]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
[Morello GDB] Fix AUXV reading/parsing for corefiles and remote targets
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = type->name ();
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 \f
694 /* Initialize the language dependent portion of a symbol
695 depending upon the language for the symbol. */
696
697 void
698 general_symbol_info::set_language (enum language language,
699 struct obstack *obstack)
700 {
701 m_language = language;
702 if (language == language_cplus
703 || language == language_d
704 || language == language_go
705 || language == language_objc
706 || language == language_fortran)
707 {
708 set_demangled_name (NULL, obstack);
709 }
710 else if (language == language_ada)
711 {
712 gdb_assert (ada_mangled == 0);
713 language_specific.obstack = obstack;
714 }
715 else
716 {
717 memset (&language_specific, 0, sizeof (language_specific));
718 }
719 }
720
721 /* Functions to initialize a symbol's mangled name. */
722
723 /* Objects of this type are stored in the demangled name hash table. */
724 struct demangled_name_entry
725 {
726 demangled_name_entry (gdb::string_view mangled_name)
727 : mangled (mangled_name) {}
728
729 gdb::string_view mangled;
730 enum language language;
731 gdb::unique_xmalloc_ptr<char> demangled;
732 };
733
734 /* Hash function for the demangled name hash. */
735
736 static hashval_t
737 hash_demangled_name_entry (const void *data)
738 {
739 const struct demangled_name_entry *e
740 = (const struct demangled_name_entry *) data;
741
742 return fast_hash (e->mangled.data (), e->mangled.length ());
743 }
744
745 /* Equality function for the demangled name hash. */
746
747 static int
748 eq_demangled_name_entry (const void *a, const void *b)
749 {
750 const struct demangled_name_entry *da
751 = (const struct demangled_name_entry *) a;
752 const struct demangled_name_entry *db
753 = (const struct demangled_name_entry *) b;
754
755 return da->mangled == db->mangled;
756 }
757
758 static void
759 free_demangled_name_entry (void *data)
760 {
761 struct demangled_name_entry *e
762 = (struct demangled_name_entry *) data;
763
764 e->~demangled_name_entry();
765 }
766
767 /* Create the hash table used for demangled names. Each hash entry is
768 a pair of strings; one for the mangled name and one for the demangled
769 name. The entry is hashed via just the mangled name. */
770
771 static void
772 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
773 {
774 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
775 The hash table code will round this up to the next prime number.
776 Choosing a much larger table size wastes memory, and saves only about
777 1% in symbol reading. However, if the minsym count is already
778 initialized (e.g. because symbol name setting was deferred to
779 a background thread) we can initialize the hashtable with a count
780 based on that, because we will almost certainly have at least that
781 many entries. If we have a nonzero number but less than 256,
782 we still stay with 256 to have some space for psymbols, etc. */
783
784 /* htab will expand the table when it is 3/4th full, so we account for that
785 here. +2 to round up. */
786 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
787 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
788
789 per_bfd->demangled_names_hash.reset (htab_create_alloc
790 (count, hash_demangled_name_entry, eq_demangled_name_entry,
791 free_demangled_name_entry, xcalloc, xfree));
792 }
793
794 /* See symtab.h */
795
796 char *
797 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
798 const char *mangled)
799 {
800 char *demangled = NULL;
801 int i;
802
803 if (gsymbol->language () == language_unknown)
804 gsymbol->m_language = language_auto;
805
806 if (gsymbol->language () != language_auto)
807 {
808 const struct language_defn *lang = language_def (gsymbol->language ());
809
810 lang->sniff_from_mangled_name (mangled, &demangled);
811 return demangled;
812 }
813
814 for (i = language_unknown; i < nr_languages; ++i)
815 {
816 enum language l = (enum language) i;
817 const struct language_defn *lang = language_def (l);
818
819 if (lang->sniff_from_mangled_name (mangled, &demangled))
820 {
821 gsymbol->m_language = l;
822 return demangled;
823 }
824 }
825
826 return NULL;
827 }
828
829 /* Set both the mangled and demangled (if any) names for GSYMBOL based
830 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
831 objfile's obstack; but if COPY_NAME is 0 and if NAME is
832 NUL-terminated, then this function assumes that NAME is already
833 correctly saved (either permanently or with a lifetime tied to the
834 objfile), and it will not be copied.
835
836 The hash table corresponding to OBJFILE is used, and the memory
837 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
838 so the pointer can be discarded after calling this function. */
839
840 void
841 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
842 bool copy_name,
843 objfile_per_bfd_storage *per_bfd,
844 gdb::optional<hashval_t> hash)
845 {
846 struct demangled_name_entry **slot;
847
848 if (language () == language_ada)
849 {
850 /* In Ada, we do the symbol lookups using the mangled name, so
851 we can save some space by not storing the demangled name. */
852 if (!copy_name)
853 m_name = linkage_name.data ();
854 else
855 m_name = obstack_strndup (&per_bfd->storage_obstack,
856 linkage_name.data (),
857 linkage_name.length ());
858 set_demangled_name (NULL, &per_bfd->storage_obstack);
859
860 return;
861 }
862
863 if (per_bfd->demangled_names_hash == NULL)
864 create_demangled_names_hash (per_bfd);
865
866 struct demangled_name_entry entry (linkage_name);
867 if (!hash.has_value ())
868 hash = hash_demangled_name_entry (&entry);
869 slot = ((struct demangled_name_entry **)
870 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
871 &entry, *hash, INSERT));
872
873 /* The const_cast is safe because the only reason it is already
874 initialized is if we purposefully set it from a background
875 thread to avoid doing the work here. However, it is still
876 allocated from the heap and needs to be freed by us, just
877 like if we called symbol_find_demangled_name here. If this is
878 nullptr, we call symbol_find_demangled_name below, but we put
879 this smart pointer here to be sure that we don't leak this name. */
880 gdb::unique_xmalloc_ptr<char> demangled_name
881 (const_cast<char *> (language_specific.demangled_name));
882
883 /* If this name is not in the hash table, add it. */
884 if (*slot == NULL
885 /* A C version of the symbol may have already snuck into the table.
886 This happens to, e.g., main.init (__go_init_main). Cope. */
887 || (language () == language_go && (*slot)->demangled == nullptr))
888 {
889 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
890 to true if the string might not be nullterminated. We have to make
891 this copy because demangling needs a nullterminated string. */
892 gdb::string_view linkage_name_copy;
893 if (copy_name)
894 {
895 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
896 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
897 alloc_name[linkage_name.length ()] = '\0';
898
899 linkage_name_copy = gdb::string_view (alloc_name,
900 linkage_name.length ());
901 }
902 else
903 linkage_name_copy = linkage_name;
904
905 if (demangled_name.get () == nullptr)
906 demangled_name.reset
907 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
908
909 /* Suppose we have demangled_name==NULL, copy_name==0, and
910 linkage_name_copy==linkage_name. In this case, we already have the
911 mangled name saved, and we don't have a demangled name. So,
912 you might think we could save a little space by not recording
913 this in the hash table at all.
914
915 It turns out that it is actually important to still save such
916 an entry in the hash table, because storing this name gives
917 us better bcache hit rates for partial symbols. */
918 if (!copy_name)
919 {
920 *slot
921 = ((struct demangled_name_entry *)
922 obstack_alloc (&per_bfd->storage_obstack,
923 sizeof (demangled_name_entry)));
924 new (*slot) demangled_name_entry (linkage_name);
925 }
926 else
927 {
928 /* If we must copy the mangled name, put it directly after
929 the struct so we can have a single allocation. */
930 *slot
931 = ((struct demangled_name_entry *)
932 obstack_alloc (&per_bfd->storage_obstack,
933 sizeof (demangled_name_entry)
934 + linkage_name.length () + 1));
935 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
936 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
937 mangled_ptr [linkage_name.length ()] = '\0';
938 new (*slot) demangled_name_entry
939 (gdb::string_view (mangled_ptr, linkage_name.length ()));
940 }
941 (*slot)->demangled = std::move (demangled_name);
942 (*slot)->language = language ();
943 }
944 else if (language () == language_unknown || language () == language_auto)
945 m_language = (*slot)->language;
946
947 m_name = (*slot)->mangled.data ();
948 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
949 }
950
951 /* See symtab.h. */
952
953 const char *
954 general_symbol_info::natural_name () const
955 {
956 switch (language ())
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_objc:
962 case language_fortran:
963 case language_rust:
964 if (language_specific.demangled_name != nullptr)
965 return language_specific.demangled_name;
966 break;
967 case language_ada:
968 return ada_decode_symbol (this);
969 default:
970 break;
971 }
972 return linkage_name ();
973 }
974
975 /* See symtab.h. */
976
977 const char *
978 general_symbol_info::demangled_name () const
979 {
980 const char *dem_name = NULL;
981
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 case language_rust:
990 dem_name = language_specific.demangled_name;
991 break;
992 case language_ada:
993 dem_name = ada_decode_symbol (this);
994 break;
995 default:
996 break;
997 }
998 return dem_name;
999 }
1000
1001 /* See symtab.h. */
1002
1003 const char *
1004 general_symbol_info::search_name () const
1005 {
1006 if (language () == language_ada)
1007 return linkage_name ();
1008 else
1009 return natural_name ();
1010 }
1011
1012 /* See symtab.h. */
1013
1014 bool
1015 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1016 const lookup_name_info &name)
1017 {
1018 symbol_name_matcher_ftype *name_match
1019 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1020 return name_match (gsymbol->search_name (), name, NULL);
1021 }
1022
1023 \f
1024
1025 /* Return true if the two sections are the same, or if they could
1026 plausibly be copies of each other, one in an original object
1027 file and another in a separated debug file. */
1028
1029 bool
1030 matching_obj_sections (struct obj_section *obj_first,
1031 struct obj_section *obj_second)
1032 {
1033 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1034 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1035
1036 /* If they're the same section, then they match. */
1037 if (first == second)
1038 return true;
1039
1040 /* If either is NULL, give up. */
1041 if (first == NULL || second == NULL)
1042 return false;
1043
1044 /* This doesn't apply to absolute symbols. */
1045 if (first->owner == NULL || second->owner == NULL)
1046 return false;
1047
1048 /* If they're in the same object file, they must be different sections. */
1049 if (first->owner == second->owner)
1050 return false;
1051
1052 /* Check whether the two sections are potentially corresponding. They must
1053 have the same size, address, and name. We can't compare section indexes,
1054 which would be more reliable, because some sections may have been
1055 stripped. */
1056 if (bfd_section_size (first) != bfd_section_size (second))
1057 return false;
1058
1059 /* In-memory addresses may start at a different offset, relativize them. */
1060 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1061 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1062 return false;
1063
1064 if (bfd_section_name (first) == NULL
1065 || bfd_section_name (second) == NULL
1066 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1067 return false;
1068
1069 /* Otherwise check that they are in corresponding objfiles. */
1070
1071 struct objfile *obj = NULL;
1072 for (objfile *objfile : current_program_space->objfiles ())
1073 if (objfile->obfd == first->owner)
1074 {
1075 obj = objfile;
1076 break;
1077 }
1078 gdb_assert (obj != NULL);
1079
1080 if (obj->separate_debug_objfile != NULL
1081 && obj->separate_debug_objfile->obfd == second->owner)
1082 return true;
1083 if (obj->separate_debug_objfile_backlink != NULL
1084 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1085 return true;
1086
1087 return false;
1088 }
1089
1090 /* See symtab.h. */
1091
1092 void
1093 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1094 {
1095 struct bound_minimal_symbol msymbol;
1096
1097 /* If we know that this is not a text address, return failure. This is
1098 necessary because we loop based on texthigh and textlow, which do
1099 not include the data ranges. */
1100 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1101 if (msymbol.minsym && msymbol.minsym->data_p ())
1102 return;
1103
1104 for (objfile *objfile : current_program_space->objfiles ())
1105 {
1106 struct compunit_symtab *cust = NULL;
1107
1108 if (objfile->sf)
1109 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1110 pc, section, 0);
1111 if (cust)
1112 return;
1113 }
1114 }
1115 \f
1116 /* Hash function for the symbol cache. */
1117
1118 static unsigned int
1119 hash_symbol_entry (const struct objfile *objfile_context,
1120 const char *name, domain_enum domain)
1121 {
1122 unsigned int hash = (uintptr_t) objfile_context;
1123
1124 if (name != NULL)
1125 hash += htab_hash_string (name);
1126
1127 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1128 to map to the same slot. */
1129 if (domain == STRUCT_DOMAIN)
1130 hash += VAR_DOMAIN * 7;
1131 else
1132 hash += domain * 7;
1133
1134 return hash;
1135 }
1136
1137 /* Equality function for the symbol cache. */
1138
1139 static int
1140 eq_symbol_entry (const struct symbol_cache_slot *slot,
1141 const struct objfile *objfile_context,
1142 const char *name, domain_enum domain)
1143 {
1144 const char *slot_name;
1145 domain_enum slot_domain;
1146
1147 if (slot->state == SYMBOL_SLOT_UNUSED)
1148 return 0;
1149
1150 if (slot->objfile_context != objfile_context)
1151 return 0;
1152
1153 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1154 {
1155 slot_name = slot->value.not_found.name;
1156 slot_domain = slot->value.not_found.domain;
1157 }
1158 else
1159 {
1160 slot_name = slot->value.found.symbol->search_name ();
1161 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1162 }
1163
1164 /* NULL names match. */
1165 if (slot_name == NULL && name == NULL)
1166 {
1167 /* But there's no point in calling symbol_matches_domain in the
1168 SYMBOL_SLOT_FOUND case. */
1169 if (slot_domain != domain)
1170 return 0;
1171 }
1172 else if (slot_name != NULL && name != NULL)
1173 {
1174 /* It's important that we use the same comparison that was done
1175 the first time through. If the slot records a found symbol,
1176 then this means using the symbol name comparison function of
1177 the symbol's language with symbol->search_name (). See
1178 dictionary.c. It also means using symbol_matches_domain for
1179 found symbols. See block.c.
1180
1181 If the slot records a not-found symbol, then require a precise match.
1182 We could still be lax with whitespace like strcmp_iw though. */
1183
1184 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1185 {
1186 if (strcmp (slot_name, name) != 0)
1187 return 0;
1188 if (slot_domain != domain)
1189 return 0;
1190 }
1191 else
1192 {
1193 struct symbol *sym = slot->value.found.symbol;
1194 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1195
1196 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1197 return 0;
1198
1199 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1200 return 0;
1201 }
1202 }
1203 else
1204 {
1205 /* Only one name is NULL. */
1206 return 0;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Given a cache of size SIZE, return the size of the struct (with variable
1213 length array) in bytes. */
1214
1215 static size_t
1216 symbol_cache_byte_size (unsigned int size)
1217 {
1218 return (sizeof (struct block_symbol_cache)
1219 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1220 }
1221
1222 /* Resize CACHE. */
1223
1224 static void
1225 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1226 {
1227 /* If there's no change in size, don't do anything.
1228 All caches have the same size, so we can just compare with the size
1229 of the global symbols cache. */
1230 if ((cache->global_symbols != NULL
1231 && cache->global_symbols->size == new_size)
1232 || (cache->global_symbols == NULL
1233 && new_size == 0))
1234 return;
1235
1236 destroy_block_symbol_cache (cache->global_symbols);
1237 destroy_block_symbol_cache (cache->static_symbols);
1238
1239 if (new_size == 0)
1240 {
1241 cache->global_symbols = NULL;
1242 cache->static_symbols = NULL;
1243 }
1244 else
1245 {
1246 size_t total_size = symbol_cache_byte_size (new_size);
1247
1248 cache->global_symbols
1249 = (struct block_symbol_cache *) xcalloc (1, total_size);
1250 cache->static_symbols
1251 = (struct block_symbol_cache *) xcalloc (1, total_size);
1252 cache->global_symbols->size = new_size;
1253 cache->static_symbols->size = new_size;
1254 }
1255 }
1256
1257 /* Return the symbol cache of PSPACE.
1258 Create one if it doesn't exist yet. */
1259
1260 static struct symbol_cache *
1261 get_symbol_cache (struct program_space *pspace)
1262 {
1263 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1264
1265 if (cache == NULL)
1266 {
1267 cache = symbol_cache_key.emplace (pspace);
1268 resize_symbol_cache (cache, symbol_cache_size);
1269 }
1270
1271 return cache;
1272 }
1273
1274 /* Set the size of the symbol cache in all program spaces. */
1275
1276 static void
1277 set_symbol_cache_size (unsigned int new_size)
1278 {
1279 for (struct program_space *pspace : program_spaces)
1280 {
1281 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1282
1283 /* The pspace could have been created but not have a cache yet. */
1284 if (cache != NULL)
1285 resize_symbol_cache (cache, new_size);
1286 }
1287 }
1288
1289 /* Called when symbol-cache-size is set. */
1290
1291 static void
1292 set_symbol_cache_size_handler (const char *args, int from_tty,
1293 struct cmd_list_element *c)
1294 {
1295 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1296 {
1297 /* Restore the previous value.
1298 This is the value the "show" command prints. */
1299 new_symbol_cache_size = symbol_cache_size;
1300
1301 error (_("Symbol cache size is too large, max is %u."),
1302 MAX_SYMBOL_CACHE_SIZE);
1303 }
1304 symbol_cache_size = new_symbol_cache_size;
1305
1306 set_symbol_cache_size (symbol_cache_size);
1307 }
1308
1309 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1310 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1311 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1312 failed (and thus this one will too), or NULL if the symbol is not present
1313 in the cache.
1314 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1315 can be used to save the result of a full lookup attempt. */
1316
1317 static struct block_symbol
1318 symbol_cache_lookup (struct symbol_cache *cache,
1319 struct objfile *objfile_context, enum block_enum block,
1320 const char *name, domain_enum domain,
1321 struct block_symbol_cache **bsc_ptr,
1322 struct symbol_cache_slot **slot_ptr)
1323 {
1324 struct block_symbol_cache *bsc;
1325 unsigned int hash;
1326 struct symbol_cache_slot *slot;
1327
1328 if (block == GLOBAL_BLOCK)
1329 bsc = cache->global_symbols;
1330 else
1331 bsc = cache->static_symbols;
1332 if (bsc == NULL)
1333 {
1334 *bsc_ptr = NULL;
1335 *slot_ptr = NULL;
1336 return {};
1337 }
1338
1339 hash = hash_symbol_entry (objfile_context, name, domain);
1340 slot = bsc->symbols + hash % bsc->size;
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 if (symbol_lookup_debug)
1363 {
1364 fprintf_unfiltered (gdb_stdlog,
1365 "%s block symbol cache miss for %s, %s\n",
1366 block == GLOBAL_BLOCK ? "Global" : "Static",
1367 name, domain_name (domain));
1368 }
1369 ++bsc->misses;
1370 return {};
1371 }
1372
1373 /* Mark SYMBOL as found in SLOT.
1374 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1375 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1376 necessarily the objfile the symbol was found in. */
1377
1378 static void
1379 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1380 struct symbol_cache_slot *slot,
1381 struct objfile *objfile_context,
1382 struct symbol *symbol,
1383 const struct block *block)
1384 {
1385 if (bsc == NULL)
1386 return;
1387 if (slot->state != SYMBOL_SLOT_UNUSED)
1388 {
1389 ++bsc->collisions;
1390 symbol_cache_clear_slot (slot);
1391 }
1392 slot->state = SYMBOL_SLOT_FOUND;
1393 slot->objfile_context = objfile_context;
1394 slot->value.found.symbol = symbol;
1395 slot->value.found.block = block;
1396 }
1397
1398 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1399 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1400 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1401
1402 static void
1403 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1404 struct symbol_cache_slot *slot,
1405 struct objfile *objfile_context,
1406 const char *name, domain_enum domain)
1407 {
1408 if (bsc == NULL)
1409 return;
1410 if (slot->state != SYMBOL_SLOT_UNUSED)
1411 {
1412 ++bsc->collisions;
1413 symbol_cache_clear_slot (slot);
1414 }
1415 slot->state = SYMBOL_SLOT_NOT_FOUND;
1416 slot->objfile_context = objfile_context;
1417 slot->value.not_found.name = xstrdup (name);
1418 slot->value.not_found.domain = domain;
1419 }
1420
1421 /* Flush the symbol cache of PSPACE. */
1422
1423 static void
1424 symbol_cache_flush (struct program_space *pspace)
1425 {
1426 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1427 int pass;
1428
1429 if (cache == NULL)
1430 return;
1431 if (cache->global_symbols == NULL)
1432 {
1433 gdb_assert (symbol_cache_size == 0);
1434 gdb_assert (cache->static_symbols == NULL);
1435 return;
1436 }
1437
1438 /* If the cache is untouched since the last flush, early exit.
