]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
C++ keyword cleanliness, mostly auto-generated
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct symbol *lookup_symbol_aux (const char *name,
72 const struct block *block,
73 const domain_enum domain,
74 enum language language,
75 struct field_of_this_result *);
76
77 static
78 struct symbol *lookup_local_symbol (const char *name,
79 const struct block *block,
80 const domain_enum domain,
81 enum language language);
82
83 static struct symbol *
84 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
85 const char *name, const domain_enum domain);
86
87 extern initialize_file_ftype _initialize_symtab;
88
89 /* Program space key for finding name and language of "main". */
90
91 static const struct program_space_data *main_progspace_key;
92
93 /* Type of the data stored on the program space. */
94
95 struct main_info
96 {
97 /* Name of "main". */
98
99 char *name_of_main;
100
101 /* Language of "main". */
102
103 enum language language_of_main;
104 };
105
106 /* Program space key for finding its symbol cache. */
107
108 static const struct program_space_data *symbol_cache_key;
109
110 /* The default symbol cache size.
111 There is no extra cpu cost for large N (except when flushing the cache,
112 which is rare). The value here is just a first attempt. A better default
113 value may be higher or lower. A prime number can make up for a bad hash
114 computation, so that's why the number is what it is. */
115 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
116
117 /* The maximum symbol cache size.
118 There's no method to the decision of what value to use here, other than
119 there's no point in allowing a user typo to make gdb consume all memory. */
120 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
121
122 /* symbol_cache_lookup returns this if a previous lookup failed to find the
123 symbol in any objfile. */
124 #define SYMBOL_LOOKUP_FAILED ((struct symbol *) 1)
125
126 /* Recording lookups that don't find the symbol is just as important, if not
127 more so, than recording found symbols. */
128
129 enum symbol_cache_slot_state
130 {
131 SYMBOL_SLOT_UNUSED,
132 SYMBOL_SLOT_NOT_FOUND,
133 SYMBOL_SLOT_FOUND
134 };
135
136 /* Symbols don't specify global vs static block.
137 So keep them in separate caches. */
138
139 struct block_symbol_cache
140 {
141 unsigned int hits;
142 unsigned int misses;
143 unsigned int collisions;
144
145 /* SYMBOLS is a variable length array of this size.
146 One can imagine that in general one cache (global/static) should be a
147 fraction of the size of the other, but there's no data at the moment
148 on which to decide. */
149 unsigned int size;
150
151 struct symbol_cache_slot
152 {
153 enum symbol_cache_slot_state state;
154
155 /* The objfile that was current when the symbol was looked up.
156 This is only needed for global blocks, but for simplicity's sake
157 we allocate the space for both. If data shows the extra space used
158 for static blocks is a problem, we can split things up then.
159
160 Global blocks need cache lookup to include the objfile context because
161 we need to account for gdbarch_iterate_over_objfiles_in_search_order
162 which can traverse objfiles in, effectively, any order, depending on
163 the current objfile, thus affecting which symbol is found. Normally,
164 only the current objfile is searched first, and then the rest are
165 searched in recorded order; but putting cache lookup inside
166 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
167 Instead we just make the current objfile part of the context of
168 cache lookup. This means we can record the same symbol multiple times,
169 each with a different "current objfile" that was in effect when the
170 lookup was saved in the cache, but cache space is pretty cheap. */
171 const struct objfile *objfile_context;
172
173 union
174 {
175 struct symbol *found;
176 struct
177 {
178 char *name;
179 domain_enum domain;
180 } not_found;
181 } value;
182 } symbols[1];
183 };
184
185 /* The symbol cache.
186
187 Searching for symbols in the static and global blocks over multiple objfiles
188 again and again can be slow, as can searching very big objfiles. This is a
189 simple cache to improve symbol lookup performance, which is critical to
190 overall gdb performance.
191
192 Symbols are hashed on the name, its domain, and block.
193 They are also hashed on their objfile for objfile-specific lookups. */
194
195 struct symbol_cache
196 {
197 struct block_symbol_cache *global_symbols;
198 struct block_symbol_cache *static_symbols;
199 };
200
201 /* When non-zero, print debugging messages related to symtab creation. */
202 unsigned int symtab_create_debug = 0;
203
204 /* When non-zero, print debugging messages related to symbol lookup. */
205 unsigned int symbol_lookup_debug = 0;
206
207 /* The size of the cache is staged here. */
208 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
209
210 /* The current value of the symbol cache size.
211 This is saved so that if the user enters a value too big we can restore
212 the original value from here. */
213 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
214
215 /* Non-zero if a file may be known by two different basenames.
216 This is the uncommon case, and significantly slows down gdb.
217 Default set to "off" to not slow down the common case. */
218 int basenames_may_differ = 0;
219
220 /* Allow the user to configure the debugger behavior with respect
221 to multiple-choice menus when more than one symbol matches during
222 a symbol lookup. */
223
224 const char multiple_symbols_ask[] = "ask";
225 const char multiple_symbols_all[] = "all";
226 const char multiple_symbols_cancel[] = "cancel";
227 static const char *const multiple_symbols_modes[] =
228 {
229 multiple_symbols_ask,
230 multiple_symbols_all,
231 multiple_symbols_cancel,
232 NULL
233 };
234 static const char *multiple_symbols_mode = multiple_symbols_all;
235
236 /* Read-only accessor to AUTO_SELECT_MODE. */
237
238 const char *
239 multiple_symbols_select_mode (void)
240 {
241 return multiple_symbols_mode;
242 }
243
244 /* Block in which the most recently searched-for symbol was found.
245 Might be better to make this a parameter to lookup_symbol and
246 value_of_this. */
247
248 const struct block *block_found;
249
250 /* Return the name of a domain_enum. */
251
252 const char *
253 domain_name (domain_enum e)
254 {
255 switch (e)
256 {
257 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
258 case VAR_DOMAIN: return "VAR_DOMAIN";
259 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
260 case MODULE_DOMAIN: return "MODULE_DOMAIN";
261 case LABEL_DOMAIN: return "LABEL_DOMAIN";
262 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
263 default: gdb_assert_not_reached ("bad domain_enum");
264 }
265 }
266
267 /* Return the name of a search_domain . */
268
269 const char *
270 search_domain_name (enum search_domain e)
271 {
272 switch (e)
273 {
274 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
275 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
276 case TYPES_DOMAIN: return "TYPES_DOMAIN";
277 case ALL_DOMAIN: return "ALL_DOMAIN";
278 default: gdb_assert_not_reached ("bad search_domain");
279 }
280 }
281
282 /* See symtab.h. */
283
284 struct symtab *
285 compunit_primary_filetab (const struct compunit_symtab *cust)
286 {
287 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
288
289 /* The primary file symtab is the first one in the list. */
290 return COMPUNIT_FILETABS (cust);
291 }
292
293 /* See symtab.h. */
294
295 enum language
296 compunit_language (const struct compunit_symtab *cust)
297 {
298 struct symtab *symtab = compunit_primary_filetab (cust);
299
300 /* The language of the compunit symtab is the language of its primary
301 source file. */
302 return SYMTAB_LANGUAGE (symtab);
303 }
304
305 /* See whether FILENAME matches SEARCH_NAME using the rule that we
306 advertise to the user. (The manual's description of linespecs
307 describes what we advertise). Returns true if they match, false
308 otherwise. */
309
310 int
311 compare_filenames_for_search (const char *filename, const char *search_name)
312 {
313 int len = strlen (filename);
314 size_t search_len = strlen (search_name);
315
316 if (len < search_len)
317 return 0;
318
319 /* The tail of FILENAME must match. */
320 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
321 return 0;
322
323 /* Either the names must completely match, or the character
324 preceding the trailing SEARCH_NAME segment of FILENAME must be a
325 directory separator.
326
327 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
328 cannot match FILENAME "/path//dir/file.c" - as user has requested
329 absolute path. The sama applies for "c:\file.c" possibly
330 incorrectly hypothetically matching "d:\dir\c:\file.c".
331
332 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
333 compatible with SEARCH_NAME "file.c". In such case a compiler had
334 to put the "c:file.c" name into debug info. Such compatibility
335 works only on GDB built for DOS host. */
336 return (len == search_len
337 || (!IS_ABSOLUTE_PATH (search_name)
338 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
339 || (HAS_DRIVE_SPEC (filename)
340 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
341 }
342
343 /* Check for a symtab of a specific name by searching some symtabs.
344 This is a helper function for callbacks of iterate_over_symtabs.
345
346 If NAME is not absolute, then REAL_PATH is NULL
347 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
348
349 The return value, NAME, REAL_PATH, CALLBACK, and DATA
350 are identical to the `map_symtabs_matching_filename' method of
351 quick_symbol_functions.
352
353 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
354 Each symtab within the specified compunit symtab is also searched.
355 AFTER_LAST is one past the last compunit symtab to search; NULL means to
356 search until the end of the list. */
357
358 int
359 iterate_over_some_symtabs (const char *name,
360 const char *real_path,
361 int (*callback) (struct symtab *symtab,
362 void *data),
363 void *data,
364 struct compunit_symtab *first,
365 struct compunit_symtab *after_last)
366 {
367 struct compunit_symtab *cust;
368 struct symtab *s;
369 const char* base_name = lbasename (name);
370
371 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
372 {
373 ALL_COMPUNIT_FILETABS (cust, s)
374 {
375 if (compare_filenames_for_search (s->filename, name))
376 {
377 if (callback (s, data))
378 return 1;
379 continue;
380 }
381
382 /* Before we invoke realpath, which can get expensive when many
383 files are involved, do a quick comparison of the basenames. */
384 if (! basenames_may_differ
385 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
386 continue;
387
388 if (compare_filenames_for_search (symtab_to_fullname (s), name))
389 {
390 if (callback (s, data))
391 return 1;
392 continue;
393 }
394
395 /* If the user gave us an absolute path, try to find the file in
396 this symtab and use its absolute path. */
397 if (real_path != NULL)
398 {
399 const char *fullname = symtab_to_fullname (s);
400
401 gdb_assert (IS_ABSOLUTE_PATH (real_path));
402 gdb_assert (IS_ABSOLUTE_PATH (name));
403 if (FILENAME_CMP (real_path, fullname) == 0)
404 {
405 if (callback (s, data))
406 return 1;
407 continue;
408 }
409 }
410 }
411 }
412
413 return 0;
414 }
415
416 /* Check for a symtab of a specific name; first in symtabs, then in
417 psymtabs. *If* there is no '/' in the name, a match after a '/'
418 in the symtab filename will also work.
419
420 Calls CALLBACK with each symtab that is found and with the supplied
421 DATA. If CALLBACK returns true, the search stops. */
422
423 void
424 iterate_over_symtabs (const char *name,
425 int (*callback) (struct symtab *symtab,
426 void *data),
427 void *data)
428 {
429 struct objfile *objfile;
430 char *real_path = NULL;
431 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
432
433 /* Here we are interested in canonicalizing an absolute path, not
434 absolutizing a relative path. */
435 if (IS_ABSOLUTE_PATH (name))
436 {
437 real_path = gdb_realpath (name);
438 make_cleanup (xfree, real_path);
439 gdb_assert (IS_ABSOLUTE_PATH (real_path));
440 }
441
442 ALL_OBJFILES (objfile)
443 {
444 if (iterate_over_some_symtabs (name, real_path, callback, data,
445 objfile->compunit_symtabs, NULL))
446 {
447 do_cleanups (cleanups);
448 return;
449 }
450 }
451
452 /* Same search rules as above apply here, but now we look thru the
453 psymtabs. */
454
455 ALL_OBJFILES (objfile)
456 {
457 if (objfile->sf
458 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
459 name,
460 real_path,
461 callback,
462 data))
463 {
464 do_cleanups (cleanups);
465 return;
466 }
467 }
468
469 do_cleanups (cleanups);
470 }
471
472 /* The callback function used by lookup_symtab. */
473
474 static int
475 lookup_symtab_callback (struct symtab *symtab, void *data)
476 {
477 struct symtab **result_ptr = data;
478
479 *result_ptr = symtab;
480 return 1;
481 }
482
483 /* A wrapper for iterate_over_symtabs that returns the first matching
484 symtab, or NULL. */
485
486 struct symtab *
487 lookup_symtab (const char *name)
488 {
489 struct symtab *result = NULL;
490
491 iterate_over_symtabs (name, lookup_symtab_callback, &result);
492 return result;
493 }
494
495 \f
496 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
497 full method name, which consist of the class name (from T), the unadorned
498 method name from METHOD_ID, and the signature for the specific overload,
499 specified by SIGNATURE_ID. Note that this function is g++ specific. */
500
501 char *
502 gdb_mangle_name (struct type *type, int method_id, int signature_id)
503 {
504 int mangled_name_len;
505 char *mangled_name;
506 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
507 struct fn_field *method = &f[signature_id];
508 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
509 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
510 const char *newname = type_name_no_tag (type);
511
512 /* Does the form of physname indicate that it is the full mangled name
513 of a constructor (not just the args)? */
514 int is_full_physname_constructor;
515
516 int is_constructor;
517 int is_destructor = is_destructor_name (physname);
518 /* Need a new type prefix. */
519 char *const_prefix = method->is_const ? "C" : "";
520 char *volatile_prefix = method->is_volatile ? "V" : "";
521 char buf[20];
522 int len = (newname == NULL ? 0 : strlen (newname));
523
524 /* Nothing to do if physname already contains a fully mangled v3 abi name
525 or an operator name. */
526 if ((physname[0] == '_' && physname[1] == 'Z')
527 || is_operator_name (field_name))
528 return xstrdup (physname);
529
530 is_full_physname_constructor = is_constructor_name (physname);
531
532 is_constructor = is_full_physname_constructor
533 || (newname && strcmp (field_name, newname) == 0);
534
535 if (!is_destructor)
536 is_destructor = (strncmp (physname, "__dt", 4) == 0);
537
538 if (is_destructor || is_full_physname_constructor)
539 {
540 mangled_name = (char *) xmalloc (strlen (physname) + 1);
541 strcpy (mangled_name, physname);
542 return mangled_name;
543 }
544
545 if (len == 0)
546 {
547 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
548 }
549 else if (physname[0] == 't' || physname[0] == 'Q')
550 {
551 /* The physname for template and qualified methods already includes
552 the class name. */
553 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
554 newname = NULL;
555 len = 0;
556 }
557 else
558 {
559 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
560 volatile_prefix, len);
561 }
562 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
563 + strlen (buf) + len + strlen (physname) + 1);
564
565 mangled_name = (char *) xmalloc (mangled_name_len);
566 if (is_constructor)
567 mangled_name[0] = '\0';
568 else
569 strcpy (mangled_name, field_name);
570
571 strcat (mangled_name, buf);
572 /* If the class doesn't have a name, i.e. newname NULL, then we just
573 mangle it using 0 for the length of the class. Thus it gets mangled
574 as something starting with `::' rather than `classname::'. */
575 if (newname != NULL)
576 strcat (mangled_name, newname);
577
578 strcat (mangled_name, physname);
579 return (mangled_name);
580 }
581
582 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
583 correctly allocated. */
584
585 void
586 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
587 const char *name,
588 struct obstack *obstack)
589 {
590 if (gsymbol->language == language_ada)
591 {
592 if (name == NULL)
593 {
594 gsymbol->ada_mangled = 0;
595 gsymbol->language_specific.obstack = obstack;
596 }
597 else
598 {
599 gsymbol->ada_mangled = 1;
600 gsymbol->language_specific.mangled_lang.demangled_name = name;
601 }
602 }
603 else
604 gsymbol->language_specific.mangled_lang.demangled_name = name;
605 }
606
607 /* Return the demangled name of GSYMBOL. */
608
609 const char *
610 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
611 {
612 if (gsymbol->language == language_ada)
613 {
614 if (!gsymbol->ada_mangled)
615 return NULL;
616 /* Fall through. */
617 }
618
619 return gsymbol->language_specific.mangled_lang.demangled_name;
620 }
621
622 \f
623 /* Initialize the language dependent portion of a symbol
624 depending upon the language for the symbol. */
625
626 void
627 symbol_set_language (struct general_symbol_info *gsymbol,
628 enum language language,
629 struct obstack *obstack)
630 {
631 gsymbol->language = language;
632 if (gsymbol->language == language_cplus
633 || gsymbol->language == language_d
634 || gsymbol->language == language_go
635 || gsymbol->language == language_java
636 || gsymbol->language == language_objc
637 || gsymbol->language == language_fortran)
638 {
639 symbol_set_demangled_name (gsymbol, NULL, obstack);
640 }
641 else if (gsymbol->language == language_ada)
642 {
643 gdb_assert (gsymbol->ada_mangled == 0);
644 gsymbol->language_specific.obstack = obstack;
645 }
646 else
647 {
648 memset (&gsymbol->language_specific, 0,
649 sizeof (gsymbol->language_specific));
650 }
651 }
652
653 /* Functions to initialize a symbol's mangled name. */
654
655 /* Objects of this type are stored in the demangled name hash table. */
656 struct demangled_name_entry
657 {
658 const char *mangled;
659 char demangled[1];
660 };
661
662 /* Hash function for the demangled name hash. */
663
664 static hashval_t
665 hash_demangled_name_entry (const void *data)
666 {
667 const struct demangled_name_entry *e = data;
668
669 return htab_hash_string (e->mangled);
670 }
671
672 /* Equality function for the demangled name hash. */
673
674 static int
675 eq_demangled_name_entry (const void *a, const void *b)
676 {
677 const struct demangled_name_entry *da = a;
678 const struct demangled_name_entry *db = b;
679
680 return strcmp (da->mangled, db->mangled) == 0;
681 }
682
683 /* Create the hash table used for demangled names. Each hash entry is
684 a pair of strings; one for the mangled name and one for the demangled
685 name. The entry is hashed via just the mangled name. */
686
687 static void
688 create_demangled_names_hash (struct objfile *objfile)
689 {
690 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
691 The hash table code will round this up to the next prime number.
692 Choosing a much larger table size wastes memory, and saves only about
693 1% in symbol reading. */
694
695 objfile->per_bfd->demangled_names_hash = htab_create_alloc
696 (256, hash_demangled_name_entry, eq_demangled_name_entry,
697 NULL, xcalloc, xfree);
698 }
699
700 /* Try to determine the demangled name for a symbol, based on the
701 language of that symbol. If the language is set to language_auto,
702 it will attempt to find any demangling algorithm that works and
703 then set the language appropriately. The returned name is allocated
704 by the demangler and should be xfree'd. */
705
706 static char *
707 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
708 const char *mangled)
709 {
710 char *demangled = NULL;
711
712 if (gsymbol->language == language_unknown)
713 gsymbol->language = language_auto;
714
715 if (gsymbol->language == language_objc
716 || gsymbol->language == language_auto)
717 {
718 demangled =
719 objc_demangle (mangled, 0);
720 if (demangled != NULL)
721 {
722 gsymbol->language = language_objc;
723 return demangled;
724 }
725 }
726 if (gsymbol->language == language_cplus
727 || gsymbol->language == language_auto)
728 {
729 demangled =
730 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
731 if (demangled != NULL)
732 {
733 gsymbol->language = language_cplus;
734 return demangled;
735 }
736 }
737 if (gsymbol->language == language_java)
738 {
739 demangled =
740 gdb_demangle (mangled,
741 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
742 if (demangled != NULL)
743 {
744 gsymbol->language = language_java;
745 return demangled;
746 }
747 }
748 if (gsymbol->language == language_d
749 || gsymbol->language == language_auto)
750 {
751 demangled = d_demangle(mangled, 0);
752 if (demangled != NULL)
753 {
754 gsymbol->language = language_d;
755 return demangled;
756 }
757 }
758 /* FIXME(dje): Continually adding languages here is clumsy.
759 Better to just call la_demangle if !auto, and if auto then call
760 a utility routine that tries successive languages in turn and reports
761 which one it finds. I realize the la_demangle options may be different
762 for different languages but there's already a FIXME for that. */
763 if (gsymbol->language == language_go
764 || gsymbol->language == language_auto)
765 {
766 demangled = go_demangle (mangled, 0);
767 if (demangled != NULL)
768 {
769 gsymbol->language = language_go;
770 return demangled;
771 }
772 }
773
774 /* We could support `gsymbol->language == language_fortran' here to provide
775 module namespaces also for inferiors with only minimal symbol table (ELF
776 symbols). Just the mangling standard is not standardized across compilers
777 and there is no DW_AT_producer available for inferiors with only the ELF
778 symbols to check the mangling kind. */
779
780 /* Check for Ada symbols last. See comment below explaining why. */
781
782 if (gsymbol->language == language_auto)
783 {
784 const char *demangled = ada_decode (mangled);
785
786 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
787 {
788 /* Set the gsymbol language to Ada, but still return NULL.
789 Two reasons for that:
790
791 1. For Ada, we prefer computing the symbol's decoded name
792 on the fly rather than pre-compute it, in order to save
793 memory (Ada projects are typically very large).
794
795 2. There are some areas in the definition of the GNAT
796 encoding where, with a bit of bad luck, we might be able
797 to decode a non-Ada symbol, generating an incorrect
798 demangled name (Eg: names ending with "TB" for instance
799 are identified as task bodies and so stripped from
800 the decoded name returned).
801
802 Returning NULL, here, helps us get a little bit of
803 the best of both worlds. Because we're last, we should
804 not affect any of the other languages that were able to
805 demangle the symbol before us; we get to correctly tag
806 Ada symbols as such; and even if we incorrectly tagged
807 a non-Ada symbol, which should be rare, any routing
808 through the Ada language should be transparent (Ada
809 tries to behave much like C/C++ with non-Ada symbols). */
810 gsymbol->language = language_ada;
811 return NULL;
812 }
813 }
814
815 return NULL;
816 }
817
818 /* Set both the mangled and demangled (if any) names for GSYMBOL based
819 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
820 objfile's obstack; but if COPY_NAME is 0 and if NAME is
821 NUL-terminated, then this function assumes that NAME is already
822 correctly saved (either permanently or with a lifetime tied to the
823 objfile), and it will not be copied.
824
825 The hash table corresponding to OBJFILE is used, and the memory
826 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
827 so the pointer can be discarded after calling this function. */
828
829 /* We have to be careful when dealing with Java names: when we run
830 into a Java minimal symbol, we don't know it's a Java symbol, so it
831 gets demangled as a C++ name. This is unfortunate, but there's not
832 much we can do about it: but when demangling partial symbols and
833 regular symbols, we'd better not reuse the wrong demangled name.
834 (See PR gdb/1039.) We solve this by putting a distinctive prefix
835 on Java names when storing them in the hash table. */
836
837 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
838 don't mind the Java prefix so much: different languages have
839 different demangling requirements, so it's only natural that we
840 need to keep language data around in our demangling cache. But
841 it's not good that the minimal symbol has the wrong demangled name.
