]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
gdb: Remove C++ symbol aliases from completion list
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673 void
674 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677 {
678 if (gsymbol->language () == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693 }
694
695 /* Return the demangled name of GSYMBOL. */
696
697 const char *
698 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699 {
700 if (gsymbol->language () == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708 }
709
710 \f
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714 void
715 general_symbol_info::set_language (enum language language,
716 struct obstack *obstack)
717 {
718 m_language = language;
719 if (language == language_cplus
720 || language == language_d
721 || language == language_go
722 || language == language_objc
723 || language == language_fortran)
724 {
725 symbol_set_demangled_name (this, NULL, obstack);
726 }
727 else if (language == language_ada)
728 {
729 gdb_assert (ada_mangled == 0);
730 language_specific.obstack = obstack;
731 }
732 else
733 {
734 memset (&language_specific, 0, sizeof (language_specific));
735 }
736 }
737
738 /* Functions to initialize a symbol's mangled name. */
739
740 /* Objects of this type are stored in the demangled name hash table. */
741 struct demangled_name_entry
742 {
743 demangled_name_entry (gdb::string_view mangled_name)
744 : mangled (mangled_name) {}
745
746 gdb::string_view mangled;
747 enum language language;
748 gdb::unique_xmalloc_ptr<char> demangled;
749 };
750
751 /* Hash function for the demangled name hash. */
752
753 static hashval_t
754 hash_demangled_name_entry (const void *data)
755 {
756 const struct demangled_name_entry *e
757 = (const struct demangled_name_entry *) data;
758
759 return fast_hash (e->mangled.data (), e->mangled.length ());
760 }
761
762 /* Equality function for the demangled name hash. */
763
764 static int
765 eq_demangled_name_entry (const void *a, const void *b)
766 {
767 const struct demangled_name_entry *da
768 = (const struct demangled_name_entry *) a;
769 const struct demangled_name_entry *db
770 = (const struct demangled_name_entry *) b;
771
772 return da->mangled == db->mangled;
773 }
774
775 static void
776 free_demangled_name_entry (void *data)
777 {
778 struct demangled_name_entry *e
779 = (struct demangled_name_entry *) data;
780
781 e->~demangled_name_entry();
782 }
783
784 /* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
787
788 static void
789 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
790 {
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
800
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
804 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
805
806 per_bfd->demangled_names_hash.reset (htab_create_alloc
807 (count, hash_demangled_name_entry, eq_demangled_name_entry,
808 free_demangled_name_entry, xcalloc, xfree));
809 }
810
811 /* See symtab.h */
812
813 char *
814 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
815 const char *mangled)
816 {
817 char *demangled = NULL;
818 int i;
819
820 if (gsymbol->language () == language_unknown)
821 gsymbol->m_language = language_auto;
822
823 if (gsymbol->language () != language_auto)
824 {
825 const struct language_defn *lang = language_def (gsymbol->language ());
826
827 language_sniff_from_mangled_name (lang, mangled, &demangled);
828 return demangled;
829 }
830
831 for (i = language_unknown; i < nr_languages; ++i)
832 {
833 enum language l = (enum language) i;
834 const struct language_defn *lang = language_def (l);
835
836 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
837 {
838 gsymbol->m_language = l;
839 return demangled;
840 }
841 }
842
843 return NULL;
844 }
845
846 /* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
852
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
856
857 void
858 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
859 bool copy_name,
860 objfile_per_bfd_storage *per_bfd,
861 gdb::optional<hashval_t> hash)
862 {
863 struct demangled_name_entry **slot;
864
865 if (language () == language_ada)
866 {
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
869 if (!copy_name)
870 m_name = linkage_name.data ();
871 else
872 m_name = obstack_strndup (&per_bfd->storage_obstack,
873 linkage_name.data (),
874 linkage_name.length ());
875 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
876
877 return;
878 }
879
880 if (per_bfd->demangled_names_hash == NULL)
881 create_demangled_names_hash (per_bfd);
882
883 struct demangled_name_entry entry (linkage_name);
884 if (!hash.has_value ())
885 hash = hash_demangled_name_entry (&entry);
886 slot = ((struct demangled_name_entry **)
887 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
888 &entry, *hash, INSERT));
889
890 /* The const_cast is safe because the only reason it is already
891 initialized is if we purposefully set it from a background
892 thread to avoid doing the work here. However, it is still
893 allocated from the heap and needs to be freed by us, just
894 like if we called symbol_find_demangled_name here. If this is
895 nullptr, we call symbol_find_demangled_name below, but we put
896 this smart pointer here to be sure that we don't leak this name. */
897 gdb::unique_xmalloc_ptr<char> demangled_name
898 (const_cast<char *> (language_specific.demangled_name));
899
900 /* If this name is not in the hash table, add it. */
901 if (*slot == NULL
902 /* A C version of the symbol may have already snuck into the table.
903 This happens to, e.g., main.init (__go_init_main). Cope. */
904 || (language () == language_go && (*slot)->demangled == nullptr))
905 {
906 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
907 to true if the string might not be nullterminated. We have to make
908 this copy because demangling needs a nullterminated string. */
909 gdb::string_view linkage_name_copy;
910 if (copy_name)
911 {
912 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
913 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
914 alloc_name[linkage_name.length ()] = '\0';
915
916 linkage_name_copy = gdb::string_view (alloc_name,
917 linkage_name.length ());
918 }
919 else
920 linkage_name_copy = linkage_name;
921
922 if (demangled_name.get () == nullptr)
923 demangled_name.reset
924 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
925
926 /* Suppose we have demangled_name==NULL, copy_name==0, and
927 linkage_name_copy==linkage_name. In this case, we already have the
928 mangled name saved, and we don't have a demangled name. So,
929 you might think we could save a little space by not recording
930 this in the hash table at all.
931
932 It turns out that it is actually important to still save such
933 an entry in the hash table, because storing this name gives
934 us better bcache hit rates for partial symbols. */
935 if (!copy_name)
936 {
937 *slot
938 = ((struct demangled_name_entry *)
939 obstack_alloc (&per_bfd->storage_obstack,
940 sizeof (demangled_name_entry)));
941 new (*slot) demangled_name_entry (linkage_name);
942 }
943 else
944 {
945 /* If we must copy the mangled name, put it directly after
946 the struct so we can have a single allocation. */
947 *slot
948 = ((struct demangled_name_entry *)
949 obstack_alloc (&per_bfd->storage_obstack,
950 sizeof (demangled_name_entry)
951 + linkage_name.length () + 1));
952 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
953 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
954 mangled_ptr [linkage_name.length ()] = '\0';
955 new (*slot) demangled_name_entry
956 (gdb::string_view (mangled_ptr, linkage_name.length ()));
957 }
958 (*slot)->demangled = std::move (demangled_name);
959 (*slot)->language = language ();
960 }
961 else if (language () == language_unknown || language () == language_auto)
962 m_language = (*slot)->language;
963
964 m_name = (*slot)->mangled.data ();
965 symbol_set_demangled_name (this, (*slot)->demangled.get (),
966 &per_bfd->storage_obstack);
967 }
968
969 /* See symtab.h. */
970
971 const char *
972 general_symbol_info::natural_name () const
973 {
974 switch (language ())
975 {
976 case language_cplus:
977 case language_d:
978 case language_go:
979 case language_objc:
980 case language_fortran:
981 if (symbol_get_demangled_name (this) != NULL)
982 return symbol_get_demangled_name (this);
983 break;
984 case language_ada:
985 return ada_decode_symbol (this);
986 default:
987 break;
988 }
989 return linkage_name ();
990 }
991
992 /* See symtab.h. */
993
994 const char *
995 general_symbol_info::demangled_name () const
996 {
997 const char *dem_name = NULL;
998
999 switch (language ())
1000 {
1001 case language_cplus:
1002 case language_d:
1003 case language_go:
1004 case language_objc:
1005 case language_fortran:
1006 dem_name = symbol_get_demangled_name (this);
1007 break;
1008 case language_ada:
1009 dem_name = ada_decode_symbol (this);
1010 break;
1011 default:
1012 break;
1013 }
1014 return dem_name;
1015 }
1016
1017 /* See symtab.h. */
1018
1019 const char *
1020 general_symbol_info::search_name () const
1021 {
1022 if (language () == language_ada)
1023 return linkage_name ();
1024 else
1025 return natural_name ();
1026 }
1027
1028 /* See symtab.h. */
1029
1030 bool
1031 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1032 const lookup_name_info &name)
1033 {
1034 symbol_name_matcher_ftype *name_match
1035 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1036 return name_match (gsymbol->search_name (), name, NULL);
1037 }
1038
1039 \f
1040
1041 /* Return true if the two sections are the same, or if they could
1042 plausibly be copies of each other, one in an original object
1043 file and another in a separated debug file. */
1044
1045 bool
1046 matching_obj_sections (struct obj_section *obj_first,
1047 struct obj_section *obj_second)
1048 {
1049 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1050 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1051
1052 /* If they're the same section, then they match. */
1053 if (first == second)
1054 return true;
1055
1056 /* If either is NULL, give up. */
1057 if (first == NULL || second == NULL)
1058 return false;
1059
1060 /* This doesn't apply to absolute symbols. */
1061 if (first->owner == NULL || second->owner == NULL)
1062 return false;
1063
1064 /* If they're in the same object file, they must be different sections. */
1065 if (first->owner == second->owner)
1066 return false;
1067
1068 /* Check whether the two sections are potentially corresponding. They must
1069 have the same size, address, and name. We can't compare section indexes,
1070 which would be more reliable, because some sections may have been
1071 stripped. */
1072 if (bfd_section_size (first) != bfd_section_size (second))
1073 return false;
1074
1075 /* In-memory addresses may start at a different offset, relativize them. */
1076 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1077 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1078 return false;
1079
1080 if (bfd_section_name (first) == NULL
1081 || bfd_section_name (second) == NULL
1082 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1083 return false;
1084
1085 /* Otherwise check that they are in corresponding objfiles. */
1086
1087 struct objfile *obj = NULL;
1088 for (objfile *objfile : current_program_space->objfiles ())
1089 if (objfile->obfd == first->owner)
1090 {
1091 obj = objfile;
1092 break;
1093 }
1094 gdb_assert (obj != NULL);
1095
1096 if (obj->separate_debug_objfile != NULL
1097 && obj->separate_debug_objfile->obfd == second->owner)
1098 return true;
1099 if (obj->separate_debug_objfile_backlink != NULL
1100 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1101 return true;
1102
1103 return false;
1104 }
1105
1106 /* See symtab.h. */
1107
1108 void
1109 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1110 {
1111 struct bound_minimal_symbol msymbol;
1112
1113 /* If we know that this is not a text address, return failure. This is
1114 necessary because we loop based on texthigh and textlow, which do
1115 not include the data ranges. */
1116 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1117 if (msymbol.minsym && msymbol.minsym->data_p ())
1118 return;
1119
1120 for (objfile *objfile : current_program_space->objfiles ())
1121 {
1122 struct compunit_symtab *cust = NULL;
1123
1124 if (objfile->sf)
1125 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1126 pc, section, 0);
1127 if (cust)
1128 return;
1129 }
1130 }
1131 \f
1132 /* Hash function for the symbol cache. */
1133
1134 static unsigned int
1135 hash_symbol_entry (const struct objfile *objfile_context,
1136 const char *name, domain_enum domain)
1137 {
1138 unsigned int hash = (uintptr_t) objfile_context;
1139
1140 if (name != NULL)
1141 hash += htab_hash_string (name);
1142
1143 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1144 to map to the same slot. */
1145 if (domain == STRUCT_DOMAIN)
1146 hash += VAR_DOMAIN * 7;
1147 else
1148 hash += domain * 7;
1149
1150 return hash;
1151 }
1152
1153 /* Equality function for the symbol cache. */
1154
1155 static int
1156 eq_symbol_entry (const struct symbol_cache_slot *slot,
1157 const struct objfile *objfile_context,
1158 const char *name, domain_enum domain)
1159 {
1160 const char *slot_name;
1161 domain_enum slot_domain;
1162
1163 if (slot->state == SYMBOL_SLOT_UNUSED)
1164 return 0;
1165
1166 if (slot->objfile_context != objfile_context)
1167 return 0;
1168
1169 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1170 {
1171 slot_name = slot->value.not_found.name;
1172 slot_domain = slot->value.not_found.domain;
1173 }
1174 else
1175 {
1176 slot_name = slot->value.found.symbol->search_name ();
1177 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1178 }
1179
1180 /* NULL names match. */
1181 if (slot_name == NULL && name == NULL)
1182 {
1183 /* But there's no point in calling symbol_matches_domain in the
1184 SYMBOL_SLOT_FOUND case. */
1185 if (slot_domain != domain)
1186 return 0;
1187 }
1188 else if (slot_name != NULL && name != NULL)
1189 {
1190 /* It's important that we use the same comparison that was done
1191 the first time through. If the slot records a found symbol,
1192 then this means using the symbol name comparison function of
1193 the symbol's language with symbol->search_name (). See
1194 dictionary.c. It also means using symbol_matches_domain for
1195 found symbols. See block.c.
