]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
PR c++/11702
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 return s;
244 if (!found)
245 return NULL;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257 \f
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
291
292 is_full_physname_constructor = is_constructor_name (physname);
293
294 is_constructor =
295 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
296
297 if (!is_destructor)
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
299
300 if (is_destructor || is_full_physname_constructor)
301 {
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
314 the class name. */
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
325
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341 }
342
343 \f
344 /* Initialize the language dependent portion of a symbol
345 depending upon the language for the symbol. */
346 void
347 symbol_init_language_specific (struct general_symbol_info *gsymbol,
348 enum language language)
349 {
350 gsymbol->language = language;
351 if (gsymbol->language == language_cplus
352 || gsymbol->language == language_d
353 || gsymbol->language == language_java
354 || gsymbol->language == language_objc
355 || gsymbol->language == language_fortran)
356 {
357 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
358 }
359 else
360 {
361 memset (&gsymbol->language_specific, 0,
362 sizeof (gsymbol->language_specific));
363 }
364 }
365
366 /* Functions to initialize a symbol's mangled name. */
367
368 /* Objects of this type are stored in the demangled name hash table. */
369 struct demangled_name_entry
370 {
371 char *mangled;
372 char demangled[1];
373 };
374
375 /* Hash function for the demangled name hash. */
376 static hashval_t
377 hash_demangled_name_entry (const void *data)
378 {
379 const struct demangled_name_entry *e = data;
380
381 return htab_hash_string (e->mangled);
382 }
383
384 /* Equality function for the demangled name hash. */
385 static int
386 eq_demangled_name_entry (const void *a, const void *b)
387 {
388 const struct demangled_name_entry *da = a;
389 const struct demangled_name_entry *db = b;
390
391 return strcmp (da->mangled, db->mangled) == 0;
392 }
393
394 /* Create the hash table used for demangled names. Each hash entry is
395 a pair of strings; one for the mangled name and one for the demangled
396 name. The entry is hashed via just the mangled name. */
397
398 static void
399 create_demangled_names_hash (struct objfile *objfile)
400 {
401 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
402 The hash table code will round this up to the next prime number.
403 Choosing a much larger table size wastes memory, and saves only about
404 1% in symbol reading. */
405
406 objfile->demangled_names_hash = htab_create_alloc
407 (256, hash_demangled_name_entry, eq_demangled_name_entry,
408 NULL, xcalloc, xfree);
409 }
410
411 /* Try to determine the demangled name for a symbol, based on the
412 language of that symbol. If the language is set to language_auto,
413 it will attempt to find any demangling algorithm that works and
414 then set the language appropriately. The returned name is allocated
415 by the demangler and should be xfree'd. */
416
417 static char *
418 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
419 const char *mangled)
420 {
421 char *demangled = NULL;
422
423 if (gsymbol->language == language_unknown)
424 gsymbol->language = language_auto;
425
426 if (gsymbol->language == language_objc
427 || gsymbol->language == language_auto)
428 {
429 demangled =
430 objc_demangle (mangled, 0);
431 if (demangled != NULL)
432 {
433 gsymbol->language = language_objc;
434 return demangled;
435 }
436 }
437 if (gsymbol->language == language_cplus
438 || gsymbol->language == language_auto)
439 {
440 demangled =
441 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
442 if (demangled != NULL)
443 {
444 gsymbol->language = language_cplus;
445 return demangled;
446 }
447 }
448 if (gsymbol->language == language_java)
449 {
450 demangled =
451 cplus_demangle (mangled,
452 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
453 if (demangled != NULL)
454 {
455 gsymbol->language = language_java;
456 return demangled;
457 }
458 }
459 if (gsymbol->language == language_d
460 || gsymbol->language == language_auto)
461 {
462 demangled = d_demangle(mangled, 0);
463 if (demangled != NULL)
464 {
465 gsymbol->language = language_d;
466 return demangled;
467 }
468 }
469 /* We could support `gsymbol->language == language_fortran' here to provide
470 module namespaces also for inferiors with only minimal symbol table (ELF
471 symbols). Just the mangling standard is not standardized across compilers
472 and there is no DW_AT_producer available for inferiors with only the ELF
473 symbols to check the mangling kind. */
474 return NULL;
475 }
476
477 /* Set both the mangled and demangled (if any) names for GSYMBOL based
478 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
479 objfile's obstack; but if COPY_NAME is 0 and if NAME is
480 NUL-terminated, then this function assumes that NAME is already
481 correctly saved (either permanently or with a lifetime tied to the
482 objfile), and it will not be copied.
483
484 The hash table corresponding to OBJFILE is used, and the memory
485 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
486 so the pointer can be discarded after calling this function. */
487
488 /* We have to be careful when dealing with Java names: when we run
489 into a Java minimal symbol, we don't know it's a Java symbol, so it
490 gets demangled as a C++ name. This is unfortunate, but there's not
491 much we can do about it: but when demangling partial symbols and
492 regular symbols, we'd better not reuse the wrong demangled name.
493 (See PR gdb/1039.) We solve this by putting a distinctive prefix
494 on Java names when storing them in the hash table. */
495
496 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
497 don't mind the Java prefix so much: different languages have
498 different demangling requirements, so it's only natural that we
499 need to keep language data around in our demangling cache. But
500 it's not good that the minimal symbol has the wrong demangled name.
501 Unfortunately, I can't think of any easy solution to that
502 problem. */
503
504 #define JAVA_PREFIX "##JAVA$$"
505 #define JAVA_PREFIX_LEN 8
506
507 void
508 symbol_set_names (struct general_symbol_info *gsymbol,
509 const char *linkage_name, int len, int copy_name,
510 struct objfile *objfile)
511 {
512 struct demangled_name_entry **slot;
513 /* A 0-terminated copy of the linkage name. */
514 const char *linkage_name_copy;
515 /* A copy of the linkage name that might have a special Java prefix
516 added to it, for use when looking names up in the hash table. */
517 const char *lookup_name;
518 /* The length of lookup_name. */
519 int lookup_len;
520 struct demangled_name_entry entry;
521
522 if (gsymbol->language == language_ada)
523 {
524 /* In Ada, we do the symbol lookups using the mangled name, so
525 we can save some space by not storing the demangled name.
526
527 As a side note, we have also observed some overlap between
528 the C++ mangling and Ada mangling, similarly to what has
529 been observed with Java. Because we don't store the demangled
530 name with the symbol, we don't need to use the same trick
531 as Java. */
532 if (!copy_name)
533 gsymbol->name = (char *) linkage_name;
534 else
535 {
536 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
537 memcpy (gsymbol->name, linkage_name, len);
538 gsymbol->name[len] = '\0';
539 }
540 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
541
542 return;
543 }
544
545 if (objfile->demangled_names_hash == NULL)
546 create_demangled_names_hash (objfile);
547
548 /* The stabs reader generally provides names that are not
549 NUL-terminated; most of the other readers don't do this, so we
550 can just use the given copy, unless we're in the Java case. */
551 if (gsymbol->language == language_java)
552 {
553 char *alloc_name;
554
555 lookup_len = len + JAVA_PREFIX_LEN;
556 alloc_name = alloca (lookup_len + 1);
557 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
558 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
559 alloc_name[lookup_len] = '\0';
560
561 lookup_name = alloc_name;
562 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
563 }
564 else if (linkage_name[len] != '\0')
565 {
566 char *alloc_name;
567
568 lookup_len = len;
569 alloc_name = alloca (lookup_len + 1);
570 memcpy (alloc_name, linkage_name, len);
571 alloc_name[lookup_len] = '\0';
572
573 lookup_name = alloc_name;
574 linkage_name_copy = alloc_name;
575 }
576 else
577 {
578 lookup_len = len;
579 lookup_name = linkage_name;
580 linkage_name_copy = linkage_name;
581 }
582
583 entry.mangled = (char *) lookup_name;
584 slot = ((struct demangled_name_entry **)
585 htab_find_slot (objfile->demangled_names_hash,
586 &entry, INSERT));
587
588 /* If this name is not in the hash table, add it. */
589 if (*slot == NULL)
590 {
591 char *demangled_name = symbol_find_demangled_name (gsymbol,
592 linkage_name_copy);
593 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
594
595 /* Suppose we have demangled_name==NULL, copy_name==0, and
596 lookup_name==linkage_name. In this case, we already have the
597 mangled name saved, and we don't have a demangled name. So,
598 you might think we could save a little space by not recording
599 this in the hash table at all.
600
601 It turns out that it is actually important to still save such
602 an entry in the hash table, because storing this name gives
603 us better bcache hit rates for partial symbols. */
604 if (!copy_name && lookup_name == linkage_name)
605 {
606 *slot = obstack_alloc (&objfile->objfile_obstack,
607 offsetof (struct demangled_name_entry,
608 demangled)
609 + demangled_len + 1);
610 (*slot)->mangled = (char *) lookup_name;
611 }
612 else
613 {
614 /* If we must copy the mangled name, put it directly after
615 the demangled name so we can have a single
616 allocation. */
617 *slot = obstack_alloc (&objfile->objfile_obstack,
618 offsetof (struct demangled_name_entry,
619 demangled)
620 + lookup_len + demangled_len + 2);
621 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
622 strcpy ((*slot)->mangled, lookup_name);
623 }
624
625 if (demangled_name != NULL)
626 {
627 strcpy ((*slot)->demangled, demangled_name);
628 xfree (demangled_name);
629 }
630 else
631 (*slot)->demangled[0] = '\0';
632 }
633
634 gsymbol->name = (*slot)->mangled + lookup_len - len;
635 if ((*slot)->demangled[0] != '\0')
636 gsymbol->language_specific.cplus_specific.demangled_name
637 = (*slot)->demangled;
638 else
639 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
640 }
641
642 /* Return the source code name of a symbol. In languages where
643 demangling is necessary, this is the demangled name. */
644
645 char *
646 symbol_natural_name (const struct general_symbol_info *gsymbol)
647 {
648 switch (gsymbol->language)
649 {
650 case language_cplus:
651 case language_d:
652 case language_java:
653 case language_objc:
654 case language_fortran:
655 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
656 return gsymbol->language_specific.cplus_specific.demangled_name;
657 break;
658 case language_ada:
659 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
660 return gsymbol->language_specific.cplus_specific.demangled_name;
661 else
662 return ada_decode_symbol (gsymbol);
663 break;
664 default:
665 break;
666 }
667 return gsymbol->name;
668 }
669
670 /* Return the demangled name for a symbol based on the language for
671 that symbol. If no demangled name exists, return NULL. */
672 char *
673 symbol_demangled_name (const struct general_symbol_info *gsymbol)
674 {
675 switch (gsymbol->language)
676 {
677 case language_cplus:
678 case language_d:
679 case language_java:
680 case language_objc:
681 case language_fortran:
682 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
683 return gsymbol->language_specific.cplus_specific.demangled_name;
684 break;
685 case language_ada:
686 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
687 return gsymbol->language_specific.cplus_specific.demangled_name;
688 else
689 return ada_decode_symbol (gsymbol);
690 break;
691 default:
692 break;
693 }
694 return NULL;
695 }
696
697 /* Return the search name of a symbol---generally the demangled or
698 linkage name of the symbol, depending on how it will be searched for.
699 If there is no distinct demangled name, then returns the same value
700 (same pointer) as SYMBOL_LINKAGE_NAME. */
701 char *
702 symbol_search_name (const struct general_symbol_info *gsymbol)
703 {
704 if (gsymbol->language == language_ada)
705 return gsymbol->name;
706 else
707 return symbol_natural_name (gsymbol);
708 }
709
710 /* Initialize the structure fields to zero values. */
711 void
712 init_sal (struct symtab_and_line *sal)
713 {
714 sal->pspace = NULL;
715 sal->symtab = 0;
716 sal->section = 0;
717 sal->line = 0;
718 sal->pc = 0;
719 sal->end = 0;
720 sal->explicit_pc = 0;
721 sal->explicit_line = 0;
722 }
723 \f
724
725 /* Return 1 if the two sections are the same, or if they could
726 plausibly be copies of each other, one in an original object
727 file and another in a separated debug file. */
728
729 int
730 matching_obj_sections (struct obj_section *obj_first,
731 struct obj_section *obj_second)
732 {
733 asection *first = obj_first? obj_first->the_bfd_section : NULL;
734 asection *second = obj_second? obj_second->the_bfd_section : NULL;
735 struct objfile *obj;
736
737 /* If they're the same section, then they match. */
738 if (first == second)
739 return 1;
740
741 /* If either is NULL, give up. */
742 if (first == NULL || second == NULL)
743 return 0;
744
745 /* This doesn't apply to absolute symbols. */
746 if (first->owner == NULL || second->owner == NULL)
747 return 0;
748
749 /* If they're in the same object file, they must be different sections. */
750 if (first->owner == second->owner)
751 return 0;
752
753 /* Check whether the two sections are potentially corresponding. They must
754 have the same size, address, and name. We can't compare section indexes,
755 which would be more reliable, because some sections may have been
756 stripped. */
757 if (bfd_get_section_size (first) != bfd_get_section_size (second))
758 return 0;
759
760 /* In-memory addresses may start at a different offset, relativize them. */
761 if (bfd_get_section_vma (first->owner, first)
762 - bfd_get_start_address (first->owner)
763 != bfd_get_section_vma (second->owner, second)
764 - bfd_get_start_address (second->owner))
765 return 0;
766
767 if (bfd_get_section_name (first->owner, first) == NULL
768 || bfd_get_section_name (second->owner, second) == NULL
769 || strcmp (bfd_get_section_name (first->owner, first),
770 bfd_get_section_name (second->owner, second)) != 0)
771 return 0;
772
773 /* Otherwise check that they are in corresponding objfiles. */
774
775 ALL_OBJFILES (obj)
776 if (obj->obfd == first->owner)
777 break;
778 gdb_assert (obj != NULL);
779
780 if (obj->separate_debug_objfile != NULL
781 && obj->separate_debug_objfile->obfd == second->owner)
782 return 1;
783 if (obj->separate_debug_objfile_backlink != NULL
784 && obj->separate_debug_objfile_backlink->obfd == second->owner)
785 return 1;
786
787 return 0;
788 }
789
790 struct symtab *
791 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
792 {
793 struct objfile *objfile;
794 struct minimal_symbol *msymbol;
795
796 /* If we know that this is not a text address, return failure. This is
797 necessary because we loop based on texthigh and textlow, which do
798 not include the data ranges. */
799 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
800 if (msymbol
801 && (MSYMBOL_TYPE (msymbol) == mst_data
802 || MSYMBOL_TYPE (msymbol) == mst_bss
803 || MSYMBOL_TYPE (msymbol) == mst_abs
804 || MSYMBOL_TYPE (msymbol) == mst_file_data
805 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
806 return NULL;
807
808 ALL_OBJFILES (objfile)
809 {
810 struct symtab *result = NULL;
811
812 if (objfile->sf)
813 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
814 pc, section, 0);
815 if (result)
816 return result;
817 }
818
819 return NULL;
820 }
821 \f
822 /* Debug symbols usually don't have section information. We need to dig that
823 out of the minimal symbols and stash that in the debug symbol. */
824
825 void
826 fixup_section (struct general_symbol_info *ginfo,
827 CORE_ADDR addr, struct objfile *objfile)
828 {
829 struct minimal_symbol *msym;
830
831 /* First, check whether a minimal symbol with the same name exists
832 and points to the same address. The address check is required
833 e.g. on PowerPC64, where the minimal symbol for a function will
834 point to the function descriptor, while the debug symbol will
835 point to the actual function code. */
836 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
837 if (msym)
838 {
839 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
840 ginfo->section = SYMBOL_SECTION (msym);
841 }
842 else
843 {
844 /* Static, function-local variables do appear in the linker
845 (minimal) symbols, but are frequently given names that won't
846 be found via lookup_minimal_symbol(). E.g., it has been
847 observed in frv-uclinux (ELF) executables that a static,
848 function-local variable named "foo" might appear in the
849 linker symbols as "foo.6" or "foo.3". Thus, there is no
850 point in attempting to extend the lookup-by-name mechanism to
851 handle this case due to the fact that there can be multiple
852 names.
853
854 So, instead, search the section table when lookup by name has
855 failed. The ``addr'' and ``endaddr'' fields may have already
856 been relocated. If so, the relocation offset (i.e. the
857 ANOFFSET value) needs to be subtracted from these values when
858 performing the comparison. We unconditionally subtract it,
859 because, when no relocation has been performed, the ANOFFSET
860 value will simply be zero.