842 Unfortunately, I can't think of any easy solution to that
843 problem. */
844
845 #define JAVA_PREFIX "##JAVA$$"
846 #define JAVA_PREFIX_LEN 8
847
848 void
849 symbol_set_names (struct general_symbol_info *gsymbol,
850 const char *linkage_name, int len, int copy_name,
851 struct objfile *objfile)
852 {
853 struct demangled_name_entry **slot;
854 /* A 0-terminated copy of the linkage name. */
855 const char *linkage_name_copy;
856 /* A copy of the linkage name that might have a special Java prefix
857 added to it, for use when looking names up in the hash table. */
858 const char *lookup_name;
859 /* The length of lookup_name. */
860 int lookup_len;
861 struct demangled_name_entry entry;
862 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
863
864 if (gsymbol->language == language_ada)
865 {
866 /* In Ada, we do the symbol lookups using the mangled name, so
867 we can save some space by not storing the demangled name.
868
869 As a side note, we have also observed some overlap between
870 the C++ mangling and Ada mangling, similarly to what has
871 been observed with Java. Because we don't store the demangled
872 name with the symbol, we don't need to use the same trick
873 as Java. */
874 if (!copy_name)
875 gsymbol->name = linkage_name;
876 else
877 {
878 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
879
880 memcpy (name, linkage_name, len);
881 name[len] = '\0';
882 gsymbol->name = name;
883 }
884 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
885
886 return;
887 }
888
889 if (per_bfd->demangled_names_hash == NULL)
890 create_demangled_names_hash (objfile);
891
892 /* The stabs reader generally provides names that are not
893 NUL-terminated; most of the other readers don't do this, so we
894 can just use the given copy, unless we're in the Java case. */
895 if (gsymbol->language == language_java)
896 {
897 char *alloc_name;
898
899 lookup_len = len + JAVA_PREFIX_LEN;
900 alloc_name = alloca (lookup_len + 1);
901 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
902 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
903 alloc_name[lookup_len] = '\0';
904
905 lookup_name = alloc_name;
906 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
907 }
908 else if (linkage_name[len] != '\0')
909 {
910 char *alloc_name;
911
912 lookup_len = len;
913 alloc_name = alloca (lookup_len + 1);
914 memcpy (alloc_name, linkage_name, len);
915 alloc_name[lookup_len] = '\0';
916
917 lookup_name = alloc_name;
918 linkage_name_copy = alloc_name;
919 }
920 else
921 {
922 lookup_len = len;
923 lookup_name = linkage_name;
924 linkage_name_copy = linkage_name;
925 }
926
927 entry.mangled = lookup_name;
928 slot = ((struct demangled_name_entry **)
929 htab_find_slot (per_bfd->demangled_names_hash,
930 &entry, INSERT));
931
932 /* If this name is not in the hash table, add it. */
933 if (*slot == NULL
934 /* A C version of the symbol may have already snuck into the table.
935 This happens to, e.g., main.init (__go_init_main). Cope. */
936 || (gsymbol->language == language_go
937 && (*slot)->demangled[0] == '\0'))
938 {
939 char *demangled_name = symbol_find_demangled_name (gsymbol,
940 linkage_name_copy);
941 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
942
943 /* Suppose we have demangled_name==NULL, copy_name==0, and
944 lookup_name==linkage_name. In this case, we already have the
945 mangled name saved, and we don't have a demangled name. So,
946 you might think we could save a little space by not recording
947 this in the hash table at all.
948
949 It turns out that it is actually important to still save such
950 an entry in the hash table, because storing this name gives
951 us better bcache hit rates for partial symbols. */
952 if (!copy_name && lookup_name == linkage_name)
953 {
954 *slot = obstack_alloc (&per_bfd->storage_obstack,
955 offsetof (struct demangled_name_entry,
956 demangled)
957 + demangled_len + 1);
958 (*slot)->mangled = lookup_name;
959 }
960 else
961 {
962 char *mangled_ptr;
963
964 /* If we must copy the mangled name, put it directly after
965 the demangled name so we can have a single
966 allocation. */
967 *slot = obstack_alloc (&per_bfd->storage_obstack,
968 offsetof (struct demangled_name_entry,
969 demangled)
970 + lookup_len + demangled_len + 2);
971 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
972 strcpy (mangled_ptr, lookup_name);
973 (*slot)->mangled = mangled_ptr;
974 }
975
976 if (demangled_name != NULL)
977 {
978 strcpy ((*slot)->demangled, demangled_name);
979 xfree (demangled_name);
980 }
981 else
982 (*slot)->demangled[0] = '\0';
983 }
984
985 gsymbol->name = (*slot)->mangled + lookup_len - len;
986 if ((*slot)->demangled[0] != '\0')
987 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
988 &per_bfd->storage_obstack);
989 else
990 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
991 }
992
993 /* Return the source code name of a symbol. In languages where
994 demangling is necessary, this is the demangled name. */
995
996 const char *
997 symbol_natural_name (const struct general_symbol_info *gsymbol)
998 {
999 switch (gsymbol->language)
1000 {
1001 case language_cplus:
1002 case language_d:
1003 case language_go:
1004 case language_java:
1005 case language_objc:
1006 case language_fortran:
1007 if (symbol_get_demangled_name (gsymbol) != NULL)
1008 return symbol_get_demangled_name (gsymbol);
1009 break;
1010 case language_ada:
1011 return ada_decode_symbol (gsymbol);
1012 default:
1013 break;
1014 }
1015 return gsymbol->name;
1016 }
1017
1018 /* Return the demangled name for a symbol based on the language for
1019 that symbol. If no demangled name exists, return NULL. */
1020
1021 const char *
1022 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1023 {
1024 const char *dem_name = NULL;
1025
1026 switch (gsymbol->language)
1027 {
1028 case language_cplus:
1029 case language_d:
1030 case language_go:
1031 case language_java:
1032 case language_objc:
1033 case language_fortran:
1034 dem_name = symbol_get_demangled_name (gsymbol);
1035 break;
1036 case language_ada:
1037 dem_name = ada_decode_symbol (gsymbol);
1038 break;
1039 default:
1040 break;
1041 }
1042 return dem_name;
1043 }
1044
1045 /* Return the search name of a symbol---generally the demangled or
1046 linkage name of the symbol, depending on how it will be searched for.
1047 If there is no distinct demangled name, then returns the same value
1048 (same pointer) as SYMBOL_LINKAGE_NAME. */
1049
1050 const char *
1051 symbol_search_name (const struct general_symbol_info *gsymbol)
1052 {
1053 if (gsymbol->language == language_ada)
1054 return gsymbol->name;
1055 else
1056 return symbol_natural_name (gsymbol);
1057 }
1058
1059 /* Initialize the structure fields to zero values. */
1060
1061 void
1062 init_sal (struct symtab_and_line *sal)
1063 {
1064 memset (sal, 0, sizeof (*sal));
1065 }
1066 \f
1067
1068 /* Return 1 if the two sections are the same, or if they could
1069 plausibly be copies of each other, one in an original object
1070 file and another in a separated debug file. */
1071
1072 int
1073 matching_obj_sections (struct obj_section *obj_first,
1074 struct obj_section *obj_second)
1075 {
1076 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1077 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1078 struct objfile *obj;
1079
1080 /* If they're the same section, then they match. */
1081 if (first == second)
1082 return 1;
1083
1084 /* If either is NULL, give up. */
1085 if (first == NULL || second == NULL)
1086 return 0;
1087
1088 /* This doesn't apply to absolute symbols. */
1089 if (first->owner == NULL || second->owner == NULL)
1090 return 0;
1091
1092 /* If they're in the same object file, they must be different sections. */
1093 if (first->owner == second->owner)
1094 return 0;
1095
1096 /* Check whether the two sections are potentially corresponding. They must
1097 have the same size, address, and name. We can't compare section indexes,
1098 which would be more reliable, because some sections may have been
1099 stripped. */
1100 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1101 return 0;
1102
1103 /* In-memory addresses may start at a different offset, relativize them. */
1104 if (bfd_get_section_vma (first->owner, first)
1105 - bfd_get_start_address (first->owner)
1106 != bfd_get_section_vma (second->owner, second)
1107 - bfd_get_start_address (second->owner))
1108 return 0;
1109
1110 if (bfd_get_section_name (first->owner, first) == NULL
1111 || bfd_get_section_name (second->owner, second) == NULL
1112 || strcmp (bfd_get_section_name (first->owner, first),
1113 bfd_get_section_name (second->owner, second)) != 0)
1114 return 0;
1115
1116 /* Otherwise check that they are in corresponding objfiles. */
1117
1118 ALL_OBJFILES (obj)
1119 if (obj->obfd == first->owner)
1120 break;
1121 gdb_assert (obj != NULL);
1122
1123 if (obj->separate_debug_objfile != NULL
1124 && obj->separate_debug_objfile->obfd == second->owner)
1125 return 1;
1126 if (obj->separate_debug_objfile_backlink != NULL
1127 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1128 return 1;
1129
1130 return 0;
1131 }
1132
1133 /* See symtab.h. */
1134
1135 void
1136 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1137 {
1138 struct objfile *objfile;
1139 struct bound_minimal_symbol msymbol;
1140
1141 /* If we know that this is not a text address, return failure. This is
1142 necessary because we loop based on texthigh and textlow, which do
1143 not include the data ranges. */
1144 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1145 if (msymbol.minsym
1146 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1147 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1148 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1149 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1150 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1151 return;
1152
1153 ALL_OBJFILES (objfile)
1154 {
1155 struct compunit_symtab *cust = NULL;
1156
1157 if (objfile->sf)
1158 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1159 pc, section, 0);
1160 if (cust)
1161 return;
1162 }
1163 }
1164 \f
1165 /* Hash function for the symbol cache. */
1166
1167 static unsigned int
1168 hash_symbol_entry (const struct objfile *objfile_context,
1169 const char *name, domain_enum domain)
1170 {
1171 unsigned int hash = (uintptr_t) objfile_context;
1172
1173 if (name != NULL)
1174 hash += htab_hash_string (name);
1175
1176 hash += domain;
1177
1178 return hash;
1179 }
1180
1181 /* Equality function for the symbol cache. */
1182
1183 static int
1184 eq_symbol_entry (const struct symbol_cache_slot *slot,
1185 const struct objfile *objfile_context,
1186 const char *name, domain_enum domain)
1187 {
1188 const char *slot_name;
1189 domain_enum slot_domain;
1190
1191 if (slot->state == SYMBOL_SLOT_UNUSED)
1192 return 0;
1193
1194 if (slot->objfile_context != objfile_context)
1195 return 0;
1196
1197 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1198 {
1199 slot_name = slot->value.not_found.name;
1200 slot_domain = slot->value.not_found.domain;
1201 }
1202 else
1203 {
1204 slot_name = SYMBOL_SEARCH_NAME (slot->value.found);
1205 slot_domain = SYMBOL_DOMAIN (slot->value.found);
1206 }
1207
1208 /* NULL names match. */
1209 if (slot_name == NULL && name == NULL)
1210 {
1211 /* But there's no point in calling symbol_matches_domain in the
1212 SYMBOL_SLOT_FOUND case. */
1213 if (slot_domain != domain)
1214 return 0;
1215 }
1216 else if (slot_name != NULL && name != NULL)
1217 {
1218 /* It's important that we use the same comparison that was done the
1219 first time through. If the slot records a found symbol, then this
1220 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1221 It also means using symbol_matches_domain for found symbols.
1222 See block.c.
1223
1224 If the slot records a not-found symbol, then require a precise match.
1225 We could still be lax with whitespace like strcmp_iw though. */
1226
1227 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1228 {
1229 if (strcmp (slot_name, name) != 0)
1230 return 0;
1231 if (slot_domain != domain)
1232 return 0;
1233 }
1234 else
1235 {
1236 struct symbol *sym = slot->value.found;
1237
1238 if (strcmp_iw (slot_name, name) != 0)
1239 return 0;
1240 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1241 slot_domain, domain))
1242 return 0;
1243 }
1244 }
1245 else
1246 {
1247 /* Only one name is NULL. */
1248 return 0;
1249 }
1250
1251 return 1;
1252 }
1253
1254 /* Given a cache of size SIZE, return the size of the struct (with variable
1255 length array) in bytes. */
1256
1257 static size_t
1258 symbol_cache_byte_size (unsigned int size)
1259 {
1260 return (sizeof (struct block_symbol_cache)
1261 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1262 }
1263
1264 /* Resize CACHE. */
1265
1266 static void
1267 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1268 {
1269 /* If there's no change in size, don't do anything.
1270 All caches have the same size, so we can just compare with the size
1271 of the global symbols cache. */
1272 if ((cache->global_symbols != NULL
1273 && cache->global_symbols->size == new_size)
1274 || (cache->global_symbols == NULL
1275 && new_size == 0))
1276 return;
1277
1278 xfree (cache->global_symbols);
1279 xfree (cache->static_symbols);
1280
1281 if (new_size == 0)
1282 {
1283 cache->global_symbols = NULL;
1284 cache->static_symbols = NULL;
1285 }
1286 else
1287 {
1288 size_t total_size = symbol_cache_byte_size (new_size);
1289
1290 cache->global_symbols = xcalloc (1, total_size);
1291 cache->static_symbols = xcalloc (1, total_size);
1292 cache->global_symbols->size = new_size;
1293 cache->static_symbols->size = new_size;
1294 }
1295 }
1296
1297 /* Make a symbol cache of size SIZE. */
1298
1299 static struct symbol_cache *
1300 make_symbol_cache (unsigned int size)
1301 {
1302 struct symbol_cache *cache;
1303
1304 cache = XCNEW (struct symbol_cache);
1305 resize_symbol_cache (cache, symbol_cache_size);
1306 return cache;
1307 }
1308
1309 /* Free the space used by CACHE. */
1310
1311 static void
1312 free_symbol_cache (struct symbol_cache *cache)
1313 {
1314 xfree (cache->global_symbols);
1315 xfree (cache->static_symbols);
1316 xfree (cache);
1317 }
1318
1319 /* Return the symbol cache of PSPACE.
1320 Create one if it doesn't exist yet. */
1321
1322 static struct symbol_cache *
1323 get_symbol_cache (struct program_space *pspace)
1324 {
1325 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1326
1327 if (cache == NULL)
1328 {
1329 cache = make_symbol_cache (symbol_cache_size);
1330 set_program_space_data (pspace, symbol_cache_key, cache);
1331 }
1332
1333 return cache;
1334 }
1335
1336 /* Delete the symbol cache of PSPACE.
1337 Called when PSPACE is destroyed. */
1338
1339 static void
1340 symbol_cache_cleanup (struct program_space *pspace, void *data)
1341 {
1342 struct symbol_cache *cache = data;
1343
1344 free_symbol_cache (cache);
1345 }
1346
1347 /* Set the size of the symbol cache in all program spaces. */
1348
1349 static void
1350 set_symbol_cache_size (unsigned int new_size)
1351 {
1352 struct program_space *pspace;
1353
1354 ALL_PSPACES (pspace)
1355 {
1356 struct symbol_cache *cache
1357 = program_space_data (pspace, symbol_cache_key);
1358
1359 /* The pspace could have been created but not have a cache yet. */
1360 if (cache != NULL)
1361 resize_symbol_cache (cache, new_size);
1362 }
1363 }
1364
1365 /* Called when symbol-cache-size is set. */
1366
1367 static void
1368 set_symbol_cache_size_handler (char *args, int from_tty,
1369 struct cmd_list_element *c)
1370 {
1371 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1372 {
1373 /* Restore the previous value.
1374 This is the value the "show" command prints. */
1375 new_symbol_cache_size = symbol_cache_size;
1376
1377 error (_("Symbol cache size is too large, max is %u."),
1378 MAX_SYMBOL_CACHE_SIZE);
1379 }
1380 symbol_cache_size = new_symbol_cache_size;
1381
1382 set_symbol_cache_size (symbol_cache_size);
1383 }
1384
1385 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1386 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1387 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1388 failed (and thus this one will too), or NULL if the symbol is not present
1389 in the cache.
1390 *BSC_PTR, *SLOT_PTR are set to the cache and slot of the symbol, whether
1391 found or not found. */
1392
1393 static struct symbol *
1394 symbol_cache_lookup (struct symbol_cache *cache,
1395 struct objfile *objfile_context, int block,
1396 const char *name, domain_enum domain,
1397 struct block_symbol_cache **bsc_ptr,
1398 struct symbol_cache_slot **slot_ptr)
1399 {
1400 struct block_symbol_cache *bsc;
1401 unsigned int hash;
1402 struct symbol_cache_slot *slot;
1403
1404 if (block == GLOBAL_BLOCK)
1405 bsc = cache->global_symbols;
1406 else
1407 bsc = cache->static_symbols;
1408 if (bsc == NULL)
1409 {
1410 *bsc_ptr = NULL;
1411 *slot_ptr = NULL;
1412 return NULL;
1413 }
1414
1415 hash = hash_symbol_entry (objfile_context, name, domain);
1416 slot = bsc->symbols + hash % bsc->size;
1417 *bsc_ptr = bsc;
1418 *slot_ptr = slot;
1419
1420 if (eq_symbol_entry (slot, objfile_context, name, domain))
1421 {
1422 if (symbol_lookup_debug)
1423 fprintf_unfiltered (gdb_stdlog,
1424 "%s block symbol cache hit%s for %s, %s\n",
1425 block == GLOBAL_BLOCK ? "Global" : "Static",
1426 slot->state == SYMBOL_SLOT_NOT_FOUND
1427 ? " (not found)" : "",
1428 name, domain_name (domain));
1429 ++bsc->hits;
1430 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1431 return SYMBOL_LOOKUP_FAILED;
1432 return slot->value.found;
1433 }
1434
1435 if (symbol_lookup_debug)
1436 {
1437 fprintf_unfiltered (gdb_stdlog,
1438 "%s block symbol cache miss for %s, %s\n",
1439 block == GLOBAL_BLOCK ? "Global" : "Static",
1440 name, domain_name (domain));
1441 }
1442 ++bsc->misses;
1443 return NULL;
1444 }
1445
1446 /* Clear out SLOT. */
1447
1448 static void
1449 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1450 {
1451 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1452 xfree (slot->value.not_found.name);
1453 slot->state = SYMBOL_SLOT_UNUSED;
1454 }
1455
1456 /* Mark SYMBOL as found in SLOT.
1457 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1458 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1459 necessarily the objfile the symbol was found in. */
1460
1461 static void
1462 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1463 struct symbol_cache_slot *slot,
1464 struct objfile *objfile_context,
1465 struct symbol *symbol)
1466 {
1467 if (bsc == NULL)
1468 return;
1469 if (slot->state != SYMBOL_SLOT_UNUSED)
1470 {
1471 ++bsc->collisions;
1472 symbol_cache_clear_slot (slot);
1473 }
1474 slot->state = SYMBOL_SLOT_FOUND;
1475 slot->objfile_context = objfile_context;
1476 slot->value.found = symbol;
1477 }
1478
1479 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1480 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1481 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1482
1483 static void
1484 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1485 struct symbol_cache_slot *slot,
1486 struct objfile *objfile_context,
1487 const char *name, domain_enum domain)
1488 {
1489 if (bsc == NULL)
1490 return;
1491 if (slot->state != SYMBOL_SLOT_UNUSED)
1492 {
1493 ++bsc->collisions;
1494 symbol_cache_clear_slot (slot);
1495 }
1496 slot->state = SYMBOL_SLOT_NOT_FOUND;
1497 slot->objfile_context = objfile_context;
1498 slot->value.not_found.name = xstrdup (name);
1499 slot->value.not_found.domain = domain;
1500 }
1501
1502 /* Flush the symbol cache of PSPACE. */
1503
1504 static void
1505 symbol_cache_flush (struct program_space *pspace)
1506 {
1507 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1508 int pass;
1509 size_t total_size;
1510
1511 if (cache == NULL)
1512 return;
1513 if (cache->global_symbols == NULL)
1514 {
1515 gdb_assert (symbol_cache_size == 0);
1516 gdb_assert (cache->static_symbols == NULL);
1517 return;
1518 }
1519
1520 /* If the cache is untouched since the last flush, early exit.
1521 This is important for performance during the startup of a program linked
1522 with 100s (or 1000s) of shared libraries. */
1523 if (cache->global_symbols->misses == 0
1524 && cache->static_symbols->misses == 0)
1525 return;
1526
1527 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1528 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1529
1530 for (pass = 0; pass < 2; ++pass)
1531 {
1532 struct block_symbol_cache *bsc
1533 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1534 unsigned int i;
1535
1536 for (i = 0; i < bsc->size; ++i)
1537 symbol_cache_clear_slot (&bsc->symbols[i]);
1538 }
1539
1540 cache->global_symbols->hits = 0;
1541 cache->global_symbols->misses = 0;
1542 cache->global_symbols->collisions = 0;
1543 cache->static_symbols->hits = 0;
1544 cache->static_symbols->misses = 0;
1545 cache->static_symbols->collisions = 0;
1546 }
1547
1548 /* Dump CACHE. */
1549
1550 static void
1551 symbol_cache_dump (const struct symbol_cache *cache)
1552 {
1553 int pass;
1554
1555 if (cache->global_symbols == NULL)
1556 {
1557 printf_filtered (" <disabled>\n");
1558 return;
1559 }
1560
1561 for (pass = 0; pass < 2; ++pass)
1562 {
1563 const struct block_symbol_cache *bsc
1564 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1565 unsigned int i;
1566
1567 if (pass == 0)
1568 printf_filtered ("Global symbols:\n");
1569 else
1570 printf_filtered ("Static symbols:\n");
1571
1572 for (i = 0; i < bsc->size; ++i)
1573 {
1574 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1575
1576 QUIT;
1577
1578 switch (slot->state)
1579 {
1580 case SYMBOL_SLOT_UNUSED:
1581 break;
1582 case SYMBOL_SLOT_NOT_FOUND:
1583 printf_filtered (" [%-4u] = %s, %s (not found)\n", i,
1584 host_address_to_string (slot->objfile_context),
1585 slot->value.not_found.name);
1586 break;
1587 case SYMBOL_SLOT_FOUND:
1588 printf_filtered (" [%-4u] = %s, %s\n", i,
1589 host_address_to_string (slot->objfile_context),
1590 SYMBOL_PRINT_NAME (slot->value.found));
1591 break;
1592 }
1593 }
1594 }
1595 }
1596
1597 /* The "mt print symbol-cache" command. */
1598
1599 static void
1600 maintenance_print_symbol_cache (char *args, int from_tty)
1601 {
1602 struct program_space *pspace;
1603
1604 ALL_PSPACES (pspace)
1605 {
1606 struct symbol_cache *cache;
1607
1608 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1609 pspace->num,
1610 pspace->symfile_object_file != NULL
1611 ? objfile_name (pspace->symfile_object_file)
1612 : "(no object file)");
1613
1614 /* If the cache hasn't been created yet, avoid creating one. */
1615 cache = program_space_data (pspace, symbol_cache_key);
1616 if (cache == NULL)
1617 printf_filtered (" <empty>\n");
1618 else
1619 symbol_cache_dump (cache);
1620 }
1621 }
1622
1623 /* The "mt flush-symbol-cache" command. */
1624
1625 static void
1626 maintenance_flush_symbol_cache (char *args, int from_tty)
1627 {
1628 struct program_space *pspace;
1629
1630 ALL_PSPACES (pspace)
1631 {
1632 symbol_cache_flush (pspace);
1633 }
1634 }
1635
1636 /* Print usage statistics of CACHE. */
1637
1638 static void
1639 symbol_cache_stats (struct symbol_cache *cache)
1640 {
1641 int pass;
1642
1643 if (cache->global_symbols == NULL)
1644 {
1645 printf_filtered (" <disabled>\n");
1646 return;
1647 }
1648
1649 for (pass = 0; pass < 2; ++pass)
1650 {
1651 const struct block_symbol_cache *bsc
1652 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1653
1654 QUIT;
1655
1656 if (pass == 0)
1657 printf_filtered ("Global block cache stats:\n");
1658 else
1659 printf_filtered ("Static block cache stats:\n");
1660
1661 printf_filtered (" size: %u\n", bsc->size);
1662 printf_filtered (" hits: %u\n", bsc->hits);
1663 printf_filtered (" misses: %u\n", bsc->misses);
1664 printf_filtered (" collisions: %u\n", bsc->collisions);
1665 }
1666 }
1667
1668 /* The "mt print symbol-cache-statistics" command. */
1669
1670 static void
1671 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1672 {
1673 struct program_space *pspace;
1674
1675 ALL_PSPACES (pspace)
1676 {
1677 struct symbol_cache *cache;
1678
1679 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1680 pspace->num,
1681 pspace->symfile_object_file != NULL
1682 ? objfile_name (pspace->symfile_object_file)
1683 : "(no object file)");
1684
1685 /* If the cache hasn't been created yet, avoid creating one. */
1686 cache = program_space_data (pspace, symbol_cache_key);
1687 if (cache == NULL)
1688 printf_filtered (" empty, no stats available\n");
1689 else
1690 symbol_cache_stats (cache);
1691 }
1692 }
1693
1694 /* This module's 'new_objfile' observer. */
1695
1696 static void
1697 symtab_new_objfile_observer (struct objfile *objfile)
1698 {
1699 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1700 symbol_cache_flush (current_program_space);
1701 }
1702
1703 /* This module's 'free_objfile' observer. */
1704
1705 static void
1706 symtab_free_objfile_observer (struct objfile *objfile)
1707 {
1708 symbol_cache_flush (objfile->pspace);
1709 }
1710 \f
1711 /* Debug symbols usually don't have section information. We need to dig that
1712 out of the minimal symbols and stash that in the debug symbol. */
1713
1714 void
1715 fixup_section (struct general_symbol_info *ginfo,
1716 CORE_ADDR addr, struct objfile *objfile)
1717 {
1718 struct minimal_symbol *msym;
1719
1720 /* First, check whether a minimal symbol with the same name exists
1721 and points to the same address. The address check is required
1722 e.g. on PowerPC64, where the minimal symbol for a function will
1723 point to the function descriptor, while the debug symbol will
1724 point to the actual function code. */
1725 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1726 if (msym)
1727 ginfo->section = MSYMBOL_SECTION (msym);
1728 else
1729 {
1730 /* Static, function-local variables do appear in the linker
1731 (minimal) symbols, but are frequently given names that won't
1732 be found via lookup_minimal_symbol(). E.g., it has been
1733 observed in frv-uclinux (ELF) executables that a static,
1734 function-local variable named "foo" might appear in the
1735 linker symbols as "foo.6" or "foo.3". Thus, there is no
1736 point in attempting to extend the lookup-by-name mechanism to
1737 handle this case due to the fact that there can be multiple
1738 names.