1196
1197 If the slot records a not-found symbol, then require a precise match.
1198 We could still be lax with whitespace like strcmp_iw though. */
1199
1200 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1201 {
1202 if (strcmp (slot_name, name) != 0)
1203 return 0;
1204 if (slot_domain != domain)
1205 return 0;
1206 }
1207 else
1208 {
1209 struct symbol *sym = slot->value.found.symbol;
1210 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1211
1212 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1213 return 0;
1214
1215 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1216 return 0;
1217 }
1218 }
1219 else
1220 {
1221 /* Only one name is NULL. */
1222 return 0;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Given a cache of size SIZE, return the size of the struct (with variable
1229 length array) in bytes. */
1230
1231 static size_t
1232 symbol_cache_byte_size (unsigned int size)
1233 {
1234 return (sizeof (struct block_symbol_cache)
1235 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1236 }
1237
1238 /* Resize CACHE. */
1239
1240 static void
1241 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1242 {
1243 /* If there's no change in size, don't do anything.
1244 All caches have the same size, so we can just compare with the size
1245 of the global symbols cache. */
1246 if ((cache->global_symbols != NULL
1247 && cache->global_symbols->size == new_size)
1248 || (cache->global_symbols == NULL
1249 && new_size == 0))
1250 return;
1251
1252 destroy_block_symbol_cache (cache->global_symbols);
1253 destroy_block_symbol_cache (cache->static_symbols);
1254
1255 if (new_size == 0)
1256 {
1257 cache->global_symbols = NULL;
1258 cache->static_symbols = NULL;
1259 }
1260 else
1261 {
1262 size_t total_size = symbol_cache_byte_size (new_size);
1263
1264 cache->global_symbols
1265 = (struct block_symbol_cache *) xcalloc (1, total_size);
1266 cache->static_symbols
1267 = (struct block_symbol_cache *) xcalloc (1, total_size);
1268 cache->global_symbols->size = new_size;
1269 cache->static_symbols->size = new_size;
1270 }
1271 }
1272
1273 /* Return the symbol cache of PSPACE.
1274 Create one if it doesn't exist yet. */
1275
1276 static struct symbol_cache *
1277 get_symbol_cache (struct program_space *pspace)
1278 {
1279 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1280
1281 if (cache == NULL)
1282 {
1283 cache = symbol_cache_key.emplace (pspace);
1284 resize_symbol_cache (cache, symbol_cache_size);
1285 }
1286
1287 return cache;
1288 }
1289
1290 /* Set the size of the symbol cache in all program spaces. */
1291
1292 static void
1293 set_symbol_cache_size (unsigned int new_size)
1294 {
1295 struct program_space *pspace;
1296
1297 ALL_PSPACES (pspace)
1298 {
1299 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1300
1301 /* The pspace could have been created but not have a cache yet. */
1302 if (cache != NULL)
1303 resize_symbol_cache (cache, new_size);
1304 }
1305 }
1306
1307 /* Called when symbol-cache-size is set. */
1308
1309 static void
1310 set_symbol_cache_size_handler (const char *args, int from_tty,
1311 struct cmd_list_element *c)
1312 {
1313 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1314 {
1315 /* Restore the previous value.
1316 This is the value the "show" command prints. */
1317 new_symbol_cache_size = symbol_cache_size;
1318
1319 error (_("Symbol cache size is too large, max is %u."),
1320 MAX_SYMBOL_CACHE_SIZE);
1321 }
1322 symbol_cache_size = new_symbol_cache_size;
1323
1324 set_symbol_cache_size (symbol_cache_size);
1325 }
1326
1327 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1328 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1329 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1330 failed (and thus this one will too), or NULL if the symbol is not present
1331 in the cache.
1332 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1333 can be used to save the result of a full lookup attempt. */
1334
1335 static struct block_symbol
1336 symbol_cache_lookup (struct symbol_cache *cache,
1337 struct objfile *objfile_context, enum block_enum block,
1338 const char *name, domain_enum domain,
1339 struct block_symbol_cache **bsc_ptr,
1340 struct symbol_cache_slot **slot_ptr)
1341 {
1342 struct block_symbol_cache *bsc;
1343 unsigned int hash;
1344 struct symbol_cache_slot *slot;
1345
1346 if (block == GLOBAL_BLOCK)
1347 bsc = cache->global_symbols;
1348 else
1349 bsc = cache->static_symbols;
1350 if (bsc == NULL)
1351 {
1352 *bsc_ptr = NULL;
1353 *slot_ptr = NULL;
1354 return {};
1355 }
1356
1357 hash = hash_symbol_entry (objfile_context, name, domain);
1358 slot = bsc->symbols + hash % bsc->size;
1359
1360 *bsc_ptr = bsc;
1361 *slot_ptr = slot;
1362
1363 if (eq_symbol_entry (slot, objfile_context, name, domain))
1364 {
1365 if (symbol_lookup_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "%s block symbol cache hit%s for %s, %s\n",
1368 block == GLOBAL_BLOCK ? "Global" : "Static",
1369 slot->state == SYMBOL_SLOT_NOT_FOUND
1370 ? " (not found)" : "",
1371 name, domain_name (domain));
1372 ++bsc->hits;
1373 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1374 return SYMBOL_LOOKUP_FAILED;
1375 return slot->value.found;
1376 }
1377
1378 /* Symbol is not present in the cache. */
1379
1380 if (symbol_lookup_debug)
1381 {
1382 fprintf_unfiltered (gdb_stdlog,
1383 "%s block symbol cache miss for %s, %s\n",
1384 block == GLOBAL_BLOCK ? "Global" : "Static",
1385 name, domain_name (domain));
1386 }
1387 ++bsc->misses;
1388 return {};
1389 }
1390
1391 /* Mark SYMBOL as found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1394 necessarily the objfile the symbol was found in. */
1395
1396 static void
1397 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1398 struct symbol_cache_slot *slot,
1399 struct objfile *objfile_context,
1400 struct symbol *symbol,
1401 const struct block *block)
1402 {
1403 if (bsc == NULL)
1404 return;
1405 if (slot->state != SYMBOL_SLOT_UNUSED)
1406 {
1407 ++bsc->collisions;
1408 symbol_cache_clear_slot (slot);
1409 }
1410 slot->state = SYMBOL_SLOT_FOUND;
1411 slot->objfile_context = objfile_context;
1412 slot->value.found.symbol = symbol;
1413 slot->value.found.block = block;
1414 }
1415
1416 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1417 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1418 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1419
1420 static void
1421 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1422 struct symbol_cache_slot *slot,
1423 struct objfile *objfile_context,
1424 const char *name, domain_enum domain)
1425 {
1426 if (bsc == NULL)
1427 return;
1428 if (slot->state != SYMBOL_SLOT_UNUSED)
1429 {
1430 ++bsc->collisions;
1431 symbol_cache_clear_slot (slot);
1432 }
1433 slot->state = SYMBOL_SLOT_NOT_FOUND;
1434 slot->objfile_context = objfile_context;
1435 slot->value.not_found.name = xstrdup (name);
1436 slot->value.not_found.domain = domain;
1437 }
1438
1439 /* Flush the symbol cache of PSPACE. */
1440
1441 static void
1442 symbol_cache_flush (struct program_space *pspace)
1443 {
1444 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1445 int pass;
1446
1447 if (cache == NULL)
1448 return;
1449 if (cache->global_symbols == NULL)
1450 {
1451 gdb_assert (symbol_cache_size == 0);
1452 gdb_assert (cache->static_symbols == NULL);
1453 return;
1454 }
1455
1456 /* If the cache is untouched since the last flush, early exit.
1457 This is important for performance during the startup of a program linked
1458 with 100s (or 1000s) of shared libraries. */
1459 if (cache->global_symbols->misses == 0
1460 && cache->static_symbols->misses == 0)
1461 return;
1462
1463 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1464 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1465
1466 for (pass = 0; pass < 2; ++pass)
1467 {
1468 struct block_symbol_cache *bsc
1469 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1470 unsigned int i;
1471
1472 for (i = 0; i < bsc->size; ++i)
1473 symbol_cache_clear_slot (&bsc->symbols[i]);
1474 }
1475
1476 cache->global_symbols->hits = 0;
1477 cache->global_symbols->misses = 0;
1478 cache->global_symbols->collisions = 0;
1479 cache->static_symbols->hits = 0;
1480 cache->static_symbols->misses = 0;
1481 cache->static_symbols->collisions = 0;
1482 }
1483
1484 /* Dump CACHE. */
1485
1486 static void
1487 symbol_cache_dump (const struct symbol_cache *cache)
1488 {
1489 int pass;
1490
1491 if (cache->global_symbols == NULL)
1492 {
1493 printf_filtered (" <disabled>\n");
1494 return;
1495 }
1496
1497 for (pass = 0; pass < 2; ++pass)
1498 {
1499 const struct block_symbol_cache *bsc
1500 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1501 unsigned int i;
1502
1503 if (pass == 0)
1504 printf_filtered ("Global symbols:\n");
1505 else
1506 printf_filtered ("Static symbols:\n");
1507
1508 for (i = 0; i < bsc->size; ++i)
1509 {
1510 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1511
1512 QUIT;
1513
1514 switch (slot->state)
1515 {
1516 case SYMBOL_SLOT_UNUSED:
1517 break;
1518 case SYMBOL_SLOT_NOT_FOUND:
1519 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1520 host_address_to_string (slot->objfile_context),
1521 slot->value.not_found.name,
1522 domain_name (slot->value.not_found.domain));
1523 break;
1524 case SYMBOL_SLOT_FOUND:
1525 {
1526 struct symbol *found = slot->value.found.symbol;
1527 const struct objfile *context = slot->objfile_context;
1528
1529 printf_filtered (" [%4u] = %s, %s %s\n", i,
1530 host_address_to_string (context),
1531 found->print_name (),
1532 domain_name (SYMBOL_DOMAIN (found)));
1533 break;
1534 }
1535 }
1536 }
1537 }
1538 }
1539
1540 /* The "mt print symbol-cache" command. */
1541
1542 static void
1543 maintenance_print_symbol_cache (const char *args, int from_tty)
1544 {
1545 struct program_space *pspace;
1546
1547 ALL_PSPACES (pspace)
1548 {
1549 struct symbol_cache *cache;
1550
1551 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1552 pspace->num,
1553 pspace->symfile_object_file != NULL
1554 ? objfile_name (pspace->symfile_object_file)
1555 : "(no object file)");
1556
1557 /* If the cache hasn't been created yet, avoid creating one. */
1558 cache = symbol_cache_key.get (pspace);
1559 if (cache == NULL)
1560 printf_filtered (" <empty>\n");
1561 else
1562 symbol_cache_dump (cache);
1563 }
1564 }
1565
1566 /* The "mt flush-symbol-cache" command. */
1567
1568 static void
1569 maintenance_flush_symbol_cache (const char *args, int from_tty)
1570 {
1571 struct program_space *pspace;
1572
1573 ALL_PSPACES (pspace)
1574 {
1575 symbol_cache_flush (pspace);
1576 }
1577 }
1578
1579 /* Print usage statistics of CACHE. */
1580
1581 static void
1582 symbol_cache_stats (struct symbol_cache *cache)
1583 {
1584 int pass;
1585
1586 if (cache->global_symbols == NULL)
1587 {
1588 printf_filtered (" <disabled>\n");
1589 return;
1590 }
1591
1592 for (pass = 0; pass < 2; ++pass)
1593 {
1594 const struct block_symbol_cache *bsc
1595 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1596
1597 QUIT;
1598
1599 if (pass == 0)
1600 printf_filtered ("Global block cache stats:\n");
1601 else
1602 printf_filtered ("Static block cache stats:\n");
1603
1604 printf_filtered (" size: %u\n", bsc->size);
1605 printf_filtered (" hits: %u\n", bsc->hits);
1606 printf_filtered (" misses: %u\n", bsc->misses);
1607 printf_filtered (" collisions: %u\n", bsc->collisions);
1608 }
1609 }
1610
1611 /* The "mt print symbol-cache-statistics" command. */
1612
1613 static void
1614 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1615 {
1616 struct program_space *pspace;
1617
1618 ALL_PSPACES (pspace)
1619 {
1620 struct symbol_cache *cache;
1621
1622 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1623 pspace->num,
1624 pspace->symfile_object_file != NULL
1625 ? objfile_name (pspace->symfile_object_file)
1626 : "(no object file)");
1627
1628 /* If the cache hasn't been created yet, avoid creating one. */
1629 cache = symbol_cache_key.get (pspace);
1630 if (cache == NULL)
1631 printf_filtered (" empty, no stats available\n");
1632 else
1633 symbol_cache_stats (cache);
1634 }
1635 }
1636
1637 /* This module's 'new_objfile' observer. */
1638
1639 static void
1640 symtab_new_objfile_observer (struct objfile *objfile)
1641 {
1642 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1643 symbol_cache_flush (current_program_space);
1644 }
1645
1646 /* This module's 'free_objfile' observer. */
1647
1648 static void
1649 symtab_free_objfile_observer (struct objfile *objfile)
1650 {
1651 symbol_cache_flush (objfile->pspace);
1652 }
1653 \f
1654 /* Debug symbols usually don't have section information. We need to dig that
1655 out of the minimal symbols and stash that in the debug symbol. */
1656
1657 void
1658 fixup_section (struct general_symbol_info *ginfo,
1659 CORE_ADDR addr, struct objfile *objfile)
1660 {
1661 struct minimal_symbol *msym;
1662
1663 /* First, check whether a minimal symbol with the same name exists
1664 and points to the same address. The address check is required
1665 e.g. on PowerPC64, where the minimal symbol for a function will
1666 point to the function descriptor, while the debug symbol will
1667 point to the actual function code. */
1668 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1669 objfile);
1670 if (msym)
1671 ginfo->section = MSYMBOL_SECTION (msym);
1672 else
1673 {
1674 /* Static, function-local variables do appear in the linker
1675 (minimal) symbols, but are frequently given names that won't
1676 be found via lookup_minimal_symbol(). E.g., it has been
1677 observed in frv-uclinux (ELF) executables that a static,
1678 function-local variable named "foo" might appear in the
1679 linker symbols as "foo.6" or "foo.3". Thus, there is no
1680 point in attempting to extend the lookup-by-name mechanism to
1681 handle this case due to the fact that there can be multiple
1682 names.