861
862 The address of the symbol whose section we're fixing up HAS
863 NOT BEEN adjusted (relocated) yet. It can't have been since
864 the section isn't yet known and knowing the section is
865 necessary in order to add the correct relocation value. In
866 other words, we wouldn't even be in this function (attempting
867 to compute the section) if it were already known.
868
869 Note that it is possible to search the minimal symbols
870 (subtracting the relocation value if necessary) to find the
871 matching minimal symbol, but this is overkill and much less
872 efficient. It is not necessary to find the matching minimal
873 symbol, only its section.
874
875 Note that this technique (of doing a section table search)
876 can fail when unrelocated section addresses overlap. For
877 this reason, we still attempt a lookup by name prior to doing
878 a search of the section table. */
879
880 struct obj_section *s;
881
882 ALL_OBJFILE_OSECTIONS (objfile, s)
883 {
884 int idx = s->the_bfd_section->index;
885 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
886
887 if (obj_section_addr (s) - offset <= addr
888 && addr < obj_section_endaddr (s) - offset)
889 {
890 ginfo->obj_section = s;
891 ginfo->section = idx;
892 return;
893 }
894 }
895 }
896 }
897
898 struct symbol *
899 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
900 {
901 CORE_ADDR addr;
902
903 if (!sym)
904 return NULL;
905
906 if (SYMBOL_OBJ_SECTION (sym))
907 return sym;
908
909 /* We either have an OBJFILE, or we can get at it from the sym's
910 symtab. Anything else is a bug. */
911 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
912
913 if (objfile == NULL)
914 objfile = SYMBOL_SYMTAB (sym)->objfile;
915
916 /* We should have an objfile by now. */
917 gdb_assert (objfile);
918
919 switch (SYMBOL_CLASS (sym))
920 {
921 case LOC_STATIC:
922 case LOC_LABEL:
923 addr = SYMBOL_VALUE_ADDRESS (sym);
924 break;
925 case LOC_BLOCK:
926 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
927 break;
928
929 default:
930 /* Nothing else will be listed in the minsyms -- no use looking
931 it up. */
932 return sym;
933 }
934
935 fixup_section (&sym->ginfo, addr, objfile);
936
937 return sym;
938 }
939
940 /* Find the definition for a specified symbol name NAME
941 in domain DOMAIN, visible from lexical block BLOCK.
942 Returns the struct symbol pointer, or zero if no symbol is found.
943 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
944 NAME is a field of the current implied argument `this'. If so set
945 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
946 BLOCK_FOUND is set to the block in which NAME is found (in the case of
947 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
948
949 /* This function has a bunch of loops in it and it would seem to be
950 attractive to put in some QUIT's (though I'm not really sure
951 whether it can run long enough to be really important). But there
952 are a few calls for which it would appear to be bad news to quit
953 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
954 that there is C++ code below which can error(), but that probably
955 doesn't affect these calls since they are looking for a known
956 variable and thus can probably assume it will never hit the C++
957 code). */
958
959 struct symbol *
960 lookup_symbol_in_language (const char *name, const struct block *block,
961 const domain_enum domain, enum language lang,
962 int *is_a_field_of_this)
963 {
964 char *demangled_name = NULL;
965 const char *modified_name = NULL;
966 struct symbol *returnval;
967 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
968
969 modified_name = name;
970
971 /* If we are using C++, D, or Java, demangle the name before doing a
972 lookup, so we can always binary search. */
973 if (lang == language_cplus)
974 {
975 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
976 if (demangled_name)
977 {
978 modified_name = demangled_name;
979 make_cleanup (xfree, demangled_name);
980 }
981 else
982 {
983 /* If we were given a non-mangled name, canonicalize it
984 according to the language (so far only for C++). */
985 demangled_name = cp_canonicalize_string (name);
986 if (demangled_name)
987 {
988 modified_name = demangled_name;
989 make_cleanup (xfree, demangled_name);
990 }
991 }
992 }
993 else if (lang == language_java)
994 {
995 demangled_name = cplus_demangle (name,
996 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
997 if (demangled_name)
998 {
999 modified_name = demangled_name;
1000 make_cleanup (xfree, demangled_name);
1001 }
1002 }
1003 else if (lang == language_d)
1004 {
1005 demangled_name = d_demangle (name, 0);
1006 if (demangled_name)
1007 {
1008 modified_name = demangled_name;
1009 make_cleanup (xfree, demangled_name);
1010 }
1011 }
1012
1013 if (case_sensitivity == case_sensitive_off)
1014 {
1015 char *copy;
1016 int len, i;
1017
1018 len = strlen (name);
1019 copy = (char *) alloca (len + 1);
1020 for (i= 0; i < len; i++)
1021 copy[i] = tolower (name[i]);
1022 copy[len] = 0;
1023 modified_name = copy;
1024 }
1025
1026 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1027 is_a_field_of_this);
1028 do_cleanups (cleanup);
1029
1030 return returnval;
1031 }
1032
1033 /* Behave like lookup_symbol_in_language, but performed with the
1034 current language. */
1035
1036 struct symbol *
1037 lookup_symbol (const char *name, const struct block *block,
1038 domain_enum domain, int *is_a_field_of_this)
1039 {
1040 return lookup_symbol_in_language (name, block, domain,
1041 current_language->la_language,
1042 is_a_field_of_this);
1043 }
1044
1045 /* Behave like lookup_symbol except that NAME is the natural name
1046 of the symbol that we're looking for and, if LINKAGE_NAME is
1047 non-NULL, ensure that the symbol's linkage name matches as
1048 well. */
1049
1050 static struct symbol *
1051 lookup_symbol_aux (const char *name, const struct block *block,
1052 const domain_enum domain, enum language language,
1053 int *is_a_field_of_this)
1054 {
1055 struct symbol *sym;
1056 const struct language_defn *langdef;
1057
1058 /* Make sure we do something sensible with is_a_field_of_this, since
1059 the callers that set this parameter to some non-null value will
1060 certainly use it later and expect it to be either 0 or 1.
1061 If we don't set it, the contents of is_a_field_of_this are
1062 undefined. */
1063 if (is_a_field_of_this != NULL)
1064 *is_a_field_of_this = 0;
1065
1066 /* Search specified block and its superiors. Don't search
1067 STATIC_BLOCK or GLOBAL_BLOCK. */
1068
1069 sym = lookup_symbol_aux_local (name, block, domain, language);
1070 if (sym != NULL)
1071 return sym;
1072
1073 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1074 check to see if NAME is a field of `this'. */
1075
1076 langdef = language_def (language);
1077
1078 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1079 && block != NULL)
1080 {
1081 struct symbol *sym = NULL;
1082 const struct block *function_block = block;
1083
1084 /* 'this' is only defined in the function's block, so find the
1085 enclosing function block. */
1086 for (; function_block && !BLOCK_FUNCTION (function_block);
1087 function_block = BLOCK_SUPERBLOCK (function_block));
1088
1089 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1090 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1091 VAR_DOMAIN);
1092 if (sym)
1093 {
1094 struct type *t = sym->type;
1095
1096 /* I'm not really sure that type of this can ever
1097 be typedefed; just be safe. */
1098 CHECK_TYPEDEF (t);
1099 if (TYPE_CODE (t) == TYPE_CODE_PTR
1100 || TYPE_CODE (t) == TYPE_CODE_REF)
1101 t = TYPE_TARGET_TYPE (t);
1102
1103 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1104 && TYPE_CODE (t) != TYPE_CODE_UNION)
1105 error (_("Internal error: `%s' is not an aggregate"),
1106 langdef->la_name_of_this);
1107
1108 if (check_field (t, name))
1109 {
1110 *is_a_field_of_this = 1;
1111 return NULL;
1112 }
1113 }
1114 }
1115
1116 /* Now do whatever is appropriate for LANGUAGE to look
1117 up static and global variables. */
1118
1119 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1120 if (sym != NULL)
1121 return sym;
1122
1123 /* Now search all static file-level symbols. Not strictly correct,
1124 but more useful than an error. */
1125
1126 return lookup_static_symbol_aux (name, domain);
1127 }
1128
1129 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1130 first, then check the psymtabs. If a psymtab indicates the existence of the
1131 desired name as a file-level static, then do psymtab-to-symtab conversion on
1132 the fly and return the found symbol. */
1133
1134 struct symbol *
1135 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1136 {
1137 struct objfile *objfile;
1138 struct symbol *sym;
1139
1140 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1141 if (sym != NULL)
1142 return sym;
1143
1144 ALL_OBJFILES (objfile)
1145 {
1146 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1147 if (sym != NULL)
1148 return sym;
1149 }
1150
1151 return NULL;
1152 }
1153
1154 /* Check to see if the symbol is defined in BLOCK or its superiors.
1155 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1156
1157 static struct symbol *
1158 lookup_symbol_aux_local (const char *name, const struct block *block,
1159 const domain_enum domain,
1160 enum language language)
1161 {
1162 struct symbol *sym;
1163 const struct block *static_block = block_static_block (block);
1164 const char *scope = block_scope (block);
1165
1166 /* Check if either no block is specified or it's a global block. */
1167
1168 if (static_block == NULL)
1169 return NULL;
1170
1171 while (block != static_block)
1172 {
1173 sym = lookup_symbol_aux_block (name, block, domain);
1174 if (sym != NULL)
1175 return sym;
1176
1177 if (language == language_cplus || language == language_fortran)
1178 {
1179 sym = cp_lookup_symbol_imports (scope,
1180 name,
1181 block,
1182 domain,
1183 1,
1184 1);
1185 if (sym != NULL)
1186 return sym;
1187 }
1188
1189 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1190 break;
1191 block = BLOCK_SUPERBLOCK (block);
1192 }
1193
1194 /* We've reached the edge of the function without finding a result. */
1195
1196 return NULL;
1197 }
1198
1199 /* Look up OBJFILE to BLOCK. */
1200
1201 struct objfile *
1202 lookup_objfile_from_block (const struct block *block)
1203 {
1204 struct objfile *obj;
1205 struct symtab *s;
1206
1207 if (block == NULL)
1208 return NULL;
1209
1210 block = block_global_block (block);
1211 /* Go through SYMTABS. */
1212 ALL_SYMTABS (obj, s)
1213 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1214 {
1215 if (obj->separate_debug_objfile_backlink)
1216 obj = obj->separate_debug_objfile_backlink;
1217
1218 return obj;
1219 }
1220
1221 return NULL;
1222 }
1223
1224 /* Look up a symbol in a block; if found, fixup the symbol, and set
1225 block_found appropriately. */
1226
1227 struct symbol *
1228 lookup_symbol_aux_block (const char *name, const struct block *block,
1229 const domain_enum domain)
1230 {
1231 struct symbol *sym;
1232
1233 sym = lookup_block_symbol (block, name, domain);
1234 if (sym)
1235 {
1236 block_found = block;
1237 return fixup_symbol_section (sym, NULL);
1238 }
1239
1240 return NULL;
1241 }
1242
1243 /* Check all global symbols in OBJFILE in symtabs and
1244 psymtabs. */
1245
1246 struct symbol *
1247 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1248 const char *name,
1249 const domain_enum domain)
1250 {
1251 const struct objfile *objfile;
1252 struct symbol *sym;
1253 struct blockvector *bv;
1254 const struct block *block;
1255 struct symtab *s;
1256
1257 for (objfile = main_objfile;
1258 objfile;
1259 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1260 {
1261 /* Go through symtabs. */
1262 ALL_OBJFILE_SYMTABS (objfile, s)
1263 {
1264 bv = BLOCKVECTOR (s);
1265 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1266 sym = lookup_block_symbol (block, name, domain);
1267 if (sym)
1268 {
1269 block_found = block;
1270 return fixup_symbol_section (sym, (struct objfile *)objfile);
1271 }
1272 }
1273
1274 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1275 name, domain);
1276 if (sym)
1277 return sym;
1278 }
1279
1280 return NULL;
1281 }
1282
1283 /* Check to see if the symbol is defined in one of the symtabs.
1284 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1285 depending on whether or not we want to search global symbols or
1286 static symbols. */
1287
1288 static struct symbol *
1289 lookup_symbol_aux_symtabs (int block_index, const char *name,
1290 const domain_enum domain)
1291 {
1292 struct symbol *sym;
1293 struct objfile *objfile;
1294 struct blockvector *bv;
1295 const struct block *block;
1296 struct symtab *s;
1297
1298 ALL_PRIMARY_SYMTABS (objfile, s)
1299 {
1300 bv = BLOCKVECTOR (s);
1301 block = BLOCKVECTOR_BLOCK (bv, block_index);
1302 sym = lookup_block_symbol (block, name, domain);
1303 if (sym)
1304 {
1305 block_found = block;
1306 return fixup_symbol_section (sym, objfile);
1307 }
1308 }
1309
1310 return NULL;
1311 }
1312
1313 /* A helper function for lookup_symbol_aux that interfaces with the
1314 "quick" symbol table functions. */
1315
1316 static struct symbol *
1317 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1318 const char *name, const domain_enum domain)
1319 {
1320 struct symtab *symtab;
1321 struct blockvector *bv;
1322 const struct block *block;
1323 struct symbol *sym;
1324
1325 if (!objfile->sf)
1326 return NULL;
1327 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1328 if (!symtab)
1329 return NULL;
1330
1331 bv = BLOCKVECTOR (symtab);
1332 block = BLOCKVECTOR_BLOCK (bv, kind);
1333 sym = lookup_block_symbol (block, name, domain);
1334 if (!sym)
1335 {
1336 /* This shouldn't be necessary, but as a last resort try
1337 looking in the statics even though the psymtab claimed
1338 the symbol was global, or vice-versa. It's possible
1339 that the psymtab gets it wrong in some cases. */
1340
1341 /* FIXME: carlton/2002-09-30: Should we really do that?
1342 If that happens, isn't it likely to be a GDB error, in
1343 which case we should fix the GDB error rather than
1344 silently dealing with it here? So I'd vote for
1345 removing the check for the symbol in the other
1346 block. */
1347 block = BLOCKVECTOR_BLOCK (bv,
1348 kind == GLOBAL_BLOCK ?
1349 STATIC_BLOCK : GLOBAL_BLOCK);
1350 sym = lookup_block_symbol (block, name, domain);
1351 if (!sym)
1352 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1353 kind == GLOBAL_BLOCK ? "global" : "static",
1354 name, symtab->filename, name, name);
1355 }
1356 return fixup_symbol_section (sym, objfile);
1357 }
1358
1359 /* A default version of lookup_symbol_nonlocal for use by languages
1360 that can't think of anything better to do. This implements the C
1361 lookup rules. */
1362
1363 struct symbol *
1364 basic_lookup_symbol_nonlocal (const char *name,
1365 const struct block *block,
1366 const domain_enum domain)
1367 {
1368 struct symbol *sym;
1369
1370 /* NOTE: carlton/2003-05-19: The comments below were written when
1371 this (or what turned into this) was part of lookup_symbol_aux;
1372 I'm much less worried about these questions now, since these
1373 decisions have turned out well, but I leave these comments here
1374 for posterity. */
1375
1376 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1377 not it would be appropriate to search the current global block
1378 here as well. (That's what this code used to do before the
1379 is_a_field_of_this check was moved up.) On the one hand, it's
1380 redundant with the lookup_symbol_aux_symtabs search that happens
1381 next. On the other hand, if decode_line_1 is passed an argument
1382 like filename:var, then the user presumably wants 'var' to be
1383 searched for in filename. On the third hand, there shouldn't be
1384 multiple global variables all of which are named 'var', and it's
1385 not like decode_line_1 has ever restricted its search to only
1386 global variables in a single filename. All in all, only
1387 searching the static block here seems best: it's correct and it's
1388 cleanest. */
1389
1390 /* NOTE: carlton/2002-12-05: There's also a possible performance
1391 issue here: if you usually search for global symbols in the
1392 current file, then it would be slightly better to search the
1393 current global block before searching all the symtabs. But there
1394 are other factors that have a much greater effect on performance
1395 than that one, so I don't think we should worry about that for
1396 now. */
1397
1398 sym = lookup_symbol_static (name, block, domain);
1399 if (sym != NULL)
1400 return sym;
1401
1402 return lookup_symbol_global (name, block, domain);
1403 }
1404
1405 /* Lookup a symbol in the static block associated to BLOCK, if there
1406 is one; do nothing if BLOCK is NULL or a global block. */
1407
1408 struct symbol *
1409 lookup_symbol_static (const char *name,
1410 const struct block *block,
1411 const domain_enum domain)
1412 {
1413 const struct block *static_block = block_static_block (block);
1414
1415 if (static_block != NULL)
1416 return lookup_symbol_aux_block (name, static_block, domain);
1417 else
1418 return NULL;
1419 }
1420
1421 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1422 necessary). */
1423
1424 struct symbol *
1425 lookup_symbol_global (const char *name,
1426 const struct block *block,
1427 const domain_enum domain)
1428 {
1429 struct symbol *sym = NULL;
1430 struct objfile *objfile = NULL;
1431
1432 /* Call library-specific lookup procedure. */
1433 objfile = lookup_objfile_from_block (block);
1434 if (objfile != NULL)
1435 sym = solib_global_lookup (objfile, name, domain);
1436 if (sym != NULL)
1437 return sym;
1438
1439 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1440 if (sym != NULL)
1441 return sym;
1442
1443 ALL_OBJFILES (objfile)
1444 {
1445 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1446 if (sym)
1447 return sym;
1448 }
1449
1450 return NULL;
1451 }
1452
1453 int
1454 symbol_matches_domain (enum language symbol_language,
1455 domain_enum symbol_domain,
1456 domain_enum domain)
1457 {
1458 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1459 A Java class declaration also defines a typedef for the class.