1739
1740 So, instead, search the section table when lookup by name has
1741 failed. The ``addr'' and ``endaddr'' fields may have already
1742 been relocated. If so, the relocation offset (i.e. the
1743 ANOFFSET value) needs to be subtracted from these values when
1744 performing the comparison. We unconditionally subtract it,
1745 because, when no relocation has been performed, the ANOFFSET
1746 value will simply be zero.
1747
1748 The address of the symbol whose section we're fixing up HAS
1749 NOT BEEN adjusted (relocated) yet. It can't have been since
1750 the section isn't yet known and knowing the section is
1751 necessary in order to add the correct relocation value. In
1752 other words, we wouldn't even be in this function (attempting
1753 to compute the section) if it were already known.
1754
1755 Note that it is possible to search the minimal symbols
1756 (subtracting the relocation value if necessary) to find the
1757 matching minimal symbol, but this is overkill and much less
1758 efficient. It is not necessary to find the matching minimal
1759 symbol, only its section.
1760
1761 Note that this technique (of doing a section table search)
1762 can fail when unrelocated section addresses overlap. For
1763 this reason, we still attempt a lookup by name prior to doing
1764 a search of the section table. */
1765
1766 struct obj_section *s;
1767 int fallback = -1;
1768
1769 ALL_OBJFILE_OSECTIONS (objfile, s)
1770 {
1771 int idx = s - objfile->sections;
1772 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1773
1774 if (fallback == -1)
1775 fallback = idx;
1776
1777 if (obj_section_addr (s) - offset <= addr
1778 && addr < obj_section_endaddr (s) - offset)
1779 {
1780 ginfo->section = idx;
1781 return;
1782 }
1783 }
1784
1785 /* If we didn't find the section, assume it is in the first
1786 section. If there is no allocated section, then it hardly
1787 matters what we pick, so just pick zero. */
1788 if (fallback == -1)
1789 ginfo->section = 0;
1790 else
1791 ginfo->section = fallback;
1792 }
1793 }
1794
1795 struct symbol *
1796 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1797 {
1798 CORE_ADDR addr;
1799
1800 if (!sym)
1801 return NULL;
1802
1803 if (!SYMBOL_OBJFILE_OWNED (sym))
1804 return sym;
1805
1806 /* We either have an OBJFILE, or we can get at it from the sym's
1807 symtab. Anything else is a bug. */
1808 gdb_assert (objfile || symbol_symtab (sym));
1809
1810 if (objfile == NULL)
1811 objfile = symbol_objfile (sym);
1812
1813 if (SYMBOL_OBJ_SECTION (objfile, sym))
1814 return sym;
1815
1816 /* We should have an objfile by now. */
1817 gdb_assert (objfile);
1818
1819 switch (SYMBOL_CLASS (sym))
1820 {
1821 case LOC_STATIC:
1822 case LOC_LABEL:
1823 addr = SYMBOL_VALUE_ADDRESS (sym);
1824 break;
1825 case LOC_BLOCK:
1826 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1827 break;
1828
1829 default:
1830 /* Nothing else will be listed in the minsyms -- no use looking
1831 it up. */
1832 return sym;
1833 }
1834
1835 fixup_section (&sym->ginfo, addr, objfile);
1836
1837 return sym;
1838 }
1839
1840 /* Compute the demangled form of NAME as used by the various symbol
1841 lookup functions. The result is stored in *RESULT_NAME. Returns a
1842 cleanup which can be used to clean up the result.
1843
1844 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1845 Normally, Ada symbol lookups are performed using the encoded name
1846 rather than the demangled name, and so it might seem to make sense
1847 for this function to return an encoded version of NAME.
1848 Unfortunately, we cannot do this, because this function is used in
1849 circumstances where it is not appropriate to try to encode NAME.
1850 For instance, when displaying the frame info, we demangle the name
1851 of each parameter, and then perform a symbol lookup inside our
1852 function using that demangled name. In Ada, certain functions
1853 have internally-generated parameters whose name contain uppercase
1854 characters. Encoding those name would result in those uppercase
1855 characters to become lowercase, and thus cause the symbol lookup
1856 to fail. */
1857
1858 struct cleanup *
1859 demangle_for_lookup (const char *name, enum language lang,
1860 const char **result_name)
1861 {
1862 char *demangled_name = NULL;
1863 const char *modified_name = NULL;
1864 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1865
1866 modified_name = name;
1867
1868 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1869 lookup, so we can always binary search. */
1870 if (lang == language_cplus)
1871 {
1872 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1873 if (demangled_name)
1874 {
1875 modified_name = demangled_name;
1876 make_cleanup (xfree, demangled_name);
1877 }
1878 else
1879 {
1880 /* If we were given a non-mangled name, canonicalize it
1881 according to the language (so far only for C++). */
1882 demangled_name = cp_canonicalize_string (name);
1883 if (demangled_name)
1884 {
1885 modified_name = demangled_name;
1886 make_cleanup (xfree, demangled_name);
1887 }
1888 }
1889 }
1890 else if (lang == language_java)
1891 {
1892 demangled_name = gdb_demangle (name,
1893 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1894 if (demangled_name)
1895 {
1896 modified_name = demangled_name;
1897 make_cleanup (xfree, demangled_name);
1898 }
1899 }
1900 else if (lang == language_d)
1901 {
1902 demangled_name = d_demangle (name, 0);
1903 if (demangled_name)
1904 {
1905 modified_name = demangled_name;
1906 make_cleanup (xfree, demangled_name);
1907 }
1908 }
1909 else if (lang == language_go)
1910 {
1911 demangled_name = go_demangle (name, 0);
1912 if (demangled_name)
1913 {
1914 modified_name = demangled_name;
1915 make_cleanup (xfree, demangled_name);
1916 }
1917 }
1918
1919 *result_name = modified_name;
1920 return cleanup;
1921 }
1922
1923 /* See symtab.h.
1924
1925 This function (or rather its subordinates) have a bunch of loops and
1926 it would seem to be attractive to put in some QUIT's (though I'm not really
1927 sure whether it can run long enough to be really important). But there
1928 are a few calls for which it would appear to be bad news to quit
1929 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1930 that there is C++ code below which can error(), but that probably
1931 doesn't affect these calls since they are looking for a known
1932 variable and thus can probably assume it will never hit the C++
1933 code). */
1934
1935 struct symbol *
1936 lookup_symbol_in_language (const char *name, const struct block *block,
1937 const domain_enum domain, enum language lang,
1938 struct field_of_this_result *is_a_field_of_this)
1939 {
1940 const char *modified_name;
1941 struct symbol *returnval;
1942 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1943
1944 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1945 is_a_field_of_this);
1946 do_cleanups (cleanup);
1947
1948 return returnval;
1949 }
1950
1951 /* See symtab.h. */
1952
1953 struct symbol *
1954 lookup_symbol (const char *name, const struct block *block,
1955 domain_enum domain,
1956 struct field_of_this_result *is_a_field_of_this)
1957 {
1958 return lookup_symbol_in_language (name, block, domain,
1959 current_language->la_language,
1960 is_a_field_of_this);
1961 }
1962
1963 /* See symtab.h. */
1964
1965 struct symbol *
1966 lookup_language_this (const struct language_defn *lang,
1967 const struct block *block)
1968 {
1969 if (lang->la_name_of_this == NULL || block == NULL)
1970 return NULL;
1971
1972 if (symbol_lookup_debug > 1)
1973 {
1974 struct objfile *objfile = lookup_objfile_from_block (block);
1975
1976 fprintf_unfiltered (gdb_stdlog,
1977 "lookup_language_this (%s, %s (objfile %s))",
1978 lang->la_name, host_address_to_string (block),
1979 objfile_debug_name (objfile));
1980 }
1981
1982 while (block)
1983 {
1984 struct symbol *sym;
1985
1986 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1987 if (sym != NULL)
1988 {
1989 if (symbol_lookup_debug > 1)
1990 {
1991 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1992 SYMBOL_PRINT_NAME (sym),
1993 host_address_to_string (sym),
1994 host_address_to_string (block));
1995 }
1996 block_found = block;
1997 return sym;
1998 }
1999 if (BLOCK_FUNCTION (block))
2000 break;
2001 block = BLOCK_SUPERBLOCK (block);
2002 }
2003
2004 if (symbol_lookup_debug > 1)
2005 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2006 return NULL;
2007 }
2008
2009 /* Given TYPE, a structure/union,
2010 return 1 if the component named NAME from the ultimate target
2011 structure/union is defined, otherwise, return 0. */
2012
2013 static int
2014 check_field (struct type *type, const char *name,
2015 struct field_of_this_result *is_a_field_of_this)
2016 {
2017 int i;
2018
2019 /* The type may be a stub. */
2020 CHECK_TYPEDEF (type);
2021
2022 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2023 {
2024 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2025
2026 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2027 {
2028 is_a_field_of_this->type = type;
2029 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2030 return 1;
2031 }
2032 }
2033
2034 /* C++: If it was not found as a data field, then try to return it
2035 as a pointer to a method. */
2036
2037 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2038 {
2039 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2040 {
2041 is_a_field_of_this->type = type;
2042 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2043 return 1;
2044 }
2045 }
2046
2047 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2048 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2049 return 1;
2050
2051 return 0;
2052 }
2053
2054 /* Behave like lookup_symbol except that NAME is the natural name
2055 (e.g., demangled name) of the symbol that we're looking for. */
2056
2057 static struct symbol *
2058 lookup_symbol_aux (const char *name, const struct block *block,
2059 const domain_enum domain, enum language language,
2060 struct field_of_this_result *is_a_field_of_this)
2061 {
2062 struct symbol *sym;
2063 const struct language_defn *langdef;
2064
2065 if (symbol_lookup_debug)
2066 {
2067 struct objfile *objfile = lookup_objfile_from_block (block);
2068
2069 fprintf_unfiltered (gdb_stdlog,
2070 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2071 name, host_address_to_string (block),
2072 objfile != NULL
2073 ? objfile_debug_name (objfile) : "NULL",
2074 domain_name (domain), language_str (language));
2075 }
2076
2077 /* Initialize block_found so that the language la_lookup_symbol_nonlocal
2078 routines don't have to set it (to NULL) if a primitive type is found.
2079 We do this early so that block_found is also NULL if no symbol is
2080 found (though this is not part of the API, and callers cannot assume
2081 this). */
2082 block_found = NULL;
2083
2084 /* Make sure we do something sensible with is_a_field_of_this, since
2085 the callers that set this parameter to some non-null value will
2086 certainly use it later. If we don't set it, the contents of
2087 is_a_field_of_this are undefined. */
2088 if (is_a_field_of_this != NULL)
2089 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2090
2091 /* Search specified block and its superiors. Don't search
2092 STATIC_BLOCK or GLOBAL_BLOCK. */
2093
2094 sym = lookup_local_symbol (name, block, domain, language);
2095 if (sym != NULL)
2096 {
2097 if (symbol_lookup_debug)
2098 {
2099 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2100 host_address_to_string (sym));
2101 }
2102 return sym;
2103 }
2104
2105 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2106 check to see if NAME is a field of `this'. */
2107
2108 langdef = language_def (language);
2109
2110 /* Don't do this check if we are searching for a struct. It will
2111 not be found by check_field, but will be found by other
2112 means. */
2113 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2114 {
2115 struct symbol *sym = lookup_language_this (langdef, block);
2116
2117 if (sym)
2118 {
2119 struct type *t = sym->type;
2120
2121 /* I'm not really sure that type of this can ever
2122 be typedefed; just be safe. */
2123 CHECK_TYPEDEF (t);
2124 if (TYPE_CODE (t) == TYPE_CODE_PTR
2125 || TYPE_CODE (t) == TYPE_CODE_REF)
2126 t = TYPE_TARGET_TYPE (t);
2127
2128 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2129 && TYPE_CODE (t) != TYPE_CODE_UNION)
2130 error (_("Internal error: `%s' is not an aggregate"),
2131 langdef->la_name_of_this);
2132
2133 if (check_field (t, name, is_a_field_of_this))
2134 {
2135 if (symbol_lookup_debug)
2136 {
2137 fprintf_unfiltered (gdb_stdlog,
2138 "lookup_symbol_aux (...) = NULL\n");
2139 }
2140 return NULL;
2141 }
2142 }
2143 }
2144
2145 /* Now do whatever is appropriate for LANGUAGE to look
2146 up static and global variables. */
2147
2148 sym = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2149 if (sym != NULL)
2150 {
2151 if (symbol_lookup_debug)
2152 {
2153 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2154 host_address_to_string (sym));
2155 }
2156 return sym;
2157 }
2158
2159 /* Now search all static file-level symbols. Not strictly correct,
2160 but more useful than an error. */
2161
2162 sym = lookup_static_symbol (name, domain);
2163 if (symbol_lookup_debug)
2164 {
2165 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2166 sym != NULL ? host_address_to_string (sym) : "NULL");
2167 }
2168 return sym;
2169 }
2170
2171 /* Check to see if the symbol is defined in BLOCK or its superiors.
2172 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2173
2174 static struct symbol *
2175 lookup_local_symbol (const char *name, const struct block *block,
2176 const domain_enum domain,
2177 enum language language)
2178 {
2179 struct symbol *sym;
2180 const struct block *static_block = block_static_block (block);
2181 const char *scope = block_scope (block);
2182
2183 /* Check if either no block is specified or it's a global block. */
2184
2185 if (static_block == NULL)
2186 return NULL;
2187
2188 while (block != static_block)
2189 {
2190 sym = lookup_symbol_in_block (name, block, domain);
2191 if (sym != NULL)
2192 return sym;
2193
2194 if (language == language_cplus || language == language_fortran)
2195 {
2196 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
2197 domain);
2198 if (sym != NULL)
2199 return sym;
2200 }
2201
2202 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2203 break;
2204 block = BLOCK_SUPERBLOCK (block);
2205 }
2206
2207 /* We've reached the end of the function without finding a result. */
2208
2209 return NULL;
2210 }
2211
2212 /* See symtab.h. */
2213
2214 struct objfile *
2215 lookup_objfile_from_block (const struct block *block)
2216 {
2217 struct objfile *obj;
2218 struct compunit_symtab *cust;
2219
2220 if (block == NULL)
2221 return NULL;
2222
2223 block = block_global_block (block);
2224 /* Look through all blockvectors. */
2225 ALL_COMPUNITS (obj, cust)
2226 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2227 GLOBAL_BLOCK))
2228 {
2229 if (obj->separate_debug_objfile_backlink)
2230 obj = obj->separate_debug_objfile_backlink;
2231
2232 return obj;
2233 }
2234
2235 return NULL;
2236 }
2237
2238 /* See symtab.h. */
2239
2240 struct symbol *
2241 lookup_symbol_in_block (const char *name, const struct block *block,
2242 const domain_enum domain)
2243 {
2244 struct symbol *sym;
2245
2246 if (symbol_lookup_debug > 1)
2247 {
2248 struct objfile *objfile = lookup_objfile_from_block (block);
2249
2250 fprintf_unfiltered (gdb_stdlog,
2251 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2252 name, host_address_to_string (block),
2253 objfile_debug_name (objfile),
2254 domain_name (domain));
2255 }
2256
2257 sym = block_lookup_symbol (block, name, domain);
2258 if (sym)
2259 {
2260 if (symbol_lookup_debug > 1)
2261 {
2262 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2263 host_address_to_string (sym));
2264 }
2265 block_found = block;
2266 return fixup_symbol_section (sym, NULL);
2267 }
2268
2269 if (symbol_lookup_debug > 1)
2270 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2271 return NULL;
2272 }
2273
2274 /* See symtab.h. */
2275
2276 struct symbol *
2277 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2278 const char *name,
2279 const domain_enum domain)
2280 {
2281 struct objfile *objfile;
2282
2283 for (objfile = main_objfile;
2284 objfile;
2285 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2286 {
2287 struct symbol *sym = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2288 name, domain);
2289
2290 if (sym != NULL)
2291 return sym;
2292 }
2293
2294 return NULL;
2295 }
2296
2297 /* Check to see if the symbol is defined in one of the OBJFILE's
2298 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2299 depending on whether or not we want to search global symbols or
2300 static symbols. */
2301
2302 static struct symbol *
2303 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2304 const char *name, const domain_enum domain)
2305 {
2306 struct compunit_symtab *cust;
2307
2308 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2309
2310 if (symbol_lookup_debug > 1)
2311 {
2312 fprintf_unfiltered (gdb_stdlog,
2313 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2314 objfile_debug_name (objfile),
2315 block_index == GLOBAL_BLOCK
2316 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2317 name, domain_name (domain));
2318 }
2319
2320 ALL_OBJFILE_COMPUNITS (objfile, cust)
2321 {
2322 const struct blockvector *bv;
2323 const struct block *block;
2324 struct symbol *sym;
2325
2326 bv = COMPUNIT_BLOCKVECTOR (cust);
2327 block = BLOCKVECTOR_BLOCK (bv, block_index);
2328 sym = block_lookup_symbol_primary (block, name, domain);
2329 if (sym)
2330 {
2331 if (symbol_lookup_debug > 1)
2332 {
2333 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2334 host_address_to_string (sym),
2335 host_address_to_string (block));
2336 }
2337 block_found = block;
2338 return fixup_symbol_section (sym, objfile);
2339 }
2340 }
2341
2342 if (symbol_lookup_debug > 1)
2343 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2344 return NULL;
2345 }
2346
2347 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2348 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2349 and all associated separate debug objfiles.