1439 This is important for performance during the startup of a program linked
1440 with 100s (or 1000s) of shared libraries. */
1441 if (cache->global_symbols->misses == 0
1442 && cache->static_symbols->misses == 0)
1443 return;
1444
1445 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1446 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1447
1448 for (pass = 0; pass < 2; ++pass)
1449 {
1450 struct block_symbol_cache *bsc
1451 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1452 unsigned int i;
1453
1454 for (i = 0; i < bsc->size; ++i)
1455 symbol_cache_clear_slot (&bsc->symbols[i]);
1456 }
1457
1458 cache->global_symbols->hits = 0;
1459 cache->global_symbols->misses = 0;
1460 cache->global_symbols->collisions = 0;
1461 cache->static_symbols->hits = 0;
1462 cache->static_symbols->misses = 0;
1463 cache->static_symbols->collisions = 0;
1464 }
1465
1466 /* Dump CACHE. */
1467
1468 static void
1469 symbol_cache_dump (const struct symbol_cache *cache)
1470 {
1471 int pass;
1472
1473 if (cache->global_symbols == NULL)
1474 {
1475 printf_filtered (" <disabled>\n");
1476 return;
1477 }
1478
1479 for (pass = 0; pass < 2; ++pass)
1480 {
1481 const struct block_symbol_cache *bsc
1482 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1483 unsigned int i;
1484
1485 if (pass == 0)
1486 printf_filtered ("Global symbols:\n");
1487 else
1488 printf_filtered ("Static symbols:\n");
1489
1490 for (i = 0; i < bsc->size; ++i)
1491 {
1492 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1493
1494 QUIT;
1495
1496 switch (slot->state)
1497 {
1498 case SYMBOL_SLOT_UNUSED:
1499 break;
1500 case SYMBOL_SLOT_NOT_FOUND:
1501 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1502 host_address_to_string (slot->objfile_context),
1503 slot->value.not_found.name,
1504 domain_name (slot->value.not_found.domain));
1505 break;
1506 case SYMBOL_SLOT_FOUND:
1507 {
1508 struct symbol *found = slot->value.found.symbol;
1509 const struct objfile *context = slot->objfile_context;
1510
1511 printf_filtered (" [%4u] = %s, %s %s\n", i,
1512 host_address_to_string (context),
1513 found->print_name (),
1514 domain_name (SYMBOL_DOMAIN (found)));
1515 break;
1516 }
1517 }
1518 }
1519 }
1520 }
1521
1522 /* The "mt print symbol-cache" command. */
1523
1524 static void
1525 maintenance_print_symbol_cache (const char *args, int from_tty)
1526 {
1527 for (struct program_space *pspace : program_spaces)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache = symbol_cache_key.get (pspace);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 for (struct program_space *pspace : program_spaces)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 for (struct program_space *pspace : program_spaces)
1595 {
1596 struct symbol_cache *cache;
1597
1598 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1599 pspace->num,
1600 pspace->symfile_object_file != NULL
1601 ? objfile_name (pspace->symfile_object_file)
1602 : "(no object file)");
1603
1604 /* If the cache hasn't been created yet, avoid creating one. */
1605 cache = symbol_cache_key.get (pspace);
1606 if (cache == NULL)
1607 printf_filtered (" empty, no stats available\n");
1608 else
1609 symbol_cache_stats (cache);
1610 }
1611 }
1612
1613 /* This module's 'new_objfile' observer. */
1614
1615 static void
1616 symtab_new_objfile_observer (struct objfile *objfile)
1617 {
1618 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1619 symbol_cache_flush (current_program_space);
1620 }
1621
1622 /* This module's 'free_objfile' observer. */
1623
1624 static void
1625 symtab_free_objfile_observer (struct objfile *objfile)
1626 {
1627 symbol_cache_flush (objfile->pspace);
1628 }
1629 \f
1630 /* Debug symbols usually don't have section information. We need to dig that
1631 out of the minimal symbols and stash that in the debug symbol. */
1632
1633 void
1634 fixup_section (struct general_symbol_info *ginfo,
1635 CORE_ADDR addr, struct objfile *objfile)
1636 {
1637 struct minimal_symbol *msym;
1638
1639 /* First, check whether a minimal symbol with the same name exists
1640 and points to the same address. The address check is required
1641 e.g. on PowerPC64, where the minimal symbol for a function will
1642 point to the function descriptor, while the debug symbol will
1643 point to the actual function code. */
1644 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1645 objfile);
1646 if (msym)
1647 ginfo->section = MSYMBOL_SECTION (msym);
1648 else
1649 {
1650 /* Static, function-local variables do appear in the linker
1651 (minimal) symbols, but are frequently given names that won't
1652 be found via lookup_minimal_symbol(). E.g., it has been
1653 observed in frv-uclinux (ELF) executables that a static,
1654 function-local variable named "foo" might appear in the
1655 linker symbols as "foo.6" or "foo.3". Thus, there is no
1656 point in attempting to extend the lookup-by-name mechanism to
1657 handle this case due to the fact that there can be multiple
1658 names.
1659
1660 So, instead, search the section table when lookup by name has
1661 failed. The ``addr'' and ``endaddr'' fields may have already
1662 been relocated. If so, the relocation offset needs to be
1663 subtracted from these values when performing the comparison.
1664 We unconditionally subtract it, because, when no relocation
1665 has been performed, the value will simply be zero.
1666
1667 The address of the symbol whose section we're fixing up HAS
1668 NOT BEEN adjusted (relocated) yet. It can't have been since
1669 the section isn't yet known and knowing the section is
1670 necessary in order to add the correct relocation value. In
1671 other words, we wouldn't even be in this function (attempting
1672 to compute the section) if it were already known.
1673
1674 Note that it is possible to search the minimal symbols
1675 (subtracting the relocation value if necessary) to find the
1676 matching minimal symbol, but this is overkill and much less
1677 efficient. It is not necessary to find the matching minimal
1678 symbol, only its section.
1679
1680 Note that this technique (of doing a section table search)
1681 can fail when unrelocated section addresses overlap. For
1682 this reason, we still attempt a lookup by name prior to doing
1683 a search of the section table. */
1684
1685 struct obj_section *s;
1686 int fallback = -1;
1687
1688 ALL_OBJFILE_OSECTIONS (objfile, s)
1689 {
1690 int idx = s - objfile->sections;
1691 CORE_ADDR offset = objfile->section_offsets[idx];
1692
1693 if (fallback == -1)
1694 fallback = idx;
1695
1696 if (obj_section_addr (s) - offset <= addr
1697 && addr < obj_section_endaddr (s) - offset)
1698 {
1699 ginfo->section = idx;
1700 return;
1701 }
1702 }
1703
1704 /* If we didn't find the section, assume it is in the first
1705 section. If there is no allocated section, then it hardly
1706 matters what we pick, so just pick zero. */
1707 if (fallback == -1)
1708 ginfo->section = 0;
1709 else
1710 ginfo->section = fallback;
1711 }
1712 }
1713
1714 struct symbol *
1715 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1716 {
1717 CORE_ADDR addr;
1718
1719 if (!sym)
1720 return NULL;
1721
1722 if (!SYMBOL_OBJFILE_OWNED (sym))
1723 return sym;
1724
1725 /* We either have an OBJFILE, or we can get at it from the sym's
1726 symtab. Anything else is a bug. */
1727 gdb_assert (objfile || symbol_symtab (sym));
1728
1729 if (objfile == NULL)
1730 objfile = symbol_objfile (sym);
1731
1732 if (SYMBOL_OBJ_SECTION (objfile, sym))
1733 return sym;
1734
1735 /* We should have an objfile by now. */
1736 gdb_assert (objfile);
1737
1738 switch (SYMBOL_CLASS (sym))
1739 {
1740 case LOC_STATIC:
1741 case LOC_LABEL:
1742 addr = SYMBOL_VALUE_ADDRESS (sym);
1743 break;
1744 case LOC_BLOCK:
1745 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1746 break;
1747
1748 default:
1749 /* Nothing else will be listed in the minsyms -- no use looking
1750 it up. */
1751 return sym;
1752 }
1753
1754 fixup_section (sym, addr, objfile);
1755
1756 return sym;
1757 }
1758
1759 /* See symtab.h. */
1760
1761 demangle_for_lookup_info::demangle_for_lookup_info
1762 (const lookup_name_info &lookup_name, language lang)
1763 {
1764 demangle_result_storage storage;
1765
1766 if (lookup_name.ignore_parameters () && lang == language_cplus)
1767 {
1768 gdb::unique_xmalloc_ptr<char> without_params
1769 = cp_remove_params_if_any (lookup_name.c_str (),
1770 lookup_name.completion_mode ());
1771
1772 if (without_params != NULL)
1773 {
1774 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1775 m_demangled_name = demangle_for_lookup (without_params.get (),
1776 lang, storage);
1777 return;
1778 }
1779 }
1780
1781 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1782 m_demangled_name = lookup_name.c_str ();
1783 else
1784 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1785 lang, storage);
1786 }
1787
1788 /* See symtab.h. */
1789
1790 const lookup_name_info &
1791 lookup_name_info::match_any ()
1792 {
1793 /* Lookup any symbol that "" would complete. I.e., this matches all
1794 symbol names. */
1795 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1796 true);
1797
1798 return lookup_name;
1799 }
1800
1801 /* Compute the demangled form of NAME as used by the various symbol
1802 lookup functions. The result can either be the input NAME
1803 directly, or a pointer to a buffer owned by the STORAGE object.
1804
1805 For Ada, this function just returns NAME, unmodified.
1806 Normally, Ada symbol lookups are performed using the encoded name
1807 rather than the demangled name, and so it might seem to make sense
1808 for this function to return an encoded version of NAME.
1809 Unfortunately, we cannot do this, because this function is used in
1810 circumstances where it is not appropriate to try to encode NAME.
1811 For instance, when displaying the frame info, we demangle the name
1812 of each parameter, and then perform a symbol lookup inside our
1813 function using that demangled name. In Ada, certain functions
1814 have internally-generated parameters whose name contain uppercase
1815 characters. Encoding those name would result in those uppercase
1816 characters to become lowercase, and thus cause the symbol lookup
1817 to fail. */
1818
1819 const char *
1820 demangle_for_lookup (const char *name, enum language lang,
1821 demangle_result_storage &storage)
1822 {
1823 /* If we are using C++, D, or Go, demangle the name before doing a
1824 lookup, so we can always binary search. */
1825 if (lang == language_cplus)
1826 {
1827 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1828 if (demangled_name != NULL)
1829 return storage.set_malloc_ptr (demangled_name);
1830
1831 /* If we were given a non-mangled name, canonicalize it
1832 according to the language (so far only for C++). */
1833 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1834 if (canon != nullptr)
1835 return storage.set_malloc_ptr (std::move (canon));
1836 }
1837 else if (lang == language_d)
1838 {
1839 char *demangled_name = d_demangle (name, 0);
1840 if (demangled_name != NULL)
1841 return storage.set_malloc_ptr (demangled_name);
1842 }
1843 else if (lang == language_go)
1844 {
1845 char *demangled_name = go_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849
1850 return name;
1851 }
1852
1853 /* See symtab.h. */
1854
1855 unsigned int
1856 search_name_hash (enum language language, const char *search_name)
1857 {
1858 return language_def (language)->search_name_hash (search_name);
1859 }
1860
1861 /* See symtab.h.
1862
1863 This function (or rather its subordinates) have a bunch of loops and
1864 it would seem to be attractive to put in some QUIT's (though I'm not really
1865 sure whether it can run long enough to be really important). But there
1866 are a few calls for which it would appear to be bad news to quit
1867 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1868 that there is C++ code below which can error(), but that probably
1869 doesn't affect these calls since they are looking for a known
1870 variable and thus can probably assume it will never hit the C++
1871 code). */
1872
1873 struct block_symbol
1874 lookup_symbol_in_language (const char *name, const struct block *block,
1875 const domain_enum domain, enum language lang,
1876 struct field_of_this_result *is_a_field_of_this)
1877 {
1878 demangle_result_storage storage;
1879 const char *modified_name = demangle_for_lookup (name, lang, storage);
1880
1881 return lookup_symbol_aux (modified_name,
1882 symbol_name_match_type::FULL,
1883 block, domain, lang,
1884 is_a_field_of_this);
1885 }
1886
1887 /* See symtab.h. */
1888
1889 struct block_symbol
1890 lookup_symbol (const char *name, const struct block *block,
1891 domain_enum domain,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 return lookup_symbol_in_language (name, block, domain,
1895 current_language->la_language,
1896 is_a_field_of_this);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct block_symbol
1902 lookup_symbol_search_name (const char *search_name, const struct block *block,
1903 domain_enum domain)
1904 {
1905 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1906 block, domain, language_asm, NULL);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_language_this (const struct language_defn *lang,
1913 const struct block *block)
1914 {
1915 if (lang->name_of_this () == NULL || block == NULL)
1916 return {};
1917
1918 if (symbol_lookup_debug > 1)
1919 {
1920 struct objfile *objfile = block_objfile (block);
1921
1922 fprintf_unfiltered (gdb_stdlog,
1923 "lookup_language_this (%s, %s (objfile %s))",
1924 lang->name (), host_address_to_string (block),
1925 objfile_debug_name (objfile));
1926 }
1927
1928 while (block)
1929 {
1930 struct symbol *sym;
1931
1932 sym = block_lookup_symbol (block, lang->name_of_this (),
1933 symbol_name_match_type::SEARCH_NAME,
1934 VAR_DOMAIN);
1935 if (sym != NULL)
1936 {
1937 if (symbol_lookup_debug > 1)
1938 {
1939 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1940 sym->print_name (),
1941 host_address_to_string (sym),
1942 host_address_to_string (block));
1943 }
1944 return (struct block_symbol) {sym, block};
1945 }
1946 if (BLOCK_FUNCTION (block))
1947 break;
1948 block = BLOCK_SUPERBLOCK (block);
1949 }
1950
1951 if (symbol_lookup_debug > 1)
1952 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1953 return {};
1954 }
1955
1956 /* Given TYPE, a structure/union,
1957 return 1 if the component named NAME from the ultimate target
1958 structure/union is defined, otherwise, return 0. */
1959
1960 static int
1961 check_field (struct type *type, const char *name,
1962 struct field_of_this_result *is_a_field_of_this)
1963 {
1964 int i;
1965
1966 /* The type may be a stub. */
1967 type = check_typedef (type);
1968
1969 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1970 {
1971 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1972
1973 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1974 {
1975 is_a_field_of_this->type = type;
1976 is_a_field_of_this->field = &type->field (i);
1977 return 1;
1978 }
1979 }
1980
1981 /* C++: If it was not found as a data field, then try to return it
1982 as a pointer to a method. */
1983
1984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1985 {
1986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1987 {
1988 is_a_field_of_this->type = type;
1989 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1990 return 1;
1991 }
1992 }
1993
1994 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1995 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1996 return 1;
1997
1998 return 0;
1999 }
2000
2001 /* Behave like lookup_symbol except that NAME is the natural name
2002 (e.g., demangled name) of the symbol that we're looking for. */
2003
2004 static struct block_symbol
2005 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2006 const struct block *block,
2007 const domain_enum domain, enum language language,
2008 struct field_of_this_result *is_a_field_of_this)
2009 {
2010 struct block_symbol result;
2011 const struct language_defn *langdef;
2012
2013 if (symbol_lookup_debug)
2014 {
2015 struct objfile *objfile = (block == nullptr
2016 ? nullptr : block_objfile (block));
2017
2018 fprintf_unfiltered (gdb_stdlog,
2019 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2020 name, host_address_to_string (block),
2021 objfile != NULL
2022 ? objfile_debug_name (objfile) : "NULL",
2023 domain_name (domain), language_str (language));
2024 }
2025
2026 /* Make sure we do something sensible with is_a_field_of_this, since
2027 the callers that set this parameter to some non-null value will
2028 certainly use it later. If we don't set it, the contents of
2029 is_a_field_of_this are undefined. */
2030 if (is_a_field_of_this != NULL)
2031 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2032
2033 /* Search specified block and its superiors. Don't search
2034 STATIC_BLOCK or GLOBAL_BLOCK. */
2035
2036 result = lookup_local_symbol (name, match_type, block, domain, language);
2037 if (result.symbol != NULL)
2038 {
2039 if (symbol_lookup_debug)
2040 {
2041 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2042 host_address_to_string (result.symbol));
2043 }
2044 return result;
2045 }
2046
2047 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2048 check to see if NAME is a field of `this'. */
2049
2050 langdef = language_def (language);
2051
2052 /* Don't do this check if we are searching for a struct. It will
2053 not be found by check_field, but will be found by other
2054 means. */
2055 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2056 {
2057 result = lookup_language_this (langdef, block);
2058
2059 if (result.symbol)
2060 {
2061 struct type *t = result.symbol->type;
2062
2063 /* I'm not really sure that type of this can ever
2064 be typedefed; just be safe. */
2065 t = check_typedef (t);
2066 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2067 t = TYPE_TARGET_TYPE (t);
2068
2069 if (t->code () != TYPE_CODE_STRUCT
2070 && t->code () != TYPE_CODE_UNION)
2071 error (_("Internal error: `%s' is not an aggregate"),
2072 langdef->name_of_this ());
2073
2074 if (check_field (t, name, is_a_field_of_this))
2075 {
2076 if (symbol_lookup_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "lookup_symbol_aux (...) = NULL\n");
2080 }
2081 return {};
2082 }
2083 }
2084 }
2085
2086 /* Now do whatever is appropriate for LANGUAGE to look
2087 up static and global variables. */
2088
2089 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2090 if (result.symbol != NULL)
2091 {
2092 if (symbol_lookup_debug)
2093 {
2094 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2095 host_address_to_string (result.symbol));
2096 }
2097 return result;
2098 }
2099
2100 /* Now search all static file-level symbols. Not strictly correct,
2101 but more useful than an error. */
2102
2103 result = lookup_static_symbol (name, domain);
2104 if (symbol_lookup_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2107 result.symbol != NULL
2108 ? host_address_to_string (result.symbol)
2109 : "NULL");
2110 }
2111 return result;
2112 }
2113
2114 /* Check to see if the symbol is defined in BLOCK or its superiors.
2115 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2116
2117 static struct block_symbol
2118 lookup_local_symbol (const char *name,
2119 symbol_name_match_type match_type,
2120 const struct block *block,
2121 const domain_enum domain,
2122 enum language language)
2123 {
2124 struct symbol *sym;
2125 const struct block *static_block = block_static_block (block);
2126 const char *scope = block_scope (block);
2127
2128 /* Check if either no block is specified or it's a global block. */
2129
2130 if (static_block == NULL)
2131 return {};
2132
2133 while (block != static_block)
2134 {
2135 sym = lookup_symbol_in_block (name, match_type, block, domain);
2136 if (sym != NULL)
2137 return (struct block_symbol) {sym, block};
2138
2139 if (language == language_cplus || language == language_fortran)
2140 {
2141 struct block_symbol blocksym
2142 = cp_lookup_symbol_imports_or_template (scope, name, block,
2143 domain);
2144
2145 if (blocksym.symbol != NULL)
2146 return blocksym;
2147 }
2148
2149 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2150 break;
2151 block = BLOCK_SUPERBLOCK (block);
2152 }
2153
2154 /* We've reached the end of the function without finding a result. */
2155
2156 return {};
2157 }
2158
2159 /* See symtab.h. */
2160
2161 struct symbol *
2162 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2163 const struct block *block,
2164 const domain_enum domain)
2165 {
2166 struct symbol *sym;
2167
2168 if (symbol_lookup_debug > 1)
2169 {
2170 struct objfile *objfile = (block == nullptr
2171 ? nullptr : block_objfile (block));
2172
2173 fprintf_unfiltered (gdb_stdlog,
2174 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2175 name, host_address_to_string (block),
2176 objfile_debug_name (objfile),
2177 domain_name (domain));
2178 }
2179
2180 sym = block_lookup_symbol (block, name, match_type, domain);
2181 if (sym)
2182 {
2183 if (symbol_lookup_debug > 1)
2184 {
2185 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2186 host_address_to_string (sym));
2187 }
2188 return fixup_symbol_section (sym, NULL);
2189 }
2190
2191 if (symbol_lookup_debug > 1)
2192 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2193 return NULL;
2194 }
2195
2196 /* See symtab.h. */
2197
2198 struct block_symbol
2199 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2200 enum block_enum block_index,
2201 const char *name,
2202 const domain_enum domain)
2203 {
2204 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2205
2206 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2207 {
2208 struct block_symbol result
2209 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2210
2211 if (result.symbol != nullptr)
2212 return result;
2213 }
2214
2215 return {};
2216 }
2217
2218 /* Check to see if the symbol is defined in one of the OBJFILE's
2219 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2220 depending on whether or not we want to search global symbols or
2221 static symbols. */
2222
2223 static struct block_symbol
2224 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2225 enum block_enum block_index, const char *name,
2226 const domain_enum domain)
2227 {
2228 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2229
2230 if (symbol_lookup_debug > 1)
2231 {
2232 fprintf_unfiltered (gdb_stdlog,
2233 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2234 objfile_debug_name (objfile),
2235 block_index == GLOBAL_BLOCK
2236 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2237 name, domain_name (domain));
2238 }
2239
2240 struct block_symbol other;
2241 other.symbol = NULL;
2242 for (compunit_symtab *cust : objfile->compunits ())
2243 {
2244 const struct blockvector *bv;
2245 const struct block *block;
2246 struct block_symbol result;
2247
2248 bv = COMPUNIT_BLOCKVECTOR (cust);
2249 block = BLOCKVECTOR_BLOCK (bv, block_index);
2250 result.symbol = block_lookup_symbol_primary (block, name, domain);
2251 result.block = block;
2252 if (result.symbol == NULL)
2253 continue;
2254 if (best_symbol (result.symbol, domain))
2255 {
2256 other = result;
2257 break;
2258 }
2259 if (symbol_matches_domain (result.symbol->language (),
2260 SYMBOL_DOMAIN (result.symbol), domain))
2261 {
2262 struct symbol *better
2263 = better_symbol (other.symbol, result.symbol, domain);
2264 if (better != other.symbol)
2265 {
2266 other.symbol = better;
2267 other.block = block;
2268 }
2269 }
2270 }
2271
2272 if (other.symbol != NULL)
2273 {
2274 if (symbol_lookup_debug > 1)
2275 {
2276 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2277 host_address_to_string (other.symbol),
2278 host_address_to_string (other.block));
2279 }
2280 other.symbol = fixup_symbol_section (other.symbol, objfile);
2281 return other;
2282 }
2283
2284 if (symbol_lookup_debug > 1)
2285 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2286 return {};
2287 }
2288
2289 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2290 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2291 and all associated separate debug objfiles.
