching REGEXP."));
5386
5387 add_info ("sources", sources_info,
5388 _("Source files in the program."));
5389
5390 add_com ("rbreak", class_breakpoint, rbreak_command,
5391 _("Set a breakpoint for all functions matching REGEXP."));
5392
5393 if (xdb_commands)
5394 {
5395 add_com ("lf", class_info, sources_info,
5396 _("Source files in the program"));
5397 add_com ("lg", class_info, variables_info, _("\
5398 All global and static variable names, or those matching REGEXP."));
5399 }
5400
5401 add_setshow_enum_cmd ("multiple-symbols", no_class,
5402 multiple_symbols_modes, &multiple_symbols_mode,
5403 _("\
5404 Set the debugger behavior when more than one symbol are possible matches\n\
5405 in an expression."), _("\
5406 Show how the debugger handles ambiguities in expressions."), _("\
5407 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5408 NULL, NULL, &setlist, &showlist);
5409
5410 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5411 &basenames_may_differ, _("\
5412 Set whether a source file may have multiple base names."), _("\
5413 Show whether a source file may have multiple base names."), _("\
5414 (A \"base name\" is the name of a file with the directory part removed.\n\
5415 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5416 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5417 before comparing them. Canonicalization is an expensive operation,\n\
5418 but it allows the same file be known by more than one base name.\n\
5419 If not set (the default), all source files are assumed to have just\n\
5420 one base name, and gdb will do file name comparisons more efficiently."),
5421 NULL, NULL,
5422 &setlist, &showlist);
5423
5424 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5425 _("Set debugging of symbol table creation."),
5426 _("Show debugging of symbol table creation."), _("\
5427 When enabled (non-zero), debugging messages are printed when building\n\
5428 symbol tables. A value of 1 (one) normally provides enough information.\n\
5429 A value greater than 1 provides more verbose information."),
5430 NULL,
5431 NULL,
5432 &setdebuglist, &showdebuglist);
5433
5434 observer_attach_executable_changed (symtab_observer_executable_changed);
5435 }