2350
2351 Normally we only look in OBJFILE, and not any separate debug objfiles
2352 because the outer loop will cause them to be searched too. This case is
2353 different. Here we're called from search_symbols where it will only
2354 call us for the the objfile that contains a matching minsym. */
2355
2356 static struct symbol *
2357 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2358 const char *linkage_name,
2359 domain_enum domain)
2360 {
2361 enum language lang = current_language->la_language;
2362 const char *modified_name;
2363 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2364 &modified_name);
2365 struct objfile *main_objfile, *cur_objfile;
2366
2367 if (objfile->separate_debug_objfile_backlink)
2368 main_objfile = objfile->separate_debug_objfile_backlink;
2369 else
2370 main_objfile = objfile;
2371
2372 for (cur_objfile = main_objfile;
2373 cur_objfile;
2374 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2375 {
2376 struct symbol *sym;
2377
2378 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2379 modified_name, domain);
2380 if (sym == NULL)
2381 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2382 modified_name, domain);
2383 if (sym != NULL)
2384 {
2385 do_cleanups (cleanup);
2386 return sym;
2387 }
2388 }
2389
2390 do_cleanups (cleanup);
2391 return NULL;
2392 }
2393
2394 /* A helper function that throws an exception when a symbol was found
2395 in a psymtab but not in a symtab. */
2396
2397 static void ATTRIBUTE_NORETURN
2398 error_in_psymtab_expansion (int block_index, const char *name,
2399 struct compunit_symtab *cust)
2400 {
2401 error (_("\
2402 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2403 %s may be an inlined function, or may be a template function\n \
2404 (if a template, try specifying an instantiation: %s<type>)."),
2405 block_index == GLOBAL_BLOCK ? "global" : "static",
2406 name,
2407 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2408 name, name);
2409 }
2410
2411 /* A helper function for various lookup routines that interfaces with
2412 the "quick" symbol table functions. */
2413
2414 static struct symbol *
2415 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2416 const char *name, const domain_enum domain)
2417 {
2418 struct compunit_symtab *cust;
2419 const struct blockvector *bv;
2420 const struct block *block;
2421 struct symbol *sym;
2422
2423 if (!objfile->sf)
2424 return NULL;
2425
2426 if (symbol_lookup_debug > 1)
2427 {
2428 fprintf_unfiltered (gdb_stdlog,
2429 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2430 objfile_debug_name (objfile),
2431 block_index == GLOBAL_BLOCK
2432 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2433 name, domain_name (domain));
2434 }
2435
2436 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2437 if (cust == NULL)
2438 {
2439 if (symbol_lookup_debug > 1)
2440 {
2441 fprintf_unfiltered (gdb_stdlog,
2442 "lookup_symbol_via_quick_fns (...) = NULL\n");
2443 }
2444 return NULL;
2445 }
2446
2447 bv = COMPUNIT_BLOCKVECTOR (cust);
2448 block = BLOCKVECTOR_BLOCK (bv, block_index);
2449 sym = block_lookup_symbol (block, name, domain);
2450 if (!sym)
2451 error_in_psymtab_expansion (block_index, name, cust);
2452
2453 if (symbol_lookup_debug > 1)
2454 {
2455 fprintf_unfiltered (gdb_stdlog,
2456 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2457 host_address_to_string (sym),
2458 host_address_to_string (block));
2459 }
2460
2461 block_found = block;
2462 return fixup_symbol_section (sym, objfile);
2463 }
2464
2465 /* See symtab.h. */
2466
2467 struct symbol *
2468 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2469 const char *name,
2470 const struct block *block,
2471 const domain_enum domain)
2472 {
2473 struct symbol *sym;
2474
2475 /* NOTE: carlton/2003-05-19: The comments below were written when
2476 this (or what turned into this) was part of lookup_symbol_aux;
2477 I'm much less worried about these questions now, since these
2478 decisions have turned out well, but I leave these comments here
2479 for posterity. */
2480
2481 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2482 not it would be appropriate to search the current global block
2483 here as well. (That's what this code used to do before the
2484 is_a_field_of_this check was moved up.) On the one hand, it's
2485 redundant with the lookup in all objfiles search that happens
2486 next. On the other hand, if decode_line_1 is passed an argument
2487 like filename:var, then the user presumably wants 'var' to be
2488 searched for in filename. On the third hand, there shouldn't be
2489 multiple global variables all of which are named 'var', and it's
2490 not like decode_line_1 has ever restricted its search to only
2491 global variables in a single filename. All in all, only
2492 searching the static block here seems best: it's correct and it's
2493 cleanest. */
2494
2495 /* NOTE: carlton/2002-12-05: There's also a possible performance
2496 issue here: if you usually search for global symbols in the
2497 current file, then it would be slightly better to search the
2498 current global block before searching all the symtabs. But there
2499 are other factors that have a much greater effect on performance
2500 than that one, so I don't think we should worry about that for
2501 now. */
2502
2503 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2504 the current objfile. Searching the current objfile first is useful
2505 for both matching user expectations as well as performance. */
2506
2507 sym = lookup_symbol_in_static_block (name, block, domain);
2508 if (sym != NULL)
2509 return sym;
2510
2511 /* If we didn't find a definition for a builtin type in the static block,
2512 search for it now. This is actually the right thing to do and can be
2513 a massive performance win. E.g., when debugging a program with lots of
2514 shared libraries we could search all of them only to find out the
2515 builtin type isn't defined in any of them. This is common for types
2516 like "void". */
2517 if (domain == VAR_DOMAIN)
2518 {
2519 struct gdbarch *gdbarch;
2520
2521 if (block == NULL)
2522 gdbarch = target_gdbarch ();
2523 else
2524 gdbarch = block_gdbarch (block);
2525 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
2526 if (sym != NULL)
2527 return sym;
2528 }
2529
2530 return lookup_global_symbol (name, block, domain);
2531 }
2532
2533 /* See symtab.h. */
2534
2535 struct symbol *
2536 lookup_symbol_in_static_block (const char *name,
2537 const struct block *block,
2538 const domain_enum domain)
2539 {
2540 const struct block *static_block = block_static_block (block);
2541 struct symbol *sym;
2542
2543 if (static_block == NULL)
2544 return NULL;
2545
2546 if (symbol_lookup_debug)
2547 {
2548 struct objfile *objfile = lookup_objfile_from_block (static_block);
2549
2550 fprintf_unfiltered (gdb_stdlog,
2551 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2552 " %s)\n",
2553 name,
2554 host_address_to_string (block),
2555 objfile_debug_name (objfile),
2556 domain_name (domain));
2557 }
2558
2559 sym = lookup_symbol_in_block (name, static_block, domain);
2560 if (symbol_lookup_debug)
2561 {
2562 fprintf_unfiltered (gdb_stdlog,
2563 "lookup_symbol_in_static_block (...) = %s\n",
2564 sym != NULL ? host_address_to_string (sym) : "NULL");
2565 }
2566 return sym;
2567 }
2568
2569 /* Perform the standard symbol lookup of NAME in OBJFILE:
2570 1) First search expanded symtabs, and if not found
2571 2) Search the "quick" symtabs (partial or .gdb_index).
2572 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2573
2574 static struct symbol *
2575 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2576 const char *name, const domain_enum domain)
2577 {
2578 struct symbol *result;
2579
2580 if (symbol_lookup_debug)
2581 {
2582 fprintf_unfiltered (gdb_stdlog,
2583 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2584 objfile_debug_name (objfile),
2585 block_index == GLOBAL_BLOCK
2586 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2587 name, domain_name (domain));
2588 }
2589
2590 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2591 name, domain);
2592 if (result != NULL)
2593 {
2594 if (symbol_lookup_debug)
2595 {
2596 fprintf_unfiltered (gdb_stdlog,
2597 "lookup_symbol_in_objfile (...) = %s"
2598 " (in symtabs)\n",
2599 host_address_to_string (result));
2600 }
2601 return result;
2602 }
2603
2604 result = lookup_symbol_via_quick_fns (objfile, block_index,
2605 name, domain);
2606 if (symbol_lookup_debug)
2607 {
2608 fprintf_unfiltered (gdb_stdlog,
2609 "lookup_symbol_in_objfile (...) = %s%s\n",
2610 result != NULL
2611 ? host_address_to_string (result)
2612 : "NULL",
2613 result != NULL ? " (via quick fns)" : "");
2614 }
2615 return result;
2616 }
2617
2618 /* See symtab.h. */
2619
2620 struct symbol *
2621 lookup_static_symbol (const char *name, const domain_enum domain)
2622 {
2623 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2624 struct objfile *objfile;
2625 struct symbol *result;
2626 struct block_symbol_cache *bsc;
2627 struct symbol_cache_slot *slot;
2628
2629 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2630 NULL for OBJFILE_CONTEXT. */
2631 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2632 &bsc, &slot);
2633 if (result != NULL)
2634 {
2635 if (result == SYMBOL_LOOKUP_FAILED)
2636 return NULL;
2637 return result;
2638 }
2639
2640 ALL_OBJFILES (objfile)
2641 {
2642 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2643 if (result != NULL)
2644 {
2645 /* Still pass NULL for OBJFILE_CONTEXT here. */
2646 symbol_cache_mark_found (bsc, slot, NULL, result);
2647 return result;
2648 }
2649 }
2650
2651 /* Still pass NULL for OBJFILE_CONTEXT here. */
2652 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2653 return NULL;
2654 }
2655
2656 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2657
2658 struct global_sym_lookup_data
2659 {
2660 /* The name of the symbol we are searching for. */
2661 const char *name;
2662
2663 /* The domain to use for our search. */
2664 domain_enum domain;
2665
2666 /* The field where the callback should store the symbol if found.
2667 It should be initialized to NULL before the search is started. */
2668 struct symbol *result;
2669 };
2670
2671 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2672 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2673 OBJFILE. The arguments for the search are passed via CB_DATA,
2674 which in reality is a pointer to struct global_sym_lookup_data. */
2675
2676 static int
2677 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2678 void *cb_data)
2679 {
2680 struct global_sym_lookup_data *data =
2681 (struct global_sym_lookup_data *) cb_data;
2682
2683 gdb_assert (data->result == NULL);
2684
2685 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2686 data->name, data->domain);
2687
2688 /* If we found a match, tell the iterator to stop. Otherwise,
2689 keep going. */
2690 return (data->result != NULL);
2691 }
2692
2693 /* See symtab.h. */
2694
2695 struct symbol *
2696 lookup_global_symbol (const char *name,
2697 const struct block *block,
2698 const domain_enum domain)
2699 {
2700 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2701 struct symbol *sym;
2702 struct objfile *objfile;
2703 struct global_sym_lookup_data lookup_data;
2704 struct block_symbol_cache *bsc;
2705 struct symbol_cache_slot *slot;
2706
2707 objfile = lookup_objfile_from_block (block);
2708
2709 /* First see if we can find the symbol in the cache.
2710 This works because we use the current objfile to qualify the lookup. */
2711 sym = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2712 &bsc, &slot);
2713 if (sym != NULL)
2714 {
2715 if (sym == SYMBOL_LOOKUP_FAILED)
2716 return NULL;
2717 return sym;
2718 }
2719
2720 /* Call library-specific lookup procedure. */
2721 if (objfile != NULL)
2722 sym = solib_global_lookup (objfile, name, domain);
2723
2724 /* If that didn't work go a global search (of global blocks, heh). */
2725 if (sym == NULL)
2726 {
2727 memset (&lookup_data, 0, sizeof (lookup_data));
2728 lookup_data.name = name;
2729 lookup_data.domain = domain;
2730 gdbarch_iterate_over_objfiles_in_search_order
2731 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2732 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2733 sym = lookup_data.result;
2734 }
2735
2736 if (sym != NULL)
2737 symbol_cache_mark_found (bsc, slot, objfile, sym);
2738 else
2739 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2740
2741 return sym;
2742 }
2743
2744 int
2745 symbol_matches_domain (enum language symbol_language,
2746 domain_enum symbol_domain,
2747 domain_enum domain)
2748 {
2749 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2750 A Java class declaration also defines a typedef for the class.
2751 Similarly, any Ada type declaration implicitly defines a typedef. */
2752 if (symbol_language == language_cplus
2753 || symbol_language == language_d
2754 || symbol_language == language_java
2755 || symbol_language == language_ada)
2756 {
2757 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2758 && symbol_domain == STRUCT_DOMAIN)
2759 return 1;
2760 }
2761 /* For all other languages, strict match is required. */
2762 return (symbol_domain == domain);
2763 }
2764
2765 /* See symtab.h. */
2766
2767 struct type *
2768 lookup_transparent_type (const char *name)
2769 {
2770 return current_language->la_lookup_transparent_type (name);
2771 }
2772
2773 /* A helper for basic_lookup_transparent_type that interfaces with the
2774 "quick" symbol table functions. */
2775
2776 static struct type *
2777 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2778 const char *name)
2779 {
2780 struct compunit_symtab *cust;
2781 const struct blockvector *bv;
2782 struct block *block;
2783 struct symbol *sym;
2784
2785 if (!objfile->sf)
2786 return NULL;
2787 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2788 STRUCT_DOMAIN);
2789 if (cust == NULL)
2790 return NULL;
2791
2792 bv = COMPUNIT_BLOCKVECTOR (cust);
2793 block = BLOCKVECTOR_BLOCK (bv, block_index);
2794 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2795 if (!sym)
2796 error_in_psymtab_expansion (block_index, name, cust);
2797
2798 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2799 return SYMBOL_TYPE (sym);
2800
2801 return NULL;
2802 }
2803
2804 /* The standard implementation of lookup_transparent_type. This code
2805 was modeled on lookup_symbol -- the parts not relevant to looking
2806 up types were just left out. In particular it's assumed here that
2807 types are available in STRUCT_DOMAIN and only in file-static or
2808 global blocks. */
2809
2810 struct type *
2811 basic_lookup_transparent_type (const char *name)
2812 {
2813 struct symbol *sym;
2814 struct compunit_symtab *cust;
2815 const struct blockvector *bv;
2816 struct objfile *objfile;
2817 struct block *block;
2818 struct type *t;
2819
2820 /* Now search all the global symbols. Do the symtab's first, then
2821 check the psymtab's. If a psymtab indicates the existence
2822 of the desired name as a global, then do psymtab-to-symtab
2823 conversion on the fly and return the found symbol. */
2824
2825 ALL_OBJFILES (objfile)
2826 {
2827 ALL_OBJFILE_COMPUNITS (objfile, cust)
2828 {
2829 bv = COMPUNIT_BLOCKVECTOR (cust);
2830 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2831 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2832 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2833 {
2834 return SYMBOL_TYPE (sym);
2835 }
2836 }
2837 }
2838
2839 ALL_OBJFILES (objfile)
2840 {
2841 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2842 if (t)
2843 return t;
2844 }
2845
2846 /* Now search the static file-level symbols.
2847 Not strictly correct, but more useful than an error.
2848 Do the symtab's first, then
2849 check the psymtab's. If a psymtab indicates the existence
2850 of the desired name as a file-level static, then do psymtab-to-symtab
2851 conversion on the fly and return the found symbol. */
2852
2853 ALL_OBJFILES (objfile)
2854 {
2855 ALL_OBJFILE_COMPUNITS (objfile, cust)
2856 {
2857 bv = COMPUNIT_BLOCKVECTOR (cust);
2858 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2859 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2860 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2861 {
2862 return SYMBOL_TYPE (sym);
2863 }
2864 }
2865 }
2866
2867 ALL_OBJFILES (objfile)
2868 {
2869 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2870 if (t)
2871 return t;
2872 }
2873
2874 return (struct type *) 0;
2875 }
2876
2877 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2878
2879 For each symbol that matches, CALLBACK is called. The symbol and
2880 DATA are passed to the callback.
2881
2882 If CALLBACK returns zero, the iteration ends. Otherwise, the
2883 search continues. */
2884
2885 void
2886 iterate_over_symbols (const struct block *block, const char *name,
2887 const domain_enum domain,
2888 symbol_found_callback_ftype *callback,
2889 void *data)
2890 {
2891 struct block_iterator iter;
2892 struct symbol *sym;
2893
2894 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2895 {
2896 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2897 SYMBOL_DOMAIN (sym), domain))
2898 {
2899 if (!callback (sym, data))
2900 return;
2901 }
2902 }
2903 }
2904
2905 /* Find the compunit symtab associated with PC and SECTION.
2906 This will read in debug info as necessary. */
2907
2908 struct compunit_symtab *
2909 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2910 {
2911 struct compunit_symtab *cust;
2912 struct compunit_symtab *best_cust = NULL;
2913 struct objfile *objfile;
2914 CORE_ADDR distance = 0;
2915 struct bound_minimal_symbol msymbol;
2916
2917 /* If we know that this is not a text address, return failure. This is
2918 necessary because we loop based on the block's high and low code
2919 addresses, which do not include the data ranges, and because
2920 we call find_pc_sect_psymtab which has a similar restriction based
2921 on the partial_symtab's texthigh and textlow. */
2922 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2923 if (msymbol.minsym
2924 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2925 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2926 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2927 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2928 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2929 return NULL;
2930
2931 /* Search all symtabs for the one whose file contains our address, and which
2932 is the smallest of all the ones containing the address. This is designed
2933 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2934 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2935 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2936
2937 This happens for native ecoff format, where code from included files
2938 gets its own symtab. The symtab for the included file should have
2939 been read in already via the dependency mechanism.
2940 It might be swifter to create several symtabs with the same name
2941 like xcoff does (I'm not sure).
2942
2943 It also happens for objfiles that have their functions reordered.
2944 For these, the symtab we are looking for is not necessarily read in. */
2945
2946 ALL_COMPUNITS (objfile, cust)
2947 {
2948 struct block *b;
2949 const struct blockvector *bv;
2950
2951 bv = COMPUNIT_BLOCKVECTOR (cust);
2952 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2953
2954 if (BLOCK_START (b) <= pc
2955 && BLOCK_END (b) > pc
2956 && (distance == 0
2957 || BLOCK_END (b) - BLOCK_START (b) < distance))
2958 {
2959 /* For an objfile that has its functions reordered,
2960 find_pc_psymtab will find the proper partial symbol table
2961 and we simply return its corresponding symtab. */
2962 /* In order to better support objfiles that contain both
2963 stabs and coff debugging info, we continue on if a psymtab
2964 can't be found. */
2965 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2966 {
2967 struct compunit_symtab *result;
2968
2969 result
2970 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2971 msymbol,
2972 pc, section,
2973 0);
2974 if (result != NULL)
2975 return result;
2976 }
2977 if (section != 0)
2978 {
2979 struct block_iterator iter;
2980 struct symbol *sym = NULL;
2981
2982 ALL_BLOCK_SYMBOLS (b, iter, sym)
2983 {
2984 fixup_symbol_section (sym, objfile);
2985 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2986 section))
2987 break;
2988 }
2989 if (sym == NULL)
2990 continue; /* No symbol in this symtab matches
2991 section. */
2992 }
2993 distance = BLOCK_END (b) - BLOCK_START (b);
2994 best_cust = cust;
2995 }
2996 }
2997
2998 if (best_cust != NULL)
2999 return best_cust;
3000
3001 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3002
3003 ALL_OBJFILES (objfile)
3004 {
3005 struct compunit_symtab *result;
3006
3007 if (!objfile->sf)
3008 continue;
3009 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3010 msymbol,
3011 pc, section,
3012 1);
3013 if (result != NULL)
3014 return result;
3015 }
3016
3017 return NULL;
3018 }
3019
3020 /* Find the compunit symtab associated with PC.
3021 This will read in debug info as necessary.
3022 Backward compatibility, no section. */
3023
3024 struct compunit_symtab *
3025 find_pc_compunit_symtab (CORE_ADDR pc)
3026 {
3027 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3028 }
3029 \f
3030
3031 /* Find the source file and line number for a given PC value and SECTION.
3032 Return a structure containing a symtab pointer, a line number,
3033 and a pc range for the entire source line.
3034 The value's .pc field is NOT the specified pc.
3035 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3036 use the line that ends there. Otherwise, in that case, the line
3037 that begins there is used. */
3038
3039 /* The big complication here is that a line may start in one file, and end just
3040 before the start of another file. This usually occurs when you #include
3041 code in the middle of a subroutine. To properly find the end of a line's PC
3042 range, we must search all symtabs associated with this compilation unit, and
3043 find the one whose first PC is closer than that of the next line in this
3044 symtab. */
3045
3046 /* If it's worth the effort, we could be using a binary search. */
3047
3048 struct symtab_and_line
3049 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3050 {
3051 struct compunit_symtab *cust;
3052 struct symtab *iter_s;
3053 struct linetable *l;
3054 int len;
3055 int i;
3056 struct linetable_entry *item;
3057 struct symtab_and_line val;
3058 const struct blockvector *bv;
3059 struct bound_minimal_symbol msymbol;
3060
3061 /* Info on best line seen so far, and where it starts, and its file. */
3062
3063 struct linetable_entry *best = NULL;
3064 CORE_ADDR best_end = 0;
3065 struct symtab *best_symtab = 0;
3066
3067 /* Store here the first line number
3068 of a file which contains the line at the smallest pc after PC.
3069 If we don't find a line whose range contains PC,
3070 we will use a line one less than this,
3071 with a range from the start of that file to the first line's pc. */
3072 struct linetable_entry *alt = NULL;
3073
3074 /* Info on best line seen in this file. */
3075
3076 struct linetable_entry *prev;
3077
3078 /* If this pc is not from the current frame,
3079 it is the address of the end of a call instruction.
3080 Quite likely that is the start of the following statement.
3081 But what we want is the statement containing the instruction.
3082 Fudge the pc to make sure we get that. */
3083
3084 init_sal (&val); /* initialize to zeroes */
3085
3086 val.pspace = current_program_space;
3087
3088 /* It's tempting to assume that, if we can't find debugging info for
3089 any function enclosing PC, that we shouldn't search for line
3090 number info, either. However, GAS can emit line number info for
3091 assembly files --- very helpful when debugging hand-written
3092 assembly code. In such a case, we'd have no debug info for the
3093 function, but we would have line info. */
3094
3095 if (notcurrent)
3096 pc -= 1;
3097
3098 /* elz: added this because this function returned the wrong
3099 information if the pc belongs to a stub (import/export)
3100 to call a shlib function. This stub would be anywhere between
3101 two functions in the target, and the line info was erroneously
3102 taken to be the one of the line before the pc. */
3103
3104 /* RT: Further explanation:
3105
3106 * We have stubs (trampolines) inserted between procedures.
3107 *
3108 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3109 * exists in the main image.
3110 *
3111 * In the minimal symbol table, we have a bunch of symbols
3112 * sorted by start address. The stubs are marked as "trampoline",
3113 * the others appear as text. E.g.:
3114 *
3115 * Minimal symbol table for main image
3116 * main: code for main (text symbol)
3117 * shr1: stub (trampoline symbol)
3118 * foo: code for foo (text symbol)
3119 * ...
3120 * Minimal symbol table for "shr1" image:
3121 * ...
3122 * shr1: code for shr1 (text symbol)
3123 * ...
3124 *
3125 * So the code below is trying to detect if we are in the stub
3126 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3127 * and if found, do the symbolization from the real-code address
3128 * rather than the stub address.
3129 *
3130 * Assumptions being made about the minimal symbol table:
3131 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3132 * if we're really in the trampoline.s If we're beyond it (say
3133 * we're in "foo" in the above example), it'll have a closer
3134 * symbol (the "foo" text symbol for example) and will not
3135 * return the trampoline.
3136 * 2. lookup_minimal_symbol_text() will find a real text symbol
3137 * corresponding to the trampoline, and whose address will
3138 * be different than the trampoline address. I put in a sanity
3139 * check for the address being the same, to avoid an
3140 * infinite recursion.
3141 */
3142 msymbol = lookup_minimal_symbol_by_pc (pc);
3143 if (msymbol.minsym != NULL)
3144 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3145 {
3146 struct bound_minimal_symbol mfunsym
3147 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3148 NULL);
3149
3150 if (mfunsym.minsym == NULL)
3151 /* I eliminated this warning since it is coming out
3152 * in the following situation:
3153 * gdb shmain // test program with shared libraries
3154 * (gdb) break shr1 // function in shared lib
3155 * Warning: In stub for ...
3156 * In the above situation, the shared lib is not loaded yet,
3157 * so of course we can't find the real func/line info,
3158 * but the "break" still works, and the warning is annoying.
3159 * So I commented out the warning. RT */
3160 /* warning ("In stub for %s; unable to find real function/line info",
3161 SYMBOL_LINKAGE_NAME (msymbol)); */
3162 ;
3163 /* fall through */
3164 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3165 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3166 /* Avoid infinite recursion */
3167 /* See above comment about why warning is commented out. */
3168 /* warning ("In stub for %s; unable to find real function/line info",
3169 SYMBOL_LINKAGE_NAME (msymbol)); */
3170 ;
3171 /* fall through */
3172 else
3173 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3174 }
3175
3176
3177 cust = find_pc_sect_compunit_symtab (pc, section);
3178 if (cust == NULL)
3179 {
3180 /* If no symbol information, return previous pc. */
3181 if (notcurrent)
3182 pc++;
3183 val.pc = pc;
3184 return val;
3185 }
3186
3187 bv = COMPUNIT_BLOCKVECTOR (cust);
3188
3189 /* Look at all the symtabs that share this blockvector.