1460 Similarly, any Ada type declaration implicitly defines a typedef. */
1461 if (symbol_language == language_cplus
1462 || symbol_language == language_d
1463 || symbol_language == language_java
1464 || symbol_language == language_ada)
1465 {
1466 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1467 && symbol_domain == STRUCT_DOMAIN)
1468 return 1;
1469 }
1470 /* For all other languages, strict match is required. */
1471 return (symbol_domain == domain);
1472 }
1473
1474 /* Look up a type named NAME in the struct_domain. The type returned
1475 must not be opaque -- i.e., must have at least one field
1476 defined. */
1477
1478 struct type *
1479 lookup_transparent_type (const char *name)
1480 {
1481 return current_language->la_lookup_transparent_type (name);
1482 }
1483
1484 /* A helper for basic_lookup_transparent_type that interfaces with the
1485 "quick" symbol table functions. */
1486
1487 static struct type *
1488 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1489 const char *name)
1490 {
1491 struct symtab *symtab;
1492 struct blockvector *bv;
1493 struct block *block;
1494 struct symbol *sym;
1495
1496 if (!objfile->sf)
1497 return NULL;
1498 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1499 if (!symtab)
1500 return NULL;
1501
1502 bv = BLOCKVECTOR (symtab);
1503 block = BLOCKVECTOR_BLOCK (bv, kind);
1504 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1505 if (!sym)
1506 {
1507 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1508
1509 /* This shouldn't be necessary, but as a last resort
1510 * try looking in the 'other kind' even though the psymtab
1511 * claimed the symbol was one thing. It's possible that
1512 * the psymtab gets it wrong in some cases.
1513 */
1514 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1515 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1516 if (!sym)
1517 /* FIXME; error is wrong in one case */
1518 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1519 %s may be an inlined function, or may be a template function\n\
1520 (if a template, try specifying an instantiation: %s<type>)."),
1521 name, symtab->filename, name, name);
1522 }
1523 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1524 return SYMBOL_TYPE (sym);
1525
1526 return NULL;
1527 }
1528
1529 /* The standard implementation of lookup_transparent_type. This code
1530 was modeled on lookup_symbol -- the parts not relevant to looking
1531 up types were just left out. In particular it's assumed here that
1532 types are available in struct_domain and only at file-static or
1533 global blocks. */
1534
1535 struct type *
1536 basic_lookup_transparent_type (const char *name)
1537 {
1538 struct symbol *sym;
1539 struct symtab *s = NULL;
1540 struct blockvector *bv;
1541 struct objfile *objfile;
1542 struct block *block;
1543 struct type *t;
1544
1545 /* Now search all the global symbols. Do the symtab's first, then
1546 check the psymtab's. If a psymtab indicates the existence
1547 of the desired name as a global, then do psymtab-to-symtab
1548 conversion on the fly and return the found symbol. */
1549
1550 ALL_PRIMARY_SYMTABS (objfile, s)
1551 {
1552 bv = BLOCKVECTOR (s);
1553 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1554 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1555 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1556 {
1557 return SYMBOL_TYPE (sym);
1558 }
1559 }
1560
1561 ALL_OBJFILES (objfile)
1562 {
1563 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1564 if (t)
1565 return t;
1566 }
1567
1568 /* Now search the static file-level symbols.
1569 Not strictly correct, but more useful than an error.
1570 Do the symtab's first, then
1571 check the psymtab's. If a psymtab indicates the existence
1572 of the desired name as a file-level static, then do psymtab-to-symtab
1573 conversion on the fly and return the found symbol.
1574 */
1575
1576 ALL_PRIMARY_SYMTABS (objfile, s)
1577 {
1578 bv = BLOCKVECTOR (s);
1579 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1580 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1581 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1582 {
1583 return SYMBOL_TYPE (sym);
1584 }
1585 }
1586
1587 ALL_OBJFILES (objfile)
1588 {
1589 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1590 if (t)
1591 return t;
1592 }
1593
1594 return (struct type *) 0;
1595 }
1596
1597
1598 /* Find the name of the file containing main(). */
1599 /* FIXME: What about languages without main() or specially linked
1600 executables that have no main() ? */
1601
1602 char *
1603 find_main_filename (void)
1604 {
1605 struct objfile *objfile;
1606 char *result, *name = main_name ();
1607
1608 ALL_OBJFILES (objfile)
1609 {
1610 if (!objfile->sf)
1611 continue;
1612 result = objfile->sf->qf->find_symbol_file (objfile, name);
1613 if (result)
1614 return result;
1615 }
1616 return (NULL);
1617 }
1618
1619 /* Search BLOCK for symbol NAME in DOMAIN.
1620
1621 Note that if NAME is the demangled form of a C++ symbol, we will fail
1622 to find a match during the binary search of the non-encoded names, but
1623 for now we don't worry about the slight inefficiency of looking for
1624 a match we'll never find, since it will go pretty quick. Once the
1625 binary search terminates, we drop through and do a straight linear
1626 search on the symbols. Each symbol which is marked as being a ObjC/C++
1627 symbol (language_cplus or language_objc set) has both the encoded and
1628 non-encoded names tested for a match.
1629 */
1630
1631 struct symbol *
1632 lookup_block_symbol (const struct block *block, const char *name,
1633 const domain_enum domain)
1634 {
1635 struct dict_iterator iter;
1636 struct symbol *sym;
1637
1638 if (!BLOCK_FUNCTION (block))
1639 {
1640 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1641 sym != NULL;
1642 sym = dict_iter_name_next (name, &iter))
1643 {
1644 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1645 SYMBOL_DOMAIN (sym), domain))
1646 return sym;
1647 }
1648 return NULL;
1649 }
1650 else
1651 {
1652 /* Note that parameter symbols do not always show up last in the
1653 list; this loop makes sure to take anything else other than
1654 parameter symbols first; it only uses parameter symbols as a
1655 last resort. Note that this only takes up extra computation
1656 time on a match. */
1657
1658 struct symbol *sym_found = NULL;
1659
1660 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1661 sym != NULL;
1662 sym = dict_iter_name_next (name, &iter))
1663 {
1664 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1665 SYMBOL_DOMAIN (sym), domain))
1666 {
1667 sym_found = sym;
1668 if (!SYMBOL_IS_ARGUMENT (sym))
1669 {
1670 break;
1671 }
1672 }
1673 }
1674 return (sym_found); /* Will be NULL if not found. */
1675 }
1676 }
1677
1678 /* Find the symtab associated with PC and SECTION. Look through the
1679 psymtabs and read in another symtab if necessary. */
1680
1681 struct symtab *
1682 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1683 {
1684 struct block *b;
1685 struct blockvector *bv;
1686 struct symtab *s = NULL;
1687 struct symtab *best_s = NULL;
1688 struct objfile *objfile;
1689 struct program_space *pspace;
1690 CORE_ADDR distance = 0;
1691 struct minimal_symbol *msymbol;
1692
1693 pspace = current_program_space;
1694
1695 /* If we know that this is not a text address, return failure. This is
1696 necessary because we loop based on the block's high and low code
1697 addresses, which do not include the data ranges, and because
1698 we call find_pc_sect_psymtab which has a similar restriction based
1699 on the partial_symtab's texthigh and textlow. */
1700 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1701 if (msymbol
1702 && (MSYMBOL_TYPE (msymbol) == mst_data
1703 || MSYMBOL_TYPE (msymbol) == mst_bss
1704 || MSYMBOL_TYPE (msymbol) == mst_abs
1705 || MSYMBOL_TYPE (msymbol) == mst_file_data
1706 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1707 return NULL;
1708
1709 /* Search all symtabs for the one whose file contains our address, and which
1710 is the smallest of all the ones containing the address. This is designed
1711 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1712 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1713 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1714
1715 This happens for native ecoff format, where code from included files
1716 gets its own symtab. The symtab for the included file should have
1717 been read in already via the dependency mechanism.
1718 It might be swifter to create several symtabs with the same name
1719 like xcoff does (I'm not sure).
1720
1721 It also happens for objfiles that have their functions reordered.
1722 For these, the symtab we are looking for is not necessarily read in. */
1723
1724 ALL_PRIMARY_SYMTABS (objfile, s)
1725 {
1726 bv = BLOCKVECTOR (s);
1727 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1728
1729 if (BLOCK_START (b) <= pc
1730 && BLOCK_END (b) > pc
1731 && (distance == 0
1732 || BLOCK_END (b) - BLOCK_START (b) < distance))
1733 {
1734 /* For an objfile that has its functions reordered,
1735 find_pc_psymtab will find the proper partial symbol table
1736 and we simply return its corresponding symtab. */
1737 /* In order to better support objfiles that contain both
1738 stabs and coff debugging info, we continue on if a psymtab
1739 can't be found. */
1740 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1741 {
1742 struct symtab *result;
1743
1744 result
1745 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1746 msymbol,
1747 pc, section,
1748 0);
1749 if (result)
1750 return result;
1751 }
1752 if (section != 0)
1753 {
1754 struct dict_iterator iter;
1755 struct symbol *sym = NULL;
1756
1757 ALL_BLOCK_SYMBOLS (b, iter, sym)
1758 {
1759 fixup_symbol_section (sym, objfile);
1760 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1761 break;
1762 }
1763 if (sym == NULL)
1764 continue; /* no symbol in this symtab matches section */
1765 }
1766 distance = BLOCK_END (b) - BLOCK_START (b);
1767 best_s = s;
1768 }
1769 }
1770
1771 if (best_s != NULL)
1772 return (best_s);
1773
1774 ALL_OBJFILES (objfile)
1775 {
1776 struct symtab *result;
1777
1778 if (!objfile->sf)
1779 continue;
1780 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1781 msymbol,
1782 pc, section,
1783 1);
1784 if (result)
1785 return result;
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* Find the symtab associated with PC. Look through the psymtabs and
1792 read in another symtab if necessary. Backward compatibility, no section */
1793
1794 struct symtab *
1795 find_pc_symtab (CORE_ADDR pc)
1796 {
1797 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1798 }
1799 \f
1800
1801 /* Find the source file and line number for a given PC value and SECTION.
1802 Return a structure containing a symtab pointer, a line number,
1803 and a pc range for the entire source line.
1804 The value's .pc field is NOT the specified pc.
1805 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1806 use the line that ends there. Otherwise, in that case, the line
1807 that begins there is used. */
1808
1809 /* The big complication here is that a line may start in one file, and end just
1810 before the start of another file. This usually occurs when you #include
1811 code in the middle of a subroutine. To properly find the end of a line's PC
1812 range, we must search all symtabs associated with this compilation unit, and
1813 find the one whose first PC is closer than that of the next line in this
1814 symtab. */
1815
1816 /* If it's worth the effort, we could be using a binary search. */
1817
1818 struct symtab_and_line
1819 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1820 {
1821 struct symtab *s;
1822 struct linetable *l;
1823 int len;
1824 int i;
1825 struct linetable_entry *item;
1826 struct symtab_and_line val;
1827 struct blockvector *bv;
1828 struct minimal_symbol *msymbol;
1829 struct minimal_symbol *mfunsym;
1830
1831 /* Info on best line seen so far, and where it starts, and its file. */
1832
1833 struct linetable_entry *best = NULL;
1834 CORE_ADDR best_end = 0;
1835 struct symtab *best_symtab = 0;
1836
1837 /* Store here the first line number
1838 of a file which contains the line at the smallest pc after PC.
1839 If we don't find a line whose range contains PC,
1840 we will use a line one less than this,
1841 with a range from the start of that file to the first line's pc. */
1842 struct linetable_entry *alt = NULL;
1843 struct symtab *alt_symtab = 0;
1844
1845 /* Info on best line seen in this file. */
1846
1847 struct linetable_entry *prev;
1848
1849 /* If this pc is not from the current frame,
1850 it is the address of the end of a call instruction.
1851 Quite likely that is the start of the following statement.
1852 But what we want is the statement containing the instruction.
1853 Fudge the pc to make sure we get that. */
1854
1855 init_sal (&val); /* initialize to zeroes */
1856
1857 val.pspace = current_program_space;
1858
1859 /* It's tempting to assume that, if we can't find debugging info for
1860 any function enclosing PC, that we shouldn't search for line
1861 number info, either. However, GAS can emit line number info for
1862 assembly files --- very helpful when debugging hand-written
1863 assembly code. In such a case, we'd have no debug info for the
1864 function, but we would have line info. */
1865
1866 if (notcurrent)
1867 pc -= 1;
1868
1869 /* elz: added this because this function returned the wrong
1870 information if the pc belongs to a stub (import/export)
1871 to call a shlib function. This stub would be anywhere between
1872 two functions in the target, and the line info was erroneously
1873 taken to be the one of the line before the pc.
1874 */
1875 /* RT: Further explanation:
1876
1877 * We have stubs (trampolines) inserted between procedures.
1878 *
1879 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1880 * exists in the main image.
1881 *
1882 * In the minimal symbol table, we have a bunch of symbols
1883 * sorted by start address. The stubs are marked as "trampoline",
1884 * the others appear as text. E.g.:
1885 *
1886 * Minimal symbol table for main image
1887 * main: code for main (text symbol)
1888 * shr1: stub (trampoline symbol)
1889 * foo: code for foo (text symbol)
1890 * ...
1891 * Minimal symbol table for "shr1" image:
1892 * ...
1893 * shr1: code for shr1 (text symbol)
1894 * ...
1895 *
1896 * So the code below is trying to detect if we are in the stub
1897 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1898 * and if found, do the symbolization from the real-code address
1899 * rather than the stub address.
1900 *
1901 * Assumptions being made about the minimal symbol table:
1902 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1903 * if we're really in the trampoline. If we're beyond it (say
1904 * we're in "foo" in the above example), it'll have a closer
1905 * symbol (the "foo" text symbol for example) and will not
1906 * return the trampoline.
1907 * 2. lookup_minimal_symbol_text() will find a real text symbol
1908 * corresponding to the trampoline, and whose address will
1909 * be different than the trampoline address. I put in a sanity
1910 * check for the address being the same, to avoid an
1911 * infinite recursion.
1912 */
1913 msymbol = lookup_minimal_symbol_by_pc (pc);
1914 if (msymbol != NULL)
1915 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1916 {
1917 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1918 NULL);
1919 if (mfunsym == NULL)
1920 /* I eliminated this warning since it is coming out
1921 * in the following situation:
1922 * gdb shmain // test program with shared libraries
1923 * (gdb) break shr1 // function in shared lib
1924 * Warning: In stub for ...
1925 * In the above situation, the shared lib is not loaded yet,
1926 * so of course we can't find the real func/line info,
1927 * but the "break" still works, and the warning is annoying.