1683
1684 So, instead, search the section table when lookup by name has
1685 failed. The ``addr'' and ``endaddr'' fields may have already
1686 been relocated. If so, the relocation offset needs to be
1687 subtracted from these values when performing the comparison.
1688 We unconditionally subtract it, because, when no relocation
1689 has been performed, the value will simply be zero.
1690
1691 The address of the symbol whose section we're fixing up HAS
1692 NOT BEEN adjusted (relocated) yet. It can't have been since
1693 the section isn't yet known and knowing the section is
1694 necessary in order to add the correct relocation value. In
1695 other words, we wouldn't even be in this function (attempting
1696 to compute the section) if it were already known.
1697
1698 Note that it is possible to search the minimal symbols
1699 (subtracting the relocation value if necessary) to find the
1700 matching minimal symbol, but this is overkill and much less
1701 efficient. It is not necessary to find the matching minimal
1702 symbol, only its section.
1703
1704 Note that this technique (of doing a section table search)
1705 can fail when unrelocated section addresses overlap. For
1706 this reason, we still attempt a lookup by name prior to doing
1707 a search of the section table. */
1708
1709 struct obj_section *s;
1710 int fallback = -1;
1711
1712 ALL_OBJFILE_OSECTIONS (objfile, s)
1713 {
1714 int idx = s - objfile->sections;
1715 CORE_ADDR offset = objfile->section_offsets[idx];
1716
1717 if (fallback == -1)
1718 fallback = idx;
1719
1720 if (obj_section_addr (s) - offset <= addr
1721 && addr < obj_section_endaddr (s) - offset)
1722 {
1723 ginfo->section = idx;
1724 return;
1725 }
1726 }
1727
1728 /* If we didn't find the section, assume it is in the first
1729 section. If there is no allocated section, then it hardly
1730 matters what we pick, so just pick zero. */
1731 if (fallback == -1)
1732 ginfo->section = 0;
1733 else
1734 ginfo->section = fallback;
1735 }
1736 }
1737
1738 struct symbol *
1739 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1740 {
1741 CORE_ADDR addr;
1742
1743 if (!sym)
1744 return NULL;
1745
1746 if (!SYMBOL_OBJFILE_OWNED (sym))
1747 return sym;
1748
1749 /* We either have an OBJFILE, or we can get at it from the sym's
1750 symtab. Anything else is a bug. */
1751 gdb_assert (objfile || symbol_symtab (sym));
1752
1753 if (objfile == NULL)
1754 objfile = symbol_objfile (sym);
1755
1756 if (SYMBOL_OBJ_SECTION (objfile, sym))
1757 return sym;
1758
1759 /* We should have an objfile by now. */
1760 gdb_assert (objfile);
1761
1762 switch (SYMBOL_CLASS (sym))
1763 {
1764 case LOC_STATIC:
1765 case LOC_LABEL:
1766 addr = SYMBOL_VALUE_ADDRESS (sym);
1767 break;
1768 case LOC_BLOCK:
1769 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1770 break;
1771
1772 default:
1773 /* Nothing else will be listed in the minsyms -- no use looking
1774 it up. */
1775 return sym;
1776 }
1777
1778 fixup_section (sym, addr, objfile);
1779
1780 return sym;
1781 }
1782
1783 /* See symtab.h. */
1784
1785 demangle_for_lookup_info::demangle_for_lookup_info
1786 (const lookup_name_info &lookup_name, language lang)
1787 {
1788 demangle_result_storage storage;
1789
1790 if (lookup_name.ignore_parameters () && lang == language_cplus)
1791 {
1792 gdb::unique_xmalloc_ptr<char> without_params
1793 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1794 lookup_name.completion_mode ());
1795
1796 if (without_params != NULL)
1797 {
1798 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1799 m_demangled_name = demangle_for_lookup (without_params.get (),
1800 lang, storage);
1801 return;
1802 }
1803 }
1804
1805 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1806 m_demangled_name = lookup_name.name ();
1807 else
1808 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1809 lang, storage);
1810 }
1811
1812 /* See symtab.h. */
1813
1814 const lookup_name_info &
1815 lookup_name_info::match_any ()
1816 {
1817 /* Lookup any symbol that "" would complete. I.e., this matches all
1818 symbol names. */
1819 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1820 true);
1821
1822 return lookup_name;
1823 }
1824
1825 /* Compute the demangled form of NAME as used by the various symbol
1826 lookup functions. The result can either be the input NAME
1827 directly, or a pointer to a buffer owned by the STORAGE object.
1828
1829 For Ada, this function just returns NAME, unmodified.
1830 Normally, Ada symbol lookups are performed using the encoded name
1831 rather than the demangled name, and so it might seem to make sense
1832 for this function to return an encoded version of NAME.
1833 Unfortunately, we cannot do this, because this function is used in
1834 circumstances where it is not appropriate to try to encode NAME.
1835 For instance, when displaying the frame info, we demangle the name
1836 of each parameter, and then perform a symbol lookup inside our
1837 function using that demangled name. In Ada, certain functions
1838 have internally-generated parameters whose name contain uppercase
1839 characters. Encoding those name would result in those uppercase
1840 characters to become lowercase, and thus cause the symbol lookup
1841 to fail. */
1842
1843 const char *
1844 demangle_for_lookup (const char *name, enum language lang,
1845 demangle_result_storage &storage)
1846 {
1847 /* If we are using C++, D, or Go, demangle the name before doing a
1848 lookup, so we can always binary search. */
1849 if (lang == language_cplus)
1850 {
1851 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1852 if (demangled_name != NULL)
1853 return storage.set_malloc_ptr (demangled_name);
1854
1855 /* If we were given a non-mangled name, canonicalize it
1856 according to the language (so far only for C++). */
1857 std::string canon = cp_canonicalize_string (name);
1858 if (!canon.empty ())
1859 return storage.swap_string (canon);
1860 }
1861 else if (lang == language_d)
1862 {
1863 char *demangled_name = d_demangle (name, 0);
1864 if (demangled_name != NULL)
1865 return storage.set_malloc_ptr (demangled_name);
1866 }
1867 else if (lang == language_go)
1868 {
1869 char *demangled_name = go_demangle (name, 0);
1870 if (demangled_name != NULL)
1871 return storage.set_malloc_ptr (demangled_name);
1872 }
1873
1874 return name;
1875 }
1876
1877 /* See symtab.h. */
1878
1879 unsigned int
1880 search_name_hash (enum language language, const char *search_name)
1881 {
1882 return language_def (language)->la_search_name_hash (search_name);
1883 }
1884
1885 /* See symtab.h.