3190 They all have the same apriori range, that we found was right;
3191 but they have different line tables. */
3192
3193 ALL_COMPUNIT_FILETABS (cust, iter_s)
3194 {
3195 /* Find the best line in this symtab. */
3196 l = SYMTAB_LINETABLE (iter_s);
3197 if (!l)
3198 continue;
3199 len = l->nitems;
3200 if (len <= 0)
3201 {
3202 /* I think len can be zero if the symtab lacks line numbers
3203 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3204 I'm not sure which, and maybe it depends on the symbol
3205 reader). */
3206 continue;
3207 }
3208
3209 prev = NULL;
3210 item = l->item; /* Get first line info. */
3211
3212 /* Is this file's first line closer than the first lines of other files?
3213 If so, record this file, and its first line, as best alternate. */
3214 if (item->pc > pc && (!alt || item->pc < alt->pc))
3215 alt = item;
3216
3217 for (i = 0; i < len; i++, item++)
3218 {
3219 /* Leave prev pointing to the linetable entry for the last line
3220 that started at or before PC. */
3221 if (item->pc > pc)
3222 break;
3223
3224 prev = item;
3225 }
3226
3227 /* At this point, prev points at the line whose start addr is <= pc, and
3228 item points at the next line. If we ran off the end of the linetable
3229 (pc >= start of the last line), then prev == item. If pc < start of
3230 the first line, prev will not be set. */
3231
3232 /* Is this file's best line closer than the best in the other files?
3233 If so, record this file, and its best line, as best so far. Don't
3234 save prev if it represents the end of a function (i.e. line number
3235 0) instead of a real line. */
3236
3237 if (prev && prev->line && (!best || prev->pc > best->pc))
3238 {
3239 best = prev;
3240 best_symtab = iter_s;
3241
3242 /* Discard BEST_END if it's before the PC of the current BEST. */
3243 if (best_end <= best->pc)
3244 best_end = 0;
3245 }
3246
3247 /* If another line (denoted by ITEM) is in the linetable and its
3248 PC is after BEST's PC, but before the current BEST_END, then
3249 use ITEM's PC as the new best_end. */
3250 if (best && i < len && item->pc > best->pc
3251 && (best_end == 0 || best_end > item->pc))
3252 best_end = item->pc;
3253 }
3254
3255 if (!best_symtab)
3256 {
3257 /* If we didn't find any line number info, just return zeros.
3258 We used to return alt->line - 1 here, but that could be
3259 anywhere; if we don't have line number info for this PC,
3260 don't make some up. */
3261 val.pc = pc;
3262 }
3263 else if (best->line == 0)
3264 {
3265 /* If our best fit is in a range of PC's for which no line
3266 number info is available (line number is zero) then we didn't
3267 find any valid line information. */
3268 val.pc = pc;
3269 }
3270 else
3271 {
3272 val.symtab = best_symtab;
3273 val.line = best->line;
3274 val.pc = best->pc;
3275 if (best_end && (!alt || best_end < alt->pc))
3276 val.end = best_end;
3277 else if (alt)
3278 val.end = alt->pc;
3279 else
3280 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3281 }
3282 val.section = section;
3283 return val;
3284 }
3285
3286 /* Backward compatibility (no section). */
3287
3288 struct symtab_and_line
3289 find_pc_line (CORE_ADDR pc, int notcurrent)
3290 {
3291 struct obj_section *section;
3292
3293 section = find_pc_overlay (pc);
3294 if (pc_in_unmapped_range (pc, section))
3295 pc = overlay_mapped_address (pc, section);
3296 return find_pc_sect_line (pc, section, notcurrent);
3297 }
3298
3299 /* See symtab.h. */
3300
3301 struct symtab *
3302 find_pc_line_symtab (CORE_ADDR pc)
3303 {
3304 struct symtab_and_line sal;
3305
3306 /* This always passes zero for NOTCURRENT to find_pc_line.
3307 There are currently no callers that ever pass non-zero. */
3308 sal = find_pc_line (pc, 0);
3309 return sal.symtab;
3310 }
3311 \f
3312 /* Find line number LINE in any symtab whose name is the same as
3313 SYMTAB.
3314
3315 If found, return the symtab that contains the linetable in which it was
3316 found, set *INDEX to the index in the linetable of the best entry
3317 found, and set *EXACT_MATCH nonzero if the value returned is an
3318 exact match.
3319
3320 If not found, return NULL. */
3321
3322 struct symtab *
3323 find_line_symtab (struct symtab *symtab, int line,
3324 int *index, int *exact_match)
3325 {
3326 int exact = 0; /* Initialized here to avoid a compiler warning. */
3327
3328 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3329 so far seen. */
3330
3331 int best_index;
3332 struct linetable *best_linetable;
3333 struct symtab *best_symtab;
3334
3335 /* First try looking it up in the given symtab. */
3336 best_linetable = SYMTAB_LINETABLE (symtab);
3337 best_symtab = symtab;
3338 best_index = find_line_common (best_linetable, line, &exact, 0);
3339 if (best_index < 0 || !exact)
3340 {
3341 /* Didn't find an exact match. So we better keep looking for
3342 another symtab with the same name. In the case of xcoff,
3343 multiple csects for one source file (produced by IBM's FORTRAN
3344 compiler) produce multiple symtabs (this is unavoidable
3345 assuming csects can be at arbitrary places in memory and that
3346 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3347
3348 /* BEST is the smallest linenumber > LINE so far seen,
3349 or 0 if none has been seen so far.
3350 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3351 int best;
3352
3353 struct objfile *objfile;
3354 struct compunit_symtab *cu;
3355 struct symtab *s;
3356
3357 if (best_index >= 0)
3358 best = best_linetable->item[best_index].line;
3359 else
3360 best = 0;
3361
3362 ALL_OBJFILES (objfile)
3363 {
3364 if (objfile->sf)
3365 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3366 symtab_to_fullname (symtab));
3367 }
3368
3369 ALL_FILETABS (objfile, cu, s)
3370 {
3371 struct linetable *l;
3372 int ind;
3373
3374 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3375 continue;
3376 if (FILENAME_CMP (symtab_to_fullname (symtab),
3377 symtab_to_fullname (s)) != 0)
3378 continue;
3379 l = SYMTAB_LINETABLE (s);
3380 ind = find_line_common (l, line, &exact, 0);
3381 if (ind >= 0)
3382 {
3383 if (exact)
3384 {
3385 best_index = ind;
3386 best_linetable = l;
3387 best_symtab = s;
3388 goto done;
3389 }
3390 if (best == 0 || l->item[ind].line < best)
3391 {
3392 best = l->item[ind].line;
3393 best_index = ind;
3394 best_linetable = l;
3395 best_symtab = s;
3396 }
3397 }
3398 }
3399 }
3400 done:
3401 if (best_index < 0)
3402 return NULL;
3403
3404 if (index)
3405 *index = best_index;
3406 if (exact_match)
3407 *exact_match = exact;
3408
3409 return best_symtab;
3410 }
3411
3412 /* Given SYMTAB, returns all the PCs function in the symtab that
3413 exactly match LINE. Returns NULL if there are no exact matches,
3414 but updates BEST_ITEM in this case. */
3415
3416 VEC (CORE_ADDR) *
3417 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3418 struct linetable_entry **best_item)
3419 {
3420 int start = 0;
3421 VEC (CORE_ADDR) *result = NULL;
3422
3423 /* First, collect all the PCs that are at this line. */
3424 while (1)
3425 {
3426 int was_exact;
3427 int idx;
3428
3429 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3430 start);
3431 if (idx < 0)
3432 break;
3433
3434 if (!was_exact)
3435 {
3436 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3437
3438 if (*best_item == NULL || item->line < (*best_item)->line)
3439 *best_item = item;
3440
3441 break;
3442 }
3443
3444 VEC_safe_push (CORE_ADDR, result,
3445 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3446 start = idx + 1;
3447 }
3448
3449 return result;
3450 }
3451
3452 \f
3453 /* Set the PC value for a given source file and line number and return true.
3454 Returns zero for invalid line number (and sets the PC to 0).
3455 The source file is specified with a struct symtab. */
3456
3457 int
3458 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3459 {
3460 struct linetable *l;
3461 int ind;
3462
3463 *pc = 0;
3464 if (symtab == 0)
3465 return 0;
3466
3467 symtab = find_line_symtab (symtab, line, &ind, NULL);
3468 if (symtab != NULL)
3469 {
3470 l = SYMTAB_LINETABLE (symtab);
3471 *pc = l->item[ind].pc;
3472 return 1;
3473 }
3474 else
3475 return 0;
3476 }
3477
3478 /* Find the range of pc values in a line.
3479 Store the starting pc of the line into *STARTPTR
3480 and the ending pc (start of next line) into *ENDPTR.
3481 Returns 1 to indicate success.
3482 Returns 0 if could not find the specified line. */
3483
3484 int
3485 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3486 CORE_ADDR *endptr)
3487 {
3488 CORE_ADDR startaddr;
3489 struct symtab_and_line found_sal;
3490
3491 startaddr = sal.pc;
3492 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3493 return 0;
3494
3495 /* This whole function is based on address. For example, if line 10 has
3496 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3497 "info line *0x123" should say the line goes from 0x100 to 0x200
3498 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3499 This also insures that we never give a range like "starts at 0x134
3500 and ends at 0x12c". */
3501
3502 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3503 if (found_sal.line != sal.line)
3504 {
3505 /* The specified line (sal) has zero bytes. */
3506 *startptr = found_sal.pc;
3507 *endptr = found_sal.pc;
3508 }
3509 else
3510 {
3511 *startptr = found_sal.pc;
3512 *endptr = found_sal.end;
3513 }
3514 return 1;
3515 }
3516
3517 /* Given a line table and a line number, return the index into the line
3518 table for the pc of the nearest line whose number is >= the specified one.
3519 Return -1 if none is found. The value is >= 0 if it is an index.
3520 START is the index at which to start searching the line table.
3521
3522 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3523
3524 static int
3525 find_line_common (struct linetable *l, int lineno,
3526 int *exact_match, int start)
3527 {
3528 int i;
3529 int len;
3530
3531 /* BEST is the smallest linenumber > LINENO so far seen,
3532 or 0 if none has been seen so far.
3533 BEST_INDEX identifies the item for it. */
3534
3535 int best_index = -1;
3536 int best = 0;
3537
3538 *exact_match = 0;
3539
3540 if (lineno <= 0)
3541 return -1;
3542 if (l == 0)
3543 return -1;
3544
3545 len = l->nitems;
3546 for (i = start; i < len; i++)
3547 {
3548 struct linetable_entry *item = &(l->item[i]);
3549
3550 if (item->line == lineno)
3551 {
3552 /* Return the first (lowest address) entry which matches. */
3553 *exact_match = 1;
3554 return i;
3555 }
3556
3557 if (item->line > lineno && (best == 0 || item->line < best))
3558 {
3559 best = item->line;
3560 best_index = i;
3561 }
3562 }
3563
3564 /* If we got here, we didn't get an exact match. */
3565 return best_index;
3566 }
3567
3568 int
3569 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3570 {
3571 struct symtab_and_line sal;
3572
3573 sal = find_pc_line (pc, 0);
3574 *startptr = sal.pc;
3575 *endptr = sal.end;
3576 return sal.symtab != 0;
3577 }
3578
3579 /* Given a function symbol SYM, find the symtab and line for the start
3580 of the function.
3581 If the argument FUNFIRSTLINE is nonzero, we want the first line
3582 of real code inside the function. */
3583
3584 struct symtab_and_line
3585 find_function_start_sal (struct symbol *sym, int funfirstline)
3586 {
3587 struct symtab_and_line sal;
3588 struct obj_section *section;
3589
3590 fixup_symbol_section (sym, NULL);
3591 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3592 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3593
3594 /* We always should have a line for the function start address.
3595 If we don't, something is odd. Create a plain SAL refering
3596 just the PC and hope that skip_prologue_sal (if requested)
3597 can find a line number for after the prologue. */
3598 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3599 {
3600 init_sal (&sal);
3601 sal.pspace = current_program_space;
3602 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3603 sal.section = section;
3604 }
3605
3606 if (funfirstline)
3607 skip_prologue_sal (&sal);
3608
3609 return sal;
3610 }
3611
3612 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3613 address for that function that has an entry in SYMTAB's line info
3614 table. If such an entry cannot be found, return FUNC_ADDR
3615 unaltered. */
3616
3617 static CORE_ADDR
3618 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3619 {
3620 CORE_ADDR func_start, func_end;
3621 struct linetable *l;
3622 int i;
3623
3624 /* Give up if this symbol has no lineinfo table. */
3625 l = SYMTAB_LINETABLE (symtab);
3626 if (l == NULL)
3627 return func_addr;
3628
3629 /* Get the range for the function's PC values, or give up if we
3630 cannot, for some reason. */
3631 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3632 return func_addr;
3633
3634 /* Linetable entries are ordered by PC values, see the commentary in
3635 symtab.h where `struct linetable' is defined. Thus, the first
3636 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3637 address we are looking for. */
3638 for (i = 0; i < l->nitems; i++)
3639 {
3640 struct linetable_entry *item = &(l->item[i]);
3641
3642 /* Don't use line numbers of zero, they mark special entries in
3643 the table. See the commentary on symtab.h before the
3644 definition of struct linetable. */
3645 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3646 return item->pc;
3647 }
3648
3649 return func_addr;
3650 }
3651
3652 /* Adjust SAL to the first instruction past the function prologue.
3653 If the PC was explicitly specified, the SAL is not changed.
3654 If the line number was explicitly specified, at most the SAL's PC
3655 is updated. If SAL is already past the prologue, then do nothing. */
3656
3657 void
3658 skip_prologue_sal (struct symtab_and_line *sal)
3659 {
3660 struct symbol *sym;
3661 struct symtab_and_line start_sal;
3662 struct cleanup *old_chain;
3663 CORE_ADDR pc, saved_pc;
3664 struct obj_section *section;
3665 const char *name;
3666 struct objfile *objfile;
3667 struct gdbarch *gdbarch;
3668 const struct block *b, *function_block;
3669 int force_skip, skip;
3670
3671 /* Do not change the SAL if PC was specified explicitly. */
3672 if (sal->explicit_pc)
3673 return;
3674
3675 old_chain = save_current_space_and_thread ();
3676 switch_to_program_space_and_thread (sal->pspace);
3677
3678 sym = find_pc_sect_function (sal->pc, sal->section);
3679 if (sym != NULL)
3680 {
3681 fixup_symbol_section (sym, NULL);
3682
3683 objfile = symbol_objfile (sym);
3684 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3685 section = SYMBOL_OBJ_SECTION (objfile, sym);
3686 name = SYMBOL_LINKAGE_NAME (sym);
3687 }
3688 else
3689 {
3690 struct bound_minimal_symbol msymbol
3691 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3692
3693 if (msymbol.minsym == NULL)
3694 {
3695 do_cleanups (old_chain);
3696 return;
3697 }
3698
3699 objfile = msymbol.objfile;
3700 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3701 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3702 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3703 }
3704
3705 gdbarch = get_objfile_arch (objfile);
3706
3707 /* Process the prologue in two passes. In the first pass try to skip the
3708 prologue (SKIP is true) and verify there is a real need for it (indicated
3709 by FORCE_SKIP). If no such reason was found run a second pass where the
3710 prologue is not skipped (SKIP is false). */
3711
3712 skip = 1;
3713 force_skip = 1;
3714
3715 /* Be conservative - allow direct PC (without skipping prologue) only if we
3716 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3717 have to be set by the caller so we use SYM instead. */
3718 if (sym != NULL
3719 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3720 force_skip = 0;
3721
3722 saved_pc = pc;
3723 do
3724 {
3725 pc = saved_pc;
3726
3727 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3728 so that gdbarch_skip_prologue has something unique to work on. */
3729 if (section_is_overlay (section) && !section_is_mapped (section))
3730 pc = overlay_unmapped_address (pc, section);
3731
3732 /* Skip "first line" of function (which is actually its prologue). */
3733 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3734 if (gdbarch_skip_entrypoint_p (gdbarch))
3735 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3736 if (skip)
3737 pc = gdbarch_skip_prologue (gdbarch, pc);
3738
3739 /* For overlays, map pc back into its mapped VMA range. */
3740 pc = overlay_mapped_address (pc, section);
3741
3742 /* Calculate line number. */
3743 start_sal = find_pc_sect_line (pc, section, 0);
3744
3745 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3746 line is still part of the same function. */
3747 if (skip && start_sal.pc != pc
3748 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3749 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3750 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3751 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3752 {
3753 /* First pc of next line */
3754 pc = start_sal.end;
3755 /* Recalculate the line number (might not be N+1). */
3756 start_sal = find_pc_sect_line (pc, section, 0);
3757 }
3758
3759 /* On targets with executable formats that don't have a concept of
3760 constructors (ELF with .init has, PE doesn't), gcc emits a call
3761 to `__main' in `main' between the prologue and before user
3762 code. */
3763 if (gdbarch_skip_main_prologue_p (gdbarch)
3764 && name && strcmp_iw (name, "main") == 0)
3765 {
3766 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3767 /* Recalculate the line number (might not be N+1). */
3768 start_sal = find_pc_sect_line (pc, section, 0);
3769 force_skip = 1;
3770 }
3771 }
3772 while (!force_skip && skip--);
3773
3774 /* If we still don't have a valid source line, try to find the first
3775 PC in the lineinfo table that belongs to the same function. This
3776 happens with COFF debug info, which does not seem to have an
3777 entry in lineinfo table for the code after the prologue which has
3778 no direct relation to source. For example, this was found to be
3779 the case with the DJGPP target using "gcc -gcoff" when the
3780 compiler inserted code after the prologue to make sure the stack
3781 is aligned. */
3782 if (!force_skip && sym && start_sal.symtab == NULL)
3783 {
3784 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3785 /* Recalculate the line number. */
3786 start_sal = find_pc_sect_line (pc, section, 0);
3787 }
3788
3789 do_cleanups (old_chain);
3790
3791 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3792 forward SAL to the end of the prologue. */
3793 if (sal->pc >= pc)
3794 return;
3795
3796 sal->pc = pc;
3797 sal->section = section;
3798
3799 /* Unless the explicit_line flag was set, update the SAL line
3800 and symtab to correspond to the modified PC location. */
3801 if (sal->explicit_line)
3802 return;
3803
3804 sal->symtab = start_sal.symtab;
3805 sal->line = start_sal.line;
3806 sal->end = start_sal.end;
3807
3808 /* Check if we are now inside an inlined function. If we can,
3809 use the call site of the function instead. */
3810 b = block_for_pc_sect (sal->pc, sal->section);
3811 function_block = NULL;
3812 while (b != NULL)
3813 {
3814 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3815 function_block = b;
3816 else if (BLOCK_FUNCTION (b) != NULL)
3817 break;
3818 b = BLOCK_SUPERBLOCK (b);
3819 }
3820 if (function_block != NULL
3821 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3822 {
3823 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3824 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3825 }
3826 }
3827
3828 /* Given PC at the function's start address, attempt to find the
3829 prologue end using SAL information. Return zero if the skip fails.
3830
3831 A non-optimized prologue traditionally has one SAL for the function
3832 and a second for the function body. A single line function has
3833 them both pointing at the same line.
3834
3835 An optimized prologue is similar but the prologue may contain
3836 instructions (SALs) from the instruction body. Need to skip those
3837 while not getting into the function body.
3838
3839 The functions end point and an increasing SAL line are used as
3840 indicators of the prologue's endpoint.
3841
3842 This code is based on the function refine_prologue_limit
3843 (found in ia64). */
3844
3845 CORE_ADDR
3846 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3847 {
3848 struct symtab_and_line prologue_sal;
3849 CORE_ADDR start_pc;
3850 CORE_ADDR end_pc;
3851 const struct block *bl;
3852
3853 /* Get an initial range for the function. */
3854 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3855 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3856
3857 prologue_sal = find_pc_line (start_pc, 0);
3858 if (prologue_sal.line != 0)
3859 {
3860 /* For languages other than assembly, treat two consecutive line
3861 entries at the same address as a zero-instruction prologue.
3862 The GNU assembler emits separate line notes for each instruction
3863 in a multi-instruction macro, but compilers generally will not
3864 do this. */
3865 if (prologue_sal.symtab->language != language_asm)
3866 {
3867 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3868 int idx = 0;
3869
3870 /* Skip any earlier lines, and any end-of-sequence marker
3871 from a previous function. */
3872 while (linetable->item[idx].pc != prologue_sal.pc
3873 || linetable->item[idx].line == 0)
3874 idx++;
3875
3876 if (idx+1 < linetable->nitems
3877 && linetable->item[idx+1].line != 0
3878 && linetable->item[idx+1].pc == start_pc)
3879 return start_pc;
3880 }
3881
3882 /* If there is only one sal that covers the entire function,
3883 then it is probably a single line function, like
3884 "foo(){}". */
3885 if (prologue_sal.end >= end_pc)
3886 return 0;
3887
3888 while (prologue_sal.end < end_pc)
3889 {
3890 struct symtab_and_line sal;
3891
3892 sal = find_pc_line (prologue_sal.end, 0);
3893 if (sal.line == 0)
3894 break;
3895 /* Assume that a consecutive SAL for the same (or larger)
3896 line mark the prologue -> body transition. */
3897 if (sal.line >= prologue_sal.line)
3898 break;
3899 /* Likewise if we are in a different symtab altogether
3900 (e.g. within a file included via #include).  */
3901 if (sal.symtab != prologue_sal.symtab)
3902 break;
3903
3904 /* The line number is smaller. Check that it's from the
3905 same function, not something inlined. If it's inlined,
3906 then there is no point comparing the line numbers. */
3907 bl = block_for_pc (prologue_sal.end);
3908 while (bl)
3909 {
3910 if (block_inlined_p (bl))
3911 break;
3912 if (BLOCK_FUNCTION (bl))
3913 {
3914 bl = NULL;
3915 break;
3916 }
3917 bl = BLOCK_SUPERBLOCK (bl);
3918 }
3919 if (bl != NULL)
3920 break;
3921
3922 /* The case in which compiler's optimizer/scheduler has
3923 moved instructions into the prologue. We look ahead in
3924 the function looking for address ranges whose
3925 corresponding line number is less the first one that we
3926 found for the function. This is more conservative then
3927 refine_prologue_limit which scans a large number of SALs
3928 looking for any in the prologue. */
3929 prologue_sal = sal;
3930 }
3931 }
3932
3933 if (prologue_sal.end < end_pc)
3934 /* Return the end of this line, or zero if we could not find a
3935 line. */
3936 return prologue_sal.end;
3937 else
3938 /* Don't return END_PC, which is past the end of the function. */
3939 return prologue_sal.pc;
3940 }
3941 \f
3942 /* If P is of the form "operator[ \t]+..." where `...' is
3943 some legitimate operator text, return a pointer to the
3944 beginning of the substring of the operator text.