1928 * So I commented out the warning. RT */
1929 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1930 /* fall through */
1931 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
1932 /* Avoid infinite recursion */
1933 /* See above comment about why warning is commented out */
1934 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1935 /* fall through */
1936 else
1937 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
1938 }
1939
1940
1941 s = find_pc_sect_symtab (pc, section);
1942 if (!s)
1943 {
1944 /* if no symbol information, return previous pc */
1945 if (notcurrent)
1946 pc++;
1947 val.pc = pc;
1948 return val;
1949 }
1950
1951 bv = BLOCKVECTOR (s);
1952
1953 /* Look at all the symtabs that share this blockvector.
1954 They all have the same apriori range, that we found was right;
1955 but they have different line tables. */
1956
1957 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1958 {
1959 /* Find the best line in this symtab. */
1960 l = LINETABLE (s);
1961 if (!l)
1962 continue;
1963 len = l->nitems;
1964 if (len <= 0)
1965 {
1966 /* I think len can be zero if the symtab lacks line numbers
1967 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1968 I'm not sure which, and maybe it depends on the symbol
1969 reader). */
1970 continue;
1971 }
1972
1973 prev = NULL;
1974 item = l->item; /* Get first line info */
1975
1976 /* Is this file's first line closer than the first lines of other files?
1977 If so, record this file, and its first line, as best alternate. */
1978 if (item->pc > pc && (!alt || item->pc < alt->pc))
1979 {
1980 alt = item;
1981 alt_symtab = s;
1982 }
1983
1984 for (i = 0; i < len; i++, item++)
1985 {
1986 /* Leave prev pointing to the linetable entry for the last line
1987 that started at or before PC. */
1988 if (item->pc > pc)
1989 break;
1990
1991 prev = item;
1992 }
1993
1994 /* At this point, prev points at the line whose start addr is <= pc, and
1995 item points at the next line. If we ran off the end of the linetable
1996 (pc >= start of the last line), then prev == item. If pc < start of
1997 the first line, prev will not be set. */
1998
1999 /* Is this file's best line closer than the best in the other files?
2000 If so, record this file, and its best line, as best so far. Don't
2001 save prev if it represents the end of a function (i.e. line number
2002 0) instead of a real line. */
2003
2004 if (prev && prev->line && (!best || prev->pc > best->pc))
2005 {
2006 best = prev;
2007 best_symtab = s;
2008
2009 /* Discard BEST_END if it's before the PC of the current BEST. */
2010 if (best_end <= best->pc)
2011 best_end = 0;
2012 }
2013
2014 /* If another line (denoted by ITEM) is in the linetable and its
2015 PC is after BEST's PC, but before the current BEST_END, then
2016 use ITEM's PC as the new best_end. */
2017 if (best && i < len && item->pc > best->pc
2018 && (best_end == 0 || best_end > item->pc))
2019 best_end = item->pc;
2020 }
2021
2022 if (!best_symtab)
2023 {
2024 /* If we didn't find any line number info, just return zeros.
2025 We used to return alt->line - 1 here, but that could be
2026 anywhere; if we don't have line number info for this PC,
2027 don't make some up. */
2028 val.pc = pc;
2029 }
2030 else if (best->line == 0)
2031 {
2032 /* If our best fit is in a range of PC's for which no line
2033 number info is available (line number is zero) then we didn't
2034 find any valid line information. */
2035 val.pc = pc;
2036 }
2037 else
2038 {
2039 val.symtab = best_symtab;
2040 val.line = best->line;
2041 val.pc = best->pc;
2042 if (best_end && (!alt || best_end < alt->pc))
2043 val.end = best_end;
2044 else if (alt)
2045 val.end = alt->pc;
2046 else
2047 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2048 }
2049 val.section = section;
2050 return val;
2051 }
2052
2053 /* Backward compatibility (no section) */
2054
2055 struct symtab_and_line
2056 find_pc_line (CORE_ADDR pc, int notcurrent)
2057 {
2058 struct obj_section *section;
2059
2060 section = find_pc_overlay (pc);
2061 if (pc_in_unmapped_range (pc, section))
2062 pc = overlay_mapped_address (pc, section);
2063 return find_pc_sect_line (pc, section, notcurrent);
2064 }
2065 \f
2066 /* Find line number LINE in any symtab whose name is the same as
2067 SYMTAB.
2068
2069 If found, return the symtab that contains the linetable in which it was
2070 found, set *INDEX to the index in the linetable of the best entry
2071 found, and set *EXACT_MATCH nonzero if the value returned is an
2072 exact match.
2073
2074 If not found, return NULL. */
2075
2076 struct symtab *
2077 find_line_symtab (struct symtab *symtab, int line,
2078 int *index, int *exact_match)
2079 {
2080 int exact = 0; /* Initialized here to avoid a compiler warning. */
2081
2082 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2083 so far seen. */
2084
2085 int best_index;
2086 struct linetable *best_linetable;
2087 struct symtab *best_symtab;
2088
2089 /* First try looking it up in the given symtab. */
2090 best_linetable = LINETABLE (symtab);
2091 best_symtab = symtab;
2092 best_index = find_line_common (best_linetable, line, &exact);
2093 if (best_index < 0 || !exact)
2094 {
2095 /* Didn't find an exact match. So we better keep looking for
2096 another symtab with the same name. In the case of xcoff,
2097 multiple csects for one source file (produced by IBM's FORTRAN
2098 compiler) produce multiple symtabs (this is unavoidable
2099 assuming csects can be at arbitrary places in memory and that
2100 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2101
2102 /* BEST is the smallest linenumber > LINE so far seen,
2103 or 0 if none has been seen so far.
2104 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2105 int best;
2106
2107 struct objfile *objfile;
2108 struct symtab *s;
2109
2110 if (best_index >= 0)
2111 best = best_linetable->item[best_index].line;
2112 else
2113 best = 0;
2114
2115 ALL_OBJFILES (objfile)
2116 {
2117 if (objfile->sf)
2118 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2119 symtab->filename);
2120 }
2121
2122 /* Get symbol full file name if possible. */
2123 symtab_to_fullname (symtab);
2124
2125 ALL_SYMTABS (objfile, s)
2126 {
2127 struct linetable *l;
2128 int ind;
2129
2130 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2131 continue;
2132 if (symtab->fullname != NULL
2133 && symtab_to_fullname (s) != NULL
2134 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2135 continue;
2136 l = LINETABLE (s);
2137 ind = find_line_common (l, line, &exact);
2138 if (ind >= 0)
2139 {
2140 if (exact)
2141 {
2142 best_index = ind;
2143 best_linetable = l;
2144 best_symtab = s;
2145 goto done;
2146 }
2147 if (best == 0 || l->item[ind].line < best)
2148 {
2149 best = l->item[ind].line;
2150 best_index = ind;
2151 best_linetable = l;
2152 best_symtab = s;
2153 }
2154 }
2155 }
2156 }
2157 done:
2158 if (best_index < 0)
2159 return NULL;
2160
2161 if (index)
2162 *index = best_index;
2163 if (exact_match)
2164 *exact_match = exact;
2165
2166 return best_symtab;
2167 }
2168 \f
2169 /* Set the PC value for a given source file and line number and return true.
2170 Returns zero for invalid line number (and sets the PC to 0).
2171 The source file is specified with a struct symtab. */
2172
2173 int
2174 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2175 {
2176 struct linetable *l;
2177 int ind;
2178
2179 *pc = 0;
2180 if (symtab == 0)
2181 return 0;
2182
2183 symtab = find_line_symtab (symtab, line, &ind, NULL);
2184 if (symtab != NULL)
2185 {
2186 l = LINETABLE (symtab);
2187 *pc = l->item[ind].pc;
2188 return 1;
2189 }
2190 else
2191 return 0;
2192 }
2193
2194 /* Find the range of pc values in a line.
2195 Store the starting pc of the line into *STARTPTR
2196 and the ending pc (start of next line) into *ENDPTR.
2197 Returns 1 to indicate success.
2198 Returns 0 if could not find the specified line. */
2199
2200 int
2201 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2202 CORE_ADDR *endptr)
2203 {
2204 CORE_ADDR startaddr;
2205 struct symtab_and_line found_sal;
2206
2207 startaddr = sal.pc;
2208 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2209 return 0;
2210
2211 /* This whole function is based on address. For example, if line 10 has
2212 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2213 "info line *0x123" should say the line goes from 0x100 to 0x200
2214 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2215 This also insures that we never give a range like "starts at 0x134
2216 and ends at 0x12c". */
2217
2218 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2219 if (found_sal.line != sal.line)
2220 {
2221 /* The specified line (sal) has zero bytes. */
2222 *startptr = found_sal.pc;
2223 *endptr = found_sal.pc;
2224 }
2225 else
2226 {
2227 *startptr = found_sal.pc;
2228 *endptr = found_sal.end;
2229 }
2230 return 1;
2231 }
2232
2233 /* Given a line table and a line number, return the index into the line
2234 table for the pc of the nearest line whose number is >= the specified one.
2235 Return -1 if none is found. The value is >= 0 if it is an index.
2236
2237 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2238
2239 static int
2240 find_line_common (struct linetable *l, int lineno,
2241 int *exact_match)
2242 {
2243 int i;
2244 int len;
2245
2246 /* BEST is the smallest linenumber > LINENO so far seen,
2247 or 0 if none has been seen so far.
2248 BEST_INDEX identifies the item for it. */
2249
2250 int best_index = -1;
2251 int best = 0;
2252
2253 *exact_match = 0;
2254
2255 if (lineno <= 0)
2256 return -1;
2257 if (l == 0)
2258 return -1;
2259
2260 len = l->nitems;
2261 for (i = 0; i < len; i++)
2262 {
2263 struct linetable_entry *item = &(l->item[i]);
2264
2265 if (item->line == lineno)
2266 {
2267 /* Return the first (lowest address) entry which matches. */
2268 *exact_match = 1;
2269 return i;
2270 }
2271
2272 if (item->line > lineno && (best == 0 || item->line < best))
2273 {
2274 best = item->line;
2275 best_index = i;
2276 }
2277 }
2278
2279 /* If we got here, we didn't get an exact match. */
2280 return best_index;
2281 }
2282
2283 int
2284 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2285 {
2286 struct symtab_and_line sal;
2287
2288 sal = find_pc_line (pc, 0);
2289 *startptr = sal.pc;
2290 *endptr = sal.end;
2291 return sal.symtab != 0;
2292 }
2293
2294 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2295 address for that function that has an entry in SYMTAB's line info
2296 table. If such an entry cannot be found, return FUNC_ADDR
2297 unaltered. */
2298 CORE_ADDR
2299 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2300 {
2301 CORE_ADDR func_start, func_end;
2302 struct linetable *l;
2303 int i;
2304
2305 /* Give up if this symbol has no lineinfo table. */
2306 l = LINETABLE (symtab);
2307 if (l == NULL)
2308 return func_addr;
2309
2310 /* Get the range for the function's PC values, or give up if we
2311 cannot, for some reason. */
2312 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2313 return func_addr;
2314
2315 /* Linetable entries are ordered by PC values, see the commentary in
2316 symtab.h where `struct linetable' is defined. Thus, the first
2317 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2318 address we are looking for. */
2319 for (i = 0; i < l->nitems; i++)
2320 {
2321 struct linetable_entry *item = &(l->item[i]);
2322
2323 /* Don't use line numbers of zero, they mark special entries in
2324 the table. See the commentary on symtab.h before the
2325 definition of struct linetable. */
2326 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2327 return item->pc;
2328 }
2329
2330 return func_addr;
2331 }
2332
2333 /* Given a function symbol SYM, find the symtab and line for the start
2334 of the function.
2335 If the argument FUNFIRSTLINE is nonzero, we want the first line
2336 of real code inside the function. */
2337
2338 struct symtab_and_line
2339 find_function_start_sal (struct symbol *sym, int funfirstline)
2340 {
2341 struct symtab_and_line sal;
2342
2343 fixup_symbol_section (sym, NULL);
2344 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2345 SYMBOL_OBJ_SECTION (sym), 0);
2346
2347 /* We always should have a line for the function start address.
2348 If we don't, something is odd. Create a plain SAL refering
2349 just the PC and hope that skip_prologue_sal (if requested)
2350 can find a line number for after the prologue. */
2351 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2352 {
2353 init_sal (&sal);
2354 sal.pspace = current_program_space;
2355 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2356 sal.section = SYMBOL_OBJ_SECTION (sym);
2357 }
2358
2359 if (funfirstline)
2360 skip_prologue_sal (&sal);
2361
2362 return sal;
2363 }
2364
2365 /* Adjust SAL to the first instruction past the function prologue.
2366 If the PC was explicitly specified, the SAL is not changed.
2367 If the line number was explicitly specified, at most the SAL's PC
2368 is updated. If SAL is already past the prologue, then do nothing. */
2369 void
2370 skip_prologue_sal (struct symtab_and_line *sal)
2371 {
2372 struct symbol *sym;
2373 struct symtab_and_line start_sal;
2374 struct cleanup *old_chain;
2375 CORE_ADDR pc;
2376 struct obj_section *section;
2377 const char *name;
2378 struct objfile *objfile;
2379 struct gdbarch *gdbarch;
2380 struct block *b, *function_block;
2381
2382 /* Do not change the SAL is PC was specified explicitly. */
2383 if (sal->explicit_pc)
2384 return;
2385
2386 old_chain = save_current_space_and_thread ();
2387 switch_to_program_space_and_thread (sal->pspace);
2388
2389 sym = find_pc_sect_function (sal->pc, sal->section);
2390 if (sym != NULL)
2391 {
2392 fixup_symbol_section (sym, NULL);
2393
2394 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2395 section = SYMBOL_OBJ_SECTION (sym);
2396 name = SYMBOL_LINKAGE_NAME (sym);
2397 objfile = SYMBOL_SYMTAB (sym)->objfile;
2398 }
2399 else
2400 {
2401 struct minimal_symbol *msymbol
2402 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2403
2404 if (msymbol == NULL)
2405 {
2406 do_cleanups (old_chain);
2407 return;
2408 }
2409
2410 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2411 section = SYMBOL_OBJ_SECTION (msymbol);
2412 name = SYMBOL_LINKAGE_NAME (msymbol);
2413 objfile = msymbol_objfile (msymbol);
2414 }
2415
2416 gdbarch = get_objfile_arch (objfile);
2417
2418 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2419 so that gdbarch_skip_prologue has something unique to work on. */
2420 if (section_is_overlay (section) && !section_is_mapped (section))
2421 pc = overlay_unmapped_address (pc, section);
2422
2423 /* Skip "first line" of function (which is actually its prologue). */
2424 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2425 pc = gdbarch_skip_prologue (gdbarch, pc);
2426
2427 /* For overlays, map pc back into its mapped VMA range. */
2428 pc = overlay_mapped_address (pc, section);
2429
2430 /* Calculate line number. */
2431 start_sal = find_pc_sect_line (pc, section, 0);
2432
2433 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2434 line is still part of the same function. */
2435 if (start_sal.pc != pc
2436 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2437 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2438 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2439 == lookup_minimal_symbol_by_pc_section (pc, section))))
2440 {
2441 /* First pc of next line */
2442 pc = start_sal.end;
2443 /* Recalculate the line number (might not be N+1). */
2444 start_sal = find_pc_sect_line (pc, section, 0);
2445 }
2446
2447 /* On targets with executable formats that don't have a concept of
2448 constructors (ELF with .init has, PE doesn't), gcc emits a call
2449 to `__main' in `main' between the prologue and before user
2450 code. */
2451 if (gdbarch_skip_main_prologue_p (gdbarch)
2452 && name && strcmp (name, "main") == 0)
2453 {
2454 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2455 /* Recalculate the line number (might not be N+1). */
2456 start_sal = find_pc_sect_line (pc, section, 0);
2457 }
2458
2459 /* If we still don't have a valid source line, try to find the first
2460 PC in the lineinfo table that belongs to the same function. This
2461 happens with COFF debug info, which does not seem to have an
2462 entry in lineinfo table for the code after the prologue which has
2463 no direct relation to source. For example, this was found to be
2464 the case with the DJGPP target using "gcc -gcoff" when the
2465 compiler inserted code after the prologue to make sure the stack
2466 is aligned. */
2467 if (sym && start_sal.symtab == NULL)
2468 {
2469 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2470 /* Recalculate the line number. */
2471 start_sal = find_pc_sect_line (pc, section, 0);
2472 }
2473
2474 do_cleanups (old_chain);
2475
2476 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2477 forward SAL to the end of the prologue. */
2478 if (sal->pc >= pc)
2479 return;
2480
2481 sal->pc = pc;
2482 sal->section = section;
2483
2484 /* Unless the explicit_line flag was set, update the SAL line
2485 and symtab to correspond to the modified PC location. */
2486 if (sal->explicit_line)
2487 return;
2488
2489 sal->symtab = start_sal.symtab;
2490 sal->line = start_sal.line;
2491 sal->end = start_sal.end;
2492
2493 /* Check if we are now inside an inlined function. If we can,
2494 use the call site of the function instead. */
2495 b = block_for_pc_sect (sal->pc, sal->section);
2496 function_block = NULL;
2497 while (b != NULL)
2498 {
2499 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2500 function_block = b;
2501 else if (BLOCK_FUNCTION (b) != NULL)
2502 break;
2503 b = BLOCK_SUPERBLOCK (b);
2504 }
2505 if (function_block != NULL
2506 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2507 {
2508 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2509 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2510 }
2511 }
2512
2513 /* If P is of the form "operator[ \t]+..." where `...' is
2514 some legitimate operator text, return a pointer to the
2515 beginning of the substring of the operator text.