2292
2293 Normally we only look in OBJFILE, and not any separate debug objfiles
2294 because the outer loop will cause them to be searched too. This case is
2295 different. Here we're called from search_symbols where it will only
2296 call us for the objfile that contains a matching minsym. */
2297
2298 static struct block_symbol
2299 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2300 const char *linkage_name,
2301 domain_enum domain)
2302 {
2303 enum language lang = current_language->la_language;
2304 struct objfile *main_objfile;
2305
2306 demangle_result_storage storage;
2307 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2308
2309 if (objfile->separate_debug_objfile_backlink)
2310 main_objfile = objfile->separate_debug_objfile_backlink;
2311 else
2312 main_objfile = objfile;
2313
2314 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2315 {
2316 struct block_symbol result;
2317
2318 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2319 modified_name, domain);
2320 if (result.symbol == NULL)
2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2322 modified_name, domain);
2323 if (result.symbol != NULL)
2324 return result;
2325 }
2326
2327 return {};
2328 }
2329
2330 /* A helper function that throws an exception when a symbol was found
2331 in a psymtab but not in a symtab. */
2332
2333 static void ATTRIBUTE_NORETURN
2334 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2335 struct compunit_symtab *cust)
2336 {
2337 error (_("\
2338 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2339 %s may be an inlined function, or may be a template function\n \
2340 (if a template, try specifying an instantiation: %s<type>)."),
2341 block_index == GLOBAL_BLOCK ? "global" : "static",
2342 name,
2343 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2344 name, name);
2345 }
2346
2347 /* A helper function for various lookup routines that interfaces with
2348 the "quick" symbol table functions. */
2349
2350 static struct block_symbol
2351 lookup_symbol_via_quick_fns (struct objfile *objfile,
2352 enum block_enum block_index, const char *name,
2353 const domain_enum domain)
2354 {
2355 struct compunit_symtab *cust;
2356 const struct blockvector *bv;
2357 const struct block *block;
2358 struct block_symbol result;
2359
2360 if (!objfile->sf)
2361 return {};
2362
2363 if (symbol_lookup_debug > 1)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2367 objfile_debug_name (objfile),
2368 block_index == GLOBAL_BLOCK
2369 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2370 name, domain_name (domain));
2371 }
2372
2373 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2374 if (cust == NULL)
2375 {
2376 if (symbol_lookup_debug > 1)
2377 {
2378 fprintf_unfiltered (gdb_stdlog,
2379 "lookup_symbol_via_quick_fns (...) = NULL\n");
2380 }
2381 return {};
2382 }
2383
2384 bv = COMPUNIT_BLOCKVECTOR (cust);
2385 block = BLOCKVECTOR_BLOCK (bv, block_index);
2386 result.symbol = block_lookup_symbol (block, name,
2387 symbol_name_match_type::FULL, domain);
2388 if (result.symbol == NULL)
2389 error_in_psymtab_expansion (block_index, name, cust);
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2395 host_address_to_string (result.symbol),
2396 host_address_to_string (block));
2397 }
2398
2399 result.symbol = fixup_symbol_section (result.symbol, objfile);
2400 result.block = block;
2401 return result;
2402 }
2403
2404 /* See language.h. */
2405
2406 struct block_symbol
2407 language_defn::lookup_symbol_nonlocal (const char *name,
2408 const struct block *block,
2409 const domain_enum domain) const
2410 {
2411 struct block_symbol result;
2412
2413 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2414 the current objfile. Searching the current objfile first is useful
2415 for both matching user expectations as well as performance. */
2416
2417 result = lookup_symbol_in_static_block (name, block, domain);
2418 if (result.symbol != NULL)
2419 return result;
2420
2421 /* If we didn't find a definition for a builtin type in the static block,
2422 search for it now. This is actually the right thing to do and can be
2423 a massive performance win. E.g., when debugging a program with lots of
2424 shared libraries we could search all of them only to find out the
2425 builtin type isn't defined in any of them. This is common for types
2426 like "void". */
2427 if (domain == VAR_DOMAIN)
2428 {
2429 struct gdbarch *gdbarch;
2430
2431 if (block == NULL)
2432 gdbarch = target_gdbarch ();
2433 else
2434 gdbarch = block_gdbarch (block);
2435 result.symbol = language_lookup_primitive_type_as_symbol (this,
2436 gdbarch, name);
2437 result.block = NULL;
2438 if (result.symbol != NULL)
2439 return result;
2440 }
2441
2442 return lookup_global_symbol (name, block, domain);
2443 }
2444
2445 /* See symtab.h. */
2446
2447 struct block_symbol
2448 lookup_symbol_in_static_block (const char *name,
2449 const struct block *block,
2450 const domain_enum domain)
2451 {
2452 const struct block *static_block = block_static_block (block);
2453 struct symbol *sym;
2454
2455 if (static_block == NULL)
2456 return {};
2457
2458 if (symbol_lookup_debug)
2459 {
2460 struct objfile *objfile = (block == nullptr
2461 ? nullptr : block_objfile (block));
2462
2463 fprintf_unfiltered (gdb_stdlog,
2464 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2465 " %s)\n",
2466 name,
2467 host_address_to_string (block),
2468 objfile_debug_name (objfile),
2469 domain_name (domain));
2470 }
2471
2472 sym = lookup_symbol_in_block (name,
2473 symbol_name_match_type::FULL,
2474 static_block, domain);
2475 if (symbol_lookup_debug)
2476 {
2477 fprintf_unfiltered (gdb_stdlog,
2478 "lookup_symbol_in_static_block (...) = %s\n",
2479 sym != NULL ? host_address_to_string (sym) : "NULL");
2480 }
2481 return (struct block_symbol) {sym, static_block};
2482 }
2483
2484 /* Perform the standard symbol lookup of NAME in OBJFILE:
2485 1) First search expanded symtabs, and if not found
2486 2) Search the "quick" symtabs (partial or .gdb_index).
2487 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2488
2489 static struct block_symbol
2490 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2491 const char *name, const domain_enum domain)
2492 {
2493 struct block_symbol result;
2494
2495 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2496
2497 if (symbol_lookup_debug)
2498 {
2499 fprintf_unfiltered (gdb_stdlog,
2500 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2501 objfile_debug_name (objfile),
2502 block_index == GLOBAL_BLOCK
2503 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2504 name, domain_name (domain));
2505 }
2506
2507 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2508 name, domain);
2509 if (result.symbol != NULL)
2510 {
2511 if (symbol_lookup_debug)
2512 {
2513 fprintf_unfiltered (gdb_stdlog,
2514 "lookup_symbol_in_objfile (...) = %s"
2515 " (in symtabs)\n",
2516 host_address_to_string (result.symbol));
2517 }
2518 return result;
2519 }
2520
2521 result = lookup_symbol_via_quick_fns (objfile, block_index,
2522 name, domain);
2523 if (symbol_lookup_debug)
2524 {
2525 fprintf_unfiltered (gdb_stdlog,
2526 "lookup_symbol_in_objfile (...) = %s%s\n",
2527 result.symbol != NULL
2528 ? host_address_to_string (result.symbol)
2529 : "NULL",
2530 result.symbol != NULL ? " (via quick fns)" : "");
2531 }
2532 return result;
2533 }
2534
2535 /* Find the language for partial symbol with NAME. */
2536
2537 static enum language
2538 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2539 {
2540 for (objfile *objfile : current_program_space->objfiles ())
2541 {
2542 if (objfile->sf && objfile->sf->qf
2543 && objfile->sf->qf->lookup_global_symbol_language)
2544 continue;
2545 return language_unknown;
2546 }
2547
2548 for (objfile *objfile : current_program_space->objfiles ())
2549 {
2550 bool symbol_found_p;
2551 enum language lang
2552 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2553 &symbol_found_p);
2554 if (!symbol_found_p)
2555 continue;
2556 return lang;
2557 }
2558
2559 return language_unknown;
2560 }
2561
2562 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2563
2564 struct global_or_static_sym_lookup_data
2565 {
2566 /* The name of the symbol we are searching for. */
2567 const char *name;
2568
2569 /* The domain to use for our search. */
2570 domain_enum domain;
2571
2572 /* The block index in which to search. */
2573 enum block_enum block_index;
2574
2575 /* The field where the callback should store the symbol if found.
2576 It should be initialized to {NULL, NULL} before the search is started. */
2577 struct block_symbol result;
2578 };
2579
2580 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2581 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2582 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2583 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2584
2585 static int
2586 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2587 void *cb_data)
2588 {
2589 struct global_or_static_sym_lookup_data *data =
2590 (struct global_or_static_sym_lookup_data *) cb_data;
2591
2592 gdb_assert (data->result.symbol == NULL
2593 && data->result.block == NULL);
2594
2595 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2596 data->name, data->domain);
2597
2598 /* If we found a match, tell the iterator to stop. Otherwise,
2599 keep going. */
2600 return (data->result.symbol != NULL);
2601 }
2602
2603 /* This function contains the common code of lookup_{global,static}_symbol.
2604 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2605 the objfile to start the lookup in. */
2606
2607 static struct block_symbol
2608 lookup_global_or_static_symbol (const char *name,
2609 enum block_enum block_index,
2610 struct objfile *objfile,
2611 const domain_enum domain)
2612 {
2613 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2614 struct block_symbol result;
2615 struct global_or_static_sym_lookup_data lookup_data;
2616 struct block_symbol_cache *bsc;
2617 struct symbol_cache_slot *slot;
2618
2619 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2620 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2621
2622 /* First see if we can find the symbol in the cache.
2623 This works because we use the current objfile to qualify the lookup. */
2624 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2625 &bsc, &slot);
2626 if (result.symbol != NULL)
2627 {
2628 if (SYMBOL_LOOKUP_FAILED_P (result))
2629 return {};
2630 return result;
2631 }
2632
2633 /* Do a global search (of global blocks, heh). */
2634 if (result.symbol == NULL)
2635 {
2636 memset (&lookup_data, 0, sizeof (lookup_data));
2637 lookup_data.name = name;
2638 lookup_data.block_index = block_index;
2639 lookup_data.domain = domain;
2640 gdbarch_iterate_over_objfiles_in_search_order
2641 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2642 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2643 result = lookup_data.result;
2644 }
2645
2646 if (result.symbol != NULL)
2647 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2648 else
2649 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2650
2651 return result;
2652 }
2653
2654 /* See symtab.h. */
2655
2656 struct block_symbol
2657 lookup_static_symbol (const char *name, const domain_enum domain)
2658 {
2659 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2660 }
2661
2662 /* See symtab.h. */
2663
2664 struct block_symbol
2665 lookup_global_symbol (const char *name,
2666 const struct block *block,
2667 const domain_enum domain)
2668 {
2669 /* If a block was passed in, we want to search the corresponding
2670 global block first. This yields "more expected" behavior, and is
2671 needed to support 'FILENAME'::VARIABLE lookups. */
2672 const struct block *global_block = block_global_block (block);
2673 symbol *sym = NULL;
2674 if (global_block != nullptr)
2675 {
2676 sym = lookup_symbol_in_block (name,
2677 symbol_name_match_type::FULL,
2678 global_block, domain);
2679 if (sym != NULL && best_symbol (sym, domain))
2680 return { sym, global_block };
2681 }
2682
2683 struct objfile *objfile = nullptr;
2684 if (block != nullptr)
2685 {
2686 objfile = block_objfile (block);
2687 if (objfile->separate_debug_objfile_backlink != nullptr)
2688 objfile = objfile->separate_debug_objfile_backlink;
2689 }
2690
2691 block_symbol bs
2692 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2693 if (better_symbol (sym, bs.symbol, domain) == sym)
2694 return { sym, global_block };
2695 else
2696 return bs;
2697 }
2698
2699 bool
2700 symbol_matches_domain (enum language symbol_language,
2701 domain_enum symbol_domain,
2702 domain_enum domain)
2703 {
2704 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2705 Similarly, any Ada type declaration implicitly defines a typedef. */
2706 if (symbol_language == language_cplus
2707 || symbol_language == language_d
2708 || symbol_language == language_ada
2709 || symbol_language == language_rust)
2710 {
2711 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2712 && symbol_domain == STRUCT_DOMAIN)
2713 return true;
2714 }
2715 /* For all other languages, strict match is required. */
2716 return (symbol_domain == domain);
2717 }
2718
2719 /* See symtab.h. */
2720
2721 struct type *
2722 lookup_transparent_type (const char *name)
2723 {
2724 return current_language->lookup_transparent_type (name);
2725 }
2726
2727 /* A helper for basic_lookup_transparent_type that interfaces with the
2728 "quick" symbol table functions. */
2729
2730 static struct type *
2731 basic_lookup_transparent_type_quick (struct objfile *objfile,
2732 enum block_enum block_index,
2733 const char *name)
2734 {
2735 struct compunit_symtab *cust;
2736 const struct blockvector *bv;
2737 const struct block *block;
2738 struct symbol *sym;
2739
2740 if (!objfile->sf)
2741 return NULL;
2742 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2743 STRUCT_DOMAIN);
2744 if (cust == NULL)
2745 return NULL;
2746
2747 bv = COMPUNIT_BLOCKVECTOR (cust);
2748 block = BLOCKVECTOR_BLOCK (bv, block_index);
2749 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2750 block_find_non_opaque_type, NULL);
2751 if (sym == NULL)
2752 error_in_psymtab_expansion (block_index, name, cust);
2753 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2754 return SYMBOL_TYPE (sym);
2755 }
2756
2757 /* Subroutine of basic_lookup_transparent_type to simplify it.
2758 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2759 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2760
2761 static struct type *
2762 basic_lookup_transparent_type_1 (struct objfile *objfile,
2763 enum block_enum block_index,
2764 const char *name)
2765 {
2766 const struct blockvector *bv;
2767 const struct block *block;
2768 const struct symbol *sym;
2769
2770 for (compunit_symtab *cust : objfile->compunits ())
2771 {
2772 bv = COMPUNIT_BLOCKVECTOR (cust);
2773 block = BLOCKVECTOR_BLOCK (bv, block_index);
2774 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2775 block_find_non_opaque_type, NULL);
2776 if (sym != NULL)
2777 {
2778 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2779 return SYMBOL_TYPE (sym);
2780 }
2781 }
2782
2783 return NULL;
2784 }
2785
2786 /* The standard implementation of lookup_transparent_type. This code
2787 was modeled on lookup_symbol -- the parts not relevant to looking
2788 up types were just left out. In particular it's assumed here that
2789 types are available in STRUCT_DOMAIN and only in file-static or
2790 global blocks. */
2791
2792 struct type *
2793 basic_lookup_transparent_type (const char *name)
2794 {
2795 struct type *t;
2796
2797 /* Now search all the global symbols. Do the symtab's first, then
2798 check the psymtab's. If a psymtab indicates the existence
2799 of the desired name as a global, then do psymtab-to-symtab
2800 conversion on the fly and return the found symbol. */
2801
2802 for (objfile *objfile : current_program_space->objfiles ())
2803 {
2804 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2805 if (t)
2806 return t;
2807 }
2808
2809 for (objfile *objfile : current_program_space->objfiles ())
2810 {
2811 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2812 if (t)
2813 return t;
2814 }
2815
2816 /* Now search the static file-level symbols.
2817 Not strictly correct, but more useful than an error.
2818 Do the symtab's first, then
2819 check the psymtab's. If a psymtab indicates the existence
2820 of the desired name as a file-level static, then do psymtab-to-symtab
2821 conversion on the fly and return the found symbol. */
2822
2823 for (objfile *objfile : current_program_space->objfiles ())
2824 {
2825 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2826 if (t)
2827 return t;
2828 }
2829
2830 for (objfile *objfile : current_program_space->objfiles ())
2831 {
2832 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2833 if (t)
2834 return t;
2835 }
2836
2837 return (struct type *) 0;
2838 }
2839
2840 /* See symtab.h. */
2841
2842 bool
2843 iterate_over_symbols (const struct block *block,
2844 const lookup_name_info &name,
2845 const domain_enum domain,
2846 gdb::function_view<symbol_found_callback_ftype> callback)
2847 {
2848 struct block_iterator iter;
2849 struct symbol *sym;
2850
2851 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2852 {
2853 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2854 {
2855 struct block_symbol block_sym = {sym, block};
2856
2857 if (!callback (&block_sym))
2858 return false;
2859 }
2860 }
2861 return true;
2862 }
2863
2864 /* See symtab.h. */
2865
2866 bool
2867 iterate_over_symbols_terminated
2868 (const struct block *block,
2869 const lookup_name_info &name,
2870 const domain_enum domain,
2871 gdb::function_view<symbol_found_callback_ftype> callback)
2872 {
2873 if (!iterate_over_symbols (block, name, domain, callback))
2874 return false;
2875 struct block_symbol block_sym = {nullptr, block};
2876 return callback (&block_sym);
2877 }
2878
2879 /* Find the compunit symtab associated with PC and SECTION.
2880 This will read in debug info as necessary. */
2881
2882 struct compunit_symtab *
2883 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2884 {
2885 struct compunit_symtab *best_cust = NULL;
2886 CORE_ADDR distance = 0;
2887 struct bound_minimal_symbol msymbol;
2888
2889 /* If we know that this is not a text address, return failure. This is
2890 necessary because we loop based on the block's high and low code
2891 addresses, which do not include the data ranges, and because
2892 we call find_pc_sect_psymtab which has a similar restriction based
2893 on the partial_symtab's texthigh and textlow. */
2894 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2895 if (msymbol.minsym && msymbol.minsym->data_p ())
2896 return NULL;
2897
2898 /* Search all symtabs for the one whose file contains our address, and which
2899 is the smallest of all the ones containing the address. This is designed
2900 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2901 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2902 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2903
2904 This happens for native ecoff format, where code from included files
2905 gets its own symtab. The symtab for the included file should have
2906 been read in already via the dependency mechanism.
2907 It might be swifter to create several symtabs with the same name
2908 like xcoff does (I'm not sure).
2909
2910 It also happens for objfiles that have their functions reordered.
2911 For these, the symtab we are looking for is not necessarily read in. */
2912
2913 for (objfile *obj_file : current_program_space->objfiles ())
2914 {
2915 for (compunit_symtab *cust : obj_file->compunits ())
2916 {
2917 const struct block *b;
2918 const struct blockvector *bv;
2919
2920 bv = COMPUNIT_BLOCKVECTOR (cust);
2921 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2922
2923 if (BLOCK_START (b) <= pc
2924 && BLOCK_END (b) > pc
2925 && (distance == 0
2926 || BLOCK_END (b) - BLOCK_START (b) < distance))
2927 {
2928 /* For an objfile that has its functions reordered,
2929 find_pc_psymtab will find the proper partial symbol table
2930 and we simply return its corresponding symtab. */
2931 /* In order to better support objfiles that contain both
2932 stabs and coff debugging info, we continue on if a psymtab
2933 can't be found. */
2934 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2935 {
2936 struct compunit_symtab *result;
2937
2938 result
2939 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2940 msymbol,
2941 pc,
2942 section,
2943 0);
2944 if (result != NULL)
2945 return result;
2946 }
2947 if (section != 0)
2948 {
2949 struct block_iterator iter;
2950 struct symbol *sym = NULL;
2951
2952 ALL_BLOCK_SYMBOLS (b, iter, sym)
2953 {
2954 fixup_symbol_section (sym, obj_file);
2955 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2956 sym),
2957 section))
2958 break;
2959 }
2960 if (sym == NULL)
2961 continue; /* No symbol in this symtab matches
2962 section. */
2963 }
2964 distance = BLOCK_END (b) - BLOCK_START (b);
2965 best_cust = cust;
2966 }
2967 }
2968 }
2969
2970 if (best_cust != NULL)
2971 return best_cust;
2972
2973 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2974
2975 for (objfile *objf : current_program_space->objfiles ())
2976 {
2977 struct compunit_symtab *result;
2978
2979 if (!objf->sf)
2980 continue;
2981 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2982 msymbol,
2983 pc, section,
2984 1);
2985 if (result != NULL)
2986 return result;
2987 }
2988
2989 return NULL;
2990 }
2991
2992 /* Find the compunit symtab associated with PC.
2993 This will read in debug info as necessary.
2994 Backward compatibility, no section. */
2995
2996 struct compunit_symtab *
2997 find_pc_compunit_symtab (CORE_ADDR pc)
2998 {
2999 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3000 }
3001
3002 /* See symtab.h. */
3003
3004 struct symbol *
3005 find_symbol_at_address (CORE_ADDR address)
3006 {
3007 for (objfile *objfile : current_program_space->objfiles ())
3008 {
3009 if (objfile->sf == NULL
3010 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3011 continue;
3012
3013 struct compunit_symtab *symtab
3014 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3015 if (symtab != NULL)
3016 {
3017 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3018
3019 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3020 {
3021 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3022 struct block_iterator iter;
3023 struct symbol *sym;
3024
3025 ALL_BLOCK_SYMBOLS (b, iter, sym)
3026 {
3027 if (SYMBOL_CLASS (sym) == LOC_STATIC
3028 && SYMBOL_VALUE_ADDRESS (sym) == address)
3029 return sym;
3030 }
3031 }
3032 }
3033 }
3034
3035 return NULL;
3036 }
3037
3038 \f
3039
3040 /* Find the source file and line number for a given PC value and SECTION.
3041 Return a structure containing a symtab pointer, a line number,
3042 and a pc range for the entire source line.
3043 The value's .pc field is NOT the specified pc.
3044 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3045 use the line that ends there. Otherwise, in that case, the line
3046 that begins there is used. */
3047
3048 /* The big complication here is that a line may start in one file, and end just
3049 before the start of another file. This usually occurs when you #include
3050 code in the middle of a subroutine. To properly find the end of a line's PC
3051 range, we must search all symtabs associated with this compilation unit, and
3052 find the one whose first PC is closer than that of the next line in this
3053 symtab. */
3054
3055 struct symtab_and_line
3056 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3057 {
3058 struct compunit_symtab *cust;
3059 struct linetable *l;
3060 int len;
3061 struct linetable_entry *item;
3062 const struct blockvector *bv;
3063 struct bound_minimal_symbol msymbol;
3064
3065 /* Info on best line seen so far, and where it starts, and its file. */
3066
3067 struct linetable_entry *best = NULL;
3068 CORE_ADDR best_end = 0;
3069 struct symtab *best_symtab = 0;
3070
3071 /* Store here the first line number
3072 of a file which contains the line at the smallest pc after PC.
3073 If we don't find a line whose range contains PC,
3074 we will use a line one less than this,
3075 with a range from the start of that file to the first line's pc. */
3076 struct linetable_entry *alt = NULL;
3077
3078 /* Info on best line seen in this file. */
3079
3080 struct linetable_entry *prev;
3081
3082 /* If this pc is not from the current frame,
3083 it is the address of the end of a call instruction.
3084 Quite likely that is the start of the following statement.
3085 But what we want is the statement containing the instruction.
3086 Fudge the pc to make sure we get that. */
3087
3088 /* It's tempting to assume that, if we can't find debugging info for
3089 any function enclosing PC, that we shouldn't search for line
3090 number info, either. However, GAS can emit line number info for
3091 assembly files --- very helpful when debugging hand-written
3092 assembly code. In such a case, we'd have no debug info for the
3093 function, but we would have line info. */
3094
3095 if (notcurrent)
3096 pc -= 1;
3097
3098 /* elz: added this because this function returned the wrong
3099 information if the pc belongs to a stub (import/export)
3100 to call a shlib function. This stub would be anywhere between
3101 two functions in the target, and the line info was erroneously
3102 taken to be the one of the line before the pc. */
3103
3104 /* RT: Further explanation:
3105
3106 * We have stubs (trampolines) inserted between procedures.
3107 *
3108 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3109 * exists in the main image.
3110 *
3111 * In the minimal symbol table, we have a bunch of symbols
3112 * sorted by start address. The stubs are marked as "trampoline",
3113 * the others appear as text. E.g.:
3114 *
3115 * Minimal symbol table for main image
3116 * main: code for main (text symbol)
3117 * shr1: stub (trampoline symbol)
3118 * foo: code for foo (text symbol)
3119 * ...
3120 * Minimal symbol table for "shr1" image:
3121 * ...
3122 * shr1: code for shr1 (text symbol)
3123 * ...
3124 *
3125 * So the code below is trying to detect if we are in the stub
3126 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3127 * and if found, do the symbolization from the real-code address
3128 * rather than the stub address.
3129 *
3130 * Assumptions being made about the minimal symbol table:
3131 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3132 * if we're really in the trampoline.s If we're beyond it (say
3133 * we're in "foo" in the above example), it'll have a closer
3134 * symbol (the "foo" text symbol for example) and will not
3135 * return the trampoline.