3945 Otherwise, return "". */
3946
3947 static const char *
3948 operator_chars (const char *p, const char **end)
3949 {
3950 *end = "";
3951 if (strncmp (p, "operator", 8))
3952 return *end;
3953 p += 8;
3954
3955 /* Don't get faked out by `operator' being part of a longer
3956 identifier. */
3957 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3958 return *end;
3959
3960 /* Allow some whitespace between `operator' and the operator symbol. */
3961 while (*p == ' ' || *p == '\t')
3962 p++;
3963
3964 /* Recognize 'operator TYPENAME'. */
3965
3966 if (isalpha (*p) || *p == '_' || *p == '$')
3967 {
3968 const char *q = p + 1;
3969
3970 while (isalnum (*q) || *q == '_' || *q == '$')
3971 q++;
3972 *end = q;
3973 return p;
3974 }
3975
3976 while (*p)
3977 switch (*p)
3978 {
3979 case '\\': /* regexp quoting */
3980 if (p[1] == '*')
3981 {
3982 if (p[2] == '=') /* 'operator\*=' */
3983 *end = p + 3;
3984 else /* 'operator\*' */
3985 *end = p + 2;
3986 return p;
3987 }
3988 else if (p[1] == '[')
3989 {
3990 if (p[2] == ']')
3991 error (_("mismatched quoting on brackets, "
3992 "try 'operator\\[\\]'"));
3993 else if (p[2] == '\\' && p[3] == ']')
3994 {
3995 *end = p + 4; /* 'operator\[\]' */
3996 return p;
3997 }
3998 else
3999 error (_("nothing is allowed between '[' and ']'"));
4000 }
4001 else
4002 {
4003 /* Gratuitous qoute: skip it and move on. */
4004 p++;
4005 continue;
4006 }
4007 break;
4008 case '!':
4009 case '=':
4010 case '*':
4011 case '/':
4012 case '%':
4013 case '^':
4014 if (p[1] == '=')
4015 *end = p + 2;
4016 else
4017 *end = p + 1;
4018 return p;
4019 case '<':
4020 case '>':
4021 case '+':
4022 case '-':
4023 case '&':
4024 case '|':
4025 if (p[0] == '-' && p[1] == '>')
4026 {
4027 /* Struct pointer member operator 'operator->'. */
4028 if (p[2] == '*')
4029 {
4030 *end = p + 3; /* 'operator->*' */
4031 return p;
4032 }
4033 else if (p[2] == '\\')
4034 {
4035 *end = p + 4; /* Hopefully 'operator->\*' */
4036 return p;
4037 }
4038 else
4039 {
4040 *end = p + 2; /* 'operator->' */
4041 return p;
4042 }
4043 }
4044 if (p[1] == '=' || p[1] == p[0])
4045 *end = p + 2;
4046 else
4047 *end = p + 1;
4048 return p;
4049 case '~':
4050 case ',':
4051 *end = p + 1;
4052 return p;
4053 case '(':
4054 if (p[1] != ')')
4055 error (_("`operator ()' must be specified "
4056 "without whitespace in `()'"));
4057 *end = p + 2;
4058 return p;
4059 case '?':
4060 if (p[1] != ':')
4061 error (_("`operator ?:' must be specified "
4062 "without whitespace in `?:'"));
4063 *end = p + 2;
4064 return p;
4065 case '[':
4066 if (p[1] != ']')
4067 error (_("`operator []' must be specified "
4068 "without whitespace in `[]'"));
4069 *end = p + 2;
4070 return p;
4071 default:
4072 error (_("`operator %s' not supported"), p);
4073 break;
4074 }
4075
4076 *end = "";
4077 return *end;
4078 }
4079 \f
4080
4081 /* Cache to watch for file names already seen by filename_seen. */
4082
4083 struct filename_seen_cache
4084 {
4085 /* Table of files seen so far. */
4086 htab_t tab;
4087 /* Initial size of the table. It automagically grows from here. */
4088 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4089 };
4090
4091 /* filename_seen_cache constructor. */
4092
4093 static struct filename_seen_cache *
4094 create_filename_seen_cache (void)
4095 {
4096 struct filename_seen_cache *cache;
4097
4098 cache = XNEW (struct filename_seen_cache);
4099 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4100 filename_hash, filename_eq,
4101 NULL, xcalloc, xfree);
4102
4103 return cache;
4104 }
4105
4106 /* Empty the cache, but do not delete it. */
4107
4108 static void
4109 clear_filename_seen_cache (struct filename_seen_cache *cache)
4110 {
4111 htab_empty (cache->tab);
4112 }
4113
4114 /* filename_seen_cache destructor.
4115 This takes a void * argument as it is generally used as a cleanup. */
4116
4117 static void
4118 delete_filename_seen_cache (void *ptr)
4119 {
4120 struct filename_seen_cache *cache = ptr;
4121
4122 htab_delete (cache->tab);
4123 xfree (cache);
4124 }
4125
4126 /* If FILE is not already in the table of files in CACHE, return zero;
4127 otherwise return non-zero. Optionally add FILE to the table if ADD
4128 is non-zero.
4129
4130 NOTE: We don't manage space for FILE, we assume FILE lives as long
4131 as the caller needs. */
4132
4133 static int
4134 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4135 {
4136 void **slot;
4137
4138 /* Is FILE in tab? */
4139 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4140 if (*slot != NULL)
4141 return 1;
4142
4143 /* No; maybe add it to tab. */
4144 if (add)
4145 *slot = (char *) file;
4146
4147 return 0;
4148 }
4149
4150 /* Data structure to maintain printing state for output_source_filename. */
4151
4152 struct output_source_filename_data
4153 {
4154 /* Cache of what we've seen so far. */
4155 struct filename_seen_cache *filename_seen_cache;
4156
4157 /* Flag of whether we're printing the first one. */
4158 int first;
4159 };
4160
4161 /* Slave routine for sources_info. Force line breaks at ,'s.
4162 NAME is the name to print.
4163 DATA contains the state for printing and watching for duplicates. */
4164
4165 static void
4166 output_source_filename (const char *name,
4167 struct output_source_filename_data *data)
4168 {
4169 /* Since a single source file can result in several partial symbol
4170 tables, we need to avoid printing it more than once. Note: if
4171 some of the psymtabs are read in and some are not, it gets
4172 printed both under "Source files for which symbols have been
4173 read" and "Source files for which symbols will be read in on
4174 demand". I consider this a reasonable way to deal with the
4175 situation. I'm not sure whether this can also happen for
4176 symtabs; it doesn't hurt to check. */
4177
4178 /* Was NAME already seen? */
4179 if (filename_seen (data->filename_seen_cache, name, 1))
4180 {
4181 /* Yes; don't print it again. */
4182 return;
4183 }
4184
4185 /* No; print it and reset *FIRST. */
4186 if (! data->first)
4187 printf_filtered (", ");
4188 data->first = 0;
4189
4190 wrap_here ("");
4191 fputs_filtered (name, gdb_stdout);
4192 }
4193
4194 /* A callback for map_partial_symbol_filenames. */
4195
4196 static void
4197 output_partial_symbol_filename (const char *filename, const char *fullname,
4198 void *data)
4199 {
4200 output_source_filename (fullname ? fullname : filename, data);
4201 }
4202
4203 static void
4204 sources_info (char *ignore, int from_tty)
4205 {
4206 struct compunit_symtab *cu;
4207 struct symtab *s;
4208 struct objfile *objfile;
4209 struct output_source_filename_data data;
4210 struct cleanup *cleanups;
4211
4212 if (!have_full_symbols () && !have_partial_symbols ())
4213 {
4214 error (_("No symbol table is loaded. Use the \"file\" command."));
4215 }
4216
4217 data.filename_seen_cache = create_filename_seen_cache ();
4218 cleanups = make_cleanup (delete_filename_seen_cache,
4219 data.filename_seen_cache);
4220
4221 printf_filtered ("Source files for which symbols have been read in:\n\n");
4222
4223 data.first = 1;
4224 ALL_FILETABS (objfile, cu, s)
4225 {
4226 const char *fullname = symtab_to_fullname (s);
4227
4228 output_source_filename (fullname, &data);
4229 }
4230 printf_filtered ("\n\n");
4231
4232 printf_filtered ("Source files for which symbols "
4233 "will be read in on demand:\n\n");
4234
4235 clear_filename_seen_cache (data.filename_seen_cache);
4236 data.first = 1;
4237 map_symbol_filenames (output_partial_symbol_filename, &data,
4238 1 /*need_fullname*/);
4239 printf_filtered ("\n");
4240
4241 do_cleanups (cleanups);
4242 }
4243
4244 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4245 non-zero compare only lbasename of FILES. */
4246
4247 static int
4248 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4249 {
4250 int i;
4251
4252 if (file != NULL && nfiles != 0)
4253 {
4254 for (i = 0; i < nfiles; i++)
4255 {
4256 if (compare_filenames_for_search (file, (basenames
4257 ? lbasename (files[i])
4258 : files[i])))
4259 return 1;
4260 }
4261 }
4262 else if (nfiles == 0)
4263 return 1;
4264 return 0;
4265 }
4266
4267 /* Free any memory associated with a search. */
4268
4269 void
4270 free_search_symbols (struct symbol_search *symbols)
4271 {
4272 struct symbol_search *p;
4273 struct symbol_search *next;
4274
4275 for (p = symbols; p != NULL; p = next)
4276 {
4277 next = p->next;
4278 xfree (p);
4279 }
4280 }
4281
4282 static void
4283 do_free_search_symbols_cleanup (void *symbolsp)
4284 {
4285 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4286
4287 free_search_symbols (symbols);
4288 }
4289
4290 struct cleanup *
4291 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4292 {
4293 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4294 }
4295
4296 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4297 sort symbols, not minimal symbols. */
4298
4299 static int
4300 compare_search_syms (const void *sa, const void *sb)
4301 {
4302 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4303 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4304 int c;
4305
4306 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4307 symbol_symtab (sym_b->symbol)->filename);
4308 if (c != 0)
4309 return c;
4310
4311 if (sym_a->block != sym_b->block)
4312 return sym_a->block - sym_b->block;
4313
4314 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4315 SYMBOL_PRINT_NAME (sym_b->symbol));
4316 }
4317
4318 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4319 The duplicates are freed, and the new list is returned in
4320 *NEW_HEAD, *NEW_TAIL. */
4321
4322 static void
4323 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4324 struct symbol_search **new_head,
4325 struct symbol_search **new_tail)
4326 {
4327 struct symbol_search **symbols, *symp, *old_next;
4328 int i, j, nunique;
4329
4330 gdb_assert (found != NULL && nfound > 0);
4331
4332 /* Build an array out of the list so we can easily sort them. */
4333 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
4334 * nfound);
4335 symp = found;
4336 for (i = 0; i < nfound; i++)
4337 {
4338 gdb_assert (symp != NULL);
4339 gdb_assert (symp->block >= 0 && symp->block <= 1);
4340 symbols[i] = symp;
4341 symp = symp->next;
4342 }
4343 gdb_assert (symp == NULL);
4344
4345 qsort (symbols, nfound, sizeof (struct symbol_search *),
4346 compare_search_syms);
4347
4348 /* Collapse out the dups. */
4349 for (i = 1, j = 1; i < nfound; ++i)
4350 {
4351 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4352 symbols[j++] = symbols[i];
4353 else
4354 xfree (symbols[i]);
4355 }
4356 nunique = j;
4357 symbols[j - 1]->next = NULL;
4358
4359 /* Rebuild the linked list. */
4360 for (i = 0; i < nunique - 1; i++)
4361 symbols[i]->next = symbols[i + 1];
4362 symbols[nunique - 1]->next = NULL;
4363
4364 *new_head = symbols[0];
4365 *new_tail = symbols[nunique - 1];
4366 xfree (symbols);
4367 }
4368
4369 /* An object of this type is passed as the user_data to the
4370 expand_symtabs_matching method. */
4371 struct search_symbols_data
4372 {
4373 int nfiles;
4374 const char **files;
4375
4376 /* It is true if PREG contains valid data, false otherwise. */
4377 unsigned preg_p : 1;
4378 regex_t preg;
4379 };
4380
4381 /* A callback for expand_symtabs_matching. */
4382
4383 static int
4384 search_symbols_file_matches (const char *filename, void *user_data,
4385 int basenames)
4386 {
4387 struct search_symbols_data *data = user_data;
4388
4389 return file_matches (filename, data->files, data->nfiles, basenames);
4390 }
4391
4392 /* A callback for expand_symtabs_matching. */
4393
4394 static int
4395 search_symbols_name_matches (const char *symname, void *user_data)
4396 {
4397 struct search_symbols_data *data = user_data;
4398
4399 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4400 }
4401
4402 /* Search the symbol table for matches to the regular expression REGEXP,
4403 returning the results in *MATCHES.
4404
4405 Only symbols of KIND are searched:
4406 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4407 and constants (enums)
4408 FUNCTIONS_DOMAIN - search all functions
4409 TYPES_DOMAIN - search all type names
4410 ALL_DOMAIN - an internal error for this function
4411
4412 free_search_symbols should be called when *MATCHES is no longer needed.
4413
4414 Within each file the results are sorted locally; each symtab's global and
4415 static blocks are separately alphabetized.
4416 Duplicate entries are removed. */
4417
4418 void
4419 search_symbols (const char *regexp, enum search_domain kind,
4420 int nfiles, const char *files[],
4421 struct symbol_search **matches)
4422 {
4423 struct compunit_symtab *cust;
4424 const struct blockvector *bv;
4425 struct block *b;
4426 int i = 0;
4427 struct block_iterator iter;
4428 struct symbol *sym;
4429 struct objfile *objfile;
4430 struct minimal_symbol *msymbol;
4431 int found_misc = 0;
4432 static const enum minimal_symbol_type types[]
4433 = {mst_data, mst_text, mst_abs};
4434 static const enum minimal_symbol_type types2[]
4435 = {mst_bss, mst_file_text, mst_abs};
4436 static const enum minimal_symbol_type types3[]
4437 = {mst_file_data, mst_solib_trampoline, mst_abs};
4438 static const enum minimal_symbol_type types4[]
4439 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4440 enum minimal_symbol_type ourtype;
4441 enum minimal_symbol_type ourtype2;
4442 enum minimal_symbol_type ourtype3;
4443 enum minimal_symbol_type ourtype4;
4444 struct symbol_search *found;
4445 struct symbol_search *tail;
4446 struct search_symbols_data datum;
4447 int nfound;
4448
4449 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4450 CLEANUP_CHAIN is freed only in the case of an error. */
4451 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4452 struct cleanup *retval_chain;
4453
4454 gdb_assert (kind <= TYPES_DOMAIN);
4455
4456 ourtype = types[kind];
4457 ourtype2 = types2[kind];
4458 ourtype3 = types3[kind];
4459 ourtype4 = types4[kind];
4460
4461 *matches = NULL;
4462 datum.preg_p = 0;
4463
4464 if (regexp != NULL)
4465 {
4466 /* Make sure spacing is right for C++ operators.
4467 This is just a courtesy to make the matching less sensitive
4468 to how many spaces the user leaves between 'operator'
4469 and <TYPENAME> or <OPERATOR>. */
4470 const char *opend;
4471 const char *opname = operator_chars (regexp, &opend);
4472 int errcode;
4473
4474 if (*opname)
4475 {
4476 int fix = -1; /* -1 means ok; otherwise number of
4477 spaces needed. */
4478
4479 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4480 {
4481 /* There should 1 space between 'operator' and 'TYPENAME'. */
4482 if (opname[-1] != ' ' || opname[-2] == ' ')
4483 fix = 1;
4484 }
4485 else
4486 {
4487 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4488 if (opname[-1] == ' ')
4489 fix = 0;
4490 }
4491 /* If wrong number of spaces, fix it. */
4492 if (fix >= 0)
4493 {
4494 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4495
4496 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4497 regexp = tmp;
4498 }
4499 }
4500
4501 errcode = regcomp (&datum.preg, regexp,
4502 REG_NOSUB | (case_sensitivity == case_sensitive_off
4503 ? REG_ICASE : 0));
4504 if (errcode != 0)
4505 {
4506 char *err = get_regcomp_error (errcode, &datum.preg);
4507
4508 make_cleanup (xfree, err);
4509 error (_("Invalid regexp (%s): %s"), err, regexp);
4510 }
4511 datum.preg_p = 1;
4512 make_regfree_cleanup (&datum.preg);
4513 }
4514
4515 /* Search through the partial symtabs *first* for all symbols
4516 matching the regexp. That way we don't have to reproduce all of
4517 the machinery below. */
4518
4519 datum.nfiles = nfiles;
4520 datum.files = files;
4521 expand_symtabs_matching ((nfiles == 0
4522 ? NULL
4523 : search_symbols_file_matches),
4524 search_symbols_name_matches,
4525 NULL, kind, &datum);
4526
4527 /* Here, we search through the minimal symbol tables for functions
4528 and variables that match, and force their symbols to be read.
4529 This is in particular necessary for demangled variable names,
4530 which are no longer put into the partial symbol tables.
4531 The symbol will then be found during the scan of symtabs below.
4532
4533 For functions, find_pc_symtab should succeed if we have debug info
4534 for the function, for variables we have to call
4535 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4536 has debug info.
4537 If the lookup fails, set found_misc so that we will rescan to print
4538 any matching symbols without debug info.
4539 We only search the objfile the msymbol came from, we no longer search
4540 all objfiles. In large programs (1000s of shared libs) searching all
4541 objfiles is not worth the pain. */
4542
4543 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4544 {
4545 ALL_MSYMBOLS (objfile, msymbol)
4546 {
4547 QUIT;
4548
4549 if (msymbol->created_by_gdb)
4550 continue;
4551
4552 if (MSYMBOL_TYPE (msymbol) == ourtype
4553 || MSYMBOL_TYPE (msymbol) == ourtype2
4554 || MSYMBOL_TYPE (msymbol) == ourtype3
4555 || MSYMBOL_TYPE (msymbol) == ourtype4)
4556 {
4557 if (!datum.preg_p
4558 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4559 NULL, 0) == 0)
4560 {
4561 /* Note: An important side-effect of these lookup functions
4562 is to expand the symbol table if msymbol is found, for the
4563 benefit of the next loop on ALL_COMPUNITS. */
4564 if (kind == FUNCTIONS_DOMAIN
4565 ? (find_pc_compunit_symtab
4566 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4567 : (lookup_symbol_in_objfile_from_linkage_name
4568 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4569 == NULL))
4570 found_misc = 1;
4571 }
4572 }
4573 }
4574 }
4575
4576 found = NULL;
4577 tail = NULL;
4578 nfound = 0;
4579 retval_chain = make_cleanup_free_search_symbols (&found);
4580
4581 ALL_COMPUNITS (objfile, cust)
4582 {
4583 bv = COMPUNIT_BLOCKVECTOR (cust);
4584 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4585 {
4586 b = BLOCKVECTOR_BLOCK (bv, i);
4587 ALL_BLOCK_SYMBOLS (b, iter, sym)
4588 {
4589 struct symtab *real_symtab = symbol_symtab (sym);
4590
4591 QUIT;
4592
4593 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4594 a substring of symtab_to_fullname as it may contain "./" etc. */
4595 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4596 || ((basenames_may_differ
4597 || file_matches (lbasename (real_symtab->filename),
4598 files, nfiles, 1))
4599 && file_matches (symtab_to_fullname (real_symtab),
4600 files, nfiles, 0)))
4601 && ((!datum.preg_p
4602 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4603 NULL, 0) == 0)
4604 && ((kind == VARIABLES_DOMAIN
4605 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4606 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4607 && SYMBOL_CLASS (sym) != LOC_BLOCK
4608 /* LOC_CONST can be used for more than just enums,
4609 e.g., c++ static const members.