2516 Otherwise, return "". */
2517 char *
2518 operator_chars (char *p, char **end)
2519 {
2520 *end = "";
2521 if (strncmp (p, "operator", 8))
2522 return *end;
2523 p += 8;
2524
2525 /* Don't get faked out by `operator' being part of a longer
2526 identifier. */
2527 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2528 return *end;
2529
2530 /* Allow some whitespace between `operator' and the operator symbol. */
2531 while (*p == ' ' || *p == '\t')
2532 p++;
2533
2534 /* Recognize 'operator TYPENAME'. */
2535
2536 if (isalpha (*p) || *p == '_' || *p == '$')
2537 {
2538 char *q = p + 1;
2539
2540 while (isalnum (*q) || *q == '_' || *q == '$')
2541 q++;
2542 *end = q;
2543 return p;
2544 }
2545
2546 while (*p)
2547 switch (*p)
2548 {
2549 case '\\': /* regexp quoting */
2550 if (p[1] == '*')
2551 {
2552 if (p[2] == '=') /* 'operator\*=' */
2553 *end = p + 3;
2554 else /* 'operator\*' */
2555 *end = p + 2;
2556 return p;
2557 }
2558 else if (p[1] == '[')
2559 {
2560 if (p[2] == ']')
2561 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2562 else if (p[2] == '\\' && p[3] == ']')
2563 {
2564 *end = p + 4; /* 'operator\[\]' */
2565 return p;
2566 }
2567 else
2568 error (_("nothing is allowed between '[' and ']'"));
2569 }
2570 else
2571 {
2572 /* Gratuitous qoute: skip it and move on. */
2573 p++;
2574 continue;
2575 }
2576 break;
2577 case '!':
2578 case '=':
2579 case '*':
2580 case '/':
2581 case '%':
2582 case '^':
2583 if (p[1] == '=')
2584 *end = p + 2;
2585 else
2586 *end = p + 1;
2587 return p;
2588 case '<':
2589 case '>':
2590 case '+':
2591 case '-':
2592 case '&':
2593 case '|':
2594 if (p[0] == '-' && p[1] == '>')
2595 {
2596 /* Struct pointer member operator 'operator->'. */
2597 if (p[2] == '*')
2598 {
2599 *end = p + 3; /* 'operator->*' */
2600 return p;
2601 }
2602 else if (p[2] == '\\')
2603 {
2604 *end = p + 4; /* Hopefully 'operator->\*' */
2605 return p;
2606 }
2607 else
2608 {
2609 *end = p + 2; /* 'operator->' */
2610 return p;
2611 }
2612 }
2613 if (p[1] == '=' || p[1] == p[0])
2614 *end = p + 2;
2615 else
2616 *end = p + 1;
2617 return p;
2618 case '~':
2619 case ',':
2620 *end = p + 1;
2621 return p;
2622 case '(':
2623 if (p[1] != ')')
2624 error (_("`operator ()' must be specified without whitespace in `()'"));
2625 *end = p + 2;
2626 return p;
2627 case '?':
2628 if (p[1] != ':')
2629 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2630 *end = p + 2;
2631 return p;
2632 case '[':
2633 if (p[1] != ']')
2634 error (_("`operator []' must be specified without whitespace in `[]'"));
2635 *end = p + 2;
2636 return p;
2637 default:
2638 error (_("`operator %s' not supported"), p);
2639 break;
2640 }
2641
2642 *end = "";
2643 return *end;
2644 }
2645 \f
2646
2647 /* If FILE is not already in the table of files, return zero;
2648 otherwise return non-zero. Optionally add FILE to the table if ADD
2649 is non-zero. If *FIRST is non-zero, forget the old table
2650 contents. */
2651 static int
2652 filename_seen (const char *file, int add, int *first)
2653 {
2654 /* Table of files seen so far. */
2655 static const char **tab = NULL;
2656 /* Allocated size of tab in elements.
2657 Start with one 256-byte block (when using GNU malloc.c).
2658 24 is the malloc overhead when range checking is in effect. */
2659 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2660 /* Current size of tab in elements. */
2661 static int tab_cur_size;
2662 const char **p;
2663
2664 if (*first)
2665 {
2666 if (tab == NULL)
2667 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2668 tab_cur_size = 0;
2669 }
2670
2671 /* Is FILE in tab? */
2672 for (p = tab; p < tab + tab_cur_size; p++)
2673 if (strcmp (*p, file) == 0)
2674 return 1;
2675
2676 /* No; maybe add it to tab. */
2677 if (add)
2678 {
2679 if (tab_cur_size == tab_alloc_size)
2680 {
2681 tab_alloc_size *= 2;
2682 tab = (const char **) xrealloc ((char *) tab,
2683 tab_alloc_size * sizeof (*tab));
2684 }
2685 tab[tab_cur_size++] = file;
2686 }
2687
2688 return 0;
2689 }
2690
2691 /* Slave routine for sources_info. Force line breaks at ,'s.
2692 NAME is the name to print and *FIRST is nonzero if this is the first
2693 name printed. Set *FIRST to zero. */
2694 static void
2695 output_source_filename (const char *name, int *first)
2696 {
2697 /* Since a single source file can result in several partial symbol
2698 tables, we need to avoid printing it more than once. Note: if
2699 some of the psymtabs are read in and some are not, it gets
2700 printed both under "Source files for which symbols have been
2701 read" and "Source files for which symbols will be read in on
2702 demand". I consider this a reasonable way to deal with the
2703 situation. I'm not sure whether this can also happen for
2704 symtabs; it doesn't hurt to check. */
2705
2706 /* Was NAME already seen? */
2707 if (filename_seen (name, 1, first))
2708 {
2709 /* Yes; don't print it again. */
2710 return;
2711 }
2712 /* No; print it and reset *FIRST. */
2713 if (*first)
2714 {
2715 *first = 0;
2716 }
2717 else
2718 {
2719 printf_filtered (", ");
2720 }
2721
2722 wrap_here ("");
2723 fputs_filtered (name, gdb_stdout);
2724 }
2725
2726 /* A callback for map_partial_symbol_filenames. */
2727 static void
2728 output_partial_symbol_filename (const char *fullname, const char *filename,
2729 void *data)
2730 {
2731 output_source_filename (fullname ? fullname : filename, data);
2732 }
2733
2734 static void
2735 sources_info (char *ignore, int from_tty)
2736 {
2737 struct symtab *s;
2738 struct objfile *objfile;
2739 int first;
2740
2741 if (!have_full_symbols () && !have_partial_symbols ())
2742 {
2743 error (_("No symbol table is loaded. Use the \"file\" command."));
2744 }
2745
2746 printf_filtered ("Source files for which symbols have been read in:\n\n");
2747
2748 first = 1;
2749 ALL_SYMTABS (objfile, s)
2750 {
2751 const char *fullname = symtab_to_fullname (s);
2752
2753 output_source_filename (fullname ? fullname : s->filename, &first);
2754 }
2755 printf_filtered ("\n\n");
2756
2757 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2758
2759 first = 1;
2760 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2761 printf_filtered ("\n");
2762 }
2763
2764 static int
2765 file_matches (const char *file, char *files[], int nfiles)
2766 {
2767 int i;
2768
2769 if (file != NULL && nfiles != 0)
2770 {
2771 for (i = 0; i < nfiles; i++)
2772 {
2773 if (strcmp (files[i], lbasename (file)) == 0)
2774 return 1;
2775 }
2776 }
2777 else if (nfiles == 0)
2778 return 1;
2779 return 0;
2780 }
2781
2782 /* Free any memory associated with a search. */
2783 void
2784 free_search_symbols (struct symbol_search *symbols)
2785 {
2786 struct symbol_search *p;
2787 struct symbol_search *next;
2788
2789 for (p = symbols; p != NULL; p = next)
2790 {
2791 next = p->next;
2792 xfree (p);
2793 }
2794 }
2795
2796 static void
2797 do_free_search_symbols_cleanup (void *symbols)
2798 {
2799 free_search_symbols (symbols);
2800 }
2801
2802 struct cleanup *
2803 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2804 {
2805 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2806 }
2807
2808 /* Helper function for sort_search_symbols and qsort. Can only
2809 sort symbols, not minimal symbols. */
2810 static int
2811 compare_search_syms (const void *sa, const void *sb)
2812 {
2813 struct symbol_search **sym_a = (struct symbol_search **) sa;
2814 struct symbol_search **sym_b = (struct symbol_search **) sb;
2815
2816 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2817 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2818 }
2819
2820 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2821 prevtail where it is, but update its next pointer to point to
2822 the first of the sorted symbols. */
2823 static struct symbol_search *
2824 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2825 {
2826 struct symbol_search **symbols, *symp, *old_next;
2827 int i;
2828
2829 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2830 * nfound);
2831 symp = prevtail->next;
2832 for (i = 0; i < nfound; i++)
2833 {
2834 symbols[i] = symp;
2835 symp = symp->next;
2836 }
2837 /* Generally NULL. */
2838 old_next = symp;
2839
2840 qsort (symbols, nfound, sizeof (struct symbol_search *),
2841 compare_search_syms);
2842
2843 symp = prevtail;
2844 for (i = 0; i < nfound; i++)
2845 {
2846 symp->next = symbols[i];
2847 symp = symp->next;
2848 }
2849 symp->next = old_next;
2850
2851 xfree (symbols);
2852 return symp;
2853 }
2854
2855 /* An object of this type is passed as the user_data to the
2856 expand_symtabs_matching method. */
2857 struct search_symbols_data
2858 {
2859 int nfiles;
2860 char **files;
2861 char *regexp;
2862 };
2863
2864 /* A callback for expand_symtabs_matching. */
2865 static int
2866 search_symbols_file_matches (const char *filename, void *user_data)
2867 {
2868 struct search_symbols_data *data = user_data;
2869
2870 return file_matches (filename, data->files, data->nfiles);
2871 }
2872
2873 /* A callback for expand_symtabs_matching. */
2874 static int
2875 search_symbols_name_matches (const char *symname, void *user_data)
2876 {
2877 struct search_symbols_data *data = user_data;
2878
2879 return data->regexp == NULL || re_exec (symname);
2880 }
2881
2882 /* Search the symbol table for matches to the regular expression REGEXP,
2883 returning the results in *MATCHES.
2884
2885 Only symbols of KIND are searched:
2886 FUNCTIONS_DOMAIN - search all functions
2887 TYPES_DOMAIN - search all type names
2888 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2889 and constants (enums)
2890
2891 free_search_symbols should be called when *MATCHES is no longer needed.
2892
2893 The results are sorted locally; each symtab's global and static blocks are
2894 separately alphabetized.
2895 */
2896 void
2897 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2898 struct symbol_search **matches)
2899 {
2900 struct symtab *s;
2901 struct blockvector *bv;
2902 struct block *b;
2903 int i = 0;
2904 struct dict_iterator iter;
2905 struct symbol *sym;
2906 struct objfile *objfile;
2907 struct minimal_symbol *msymbol;
2908 char *val;
2909 int found_misc = 0;
2910 static enum minimal_symbol_type types[]
2911 = {mst_data, mst_text, mst_abs, mst_unknown};
2912 static enum minimal_symbol_type types2[]
2913 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
2914 static enum minimal_symbol_type types3[]
2915 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2916 static enum minimal_symbol_type types4[]
2917 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
2918 enum minimal_symbol_type ourtype;
2919 enum minimal_symbol_type ourtype2;
2920 enum minimal_symbol_type ourtype3;
2921 enum minimal_symbol_type ourtype4;
2922 struct symbol_search *sr;
2923 struct symbol_search *psr;
2924 struct symbol_search *tail;
2925 struct cleanup *old_chain = NULL;
2926 struct search_symbols_data datum;
2927
2928 if (kind < VARIABLES_DOMAIN)
2929 error (_("must search on specific domain"));
2930
2931 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2932 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2933 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2934 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2935
2936 sr = *matches = NULL;
2937 tail = NULL;
2938
2939 if (regexp != NULL)
2940 {
2941 /* Make sure spacing is right for C++ operators.
2942 This is just a courtesy to make the matching less sensitive
2943 to how many spaces the user leaves between 'operator'
2944 and <TYPENAME> or <OPERATOR>. */
2945 char *opend;
2946 char *opname = operator_chars (regexp, &opend);
2947
2948 if (*opname)
2949 {
2950 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2951
2952 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2953 {
2954 /* There should 1 space between 'operator' and 'TYPENAME'. */
2955 if (opname[-1] != ' ' || opname[-2] == ' ')
2956 fix = 1;
2957 }
2958 else
2959 {
2960 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2961 if (opname[-1] == ' ')
2962 fix = 0;
2963 }
2964 /* If wrong number of spaces, fix it. */
2965 if (fix >= 0)
2966 {
2967 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2968
2969 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2970 regexp = tmp;
2971 }
2972 }
2973
2974 if (0 != (val = re_comp (regexp)))
2975 error (_("Invalid regexp (%s): %s"), val, regexp);
2976 }
2977
2978 /* Search through the partial symtabs *first* for all symbols
2979 matching the regexp. That way we don't have to reproduce all of
2980 the machinery below. */
2981
2982 datum.nfiles = nfiles;
2983 datum.files = files;
2984 datum.regexp = regexp;
2985 ALL_OBJFILES (objfile)
2986 {
2987 if (objfile->sf)
2988 objfile->sf->qf->expand_symtabs_matching (objfile,
2989 search_symbols_file_matches,
2990 search_symbols_name_matches,
2991 kind,
2992 &datum);
2993 }
2994
2995 /* Here, we search through the minimal symbol tables for functions
2996 and variables that match, and force their symbols to be read.
2997 This is in particular necessary for demangled variable names,
2998 which are no longer put into the partial symbol tables.
2999 The symbol will then be found during the scan of symtabs below.
3000
3001 For functions, find_pc_symtab should succeed if we have debug info
3002 for the function, for variables we have to call lookup_symbol
3003 to determine if the variable has debug info.
3004 If the lookup fails, set found_misc so that we will rescan to print
3005 any matching symbols without debug info.
3006 */
3007
3008 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3009 {
3010 ALL_MSYMBOLS (objfile, msymbol)
3011 {
3012 QUIT;
3013
3014 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3015 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3016 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3017 MSYMBOL_TYPE (msymbol) == ourtype4)
3018 {
3019 if (regexp == NULL
3020 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3021 {
3022 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3023 {
3024 /* FIXME: carlton/2003-02-04: Given that the
3025 semantics of lookup_symbol keeps on changing
3026 slightly, it would be a nice idea if we had a
3027 function lookup_symbol_minsym that found the
3028 symbol associated to a given minimal symbol (if
3029 any). */
3030 if (kind == FUNCTIONS_DOMAIN
3031 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3032 (struct block *) NULL,
3033 VAR_DOMAIN, 0)
3034 == NULL)
3035 found_misc = 1;
3036 }
3037 }
3038 }
3039 }
3040 }
3041
3042 ALL_PRIMARY_SYMTABS (objfile, s)
3043 {
3044 bv = BLOCKVECTOR (s);
3045 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3046 {
3047 struct symbol_search *prevtail = tail;
3048 int nfound = 0;
3049
3050 b = BLOCKVECTOR_BLOCK (bv, i);
3051 ALL_BLOCK_SYMBOLS (b, iter, sym)
3052 {
3053 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3054
3055 QUIT;
3056
3057 if (file_matches (real_symtab->filename, files, nfiles)
3058 && ((regexp == NULL
3059 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3060 && ((kind == VARIABLES_DOMAIN
3061 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3062 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3063 && SYMBOL_CLASS (sym) != LOC_BLOCK
3064 /* LOC_CONST can be used for more than just enums,
3065 e.g., c++ static const members.