3136 * 2. lookup_minimal_symbol_text() will find a real text symbol
3137 * corresponding to the trampoline, and whose address will
3138 * be different than the trampoline address. I put in a sanity
3139 * check for the address being the same, to avoid an
3140 * infinite recursion.
3141 */
3142 msymbol = lookup_minimal_symbol_by_pc (pc);
3143 if (msymbol.minsym != NULL)
3144 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3145 {
3146 struct bound_minimal_symbol mfunsym
3147 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3148 NULL);
3149
3150 if (mfunsym.minsym == NULL)
3151 /* I eliminated this warning since it is coming out
3152 * in the following situation:
3153 * gdb shmain // test program with shared libraries
3154 * (gdb) break shr1 // function in shared lib
3155 * Warning: In stub for ...
3156 * In the above situation, the shared lib is not loaded yet,
3157 * so of course we can't find the real func/line info,
3158 * but the "break" still works, and the warning is annoying.
3159 * So I commented out the warning. RT */
3160 /* warning ("In stub for %s; unable to find real function/line info",
3161 msymbol->linkage_name ()); */
3162 ;
3163 /* fall through */
3164 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3165 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3166 /* Avoid infinite recursion */
3167 /* See above comment about why warning is commented out. */
3168 /* warning ("In stub for %s; unable to find real function/line info",
3169 msymbol->linkage_name ()); */
3170 ;
3171 /* fall through */
3172 else
3173 {
3174 /* Detect an obvious case of infinite recursion. If this
3175 should occur, we'd like to know about it, so error out,
3176 fatally. */
3177 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3178 internal_error (__FILE__, __LINE__,
3179 _("Infinite recursion detected in find_pc_sect_line;"
3180 "please file a bug report"));
3181
3182 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3183 }
3184 }
3185
3186 symtab_and_line val;
3187 val.pspace = current_program_space;
3188
3189 cust = find_pc_sect_compunit_symtab (pc, section);
3190 if (cust == NULL)
3191 {
3192 /* If no symbol information, return previous pc. */
3193 if (notcurrent)
3194 pc++;
3195 val.pc = pc;
3196 return val;
3197 }
3198
3199 bv = COMPUNIT_BLOCKVECTOR (cust);
3200
3201 /* Look at all the symtabs that share this blockvector.
3202 They all have the same apriori range, that we found was right;
3203 but they have different line tables. */
3204
3205 for (symtab *iter_s : compunit_filetabs (cust))
3206 {
3207 /* Find the best line in this symtab. */
3208 l = SYMTAB_LINETABLE (iter_s);
3209 if (!l)
3210 continue;
3211 len = l->nitems;
3212 if (len <= 0)
3213 {
3214 /* I think len can be zero if the symtab lacks line numbers
3215 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3216 I'm not sure which, and maybe it depends on the symbol
3217 reader). */
3218 continue;
3219 }
3220
3221 prev = NULL;
3222 item = l->item; /* Get first line info. */
3223
3224 /* Is this file's first line closer than the first lines of other files?
3225 If so, record this file, and its first line, as best alternate. */
3226 if (item->pc > pc && (!alt || item->pc < alt->pc))
3227 alt = item;
3228
3229 auto pc_compare = [](const CORE_ADDR & comp_pc,
3230 const struct linetable_entry & lhs)->bool
3231 {
3232 return comp_pc < lhs.pc;
3233 };
3234
3235 struct linetable_entry *first = item;
3236 struct linetable_entry *last = item + len;
3237 item = std::upper_bound (first, last, pc, pc_compare);
3238 if (item != first)
3239 prev = item - 1; /* Found a matching item. */
3240
3241 /* At this point, prev points at the line whose start addr is <= pc, and
3242 item points at the next line. If we ran off the end of the linetable
3243 (pc >= start of the last line), then prev == item. If pc < start of
3244 the first line, prev will not be set. */
3245
3246 /* Is this file's best line closer than the best in the other files?
3247 If so, record this file, and its best line, as best so far. Don't
3248 save prev if it represents the end of a function (i.e. line number
3249 0) instead of a real line. */
3250
3251 if (prev && prev->line && (!best || prev->pc > best->pc))
3252 {
3253 best = prev;
3254 best_symtab = iter_s;
3255
3256 /* If during the binary search we land on a non-statement entry,
3257 scan backward through entries at the same address to see if
3258 there is an entry marked as is-statement. In theory this
3259 duplication should have been removed from the line table
3260 during construction, this is just a double check. If the line
3261 table has had the duplication removed then this should be
3262 pretty cheap. */
3263 if (!best->is_stmt)
3264 {
3265 struct linetable_entry *tmp = best;
3266 while (tmp > first && (tmp - 1)->pc == tmp->pc
3267 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3268 --tmp;
3269 if (tmp->is_stmt)
3270 best = tmp;
3271 }
3272
3273 /* Discard BEST_END if it's before the PC of the current BEST. */
3274 if (best_end <= best->pc)
3275 best_end = 0;
3276 }
3277
3278 /* If another line (denoted by ITEM) is in the linetable and its
3279 PC is after BEST's PC, but before the current BEST_END, then
3280 use ITEM's PC as the new best_end. */
3281 if (best && item < last && item->pc > best->pc
3282 && (best_end == 0 || best_end > item->pc))
3283 best_end = item->pc;
3284 }
3285
3286 if (!best_symtab)
3287 {
3288 /* If we didn't find any line number info, just return zeros.
3289 We used to return alt->line - 1 here, but that could be
3290 anywhere; if we don't have line number info for this PC,
3291 don't make some up. */
3292 val.pc = pc;
3293 }
3294 else if (best->line == 0)
3295 {
3296 /* If our best fit is in a range of PC's for which no line
3297 number info is available (line number is zero) then we didn't
3298 find any valid line information. */
3299 val.pc = pc;
3300 }
3301 else
3302 {
3303 val.is_stmt = best->is_stmt;
3304 val.symtab = best_symtab;
3305 val.line = best->line;
3306 val.pc = best->pc;
3307 if (best_end && (!alt || best_end < alt->pc))
3308 val.end = best_end;
3309 else if (alt)
3310 val.end = alt->pc;
3311 else
3312 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3313 }
3314 val.section = section;
3315 return val;
3316 }
3317
3318 /* Backward compatibility (no section). */
3319
3320 struct symtab_and_line
3321 find_pc_line (CORE_ADDR pc, int notcurrent)
3322 {
3323 struct obj_section *section;
3324
3325 section = find_pc_overlay (pc);
3326 if (!pc_in_unmapped_range (pc, section))
3327 return find_pc_sect_line (pc, section, notcurrent);
3328
3329 /* If the original PC was an unmapped address then we translate this to a
3330 mapped address in order to lookup the sal. However, as the user
3331 passed us an unmapped address it makes more sense to return a result
3332 that has the pc and end fields translated to unmapped addresses. */
3333 pc = overlay_mapped_address (pc, section);
3334 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3335 sal.pc = overlay_unmapped_address (sal.pc, section);
3336 sal.end = overlay_unmapped_address (sal.end, section);
3337 return sal;
3338 }
3339
3340 /* See symtab.h. */
3341
3342 struct symtab *
3343 find_pc_line_symtab (CORE_ADDR pc)
3344 {
3345 struct symtab_and_line sal;
3346
3347 /* This always passes zero for NOTCURRENT to find_pc_line.
3348 There are currently no callers that ever pass non-zero. */
3349 sal = find_pc_line (pc, 0);
3350 return sal.symtab;
3351 }
3352 \f
3353 /* Find line number LINE in any symtab whose name is the same as
3354 SYMTAB.
3355
3356 If found, return the symtab that contains the linetable in which it was
3357 found, set *INDEX to the index in the linetable of the best entry
3358 found, and set *EXACT_MATCH to true if the value returned is an
3359 exact match.
3360
3361 If not found, return NULL. */
3362
3363 struct symtab *
3364 find_line_symtab (struct symtab *sym_tab, int line,
3365 int *index, bool *exact_match)
3366 {
3367 int exact = 0; /* Initialized here to avoid a compiler warning. */
3368
3369 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3370 so far seen. */
3371
3372 int best_index;
3373 struct linetable *best_linetable;
3374 struct symtab *best_symtab;
3375
3376 /* First try looking it up in the given symtab. */
3377 best_linetable = SYMTAB_LINETABLE (sym_tab);
3378 best_symtab = sym_tab;
3379 best_index = find_line_common (best_linetable, line, &exact, 0);
3380 if (best_index < 0 || !exact)
3381 {
3382 /* Didn't find an exact match. So we better keep looking for
3383 another symtab with the same name. In the case of xcoff,
3384 multiple csects for one source file (produced by IBM's FORTRAN
3385 compiler) produce multiple symtabs (this is unavoidable
3386 assuming csects can be at arbitrary places in memory and that
3387 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3388
3389 /* BEST is the smallest linenumber > LINE so far seen,
3390 or 0 if none has been seen so far.
3391 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3392 int best;
3393
3394 if (best_index >= 0)
3395 best = best_linetable->item[best_index].line;
3396 else
3397 best = 0;
3398
3399 for (objfile *objfile : current_program_space->objfiles ())
3400 {
3401 if (objfile->sf)
3402 objfile->sf->qf->expand_symtabs_with_fullname
3403 (objfile, symtab_to_fullname (sym_tab));
3404 }
3405
3406 for (objfile *objfile : current_program_space->objfiles ())
3407 {
3408 for (compunit_symtab *cu : objfile->compunits ())
3409 {
3410 for (symtab *s : compunit_filetabs (cu))
3411 {
3412 struct linetable *l;
3413 int ind;
3414
3415 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3416 continue;
3417 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3418 symtab_to_fullname (s)) != 0)
3419 continue;
3420 l = SYMTAB_LINETABLE (s);
3421 ind = find_line_common (l, line, &exact, 0);
3422 if (ind >= 0)
3423 {
3424 if (exact)
3425 {
3426 best_index = ind;
3427 best_linetable = l;
3428 best_symtab = s;
3429 goto done;
3430 }
3431 if (best == 0 || l->item[ind].line < best)
3432 {
3433 best = l->item[ind].line;
3434 best_index = ind;
3435 best_linetable = l;
3436 best_symtab = s;
3437 }
3438 }
3439 }
3440 }
3441 }
3442 }
3443 done:
3444 if (best_index < 0)
3445 return NULL;
3446
3447 if (index)
3448 *index = best_index;
3449 if (exact_match)
3450 *exact_match = (exact != 0);
3451
3452 return best_symtab;
3453 }
3454
3455 /* Given SYMTAB, returns all the PCs function in the symtab that
3456 exactly match LINE. Returns an empty vector if there are no exact
3457 matches, but updates BEST_ITEM in this case. */
3458
3459 std::vector<CORE_ADDR>
3460 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3461 struct linetable_entry **best_item)
3462 {
3463 int start = 0;
3464 std::vector<CORE_ADDR> result;
3465
3466 /* First, collect all the PCs that are at this line. */
3467 while (1)
3468 {
3469 int was_exact;
3470 int idx;
3471
3472 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3473 start);
3474 if (idx < 0)
3475 break;
3476
3477 if (!was_exact)
3478 {
3479 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3480
3481 if (*best_item == NULL
3482 || (item->line < (*best_item)->line && item->is_stmt))
3483 *best_item = item;
3484
3485 break;
3486 }
3487
3488 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3489 start = idx + 1;
3490 }
3491
3492 return result;
3493 }
3494
3495 \f
3496 /* Set the PC value for a given source file and line number and return true.
3497 Returns false for invalid line number (and sets the PC to 0).
3498 The source file is specified with a struct symtab. */
3499
3500 bool
3501 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3502 {
3503 struct linetable *l;
3504 int ind;
3505
3506 *pc = 0;
3507 if (symtab == 0)
3508 return false;
3509
3510 symtab = find_line_symtab (symtab, line, &ind, NULL);
3511 if (symtab != NULL)
3512 {
3513 l = SYMTAB_LINETABLE (symtab);
3514 *pc = l->item[ind].pc;
3515 return true;
3516 }
3517 else
3518 return false;
3519 }
3520
3521 /* Find the range of pc values in a line.
3522 Store the starting pc of the line into *STARTPTR
3523 and the ending pc (start of next line) into *ENDPTR.
3524 Returns true to indicate success.
3525 Returns false if could not find the specified line. */
3526
3527 bool
3528 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3529 CORE_ADDR *endptr)
3530 {
3531 CORE_ADDR startaddr;
3532 struct symtab_and_line found_sal;
3533
3534 startaddr = sal.pc;
3535 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3536 return false;
3537
3538 /* This whole function is based on address. For example, if line 10 has
3539 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3540 "info line *0x123" should say the line goes from 0x100 to 0x200
3541 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3542 This also insures that we never give a range like "starts at 0x134
3543 and ends at 0x12c". */
3544
3545 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3546 if (found_sal.line != sal.line)
3547 {
3548 /* The specified line (sal) has zero bytes. */
3549 *startptr = found_sal.pc;
3550 *endptr = found_sal.pc;
3551 }
3552 else
3553 {
3554 *startptr = found_sal.pc;
3555 *endptr = found_sal.end;
3556 }
3557 return true;
3558 }
3559
3560 /* Given a line table and a line number, return the index into the line
3561 table for the pc of the nearest line whose number is >= the specified one.
3562 Return -1 if none is found. The value is >= 0 if it is an index.
3563 START is the index at which to start searching the line table.
3564
3565 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3566
3567 static int
3568 find_line_common (struct linetable *l, int lineno,
3569 int *exact_match, int start)
3570 {
3571 int i;
3572 int len;
3573
3574 /* BEST is the smallest linenumber > LINENO so far seen,
3575 or 0 if none has been seen so far.
3576 BEST_INDEX identifies the item for it. */
3577
3578 int best_index = -1;
3579 int best = 0;
3580
3581 *exact_match = 0;
3582
3583 if (lineno <= 0)
3584 return -1;
3585 if (l == 0)
3586 return -1;
3587
3588 len = l->nitems;
3589 for (i = start; i < len; i++)
3590 {
3591 struct linetable_entry *item = &(l->item[i]);
3592
3593 /* Ignore non-statements. */
3594 if (!item->is_stmt)
3595 continue;
3596
3597 if (item->line == lineno)
3598 {
3599 /* Return the first (lowest address) entry which matches. */
3600 *exact_match = 1;
3601 return i;
3602 }
3603
3604 if (item->line > lineno && (best == 0 || item->line < best))
3605 {
3606 best = item->line;
3607 best_index = i;
3608 }
3609 }
3610
3611 /* If we got here, we didn't get an exact match. */
3612 return best_index;
3613 }
3614
3615 bool
3616 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3617 {
3618 struct symtab_and_line sal;
3619
3620 sal = find_pc_line (pc, 0);
3621 *startptr = sal.pc;
3622 *endptr = sal.end;
3623 return sal.symtab != 0;
3624 }
3625
3626 /* Helper for find_function_start_sal. Does most of the work, except
3627 setting the sal's symbol. */
3628
3629 static symtab_and_line
3630 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3631 bool funfirstline)
3632 {
3633 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3634
3635 if (funfirstline && sal.symtab != NULL
3636 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3637 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3638 {
3639 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3640
3641 sal.pc = func_addr;
3642 if (gdbarch_skip_entrypoint_p (gdbarch))
3643 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3644 return sal;
3645 }
3646
3647 /* We always should have a line for the function start address.
3648 If we don't, something is odd. Create a plain SAL referring
3649 just the PC and hope that skip_prologue_sal (if requested)
3650 can find a line number for after the prologue. */
3651 if (sal.pc < func_addr)
3652 {
3653 sal = {};
3654 sal.pspace = current_program_space;
3655 sal.pc = func_addr;
3656 sal.section = section;
3657 }
3658
3659 if (funfirstline)
3660 skip_prologue_sal (&sal);
3661
3662 return sal;
3663 }
3664
3665 /* See symtab.h. */
3666
3667 symtab_and_line
3668 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3669 bool funfirstline)
3670 {
3671 symtab_and_line sal
3672 = find_function_start_sal_1 (func_addr, section, funfirstline);
3673
3674 /* find_function_start_sal_1 does a linetable search, so it finds
3675 the symtab and linenumber, but not a symbol. Fill in the
3676 function symbol too. */
3677 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3678
3679 return sal;
3680 }
3681
3682 /* See symtab.h. */
3683
3684 symtab_and_line
3685 find_function_start_sal (symbol *sym, bool funfirstline)
3686 {
3687 fixup_symbol_section (sym, NULL);
3688 symtab_and_line sal
3689 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3690 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3691 funfirstline);
3692 sal.symbol = sym;
3693 return sal;
3694 }
3695
3696
3697 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3698 address for that function that has an entry in SYMTAB's line info
3699 table. If such an entry cannot be found, return FUNC_ADDR
3700 unaltered. */
3701
3702 static CORE_ADDR
3703 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3704 {
3705 CORE_ADDR func_start, func_end;
3706 struct linetable *l;
3707 int i;
3708
3709 /* Give up if this symbol has no lineinfo table. */
3710 l = SYMTAB_LINETABLE (symtab);
3711 if (l == NULL)
3712 return func_addr;
3713
3714 /* Get the range for the function's PC values, or give up if we
3715 cannot, for some reason. */
3716 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3717 return func_addr;
3718
3719 /* Linetable entries are ordered by PC values, see the commentary in
3720 symtab.h where `struct linetable' is defined. Thus, the first
3721 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3722 address we are looking for. */
3723 for (i = 0; i < l->nitems; i++)
3724 {
3725 struct linetable_entry *item = &(l->item[i]);
3726
3727 /* Don't use line numbers of zero, they mark special entries in
3728 the table. See the commentary on symtab.h before the
3729 definition of struct linetable. */
3730 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3731 return item->pc;
3732 }
3733
3734 return func_addr;
3735 }
3736
3737 /* Adjust SAL to the first instruction past the function prologue.
3738 If the PC was explicitly specified, the SAL is not changed.
3739 If the line number was explicitly specified then the SAL can still be
3740 updated, unless the language for SAL is assembler, in which case the SAL
3741 will be left unchanged.
3742 If SAL is already past the prologue, then do nothing. */
3743
3744 void
3745 skip_prologue_sal (struct symtab_and_line *sal)
3746 {
3747 struct symbol *sym;
3748 struct symtab_and_line start_sal;
3749 CORE_ADDR pc, saved_pc;
3750 struct obj_section *section;
3751 const char *name;
3752 struct objfile *objfile;
3753 struct gdbarch *gdbarch;
3754 const struct block *b, *function_block;
3755 int force_skip, skip;
3756
3757 /* Do not change the SAL if PC was specified explicitly. */
3758 if (sal->explicit_pc)
3759 return;
3760
3761 /* In assembly code, if the user asks for a specific line then we should
3762 not adjust the SAL. The user already has instruction level
3763 visibility in this case, so selecting a line other than one requested
3764 is likely to be the wrong choice. */
3765 if (sal->symtab != nullptr
3766 && sal->explicit_line
3767 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3768 return;
3769
3770 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3771
3772 switch_to_program_space_and_thread (sal->pspace);
3773
3774 sym = find_pc_sect_function (sal->pc, sal->section);
3775 if (sym != NULL)
3776 {
3777 fixup_symbol_section (sym, NULL);
3778
3779 objfile = symbol_objfile (sym);
3780 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3781 section = SYMBOL_OBJ_SECTION (objfile, sym);
3782 name = sym->linkage_name ();
3783 }
3784 else
3785 {
3786 struct bound_minimal_symbol msymbol
3787 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3788
3789 if (msymbol.minsym == NULL)
3790 return;
3791
3792 objfile = msymbol.objfile;
3793 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3794 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3795 name = msymbol.minsym->linkage_name ();
3796 }
3797
3798 gdbarch = objfile->arch ();
3799
3800 /* Process the prologue in two passes. In the first pass try to skip the
3801 prologue (SKIP is true) and verify there is a real need for it (indicated
3802 by FORCE_SKIP). If no such reason was found run a second pass where the
3803 prologue is not skipped (SKIP is false). */
3804
3805 skip = 1;
3806 force_skip = 1;
3807
3808 /* Be conservative - allow direct PC (without skipping prologue) only if we
3809 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3810 have to be set by the caller so we use SYM instead. */
3811 if (sym != NULL
3812 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3813 force_skip = 0;
3814
3815 saved_pc = pc;
3816 do
3817 {
3818 pc = saved_pc;
3819
3820 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3821 so that gdbarch_skip_prologue has something unique to work on. */
3822 if (section_is_overlay (section) && !section_is_mapped (section))
3823 pc = overlay_unmapped_address (pc, section);
3824
3825 /* Skip "first line" of function (which is actually its prologue). */
3826 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3827 if (gdbarch_skip_entrypoint_p (gdbarch))
3828 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3829 if (skip)
3830 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3831
3832 /* For overlays, map pc back into its mapped VMA range. */
3833 pc = overlay_mapped_address (pc, section);
3834
3835 /* Calculate line number. */
3836 start_sal = find_pc_sect_line (pc, section, 0);
3837
3838 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3839 line is still part of the same function. */
3840 if (skip && start_sal.pc != pc
3841 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3842 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3843 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3844 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3845 {
3846 /* First pc of next line */
3847 pc = start_sal.end;
3848 /* Recalculate the line number (might not be N+1). */
3849 start_sal = find_pc_sect_line (pc, section, 0);
3850 }
3851
3852 /* On targets with executable formats that don't have a concept of
3853 constructors (ELF with .init has, PE doesn't), gcc emits a call
3854 to `__main' in `main' between the prologue and before user
3855 code. */
3856 if (gdbarch_skip_main_prologue_p (gdbarch)
3857 && name && strcmp_iw (name, "main") == 0)
3858 {
3859 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3860 /* Recalculate the line number (might not be N+1). */
3861 start_sal = find_pc_sect_line (pc, section, 0);
3862 force_skip = 1;
3863 }
3864 }
3865 while (!force_skip && skip--);
3866
3867 /* If we still don't have a valid source line, try to find the first
3868 PC in the lineinfo table that belongs to the same function. This
3869 happens with COFF debug info, which does not seem to have an
3870 entry in lineinfo table for the code after the prologue which has
3871 no direct relation to source. For example, this was found to be
3872 the case with the DJGPP target using "gcc -gcoff" when the
3873 compiler inserted code after the prologue to make sure the stack
3874 is aligned. */
3875 if (!force_skip && sym && start_sal.symtab == NULL)
3876 {
3877 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3878 /* Recalculate the line number. */
3879 start_sal = find_pc_sect_line (pc, section, 0);
3880 }
3881
3882 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3883 forward SAL to the end of the prologue. */
3884 if (sal->pc >= pc)
3885 return;
3886
3887 sal->pc = pc;
3888 sal->section = section;
3889 sal->symtab = start_sal.symtab;
3890 sal->line = start_sal.line;
3891 sal->end = start_sal.end;
3892
3893 /* Check if we are now inside an inlined function. If we can,
3894 use the call site of the function instead. */
3895 b = block_for_pc_sect (sal->pc, sal->section);
3896 function_block = NULL;
3897 while (b != NULL)
3898 {
3899 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3900 function_block = b;
3901 else if (BLOCK_FUNCTION (b) != NULL)
3902 break;
3903 b = BLOCK_SUPERBLOCK (b);
3904 }
3905 if (function_block != NULL
3906 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3907 {
3908 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3909 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3910 }
3911 }
3912
3913 /* Given PC at the function's start address, attempt to find the
3914 prologue end using SAL information. Return zero if the skip fails.