1886
1887 This function (or rather its subordinates) have a bunch of loops and
1888 it would seem to be attractive to put in some QUIT's (though I'm not really
1889 sure whether it can run long enough to be really important). But there
1890 are a few calls for which it would appear to be bad news to quit
1891 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1892 that there is C++ code below which can error(), but that probably
1893 doesn't affect these calls since they are looking for a known
1894 variable and thus can probably assume it will never hit the C++
1895 code). */
1896
1897 struct block_symbol
1898 lookup_symbol_in_language (const char *name, const struct block *block,
1899 const domain_enum domain, enum language lang,
1900 struct field_of_this_result *is_a_field_of_this)
1901 {
1902 demangle_result_storage storage;
1903 const char *modified_name = demangle_for_lookup (name, lang, storage);
1904
1905 return lookup_symbol_aux (modified_name,
1906 symbol_name_match_type::FULL,
1907 block, domain, lang,
1908 is_a_field_of_this);
1909 }
1910
1911 /* See symtab.h. */
1912
1913 struct block_symbol
1914 lookup_symbol (const char *name, const struct block *block,
1915 domain_enum domain,
1916 struct field_of_this_result *is_a_field_of_this)
1917 {
1918 return lookup_symbol_in_language (name, block, domain,
1919 current_language->la_language,
1920 is_a_field_of_this);
1921 }
1922
1923 /* See symtab.h. */
1924
1925 struct block_symbol
1926 lookup_symbol_search_name (const char *search_name, const struct block *block,
1927 domain_enum domain)
1928 {
1929 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1930 block, domain, language_asm, NULL);
1931 }
1932
1933 /* See symtab.h. */
1934
1935 struct block_symbol
1936 lookup_language_this (const struct language_defn *lang,
1937 const struct block *block)
1938 {
1939 if (lang->la_name_of_this == NULL || block == NULL)
1940 return {};
1941
1942 if (symbol_lookup_debug > 1)
1943 {
1944 struct objfile *objfile = lookup_objfile_from_block (block);
1945
1946 fprintf_unfiltered (gdb_stdlog,
1947 "lookup_language_this (%s, %s (objfile %s))",
1948 lang->la_name, host_address_to_string (block),
1949 objfile_debug_name (objfile));
1950 }
1951
1952 while (block)
1953 {
1954 struct symbol *sym;
1955
1956 sym = block_lookup_symbol (block, lang->la_name_of_this,
1957 symbol_name_match_type::SEARCH_NAME,
1958 VAR_DOMAIN);
1959 if (sym != NULL)
1960 {
1961 if (symbol_lookup_debug > 1)
1962 {
1963 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1964 sym->print_name (),
1965 host_address_to_string (sym),
1966 host_address_to_string (block));
1967 }
1968 return (struct block_symbol) {sym, block};
1969 }
1970 if (BLOCK_FUNCTION (block))
1971 break;
1972 block = BLOCK_SUPERBLOCK (block);
1973 }
1974
1975 if (symbol_lookup_debug > 1)
1976 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1977 return {};
1978 }
1979
1980 /* Given TYPE, a structure/union,
1981 return 1 if the component named NAME from the ultimate target
1982 structure/union is defined, otherwise, return 0. */
1983
1984 static int
1985 check_field (struct type *type, const char *name,
1986 struct field_of_this_result *is_a_field_of_this)
1987 {
1988 int i;
1989
1990 /* The type may be a stub. */
1991 type = check_typedef (type);
1992
1993 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1994 {
1995 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1996
1997 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1998 {
1999 is_a_field_of_this->type = type;
2000 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2001 return 1;
2002 }
2003 }
2004
2005 /* C++: If it was not found as a data field, then try to return it
2006 as a pointer to a method. */
2007
2008 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2009 {
2010 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2011 {
2012 is_a_field_of_this->type = type;
2013 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2014 return 1;
2015 }
2016 }
2017
2018 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2019 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2020 return 1;
2021
2022 return 0;
2023 }
2024
2025 /* Behave like lookup_symbol except that NAME is the natural name
2026 (e.g., demangled name) of the symbol that we're looking for. */
2027
2028 static struct block_symbol
2029 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2030 const struct block *block,
2031 const domain_enum domain, enum language language,
2032 struct field_of_this_result *is_a_field_of_this)
2033 {
2034 struct block_symbol result;
2035 const struct language_defn *langdef;
2036
2037 if (symbol_lookup_debug)
2038 {
2039 struct objfile *objfile = lookup_objfile_from_block (block);
2040
2041 fprintf_unfiltered (gdb_stdlog,
2042 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2043 name, host_address_to_string (block),
2044 objfile != NULL
2045 ? objfile_debug_name (objfile) : "NULL",
2046 domain_name (domain), language_str (language));
2047 }
2048
2049 /* Make sure we do something sensible with is_a_field_of_this, since
2050 the callers that set this parameter to some non-null value will
2051 certainly use it later. If we don't set it, the contents of
2052 is_a_field_of_this are undefined. */
2053 if (is_a_field_of_this != NULL)
2054 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2055
2056 /* Search specified block and its superiors. Don't search
2057 STATIC_BLOCK or GLOBAL_BLOCK. */
2058
2059 result = lookup_local_symbol (name, match_type, block, domain, language);
2060 if (result.symbol != NULL)
2061 {
2062 if (symbol_lookup_debug)
2063 {
2064 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2065 host_address_to_string (result.symbol));
2066 }
2067 return result;
2068 }
2069
2070 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2071 check to see if NAME is a field of `this'. */
2072
2073 langdef = language_def (language);
2074
2075 /* Don't do this check if we are searching for a struct. It will
2076 not be found by check_field, but will be found by other
2077 means. */
2078 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2079 {
2080 result = lookup_language_this (langdef, block);
2081
2082 if (result.symbol)
2083 {
2084 struct type *t = result.symbol->type;
2085
2086 /* I'm not really sure that type of this can ever
2087 be typedefed; just be safe. */
2088 t = check_typedef (t);
2089 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2090 t = TYPE_TARGET_TYPE (t);
2091
2092 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2093 && TYPE_CODE (t) != TYPE_CODE_UNION)
2094 error (_("Internal error: `%s' is not an aggregate"),
2095 langdef->la_name_of_this);
2096
2097 if (check_field (t, name, is_a_field_of_this))
2098 {
2099 if (symbol_lookup_debug)
2100 {
2101 fprintf_unfiltered (gdb_stdlog,
2102 "lookup_symbol_aux (...) = NULL\n");
2103 }
2104 return {};
2105 }
2106 }
2107 }
2108
2109 /* Now do whatever is appropriate for LANGUAGE to look
2110 up static and global variables. */
2111
2112 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2113 if (result.symbol != NULL)
2114 {
2115 if (symbol_lookup_debug)
2116 {
2117 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2118 host_address_to_string (result.symbol));
2119 }
2120 return result;
2121 }
2122
2123 /* Now search all static file-level symbols. Not strictly correct,
2124 but more useful than an error. */
2125
2126 result = lookup_static_symbol (name, domain);
2127 if (symbol_lookup_debug)
2128 {
2129 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2130 result.symbol != NULL
2131 ? host_address_to_string (result.symbol)
2132 : "NULL");
2133 }
2134 return result;
2135 }
2136
2137 /* Check to see if the symbol is defined in BLOCK or its superiors.
2138 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2139
2140 static struct block_symbol
2141 lookup_local_symbol (const char *name,
2142 symbol_name_match_type match_type,
2143 const struct block *block,
2144 const domain_enum domain,
2145 enum language language)
2146 {
2147 struct symbol *sym;
2148 const struct block *static_block = block_static_block (block);
2149 const char *scope = block_scope (block);
2150
2151 /* Check if either no block is specified or it's a global block. */
2152
2153 if (static_block == NULL)
2154 return {};
2155
2156 while (block != static_block)
2157 {
2158 sym = lookup_symbol_in_block (name, match_type, block, domain);
2159 if (sym != NULL)
2160 return (struct block_symbol) {sym, block};
2161
2162 if (language == language_cplus || language == language_fortran)
2163 {
2164 struct block_symbol blocksym
2165 = cp_lookup_symbol_imports_or_template (scope, name, block,
2166 domain);
2167
2168 if (blocksym.symbol != NULL)
2169 return blocksym;
2170 }
2171
2172 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2173 break;
2174 block = BLOCK_SUPERBLOCK (block);
2175 }
2176
2177 /* We've reached the end of the function without finding a result. */
2178
2179 return {};
2180 }
2181
2182 /* See symtab.h. */
2183
2184 struct objfile *
2185 lookup_objfile_from_block (const struct block *block)
2186 {
2187 if (block == NULL)
2188 return NULL;
2189
2190 block = block_global_block (block);
2191 /* Look through all blockvectors. */
2192 for (objfile *obj : current_program_space->objfiles ())
2193 {
2194 for (compunit_symtab *cust : obj->compunits ())
2195 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2196 GLOBAL_BLOCK))
2197 {
2198 if (obj->separate_debug_objfile_backlink)
2199 obj = obj->separate_debug_objfile_backlink;
2200
2201 return obj;
2202 }
2203 }
2204
2205 return NULL;
2206 }
2207
2208 /* See symtab.h. */
2209
2210 struct symbol *
2211 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2212 const struct block *block,
2213 const domain_enum domain)
2214 {
2215 struct symbol *sym;
2216
2217 if (symbol_lookup_debug > 1)
2218 {
2219 struct objfile *objfile = lookup_objfile_from_block (block);
2220
2221 fprintf_unfiltered (gdb_stdlog,
2222 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2223 name, host_address_to_string (block),
2224 objfile_debug_name (objfile),
2225 domain_name (domain));
2226 }
2227
2228 sym = block_lookup_symbol (block, name, match_type, domain);
2229 if (sym)
2230 {
2231 if (symbol_lookup_debug > 1)
2232 {
2233 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2234 host_address_to_string (sym));
2235 }
2236 return fixup_symbol_section (sym, NULL);
2237 }
2238
2239 if (symbol_lookup_debug > 1)
2240 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2241 return NULL;
2242 }
2243
2244 /* See symtab.h. */
2245
2246 struct block_symbol
2247 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2248 enum block_enum block_index,
2249 const char *name,
2250 const domain_enum domain)
2251 {
2252 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2253
2254 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2255 {
2256 struct block_symbol result
2257 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2258
2259 if (result.symbol != nullptr)
2260 return result;
2261 }
2262
2263 return {};
2264 }
2265
2266 /* Check to see if the symbol is defined in one of the OBJFILE's
2267 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2268 depending on whether or not we want to search global symbols or
2269 static symbols. */
2270
2271 static struct block_symbol
2272 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2273 enum block_enum block_index, const char *name,
2274 const domain_enum domain)
2275 {
2276 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2277
2278 if (symbol_lookup_debug > 1)
2279 {
2280 fprintf_unfiltered (gdb_stdlog,
2281 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2282 objfile_debug_name (objfile),
2283 block_index == GLOBAL_BLOCK
2284 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2285 name, domain_name (domain));
2286 }
2287
2288 for (compunit_symtab *cust : objfile->compunits ())
2289 {
2290 const struct blockvector *bv;
2291 const struct block *block;
2292 struct block_symbol result;
2293
2294 bv = COMPUNIT_BLOCKVECTOR (cust);
2295 block = BLOCKVECTOR_BLOCK (bv, block_index);
2296 result.symbol = block_lookup_symbol_primary (block, name, domain);
2297 result.block = block;
2298 if (result.symbol != NULL)
2299 {
2300 if (symbol_lookup_debug > 1)
2301 {
2302 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2303 host_address_to_string (result.symbol),
2304 host_address_to_string (block));
2305 }
2306 result.symbol = fixup_symbol_section (result.symbol, objfile);
2307 return result;
2308
2309 }
2310 }
2311
2312 if (symbol_lookup_debug > 1)
2313 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2314 return {};
2315 }
2316
2317 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2318 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2319 and all associated separate debug objfiles.
2320
2321 Normally we only look in OBJFILE, and not any separate debug objfiles
2322 because the outer loop will cause them to be searched too. This case is
2323 different. Here we're called from search_symbols where it will only
2324 call us for the objfile that contains a matching minsym. */
2325
2326 static struct block_symbol
2327 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2328 const char *linkage_name,
2329 domain_enum domain)
2330 {
2331 enum language lang = current_language->la_language;
2332 struct objfile *main_objfile;
2333
2334 demangle_result_storage storage;
2335 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2336
2337 if (objfile->separate_debug_objfile_backlink)
2338 main_objfile = objfile->separate_debug_objfile_backlink;
2339 else
2340 main_objfile = objfile;
2341
2342 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2343 {
2344 struct block_symbol result;
2345
2346 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2347 modified_name, domain);
2348 if (result.symbol == NULL)
2349 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2350 modified_name, domain);
2351 if (result.symbol != NULL)
2352 return result;
2353 }
2354
2355 return {};
2356 }
2357
2358 /* A helper function that throws an exception when a symbol was found
2359 in a psymtab but not in a symtab. */
2360
2361 static void ATTRIBUTE_NORETURN
2362 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2363 struct compunit_symtab *cust)
2364 {
2365 error (_("\
2366 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2367 %s may be an inlined function, or may be a template function\n \
2368 (if a template, try specifying an instantiation: %s<type>)."),
2369 block_index == GLOBAL_BLOCK ? "global" : "static",
2370 name,
2371 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2372 name, name);
2373 }
2374
2375 /* A helper function for various lookup routines that interfaces with
2376 the "quick" symbol table functions. */
2377
2378 static struct block_symbol
2379 lookup_symbol_via_quick_fns (struct objfile *objfile,
2380 enum block_enum block_index, const char *name,
2381 const domain_enum domain)
2382 {
2383 struct compunit_symtab *cust;
2384 const struct blockvector *bv;
2385 const struct block *block;
2386 struct block_symbol result;
2387
2388 if (!objfile->sf)
2389 return {};
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2395 objfile_debug_name (objfile),
2396 block_index == GLOBAL_BLOCK
2397 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2398 name, domain_name (domain));
2399 }
2400
2401 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2402 if (cust == NULL)
2403 {
2404 if (symbol_lookup_debug > 1)
2405 {
2406 fprintf_unfiltered (gdb_stdlog,
2407 "lookup_symbol_via_quick_fns (...) = NULL\n");
2408 }
2409 return {};
2410 }
2411
2412 bv = COMPUNIT_BLOCKVECTOR (cust);
2413 block = BLOCKVECTOR_BLOCK (bv, block_index);
2414 result.symbol = block_lookup_symbol (block, name,
2415 symbol_name_match_type::FULL, domain);
2416 if (result.symbol == NULL)
2417 error_in_psymtab_expansion (block_index, name, cust);
2418
2419 if (symbol_lookup_debug > 1)
2420 {
2421 fprintf_unfiltered (gdb_stdlog,
2422 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2423 host_address_to_string (result.symbol),
2424 host_address_to_string (block));
2425 }
2426
2427 result.symbol = fixup_symbol_section (result.symbol, objfile);
2428 result.block = block;
2429 return result;
2430 }
2431
2432 /* See symtab.h. */
2433
2434 struct block_symbol
2435 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2436 const char *name,
2437 const struct block *block,
2438 const domain_enum domain)
2439 {
2440 struct block_symbol result;
2441
2442 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2443 the current objfile. Searching the current objfile first is useful
2444 for both matching user expectations as well as performance. */
2445
2446 result = lookup_symbol_in_static_block (name, block, domain);
2447 if (result.symbol != NULL)
2448 return result;
2449
2450 /* If we didn't find a definition for a builtin type in the static block,
2451 search for it now. This is actually the right thing to do and can be
2452 a massive performance win. E.g., when debugging a program with lots of
2453 shared libraries we could search all of them only to find out the
2454 builtin type isn't defined in any of them. This is common for types
2455 like "void". */
2456 if (domain == VAR_DOMAIN)
2457 {
2458 struct gdbarch *gdbarch;
2459
2460 if (block == NULL)
2461 gdbarch = target_gdbarch ();
2462 else
2463 gdbarch = block_gdbarch (block);
2464 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2465 gdbarch, name);
2466 result.block = NULL;
2467 if (result.symbol != NULL)
2468 return result;
2469 }
2470
2471 return lookup_global_symbol (name, block, domain);
2472 }
2473
2474 /* See symtab.h. */
2475
2476 struct block_symbol
2477 lookup_symbol_in_static_block (const char *name,
2478 const struct block *block,
2479 const domain_enum domain)
2480 {
2481 const struct block *static_block = block_static_block (block);
2482 struct symbol *sym;
2483
2484 if (static_block == NULL)
2485 return {};
2486
2487 if (symbol_lookup_debug)
2488 {
2489 struct objfile *objfile = lookup_objfile_from_block (static_block);
2490
2491 fprintf_unfiltered (gdb_stdlog,
2492 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2493 " %s)\n",
2494 name,
2495 host_address_to_string (block),
2496 objfile_debug_name (objfile),
2497 domain_name (domain));
2498 }
2499
2500 sym = lookup_symbol_in_block (name,
2501 symbol_name_match_type::FULL,
2502 static_block, domain);
2503 if (symbol_lookup_debug)
2504 {
2505 fprintf_unfiltered (gdb_stdlog,
2506 "lookup_symbol_in_static_block (...) = %s\n",
2507 sym != NULL ? host_address_to_string (sym) : "NULL");
2508 }
2509 return (struct block_symbol) {sym, static_block};
2510 }
2511
2512 /* Perform the standard symbol lookup of NAME in OBJFILE:
2513 1) First search expanded symtabs, and if not found
2514 2) Search the "quick" symtabs (partial or .gdb_index).