3066 We only want to skip enums here. */
3067 && !(SYMBOL_CLASS (sym) == LOC_CONST
3068 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM))
3069 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3070 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3071 {
3072 /* match */
3073 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3074 psr->block = i;
3075 psr->symtab = real_symtab;
3076 psr->symbol = sym;
3077 psr->msymbol = NULL;
3078 psr->next = NULL;
3079 if (tail == NULL)
3080 sr = psr;
3081 else
3082 tail->next = psr;
3083 tail = psr;
3084 nfound ++;
3085 }
3086 }
3087 if (nfound > 0)
3088 {
3089 if (prevtail == NULL)
3090 {
3091 struct symbol_search dummy;
3092
3093 dummy.next = sr;
3094 tail = sort_search_symbols (&dummy, nfound);
3095 sr = dummy.next;
3096
3097 old_chain = make_cleanup_free_search_symbols (sr);
3098 }
3099 else
3100 tail = sort_search_symbols (prevtail, nfound);
3101 }
3102 }
3103 }
3104
3105 /* If there are no eyes, avoid all contact. I mean, if there are
3106 no debug symbols, then print directly from the msymbol_vector. */
3107
3108 if (found_misc || kind != FUNCTIONS_DOMAIN)
3109 {
3110 ALL_MSYMBOLS (objfile, msymbol)
3111 {
3112 QUIT;
3113
3114 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3115 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3116 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3117 MSYMBOL_TYPE (msymbol) == ourtype4)
3118 {
3119 if (regexp == NULL
3120 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3121 {
3122 /* Functions: Look up by address. */
3123 if (kind != FUNCTIONS_DOMAIN ||
3124 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3125 {
3126 /* Variables/Absolutes: Look up by name */
3127 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3128 (struct block *) NULL, VAR_DOMAIN, 0)
3129 == NULL)
3130 {
3131 /* match */
3132 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3133 psr->block = i;
3134 psr->msymbol = msymbol;
3135 psr->symtab = NULL;
3136 psr->symbol = NULL;
3137 psr->next = NULL;
3138 if (tail == NULL)
3139 {
3140 sr = psr;
3141 old_chain = make_cleanup_free_search_symbols (sr);
3142 }
3143 else
3144 tail->next = psr;
3145 tail = psr;
3146 }
3147 }
3148 }
3149 }
3150 }
3151 }
3152
3153 *matches = sr;
3154 if (sr != NULL)
3155 discard_cleanups (old_chain);
3156 }
3157
3158 /* Helper function for symtab_symbol_info, this function uses
3159 the data returned from search_symbols() to print information
3160 regarding the match to gdb_stdout.
3161 */
3162 static void
3163 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3164 int block, char *last)
3165 {
3166 if (last == NULL || strcmp (last, s->filename) != 0)
3167 {
3168 fputs_filtered ("\nFile ", gdb_stdout);
3169 fputs_filtered (s->filename, gdb_stdout);
3170 fputs_filtered (":\n", gdb_stdout);
3171 }
3172
3173 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3174 printf_filtered ("static ");
3175
3176 /* Typedef that is not a C++ class */
3177 if (kind == TYPES_DOMAIN
3178 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3179 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3180 /* variable, func, or typedef-that-is-c++-class */
3181 else if (kind < TYPES_DOMAIN ||
3182 (kind == TYPES_DOMAIN &&
3183 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3184 {
3185 type_print (SYMBOL_TYPE (sym),
3186 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3187 ? "" : SYMBOL_PRINT_NAME (sym)),
3188 gdb_stdout, 0);
3189
3190 printf_filtered (";\n");
3191 }
3192 }
3193
3194 /* This help function for symtab_symbol_info() prints information
3195 for non-debugging symbols to gdb_stdout.
3196 */
3197 static void
3198 print_msymbol_info (struct minimal_symbol *msymbol)
3199 {
3200 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3201 char *tmp;
3202
3203 if (gdbarch_addr_bit (gdbarch) <= 32)
3204 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3205 & (CORE_ADDR) 0xffffffff,
3206 8);
3207 else
3208 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3209 16);
3210 printf_filtered ("%s %s\n",
3211 tmp, SYMBOL_PRINT_NAME (msymbol));
3212 }
3213
3214 /* This is the guts of the commands "info functions", "info types", and
3215 "info variables". It calls search_symbols to find all matches and then
3216 print_[m]symbol_info to print out some useful information about the
3217 matches.
3218 */
3219 static void
3220 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3221 {
3222 static char *classnames[] = {"variable", "function", "type", "method"};
3223 struct symbol_search *symbols;
3224 struct symbol_search *p;
3225 struct cleanup *old_chain;
3226 char *last_filename = NULL;
3227 int first = 1;
3228
3229 /* must make sure that if we're interrupted, symbols gets freed */
3230 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3231 old_chain = make_cleanup_free_search_symbols (symbols);
3232
3233 printf_filtered (regexp
3234 ? "All %ss matching regular expression \"%s\":\n"
3235 : "All defined %ss:\n",
3236 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3237
3238 for (p = symbols; p != NULL; p = p->next)
3239 {
3240 QUIT;
3241
3242 if (p->msymbol != NULL)
3243 {
3244 if (first)
3245 {
3246 printf_filtered ("\nNon-debugging symbols:\n");
3247 first = 0;
3248 }
3249 print_msymbol_info (p->msymbol);
3250 }
3251 else
3252 {
3253 print_symbol_info (kind,
3254 p->symtab,
3255 p->symbol,
3256 p->block,
3257 last_filename);
3258 last_filename = p->symtab->filename;
3259 }
3260 }
3261
3262 do_cleanups (old_chain);
3263 }
3264
3265 static void
3266 variables_info (char *regexp, int from_tty)
3267 {
3268 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3269 }
3270
3271 static void
3272 functions_info (char *regexp, int from_tty)
3273 {
3274 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3275 }
3276
3277
3278 static void
3279 types_info (char *regexp, int from_tty)
3280 {
3281 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3282 }
3283
3284 /* Breakpoint all functions matching regular expression. */
3285
3286 void
3287 rbreak_command_wrapper (char *regexp, int from_tty)
3288 {
3289 rbreak_command (regexp, from_tty);
3290 }
3291
3292 /* A cleanup function that calls end_rbreak_breakpoints. */
3293
3294 static void
3295 do_end_rbreak_breakpoints (void *ignore)
3296 {
3297 end_rbreak_breakpoints ();
3298 }
3299
3300 static void
3301 rbreak_command (char *regexp, int from_tty)
3302 {
3303 struct symbol_search *ss;
3304 struct symbol_search *p;
3305 struct cleanup *old_chain;
3306 char *string = NULL;
3307 int len = 0;
3308 char **files = NULL;
3309 int nfiles = 0;
3310
3311 if (regexp)
3312 {
3313 char *colon = strchr (regexp, ':');
3314
3315 if (colon && *(colon + 1) != ':')
3316 {
3317 int colon_index;
3318 char * file_name;
3319
3320 colon_index = colon - regexp;
3321 file_name = alloca (colon_index + 1);
3322 memcpy (file_name, regexp, colon_index);
3323 file_name[colon_index--] = 0;
3324 while (isspace (file_name[colon_index]))
3325 file_name[colon_index--] = 0;
3326 files = &file_name;
3327 nfiles = 1;
3328 regexp = colon + 1;
3329 while (isspace (*regexp)) regexp++;
3330 }
3331 }
3332
3333 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3334 old_chain = make_cleanup_free_search_symbols (ss);
3335 make_cleanup (free_current_contents, &string);
3336
3337 start_rbreak_breakpoints ();
3338 make_cleanup (do_end_rbreak_breakpoints, NULL);
3339 for (p = ss; p != NULL; p = p->next)
3340 {
3341 if (p->msymbol == NULL)
3342 {
3343 int newlen = (strlen (p->symtab->filename)
3344 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3345 + 4);
3346
3347 if (newlen > len)
3348 {
3349 string = xrealloc (string, newlen);
3350 len = newlen;
3351 }
3352 strcpy (string, p->symtab->filename);
3353 strcat (string, ":'");
3354 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3355 strcat (string, "'");
3356 break_command (string, from_tty);
3357 print_symbol_info (FUNCTIONS_DOMAIN,
3358 p->symtab,
3359 p->symbol,
3360 p->block,
3361 p->symtab->filename);
3362 }
3363 else
3364 {
3365 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3366
3367 if (newlen > len)
3368 {
3369 string = xrealloc (string, newlen);
3370 len = newlen;
3371 }
3372 strcpy (string, "'");
3373 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3374 strcat (string, "'");
3375
3376 break_command (string, from_tty);
3377 printf_filtered ("<function, no debug info> %s;\n",
3378 SYMBOL_PRINT_NAME (p->msymbol));
3379 }
3380 }
3381
3382 do_cleanups (old_chain);
3383 }
3384 \f
3385
3386 /* Helper routine for make_symbol_completion_list. */
3387
3388 static int return_val_size;
3389 static int return_val_index;
3390 static char **return_val;
3391
3392 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3393 completion_list_add_name \
3394 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3395
3396 /* Test to see if the symbol specified by SYMNAME (which is already
3397 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3398 characters. If so, add it to the current completion list. */
3399
3400 static void
3401 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3402 char *text, char *word)
3403 {
3404 int newsize;
3405
3406 /* clip symbols that cannot match */
3407
3408 if (strncmp (symname, sym_text, sym_text_len) != 0)
3409 {
3410 return;
3411 }
3412
3413 /* We have a match for a completion, so add SYMNAME to the current list
3414 of matches. Note that the name is moved to freshly malloc'd space. */
3415
3416 {
3417 char *new;
3418
3419 if (word == sym_text)
3420 {
3421 new = xmalloc (strlen (symname) + 5);
3422 strcpy (new, symname);
3423 }
3424 else if (word > sym_text)
3425 {
3426 /* Return some portion of symname. */
3427 new = xmalloc (strlen (symname) + 5);
3428 strcpy (new, symname + (word - sym_text));
3429 }
3430 else
3431 {
3432 /* Return some of SYM_TEXT plus symname. */
3433 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3434 strncpy (new, word, sym_text - word);
3435 new[sym_text - word] = '\0';
3436 strcat (new, symname);
3437 }
3438
3439 if (return_val_index + 3 > return_val_size)
3440 {
3441 newsize = (return_val_size *= 2) * sizeof (char *);
3442 return_val = (char **) xrealloc ((char *) return_val, newsize);
3443 }
3444 return_val[return_val_index++] = new;
3445 return_val[return_val_index] = NULL;
3446 }
3447 }
3448
3449 /* ObjC: In case we are completing on a selector, look as the msymbol
3450 again and feed all the selectors into the mill. */
3451
3452 static void
3453 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3454 int sym_text_len, char *text, char *word)
3455 {
3456 static char *tmp = NULL;
3457 static unsigned int tmplen = 0;
3458
3459 char *method, *category, *selector;
3460 char *tmp2 = NULL;
3461
3462 method = SYMBOL_NATURAL_NAME (msymbol);
3463
3464 /* Is it a method? */
3465 if ((method[0] != '-') && (method[0] != '+'))
3466 return;
3467
3468 if (sym_text[0] == '[')
3469 /* Complete on shortened method method. */
3470 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3471
3472 while ((strlen (method) + 1) >= tmplen)
3473 {
3474 if (tmplen == 0)
3475 tmplen = 1024;
3476 else
3477 tmplen *= 2;
3478 tmp = xrealloc (tmp, tmplen);
3479 }
3480 selector = strchr (method, ' ');
3481 if (selector != NULL)
3482 selector++;
3483
3484 category = strchr (method, '(');
3485
3486 if ((category != NULL) && (selector != NULL))
3487 {
3488 memcpy (tmp, method, (category - method));
3489 tmp[category - method] = ' ';
3490 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3491 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3492 if (sym_text[0] == '[')
3493 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3494 }
3495
3496 if (selector != NULL)
3497 {
3498 /* Complete on selector only. */
3499 strcpy (tmp, selector);
3500 tmp2 = strchr (tmp, ']');
3501 if (tmp2 != NULL)
3502 *tmp2 = '\0';
3503
3504 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3505 }
3506 }
3507
3508 /* Break the non-quoted text based on the characters which are in
3509 symbols. FIXME: This should probably be language-specific. */
3510
3511 static char *
3512 language_search_unquoted_string (char *text, char *p)
3513 {
3514 for (; p > text; --p)
3515 {
3516 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3517 continue;
3518 else
3519 {
3520 if ((current_language->la_language == language_objc))
3521 {
3522 if (p[-1] == ':') /* might be part of a method name */
3523 continue;
3524 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3525 p -= 2; /* beginning of a method name */
3526 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3527 { /* might be part of a method name */
3528 char *t = p;
3529
3530 /* Seeing a ' ' or a '(' is not conclusive evidence
3531 that we are in the middle of a method name. However,
3532 finding "-[" or "+[" should be pretty un-ambiguous.
3533 Unfortunately we have to find it now to decide. */
3534
3535 while (t > text)
3536 if (isalnum (t[-1]) || t[-1] == '_' ||
3537 t[-1] == ' ' || t[-1] == ':' ||
3538 t[-1] == '(' || t[-1] == ')')
3539 --t;
3540 else
3541 break;
3542
3543 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3544 p = t - 2; /* method name detected */
3545 /* else we leave with p unchanged */
3546 }
3547 }
3548 break;
3549 }
3550 }
3551 return p;
3552 }
3553
3554 static void
3555 completion_list_add_fields (struct symbol *sym, char *sym_text,
3556 int sym_text_len, char *text, char *word)
3557 {
3558 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3559 {
3560 struct type *t = SYMBOL_TYPE (sym);
3561 enum type_code c = TYPE_CODE (t);
3562 int j;
3563
3564 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3565 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3566 if (TYPE_FIELD_NAME (t, j))
3567 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3568 sym_text, sym_text_len, text, word);
3569 }
3570 }
3571
3572 /* Type of the user_data argument passed to add_macro_name or
3573 add_partial_symbol_name. The contents are simply whatever is
3574 needed by completion_list_add_name. */
3575 struct add_name_data
3576 {
3577 char *sym_text;
3578 int sym_text_len;
3579 char *text;
3580 char *word;
3581 };
3582
3583 /* A callback used with macro_for_each and macro_for_each_in_scope.