3915
3916 A non-optimized prologue traditionally has one SAL for the function
3917 and a second for the function body. A single line function has
3918 them both pointing at the same line.
3919
3920 An optimized prologue is similar but the prologue may contain
3921 instructions (SALs) from the instruction body. Need to skip those
3922 while not getting into the function body.
3923
3924 The functions end point and an increasing SAL line are used as
3925 indicators of the prologue's endpoint.
3926
3927 This code is based on the function refine_prologue_limit
3928 (found in ia64). */
3929
3930 CORE_ADDR
3931 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3932 {
3933 struct symtab_and_line prologue_sal;
3934 CORE_ADDR start_pc;
3935 CORE_ADDR end_pc;
3936 const struct block *bl;
3937
3938 /* Get an initial range for the function. */
3939 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3940 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3941
3942 prologue_sal = find_pc_line (start_pc, 0);
3943 if (prologue_sal.line != 0)
3944 {
3945 /* For languages other than assembly, treat two consecutive line
3946 entries at the same address as a zero-instruction prologue.
3947 The GNU assembler emits separate line notes for each instruction
3948 in a multi-instruction macro, but compilers generally will not
3949 do this. */
3950 if (prologue_sal.symtab->language != language_asm)
3951 {
3952 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3953 int idx = 0;
3954
3955 /* Skip any earlier lines, and any end-of-sequence marker
3956 from a previous function. */
3957 while (linetable->item[idx].pc != prologue_sal.pc
3958 || linetable->item[idx].line == 0)
3959 idx++;
3960
3961 if (idx+1 < linetable->nitems
3962 && linetable->item[idx+1].line != 0
3963 && linetable->item[idx+1].pc == start_pc)
3964 return start_pc;
3965 }
3966
3967 /* If there is only one sal that covers the entire function,
3968 then it is probably a single line function, like
3969 "foo(){}". */
3970 if (prologue_sal.end >= end_pc)
3971 return 0;
3972
3973 while (prologue_sal.end < end_pc)
3974 {
3975 struct symtab_and_line sal;
3976
3977 sal = find_pc_line (prologue_sal.end, 0);
3978 if (sal.line == 0)
3979 break;
3980 /* Assume that a consecutive SAL for the same (or larger)
3981 line mark the prologue -> body transition. */
3982 if (sal.line >= prologue_sal.line)
3983 break;
3984 /* Likewise if we are in a different symtab altogether
3985 (e.g. within a file included via #include).  */
3986 if (sal.symtab != prologue_sal.symtab)
3987 break;
3988
3989 /* The line number is smaller. Check that it's from the
3990 same function, not something inlined. If it's inlined,
3991 then there is no point comparing the line numbers. */
3992 bl = block_for_pc (prologue_sal.end);
3993 while (bl)
3994 {
3995 if (block_inlined_p (bl))
3996 break;
3997 if (BLOCK_FUNCTION (bl))
3998 {
3999 bl = NULL;
4000 break;
4001 }
4002 bl = BLOCK_SUPERBLOCK (bl);
4003 }
4004 if (bl != NULL)
4005 break;
4006
4007 /* The case in which compiler's optimizer/scheduler has
4008 moved instructions into the prologue. We look ahead in
4009 the function looking for address ranges whose
4010 corresponding line number is less the first one that we
4011 found for the function. This is more conservative then
4012 refine_prologue_limit which scans a large number of SALs
4013 looking for any in the prologue. */
4014 prologue_sal = sal;
4015 }
4016 }
4017
4018 if (prologue_sal.end < end_pc)
4019 /* Return the end of this line, or zero if we could not find a
4020 line. */
4021 return prologue_sal.end;
4022 else
4023 /* Don't return END_PC, which is past the end of the function. */
4024 return prologue_sal.pc;
4025 }
4026
4027 /* See symtab.h. */
4028
4029 symbol *
4030 find_function_alias_target (bound_minimal_symbol msymbol)
4031 {
4032 CORE_ADDR func_addr;
4033 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4034 return NULL;
4035
4036 symbol *sym = find_pc_function (func_addr);
4037 if (sym != NULL
4038 && SYMBOL_CLASS (sym) == LOC_BLOCK
4039 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4040 return sym;
4041
4042 return NULL;
4043 }
4044
4045 \f
4046 /* If P is of the form "operator[ \t]+..." where `...' is
4047 some legitimate operator text, return a pointer to the
4048 beginning of the substring of the operator text.
4049 Otherwise, return "". */
4050
4051 static const char *
4052 operator_chars (const char *p, const char **end)
4053 {
4054 *end = "";
4055 if (!startswith (p, CP_OPERATOR_STR))
4056 return *end;
4057 p += CP_OPERATOR_LEN;
4058
4059 /* Don't get faked out by `operator' being part of a longer
4060 identifier. */
4061 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4062 return *end;
4063
4064 /* Allow some whitespace between `operator' and the operator symbol. */
4065 while (*p == ' ' || *p == '\t')
4066 p++;
4067
4068 /* Recognize 'operator TYPENAME'. */
4069
4070 if (isalpha (*p) || *p == '_' || *p == '$')
4071 {
4072 const char *q = p + 1;
4073
4074 while (isalnum (*q) || *q == '_' || *q == '$')
4075 q++;
4076 *end = q;
4077 return p;
4078 }
4079
4080 while (*p)
4081 switch (*p)
4082 {
4083 case '\\': /* regexp quoting */
4084 if (p[1] == '*')
4085 {
4086 if (p[2] == '=') /* 'operator\*=' */
4087 *end = p + 3;
4088 else /* 'operator\*' */
4089 *end = p + 2;
4090 return p;
4091 }
4092 else if (p[1] == '[')
4093 {
4094 if (p[2] == ']')
4095 error (_("mismatched quoting on brackets, "
4096 "try 'operator\\[\\]'"));
4097 else if (p[2] == '\\' && p[3] == ']')
4098 {
4099 *end = p + 4; /* 'operator\[\]' */
4100 return p;
4101 }
4102 else
4103 error (_("nothing is allowed between '[' and ']'"));
4104 }
4105 else
4106 {
4107 /* Gratuitous quote: skip it and move on. */
4108 p++;
4109 continue;
4110 }
4111 break;
4112 case '!':
4113 case '=':
4114 case '*':
4115 case '/':
4116 case '%':
4117 case '^':
4118 if (p[1] == '=')
4119 *end = p + 2;
4120 else
4121 *end = p + 1;
4122 return p;
4123 case '<':
4124 case '>':
4125 case '+':
4126 case '-':
4127 case '&':
4128 case '|':
4129 if (p[0] == '-' && p[1] == '>')
4130 {
4131 /* Struct pointer member operator 'operator->'. */
4132 if (p[2] == '*')
4133 {
4134 *end = p + 3; /* 'operator->*' */
4135 return p;
4136 }
4137 else if (p[2] == '\\')
4138 {
4139 *end = p + 4; /* Hopefully 'operator->\*' */
4140 return p;
4141 }
4142 else
4143 {
4144 *end = p + 2; /* 'operator->' */
4145 return p;
4146 }
4147 }
4148 if (p[1] == '=' || p[1] == p[0])
4149 *end = p + 2;
4150 else
4151 *end = p + 1;
4152 return p;
4153 case '~':
4154 case ',':
4155 *end = p + 1;
4156 return p;
4157 case '(':
4158 if (p[1] != ')')
4159 error (_("`operator ()' must be specified "
4160 "without whitespace in `()'"));
4161 *end = p + 2;
4162 return p;
4163 case '?':
4164 if (p[1] != ':')
4165 error (_("`operator ?:' must be specified "
4166 "without whitespace in `?:'"));
4167 *end = p + 2;
4168 return p;
4169 case '[':
4170 if (p[1] != ']')
4171 error (_("`operator []' must be specified "
4172 "without whitespace in `[]'"));
4173 *end = p + 2;
4174 return p;
4175 default:
4176 error (_("`operator %s' not supported"), p);
4177 break;
4178 }
4179
4180 *end = "";
4181 return *end;
4182 }
4183 \f
4184
4185 /* What part to match in a file name. */
4186
4187 struct filename_partial_match_opts
4188 {
4189 /* Only match the directory name part. */
4190 bool dirname = false;
4191
4192 /* Only match the basename part. */
4193 bool basename = false;
4194 };
4195
4196 /* Data structure to maintain printing state for output_source_filename. */
4197
4198 struct output_source_filename_data
4199 {
4200 /* Output only filenames matching REGEXP. */
4201 std::string regexp;
4202 gdb::optional<compiled_regex> c_regexp;
4203 /* Possibly only match a part of the filename. */
4204 filename_partial_match_opts partial_match;
4205
4206
4207 /* Cache of what we've seen so far. */
4208 struct filename_seen_cache *filename_seen_cache;
4209
4210 /* Flag of whether we're printing the first one. */
4211 int first;
4212 };
4213
4214 /* Slave routine for sources_info. Force line breaks at ,'s.
4215 NAME is the name to print.
4216 DATA contains the state for printing and watching for duplicates. */
4217
4218 static void
4219 output_source_filename (const char *name,
4220 struct output_source_filename_data *data)
4221 {
4222 /* Since a single source file can result in several partial symbol
4223 tables, we need to avoid printing it more than once. Note: if
4224 some of the psymtabs are read in and some are not, it gets
4225 printed both under "Source files for which symbols have been
4226 read" and "Source files for which symbols will be read in on
4227 demand". I consider this a reasonable way to deal with the
4228 situation. I'm not sure whether this can also happen for
4229 symtabs; it doesn't hurt to check. */
4230
4231 /* Was NAME already seen? */
4232 if (data->filename_seen_cache->seen (name))
4233 {
4234 /* Yes; don't print it again. */
4235 return;
4236 }
4237
4238 /* Does it match data->regexp? */
4239 if (data->c_regexp.has_value ())
4240 {
4241 const char *to_match;
4242 std::string dirname;
4243
4244 if (data->partial_match.dirname)
4245 {
4246 dirname = ldirname (name);
4247 to_match = dirname.c_str ();
4248 }
4249 else if (data->partial_match.basename)
4250 to_match = lbasename (name);
4251 else
4252 to_match = name;
4253
4254 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4255 return;
4256 }
4257
4258 /* Print it and reset *FIRST. */
4259 if (! data->first)
4260 printf_filtered (", ");
4261 data->first = 0;
4262
4263 wrap_here ("");
4264 fputs_styled (name, file_name_style.style (), gdb_stdout);
4265 }
4266
4267 /* A callback for map_partial_symbol_filenames. */
4268
4269 static void
4270 output_partial_symbol_filename (const char *filename, const char *fullname,
4271 void *data)
4272 {
4273 output_source_filename (fullname ? fullname : filename,
4274 (struct output_source_filename_data *) data);
4275 }
4276
4277 using isrc_flag_option_def
4278 = gdb::option::flag_option_def<filename_partial_match_opts>;
4279
4280 static const gdb::option::option_def info_sources_option_defs[] = {
4281
4282 isrc_flag_option_def {
4283 "dirname",
4284 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4285 N_("Show only the files having a dirname matching REGEXP."),
4286 },
4287
4288 isrc_flag_option_def {
4289 "basename",
4290 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4291 N_("Show only the files having a basename matching REGEXP."),
4292 },
4293
4294 };
4295
4296 /* Create an option_def_group for the "info sources" options, with
4297 ISRC_OPTS as context. */
4298
4299 static inline gdb::option::option_def_group
4300 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4301 {
4302 return {{info_sources_option_defs}, isrc_opts};
4303 }
4304
4305 /* Prints the header message for the source files that will be printed
4306 with the matching info present in DATA. SYMBOL_MSG is a message
4307 that tells what will or has been done with the symbols of the
4308 matching source files. */
4309
4310 static void
4311 print_info_sources_header (const char *symbol_msg,
4312 const struct output_source_filename_data *data)
4313 {
4314 puts_filtered (symbol_msg);
4315 if (!data->regexp.empty ())
4316 {
4317 if (data->partial_match.dirname)
4318 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4319 data->regexp.c_str ());
4320 else if (data->partial_match.basename)
4321 printf_filtered (_("(basename matching regular expression \"%s\")"),
4322 data->regexp.c_str ());
4323 else
4324 printf_filtered (_("(filename matching regular expression \"%s\")"),
4325 data->regexp.c_str ());
4326 }
4327 puts_filtered ("\n");
4328 }
4329
4330 /* Completer for "info sources". */
4331
4332 static void
4333 info_sources_command_completer (cmd_list_element *ignore,
4334 completion_tracker &tracker,
4335 const char *text, const char *word)
4336 {
4337 const auto group = make_info_sources_options_def_group (nullptr);
4338 if (gdb::option::complete_options
4339 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4340 return;
4341 }
4342
4343 static void
4344 info_sources_command (const char *args, int from_tty)
4345 {
4346 struct output_source_filename_data data;
4347
4348 if (!have_full_symbols () && !have_partial_symbols ())
4349 {
4350 error (_("No symbol table is loaded. Use the \"file\" command."));
4351 }
4352
4353 filename_seen_cache filenames_seen;
4354
4355 auto group = make_info_sources_options_def_group (&data.partial_match);
4356
4357 gdb::option::process_options
4358 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4359
4360 if (args != NULL && *args != '\000')
4361 data.regexp = args;
4362
4363 data.filename_seen_cache = &filenames_seen;
4364 data.first = 1;
4365
4366 if (data.partial_match.dirname && data.partial_match.basename)
4367 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4368 if ((data.partial_match.dirname || data.partial_match.basename)
4369 && data.regexp.empty ())
4370 error (_("Missing REGEXP for 'info sources'."));
4371
4372 if (data.regexp.empty ())
4373 data.c_regexp.reset ();
4374 else
4375 {
4376 int cflags = REG_NOSUB;
4377 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4378 cflags |= REG_ICASE;
4379 #endif
4380 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4381 _("Invalid regexp"));
4382 }
4383
4384 print_info_sources_header
4385 (_("Source files for which symbols have been read in:\n"), &data);
4386
4387 for (objfile *objfile : current_program_space->objfiles ())
4388 {
4389 for (compunit_symtab *cu : objfile->compunits ())
4390 {
4391 for (symtab *s : compunit_filetabs (cu))
4392 {
4393 const char *fullname = symtab_to_fullname (s);
4394
4395 output_source_filename (fullname, &data);
4396 }
4397 }
4398 }
4399 printf_filtered ("\n\n");
4400
4401 print_info_sources_header
4402 (_("Source files for which symbols will be read in on demand:\n"), &data);
4403
4404 filenames_seen.clear ();
4405 data.first = 1;
4406 map_symbol_filenames (output_partial_symbol_filename, &data,
4407 1 /*need_fullname*/);
4408 printf_filtered ("\n");
4409 }
4410
4411 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4412 true compare only lbasename of FILENAMES. */
4413
4414 static bool
4415 file_matches (const char *file, const std::vector<const char *> &filenames,
4416 bool basenames)
4417 {
4418 if (filenames.empty ())
4419 return true;
4420
4421 for (const char *name : filenames)
4422 {
4423 name = (basenames ? lbasename (name) : name);
4424 if (compare_filenames_for_search (file, name))
4425 return true;
4426 }
4427
4428 return false;
4429 }
4430
4431 /* Helper function for std::sort on symbol_search objects. Can only sort
4432 symbols, not minimal symbols. */
4433
4434 int
4435 symbol_search::compare_search_syms (const symbol_search &sym_a,
4436 const symbol_search &sym_b)
4437 {
4438 int c;
4439
4440 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4441 symbol_symtab (sym_b.symbol)->filename);
4442 if (c != 0)
4443 return c;
4444
4445 if (sym_a.block != sym_b.block)
4446 return sym_a.block - sym_b.block;
4447
4448 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4449 }
4450
4451 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4452 If SYM has no symbol_type or symbol_name, returns false. */
4453
4454 bool
4455 treg_matches_sym_type_name (const compiled_regex &treg,
4456 const struct symbol *sym)
4457 {
4458 struct type *sym_type;
4459 std::string printed_sym_type_name;
4460
4461 if (symbol_lookup_debug > 1)
4462 {
4463 fprintf_unfiltered (gdb_stdlog,
4464 "treg_matches_sym_type_name\n sym %s\n",
4465 sym->natural_name ());
4466 }
4467
4468 sym_type = SYMBOL_TYPE (sym);
4469 if (sym_type == NULL)
4470 return false;
4471
4472 {
4473 scoped_switch_to_sym_language_if_auto l (sym);
4474
4475 printed_sym_type_name = type_to_string (sym_type);
4476 }
4477
4478
4479 if (symbol_lookup_debug > 1)
4480 {
4481 fprintf_unfiltered (gdb_stdlog,
4482 " sym_type_name %s\n",
4483 printed_sym_type_name.c_str ());
4484 }
4485
4486
4487 if (printed_sym_type_name.empty ())
4488 return false;
4489
4490 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4491 }
4492
4493 /* See symtab.h. */
4494
4495 bool
4496 global_symbol_searcher::is_suitable_msymbol
4497 (const enum search_domain kind, const minimal_symbol *msymbol)
4498 {
4499 switch (MSYMBOL_TYPE (msymbol))
4500 {
4501 case mst_data:
4502 case mst_bss:
4503 case mst_file_data:
4504 case mst_file_bss:
4505 return kind == VARIABLES_DOMAIN;
4506 case mst_text:
4507 case mst_file_text:
4508 case mst_solib_trampoline:
4509 case mst_text_gnu_ifunc:
4510 return kind == FUNCTIONS_DOMAIN;
4511 default:
4512 return false;
4513 }
4514 }
4515
4516 /* See symtab.h. */
4517
4518 bool
4519 global_symbol_searcher::expand_symtabs
4520 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4521 {
4522 enum search_domain kind = m_kind;
4523 bool found_msymbol = false;
4524
4525 if (objfile->sf)
4526 objfile->sf->qf->expand_symtabs_matching
4527 (objfile,
4528 [&] (const char *filename, bool basenames)
4529 {
4530 return file_matches (filename, filenames, basenames);
4531 },
4532 &lookup_name_info::match_any (),
4533 [&] (const char *symname)
4534 {
4535 return (!preg.has_value ()
4536 || preg->exec (symname, 0, NULL, 0) == 0);
4537 },
4538 NULL,
4539 kind);
4540
4541 /* Here, we search through the minimal symbol tables for functions and
4542 variables that match, and force their symbols to be read. This is in
4543 particular necessary for demangled variable names, which are no longer
4544 put into the partial symbol tables. The symbol will then be found
4545 during the scan of symtabs later.
4546
4547 For functions, find_pc_symtab should succeed if we have debug info for
4548 the function, for variables we have to call
4549 lookup_symbol_in_objfile_from_linkage_name to determine if the
4550 variable has debug info. If the lookup fails, set found_msymbol so
4551 that we will rescan to print any matching symbols without debug info.
4552 We only search the objfile the msymbol came from, we no longer search
4553 all objfiles. In large programs (1000s of shared libs) searching all
4554 objfiles is not worth the pain. */
4555 if (filenames.empty ()
4556 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4557 {
4558 for (minimal_symbol *msymbol : objfile->msymbols ())
4559 {
4560 QUIT;
4561
4562 if (msymbol->created_by_gdb)
4563 continue;
4564
4565 if (is_suitable_msymbol (kind, msymbol))
4566 {
4567 if (!preg.has_value ()
4568 || preg->exec (msymbol->natural_name (), 0,
4569 NULL, 0) == 0)
4570 {
4571 /* An important side-effect of these lookup functions is
4572 to expand the symbol table if msymbol is found, later
4573 in the process we will add matching symbols or
4574 msymbols to the results list, and that requires that
4575 the symbols tables are expanded. */
4576 if (kind == FUNCTIONS_DOMAIN
4577 ? (find_pc_compunit_symtab
4578 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4579 == NULL)
4580 : (lookup_symbol_in_objfile_from_linkage_name
4581 (objfile, msymbol->linkage_name (),
4582 VAR_DOMAIN)
4583 .symbol == NULL))
4584 found_msymbol = true;
4585 }
4586 }
4587 }
4588 }
4589
4590 return found_msymbol;
4591 }
4592
4593 /* See symtab.h. */
4594
4595 bool
4596 global_symbol_searcher::add_matching_symbols
4597 (objfile *objfile,
4598 const gdb::optional<compiled_regex> &preg,
4599 const gdb::optional<compiled_regex> &treg,
4600 std::set<symbol_search> *result_set) const
4601 {
4602 enum search_domain kind = m_kind;
4603
4604 /* Add matching symbols (if not already present). */
4605 for (compunit_symtab *cust : objfile->compunits ())
4606 {
4607 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4608
4609 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4610 {
4611 struct block_iterator iter;
4612 struct symbol *sym;
4613 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4614
4615 ALL_BLOCK_SYMBOLS (b, iter, sym)
4616 {
4617 struct symtab *real_symtab = symbol_symtab (sym);
4618
4619 QUIT;
4620
4621 /* Check first sole REAL_SYMTAB->FILENAME. It does
4622 not need to be a substring of symtab_to_fullname as
4623 it may contain "./" etc. */
4624 if ((file_matches (real_symtab->filename, filenames, false)
4625 || ((basenames_may_differ
4626 || file_matches (lbasename (real_symtab->filename),
4627 filenames, true))
4628 && file_matches (symtab_to_fullname (real_symtab),
4629 filenames, false)))
4630 && ((!preg.has_value ()
4631 || preg->exec (sym->natural_name (), 0,
4632 NULL, 0) == 0)
4633 && ((kind == VARIABLES_DOMAIN
4634 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4635 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4636 && SYMBOL_CLASS (sym) != LOC_BLOCK
4637 /* LOC_CONST can be used for more than
4638 just enums, e.g., c++ static const
4639 members. We only want to skip enums
4640 here. */
4641 && !(SYMBOL_CLASS (sym) == LOC_CONST
4642 && (SYMBOL_TYPE (sym)->code ()
4643 == TYPE_CODE_ENUM))
4644 && (!treg.has_value ()
4645 || treg_matches_sym_type_name (*treg, sym)))
4646 || (kind == FUNCTIONS_DOMAIN
4647 && SYMBOL_CLASS (sym) == LOC_BLOCK
4648 && (!treg.has_value ()
4649 || treg_matches_sym_type_name (*treg,
4650 sym)))
4651 || (kind == TYPES_DOMAIN
4652 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4653 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4654 || (kind == MODULES_DOMAIN
4655 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4656 && SYMBOL_LINE (sym) != 0))))
4657 {
4658 if (result_set->size () < m_max_search_results)
4659 {
4660 /* Match, insert if not already in the results. */
4661 symbol_search ss (block, sym);
4662 if (result_set->find (ss) == result_set->end ())
4663 result_set->insert (ss);
4664 }
4665 else
4666 return false;
4667 }
4668 }
4669 }
4670 }
4671
4672 return true;
4673 }
4674
4675 /* See symtab.h. */
4676
4677 bool
4678 global_symbol_searcher::add_matching_msymbols
4679 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4680 std::vector<symbol_search> *results) const
4681 {
4682 enum search_domain kind = m_kind;
4683
4684 for (minimal_symbol *msymbol : objfile->msymbols ())
4685 {
4686 QUIT;
4687
4688 if (msymbol->created_by_gdb)
4689 continue;
4690
4691 if (is_suitable_msymbol (kind, msymbol))
4692 {
4693 if (!preg.has_value ()
4694 || preg->exec (msymbol->natural_name (), 0,
4695 NULL, 0) == 0)
4696 {
4697 /* For functions we can do a quick check of whether the
4698 symbol might be found via find_pc_symtab. */
4699 if (kind != FUNCTIONS_DOMAIN
4700 || (find_pc_compunit_symtab
4701 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4702 == NULL))
4703 {
4704 if (lookup_symbol_in_objfile_from_linkage_name
4705 (objfile, msymbol->linkage_name (),
4706 VAR_DOMAIN).symbol == NULL)
4707 {
4708 /* Matching msymbol, add it to the results list. */
4709 if (results->size () < m_max_search_results)
4710 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4711 else
4712 return false;
4713 }
4714 }
4715 }
4716 }
4717 }
4718
4719 return true;
4720 }
4721
4722 /* See symtab.h. */
4723
4724 std::vector<symbol_search>
4725 global_symbol_searcher::search () const
4726 {
4727 gdb::optional<compiled_regex> preg;
4728 gdb::optional<compiled_regex> treg;
4729
4730 gdb_assert (m_kind != ALL_DOMAIN);
4731
4732 if (m_symbol_name_regexp != NULL)
4733 {
4734 const char *symbol_name_regexp = m_symbol_name_regexp;
4735
4736 /* Make sure spacing is right for C++ operators.