2515 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2516
2517 static struct block_symbol
2518 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2519 const char *name, const domain_enum domain)
2520 {
2521 struct block_symbol result;
2522
2523 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2524
2525 if (symbol_lookup_debug)
2526 {
2527 fprintf_unfiltered (gdb_stdlog,
2528 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2529 objfile_debug_name (objfile),
2530 block_index == GLOBAL_BLOCK
2531 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2532 name, domain_name (domain));
2533 }
2534
2535 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2536 name, domain);
2537 if (result.symbol != NULL)
2538 {
2539 if (symbol_lookup_debug)
2540 {
2541 fprintf_unfiltered (gdb_stdlog,
2542 "lookup_symbol_in_objfile (...) = %s"
2543 " (in symtabs)\n",
2544 host_address_to_string (result.symbol));
2545 }
2546 return result;
2547 }
2548
2549 result = lookup_symbol_via_quick_fns (objfile, block_index,
2550 name, domain);
2551 if (symbol_lookup_debug)
2552 {
2553 fprintf_unfiltered (gdb_stdlog,
2554 "lookup_symbol_in_objfile (...) = %s%s\n",
2555 result.symbol != NULL
2556 ? host_address_to_string (result.symbol)
2557 : "NULL",
2558 result.symbol != NULL ? " (via quick fns)" : "");
2559 }
2560 return result;
2561 }
2562
2563 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2564
2565 struct global_or_static_sym_lookup_data
2566 {
2567 /* The name of the symbol we are searching for. */
2568 const char *name;
2569
2570 /* The domain to use for our search. */
2571 domain_enum domain;
2572
2573 /* The block index in which to search. */
2574 enum block_enum block_index;
2575
2576 /* The field where the callback should store the symbol if found.
2577 It should be initialized to {NULL, NULL} before the search is started. */
2578 struct block_symbol result;
2579 };
2580
2581 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2582 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2583 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2584 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2585
2586 static int
2587 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2588 void *cb_data)
2589 {
2590 struct global_or_static_sym_lookup_data *data =
2591 (struct global_or_static_sym_lookup_data *) cb_data;
2592
2593 gdb_assert (data->result.symbol == NULL
2594 && data->result.block == NULL);
2595
2596 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2597 data->name, data->domain);
2598
2599 /* If we found a match, tell the iterator to stop. Otherwise,
2600 keep going. */
2601 return (data->result.symbol != NULL);
2602 }
2603
2604 /* This function contains the common code of lookup_{global,static}_symbol.
2605 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2606 the objfile to start the lookup in. */
2607
2608 static struct block_symbol
2609 lookup_global_or_static_symbol (const char *name,
2610 enum block_enum block_index,
2611 struct objfile *objfile,
2612 const domain_enum domain)
2613 {
2614 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2615 struct block_symbol result;
2616 struct global_or_static_sym_lookup_data lookup_data;
2617 struct block_symbol_cache *bsc;
2618 struct symbol_cache_slot *slot;
2619
2620 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2621 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2622
2623 /* First see if we can find the symbol in the cache.
2624 This works because we use the current objfile to qualify the lookup. */
2625 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2626 &bsc, &slot);
2627 if (result.symbol != NULL)
2628 {
2629 if (SYMBOL_LOOKUP_FAILED_P (result))
2630 return {};
2631 return result;
2632 }
2633
2634 /* Do a global search (of global blocks, heh). */
2635 if (result.symbol == NULL)
2636 {
2637 memset (&lookup_data, 0, sizeof (lookup_data));
2638 lookup_data.name = name;
2639 lookup_data.block_index = block_index;
2640 lookup_data.domain = domain;
2641 gdbarch_iterate_over_objfiles_in_search_order
2642 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2643 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2644 result = lookup_data.result;
2645 }
2646
2647 if (result.symbol != NULL)
2648 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2649 else
2650 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2651
2652 return result;
2653 }
2654
2655 /* See symtab.h. */
2656
2657 struct block_symbol
2658 lookup_static_symbol (const char *name, const domain_enum domain)
2659 {
2660 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2661 }
2662
2663 /* See symtab.h. */
2664
2665 struct block_symbol
2666 lookup_global_symbol (const char *name,
2667 const struct block *block,
2668 const domain_enum domain)
2669 {
2670 /* If a block was passed in, we want to search the corresponding
2671 global block first. This yields "more expected" behavior, and is
2672 needed to support 'FILENAME'::VARIABLE lookups. */
2673 const struct block *global_block = block_global_block (block);
2674 if (global_block != nullptr)
2675 {
2676 symbol *sym = lookup_symbol_in_block (name,
2677 symbol_name_match_type::FULL,
2678 global_block, domain);
2679 if (sym != nullptr)
2680 return { sym, global_block };
2681 }
2682
2683 struct objfile *objfile = lookup_objfile_from_block (block);
2684 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2685 }
2686
2687 bool
2688 symbol_matches_domain (enum language symbol_language,
2689 domain_enum symbol_domain,
2690 domain_enum domain)
2691 {
2692 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2693 Similarly, any Ada type declaration implicitly defines a typedef. */
2694 if (symbol_language == language_cplus
2695 || symbol_language == language_d
2696 || symbol_language == language_ada
2697 || symbol_language == language_rust)
2698 {
2699 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2700 && symbol_domain == STRUCT_DOMAIN)
2701 return true;
2702 }
2703 /* For all other languages, strict match is required. */
2704 return (symbol_domain == domain);
2705 }
2706
2707 /* See symtab.h. */
2708
2709 struct type *
2710 lookup_transparent_type (const char *name)
2711 {
2712 return current_language->la_lookup_transparent_type (name);
2713 }
2714
2715 /* A helper for basic_lookup_transparent_type that interfaces with the
2716 "quick" symbol table functions. */
2717
2718 static struct type *
2719 basic_lookup_transparent_type_quick (struct objfile *objfile,
2720 enum block_enum block_index,
2721 const char *name)
2722 {
2723 struct compunit_symtab *cust;
2724 const struct blockvector *bv;
2725 const struct block *block;
2726 struct symbol *sym;
2727
2728 if (!objfile->sf)
2729 return NULL;
2730 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2731 STRUCT_DOMAIN);
2732 if (cust == NULL)
2733 return NULL;
2734
2735 bv = COMPUNIT_BLOCKVECTOR (cust);
2736 block = BLOCKVECTOR_BLOCK (bv, block_index);
2737 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2738 block_find_non_opaque_type, NULL);
2739 if (sym == NULL)
2740 error_in_psymtab_expansion (block_index, name, cust);
2741 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2742 return SYMBOL_TYPE (sym);
2743 }
2744
2745 /* Subroutine of basic_lookup_transparent_type to simplify it.
2746 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2747 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2748
2749 static struct type *
2750 basic_lookup_transparent_type_1 (struct objfile *objfile,
2751 enum block_enum block_index,
2752 const char *name)
2753 {
2754 const struct blockvector *bv;
2755 const struct block *block;
2756 const struct symbol *sym;
2757
2758 for (compunit_symtab *cust : objfile->compunits ())
2759 {
2760 bv = COMPUNIT_BLOCKVECTOR (cust);
2761 block = BLOCKVECTOR_BLOCK (bv, block_index);
2762 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2763 block_find_non_opaque_type, NULL);
2764 if (sym != NULL)
2765 {
2766 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2767 return SYMBOL_TYPE (sym);
2768 }
2769 }
2770
2771 return NULL;
2772 }
2773
2774 /* The standard implementation of lookup_transparent_type. This code
2775 was modeled on lookup_symbol -- the parts not relevant to looking
2776 up types were just left out. In particular it's assumed here that
2777 types are available in STRUCT_DOMAIN and only in file-static or
2778 global blocks. */
2779
2780 struct type *
2781 basic_lookup_transparent_type (const char *name)
2782 {
2783 struct type *t;
2784
2785 /* Now search all the global symbols. Do the symtab's first, then
2786 check the psymtab's. If a psymtab indicates the existence
2787 of the desired name as a global, then do psymtab-to-symtab
2788 conversion on the fly and return the found symbol. */
2789
2790 for (objfile *objfile : current_program_space->objfiles ())
2791 {
2792 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2793 if (t)
2794 return t;
2795 }
2796
2797 for (objfile *objfile : current_program_space->objfiles ())
2798 {
2799 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2800 if (t)
2801 return t;
2802 }
2803
2804 /* Now search the static file-level symbols.
2805 Not strictly correct, but more useful than an error.
2806 Do the symtab's first, then
2807 check the psymtab's. If a psymtab indicates the existence
2808 of the desired name as a file-level static, then do psymtab-to-symtab
2809 conversion on the fly and return the found symbol. */
2810
2811 for (objfile *objfile : current_program_space->objfiles ())
2812 {
2813 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2814 if (t)
2815 return t;
2816 }
2817
2818 for (objfile *objfile : current_program_space->objfiles ())
2819 {
2820 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2821 if (t)
2822 return t;
2823 }
2824
2825 return (struct type *) 0;
2826 }
2827
2828 /* See symtab.h. */
2829
2830 bool
2831 iterate_over_symbols (const struct block *block,
2832 const lookup_name_info &name,
2833 const domain_enum domain,
2834 gdb::function_view<symbol_found_callback_ftype> callback)
2835 {
2836 struct block_iterator iter;
2837 struct symbol *sym;
2838
2839 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2840 {
2841 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2842 {
2843 struct block_symbol block_sym = {sym, block};
2844
2845 if (!callback (&block_sym))
2846 return false;
2847 }
2848 }
2849 return true;
2850 }
2851
2852 /* See symtab.h. */
2853
2854 bool
2855 iterate_over_symbols_terminated
2856 (const struct block *block,
2857 const lookup_name_info &name,
2858 const domain_enum domain,
2859 gdb::function_view<symbol_found_callback_ftype> callback)
2860 {
2861 if (!iterate_over_symbols (block, name, domain, callback))
2862 return false;
2863 struct block_symbol block_sym = {nullptr, block};
2864 return callback (&block_sym);
2865 }
2866
2867 /* Find the compunit symtab associated with PC and SECTION.