4610 We only want to skip enums here. */
4611 && !(SYMBOL_CLASS (sym) == LOC_CONST
4612 && (TYPE_CODE (SYMBOL_TYPE (sym))
4613 == TYPE_CODE_ENUM)))
4614 || (kind == FUNCTIONS_DOMAIN
4615 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4616 || (kind == TYPES_DOMAIN
4617 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4618 {
4619 /* match */
4620 struct symbol_search *psr = (struct symbol_search *)
4621 xmalloc (sizeof (struct symbol_search));
4622 psr->block = i;
4623 psr->symbol = sym;
4624 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
4625 psr->next = NULL;
4626 if (tail == NULL)
4627 found = psr;
4628 else
4629 tail->next = psr;
4630 tail = psr;
4631 nfound ++;
4632 }
4633 }
4634 }
4635 }
4636
4637 if (found != NULL)
4638 {
4639 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4640 /* Note: nfound is no longer useful beyond this point. */
4641 }
4642
4643 /* If there are no eyes, avoid all contact. I mean, if there are
4644 no debug symbols, then add matching minsyms. */
4645
4646 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4647 {
4648 ALL_MSYMBOLS (objfile, msymbol)
4649 {
4650 QUIT;
4651
4652 if (msymbol->created_by_gdb)
4653 continue;
4654
4655 if (MSYMBOL_TYPE (msymbol) == ourtype
4656 || MSYMBOL_TYPE (msymbol) == ourtype2
4657 || MSYMBOL_TYPE (msymbol) == ourtype3
4658 || MSYMBOL_TYPE (msymbol) == ourtype4)
4659 {
4660 if (!datum.preg_p
4661 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4662 NULL, 0) == 0)
4663 {
4664 /* For functions we can do a quick check of whether the
4665 symbol might be found via find_pc_symtab. */
4666 if (kind != FUNCTIONS_DOMAIN
4667 || (find_pc_compunit_symtab
4668 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4669 {
4670 if (lookup_symbol_in_objfile_from_linkage_name
4671 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4672 == NULL)
4673 {
4674 /* match */
4675 struct symbol_search *psr = (struct symbol_search *)
4676 xmalloc (sizeof (struct symbol_search));
4677 psr->block = i;
4678 psr->msymbol.minsym = msymbol;
4679 psr->msymbol.objfile = objfile;
4680 psr->symbol = NULL;
4681 psr->next = NULL;
4682 if (tail == NULL)
4683 found = psr;
4684 else
4685 tail->next = psr;
4686 tail = psr;
4687 }
4688 }
4689 }
4690 }
4691 }
4692 }
4693
4694 discard_cleanups (retval_chain);
4695 do_cleanups (old_chain);
4696 *matches = found;
4697 }
4698
4699 /* Helper function for symtab_symbol_info, this function uses
4700 the data returned from search_symbols() to print information
4701 regarding the match to gdb_stdout. */
4702
4703 static void
4704 print_symbol_info (enum search_domain kind,
4705 struct symbol *sym,
4706 int block, const char *last)
4707 {
4708 struct symtab *s = symbol_symtab (sym);
4709 const char *s_filename = symtab_to_filename_for_display (s);
4710
4711 if (last == NULL || filename_cmp (last, s_filename) != 0)
4712 {
4713 fputs_filtered ("\nFile ", gdb_stdout);
4714 fputs_filtered (s_filename, gdb_stdout);
4715 fputs_filtered (":\n", gdb_stdout);
4716 }
4717
4718 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4719 printf_filtered ("static ");
4720
4721 /* Typedef that is not a C++ class. */
4722 if (kind == TYPES_DOMAIN
4723 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4724 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4725 /* variable, func, or typedef-that-is-c++-class. */
4726 else if (kind < TYPES_DOMAIN
4727 || (kind == TYPES_DOMAIN
4728 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4729 {
4730 type_print (SYMBOL_TYPE (sym),
4731 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4732 ? "" : SYMBOL_PRINT_NAME (sym)),
4733 gdb_stdout, 0);
4734
4735 printf_filtered (";\n");
4736 }
4737 }
4738
4739 /* This help function for symtab_symbol_info() prints information
4740 for non-debugging symbols to gdb_stdout. */
4741
4742 static void
4743 print_msymbol_info (struct bound_minimal_symbol msymbol)
4744 {
4745 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4746 char *tmp;
4747
4748 if (gdbarch_addr_bit (gdbarch) <= 32)
4749 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4750 & (CORE_ADDR) 0xffffffff,
4751 8);
4752 else
4753 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4754 16);
4755 printf_filtered ("%s %s\n",
4756 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4757 }
4758
4759 /* This is the guts of the commands "info functions", "info types", and
4760 "info variables". It calls search_symbols to find all matches and then
4761 print_[m]symbol_info to print out some useful information about the
4762 matches. */
4763
4764 static void
4765 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4766 {
4767 static const char * const classnames[] =
4768 {"variable", "function", "type"};
4769 struct symbol_search *symbols;
4770 struct symbol_search *p;
4771 struct cleanup *old_chain;
4772 const char *last_filename = NULL;
4773 int first = 1;
4774
4775 gdb_assert (kind <= TYPES_DOMAIN);
4776
4777 /* Must make sure that if we're interrupted, symbols gets freed. */
4778 search_symbols (regexp, kind, 0, NULL, &symbols);
4779 old_chain = make_cleanup_free_search_symbols (&symbols);
4780
4781 if (regexp != NULL)
4782 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4783 classnames[kind], regexp);
4784 else
4785 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4786
4787 for (p = symbols; p != NULL; p = p->next)
4788 {
4789 QUIT;
4790
4791 if (p->msymbol.minsym != NULL)
4792 {
4793 if (first)
4794 {
4795 printf_filtered (_("\nNon-debugging symbols:\n"));
4796 first = 0;
4797 }
4798 print_msymbol_info (p->msymbol);
4799 }
4800 else
4801 {
4802 print_symbol_info (kind,
4803 p->symbol,
4804 p->block,
4805 last_filename);
4806 last_filename
4807 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4808 }
4809 }
4810
4811 do_cleanups (old_chain);
4812 }
4813
4814 static void
4815 variables_info (char *regexp, int from_tty)
4816 {
4817 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4818 }
4819
4820 static void
4821 functions_info (char *regexp, int from_tty)
4822 {
4823 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4824 }
4825
4826
4827 static void
4828 types_info (char *regexp, int from_tty)
4829 {
4830 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4831 }
4832
4833 /* Breakpoint all functions matching regular expression. */
4834
4835 void
4836 rbreak_command_wrapper (char *regexp, int from_tty)
4837 {
4838 rbreak_command (regexp, from_tty);
4839 }
4840
4841 /* A cleanup function that calls end_rbreak_breakpoints. */
4842
4843 static void
4844 do_end_rbreak_breakpoints (void *ignore)
4845 {
4846 end_rbreak_breakpoints ();
4847 }
4848
4849 static void
4850 rbreak_command (char *regexp, int from_tty)
4851 {
4852 struct symbol_search *ss;
4853 struct symbol_search *p;
4854 struct cleanup *old_chain;
4855 char *string = NULL;
4856 int len = 0;
4857 const char **files = NULL;
4858 const char *file_name;
4859 int nfiles = 0;
4860
4861 if (regexp)
4862 {
4863 char *colon = strchr (regexp, ':');
4864
4865 if (colon && *(colon + 1) != ':')
4866 {
4867 int colon_index;
4868 char *local_name;
4869
4870 colon_index = colon - regexp;
4871 local_name = alloca (colon_index + 1);
4872 memcpy (local_name, regexp, colon_index);
4873 local_name[colon_index--] = 0;
4874 while (isspace (local_name[colon_index]))
4875 local_name[colon_index--] = 0;
4876 file_name = local_name;
4877 files = &file_name;
4878 nfiles = 1;
4879 regexp = skip_spaces (colon + 1);
4880 }
4881 }
4882
4883 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4884 old_chain = make_cleanup_free_search_symbols (&ss);
4885 make_cleanup (free_current_contents, &string);
4886
4887 start_rbreak_breakpoints ();
4888 make_cleanup (do_end_rbreak_breakpoints, NULL);
4889 for (p = ss; p != NULL; p = p->next)
4890 {
4891 if (p->msymbol.minsym == NULL)
4892 {
4893 struct symtab *symtab = symbol_symtab (p->symbol);
4894 const char *fullname = symtab_to_fullname (symtab);
4895
4896 int newlen = (strlen (fullname)
4897 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4898 + 4);
4899
4900 if (newlen > len)
4901 {
4902 string = xrealloc (string, newlen);
4903 len = newlen;
4904 }
4905 strcpy (string, fullname);
4906 strcat (string, ":'");
4907 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4908 strcat (string, "'");
4909 break_command (string, from_tty);
4910 print_symbol_info (FUNCTIONS_DOMAIN,
4911 p->symbol,
4912 p->block,
4913 symtab_to_filename_for_display (symtab));
4914 }
4915 else
4916 {
4917 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4918
4919 if (newlen > len)
4920 {
4921 string = xrealloc (string, newlen);
4922 len = newlen;
4923 }
4924 strcpy (string, "'");
4925 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4926 strcat (string, "'");
4927
4928 break_command (string, from_tty);
4929 printf_filtered ("<function, no debug info> %s;\n",
4930 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4931 }
4932 }
4933
4934 do_cleanups (old_chain);
4935 }
4936 \f
4937
4938 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4939
4940 Either sym_text[sym_text_len] != '(' and then we search for any
4941 symbol starting with SYM_TEXT text.
4942
4943 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4944 be terminated at that point. Partial symbol tables do not have parameters
4945 information. */
4946
4947 static int
4948 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4949 {
4950 int (*ncmp) (const char *, const char *, size_t);
4951
4952 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4953
4954 if (ncmp (name, sym_text, sym_text_len) != 0)
4955 return 0;
4956
4957 if (sym_text[sym_text_len] == '(')
4958 {
4959 /* User searches for `name(someth...'. Require NAME to be terminated.
4960 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4961 present but accept even parameters presence. In this case this
4962 function is in fact strcmp_iw but whitespace skipping is not supported
4963 for tab completion. */
4964
4965 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4966 return 0;
4967 }
4968
4969 return 1;
4970 }
4971
4972 /* Free any memory associated with a completion list. */
4973
4974 static void
4975 free_completion_list (VEC (char_ptr) **list_ptr)
4976 {
4977 int i;
4978 char *p;
4979
4980 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4981 xfree (p);
4982 VEC_free (char_ptr, *list_ptr);
4983 }
4984
4985 /* Callback for make_cleanup. */
4986
4987 static void
4988 do_free_completion_list (void *list)
4989 {
4990 free_completion_list (list);
4991 }
4992
4993 /* Helper routine for make_symbol_completion_list. */
4994
4995 static VEC (char_ptr) *return_val;
4996
4997 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4998 completion_list_add_name \
4999 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5000
5001 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5002 completion_list_add_name \
5003 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5004
5005 /* Tracker for how many unique completions have been generated. Used
5006 to terminate completion list generation early if the list has grown
5007 to a size so large as to be useless. This helps avoid GDB seeming
5008 to lock up in the event the user requests to complete on something
5009 vague that necessitates the time consuming expansion of many symbol
5010 tables. */
5011
5012 static completion_tracker_t completion_tracker;
5013
5014 /* Test to see if the symbol specified by SYMNAME (which is already
5015 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5016 characters. If so, add it to the current completion list. */
5017
5018 static void
5019 completion_list_add_name (const char *symname,
5020 const char *sym_text, int sym_text_len,
5021 const char *text, const char *word)
5022 {
5023 /* Clip symbols that cannot match. */
5024 if (!compare_symbol_name (symname, sym_text, sym_text_len))
5025 return;
5026
5027 /* We have a match for a completion, so add SYMNAME to the current list
5028 of matches. Note that the name is moved to freshly malloc'd space. */
5029
5030 {
5031 char *newobj;
5032 enum maybe_add_completion_enum add_status;
5033
5034 if (word == sym_text)
5035 {
5036 newobj = xmalloc (strlen (symname) + 5);
5037 strcpy (newobj, symname);
5038 }
5039 else if (word > sym_text)
5040 {
5041 /* Return some portion of symname. */
5042 newobj = xmalloc (strlen (symname) + 5);
5043 strcpy (newobj, symname + (word - sym_text));
5044 }
5045 else
5046 {
5047 /* Return some of SYM_TEXT plus symname. */
5048 newobj = xmalloc (strlen (symname) + (sym_text - word) + 5);
5049 strncpy (newobj, word, sym_text - word);
5050 newobj[sym_text - word] = '\0';
5051 strcat (newobj, symname);
5052 }
5053
5054 add_status = maybe_add_completion (completion_tracker, newobj);
5055
5056 switch (add_status)
5057 {
5058 case MAYBE_ADD_COMPLETION_OK:
5059 VEC_safe_push (char_ptr, return_val, newobj);
5060 break;
5061 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5062 VEC_safe_push (char_ptr, return_val, newobj);
5063 throw_max_completions_reached_error ();
5064 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5065 xfree (newobj);
5066 throw_max_completions_reached_error ();
5067 case MAYBE_ADD_COMPLETION_DUPLICATE:
5068 xfree (newobj);
5069 break;
5070 }
5071 }
5072 }
5073
5074 /* ObjC: In case we are completing on a selector, look as the msymbol
5075 again and feed all the selectors into the mill. */
5076
5077 static void
5078 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5079 const char *sym_text, int sym_text_len,
5080 const char *text, const char *word)
5081 {
5082 static char *tmp = NULL;
5083 static unsigned int tmplen = 0;
5084
5085 const char *method, *category, *selector;
5086 char *tmp2 = NULL;
5087
5088 method = MSYMBOL_NATURAL_NAME (msymbol);
5089
5090 /* Is it a method? */
5091 if ((method[0] != '-') && (method[0] != '+'))
5092 return;
5093
5094 if (sym_text[0] == '[')
5095 /* Complete on shortened method method. */
5096 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5097
5098 while ((strlen (method) + 1) >= tmplen)
5099 {
5100 if (tmplen == 0)
5101 tmplen = 1024;
5102 else
5103 tmplen *= 2;
5104 tmp = xrealloc (tmp, tmplen);
5105 }
5106 selector = strchr (method, ' ');
5107 if (selector != NULL)
5108 selector++;
5109
5110 category = strchr (method, '(');
5111
5112 if ((category != NULL) && (selector != NULL))
5113 {
5114 memcpy (tmp, method, (category - method));
5115 tmp[category - method] = ' ';
5116 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5117 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5118 if (sym_text[0] == '[')
5119 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5120 }
5121
5122 if (selector != NULL)
5123 {
5124 /* Complete on selector only. */
5125 strcpy (tmp, selector);
5126 tmp2 = strchr (tmp, ']');
5127 if (tmp2 != NULL)
5128 *tmp2 = '\0';
5129
5130 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5131 }
5132 }
5133
5134 /* Break the non-quoted text based on the characters which are in
5135 symbols. FIXME: This should probably be language-specific. */
5136
5137 static const char *
5138 language_search_unquoted_string (const char *text, const char *p)
5139 {
5140 for (; p > text; --p)
5141 {
5142 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5143 continue;
5144 else
5145 {
5146 if ((current_language->la_language == language_objc))
5147 {
5148 if (p[-1] == ':') /* Might be part of a method name. */
5149 continue;
5150 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5151 p -= 2; /* Beginning of a method name. */
5152 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5153 { /* Might be part of a method name. */
5154 const char *t = p;
5155
5156 /* Seeing a ' ' or a '(' is not conclusive evidence
5157 that we are in the middle of a method name. However,
5158 finding "-[" or "+[" should be pretty un-ambiguous.
5159 Unfortunately we have to find it now to decide. */
5160
5161 while (t > text)
5162 if (isalnum (t[-1]) || t[-1] == '_' ||
5163 t[-1] == ' ' || t[-1] == ':' ||
5164 t[-1] == '(' || t[-1] == ')')
5165 --t;
5166 else
5167 break;
5168
5169 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5170 p = t - 2; /* Method name detected. */
5171 /* Else we leave with p unchanged. */
5172 }
5173 }
5174 break;
5175 }
5176 }
5177 return p;
5178 }
5179
5180 static void
5181 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5182 int sym_text_len, const char *text,
5183 const char *word)
5184 {
5185 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5186 {
5187 struct type *t = SYMBOL_TYPE (sym);
5188 enum type_code c = TYPE_CODE (t);
5189 int j;
5190
5191 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5192 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5193 if (TYPE_FIELD_NAME (t, j))
5194 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5195 sym_text, sym_text_len, text, word);
5196 }
5197 }
5198
5199 /* Type of the user_data argument passed to add_macro_name,
5200 symbol_completion_matcher and symtab_expansion_callback. */
5201
5202 struct add_name_data
5203 {
5204 /* Arguments required by completion_list_add_name. */
5205 const char *sym_text;
5206 int sym_text_len;
5207 const char *text;
5208 const char *word;
5209
5210 /* Extra argument required for add_symtab_completions. */
5211 enum type_code code;
5212 };
5213
5214 /* A callback used with macro_for_each and macro_for_each_in_scope.
5215 This adds a macro's name to the current completion list. */
5216
5217 static void
5218 add_macro_name (const char *name, const struct macro_definition *ignore,
5219 struct macro_source_file *ignore2, int ignore3,
5220 void *user_data)
5221 {
5222 struct add_name_data *datum = (struct add_name_data *) user_data;
5223
5224 completion_list_add_name (name,
5225 datum->sym_text, datum->sym_text_len,
5226 datum->text, datum->word);
5227 }
5228
5229 /* A callback for expand_symtabs_matching. */
5230
5231 static int
5232 symbol_completion_matcher (const char *name, void *user_data)
5233 {
5234 struct add_name_data *datum = (struct add_name_data *) user_data;
5235
5236 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5237 }
5238
5239 /* Add matching symbols from SYMTAB to the current completion list. */
5240
5241 static void
5242 add_symtab_completions (struct compunit_symtab *cust,
5243 const char *sym_text, int sym_text_len,
5244 const char *text, const char *word,
5245 enum type_code code)
5246 {
5247 struct symbol *sym;
5248 const struct block *b;
5249 struct block_iterator iter;
5250 int i;
5251
5252 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5253 {
5254 QUIT;
5255 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5256 ALL_BLOCK_SYMBOLS (b, iter, sym)
5257 {
5258 if (code == TYPE_CODE_UNDEF
5259 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5260 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5261 COMPLETION_LIST_ADD_SYMBOL (sym,
5262 sym_text, sym_text_len,
5263 text, word);
5264 }
5265 }
5266 }
5267
5268 /* Callback to add completions to the current list when symbol tables
5269 are expanded during completion list generation. */
5270
5271 static void
5272 symtab_expansion_callback (struct compunit_symtab *symtab,
5273 void *user_data)
5274 {
5275 struct add_name_data *datum = (struct add_name_data *) user_data;
5276
5277 add_symtab_completions (symtab,
5278 datum->sym_text, datum->sym_text_len,
5279 datum->text, datum->word,
5280 datum->code);
5281 }
5282
5283 static void
5284 default_make_symbol_completion_list_break_on_1 (const char *text,
5285 const char *word,
5286 const char *break_on,
5287 enum type_code code)
5288 {
5289 /* Problem: All of the symbols have to be copied because readline
5290 frees them. I'm not going to worry about this; hopefully there
5291 won't be that many. */
5292
5293 struct symbol *sym;
5294 struct compunit_symtab *cust;
5295 struct minimal_symbol *msymbol;
5296 struct objfile *objfile;
5297 const struct block *b;
5298 const struct block *surrounding_static_block, *surrounding_global_block;
5299 struct block_iterator iter;
5300 /* The symbol we are completing on. Points in same buffer as text. */
5301 const char *sym_text;
5302 /* Length of sym_text. */
5303 int sym_text_len;
5304 struct add_name_data datum;
5305 struct cleanup *cleanups;
5306
5307 /* Now look for the symbol we are supposed to complete on. */
5308 {
5309 const char *p;
5310 char quote_found;
5311 const char *quote_pos = NULL;
5312
5313 /* First see if this is a quoted string. */
5314 quote_found = '\0';
5315 for (p = text; *p != '\0'; ++p)
5316 {
5317 if (quote_found != '\0')
5318 {
5319 if (*p == quote_found)
5320 /* Found close quote. */
5321 quote_found = '\0';
5322 else if (*p == '\\' && p[1] == quote_found)
5323 /* A backslash followed by the quote character
5324 doesn't end the string. */
5325 ++p;
5326 }
5327 else if (*p == '\'' || *p == '"')
5328 {
5329 quote_found = *p;
5330 quote_pos = p;
5331 }
5332 }
5333 if (quote_found == '\'')
5334 /* A string within single quotes can be a symbol, so complete on it. */
5335 sym_text = quote_pos + 1;
5336 else if (quote_found == '"')
5337 /* A double-quoted string is never a symbol, nor does it make sense
5338 to complete it any other way. */
5339 {
5340 return;
5341 }
5342 else
5343 {
5344 /* It is not a quoted string. Break it based on the characters
5345 which are in symbols. */
5346 while (p > text)
5347 {
5348 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5349 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5350 --p;
5351 else
5352 break;
5353 }
5354 sym_text = p;
5355 }
5356 }
5357
5358 sym_text_len = strlen (sym_text);
5359
5360 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5361
5362 if (current_language->la_language == language_cplus
5363 || current_language->la_language == language_java
5364 || current_language->la_language == language_fortran)
5365 {
5366 /* These languages may have parameters entered by user but they are never
5367 present in the partial symbol tables. */
5368
5369 const char *cs = memchr (sym_text, '(', sym_text_len);
5370
5371 if (cs)
5372 sym_text_len = cs - sym_text;
5373 }
5374 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5375
5376 completion_tracker = new_completion_tracker ();
5377 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5378
5379 datum.sym_text = sym_text;
5380 datum.sym_text_len = sym_text_len;
5381 datum.text = text;
5382 datum.word = word;
5383 datum.code = code;
5384
5385 /* At this point scan through the misc symbol vectors and add each
5386 symbol you find to the list. Eventually we want to ignore
5387 anything that isn't a text symbol (everything else will be
5388 handled by the psymtab code below). */
5389
5390 if (code == TYPE_CODE_UNDEF)
5391 {
5392 ALL_MSYMBOLS (objfile, msymbol)
5393 {
5394 QUIT;
5395 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5396 word);
5397
5398 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5399 word);
5400 }
5401 }
5402
5403 /* Add completions for all currently loaded symbol tables. */
5404 ALL_COMPUNITS (objfile, cust)
5405 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5406 code);
5407
5408 /* Look through the partial symtabs for all symbols which begin
5409 by matching SYM_TEXT. Expand all CUs that you find to the list.
5410 symtab_expansion_callback is called for each expanded symtab,
5411 causing those symtab's completions to be added to the list too. */
5412 expand_symtabs_matching (NULL, symbol_completion_matcher,
5413 symtab_expansion_callback, ALL_DOMAIN,
5414 &datum);
5415
5416 /* Search upwards from currently selected frame (so that we can
5417 complete on local vars). Also catch fields of types defined in
5418 this places which match our text string. Only complete on types
5419 visible from current context. */
5420
5421 b = get_selected_block (0);
5422 surrounding_static_block = block_static_block (b);
5423 surrounding_global_block = block_global_block (b);
5424 if (surrounding_static_block != NULL)
5425 while (b != surrounding_static_block)
5426 {
5427 QUIT;
5428
5429 ALL_BLOCK_SYMBOLS (b, iter, sym)
5430 {
5431 if (code == TYPE_CODE_UNDEF)
5432 {
5433 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5434 word);
5435 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5436 word);
5437 }
5438 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5439 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5440 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5441 word);
5442 }
5443
5444 /* Stop when we encounter an enclosing function. Do not stop for
5445 non-inlined functions - the locals of the enclosing function
5446 are in scope for a nested function. */
5447 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5448 break;
5449 b = BLOCK_SUPERBLOCK (b);
5450 }
5451
5452 /* Add fields from the file's types; symbols will be added below. */
5453
5454 if (code == TYPE_CODE_UNDEF)
5455 {
5456 if (surrounding_static_block != NULL)
5457 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5458 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5459
5460 if (surrounding_global_block != NULL)
5461 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5462 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5463 }
5464
5465 /* Skip macros if we are completing a struct tag -- arguable but
5466 usually what is expected. */
5467 if (current_language->la_macro_expansion == macro_expansion_c
5468 && code == TYPE_CODE_UNDEF)
5469 {
5470 struct macro_scope *scope;
5471
5472 /* Add any macros visible in the default scope. Note that this
5473 may yield the occasional wrong result, because an expression
5474 might be evaluated in a scope other than the default. For
5475 example, if the user types "break file:line if <TAB>", the
5476 resulting expression will be evaluated at "file:line" -- but
5477 at there does not seem to be a way to detect this at
5478 completion time. */
5479 scope = default_macro_scope ();
5480 if (scope)
5481 {
5482 macro_for_each_in_scope (scope->file, scope->line,
5483 add_macro_name, &datum);
5484 xfree (scope);
5485 }
5486
5487 /* User-defined macros are always visible. */
5488 macro_for_each (macro_user_macros, add_macro_name, &datum);
5489 }
5490
5491 do_cleanups (cleanups);
5492 }
5493
5494 VEC (char_ptr) *
5495 default_make_symbol_completion_list_break_on (const char *text,
5496 const char *word,
5497 const char *break_on,
5498 enum type_code code)
5499 {
5500 struct cleanup *back_to;
5501 volatile struct gdb_exception except;
5502
5503 return_val = NULL;
5504 back_to = make_cleanup (do_free_completion_list, &return_val);
5505
5506 TRY_CATCH (except, RETURN_MASK_ERROR)
5507 {
5508 default_make_symbol_completion_list_break_on_1 (text, word,
5509 break_on, code);
5510 }
5511 if (except.reason < 0)
5512 {
5513 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5514 throw_exception (except);
5515 }
5516
5517 discard_cleanups (back_to);
5518 return return_val;
5519 }
5520
5521 VEC (char_ptr) *
5522 default_make_symbol_completion_list (const char *text, const char *word,
5523 enum type_code code)
5524 {
5525 return default_make_symbol_completion_list_break_on (text, word, "", code);
5526 }
5527
5528 /* Return a vector of all symbols (regardless of class) which begin by
5529 matching TEXT. If the answer is no symbols, then the return value
5530 is NULL. */
5531
5532 VEC (char_ptr) *
5533 make_symbol_completion_list (const char *text, const char *word)
5534 {
5535 return current_language->la_make_symbol_completion_list (text, word,
5536 TYPE_CODE_UNDEF);
5537 }
5538
5539 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5540 symbols whose type code is CODE. */
5541
5542 VEC (char_ptr) *
5543 make_symbol_completion_type (const char *text, const char *word,
5544 enum type_code code)
5545 {
5546 gdb_assert (code == TYPE_CODE_UNION
5547 || code == TYPE_CODE_STRUCT
5548 || code == TYPE_CODE_ENUM);
5549 return current_language->la_make_symbol_completion_list (text, word, code);
5550 }
5551
5552 /* Like make_symbol_completion_list, but suitable for use as a
5553 completion function. */
5554
5555 VEC (char_ptr) *
5556 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5557 const char *text, const char *word)
5558 {
5559 return make_symbol_completion_list (text, word);
5560 }
5561
5562 /* Like make_symbol_completion_list, but returns a list of symbols
5563 defined in a source file FILE. */
5564
5565 VEC (char_ptr) *
5566 make_file_symbol_completion_list (const char *text, const char *word,
5567 const char *srcfile)
5568 {
5569 struct symbol *sym;
5570 struct symtab *s;
5571 struct block *b;
5572 struct block_iterator iter;
5573 /* The symbol we are completing on. Points in same buffer as text. */
5574 const char *sym_text;
5575 /* Length of sym_text. */
5576 int sym_text_len;
5577
5578 /* Now look for the symbol we are supposed to complete on.