4737 This is just a courtesy to make the matching less sensitive
4738 to how many spaces the user leaves between 'operator'
4739 and <TYPENAME> or <OPERATOR>. */
4740 const char *opend;
4741 const char *opname = operator_chars (symbol_name_regexp, &opend);
4742
4743 if (*opname)
4744 {
4745 int fix = -1; /* -1 means ok; otherwise number of
4746 spaces needed. */
4747
4748 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4749 {
4750 /* There should 1 space between 'operator' and 'TYPENAME'. */
4751 if (opname[-1] != ' ' || opname[-2] == ' ')
4752 fix = 1;
4753 }
4754 else
4755 {
4756 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4757 if (opname[-1] == ' ')
4758 fix = 0;
4759 }
4760 /* If wrong number of spaces, fix it. */
4761 if (fix >= 0)
4762 {
4763 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4764
4765 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4766 symbol_name_regexp = tmp;
4767 }
4768 }
4769
4770 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4771 ? REG_ICASE : 0);
4772 preg.emplace (symbol_name_regexp, cflags,
4773 _("Invalid regexp"));
4774 }
4775
4776 if (m_symbol_type_regexp != NULL)
4777 {
4778 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4779 ? REG_ICASE : 0);
4780 treg.emplace (m_symbol_type_regexp, cflags,
4781 _("Invalid regexp"));
4782 }
4783
4784 bool found_msymbol = false;
4785 std::set<symbol_search> result_set;
4786 for (objfile *objfile : current_program_space->objfiles ())
4787 {
4788 /* Expand symtabs within objfile that possibly contain matching
4789 symbols. */
4790 found_msymbol |= expand_symtabs (objfile, preg);
4791
4792 /* Find matching symbols within OBJFILE and add them in to the
4793 RESULT_SET set. Use a set here so that we can easily detect
4794 duplicates as we go, and can therefore track how many unique
4795 matches we have found so far. */
4796 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4797 break;
4798 }
4799
4800 /* Convert the result set into a sorted result list, as std::set is
4801 defined to be sorted then no explicit call to std::sort is needed. */
4802 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4803
4804 /* If there are no debug symbols, then add matching minsyms. But if the
4805 user wants to see symbols matching a type regexp, then never give a
4806 minimal symbol, as we assume that a minimal symbol does not have a
4807 type. */
4808 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4809 && !m_exclude_minsyms
4810 && !treg.has_value ())
4811 {
4812 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4813 for (objfile *objfile : current_program_space->objfiles ())
4814 if (!add_matching_msymbols (objfile, preg, &result))
4815 break;
4816 }
4817
4818 return result;
4819 }
4820
4821 /* See symtab.h. */
4822
4823 std::string
4824 symbol_to_info_string (struct symbol *sym, int block,
4825 enum search_domain kind)
4826 {
4827 std::string str;
4828
4829 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4830
4831 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4832 str += "static ";
4833
4834 /* Typedef that is not a C++ class. */
4835 if (kind == TYPES_DOMAIN
4836 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4837 {
4838 string_file tmp_stream;
4839
4840 /* FIXME: For C (and C++) we end up with a difference in output here
4841 between how a typedef is printed, and non-typedefs are printed.
4842 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4843 appear C-like, while TYPE_PRINT doesn't.
4844
4845 For the struct printing case below, things are worse, we force
4846 printing of the ";" in this function, which is going to be wrong
4847 for languages that don't require a ";" between statements. */
4848 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4849 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4850 else
4851 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4852 str += tmp_stream.string ();
4853 }
4854 /* variable, func, or typedef-that-is-c++-class. */
4855 else if (kind < TYPES_DOMAIN
4856 || (kind == TYPES_DOMAIN
4857 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4858 {
4859 string_file tmp_stream;
4860
4861 type_print (SYMBOL_TYPE (sym),
4862 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4863 ? "" : sym->print_name ()),
4864 &tmp_stream, 0);
4865
4866 str += tmp_stream.string ();
4867 str += ";";
4868 }
4869 /* Printing of modules is currently done here, maybe at some future
4870 point we might want a language specific method to print the module
4871 symbol so that we can customise the output more. */
4872 else if (kind == MODULES_DOMAIN)
4873 str += sym->print_name ();
4874
4875 return str;
4876 }
4877
4878 /* Helper function for symbol info commands, for example 'info functions',
4879 'info variables', etc. KIND is the kind of symbol we searched for, and
4880 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4881 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4882 print file and line number information for the symbol as well. Skip
4883 printing the filename if it matches LAST. */
4884
4885 static void
4886 print_symbol_info (enum search_domain kind,
4887 struct symbol *sym,
4888 int block, const char *last)
4889 {
4890 scoped_switch_to_sym_language_if_auto l (sym);
4891 struct symtab *s = symbol_symtab (sym);
4892
4893 if (last != NULL)
4894 {
4895 const char *s_filename = symtab_to_filename_for_display (s);
4896
4897 if (filename_cmp (last, s_filename) != 0)
4898 {
4899 printf_filtered (_("\nFile %ps:\n"),
4900 styled_string (file_name_style.style (),
4901 s_filename));
4902 }
4903
4904 if (SYMBOL_LINE (sym) != 0)
4905 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4906 else
4907 puts_filtered ("\t");
4908 }
4909
4910 std::string str = symbol_to_info_string (sym, block, kind);
4911 printf_filtered ("%s\n", str.c_str ());
4912 }
4913
4914 /* This help function for symtab_symbol_info() prints information
4915 for non-debugging symbols to gdb_stdout. */
4916
4917 static void
4918 print_msymbol_info (struct bound_minimal_symbol msymbol)
4919 {
4920 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4921 char *tmp;
4922
4923 if (gdbarch_addr_bit (gdbarch) <= 32)
4924 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4925 & (CORE_ADDR) 0xffffffff,
4926 8);
4927 else
4928 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4929 16);
4930
4931 ui_file_style sym_style = (msymbol.minsym->text_p ()
4932 ? function_name_style.style ()
4933 : ui_file_style ());
4934
4935 printf_filtered (_("%ps %ps\n"),
4936 styled_string (address_style.style (), tmp),
4937 styled_string (sym_style, msymbol.minsym->print_name ()));
4938 }
4939
4940 /* This is the guts of the commands "info functions", "info types", and
4941 "info variables". It calls search_symbols to find all matches and then
4942 print_[m]symbol_info to print out some useful information about the
4943 matches. */
4944
4945 static void
4946 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4947 const char *regexp, enum search_domain kind,
4948 const char *t_regexp, int from_tty)
4949 {
4950 static const char * const classnames[] =
4951 {"variable", "function", "type", "module"};
4952 const char *last_filename = "";
4953 int first = 1;
4954
4955 gdb_assert (kind != ALL_DOMAIN);
4956
4957 if (regexp != nullptr && *regexp == '\0')
4958 regexp = nullptr;
4959
4960 global_symbol_searcher spec (kind, regexp);
4961 spec.set_symbol_type_regexp (t_regexp);
4962 spec.set_exclude_minsyms (exclude_minsyms);
4963 std::vector<symbol_search> symbols = spec.search ();
4964
4965 if (!quiet)
4966 {
4967 if (regexp != NULL)
4968 {
4969 if (t_regexp != NULL)
4970 printf_filtered
4971 (_("All %ss matching regular expression \"%s\""
4972 " with type matching regular expression \"%s\":\n"),
4973 classnames[kind], regexp, t_regexp);
4974 else
4975 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4976 classnames[kind], regexp);
4977 }
4978 else
4979 {
4980 if (t_regexp != NULL)
4981 printf_filtered
4982 (_("All defined %ss"
4983 " with type matching regular expression \"%s\" :\n"),
4984 classnames[kind], t_regexp);
4985 else
4986 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4987 }
4988 }
4989
4990 for (const symbol_search &p : symbols)
4991 {
4992 QUIT;
4993
4994 if (p.msymbol.minsym != NULL)
4995 {
4996 if (first)
4997 {
4998 if (!quiet)
4999 printf_filtered (_("\nNon-debugging symbols:\n"));
5000 first = 0;
5001 }
5002 print_msymbol_info (p.msymbol);
5003 }
5004 else
5005 {
5006 print_symbol_info (kind,
5007 p.symbol,
5008 p.block,
5009 last_filename);
5010 last_filename
5011 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5012 }
5013 }
5014 }
5015
5016 /* Structure to hold the values of the options used by the 'info variables'
5017 and 'info functions' commands. These correspond to the -q, -t, and -n
5018 options. */
5019
5020 struct info_vars_funcs_options
5021 {
5022 bool quiet = false;
5023 bool exclude_minsyms = false;
5024 char *type_regexp = nullptr;
5025
5026 ~info_vars_funcs_options ()
5027 {
5028 xfree (type_regexp);
5029 }
5030 };
5031
5032 /* The options used by the 'info variables' and 'info functions'
5033 commands. */
5034
5035 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5036 gdb::option::boolean_option_def<info_vars_funcs_options> {
5037 "q",
5038 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5039 nullptr, /* show_cmd_cb */
5040 nullptr /* set_doc */
5041 },
5042
5043 gdb::option::boolean_option_def<info_vars_funcs_options> {
5044 "n",
5045 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5046 nullptr, /* show_cmd_cb */
5047 nullptr /* set_doc */
5048 },
5049
5050 gdb::option::string_option_def<info_vars_funcs_options> {
5051 "t",
5052 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5053 },
5054 nullptr, /* show_cmd_cb */
5055 nullptr /* set_doc */
5056 }
5057 };
5058
5059 /* Returns the option group used by 'info variables' and 'info
5060 functions'. */
5061
5062 static gdb::option::option_def_group
5063 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5064 {
5065 return {{info_vars_funcs_options_defs}, opts};
5066 }
5067
5068 /* Command completer for 'info variables' and 'info functions'. */
5069
5070 static void
5071 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5072 completion_tracker &tracker,
5073 const char *text, const char * /* word */)
5074 {
5075 const auto group
5076 = make_info_vars_funcs_options_def_group (nullptr);
5077 if (gdb::option::complete_options
5078 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5079 return;
5080
5081 const char *word = advance_to_expression_complete_word_point (tracker, text);
5082 symbol_completer (ignore, tracker, text, word);
5083 }
5084
5085 /* Implement the 'info variables' command. */
5086
5087 static void
5088 info_variables_command (const char *args, int from_tty)
5089 {
5090 info_vars_funcs_options opts;
5091 auto grp = make_info_vars_funcs_options_def_group (&opts);
5092 gdb::option::process_options
5093 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5094 if (args != nullptr && *args == '\0')
5095 args = nullptr;
5096
5097 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5098 opts.type_regexp, from_tty);
5099 }
5100
5101 /* Implement the 'info functions' command. */
5102
5103 static void
5104 info_functions_command (const char *args, int from_tty)
5105 {
5106 info_vars_funcs_options opts;
5107
5108 auto grp = make_info_vars_funcs_options_def_group (&opts);
5109 gdb::option::process_options
5110 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5111 if (args != nullptr && *args == '\0')
5112 args = nullptr;
5113
5114 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5115 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5116 }
5117
5118 /* Holds the -q option for the 'info types' command. */
5119
5120 struct info_types_options
5121 {
5122 bool quiet = false;
5123 };
5124
5125 /* The options used by the 'info types' command. */
5126
5127 static const gdb::option::option_def info_types_options_defs[] = {
5128 gdb::option::boolean_option_def<info_types_options> {
5129 "q",
5130 [] (info_types_options *opt) { return &opt->quiet; },
5131 nullptr, /* show_cmd_cb */
5132 nullptr /* set_doc */
5133 }
5134 };
5135
5136 /* Returns the option group used by 'info types'. */
5137
5138 static gdb::option::option_def_group
5139 make_info_types_options_def_group (info_types_options *opts)
5140 {
5141 return {{info_types_options_defs}, opts};
5142 }
5143
5144 /* Implement the 'info types' command. */
5145
5146 static void
5147 info_types_command (const char *args, int from_tty)
5148 {
5149 info_types_options opts;
5150
5151 auto grp = make_info_types_options_def_group (&opts);
5152 gdb::option::process_options
5153 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5154 if (args != nullptr && *args == '\0')
5155 args = nullptr;
5156 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5157 }
5158
5159 /* Command completer for 'info types' command. */
5160
5161 static void
5162 info_types_command_completer (struct cmd_list_element *ignore,
5163 completion_tracker &tracker,
5164 const char *text, const char * /* word */)
5165 {
5166 const auto group
5167 = make_info_types_options_def_group (nullptr);
5168 if (gdb::option::complete_options
5169 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5170 return;
5171
5172 const char *word = advance_to_expression_complete_word_point (tracker, text);
5173 symbol_completer (ignore, tracker, text, word);
5174 }
5175
5176 /* Implement the 'info modules' command. */
5177
5178 static void
5179 info_modules_command (const char *args, int from_tty)
5180 {
5181 info_types_options opts;
5182
5183 auto grp = make_info_types_options_def_group (&opts);
5184 gdb::option::process_options
5185 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5186 if (args != nullptr && *args == '\0')
5187 args = nullptr;
5188 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5189 from_tty);
5190 }
5191
5192 static void
5193 rbreak_command (const char *regexp, int from_tty)
5194 {
5195 std::string string;
5196 const char *file_name = nullptr;
5197
5198 if (regexp != nullptr)
5199 {
5200 const char *colon = strchr (regexp, ':');
5201
5202 /* Ignore the colon if it is part of a Windows drive. */
5203 if (HAS_DRIVE_SPEC (regexp)
5204 && (regexp[2] == '/' || regexp[2] == '\\'))
5205 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5206
5207 if (colon && *(colon + 1) != ':')
5208 {
5209 int colon_index;
5210 char *local_name;
5211
5212 colon_index = colon - regexp;
5213 local_name = (char *) alloca (colon_index + 1);
5214 memcpy (local_name, regexp, colon_index);
5215 local_name[colon_index--] = 0;
5216 while (isspace (local_name[colon_index]))
5217 local_name[colon_index--] = 0;
5218 file_name = local_name;
5219 regexp = skip_spaces (colon + 1);
5220 }
5221 }
5222
5223 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5224 if (file_name != nullptr)
5225 spec.filenames.push_back (file_name);
5226 std::vector<symbol_search> symbols = spec.search ();
5227
5228 scoped_rbreak_breakpoints finalize;
5229 for (const symbol_search &p : symbols)
5230 {
5231 if (p.msymbol.minsym == NULL)
5232 {
5233 struct symtab *symtab = symbol_symtab (p.symbol);
5234 const char *fullname = symtab_to_fullname (symtab);
5235
5236 string = string_printf ("%s:'%s'", fullname,
5237 p.symbol->linkage_name ());
5238 break_command (&string[0], from_tty);
5239 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5240 }
5241 else
5242 {
5243 string = string_printf ("'%s'",
5244 p.msymbol.minsym->linkage_name ());
5245
5246 break_command (&string[0], from_tty);
5247 printf_filtered ("<function, no debug info> %s;\n",
5248 p.msymbol.minsym->print_name ());
5249 }
5250 }
5251 }
5252 \f
5253
5254 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5255
5256 static int
5257 compare_symbol_name (const char *symbol_name, language symbol_language,
5258 const lookup_name_info &lookup_name,
5259 completion_match_result &match_res)
5260 {
5261 const language_defn *lang = language_def (symbol_language);
5262
5263 symbol_name_matcher_ftype *name_match
5264 = lang->get_symbol_name_matcher (lookup_name);
5265
5266 return name_match (symbol_name, lookup_name, &match_res);
5267 }
5268
5269 /* See symtab.h. */
5270
5271 bool
5272 completion_list_add_name (completion_tracker &tracker,
5273 language symbol_language,
5274 const char *symname,
5275 const lookup_name_info &lookup_name,
5276 const char *text, const char *word)
5277 {
5278 completion_match_result &match_res
5279 = tracker.reset_completion_match_result ();
5280
5281 /* Clip symbols that cannot match. */
5282 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5283 return false;
5284
5285 /* Refresh SYMNAME from the match string. It's potentially
5286 different depending on language. (E.g., on Ada, the match may be
5287 the encoded symbol name wrapped in "<>"). */
5288 symname = match_res.match.match ();
5289 gdb_assert (symname != NULL);
5290
5291 /* We have a match for a completion, so add SYMNAME to the current list
5292 of matches. Note that the name is moved to freshly malloc'd space. */
5293
5294 {
5295 gdb::unique_xmalloc_ptr<char> completion
5296 = make_completion_match_str (symname, text, word);
5297
5298 /* Here we pass the match-for-lcd object to add_completion. Some
5299 languages match the user text against substrings of symbol
5300 names in some cases. E.g., in C++, "b push_ba" completes to
5301 "std::vector::push_back", "std::string::push_back", etc., and
5302 in this case we want the completion lowest common denominator
5303 to be "push_back" instead of "std::". */
5304 tracker.add_completion (std::move (completion),
5305 &match_res.match_for_lcd, text, word);
5306 }
5307
5308 return true;
5309 }
5310
5311 /* completion_list_add_name wrapper for struct symbol. */
5312
5313 static void
5314 completion_list_add_symbol (completion_tracker &tracker,
5315 symbol *sym,
5316 const lookup_name_info &lookup_name,
5317 const char *text, const char *word)
5318 {
5319 if (!completion_list_add_name (tracker, sym->language (),
5320 sym->natural_name (),
5321 lookup_name, text, word))
5322 return;
5323
5324 /* C++ function symbols include the parameters within both the msymbol
5325 name and the symbol name. The problem is that the msymbol name will
5326 describe the parameters in the most basic way, with typedefs stripped
5327 out, while the symbol name will represent the types as they appear in
5328 the program. This means we will see duplicate entries in the
5329 completion tracker. The following converts the symbol name back to
5330 the msymbol name and removes the msymbol name from the completion
5331 tracker. */
5332 if (sym->language () == language_cplus
5333 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5334 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5335 {
5336 /* The call to canonicalize returns the empty string if the input
5337 string is already in canonical form, thanks to this we don't
5338 remove the symbol we just added above. */
5339 gdb::unique_xmalloc_ptr<char> str
5340 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5341 if (str != nullptr)
5342 tracker.remove_completion (str.get ());
5343 }
5344 }
5345
5346 /* completion_list_add_name wrapper for struct minimal_symbol. */
5347
5348 static void
5349 completion_list_add_msymbol (completion_tracker &tracker,
5350 minimal_symbol *sym,
5351 const lookup_name_info &lookup_name,
5352 const char *text, const char *word)
5353 {
5354 completion_list_add_name (tracker, sym->language (),
5355 sym->natural_name (),
5356 lookup_name, text, word);
5357 }
5358
5359
5360 /* ObjC: In case we are completing on a selector, look as the msymbol
5361 again and feed all the selectors into the mill. */
5362
5363 static void
5364 completion_list_objc_symbol (completion_tracker &tracker,
5365 struct minimal_symbol *msymbol,
5366 const lookup_name_info &lookup_name,
5367 const char *text, const char *word)
5368 {
5369 static char *tmp = NULL;
5370 static unsigned int tmplen = 0;
5371
5372 const char *method, *category, *selector;
5373 char *tmp2 = NULL;
5374
5375 method = msymbol->natural_name ();
5376
5377 /* Is it a method? */
5378 if ((method[0] != '-') && (method[0] != '+'))
5379 return;
5380
5381 if (text[0] == '[')
5382 /* Complete on shortened method method. */
5383 completion_list_add_name (tracker, language_objc,
5384 method + 1,
5385 lookup_name,
5386 text, word);
5387
5388 while ((strlen (method) + 1) >= tmplen)
5389 {
5390 if (tmplen == 0)
5391 tmplen = 1024;
5392 else
5393 tmplen *= 2;
5394 tmp = (char *) xrealloc (tmp, tmplen);
5395 }
5396 selector = strchr (method, ' ');
5397 if (selector != NULL)
5398 selector++;
5399
5400 category = strchr (method, '(');
5401
5402 if ((category != NULL) && (selector != NULL))
5403 {
5404 memcpy (tmp, method, (category - method));
5405 tmp[category - method] = ' ';
5406 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5407 completion_list_add_name (tracker, language_objc, tmp,
5408 lookup_name, text, word);
5409 if (text[0] == '[')
5410 completion_list_add_name (tracker, language_objc, tmp + 1,
5411 lookup_name, text, word);
5412 }
5413
5414 if (selector != NULL)
5415 {
5416 /* Complete on selector only. */
5417 strcpy (tmp, selector);
5418 tmp2 = strchr (tmp, ']');
5419 if (tmp2 != NULL)
5420 *tmp2 = '\0';
5421
5422 completion_list_add_name (tracker, language_objc, tmp,
5423 lookup_name, text, word);
5424 }
5425 }
5426
5427 /* Break the non-quoted text based on the characters which are in
5428 symbols. FIXME: This should probably be language-specific. */
5429
5430 static const char *
5431 language_search_unquoted_string (const char *text, const char *p)
5432 {
5433 for (; p > text; --p)
5434 {
5435 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5436 continue;
5437 else
5438 {
5439 if ((current_language->la_language == language_objc))
5440 {
5441 if (p[-1] == ':') /* Might be part of a method name. */
5442 continue;
5443 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5444 p -= 2; /* Beginning of a method name. */
5445 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5446 { /* Might be part of a method name. */
5447 const char *t = p;
5448
5449 /* Seeing a ' ' or a '(' is not conclusive evidence
5450 that we are in the middle of a method name. However,
5451 finding "-[" or "+[" should be pretty un-ambiguous.