2868 This will read in debug info as necessary. */
2869
2870 struct compunit_symtab *
2871 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2872 {
2873 struct compunit_symtab *best_cust = NULL;
2874 CORE_ADDR distance = 0;
2875 struct bound_minimal_symbol msymbol;
2876
2877 /* If we know that this is not a text address, return failure. This is
2878 necessary because we loop based on the block's high and low code
2879 addresses, which do not include the data ranges, and because
2880 we call find_pc_sect_psymtab which has a similar restriction based
2881 on the partial_symtab's texthigh and textlow. */
2882 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2883 if (msymbol.minsym && msymbol.minsym->data_p ())
2884 return NULL;
2885
2886 /* Search all symtabs for the one whose file contains our address, and which
2887 is the smallest of all the ones containing the address. This is designed
2888 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2889 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2890 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2891
2892 This happens for native ecoff format, where code from included files
2893 gets its own symtab. The symtab for the included file should have
2894 been read in already via the dependency mechanism.
2895 It might be swifter to create several symtabs with the same name
2896 like xcoff does (I'm not sure).
2897
2898 It also happens for objfiles that have their functions reordered.
2899 For these, the symtab we are looking for is not necessarily read in. */
2900
2901 for (objfile *obj_file : current_program_space->objfiles ())
2902 {
2903 for (compunit_symtab *cust : obj_file->compunits ())
2904 {
2905 const struct block *b;
2906 const struct blockvector *bv;
2907
2908 bv = COMPUNIT_BLOCKVECTOR (cust);
2909 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2910
2911 if (BLOCK_START (b) <= pc
2912 && BLOCK_END (b) > pc
2913 && (distance == 0
2914 || BLOCK_END (b) - BLOCK_START (b) < distance))
2915 {
2916 /* For an objfile that has its functions reordered,
2917 find_pc_psymtab will find the proper partial symbol table
2918 and we simply return its corresponding symtab. */
2919 /* In order to better support objfiles that contain both
2920 stabs and coff debugging info, we continue on if a psymtab
2921 can't be found. */
2922 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2923 {
2924 struct compunit_symtab *result;
2925
2926 result
2927 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2928 msymbol,
2929 pc,
2930 section,
2931 0);
2932 if (result != NULL)
2933 return result;
2934 }
2935 if (section != 0)
2936 {
2937 struct block_iterator iter;
2938 struct symbol *sym = NULL;
2939
2940 ALL_BLOCK_SYMBOLS (b, iter, sym)
2941 {
2942 fixup_symbol_section (sym, obj_file);
2943 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2944 sym),
2945 section))
2946 break;
2947 }
2948 if (sym == NULL)
2949 continue; /* No symbol in this symtab matches
2950 section. */
2951 }
2952 distance = BLOCK_END (b) - BLOCK_START (b);
2953 best_cust = cust;
2954 }
2955 }
2956 }
2957
2958 if (best_cust != NULL)
2959 return best_cust;
2960
2961 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2962
2963 for (objfile *objf : current_program_space->objfiles ())
2964 {
2965 struct compunit_symtab *result;
2966
2967 if (!objf->sf)
2968 continue;
2969 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2970 msymbol,
2971 pc, section,
2972 1);
2973 if (result != NULL)
2974 return result;
2975 }
2976
2977 return NULL;
2978 }
2979
2980 /* Find the compunit symtab associated with PC.
2981 This will read in debug info as necessary.
2982 Backward compatibility, no section. */
2983
2984 struct compunit_symtab *
2985 find_pc_compunit_symtab (CORE_ADDR pc)
2986 {
2987 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2988 }
2989
2990 /* See symtab.h. */
2991
2992 struct symbol *
2993 find_symbol_at_address (CORE_ADDR address)
2994 {
2995 for (objfile *objfile : current_program_space->objfiles ())
2996 {
2997 if (objfile->sf == NULL
2998 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2999 continue;
3000
3001 struct compunit_symtab *symtab
3002 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3003 if (symtab != NULL)
3004 {
3005 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3006
3007 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3008 {
3009 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3010 struct block_iterator iter;
3011 struct symbol *sym;
3012
3013 ALL_BLOCK_SYMBOLS (b, iter, sym)
3014 {
3015 if (SYMBOL_CLASS (sym) == LOC_STATIC
3016 && SYMBOL_VALUE_ADDRESS (sym) == address)
3017 return sym;
3018 }
3019 }
3020 }
3021 }
3022
3023 return NULL;
3024 }
3025
3026 \f
3027
3028 /* Find the source file and line number for a given PC value and SECTION.
3029 Return a structure containing a symtab pointer, a line number,
3030 and a pc range for the entire source line.
3031 The value's .pc field is NOT the specified pc.
3032 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3033 use the line that ends there. Otherwise, in that case, the line
3034 that begins there is used. */
3035
3036 /* The big complication here is that a line may start in one file, and end just
3037 before the start of another file. This usually occurs when you #include
3038 code in the middle of a subroutine. To properly find the end of a line's PC
3039 range, we must search all symtabs associated with this compilation unit, and
3040 find the one whose first PC is closer than that of the next line in this
3041 symtab. */
3042
3043 struct symtab_and_line
3044 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3045 {
3046 struct compunit_symtab *cust;
3047 struct linetable *l;
3048 int len;
3049 struct linetable_entry *item;
3050 const struct blockvector *bv;
3051 struct bound_minimal_symbol msymbol;
3052
3053 /* Info on best line seen so far, and where it starts, and its file. */
3054
3055 struct linetable_entry *best = NULL;
3056 CORE_ADDR best_end = 0;
3057 struct symtab *best_symtab = 0;
3058
3059 /* Store here the first line number
3060 of a file which contains the line at the smallest pc after PC.
3061 If we don't find a line whose range contains PC,
3062 we will use a line one less than this,
3063 with a range from the start of that file to the first line's pc. */
3064 struct linetable_entry *alt = NULL;
3065
3066 /* Info on best line seen in this file. */
3067
3068 struct linetable_entry *prev;
3069
3070 /* If this pc is not from the current frame,
3071 it is the address of the end of a call instruction.
3072 Quite likely that is the start of the following statement.
3073 But what we want is the statement containing the instruction.
3074 Fudge the pc to make sure we get that. */
3075
3076 /* It's tempting to assume that, if we can't find debugging info for
3077 any function enclosing PC, that we shouldn't search for line
3078 number info, either. However, GAS can emit line number info for
3079 assembly files --- very helpful when debugging hand-written
3080 assembly code. In such a case, we'd have no debug info for the
3081 function, but we would have line info. */
3082
3083 if (notcurrent)
3084 pc -= 1;
3085
3086 /* elz: added this because this function returned the wrong
3087 information if the pc belongs to a stub (import/export)
3088 to call a shlib function. This stub would be anywhere between
3089 two functions in the target, and the line info was erroneously
3090 taken to be the one of the line before the pc. */
3091
3092 /* RT: Further explanation:
3093
3094 * We have stubs (trampolines) inserted between procedures.
3095 *
3096 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3097 * exists in the main image.
3098 *
3099 * In the minimal symbol table, we have a bunch of symbols
3100 * sorted by start address. The stubs are marked as "trampoline",
3101 * the others appear as text. E.g.:
3102 *
3103 * Minimal symbol table for main image
3104 * main: code for main (text symbol)
3105 * shr1: stub (trampoline symbol)
3106 * foo: code for foo (text symbol)
3107 * ...
3108 * Minimal symbol table for "shr1" image:
3109 * ...
3110 * shr1: code for shr1 (text symbol)
3111 * ...
3112 *
3113 * So the code below is trying to detect if we are in the stub
3114 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3115 * and if found, do the symbolization from the real-code address
3116 * rather than the stub address.
3117 *
3118 * Assumptions being made about the minimal symbol table:
3119 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3120 * if we're really in the trampoline.s If we're beyond it (say
3121 * we're in "foo" in the above example), it'll have a closer
3122 * symbol (the "foo" text symbol for example) and will not
3123 * return the trampoline.
3124 * 2. lookup_minimal_symbol_text() will find a real text symbol
3125 * corresponding to the trampoline, and whose address will
3126 * be different than the trampoline address. I put in a sanity
3127 * check for the address being the same, to avoid an
3128 * infinite recursion.
3129 */
3130 msymbol = lookup_minimal_symbol_by_pc (pc);
3131 if (msymbol.minsym != NULL)
3132 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3133 {
3134 struct bound_minimal_symbol mfunsym
3135 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3136 NULL);
3137
3138 if (mfunsym.minsym == NULL)
3139 /* I eliminated this warning since it is coming out
3140 * in the following situation:
3141 * gdb shmain // test program with shared libraries
3142 * (gdb) break shr1 // function in shared lib
3143 * Warning: In stub for ...
3144 * In the above situation, the shared lib is not loaded yet,
3145 * so of course we can't find the real func/line info,
3146 * but the "break" still works, and the warning is annoying.
3147 * So I commented out the warning. RT */
3148 /* warning ("In stub for %s; unable to find real function/line info",
3149 msymbol->linkage_name ()); */
3150 ;
3151 /* fall through */
3152 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3153 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3154 /* Avoid infinite recursion */
3155 /* See above comment about why warning is commented out. */
3156 /* warning ("In stub for %s; unable to find real function/line info",
3157 msymbol->linkage_name ()); */
3158 ;
3159 /* fall through */
3160 else
3161 {
3162 /* Detect an obvious case of infinite recursion. If this
3163 should occur, we'd like to know about it, so error out,
3164 fatally. */
3165 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3166 internal_error (__FILE__, __LINE__,
3167 _("Infinite recursion detected in find_pc_sect_line;"
3168 "please file a bug report"));
3169
3170 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3171 }
3172 }
3173
3174 symtab_and_line val;
3175 val.pspace = current_program_space;
3176
3177 cust = find_pc_sect_compunit_symtab (pc, section);
3178 if (cust == NULL)
3179 {
3180 /* If no symbol information, return previous pc. */
3181 if (notcurrent)
3182 pc++;
3183 val.pc = pc;
3184 return val;
3185 }
3186
3187 bv = COMPUNIT_BLOCKVECTOR (cust);
3188
3189 /* Look at all the symtabs that share this blockvector.
3190 They all have the same apriori range, that we found was right;
3191 but they have different line tables. */
3192
3193 for (symtab *iter_s : compunit_filetabs (cust))
3194 {
3195 /* Find the best line in this symtab. */
3196 l = SYMTAB_LINETABLE (iter_s);
3197 if (!l)
3198 continue;
3199 len = l->nitems;
3200 if (len <= 0)
3201 {
3202 /* I think len can be zero if the symtab lacks line numbers
3203 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3204 I'm not sure which, and maybe it depends on the symbol
3205 reader). */
3206 continue;
3207 }
3208
3209 prev = NULL;
3210 item = l->item; /* Get first line info. */
3211
3212 /* Is this file's first line closer than the first lines of other files?
3213 If so, record this file, and its first line, as best alternate. */
3214 if (item->pc > pc && (!alt || item->pc < alt->pc))
3215 alt = item;
3216
3217 auto pc_compare = [](const CORE_ADDR & comp_pc,
3218 const struct linetable_entry & lhs)->bool
3219 {
3220 return comp_pc < lhs.pc;
3221 };
3222
3223 struct linetable_entry *first = item;
3224 struct linetable_entry *last = item + len;
3225 item = std::upper_bound (first, last, pc, pc_compare);
3226 if (item != first)
3227 {
3228 /* Found a matching item. Skip backwards over any end of
3229 sequence markers. */
3230 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3231 /* Nothing. */;
3232 }
3233
3234 /* At this point, prev points at the line whose start addr is <= pc, and
3235 item points at the next line. If we ran off the end of the linetable
3236 (pc >= start of the last line), then prev == item. If pc < start of
3237 the first line, prev will not be set. */
3238
3239 /* Is this file's best line closer than the best in the other files?