5579 FIXME: This should be language-specific. */
5580 {
5581 const char *p;
5582 char quote_found;
5583 const char *quote_pos = NULL;
5584
5585 /* First see if this is a quoted string. */
5586 quote_found = '\0';
5587 for (p = text; *p != '\0'; ++p)
5588 {
5589 if (quote_found != '\0')
5590 {
5591 if (*p == quote_found)
5592 /* Found close quote. */
5593 quote_found = '\0';
5594 else if (*p == '\\' && p[1] == quote_found)
5595 /* A backslash followed by the quote character
5596 doesn't end the string. */
5597 ++p;
5598 }
5599 else if (*p == '\'' || *p == '"')
5600 {
5601 quote_found = *p;
5602 quote_pos = p;
5603 }
5604 }
5605 if (quote_found == '\'')
5606 /* A string within single quotes can be a symbol, so complete on it. */
5607 sym_text = quote_pos + 1;
5608 else if (quote_found == '"')
5609 /* A double-quoted string is never a symbol, nor does it make sense
5610 to complete it any other way. */
5611 {
5612 return NULL;
5613 }
5614 else
5615 {
5616 /* Not a quoted string. */
5617 sym_text = language_search_unquoted_string (text, p);
5618 }
5619 }
5620
5621 sym_text_len = strlen (sym_text);
5622
5623 return_val = NULL;
5624
5625 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5626 in). */
5627 s = lookup_symtab (srcfile);
5628 if (s == NULL)
5629 {
5630 /* Maybe they typed the file with leading directories, while the
5631 symbol tables record only its basename. */
5632 const char *tail = lbasename (srcfile);
5633
5634 if (tail > srcfile)
5635 s = lookup_symtab (tail);
5636 }
5637
5638 /* If we have no symtab for that file, return an empty list. */
5639 if (s == NULL)
5640 return (return_val);
5641
5642 /* Go through this symtab and check the externs and statics for
5643 symbols which match. */
5644
5645 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5646 ALL_BLOCK_SYMBOLS (b, iter, sym)
5647 {
5648 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5649 }
5650
5651 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5652 ALL_BLOCK_SYMBOLS (b, iter, sym)
5653 {
5654 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5655 }
5656
5657 return (return_val);
5658 }
5659
5660 /* A helper function for make_source_files_completion_list. It adds
5661 another file name to a list of possible completions, growing the
5662 list as necessary. */
5663
5664 static void
5665 add_filename_to_list (const char *fname, const char *text, const char *word,
5666 VEC (char_ptr) **list)
5667 {
5668 char *newobj;
5669 size_t fnlen = strlen (fname);
5670
5671 if (word == text)
5672 {
5673 /* Return exactly fname. */
5674 newobj = xmalloc (fnlen + 5);
5675 strcpy (newobj, fname);
5676 }
5677 else if (word > text)
5678 {
5679 /* Return some portion of fname. */
5680 newobj = xmalloc (fnlen + 5);
5681 strcpy (newobj, fname + (word - text));
5682 }
5683 else
5684 {
5685 /* Return some of TEXT plus fname. */
5686 newobj = xmalloc (fnlen + (text - word) + 5);
5687 strncpy (newobj, word, text - word);
5688 newobj[text - word] = '\0';
5689 strcat (newobj, fname);
5690 }
5691 VEC_safe_push (char_ptr, *list, newobj);
5692 }
5693
5694 static int
5695 not_interesting_fname (const char *fname)
5696 {
5697 static const char *illegal_aliens[] = {
5698 "_globals_", /* inserted by coff_symtab_read */
5699 NULL
5700 };
5701 int i;
5702
5703 for (i = 0; illegal_aliens[i]; i++)
5704 {
5705 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5706 return 1;
5707 }
5708 return 0;
5709 }
5710
5711 /* An object of this type is passed as the user_data argument to
5712 map_partial_symbol_filenames. */
5713 struct add_partial_filename_data
5714 {
5715 struct filename_seen_cache *filename_seen_cache;
5716 const char *text;
5717 const char *word;
5718 int text_len;
5719 VEC (char_ptr) **list;
5720 };
5721
5722 /* A callback for map_partial_symbol_filenames. */
5723
5724 static void
5725 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5726 void *user_data)
5727 {
5728 struct add_partial_filename_data *data = user_data;
5729
5730 if (not_interesting_fname (filename))
5731 return;
5732 if (!filename_seen (data->filename_seen_cache, filename, 1)
5733 && filename_ncmp (filename, data->text, data->text_len) == 0)
5734 {
5735 /* This file matches for a completion; add it to the
5736 current list of matches. */
5737 add_filename_to_list (filename, data->text, data->word, data->list);
5738 }
5739 else
5740 {
5741 const char *base_name = lbasename (filename);
5742
5743 if (base_name != filename
5744 && !filename_seen (data->filename_seen_cache, base_name, 1)
5745 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5746 add_filename_to_list (base_name, data->text, data->word, data->list);
5747 }
5748 }
5749
5750 /* Return a vector of all source files whose names begin with matching
5751 TEXT. The file names are looked up in the symbol tables of this
5752 program. If the answer is no matchess, then the return value is
5753 NULL. */
5754
5755 VEC (char_ptr) *
5756 make_source_files_completion_list (const char *text, const char *word)
5757 {
5758 struct compunit_symtab *cu;
5759 struct symtab *s;
5760 struct objfile *objfile;
5761 size_t text_len = strlen (text);
5762 VEC (char_ptr) *list = NULL;
5763 const char *base_name;
5764 struct add_partial_filename_data datum;
5765 struct filename_seen_cache *filename_seen_cache;
5766 struct cleanup *back_to, *cache_cleanup;
5767
5768 if (!have_full_symbols () && !have_partial_symbols ())
5769 return list;
5770
5771 back_to = make_cleanup (do_free_completion_list, &list);
5772
5773 filename_seen_cache = create_filename_seen_cache ();
5774 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5775 filename_seen_cache);
5776
5777 ALL_FILETABS (objfile, cu, s)
5778 {
5779 if (not_interesting_fname (s->filename))
5780 continue;
5781 if (!filename_seen (filename_seen_cache, s->filename, 1)
5782 && filename_ncmp (s->filename, text, text_len) == 0)
5783 {
5784 /* This file matches for a completion; add it to the current
5785 list of matches. */
5786 add_filename_to_list (s->filename, text, word, &list);
5787 }
5788 else
5789 {
5790 /* NOTE: We allow the user to type a base name when the
5791 debug info records leading directories, but not the other
5792 way around. This is what subroutines of breakpoint
5793 command do when they parse file names. */
5794 base_name = lbasename (s->filename);
5795 if (base_name != s->filename
5796 && !filename_seen (filename_seen_cache, base_name, 1)
5797 && filename_ncmp (base_name, text, text_len) == 0)
5798 add_filename_to_list (base_name, text, word, &list);
5799 }
5800 }
5801
5802 datum.filename_seen_cache = filename_seen_cache;
5803 datum.text = text;
5804 datum.word = word;
5805 datum.text_len = text_len;
5806 datum.list = &list;
5807 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5808 0 /*need_fullname*/);
5809
5810 do_cleanups (cache_cleanup);
5811 discard_cleanups (back_to);
5812
5813 return list;
5814 }
5815 \f
5816 /* Track MAIN */
5817
5818 /* Return the "main_info" object for the current program space. If
5819 the object has not yet been created, create it and fill in some
5820 default values. */
5821
5822 static struct main_info *
5823 get_main_info (void)
5824 {
5825 struct main_info *info = program_space_data (current_program_space,
5826 main_progspace_key);
5827
5828 if (info == NULL)
5829 {
5830 /* It may seem strange to store the main name in the progspace
5831 and also in whatever objfile happens to see a main name in
5832 its debug info. The reason for this is mainly historical:
5833 gdb returned "main" as the name even if no function named
5834 "main" was defined the program; and this approach lets us
5835 keep compatibility. */
5836 info = XCNEW (struct main_info);
5837 info->language_of_main = language_unknown;
5838 set_program_space_data (current_program_space, main_progspace_key,
5839 info);
5840 }
5841
5842 return info;
5843 }
5844
5845 /* A cleanup to destroy a struct main_info when a progspace is
5846 destroyed. */
5847
5848 static void
5849 main_info_cleanup (struct program_space *pspace, void *data)
5850 {
5851 struct main_info *info = data;
5852
5853 if (info != NULL)
5854 xfree (info->name_of_main);
5855 xfree (info);
5856 }
5857
5858 static void
5859 set_main_name (const char *name, enum language lang)
5860 {
5861 struct main_info *info = get_main_info ();
5862
5863 if (info->name_of_main != NULL)
5864 {
5865 xfree (info->name_of_main);
5866 info->name_of_main = NULL;
5867 info->language_of_main = language_unknown;
5868 }
5869 if (name != NULL)
5870 {
5871 info->name_of_main = xstrdup (name);
5872 info->language_of_main = lang;
5873 }
5874 }
5875
5876 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5877 accordingly. */
5878
5879 static void
5880 find_main_name (void)
5881 {
5882 const char *new_main_name;
5883 struct objfile *objfile;
5884
5885 /* First check the objfiles to see whether a debuginfo reader has
5886 picked up the appropriate main name. Historically the main name
5887 was found in a more or less random way; this approach instead
5888 relies on the order of objfile creation -- which still isn't
5889 guaranteed to get the correct answer, but is just probably more
5890 accurate. */
5891 ALL_OBJFILES (objfile)
5892 {
5893 if (objfile->per_bfd->name_of_main != NULL)
5894 {
5895 set_main_name (objfile->per_bfd->name_of_main,
5896 objfile->per_bfd->language_of_main);
5897 return;
5898 }
5899 }
5900
5901 /* Try to see if the main procedure is in Ada. */
5902 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5903 be to add a new method in the language vector, and call this
5904 method for each language until one of them returns a non-empty
5905 name. This would allow us to remove this hard-coded call to
5906 an Ada function. It is not clear that this is a better approach
5907 at this point, because all methods need to be written in a way
5908 such that false positives never be returned. For instance, it is
5909 important that a method does not return a wrong name for the main
5910 procedure if the main procedure is actually written in a different
5911 language. It is easy to guaranty this with Ada, since we use a
5912 special symbol generated only when the main in Ada to find the name
5913 of the main procedure. It is difficult however to see how this can
5914 be guarantied for languages such as C, for instance. This suggests
5915 that order of call for these methods becomes important, which means
5916 a more complicated approach. */
5917 new_main_name = ada_main_name ();
5918 if (new_main_name != NULL)
5919 {
5920 set_main_name (new_main_name, language_ada);
5921 return;
5922 }
5923
5924 new_main_name = d_main_name ();
5925 if (new_main_name != NULL)
5926 {
5927 set_main_name (new_main_name, language_d);
5928 return;
5929 }
5930
5931 new_main_name = go_main_name ();
5932 if (new_main_name != NULL)
5933 {
5934 set_main_name (new_main_name, language_go);
5935 return;
5936 }
5937
5938 new_main_name = pascal_main_name ();
5939 if (new_main_name != NULL)
5940 {
5941 set_main_name (new_main_name, language_pascal);
5942 return;
5943 }
5944
5945 /* The languages above didn't identify the name of the main procedure.
5946 Fallback to "main". */
5947 set_main_name ("main", language_unknown);
5948 }
5949
5950 char *
5951 main_name (void)
5952 {
5953 struct main_info *info = get_main_info ();
5954
5955 if (info->name_of_main == NULL)
5956 find_main_name ();
5957
5958 return info->name_of_main;
5959 }
5960
5961 /* Return the language of the main function. If it is not known,
5962 return language_unknown. */
5963
5964 enum language
5965 main_language (void)
5966 {
5967 struct main_info *info = get_main_info ();
5968
5969 if (info->name_of_main == NULL)
5970 find_main_name ();
5971
5972 return info->language_of_main;
5973 }
5974
5975 /* Handle ``executable_changed'' events for the symtab module. */
5976
5977 static void
5978 symtab_observer_executable_changed (void)
5979 {
5980 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5981 set_main_name (NULL, language_unknown);
5982 }
5983
5984 /* Return 1 if the supplied producer string matches the ARM RealView
5985 compiler (armcc). */
5986
5987 int
5988 producer_is_realview (const char *producer)
5989 {
5990 static const char *const arm_idents[] = {
5991 "ARM C Compiler, ADS",
5992 "Thumb C Compiler, ADS",
5993 "ARM C++ Compiler, ADS",
5994 "Thumb C++ Compiler, ADS",
5995 "ARM/Thumb C/C++ Compiler, RVCT",
5996 "ARM C/C++ Compiler, RVCT"
5997 };
5998 int i;
5999
6000 if (producer == NULL)
6001 return 0;
6002
6003 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6004 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
6005 return 1;
6006
6007 return 0;
6008 }
6009
6010 \f
6011
6012 /* The next index to hand out in response to a registration request. */
6013
6014 static int next_aclass_value = LOC_FINAL_VALUE;
6015
6016 /* The maximum number of "aclass" registrations we support. This is
6017 constant for convenience. */
6018 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6019
6020 /* The objects representing the various "aclass" values. The elements
6021 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6022 elements are those registered at gdb initialization time. */
6023
6024 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6025
6026 /* The globally visible pointer. This is separate from 'symbol_impl'
6027 so that it can be const. */
6028
6029 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6030
6031 /* Make sure we saved enough room in struct symbol. */
6032
6033 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6034
6035 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6036 is the ops vector associated with this index. This returns the new
6037 index, which should be used as the aclass_index field for symbols
6038 of this type. */
6039
6040 int
6041 register_symbol_computed_impl (enum address_class aclass,
6042 const struct symbol_computed_ops *ops)
6043 {
6044 int result = next_aclass_value++;
6045
6046 gdb_assert (aclass == LOC_COMPUTED);
6047 gdb_assert (result < MAX_SYMBOL_IMPLS);
6048 symbol_impl[result].aclass = aclass;
6049 symbol_impl[result].ops_computed = ops;
6050
6051 /* Sanity check OPS. */
6052 gdb_assert (ops != NULL);
6053 gdb_assert (ops->tracepoint_var_ref != NULL);
6054 gdb_assert (ops->describe_location != NULL);
6055 gdb_assert (ops->read_needs_frame != NULL);
6056 gdb_assert (ops->read_variable != NULL);
6057
6058 return result;
6059 }
6060
6061 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6062 OPS is the ops vector associated with this index. This returns the
6063 new index, which should be used as the aclass_index field for symbols
6064 of this type. */
6065
6066 int
6067 register_symbol_block_impl (enum address_class aclass,
6068 const struct symbol_block_ops *ops)
6069 {
6070 int result = next_aclass_value++;
6071
6072 gdb_assert (aclass == LOC_BLOCK);
6073 gdb_assert (result < MAX_SYMBOL_IMPLS);
6074 symbol_impl[result].aclass = aclass;
6075 symbol_impl[result].ops_block = ops;
6076
6077 /* Sanity check OPS. */
6078 gdb_assert (ops != NULL);
6079 gdb_assert (ops->find_frame_base_location != NULL);
6080
6081 return result;
6082 }
6083
6084 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6085 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6086 this index. This returns the new index, which should be used as
6087 the aclass_index field for symbols of this type. */
6088
6089 int
6090 register_symbol_register_impl (enum address_class aclass,
6091 const struct symbol_register_ops *ops)
6092 {
6093 int result = next_aclass_value++;
6094
6095 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6096 gdb_assert (result < MAX_SYMBOL_IMPLS);
6097 symbol_impl[result].aclass = aclass;
6098 symbol_impl[result].ops_register = ops;
6099
6100 return result;
6101 }
6102
6103 /* Initialize elements of 'symbol_impl' for the constants in enum
6104 address_class. */
6105
6106 static void
6107 initialize_ordinary_address_classes (void)
6108 {
6109 int i;
6110
6111 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6112 symbol_impl[i].aclass = i;
6113 }
6114
6115 \f
6116
6117 /* Helper function to initialize the fields of an objfile-owned symbol.
6118 It assumed that *SYM is already all zeroes. */
6119
6120 static void
6121 initialize_objfile_symbol_1 (struct symbol *sym)
6122 {
6123 SYMBOL_OBJFILE_OWNED (sym) = 1;
6124 SYMBOL_SECTION (sym) = -1;
6125 }
6126
6127 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6128
6129 void
6130 initialize_objfile_symbol (struct symbol *sym)
6131 {
6132 memset (sym, 0, sizeof (*sym));
6133 initialize_objfile_symbol_1 (sym);
6134 }
6135
6136 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6137 obstack. */
6138
6139 struct symbol *
6140 allocate_symbol (struct objfile *objfile)
6141 {
6142 struct symbol *result;
6143
6144 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6145 initialize_objfile_symbol_1 (result);
6146
6147 return result;
6148 }
6149
6150 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6151 obstack. */
6152
6153 struct template_symbol *
6154 allocate_template_symbol (struct objfile *objfile)
6155 {
6156 struct template_symbol *result;
6157
6158 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6159 initialize_objfile_symbol_1 (&result->base);
6160
6161 return result;
6162 }
6163
6164 /* See symtab.h. */
6165
6166 struct objfile *
6167 symbol_objfile (const struct symbol *symbol)
6168 {
6169 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6170 return SYMTAB_OBJFILE (symbol->owner.symtab);
6171 }
6172
6173 /* See symtab.h. */
6174
6175 struct gdbarch *
6176 symbol_arch (const struct symbol *symbol)
6177 {
6178 if (!SYMBOL_OBJFILE_OWNED (symbol))
6179 return symbol->owner.arch;
6180 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6181 }
6182
6183 /* See symtab.h. */
6184
6185 struct symtab *
6186 symbol_symtab (const struct symbol *symbol)
6187 {
6188 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6189 return symbol->owner.symtab;
6190 }
6191
6192 /* See symtab.h. */
6193
6194 void
6195 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6196 {
6197 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6198 symbol->owner.symtab = symtab;
6199 }
6200
6201 \f
6202
6203 void
6204 _initialize_symtab (void)
6205 {
6206 initialize_ordinary_address_classes ();
6207
6208 main_progspace_key
6209 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6210
6211 symbol_cache_key
6212 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6213
6214 add_info ("variables", variables_info, _("\
6215 All global and static variable names, or those matching REGEXP."));
6216 if (dbx_commands)
6217 add_com ("whereis", class_info, variables_info, _("\
6218 All global and static variable names, or those matching REGEXP."));
6219
6220 add_info ("functions", functions_info,
6221 _("All function names, or those matching REGEXP."));
6222
6223 /* FIXME: This command has at least the following problems:
6224 1. It prints builtin types (in a very strange and confusing fashion).
6225 2. It doesn't print right, e.g. with
6226 typedef struct foo *FOO
6227 type_print prints "FOO" when we want to make it (in this situation)
6228 print "struct foo *".
6229 I also think "ptype" or "whatis" is more likely to be useful (but if
6230 there is much disagreement "info types" can be fixed). */
6231 add_info ("types", types_info,
6232 _("All type names, or those matching REGEXP."));
6233
6234 add_info ("sources", sources_info,
6235 _("Source files in the program."));
6236
6237 add_com ("rbreak", class_breakpoint, rbreak_command,
6238 _("Set a breakpoint for all functions matching REGEXP."));
6239
6240 if (xdb_commands)
6241 {
6242 add_com ("lf", class_info, sources_info,
6243 _("Source files in the program"));
6244 add_com ("lg", class_info, variables_info, _("\
6245 All global and static variable names, or those matching REGEXP."));
6246 }
6247
6248 add_setshow_enum_cmd ("multiple-symbols", no_class,
6249 multiple_symbols_modes, &multiple_symbols_mode,
6250 _("\
6251 Set the debugger behavior when more than one symbol are possible matches\n\
6252 in an expression."), _("\
6253 Show how the debugger handles ambiguities in expressions."), _("\
6254 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6255 NULL, NULL, &setlist, &showlist);
6256
6257 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6258 &basenames_may_differ, _("\
6259 Set whether a source file may have multiple base names."), _("\
6260 Show whether a source file may have multiple base names."), _("\
6261 (A \"base name\" is the name of a file with the directory part removed.\n\
6262 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6263 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6264 before comparing them. Canonicalization is an expensive operation,\n\
6265 but it allows the same file be known by more than one base name.\n\
6266 If not set (the default), all source files are assumed to have just\n\
6267 one base name, and gdb will do file name comparisons more efficiently."),
6268 NULL, NULL,
6269 &setlist, &showlist);
6270
6271 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6272 _("Set debugging of symbol table creation."),
6273 _("Show debugging of symbol table creation."), _("\
6274 When enabled (non-zero), debugging messages are printed when building\n\
6275 symbol tables. A value of 1 (one) normally provides enough information.\n\
6276 A value greater than 1 provides more verbose information."),
6277 NULL,
6278 NULL,
6279 &setdebuglist, &showdebuglist);
6280
6281 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6282 _("\
6283 Set debugging of symbol lookup."), _("\
6284 Show debugging of symbol lookup."), _("\
6285 When enabled (non-zero), symbol lookups are logged."),
6286 NULL, NULL,
6287 &setdebuglist, &showdebuglist);
6288
6289 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6290 &new_symbol_cache_size,
6291 _("Set the size of the symbol cache."),
6292 _("Show the size of the symbol cache."), _("\
6293 The size of the symbol cache.\n\
6294 If zero then the symbol cache is disabled."),
6295 set_symbol_cache_size_handler, NULL,
6296 &maintenance_set_cmdlist,
6297 &maintenance_show_cmdlist);
6298
6299 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6300 _("Dump the symbol cache for each program space."),
6301 &maintenanceprintlist);
6302
6303 add_cmd ("symbol-cache-statistics", class_maintenance,
6304 maintenance_print_symbol_cache_statistics,
6305 _("Print symbol cache statistics for each program space."),
6306 &maintenanceprintlist);
6307
6308 add_cmd ("flush-symbol-cache", class_maintenance,
6309 maintenance_flush_symbol_cache,
6310 _("Flush the symbol cache for each program space."),
6311 &maintenancelist);
6312
6313 observer_attach_executable_changed (symtab_observer_executable_changed);
6314 observer_attach_new_objfile (symtab_new_objfile_observer);
6315 observer_attach_free_objfile (symtab_free_objfile_observer);
6316 }