5452 Unfortunately we have to find it now to decide. */
5453
5454 while (t > text)
5455 if (isalnum (t[-1]) || t[-1] == '_' ||
5456 t[-1] == ' ' || t[-1] == ':' ||
5457 t[-1] == '(' || t[-1] == ')')
5458 --t;
5459 else
5460 break;
5461
5462 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5463 p = t - 2; /* Method name detected. */
5464 /* Else we leave with p unchanged. */
5465 }
5466 }
5467 break;
5468 }
5469 }
5470 return p;
5471 }
5472
5473 static void
5474 completion_list_add_fields (completion_tracker &tracker,
5475 struct symbol *sym,
5476 const lookup_name_info &lookup_name,
5477 const char *text, const char *word)
5478 {
5479 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5480 {
5481 struct type *t = SYMBOL_TYPE (sym);
5482 enum type_code c = t->code ();
5483 int j;
5484
5485 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5486 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5487 if (TYPE_FIELD_NAME (t, j))
5488 completion_list_add_name (tracker, sym->language (),
5489 TYPE_FIELD_NAME (t, j),
5490 lookup_name, text, word);
5491 }
5492 }
5493
5494 /* See symtab.h. */
5495
5496 bool
5497 symbol_is_function_or_method (symbol *sym)
5498 {
5499 switch (SYMBOL_TYPE (sym)->code ())
5500 {
5501 case TYPE_CODE_FUNC:
5502 case TYPE_CODE_METHOD:
5503 return true;
5504 default:
5505 return false;
5506 }
5507 }
5508
5509 /* See symtab.h. */
5510
5511 bool
5512 symbol_is_function_or_method (minimal_symbol *msymbol)
5513 {
5514 switch (MSYMBOL_TYPE (msymbol))
5515 {
5516 case mst_text:
5517 case mst_text_gnu_ifunc:
5518 case mst_solib_trampoline:
5519 case mst_file_text:
5520 return true;
5521 default:
5522 return false;
5523 }
5524 }
5525
5526 /* See symtab.h. */
5527
5528 bound_minimal_symbol
5529 find_gnu_ifunc (const symbol *sym)
5530 {
5531 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5532 return {};
5533
5534 lookup_name_info lookup_name (sym->search_name (),
5535 symbol_name_match_type::SEARCH_NAME);
5536 struct objfile *objfile = symbol_objfile (sym);
5537
5538 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5539 minimal_symbol *ifunc = NULL;
5540
5541 iterate_over_minimal_symbols (objfile, lookup_name,
5542 [&] (minimal_symbol *minsym)
5543 {
5544 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5545 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5546 {
5547 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5548 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5549 {
5550 struct gdbarch *gdbarch = objfile->arch ();
5551 msym_addr
5552 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5553 msym_addr,
5554 current_top_target ());
5555 }
5556 if (msym_addr == address)
5557 {
5558 ifunc = minsym;
5559 return true;
5560 }
5561 }
5562 return false;
5563 });
5564
5565 if (ifunc != NULL)
5566 return {ifunc, objfile};
5567 return {};
5568 }
5569
5570 /* Add matching symbols from SYMTAB to the current completion list. */
5571
5572 static void
5573 add_symtab_completions (struct compunit_symtab *cust,
5574 completion_tracker &tracker,
5575 complete_symbol_mode mode,
5576 const lookup_name_info &lookup_name,
5577 const char *text, const char *word,
5578 enum type_code code)
5579 {
5580 struct symbol *sym;
5581 const struct block *b;
5582 struct block_iterator iter;
5583 int i;
5584
5585 if (cust == NULL)
5586 return;
5587
5588 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5589 {
5590 QUIT;
5591 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5592 ALL_BLOCK_SYMBOLS (b, iter, sym)
5593 {
5594 if (completion_skip_symbol (mode, sym))
5595 continue;
5596
5597 if (code == TYPE_CODE_UNDEF
5598 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5599 && SYMBOL_TYPE (sym)->code () == code))
5600 completion_list_add_symbol (tracker, sym,
5601 lookup_name,
5602 text, word);
5603 }
5604 }
5605 }
5606
5607 void
5608 default_collect_symbol_completion_matches_break_on
5609 (completion_tracker &tracker, complete_symbol_mode mode,
5610 symbol_name_match_type name_match_type,
5611 const char *text, const char *word,
5612 const char *break_on, enum type_code code)
5613 {
5614 /* Problem: All of the symbols have to be copied because readline
5615 frees them. I'm not going to worry about this; hopefully there
5616 won't be that many. */
5617
5618 struct symbol *sym;
5619 const struct block *b;
5620 const struct block *surrounding_static_block, *surrounding_global_block;
5621 struct block_iterator iter;
5622 /* The symbol we are completing on. Points in same buffer as text. */
5623 const char *sym_text;
5624
5625 /* Now look for the symbol we are supposed to complete on. */
5626 if (mode == complete_symbol_mode::LINESPEC)
5627 sym_text = text;
5628 else
5629 {
5630 const char *p;
5631 char quote_found;
5632 const char *quote_pos = NULL;
5633
5634 /* First see if this is a quoted string. */
5635 quote_found = '\0';
5636 for (p = text; *p != '\0'; ++p)
5637 {
5638 if (quote_found != '\0')
5639 {
5640 if (*p == quote_found)
5641 /* Found close quote. */
5642 quote_found = '\0';
5643 else if (*p == '\\' && p[1] == quote_found)
5644 /* A backslash followed by the quote character
5645 doesn't end the string. */
5646 ++p;
5647 }
5648 else if (*p == '\'' || *p == '"')
5649 {
5650 quote_found = *p;
5651 quote_pos = p;
5652 }
5653 }
5654 if (quote_found == '\'')
5655 /* A string within single quotes can be a symbol, so complete on it. */
5656 sym_text = quote_pos + 1;
5657 else if (quote_found == '"')
5658 /* A double-quoted string is never a symbol, nor does it make sense
5659 to complete it any other way. */
5660 {
5661 return;
5662 }
5663 else
5664 {
5665 /* It is not a quoted string. Break it based on the characters
5666 which are in symbols. */
5667 while (p > text)
5668 {
5669 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5670 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5671 --p;
5672 else
5673 break;
5674 }
5675 sym_text = p;
5676 }
5677 }
5678
5679 lookup_name_info lookup_name (sym_text, name_match_type, true);
5680
5681 /* At this point scan through the misc symbol vectors and add each
5682 symbol you find to the list. Eventually we want to ignore
5683 anything that isn't a text symbol (everything else will be
5684 handled by the psymtab code below). */
5685
5686 if (code == TYPE_CODE_UNDEF)
5687 {
5688 for (objfile *objfile : current_program_space->objfiles ())
5689 {
5690 for (minimal_symbol *msymbol : objfile->msymbols ())
5691 {
5692 QUIT;
5693
5694 if (completion_skip_symbol (mode, msymbol))
5695 continue;
5696
5697 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5698 sym_text, word);
5699
5700 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5701 sym_text, word);
5702 }
5703 }
5704 }
5705
5706 /* Add completions for all currently loaded symbol tables. */
5707 for (objfile *objfile : current_program_space->objfiles ())
5708 {
5709 for (compunit_symtab *cust : objfile->compunits ())
5710 add_symtab_completions (cust, tracker, mode, lookup_name,
5711 sym_text, word, code);
5712 }
5713
5714 /* Look through the partial symtabs for all symbols which begin by
5715 matching SYM_TEXT. Expand all CUs that you find to the list. */
5716 expand_symtabs_matching (NULL,
5717 lookup_name,
5718 NULL,
5719 [&] (compunit_symtab *symtab) /* expansion notify */
5720 {
5721 add_symtab_completions (symtab,
5722 tracker, mode, lookup_name,
5723 sym_text, word, code);
5724 },
5725 ALL_DOMAIN);
5726
5727 /* Search upwards from currently selected frame (so that we can
5728 complete on local vars). Also catch fields of types defined in
5729 this places which match our text string. Only complete on types
5730 visible from current context. */
5731
5732 b = get_selected_block (0);
5733 surrounding_static_block = block_static_block (b);
5734 surrounding_global_block = block_global_block (b);
5735 if (surrounding_static_block != NULL)
5736 while (b != surrounding_static_block)
5737 {
5738 QUIT;
5739
5740 ALL_BLOCK_SYMBOLS (b, iter, sym)
5741 {
5742 if (code == TYPE_CODE_UNDEF)
5743 {
5744 completion_list_add_symbol (tracker, sym, lookup_name,
5745 sym_text, word);
5746 completion_list_add_fields (tracker, sym, lookup_name,
5747 sym_text, word);
5748 }
5749 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5750 && SYMBOL_TYPE (sym)->code () == code)
5751 completion_list_add_symbol (tracker, sym, lookup_name,
5752 sym_text, word);
5753 }
5754
5755 /* Stop when we encounter an enclosing function. Do not stop for
5756 non-inlined functions - the locals of the enclosing function
5757 are in scope for a nested function. */
5758 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5759 break;
5760 b = BLOCK_SUPERBLOCK (b);
5761 }
5762
5763 /* Add fields from the file's types; symbols will be added below. */
5764
5765 if (code == TYPE_CODE_UNDEF)
5766 {
5767 if (surrounding_static_block != NULL)
5768 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5769 completion_list_add_fields (tracker, sym, lookup_name,
5770 sym_text, word);
5771
5772 if (surrounding_global_block != NULL)
5773 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5774 completion_list_add_fields (tracker, sym, lookup_name,
5775 sym_text, word);
5776 }
5777
5778 /* Skip macros if we are completing a struct tag -- arguable but
5779 usually what is expected. */
5780 if (current_language->macro_expansion () == macro_expansion_c
5781 && code == TYPE_CODE_UNDEF)
5782 {
5783 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5784
5785 /* This adds a macro's name to the current completion list. */
5786 auto add_macro_name = [&] (const char *macro_name,
5787 const macro_definition *,
5788 macro_source_file *,
5789 int)
5790 {
5791 completion_list_add_name (tracker, language_c, macro_name,
5792 lookup_name, sym_text, word);
5793 };
5794
5795 /* Add any macros visible in the default scope. Note that this
5796 may yield the occasional wrong result, because an expression
5797 might be evaluated in a scope other than the default. For
5798 example, if the user types "break file:line if <TAB>", the
5799 resulting expression will be evaluated at "file:line" -- but
5800 at there does not seem to be a way to detect this at
5801 completion time. */
5802 scope = default_macro_scope ();
5803 if (scope)
5804 macro_for_each_in_scope (scope->file, scope->line,
5805 add_macro_name);
5806
5807 /* User-defined macros are always visible. */
5808 macro_for_each (macro_user_macros, add_macro_name);
5809 }
5810 }
5811
5812 /* Collect all symbols (regardless of class) which begin by matching
5813 TEXT. */
5814
5815 void
5816 collect_symbol_completion_matches (completion_tracker &tracker,
5817 complete_symbol_mode mode,
5818 symbol_name_match_type name_match_type,
5819 const char *text, const char *word)
5820 {
5821 current_language->collect_symbol_completion_matches (tracker, mode,
5822 name_match_type,
5823 text, word,
5824 TYPE_CODE_UNDEF);
5825 }
5826
5827 /* Like collect_symbol_completion_matches, but only collect
5828 STRUCT_DOMAIN symbols whose type code is CODE. */
5829
5830 void
5831 collect_symbol_completion_matches_type (completion_tracker &tracker,
5832 const char *text, const char *word,
5833 enum type_code code)
5834 {
5835 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5836 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5837
5838 gdb_assert (code == TYPE_CODE_UNION
5839 || code == TYPE_CODE_STRUCT
5840 || code == TYPE_CODE_ENUM);
5841 current_language->collect_symbol_completion_matches (tracker, mode,
5842 name_match_type,
5843 text, word, code);
5844 }
5845
5846 /* Like collect_symbol_completion_matches, but collects a list of
5847 symbols defined in all source files named SRCFILE. */
5848
5849 void
5850 collect_file_symbol_completion_matches (completion_tracker &tracker,
5851 complete_symbol_mode mode,
5852 symbol_name_match_type name_match_type,
5853 const char *text, const char *word,
5854 const char *srcfile)
5855 {
5856 /* The symbol we are completing on. Points in same buffer as text. */
5857 const char *sym_text;
5858
5859 /* Now look for the symbol we are supposed to complete on.
5860 FIXME: This should be language-specific. */
5861 if (mode == complete_symbol_mode::LINESPEC)
5862 sym_text = text;
5863 else
5864 {
5865 const char *p;
5866 char quote_found;
5867 const char *quote_pos = NULL;
5868
5869 /* First see if this is a quoted string. */
5870 quote_found = '\0';
5871 for (p = text; *p != '\0'; ++p)
5872 {
5873 if (quote_found != '\0')
5874 {
5875 if (*p == quote_found)
5876 /* Found close quote. */
5877 quote_found = '\0';
5878 else if (*p == '\\' && p[1] == quote_found)
5879 /* A backslash followed by the quote character
5880 doesn't end the string. */
5881 ++p;
5882 }
5883 else if (*p == '\'' || *p == '"')
5884 {
5885 quote_found = *p;
5886 quote_pos = p;
5887 }
5888 }
5889 if (quote_found == '\'')
5890 /* A string within single quotes can be a symbol, so complete on it. */
5891 sym_text = quote_pos + 1;
5892 else if (quote_found == '"')
5893 /* A double-quoted string is never a symbol, nor does it make sense
5894 to complete it any other way. */
5895 {
5896 return;
5897 }
5898 else
5899 {
5900 /* Not a quoted string. */
5901 sym_text = language_search_unquoted_string (text, p);
5902 }
5903 }
5904
5905 lookup_name_info lookup_name (sym_text, name_match_type, true);
5906
5907 /* Go through symtabs for SRCFILE and check the externs and statics
5908 for symbols which match. */
5909 iterate_over_symtabs (srcfile, [&] (symtab *s)
5910 {
5911 add_symtab_completions (SYMTAB_COMPUNIT (s),
5912 tracker, mode, lookup_name,
5913 sym_text, word, TYPE_CODE_UNDEF);
5914 return false;
5915 });
5916 }
5917
5918 /* A helper function for make_source_files_completion_list. It adds
5919 another file name to a list of possible completions, growing the
5920 list as necessary. */
5921
5922 static void
5923 add_filename_to_list (const char *fname, const char *text, const char *word,
5924 completion_list *list)
5925 {
5926 list->emplace_back (make_completion_match_str (fname, text, word));
5927 }
5928
5929 static int
5930 not_interesting_fname (const char *fname)
5931 {
5932 static const char *illegal_aliens[] = {
5933 "_globals_", /* inserted by coff_symtab_read */
5934 NULL
5935 };
5936 int i;
5937
5938 for (i = 0; illegal_aliens[i]; i++)
5939 {
5940 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5941 return 1;
5942 }
5943 return 0;
5944 }
5945
5946 /* An object of this type is passed as the user_data argument to
5947 map_partial_symbol_filenames. */
5948 struct add_partial_filename_data
5949 {
5950 struct filename_seen_cache *filename_seen_cache;
5951 const char *text;
5952 const char *word;
5953 int text_len;
5954 completion_list *list;
5955 };
5956
5957 /* A callback for map_partial_symbol_filenames. */
5958
5959 static void
5960 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5961 void *user_data)
5962 {
5963 struct add_partial_filename_data *data
5964 = (struct add_partial_filename_data *) user_data;
5965
5966 if (not_interesting_fname (filename))
5967 return;
5968 if (!data->filename_seen_cache->seen (filename)
5969 && filename_ncmp (filename, data->text, data->text_len) == 0)
5970 {
5971 /* This file matches for a completion; add it to the
5972 current list of matches. */
5973 add_filename_to_list (filename, data->text, data->word, data->list);
5974 }
5975 else
5976 {
5977 const char *base_name = lbasename (filename);
5978
5979 if (base_name != filename
5980 && !data->filename_seen_cache->seen (base_name)
5981 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5982 add_filename_to_list (base_name, data->text, data->word, data->list);
5983 }
5984 }
5985
5986 /* Return a list of all source files whose names begin with matching
5987 TEXT. The file names are looked up in the symbol tables of this
5988 program. */
5989
5990 completion_list
5991 make_source_files_completion_list (const char *text, const char *word)
5992 {
5993 size_t text_len = strlen (text);
5994 completion_list list;
5995 const char *base_name;
5996 struct add_partial_filename_data datum;
5997
5998 if (!have_full_symbols () && !have_partial_symbols ())
5999 return list;
6000
6001 filename_seen_cache filenames_seen;
6002
6003 for (objfile *objfile : current_program_space->objfiles ())
6004 {
6005 for (compunit_symtab *cu : objfile->compunits ())
6006 {
6007 for (symtab *s : compunit_filetabs (cu))
6008 {
6009 if (not_interesting_fname (s->filename))
6010 continue;
6011 if (!filenames_seen.seen (s->filename)
6012 && filename_ncmp (s->filename, text, text_len) == 0)
6013 {
6014 /* This file matches for a completion; add it to the current
6015 list of matches. */
6016 add_filename_to_list (s->filename, text, word, &list);
6017 }
6018 else
6019 {
6020 /* NOTE: We allow the user to type a base name when the
6021 debug info records leading directories, but not the other
6022 way around. This is what subroutines of breakpoint
6023 command do when they parse file names. */
6024 base_name = lbasename (s->filename);
6025 if (base_name != s->filename
6026 && !filenames_seen.seen (base_name)
6027 && filename_ncmp (base_name, text, text_len) == 0)
6028 add_filename_to_list (base_name, text, word, &list);
6029 }
6030 }
6031 }
6032 }
6033
6034 datum.filename_seen_cache = &filenames_seen;
6035 datum.text = text;
6036 datum.word = word;
6037 datum.text_len = text_len;
6038 datum.list = &list;
6039 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6040 0 /*need_fullname*/);
6041
6042 return list;
6043 }
6044 \f
6045 /* Track MAIN */
6046
6047 /* Return the "main_info" object for the current program space. If
6048 the object has not yet been created, create it and fill in some
6049 default values. */
6050
6051 static struct main_info *
6052 get_main_info (void)
6053 {
6054 struct main_info *info = main_progspace_key.get (current_program_space);
6055
6056 if (info == NULL)
6057 {
6058 /* It may seem strange to store the main name in the progspace
6059 and also in whatever objfile happens to see a main name in
6060 its debug info. The reason for this is mainly historical:
6061 gdb returned "main" as the name even if no function named
6062 "main" was defined the program; and this approach lets us
6063 keep compatibility. */
6064 info = main_progspace_key.emplace (current_program_space);
6065 }
6066
6067 return info;
6068 }
6069
6070 static void
6071 set_main_name (const char *name, enum language lang)
6072 {
6073 struct main_info *info = get_main_info ();
6074
6075 if (info->name_of_main != NULL)
6076 {
6077 xfree (info->name_of_main);
6078 info->name_of_main = NULL;
6079 info->language_of_main = language_unknown;
6080 }
6081 if (name != NULL)
6082 {
6083 info->name_of_main = xstrdup (name);
6084 info->language_of_main = lang;
6085 }
6086 }
6087
6088 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6089 accordingly. */
6090
6091 static void
6092 find_main_name (void)
6093 {
6094 const char *new_main_name;
6095
6096 /* First check the objfiles to see whether a debuginfo reader has
6097 picked up the appropriate main name. Historically the main name
6098 was found in a more or less random way; this approach instead
6099 relies on the order of objfile creation -- which still isn't
6100 guaranteed to get the correct answer, but is just probably more
6101 accurate. */
6102 for (objfile *objfile : current_program_space->objfiles ())
6103 {
6104 if (objfile->per_bfd->name_of_main != NULL)
6105 {
6106 set_main_name (objfile->per_bfd->name_of_main,
6107 objfile->per_bfd->language_of_main);
6108 return;
6109 }
6110 }
6111
6112 /* Try to see if the main procedure is in Ada. */
6113 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6114 be to add a new method in the language vector, and call this
6115 method for each language until one of them returns a non-empty
6116 name. This would allow us to remove this hard-coded call to
6117 an Ada function. It is not clear that this is a better approach
6118 at this point, because all methods need to be written in a way
6119 such that false positives never be returned. For instance, it is
6120 important that a method does not return a wrong name for the main
6121 procedure if the main procedure is actually written in a different
6122 language. It is easy to guaranty this with Ada, since we use a
6123 special symbol generated only when the main in Ada to find the name
6124 of the main procedure. It is difficult however to see how this can
6125 be guarantied for languages such as C, for instance. This suggests
6126 that order of call for these methods becomes important, which means
6127 a more complicated approach. */
6128 new_main_name = ada_main_name ();
6129 if (new_main_name != NULL)
6130 {
6131 set_main_name (new_main_name, language_ada);
6132 return;
6133 }
6134
6135 new_main_name = d_main_name ();
6136 if (new_main_name != NULL)
6137 {
6138 set_main_name (new_main_name, language_d);
6139 return;
6140 }
6141
6142 new_main_name = go_main_name ();
6143 if (new_main_name != NULL)
6144 {
6145 set_main_name (new_main_name, language_go);
6146 return;
6147 }
6148
6149 new_main_name = pascal_main_name ();
6150 if (new_main_name != NULL)
6151 {
6152 set_main_name (new_main_name, language_pascal);
6153 return;
6154 }
6155
6156 /* The languages above didn't identify the name of the main procedure.