3240 If so, record this file, and its best line, as best so far. Don't
3241 save prev if it represents the end of a function (i.e. line number
3242 0) instead of a real line. */
3243
3244 if (prev && prev->line && (!best || prev->pc > best->pc))
3245 {
3246 best = prev;
3247 best_symtab = iter_s;
3248
3249 /* If during the binary search we land on a non-statement entry,
3250 scan backward through entries at the same address to see if
3251 there is an entry marked as is-statement. In theory this
3252 duplication should have been removed from the line table
3253 during construction, this is just a double check. If the line
3254 table has had the duplication removed then this should be
3255 pretty cheap. */
3256 if (!best->is_stmt)
3257 {
3258 struct linetable_entry *tmp = best;
3259 while (tmp > first && (tmp - 1)->pc == tmp->pc
3260 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3261 --tmp;
3262 if (tmp->is_stmt)
3263 best = tmp;
3264 }
3265
3266 /* Discard BEST_END if it's before the PC of the current BEST. */
3267 if (best_end <= best->pc)
3268 best_end = 0;
3269 }
3270
3271 /* If another line (denoted by ITEM) is in the linetable and its
3272 PC is after BEST's PC, but before the current BEST_END, then
3273 use ITEM's PC as the new best_end. */
3274 if (best && item < last && item->pc > best->pc
3275 && (best_end == 0 || best_end > item->pc))
3276 best_end = item->pc;
3277 }
3278
3279 if (!best_symtab)
3280 {
3281 /* If we didn't find any line number info, just return zeros.
3282 We used to return alt->line - 1 here, but that could be
3283 anywhere; if we don't have line number info for this PC,
3284 don't make some up. */
3285 val.pc = pc;
3286 }
3287 else if (best->line == 0)
3288 {
3289 /* If our best fit is in a range of PC's for which no line
3290 number info is available (line number is zero) then we didn't
3291 find any valid line information. */
3292 val.pc = pc;
3293 }
3294 else
3295 {
3296 val.is_stmt = best->is_stmt;
3297 val.symtab = best_symtab;
3298 val.line = best->line;
3299 val.pc = best->pc;
3300 if (best_end && (!alt || best_end < alt->pc))
3301 val.end = best_end;
3302 else if (alt)
3303 val.end = alt->pc;
3304 else
3305 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3306 }
3307 val.section = section;
3308 return val;
3309 }
3310
3311 /* Backward compatibility (no section). */
3312
3313 struct symtab_and_line
3314 find_pc_line (CORE_ADDR pc, int notcurrent)
3315 {
3316 struct obj_section *section;
3317
3318 section = find_pc_overlay (pc);
3319 if (pc_in_unmapped_range (pc, section))
3320 pc = overlay_mapped_address (pc, section);
3321 return find_pc_sect_line (pc, section, notcurrent);
3322 }
3323
3324 /* See symtab.h. */
3325
3326 struct symtab *
3327 find_pc_line_symtab (CORE_ADDR pc)
3328 {
3329 struct symtab_and_line sal;
3330
3331 /* This always passes zero for NOTCURRENT to find_pc_line.
3332 There are currently no callers that ever pass non-zero. */
3333 sal = find_pc_line (pc, 0);
3334 return sal.symtab;
3335 }
3336 \f
3337 /* Find line number LINE in any symtab whose name is the same as
3338 SYMTAB.
3339
3340 If found, return the symtab that contains the linetable in which it was
3341 found, set *INDEX to the index in the linetable of the best entry
3342 found, and set *EXACT_MATCH to true if the value returned is an
3343 exact match.
3344
3345 If not found, return NULL. */
3346
3347 struct symtab *
3348 find_line_symtab (struct symtab *sym_tab, int line,
3349 int *index, bool *exact_match)
3350 {
3351 int exact = 0; /* Initialized here to avoid a compiler warning. */
3352
3353 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3354 so far seen. */
3355
3356 int best_index;
3357 struct linetable *best_linetable;
3358 struct symtab *best_symtab;
3359
3360 /* First try looking it up in the given symtab. */
3361 best_linetable = SYMTAB_LINETABLE (sym_tab);
3362 best_symtab = sym_tab;
3363 best_index = find_line_common (best_linetable, line, &exact, 0);
3364 if (best_index < 0 || !exact)
3365 {
3366 /* Didn't find an exact match. So we better keep looking for
3367 another symtab with the same name. In the case of xcoff,
3368 multiple csects for one source file (produced by IBM's FORTRAN
3369 compiler) produce multiple symtabs (this is unavoidable
3370 assuming csects can be at arbitrary places in memory and that
3371 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3372
3373 /* BEST is the smallest linenumber > LINE so far seen,
3374 or 0 if none has been seen so far.
3375 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3376 int best;
3377
3378 if (best_index >= 0)
3379 best = best_linetable->item[best_index].line;
3380 else
3381 best = 0;
3382
3383 for (objfile *objfile : current_program_space->objfiles ())
3384 {
3385 if (objfile->sf)
3386 objfile->sf->qf->expand_symtabs_with_fullname
3387 (objfile, symtab_to_fullname (sym_tab));
3388 }
3389
3390 for (objfile *objfile : current_program_space->objfiles ())
3391 {
3392 for (compunit_symtab *cu : objfile->compunits ())
3393 {
3394 for (symtab *s : compunit_filetabs (cu))
3395 {
3396 struct linetable *l;
3397 int ind;
3398
3399 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3400 continue;
3401 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3402 symtab_to_fullname (s)) != 0)
3403 continue;
3404 l = SYMTAB_LINETABLE (s);
3405 ind = find_line_common (l, line, &exact, 0);
3406 if (ind >= 0)
3407 {
3408 if (exact)
3409 {
3410 best_index = ind;
3411 best_linetable = l;
3412 best_symtab = s;
3413 goto done;
3414 }
3415 if (best == 0 || l->item[ind].line < best)
3416 {
3417 best = l->item[ind].line;
3418 best_index = ind;
3419 best_linetable = l;
3420 best_symtab = s;
3421 }
3422 }
3423 }
3424 }
3425 }
3426 }
3427 done:
3428 if (best_index < 0)
3429 return NULL;
3430
3431 if (index)
3432 *index = best_index;
3433 if (exact_match)
3434 *exact_match = (exact != 0);
3435
3436 return best_symtab;
3437 }
3438
3439 /* Given SYMTAB, returns all the PCs function in the symtab that
3440 exactly match LINE. Returns an empty vector if there are no exact
3441 matches, but updates BEST_ITEM in this case. */
3442
3443 std::vector<CORE_ADDR>
3444 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3445 struct linetable_entry **best_item)
3446 {
3447 int start = 0;
3448 std::vector<CORE_ADDR> result;
3449
3450 /* First, collect all the PCs that are at this line. */
3451 while (1)
3452 {
3453 int was_exact;
3454 int idx;
3455
3456 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3457 start);
3458 if (idx < 0)
3459 break;
3460
3461 if (!was_exact)
3462 {
3463 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3464
3465 if (*best_item == NULL
3466 || (item->line < (*best_item)->line && item->is_stmt))
3467 *best_item = item;
3468
3469 break;
3470 }
3471
3472 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3473 start = idx + 1;
3474 }
3475
3476 return result;
3477 }
3478
3479 \f
3480 /* Set the PC value for a given source file and line number and return true.
3481 Returns false for invalid line number (and sets the PC to 0).
3482 The source file is specified with a struct symtab. */
3483
3484 bool
3485 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3486 {
3487 struct linetable *l;
3488 int ind;
3489
3490 *pc = 0;
3491 if (symtab == 0)
3492 return false;
3493
3494 symtab = find_line_symtab (symtab, line, &ind, NULL);
3495 if (symtab != NULL)
3496 {
3497 l = SYMTAB_LINETABLE (symtab);
3498 *pc = l->item[ind].pc;
3499 return true;
3500 }
3501 else
3502 return false;
3503 }
3504
3505 /* Find the range of pc values in a line.
3506 Store the starting pc of the line into *STARTPTR
3507 and the ending pc (start of next line) into *ENDPTR.
3508 Returns true to indicate success.
3509 Returns false if could not find the specified line. */
3510
3511 bool
3512 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3513 CORE_ADDR *endptr)
3514 {
3515 CORE_ADDR startaddr;
3516 struct symtab_and_line found_sal;
3517
3518 startaddr = sal.pc;
3519 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3520 return false;
3521
3522 /* This whole function is based on address. For example, if line 10 has
3523 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3524 "info line *0x123" should say the line goes from 0x100 to 0x200
3525 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3526 This also insures that we never give a range like "starts at 0x134
3527 and ends at 0x12c". */
3528
3529 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3530 if (found_sal.line != sal.line)
3531 {
3532 /* The specified line (sal) has zero bytes. */
3533 *startptr = found_sal.pc;
3534 *endptr = found_sal.pc;
3535 }
3536 else
3537 {
3538 *startptr = found_sal.pc;
3539 *endptr = found_sal.end;
3540 }
3541 return true;
3542 }
3543
3544 /* Given a line table and a line number, return the index into the line
3545 table for the pc of the nearest line whose number is >= the specified one.
3546 Return -1 if none is found. The value is >= 0 if it is an index.
3547 START is the index at which to start searching the line table.
3548
3549 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3550
3551 static int
3552 find_line_common (struct linetable *l, int lineno,
3553 int *exact_match, int start)
3554 {
3555 int i;
3556 int len;
3557
3558 /* BEST is the smallest linenumber > LINENO so far seen,
3559 or 0 if none has been seen so far.
3560 BEST_INDEX identifies the item for it. */
3561
3562 int best_index = -1;
3563 int best = 0;
3564
3565 *exact_match = 0;
3566
3567 if (lineno <= 0)
3568 return -1;
3569 if (l == 0)
3570 return -1;
3571
3572 len = l->nitems;
3573 for (i = start; i < len; i++)
3574 {
3575 struct linetable_entry *item = &(l->item[i]);
3576
3577 /* Ignore non-statements. */
3578 if (!item->is_stmt)
3579 continue;
3580
3581 if (item->line == lineno)
3582 {
3583 /* Return the first (lowest address) entry which matches. */
3584 *exact_match = 1;
3585 return i;
3586 }
3587
3588 if (item->line > lineno && (best == 0 || item->line < best))
3589 {
3590 best = item->line;
3591 best_index = i;
3592 }
3593 }
3594
3595 /* If we got here, we didn't get an exact match. */
3596 return best_index;
3597 }
3598
3599 bool
3600 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3601 {
3602 struct symtab_and_line sal;
3603
3604 sal = find_pc_line (pc, 0);
3605 *startptr = sal.pc;
3606 *endptr = sal.end;
3607 return sal.symtab != 0;
3608 }
3609
3610 /* Helper for find_function_start_sal. Does most of the work, except
3611 setting the sal's symbol. */
3612
3613 static symtab_and_line
3614 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3615 bool funfirstline)
3616 {
3617 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3618
3619 if (funfirstline && sal.symtab != NULL
3620 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3621 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3622 {
3623 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3624
3625 sal.pc = func_addr;
3626 if (gdbarch_skip_entrypoint_p (gdbarch))
3627 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3628 return sal;
3629 }
3630
3631 /* We always should have a line for the function start address.