3584 This adds a macro's name to the current completion list. */
3585 static void
3586 add_macro_name (const char *name, const struct macro_definition *ignore,
3587 void *user_data)
3588 {
3589 struct add_name_data *datum = (struct add_name_data *) user_data;
3590
3591 completion_list_add_name ((char *) name,
3592 datum->sym_text, datum->sym_text_len,
3593 datum->text, datum->word);
3594 }
3595
3596 /* A callback for map_partial_symbol_names. */
3597 static void
3598 add_partial_symbol_name (const char *name, void *user_data)
3599 {
3600 struct add_name_data *datum = (struct add_name_data *) user_data;
3601
3602 completion_list_add_name ((char *) name,
3603 datum->sym_text, datum->sym_text_len,
3604 datum->text, datum->word);
3605 }
3606
3607 char **
3608 default_make_symbol_completion_list_break_on (char *text, char *word,
3609 const char *break_on)
3610 {
3611 /* Problem: All of the symbols have to be copied because readline
3612 frees them. I'm not going to worry about this; hopefully there
3613 won't be that many. */
3614
3615 struct symbol *sym;
3616 struct symtab *s;
3617 struct minimal_symbol *msymbol;
3618 struct objfile *objfile;
3619 struct block *b;
3620 const struct block *surrounding_static_block, *surrounding_global_block;
3621 struct dict_iterator iter;
3622 /* The symbol we are completing on. Points in same buffer as text. */
3623 char *sym_text;
3624 /* Length of sym_text. */
3625 int sym_text_len;
3626 struct add_name_data datum;
3627
3628 /* Now look for the symbol we are supposed to complete on. */
3629 {
3630 char *p;
3631 char quote_found;
3632 char *quote_pos = NULL;
3633
3634 /* First see if this is a quoted string. */
3635 quote_found = '\0';
3636 for (p = text; *p != '\0'; ++p)
3637 {
3638 if (quote_found != '\0')
3639 {
3640 if (*p == quote_found)
3641 /* Found close quote. */
3642 quote_found = '\0';
3643 else if (*p == '\\' && p[1] == quote_found)
3644 /* A backslash followed by the quote character
3645 doesn't end the string. */
3646 ++p;
3647 }
3648 else if (*p == '\'' || *p == '"')
3649 {
3650 quote_found = *p;
3651 quote_pos = p;
3652 }
3653 }
3654 if (quote_found == '\'')
3655 /* A string within single quotes can be a symbol, so complete on it. */
3656 sym_text = quote_pos + 1;
3657 else if (quote_found == '"')
3658 /* A double-quoted string is never a symbol, nor does it make sense
3659 to complete it any other way. */
3660 {
3661 return_val = (char **) xmalloc (sizeof (char *));
3662 return_val[0] = NULL;
3663 return return_val;
3664 }
3665 else
3666 {
3667 /* It is not a quoted string. Break it based on the characters
3668 which are in symbols. */
3669 while (p > text)
3670 {
3671 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3672 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3673 --p;
3674 else
3675 break;
3676 }
3677 sym_text = p;
3678 }
3679 }
3680
3681 sym_text_len = strlen (sym_text);
3682
3683 return_val_size = 100;
3684 return_val_index = 0;
3685 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3686 return_val[0] = NULL;
3687
3688 datum.sym_text = sym_text;
3689 datum.sym_text_len = sym_text_len;
3690 datum.text = text;
3691 datum.word = word;
3692
3693 /* Look through the partial symtabs for all symbols which begin
3694 by matching SYM_TEXT. Add each one that you find to the list. */
3695 map_partial_symbol_names (add_partial_symbol_name, &datum);
3696
3697 /* At this point scan through the misc symbol vectors and add each
3698 symbol you find to the list. Eventually we want to ignore
3699 anything that isn't a text symbol (everything else will be
3700 handled by the psymtab code above). */
3701
3702 ALL_MSYMBOLS (objfile, msymbol)
3703 {
3704 QUIT;
3705 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3706
3707 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3708 }
3709
3710 /* Search upwards from currently selected frame (so that we can
3711 complete on local vars). Also catch fields of types defined in
3712 this places which match our text string. Only complete on types
3713 visible from current context. */
3714
3715 b = get_selected_block (0);
3716 surrounding_static_block = block_static_block (b);
3717 surrounding_global_block = block_global_block (b);
3718 if (surrounding_static_block != NULL)
3719 while (b != surrounding_static_block)
3720 {
3721 QUIT;
3722
3723 ALL_BLOCK_SYMBOLS (b, iter, sym)
3724 {
3725 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3726 word);
3727 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3728 word);
3729 }
3730
3731 /* Stop when we encounter an enclosing function. Do not stop for
3732 non-inlined functions - the locals of the enclosing function
3733 are in scope for a nested function. */
3734 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3735 break;
3736 b = BLOCK_SUPERBLOCK (b);
3737 }
3738
3739 /* Add fields from the file's types; symbols will be added below. */
3740
3741 if (surrounding_static_block != NULL)
3742 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3743 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3744
3745 if (surrounding_global_block != NULL)
3746 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3747 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3748
3749 /* Go through the symtabs and check the externs and statics for
3750 symbols which match. */
3751
3752 ALL_PRIMARY_SYMTABS (objfile, s)
3753 {
3754 QUIT;
3755 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3756 ALL_BLOCK_SYMBOLS (b, iter, sym)
3757 {
3758 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3759 }
3760 }
3761
3762 ALL_PRIMARY_SYMTABS (objfile, s)
3763 {
3764 QUIT;
3765 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3766 ALL_BLOCK_SYMBOLS (b, iter, sym)
3767 {
3768 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3769 }
3770 }
3771
3772 if (current_language->la_macro_expansion == macro_expansion_c)
3773 {
3774 struct macro_scope *scope;
3775
3776 /* Add any macros visible in the default scope. Note that this
3777 may yield the occasional wrong result, because an expression
3778 might be evaluated in a scope other than the default. For
3779 example, if the user types "break file:line if <TAB>", the
3780 resulting expression will be evaluated at "file:line" -- but
3781 at there does not seem to be a way to detect this at
3782 completion time. */
3783 scope = default_macro_scope ();
3784 if (scope)
3785 {
3786 macro_for_each_in_scope (scope->file, scope->line,
3787 add_macro_name, &datum);
3788 xfree (scope);
3789 }
3790
3791 /* User-defined macros are always visible. */
3792 macro_for_each (macro_user_macros, add_macro_name, &datum);
3793 }
3794
3795 return (return_val);
3796 }
3797
3798 char **
3799 default_make_symbol_completion_list (char *text, char *word)
3800 {
3801 return default_make_symbol_completion_list_break_on (text, word, "");
3802 }
3803
3804 /* Return a NULL terminated array of all symbols (regardless of class)
3805 which begin by matching TEXT. If the answer is no symbols, then
3806 the return value is an array which contains only a NULL pointer. */
3807
3808 char **
3809 make_symbol_completion_list (char *text, char *word)
3810 {
3811 return current_language->la_make_symbol_completion_list (text, word);
3812 }
3813
3814 /* Like make_symbol_completion_list, but suitable for use as a
3815 completion function. */
3816
3817 char **
3818 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3819 char *text, char *word)
3820 {
3821 return make_symbol_completion_list (text, word);
3822 }
3823
3824 /* Like make_symbol_completion_list, but returns a list of symbols
3825 defined in a source file FILE. */
3826
3827 char **
3828 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3829 {
3830 struct symbol *sym;
3831 struct symtab *s;
3832 struct block *b;
3833 struct dict_iterator iter;
3834 /* The symbol we are completing on. Points in same buffer as text. */
3835 char *sym_text;
3836 /* Length of sym_text. */
3837 int sym_text_len;
3838
3839 /* Now look for the symbol we are supposed to complete on.
3840 FIXME: This should be language-specific. */
3841 {
3842 char *p;
3843 char quote_found;
3844 char *quote_pos = NULL;
3845
3846 /* First see if this is a quoted string. */
3847 quote_found = '\0';
3848 for (p = text; *p != '\0'; ++p)
3849 {
3850 if (quote_found != '\0')
3851 {
3852 if (*p == quote_found)
3853 /* Found close quote. */
3854 quote_found = '\0';
3855 else if (*p == '\\' && p[1] == quote_found)
3856 /* A backslash followed by the quote character
3857 doesn't end the string. */
3858 ++p;
3859 }
3860 else if (*p == '\'' || *p == '"')
3861 {
3862 quote_found = *p;
3863 quote_pos = p;
3864 }
3865 }
3866 if (quote_found == '\'')
3867 /* A string within single quotes can be a symbol, so complete on it. */
3868 sym_text = quote_pos + 1;
3869 else if (quote_found == '"')
3870 /* A double-quoted string is never a symbol, nor does it make sense
3871 to complete it any other way. */
3872 {
3873 return_val = (char **) xmalloc (sizeof (char *));
3874 return_val[0] = NULL;
3875 return return_val;
3876 }
3877 else
3878 {
3879 /* Not a quoted string. */
3880 sym_text = language_search_unquoted_string (text, p);
3881 }
3882 }
3883
3884 sym_text_len = strlen (sym_text);
3885
3886 return_val_size = 10;
3887 return_val_index = 0;
3888 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3889 return_val[0] = NULL;
3890
3891 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3892 in). */
3893 s = lookup_symtab (srcfile);
3894 if (s == NULL)
3895 {
3896 /* Maybe they typed the file with leading directories, while the
3897 symbol tables record only its basename. */
3898 const char *tail = lbasename (srcfile);
3899
3900 if (tail > srcfile)
3901 s = lookup_symtab (tail);
3902 }
3903
3904 /* If we have no symtab for that file, return an empty list. */
3905 if (s == NULL)
3906 return (return_val);
3907
3908 /* Go through this symtab and check the externs and statics for
3909 symbols which match. */
3910
3911 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3912 ALL_BLOCK_SYMBOLS (b, iter, sym)
3913 {
3914 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3915 }
3916
3917 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3918 ALL_BLOCK_SYMBOLS (b, iter, sym)
3919 {
3920 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3921 }
3922
3923 return (return_val);
3924 }
3925
3926 /* A helper function for make_source_files_completion_list. It adds
3927 another file name to a list of possible completions, growing the
3928 list as necessary. */
3929
3930 static void
3931 add_filename_to_list (const char *fname, char *text, char *word,
3932 char ***list, int *list_used, int *list_alloced)
3933 {
3934 char *new;
3935 size_t fnlen = strlen (fname);
3936
3937 if (*list_used + 1 >= *list_alloced)
3938 {
3939 *list_alloced *= 2;
3940 *list = (char **) xrealloc ((char *) *list,
3941 *list_alloced * sizeof (char *));
3942 }
3943
3944 if (word == text)
3945 {
3946 /* Return exactly fname. */
3947 new = xmalloc (fnlen + 5);
3948 strcpy (new, fname);
3949 }
3950 else if (word > text)
3951 {
3952 /* Return some portion of fname. */
3953 new = xmalloc (fnlen + 5);
3954 strcpy (new, fname + (word - text));
3955 }
3956 else
3957 {
3958 /* Return some of TEXT plus fname. */
3959 new = xmalloc (fnlen + (text - word) + 5);
3960 strncpy (new, word, text - word);
3961 new[text - word] = '\0';
3962 strcat (new, fname);
3963 }
3964 (*list)[*list_used] = new;
3965 (*list)[++*list_used] = NULL;
3966 }
3967
3968 static int
3969 not_interesting_fname (const char *fname)
3970 {
3971 static const char *illegal_aliens[] = {
3972 "_globals_", /* inserted by coff_symtab_read */
3973 NULL
3974 };
3975 int i;
3976
3977 for (i = 0; illegal_aliens[i]; i++)
3978 {
3979 if (strcmp (fname, illegal_aliens[i]) == 0)
3980 return 1;
3981 }
3982 return 0;
3983 }
3984
3985 /* An object of this type is passed as the user_data argument to
3986 map_partial_symbol_filenames. */
3987 struct add_partial_filename_data
3988 {
3989 int *first;
3990 char *text;
3991 char *word;
3992 int text_len;
3993 char ***list;
3994 int *list_used;
3995 int *list_alloced;
3996 };
3997
3998 /* A callback for map_partial_symbol_filenames. */
3999 static void
4000 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
4001 void *user_data)
4002 {
4003 struct add_partial_filename_data *data = user_data;
4004
4005 if (not_interesting_fname (filename))
4006 return;
4007 if (!filename_seen (filename, 1, data->first)
4008 #if HAVE_DOS_BASED_FILE_SYSTEM
4009 && strncasecmp (filename, data->text, data->text_len) == 0
4010 #else
4011 && strncmp (filename, data->text, data->text_len) == 0
4012 #endif
4013 )
4014 {
4015 /* This file matches for a completion; add it to the
4016 current list of matches. */
4017 add_filename_to_list (filename, data->text, data->word,
4018 data->list, data->list_used, data->list_alloced);
4019 }
4020 else
4021 {
4022 const char *base_name = lbasename (filename);
4023
4024 if (base_name != filename
4025 && !filename_seen (base_name, 1, data->first)
4026 #if HAVE_DOS_BASED_FILE_SYSTEM
4027 && strncasecmp (base_name, data->text, data->text_len) == 0
4028 #else
4029 && strncmp (base_name, data->text, data->text_len) == 0
4030 #endif
4031 )
4032 add_filename_to_list (base_name, data->text, data->word,
4033 data->list, data->list_used, data->list_alloced);
4034 }
4035 }
4036
4037 /* Return a NULL terminated array of all source files whose names
4038 begin with matching TEXT. The file names are looked up in the
4039 symbol tables of this program. If the answer is no matchess, then
4040 the return value is an array which contains only a NULL pointer. */
4041
4042 char **
4043 make_source_files_completion_list (char *text, char *word)
4044 {
4045 struct symtab *s;
4046 struct objfile *objfile;
4047 int first = 1;
4048 int list_alloced = 1;
4049 int list_used = 0;
4050 size_t text_len = strlen (text);
4051 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4052 const char *base_name;
4053 struct add_partial_filename_data datum;
4054
4055 list[0] = NULL;
4056
4057 if (!have_full_symbols () && !have_partial_symbols ())
4058 return list;
4059
4060 ALL_SYMTABS (objfile, s)
4061 {
4062 if (not_interesting_fname (s->filename))
4063 continue;
4064 if (!filename_seen (s->filename, 1, &first)
4065 #if HAVE_DOS_BASED_FILE_SYSTEM
4066 && strncasecmp (s->filename, text, text_len) == 0
4067 #else
4068 && strncmp (s->filename, text, text_len) == 0
4069 #endif
4070 )
4071 {
4072 /* This file matches for a completion; add it to the current
4073 list of matches. */
4074 add_filename_to_list (s->filename, text, word,
4075 &list, &list_used, &list_alloced);
4076 }
4077 else
4078 {
4079 /* NOTE: We allow the user to type a base name when the
4080 debug info records leading directories, but not the other
4081 way around. This is what subroutines of breakpoint
4082 command do when they parse file names. */
4083 base_name = lbasename (s->filename);
4084 if (base_name != s->filename
4085 && !filename_seen (base_name, 1, &first)
4086 #if HAVE_DOS_BASED_FILE_SYSTEM
4087 && strncasecmp (base_name, text, text_len) == 0
4088 #else
4089 && strncmp (base_name, text, text_len) == 0
4090 #endif
4091 )
4092 add_filename_to_list (base_name, text, word,
4093 &list, &list_used, &list_alloced);
4094 }
4095 }
4096
4097 datum.first = &first;
4098 datum.text = text;
4099 datum.word = word;
4100 datum.text_len = text_len;
4101 datum.list = &list;
4102 datum.list_used = &list_used;
4103 datum.list_alloced = &list_alloced;
4104 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4105
4106 return list;
4107 }
4108
4109 /* Determine if PC is in the prologue of a function. The prologue is the area
4110 between the first instruction of a function, and the first executable line.
4111 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4112
4113 If non-zero, func_start is where we think the prologue starts, possibly
4114 by previous examination of symbol table information.
4115 */
4116
4117 int
4118 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4119 {
4120 struct symtab_and_line sal;
4121 CORE_ADDR func_addr, func_end;
4122
4123 /* We have several sources of information we can consult to figure
4124 this out.
4125 - Compilers usually emit line number info that marks the prologue
4126 as its own "source line". So the ending address of that "line"
4127 is the end of the prologue. If available, this is the most
4128 reliable method.
4129 - The minimal symbols and partial symbols, which can usually tell
4130 us the starting and ending addresses of a function.
4131 - If we know the function's start address, we can call the
4132 architecture-defined gdbarch_skip_prologue function to analyze the
4133 instruction stream and guess where the prologue ends.
4134 - Our `func_start' argument; if non-zero, this is the caller's
4135 best guess as to the function's entry point. At the time of
4136 this writing, handle_inferior_event doesn't get this right, so
4137 it should be our last resort. */
4138
4139 /* Consult the partial symbol table, to find which function
4140 the PC is in. */
4141 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4142 {
4143 CORE_ADDR prologue_end;
4144
4145 /* We don't even have minsym information, so fall back to using
4146 func_start, if given. */
4147 if (! func_start)
4148 return 1; /* We *might* be in a prologue. */
4149
4150 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4151
4152 return func_start <= pc && pc < prologue_end;
4153 }
4154
4155 /* If we have line number information for the function, that's
4156 usually pretty reliable. */
4157 sal = find_pc_line (func_addr, 0);
4158
4159 /* Now sal describes the source line at the function's entry point,
4160 which (by convention) is the prologue. The end of that "line",
4161 sal.end, is the end of the prologue.
4162
4163 Note that, for functions whose source code is all on a single
4164 line, the line number information doesn't always end up this way.