6157 Fallback to "main". */
6158
6159 /* Try to find language for main in psymtabs. */
6160 enum language lang
6161 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6162 if (lang != language_unknown)
6163 {
6164 set_main_name ("main", lang);
6165 return;
6166 }
6167
6168 set_main_name ("main", language_unknown);
6169 }
6170
6171 /* See symtab.h. */
6172
6173 const char *
6174 main_name ()
6175 {
6176 struct main_info *info = get_main_info ();
6177
6178 if (info->name_of_main == NULL)
6179 find_main_name ();
6180
6181 return info->name_of_main;
6182 }
6183
6184 /* Return the language of the main function. If it is not known,
6185 return language_unknown. */
6186
6187 enum language
6188 main_language (void)
6189 {
6190 struct main_info *info = get_main_info ();
6191
6192 if (info->name_of_main == NULL)
6193 find_main_name ();
6194
6195 return info->language_of_main;
6196 }
6197
6198 /* Handle ``executable_changed'' events for the symtab module. */
6199
6200 static void
6201 symtab_observer_executable_changed (void)
6202 {
6203 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6204 set_main_name (NULL, language_unknown);
6205 }
6206
6207 /* Return 1 if the supplied producer string matches the ARM RealView
6208 compiler (armcc). */
6209
6210 bool
6211 producer_is_realview (const char *producer)
6212 {
6213 static const char *const arm_idents[] = {
6214 "ARM C Compiler, ADS",
6215 "Thumb C Compiler, ADS",
6216 "ARM C++ Compiler, ADS",
6217 "Thumb C++ Compiler, ADS",
6218 "ARM/Thumb C/C++ Compiler, RVCT",
6219 "ARM C/C++ Compiler, RVCT"
6220 };
6221 int i;
6222
6223 if (producer == NULL)
6224 return false;
6225
6226 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6227 if (startswith (producer, arm_idents[i]))
6228 return true;
6229
6230 return false;
6231 }
6232
6233 \f
6234
6235 /* The next index to hand out in response to a registration request. */
6236
6237 static int next_aclass_value = LOC_FINAL_VALUE;
6238
6239 /* The maximum number of "aclass" registrations we support. This is
6240 constant for convenience. */
6241 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6242
6243 /* The objects representing the various "aclass" values. The elements
6244 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6245 elements are those registered at gdb initialization time. */
6246
6247 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6248
6249 /* The globally visible pointer. This is separate from 'symbol_impl'
6250 so that it can be const. */
6251
6252 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6253
6254 /* Make sure we saved enough room in struct symbol. */
6255
6256 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6257
6258 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6259 is the ops vector associated with this index. This returns the new
6260 index, which should be used as the aclass_index field for symbols
6261 of this type. */
6262
6263 int
6264 register_symbol_computed_impl (enum address_class aclass,
6265 const struct symbol_computed_ops *ops)
6266 {
6267 int result = next_aclass_value++;
6268
6269 gdb_assert (aclass == LOC_COMPUTED);
6270 gdb_assert (result < MAX_SYMBOL_IMPLS);
6271 symbol_impl[result].aclass = aclass;
6272 symbol_impl[result].ops_computed = ops;
6273
6274 /* Sanity check OPS. */
6275 gdb_assert (ops != NULL);
6276 gdb_assert (ops->tracepoint_var_ref != NULL);
6277 gdb_assert (ops->describe_location != NULL);
6278 gdb_assert (ops->get_symbol_read_needs != NULL);
6279 gdb_assert (ops->read_variable != NULL);
6280
6281 return result;
6282 }
6283
6284 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6285 OPS is the ops vector associated with this index. This returns the
6286 new index, which should be used as the aclass_index field for symbols
6287 of this type. */
6288
6289 int
6290 register_symbol_block_impl (enum address_class aclass,
6291 const struct symbol_block_ops *ops)
6292 {
6293 int result = next_aclass_value++;
6294
6295 gdb_assert (aclass == LOC_BLOCK);
6296 gdb_assert (result < MAX_SYMBOL_IMPLS);
6297 symbol_impl[result].aclass = aclass;
6298 symbol_impl[result].ops_block = ops;
6299
6300 /* Sanity check OPS. */
6301 gdb_assert (ops != NULL);
6302 gdb_assert (ops->find_frame_base_location != NULL);
6303
6304 return result;
6305 }
6306
6307 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6308 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6309 this index. This returns the new index, which should be used as
6310 the aclass_index field for symbols of this type. */
6311
6312 int
6313 register_symbol_register_impl (enum address_class aclass,
6314 const struct symbol_register_ops *ops)
6315 {
6316 int result = next_aclass_value++;
6317
6318 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6319 gdb_assert (result < MAX_SYMBOL_IMPLS);
6320 symbol_impl[result].aclass = aclass;
6321 symbol_impl[result].ops_register = ops;
6322
6323 return result;
6324 }
6325
6326 /* Initialize elements of 'symbol_impl' for the constants in enum
6327 address_class. */
6328
6329 static void
6330 initialize_ordinary_address_classes (void)
6331 {
6332 int i;
6333
6334 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6335 symbol_impl[i].aclass = (enum address_class) i;
6336 }
6337
6338 \f
6339
6340 /* See symtab.h. */
6341
6342 struct objfile *
6343 symbol_objfile (const struct symbol *symbol)
6344 {
6345 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6346 return SYMTAB_OBJFILE (symbol->owner.symtab);
6347 }
6348
6349 /* See symtab.h. */
6350
6351 struct gdbarch *
6352 symbol_arch (const struct symbol *symbol)
6353 {
6354 if (!SYMBOL_OBJFILE_OWNED (symbol))
6355 return symbol->owner.arch;
6356 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6357 }
6358
6359 /* See symtab.h. */
6360
6361 struct symtab *
6362 symbol_symtab (const struct symbol *symbol)
6363 {
6364 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6365 return symbol->owner.symtab;
6366 }
6367
6368 /* See symtab.h. */
6369
6370 void
6371 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6372 {
6373 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6374 symbol->owner.symtab = symtab;
6375 }
6376
6377 /* See symtab.h. */
6378
6379 CORE_ADDR
6380 get_symbol_address (const struct symbol *sym)
6381 {
6382 gdb_assert (sym->maybe_copied);
6383 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6384
6385 const char *linkage_name = sym->linkage_name ();
6386
6387 for (objfile *objfile : current_program_space->objfiles ())
6388 {
6389 if (objfile->separate_debug_objfile_backlink != nullptr)
6390 continue;
6391
6392 bound_minimal_symbol minsym
6393 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6394 if (minsym.minsym != nullptr)
6395 return BMSYMBOL_VALUE_ADDRESS (minsym);
6396 }
6397 return sym->value.address;
6398 }
6399
6400 /* See symtab.h. */
6401
6402 CORE_ADDR
6403 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6404 {
6405 gdb_assert (minsym->maybe_copied);
6406 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6407
6408 const char *linkage_name = minsym->linkage_name ();
6409
6410 for (objfile *objfile : current_program_space->objfiles ())
6411 {
6412 if (objfile->separate_debug_objfile_backlink == nullptr
6413 && (objfile->flags & OBJF_MAINLINE) != 0)
6414 {
6415 bound_minimal_symbol found
6416 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6417 if (found.minsym != nullptr)
6418 return BMSYMBOL_VALUE_ADDRESS (found);
6419 }
6420 }
6421 return minsym->value.address + objf->section_offsets[minsym->section];
6422 }
6423
6424 \f
6425
6426 /* Hold the sub-commands of 'info module'. */
6427
6428 static struct cmd_list_element *info_module_cmdlist = NULL;
6429
6430 /* See symtab.h. */
6431
6432 std::vector<module_symbol_search>
6433 search_module_symbols (const char *module_regexp, const char *regexp,
6434 const char *type_regexp, search_domain kind)
6435 {
6436 std::vector<module_symbol_search> results;
6437
6438 /* Search for all modules matching MODULE_REGEXP. */
6439 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6440 spec1.set_exclude_minsyms (true);
6441 std::vector<symbol_search> modules = spec1.search ();
6442
6443 /* Now search for all symbols of the required KIND matching the required
6444 regular expressions. We figure out which ones are in which modules
6445 below. */
6446 global_symbol_searcher spec2 (kind, regexp);
6447 spec2.set_symbol_type_regexp (type_regexp);
6448 spec2.set_exclude_minsyms (true);
6449 std::vector<symbol_search> symbols = spec2.search ();
6450
6451 /* Now iterate over all MODULES, checking to see which items from
6452 SYMBOLS are in each module. */
6453 for (const symbol_search &p : modules)
6454 {
6455 QUIT;
6456
6457 /* This is a module. */
6458 gdb_assert (p.symbol != nullptr);
6459
6460 std::string prefix = p.symbol->print_name ();
6461 prefix += "::";
6462
6463 for (const symbol_search &q : symbols)
6464 {
6465 if (q.symbol == nullptr)
6466 continue;
6467
6468 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6469 prefix.size ()) != 0)
6470 continue;
6471
6472 results.push_back ({p, q});
6473 }
6474 }
6475
6476 return results;
6477 }
6478
6479 /* Implement the core of both 'info module functions' and 'info module
6480 variables'. */
6481
6482 static void
6483 info_module_subcommand (bool quiet, const char *module_regexp,
6484 const char *regexp, const char *type_regexp,
6485 search_domain kind)
6486 {
6487 /* Print a header line. Don't build the header line bit by bit as this
6488 prevents internationalisation. */
6489 if (!quiet)
6490 {
6491 if (module_regexp == nullptr)
6492 {
6493 if (type_regexp == nullptr)
6494 {
6495 if (regexp == nullptr)
6496 printf_filtered ((kind == VARIABLES_DOMAIN
6497 ? _("All variables in all modules:")
6498 : _("All functions in all modules:")));
6499 else
6500 printf_filtered
6501 ((kind == VARIABLES_DOMAIN
6502 ? _("All variables matching regular expression"
6503 " \"%s\" in all modules:")
6504 : _("All functions matching regular expression"
6505 " \"%s\" in all modules:")),
6506 regexp);
6507 }
6508 else
6509 {
6510 if (regexp == nullptr)
6511 printf_filtered
6512 ((kind == VARIABLES_DOMAIN
6513 ? _("All variables with type matching regular "
6514 "expression \"%s\" in all modules:")
6515 : _("All functions with type matching regular "
6516 "expression \"%s\" in all modules:")),
6517 type_regexp);
6518 else
6519 printf_filtered
6520 ((kind == VARIABLES_DOMAIN
6521 ? _("All variables matching regular expression "
6522 "\"%s\",\n\twith type matching regular "
6523 "expression \"%s\" in all modules:")
6524 : _("All functions matching regular expression "
6525 "\"%s\",\n\twith type matching regular "
6526 "expression \"%s\" in all modules:")),
6527 regexp, type_regexp);
6528 }
6529 }
6530 else
6531 {
6532 if (type_regexp == nullptr)
6533 {
6534 if (regexp == nullptr)
6535 printf_filtered
6536 ((kind == VARIABLES_DOMAIN
6537 ? _("All variables in all modules matching regular "
6538 "expression \"%s\":")
6539 : _("All functions in all modules matching regular "
6540 "expression \"%s\":")),
6541 module_regexp);
6542 else
6543 printf_filtered
6544 ((kind == VARIABLES_DOMAIN
6545 ? _("All variables matching regular expression "
6546 "\"%s\",\n\tin all modules matching regular "
6547 "expression \"%s\":")
6548 : _("All functions matching regular expression "
6549 "\"%s\",\n\tin all modules matching regular "
6550 "expression \"%s\":")),
6551 regexp, module_regexp);
6552 }
6553 else
6554 {
6555 if (regexp == nullptr)
6556 printf_filtered
6557 ((kind == VARIABLES_DOMAIN
6558 ? _("All variables with type matching regular "
6559 "expression \"%s\"\n\tin all modules matching "
6560 "regular expression \"%s\":")
6561 : _("All functions with type matching regular "
6562 "expression \"%s\"\n\tin all modules matching "
6563 "regular expression \"%s\":")),
6564 type_regexp, module_regexp);
6565 else
6566 printf_filtered
6567 ((kind == VARIABLES_DOMAIN
6568 ? _("All variables matching regular expression "
6569 "\"%s\",\n\twith type matching regular expression "
6570 "\"%s\",\n\tin all modules matching regular "
6571 "expression \"%s\":")
6572 : _("All functions matching regular expression "
6573 "\"%s\",\n\twith type matching regular expression "
6574 "\"%s\",\n\tin all modules matching regular "
6575 "expression \"%s\":")),
6576 regexp, type_regexp, module_regexp);
6577 }
6578 }
6579 printf_filtered ("\n");
6580 }
6581
6582 /* Find all symbols of type KIND matching the given regular expressions
6583 along with the symbols for the modules in which those symbols
6584 reside. */
6585 std::vector<module_symbol_search> module_symbols
6586 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6587
6588 std::sort (module_symbols.begin (), module_symbols.end (),
6589 [] (const module_symbol_search &a, const module_symbol_search &b)
6590 {
6591 if (a.first < b.first)
6592 return true;
6593 else if (a.first == b.first)
6594 return a.second < b.second;
6595 else
6596 return false;
6597 });
6598
6599 const char *last_filename = "";
6600 const symbol *last_module_symbol = nullptr;
6601 for (const module_symbol_search &ms : module_symbols)
6602 {
6603 const symbol_search &p = ms.first;
6604 const symbol_search &q = ms.second;
6605
6606 gdb_assert (q.symbol != nullptr);
6607
6608 if (last_module_symbol != p.symbol)
6609 {
6610 printf_filtered ("\n");
6611 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6612 last_module_symbol = p.symbol;
6613 last_filename = "";
6614 }
6615
6616 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6617 last_filename);
6618 last_filename
6619 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6620 }
6621 }
6622
6623 /* Hold the option values for the 'info module .....' sub-commands. */
6624
6625 struct info_modules_var_func_options
6626 {
6627 bool quiet = false;
6628 char *type_regexp = nullptr;
6629 char *module_regexp = nullptr;
6630
6631 ~info_modules_var_func_options ()
6632 {
6633 xfree (type_regexp);
6634 xfree (module_regexp);
6635 }
6636 };
6637
6638 /* The options used by 'info module variables' and 'info module functions'
6639 commands. */
6640
6641 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6642 gdb::option::boolean_option_def<info_modules_var_func_options> {
6643 "q",
6644 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6645 nullptr, /* show_cmd_cb */
6646 nullptr /* set_doc */
6647 },
6648
6649 gdb::option::string_option_def<info_modules_var_func_options> {
6650 "t",
6651 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6652 nullptr, /* show_cmd_cb */
6653 nullptr /* set_doc */
6654 },
6655
6656 gdb::option::string_option_def<info_modules_var_func_options> {
6657 "m",
6658 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6659 nullptr, /* show_cmd_cb */
6660 nullptr /* set_doc */
6661 }
6662 };
6663
6664 /* Return the option group used by the 'info module ...' sub-commands. */
6665
6666 static inline gdb::option::option_def_group
6667 make_info_modules_var_func_options_def_group
6668 (info_modules_var_func_options *opts)
6669 {
6670 return {{info_modules_var_func_options_defs}, opts};
6671 }
6672
6673 /* Implements the 'info module functions' command. */
6674
6675 static void
6676 info_module_functions_command (const char *args, int from_tty)
6677 {
6678 info_modules_var_func_options opts;
6679 auto grp = make_info_modules_var_func_options_def_group (&opts);
6680 gdb::option::process_options
6681 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6682 if (args != nullptr && *args == '\0')
6683 args = nullptr;
6684
6685 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6686 opts.type_regexp, FUNCTIONS_DOMAIN);
6687 }
6688
6689 /* Implements the 'info module variables' command. */
6690
6691 static void
6692 info_module_variables_command (const char *args, int from_tty)
6693 {
6694 info_modules_var_func_options opts;
6695 auto grp = make_info_modules_var_func_options_def_group (&opts);
6696 gdb::option::process_options
6697 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6698 if (args != nullptr && *args == '\0')
6699 args = nullptr;
6700
6701 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6702 opts.type_regexp, VARIABLES_DOMAIN);
6703 }
6704
6705 /* Command completer for 'info module ...' sub-commands. */
6706
6707 static void
6708 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6709 completion_tracker &tracker,
6710 const char *text,
6711 const char * /* word */)
6712 {
6713
6714 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6715 if (gdb::option::complete_options
6716 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6717 return;
6718
6719 const char *word = advance_to_expression_complete_word_point (tracker, text);
6720 symbol_completer (ignore, tracker, text, word);
6721 }
6722
6723 \f
6724
6725 void _initialize_symtab ();
6726 void
6727 _initialize_symtab ()
6728 {
6729 cmd_list_element *c;
6730
6731 initialize_ordinary_address_classes ();
6732
6733 c = add_info ("variables", info_variables_command,
6734 info_print_args_help (_("\
6735 All global and static variable names or those matching REGEXPs.\n\
6736 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6737 Prints the global and static variables.\n"),
6738 _("global and static variables"),
6739 true));
6740 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6741 if (dbx_commands)
6742 {
6743 c = add_com ("whereis", class_info, info_variables_command,
6744 info_print_args_help (_("\
6745 All global and static variable names, or those matching REGEXPs.\n\
6746 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6747 Prints the global and static variables.\n"),
6748 _("global and static variables"),
6749 true));
6750 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6751 }
6752
6753 c = add_info ("functions", info_functions_command,
6754 info_print_args_help (_("\
6755 All function names or those matching REGEXPs.\n\
6756 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6757 Prints the functions.\n"),
6758 _("functions"),
6759 true));
6760 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6761
6762 c = add_info ("types", info_types_command, _("\
6763 All type names, or those matching REGEXP.\n\
6764 Usage: info types [-q] [REGEXP]\n\
6765 Print information about all types matching REGEXP, or all types if no\n\
6766 REGEXP is given. The optional flag -q disables printing of headers."));
6767 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6768
6769 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6770
6771 static std::string info_sources_help
6772 = gdb::option::build_help (_("\
6773 All source files in the program or those matching REGEXP.\n\
6774 Usage: info sources [OPTION]... [REGEXP]\n\
6775 By default, REGEXP is used to match anywhere in the filename.\n\
6776 \n\
6777 Options:\n\
6778 %OPTIONS%"),
6779 info_sources_opts);
6780
6781 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6782 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6783
6784 c = add_info ("modules", info_modules_command,
6785 _("All module names, or those matching REGEXP."));
6786 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6787
6788 add_basic_prefix_cmd ("module", class_info, _("\
6789 Print information about modules."),
6790 &info_module_cmdlist, "info module ",
6791 0, &infolist);
6792
6793 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6794 Display functions arranged by modules.\n\
6795 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6796 Print a summary of all functions within each Fortran module, grouped by\n\
6797 module and file. For each function the line on which the function is\n\
6798 defined is given along with the type signature and name of the function.\n\
6799 \n\
6800 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6801 listed. If MODREGEXP is provided then only functions in modules matching\n\
6802 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6803 type signature matches TYPEREGEXP are listed.\n\
6804 \n\
6805 The -q flag suppresses printing some header information."),
6806 &info_module_cmdlist);
6807 set_cmd_completer_handle_brkchars
6808 (c, info_module_var_func_command_completer);
6809
6810 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6811 Display variables arranged by modules.\n\
6812 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6813 Print a summary of all variables within each Fortran module, grouped by\n\
6814 module and file. For each variable the line on which the variable is\n\
6815 defined is given along with the type and name of the variable.\n\
6816 \n\
6817 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6818 listed. If MODREGEXP is provided then only variables in modules matching\n\
6819 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6820 type matches TYPEREGEXP are listed.\n\
6821 \n\
6822 The -q flag suppresses printing some header information."),
6823 &info_module_cmdlist);
6824 set_cmd_completer_handle_brkchars
6825 (c, info_module_var_func_command_completer);
6826
6827 add_com ("rbreak", class_breakpoint, rbreak_command,
6828 _("Set a breakpoint for all functions matching REGEXP."));
6829
6830 add_setshow_enum_cmd ("multiple-symbols", no_class,
6831 multiple_symbols_modes, &multiple_symbols_mode,
6832 _("\
6833 Set how the debugger handles ambiguities in expressions."), _("\
6834 Show how the debugger handles ambiguities in expressions."), _("\
6835 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6836 NULL, NULL, &setlist, &showlist);
6837
6838 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6839 &basenames_may_differ, _("\
6840 Set whether a source file may have multiple base names."), _("\
6841 Show whether a source file may have multiple base names."), _("\
6842 (A \"base name\" is the name of a file with the directory part removed.\n\
6843 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6844 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6845 before comparing them. Canonicalization is an expensive operation,\n\
6846 but it allows the same file be known by more than one base name.\n\
6847 If not set (the default), all source files are assumed to have just\n\
6848 one base name, and gdb will do file name comparisons more efficiently."),
6849 NULL, NULL,
6850 &setlist, &showlist);
6851
6852 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6853 _("Set debugging of symbol table creation."),
6854 _("Show debugging of symbol table creation."), _("\
6855 When enabled (non-zero), debugging messages are printed when building\n\
6856 symbol tables. A value of 1 (one) normally provides enough information.\n\
6857 A value greater than 1 provides more verbose information."),
6858 NULL,
6859 NULL,
6860 &setdebuglist, &showdebuglist);
6861
6862 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6863 _("\
6864 Set debugging of symbol lookup."), _("\
6865 Show debugging of symbol lookup."), _("\
6866 When enabled (non-zero), symbol lookups are logged."),
6867 NULL, NULL,
6868 &setdebuglist, &showdebuglist);
6869
6870 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6871 &new_symbol_cache_size,
6872 _("Set the size of the symbol cache."),
6873 _("Show the size of the symbol cache."), _("\
6874 The size of the symbol cache.\n\
6875 If zero then the symbol cache is disabled."),
6876 set_symbol_cache_size_handler, NULL,
6877 &maintenance_set_cmdlist,
6878 &maintenance_show_cmdlist);
6879
6880 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6881 _("Dump the symbol cache for each program space."),
6882 &maintenanceprintlist);
6883
6884 add_cmd ("symbol-cache-statistics", class_maintenance,
6885 maintenance_print_symbol_cache_statistics,
6886 _("Print symbol cache statistics for each program space."),
6887 &maintenanceprintlist);
6888
6889 add_cmd ("flush-symbol-cache", class_maintenance,
6890 maintenance_flush_symbol_cache,
6891 _("Flush the symbol cache for each program space."),
6892 &maintenancelist);
6893
6894 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6895 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6896 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6897 }