4165 So we must verify that our purported end-of-prologue address is
4166 *within* the function, not at its start or end. */
4167 if (sal.line == 0
4168 || sal.end <= func_addr
4169 || func_end <= sal.end)
4170 {
4171 /* We don't have any good line number info, so use the minsym
4172 information, together with the architecture-specific prologue
4173 scanning code. */
4174 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4175
4176 return func_addr <= pc && pc < prologue_end;
4177 }
4178
4179 /* We have line number info, and it looks good. */
4180 return func_addr <= pc && pc < sal.end;
4181 }
4182
4183 /* Given PC at the function's start address, attempt to find the
4184 prologue end using SAL information. Return zero if the skip fails.
4185
4186 A non-optimized prologue traditionally has one SAL for the function
4187 and a second for the function body. A single line function has
4188 them both pointing at the same line.
4189
4190 An optimized prologue is similar but the prologue may contain
4191 instructions (SALs) from the instruction body. Need to skip those
4192 while not getting into the function body.
4193
4194 The functions end point and an increasing SAL line are used as
4195 indicators of the prologue's endpoint.
4196
4197 This code is based on the function refine_prologue_limit (versions
4198 found in both ia64 and ppc). */
4199
4200 CORE_ADDR
4201 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4202 {
4203 struct symtab_and_line prologue_sal;
4204 CORE_ADDR start_pc;
4205 CORE_ADDR end_pc;
4206 struct block *bl;
4207
4208 /* Get an initial range for the function. */
4209 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4210 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4211
4212 prologue_sal = find_pc_line (start_pc, 0);
4213 if (prologue_sal.line != 0)
4214 {
4215 /* For langauges other than assembly, treat two consecutive line
4216 entries at the same address as a zero-instruction prologue.
4217 The GNU assembler emits separate line notes for each instruction
4218 in a multi-instruction macro, but compilers generally will not
4219 do this. */
4220 if (prologue_sal.symtab->language != language_asm)
4221 {
4222 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4223 int idx = 0;
4224
4225 /* Skip any earlier lines, and any end-of-sequence marker
4226 from a previous function. */
4227 while (linetable->item[idx].pc != prologue_sal.pc
4228 || linetable->item[idx].line == 0)
4229 idx++;
4230
4231 if (idx+1 < linetable->nitems
4232 && linetable->item[idx+1].line != 0
4233 && linetable->item[idx+1].pc == start_pc)
4234 return start_pc;
4235 }
4236
4237 /* If there is only one sal that covers the entire function,
4238 then it is probably a single line function, like
4239 "foo(){}". */
4240 if (prologue_sal.end >= end_pc)
4241 return 0;
4242
4243 while (prologue_sal.end < end_pc)
4244 {
4245 struct symtab_and_line sal;
4246
4247 sal = find_pc_line (prologue_sal.end, 0);
4248 if (sal.line == 0)
4249 break;
4250 /* Assume that a consecutive SAL for the same (or larger)
4251 line mark the prologue -> body transition. */
4252 if (sal.line >= prologue_sal.line)
4253 break;
4254
4255 /* The line number is smaller. Check that it's from the
4256 same function, not something inlined. If it's inlined,
4257 then there is no point comparing the line numbers. */
4258 bl = block_for_pc (prologue_sal.end);
4259 while (bl)
4260 {
4261 if (block_inlined_p (bl))
4262 break;
4263 if (BLOCK_FUNCTION (bl))
4264 {
4265 bl = NULL;
4266 break;
4267 }
4268 bl = BLOCK_SUPERBLOCK (bl);
4269 }
4270 if (bl != NULL)
4271 break;
4272
4273 /* The case in which compiler's optimizer/scheduler has
4274 moved instructions into the prologue. We look ahead in
4275 the function looking for address ranges whose
4276 corresponding line number is less the first one that we
4277 found for the function. This is more conservative then
4278 refine_prologue_limit which scans a large number of SALs
4279 looking for any in the prologue */
4280 prologue_sal = sal;
4281 }
4282 }
4283
4284 if (prologue_sal.end < end_pc)
4285 /* Return the end of this line, or zero if we could not find a
4286 line. */
4287 return prologue_sal.end;
4288 else
4289 /* Don't return END_PC, which is past the end of the function. */
4290 return prologue_sal.pc;
4291 }
4292 \f
4293 struct symtabs_and_lines
4294 decode_line_spec (char *string, int funfirstline)
4295 {
4296 struct symtabs_and_lines sals;
4297 struct symtab_and_line cursal;
4298
4299 if (string == 0)
4300 error (_("Empty line specification."));
4301
4302 /* We use whatever is set as the current source line. We do not try
4303 and get a default or it will recursively call us! */
4304 cursal = get_current_source_symtab_and_line ();
4305
4306 sals = decode_line_1 (&string, funfirstline,
4307 cursal.symtab, cursal.line,
4308 (char ***) NULL, NULL);
4309
4310 if (*string)
4311 error (_("Junk at end of line specification: %s"), string);
4312 return sals;
4313 }
4314
4315 /* Track MAIN */
4316 static char *name_of_main;
4317
4318 void
4319 set_main_name (const char *name)
4320 {
4321 if (name_of_main != NULL)
4322 {
4323 xfree (name_of_main);
4324 name_of_main = NULL;
4325 }
4326 if (name != NULL)
4327 {
4328 name_of_main = xstrdup (name);
4329 }
4330 }
4331
4332 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4333 accordingly. */
4334
4335 static void
4336 find_main_name (void)
4337 {
4338 const char *new_main_name;
4339
4340 /* Try to see if the main procedure is in Ada. */
4341 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4342 be to add a new method in the language vector, and call this
4343 method for each language until one of them returns a non-empty
4344 name. This would allow us to remove this hard-coded call to
4345 an Ada function. It is not clear that this is a better approach
4346 at this point, because all methods need to be written in a way
4347 such that false positives never be returned. For instance, it is
4348 important that a method does not return a wrong name for the main
4349 procedure if the main procedure is actually written in a different
4350 language. It is easy to guaranty this with Ada, since we use a
4351 special symbol generated only when the main in Ada to find the name
4352 of the main procedure. It is difficult however to see how this can
4353 be guarantied for languages such as C, for instance. This suggests
4354 that order of call for these methods becomes important, which means
4355 a more complicated approach. */
4356 new_main_name = ada_main_name ();
4357 if (new_main_name != NULL)
4358 {
4359 set_main_name (new_main_name);
4360 return;
4361 }
4362
4363 new_main_name = pascal_main_name ();
4364 if (new_main_name != NULL)
4365 {
4366 set_main_name (new_main_name);
4367 return;
4368 }
4369
4370 /* The languages above didn't identify the name of the main procedure.
4371 Fallback to "main". */
4372 set_main_name ("main");
4373 }
4374
4375 char *
4376 main_name (void)
4377 {
4378 if (name_of_main == NULL)
4379 find_main_name ();
4380
4381 return name_of_main;
4382 }
4383
4384 /* Handle ``executable_changed'' events for the symtab module. */
4385
4386 static void
4387 symtab_observer_executable_changed (void)
4388 {
4389 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4390 set_main_name (NULL);
4391 }
4392
4393 /* Helper to expand_line_sal below. Appends new sal to SAL,
4394 initializing it from SYMTAB, LINENO and PC. */
4395 static void
4396 append_expanded_sal (struct symtabs_and_lines *sal,
4397 struct program_space *pspace,
4398 struct symtab *symtab,
4399 int lineno, CORE_ADDR pc)
4400 {
4401 sal->sals = xrealloc (sal->sals,
4402 sizeof (sal->sals[0])
4403 * (sal->nelts + 1));
4404 init_sal (sal->sals + sal->nelts);
4405 sal->sals[sal->nelts].pspace = pspace;
4406 sal->sals[sal->nelts].symtab = symtab;
4407 sal->sals[sal->nelts].section = NULL;
4408 sal->sals[sal->nelts].end = 0;
4409 sal->sals[sal->nelts].line = lineno;
4410 sal->sals[sal->nelts].pc = pc;
4411 ++sal->nelts;
4412 }
4413
4414 /* Helper to expand_line_sal below. Search in the symtabs for any
4415 linetable entry that exactly matches FULLNAME and LINENO and append
4416 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4417 use FILENAME and LINENO instead. If there is at least one match,
4418 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4419 and BEST_SYMTAB. */
4420
4421 static int
4422 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4423 struct symtabs_and_lines *ret,
4424 struct linetable_entry **best_item,
4425 struct symtab **best_symtab)
4426 {
4427 struct program_space *pspace;
4428 struct objfile *objfile;
4429 struct symtab *symtab;
4430 int exact = 0;
4431 int j;
4432 *best_item = 0;
4433 *best_symtab = 0;
4434
4435 ALL_PSPACES (pspace)
4436 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4437 {
4438 if (FILENAME_CMP (filename, symtab->filename) == 0)
4439 {
4440 struct linetable *l;
4441 int len;
4442
4443 if (fullname != NULL
4444 && symtab_to_fullname (symtab) != NULL
4445 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4446 continue;
4447 l = LINETABLE (symtab);
4448 if (!l)
4449 continue;
4450 len = l->nitems;
4451
4452 for (j = 0; j < len; j++)
4453 {
4454 struct linetable_entry *item = &(l->item[j]);
4455
4456 if (item->line == lineno)
4457 {
4458 exact = 1;
4459 append_expanded_sal (ret, objfile->pspace,
4460 symtab, lineno, item->pc);
4461 }
4462 else if (!exact && item->line > lineno
4463 && (*best_item == NULL
4464 || item->line < (*best_item)->line))
4465 {
4466 *best_item = item;
4467 *best_symtab = symtab;
4468 }
4469 }
4470 }
4471 }
4472 return exact;
4473 }
4474
4475 /* Compute a set of all sals in all program spaces that correspond to
4476 same file and line as SAL and return those. If there are several
4477 sals that belong to the same block, only one sal for the block is
4478 included in results. */
4479
4480 struct symtabs_and_lines
4481 expand_line_sal (struct symtab_and_line sal)
4482 {
4483 struct symtabs_and_lines ret;
4484 int i, j;
4485 struct objfile *objfile;
4486 int lineno;
4487 int deleted = 0;
4488 struct block **blocks = NULL;
4489 int *filter;
4490 struct cleanup *old_chain;
4491
4492 ret.nelts = 0;
4493 ret.sals = NULL;
4494
4495 /* Only expand sals that represent file.c:line. */
4496 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4497 {
4498 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4499 ret.sals[0] = sal;
4500 ret.nelts = 1;
4501 return ret;
4502 }
4503 else
4504 {
4505 struct program_space *pspace;
4506 struct linetable_entry *best_item = 0;
4507 struct symtab *best_symtab = 0;
4508 int exact = 0;
4509 char *match_filename;
4510
4511 lineno = sal.line;
4512 match_filename = sal.symtab->filename;
4513
4514 /* We need to find all symtabs for a file which name
4515 is described by sal. We cannot just directly
4516 iterate over symtabs, since a symtab might not be
4517 yet created. We also cannot iterate over psymtabs,
4518 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4519 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4520 corresponding to an included file. Therefore, we do
4521 first pass over psymtabs, reading in those with
4522 the right name. Then, we iterate over symtabs, knowing
4523 that all symtabs we're interested in are loaded. */
4524
4525 old_chain = save_current_program_space ();
4526 ALL_PSPACES (pspace)
4527 {
4528 set_current_program_space (pspace);
4529 ALL_PSPACE_OBJFILES (pspace, objfile)
4530 {
4531 if (objfile->sf)
4532 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4533 sal.symtab->filename);
4534 }
4535 }
4536 do_cleanups (old_chain);
4537
4538 /* Now search the symtab for exact matches and append them. If
4539 none is found, append the best_item and all its exact
4540 matches. */
4541 symtab_to_fullname (sal.symtab);
4542 exact = append_exact_match_to_sals (sal.symtab->filename,
4543 sal.symtab->fullname, lineno,
4544 &ret, &best_item, &best_symtab);
4545 if (!exact && best_item)
4546 append_exact_match_to_sals (best_symtab->filename,
4547 best_symtab->fullname, best_item->line,
4548 &ret, &best_item, &best_symtab);
4549 }
4550
4551 /* For optimized code, compiler can scatter one source line accross
4552 disjoint ranges of PC values, even when no duplicate functions
4553 or inline functions are involved. For example, 'for (;;)' inside
4554 non-template non-inline non-ctor-or-dtor function can result
4555 in two PC ranges. In this case, we don't want to set breakpoint
4556 on first PC of each range. To filter such cases, we use containing
4557 blocks -- for each PC found above we see if there are other PCs
4558 that are in the same block. If yes, the other PCs are filtered out. */
4559
4560 old_chain = save_current_program_space ();
4561 filter = alloca (ret.nelts * sizeof (int));
4562 blocks = alloca (ret.nelts * sizeof (struct block *));
4563 for (i = 0; i < ret.nelts; ++i)
4564 {
4565 set_current_program_space (ret.sals[i].pspace);
4566
4567 filter[i] = 1;
4568 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4569
4570 }
4571 do_cleanups (old_chain);
4572
4573 for (i = 0; i < ret.nelts; ++i)
4574 if (blocks[i] != NULL)
4575 for (j = i+1; j < ret.nelts; ++j)
4576 if (blocks[j] == blocks[i])
4577 {
4578 filter[j] = 0;
4579 ++deleted;
4580 break;
4581 }
4582
4583 {
4584 struct symtab_and_line *final =
4585 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4586
4587 for (i = 0, j = 0; i < ret.nelts; ++i)
4588 if (filter[i])
4589 final[j++] = ret.sals[i];
4590
4591 ret.nelts -= deleted;
4592 xfree (ret.sals);
4593 ret.sals = final;
4594 }
4595
4596 return ret;
4597 }
4598
4599 /* Return 1 if the supplied producer string matches the ARM RealView
4600 compiler (armcc). */
4601
4602 int
4603 producer_is_realview (const char *producer)
4604 {
4605 static const char *const arm_idents[] = {
4606 "ARM C Compiler, ADS",
4607 "Thumb C Compiler, ADS",
4608 "ARM C++ Compiler, ADS",
4609 "Thumb C++ Compiler, ADS",
4610 "ARM/Thumb C/C++ Compiler, RVCT",
4611 "ARM C/C++ Compiler, RVCT"
4612 };
4613 int i;
4614
4615 if (producer == NULL)
4616 return 0;
4617
4618 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4619 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4620 return 1;
4621
4622 return 0;
4623 }
4624
4625 void
4626 _initialize_symtab (void)
4627 {
4628 add_info ("variables", variables_info, _("\
4629 All global and static variable names, or those matching REGEXP."));
4630 if (dbx_commands)
4631 add_com ("whereis", class_info, variables_info, _("\
4632 All global and static variable names, or those matching REGEXP."));
4633
4634 add_info ("functions", functions_info,
4635 _("All function names, or those matching REGEXP."));
4636
4637 /* FIXME: This command has at least the following problems:
4638 1. It prints builtin types (in a very strange and confusing fashion).
4639 2. It doesn't print right, e.g. with
4640 typedef struct foo *FOO
4641 type_print prints "FOO" when we want to make it (in this situation)
4642 print "struct foo *".
4643 I also think "ptype" or "whatis" is more likely to be useful (but if
4644 there is much disagreement "info types" can be fixed). */
4645 add_info ("types", types_info,
4646 _("All type names, or those matching REGEXP."));
4647
4648 add_info ("sources", sources_info,
4649 _("Source files in the program."));
4650
4651 add_com ("rbreak", class_breakpoint, rbreak_command,
4652 _("Set a breakpoint for all functions matching REGEXP."));
4653
4654 if (xdb_commands)
4655 {
4656 add_com ("lf", class_info, sources_info,
4657 _("Source files in the program"));
4658 add_com ("lg", class_info, variables_info, _("\
4659 All global and static variable names, or those matching REGEXP."));
4660 }
4661
4662 add_setshow_enum_cmd ("multiple-symbols", no_class,
4663 multiple_symbols_modes, &multiple_symbols_mode,
4664 _("\
4665 Set the debugger behavior when more than one symbol are possible matches\n\
4666 in an expression."), _("\
4667 Show how the debugger handles ambiguities in expressions."), _("\
4668 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4669 NULL, NULL, &setlist, &showlist);
4670
4671 observer_attach_executable_changed (symtab_observer_executable_changed);
4672 }