3632 If we don't, something is odd. Create a plain SAL referring
3633 just the PC and hope that skip_prologue_sal (if requested)
3634 can find a line number for after the prologue. */
3635 if (sal.pc < func_addr)
3636 {
3637 sal = {};
3638 sal.pspace = current_program_space;
3639 sal.pc = func_addr;
3640 sal.section = section;
3641 }
3642
3643 if (funfirstline)
3644 skip_prologue_sal (&sal);
3645
3646 return sal;
3647 }
3648
3649 /* See symtab.h. */
3650
3651 symtab_and_line
3652 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3653 bool funfirstline)
3654 {
3655 symtab_and_line sal
3656 = find_function_start_sal_1 (func_addr, section, funfirstline);
3657
3658 /* find_function_start_sal_1 does a linetable search, so it finds
3659 the symtab and linenumber, but not a symbol. Fill in the
3660 function symbol too. */
3661 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3662
3663 return sal;
3664 }
3665
3666 /* See symtab.h. */
3667
3668 symtab_and_line
3669 find_function_start_sal (symbol *sym, bool funfirstline)
3670 {
3671 fixup_symbol_section (sym, NULL);
3672 symtab_and_line sal
3673 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3674 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3675 funfirstline);
3676 sal.symbol = sym;
3677 return sal;
3678 }
3679
3680
3681 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3682 address for that function that has an entry in SYMTAB's line info
3683 table. If such an entry cannot be found, return FUNC_ADDR
3684 unaltered. */
3685
3686 static CORE_ADDR
3687 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3688 {
3689 CORE_ADDR func_start, func_end;
3690 struct linetable *l;
3691 int i;
3692
3693 /* Give up if this symbol has no lineinfo table. */
3694 l = SYMTAB_LINETABLE (symtab);
3695 if (l == NULL)
3696 return func_addr;
3697
3698 /* Get the range for the function's PC values, or give up if we
3699 cannot, for some reason. */
3700 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3701 return func_addr;
3702
3703 /* Linetable entries are ordered by PC values, see the commentary in
3704 symtab.h where `struct linetable' is defined. Thus, the first
3705 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3706 address we are looking for. */
3707 for (i = 0; i < l->nitems; i++)
3708 {
3709 struct linetable_entry *item = &(l->item[i]);
3710
3711 /* Don't use line numbers of zero, they mark special entries in
3712 the table. See the commentary on symtab.h before the
3713 definition of struct linetable. */
3714 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3715 return item->pc;
3716 }
3717
3718 return func_addr;
3719 }
3720
3721 /* Adjust SAL to the first instruction past the function prologue.
3722 If the PC was explicitly specified, the SAL is not changed.
3723 If the line number was explicitly specified then the SAL can still be
3724 updated, unless the language for SAL is assembler, in which case the SAL
3725 will be left unchanged.
3726 If SAL is already past the prologue, then do nothing. */
3727
3728 void
3729 skip_prologue_sal (struct symtab_and_line *sal)
3730 {
3731 struct symbol *sym;
3732 struct symtab_and_line start_sal;
3733 CORE_ADDR pc, saved_pc;
3734 struct obj_section *section;
3735 const char *name;
3736 struct objfile *objfile;
3737 struct gdbarch *gdbarch;
3738 const struct block *b, *function_block;
3739 int force_skip, skip;
3740
3741 /* Do not change the SAL if PC was specified explicitly. */
3742 if (sal->explicit_pc)
3743 return;
3744
3745 /* In assembly code, if the user asks for a specific line then we should
3746 not adjust the SAL. The user already has instruction level
3747 visibility in this case, so selecting a line other than one requested
3748 is likely to be the wrong choice. */
3749 if (sal->symtab != nullptr
3750 && sal->explicit_line
3751 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3752 return;
3753
3754 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3755
3756 switch_to_program_space_and_thread (sal->pspace);
3757
3758 sym = find_pc_sect_function (sal->pc, sal->section);
3759 if (sym != NULL)
3760 {
3761 fixup_symbol_section (sym, NULL);
3762
3763 objfile = symbol_objfile (sym);
3764 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3765 section = SYMBOL_OBJ_SECTION (objfile, sym);
3766 name = sym->linkage_name ();
3767 }
3768 else
3769 {
3770 struct bound_minimal_symbol msymbol
3771 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3772
3773 if (msymbol.minsym == NULL)
3774 return;
3775
3776 objfile = msymbol.objfile;
3777 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3778 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3779 name = msymbol.minsym->linkage_name ();
3780 }
3781
3782 gdbarch = get_objfile_arch (objfile);
3783
3784 /* Process the prologue in two passes. In the first pass try to skip the
3785 prologue (SKIP is true) and verify there is a real need for it (indicated
3786 by FORCE_SKIP). If no such reason was found run a second pass where the
3787 prologue is not skipped (SKIP is false). */
3788
3789 skip = 1;
3790 force_skip = 1;
3791
3792 /* Be conservative - allow direct PC (without skipping prologue) only if we
3793 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3794 have to be set by the caller so we use SYM instead. */
3795 if (sym != NULL
3796 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3797 force_skip = 0;
3798
3799 saved_pc = pc;
3800 do
3801 {
3802 pc = saved_pc;
3803
3804 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3805 so that gdbarch_skip_prologue has something unique to work on. */
3806 if (section_is_overlay (section) && !section_is_mapped (section))
3807 pc = overlay_unmapped_address (pc, section);
3808
3809 /* Skip "first line" of function (which is actually its prologue). */
3810 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3811 if (gdbarch_skip_entrypoint_p (gdbarch))
3812 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3813 if (skip)
3814 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3815
3816 /* For overlays, map pc back into its mapped VMA range. */
3817 pc = overlay_mapped_address (pc, section);
3818
3819 /* Calculate line number. */
3820 start_sal = find_pc_sect_line (pc, section, 0);
3821
3822 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3823 line is still part of the same function. */
3824 if (skip && start_sal.pc != pc
3825 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3826 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3827 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3828 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3829 {
3830 /* First pc of next line */
3831 pc = start_sal.end;
3832 /* Recalculate the line number (might not be N+1). */
3833 start_sal = find_pc_sect_line (pc, section, 0);
3834 }
3835
3836 /* On targets with executable formats that don't have a concept of
3837 constructors (ELF with .init has, PE doesn't), gcc emits a call
3838 to `__main' in `main' between the prologue and before user
3839 code. */
3840 if (gdbarch_skip_main_prologue_p (gdbarch)
3841 && name && strcmp_iw (name, "main") == 0)
3842 {
3843 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3844 /* Recalculate the line number (might not be N+1). */
3845 start_sal = find_pc_sect_line (pc, section, 0);
3846 force_skip = 1;
3847 }
3848 }
3849 while (!force_skip && skip--);
3850
3851 /* If we still don't have a valid source line, try to find the first
3852 PC in the lineinfo table that belongs to the same function. This
3853 happens with COFF debug info, which does not seem to have an
3854 entry in lineinfo table for the code after the prologue which has
3855 no direct relation to source. For example, this was found to be
3856 the case with the DJGPP target using "gcc -gcoff" when the
3857 compiler inserted code after the prologue to make sure the stack
3858 is aligned. */
3859 if (!force_skip && sym && start_sal.symtab == NULL)
3860 {
3861 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3862 /* Recalculate the line number. */
3863 start_sal = find_pc_sect_line (pc, section, 0);
3864 }
3865
3866 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3867 forward SAL to the end of the prologue. */
3868 if (sal->pc >= pc)
3869 return;
3870
3871 sal->pc = pc;
3872 sal->section = section;
3873 sal->symtab = start_sal.symtab;
3874 sal->line = start_sal.line;
3875 sal->end = start_sal.end;
3876
3877 /* Check if we are now inside an inlined function. If we can,
3878 use the call site of the function instead. */
3879 b = block_for_pc_sect (sal->pc, sal->section);
3880 function_block = NULL;
3881 while (b != NULL)
3882 {
3883 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3884 function_block = b;
3885 else if (BLOCK_FUNCTION (b) != NULL)
3886 break;
3887 b = BLOCK_SUPERBLOCK (b);
3888 }
3889 if (function_block != NULL
3890 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3891 {
3892 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3893 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3894 }
3895 }
3896
3897 /* Given PC at the function's start address, attempt to find the
3898 prologue end using SAL information. Return zero if the skip fails.
3899
3900 A non-optimized prologue traditionally has one SAL for the function
3901 and a second for the function body. A single line function has
3902 them both pointing at the same line.
3903
3904 An optimized prologue is similar but the prologue may contain
3905 instructions (SALs) from the instruction body. Need to skip those
3906 while not getting into the function body.
3907
3908 The functions end point and an increasing SAL line are used as
3909 indicators of the prologue's endpoint.
3910
3911 This code is based on the function refine_prologue_limit
3912 (found in ia64). */
3913
3914 CORE_ADDR
3915 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3916 {
3917 struct symtab_and_line prologue_sal;
3918 CORE_ADDR start_pc;
3919 CORE_ADDR end_pc;
3920 const struct block *bl;
3921
3922 /* Get an initial range for the function. */
3923 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3924 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3925
3926 prologue_sal = find_pc_line (start_pc, 0);
3927 if (prologue_sal.line != 0)
3928 {
3929 /* For languages other than assembly, treat two consecutive line
3930 entries at the same address as a zero-instruction prologue.
3931 The GNU assembler emits separate line notes for each instruction
3932 in a multi-instruction macro, but compilers generally will not
3933 do this. */
3934 if (prologue_sal.symtab->language != language_asm)
3935 {
3936 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3937 int idx = 0;
3938
3939 /* Skip any earlier lines, and any end-of-sequence marker
3940 from a previous function. */
3941 while (linetable->item[idx].pc != prologue_sal.pc
3942 || linetable->item[idx].line == 0)
3943 idx++;
3944
3945 if (idx+1 < linetable->nitems
3946 && linetable->item[idx+1].line != 0
3947 && linetable->item[idx+1].pc == start_pc)
3948 return start_pc;
3949 }
3950
3951 /* If there is only one sal that covers the entire function,
3952 then it is probably a single line function, like
3953 "foo(){}". */
3954 if (prologue_sal.end >= end_pc)
3955 return 0;
3956
3957 while (prologue_sal.end < end_pc)
3958 {
3959 struct symtab_and_line sal;
3960
3961 sal = find_pc_line (prologue_sal.end, 0);
3962 if (sal.line == 0)
3963 break;
3964 /* Assume that a consecutive SAL for the same (or larger)
3965 line mark the prologue -> body transition. */
3966 if (sal.line >= prologue_sal.line)
3967 break;
3968 /* Likewise if we are in a different symtab altogether
3969 (e.g. within a file included via #include).  */
3970 if (sal.symtab != prologue_sal.symtab)
3971 break;
3972
3973 /* The line number is smaller. Check that it's from the
3974 same function, not something inlined. If it's inlined,
3975 then there is no point comparing the line numbers. */
3976 bl = block_for_pc (prologue_sal.end);
3977 while (bl)
3978 {
3979 if (block_inlined_p (bl))
3980 break;
3981 if (BLOCK_FUNCTION (bl))
3982 {
3983 bl = NULL;
3984 break;
3985 }
3986 bl = BLOCK_SUPERBLOCK (bl);
3987 }
3988 if (bl != NULL)
3989 break;
3990
3991 /* The case in which compiler's optimizer/scheduler has
3992 moved instructions into the prologue. We look ahead in
3993 the function looking for address ranges whose
3994 corresponding line number is less the first one that we
3995 found for the function. This is more conservative then
3996 refine_prologue_limit which scans a large number of SALs
3997 looking for any in the prologue. */
3998 prologue_sal = sal;
3999 }
4000 }
4001
4002 if (prologue_sal.end < end_pc)
4003 /* Return the end of this line, or zero if we could not find a
4004 line. */
4005 return prologue_sal.end;
4006 else
4007 /* Don't return END_PC, which is past the end of the function. */
4008 return prologue_sal.pc;
4009 }
4010
4011 /* See symtab.h. */
4012
4013 symbol *
4014 find_function_alias_target (bound_minimal_symbol msymbol)
4015 {
4016 CORE_ADDR func_addr;
4017 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4018 return NULL;
4019
4020 symbol *sym = find_pc_function (func_addr);
4021 if (sym != NULL
4022 && SYMBOL_CLASS (sym) == LOC_BLOCK
4023 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4024 return sym;
4025
4026 return NULL;
4027 }
4028
4029 \f
4030 /* If P is of the form "operator[ \t]+..." where `...' is
4031 some legitimate operator text, return a pointer to the
4032 beginning of the substring of the operator text.
4033 Otherwise, return "". */
4034
4035 static const char *
4036 operator_chars (const char *p, const char **end)
4037 {
4038 *end = "";
4039 if (!startswith (p, CP_OPERATOR_STR))
4040 return *end;
4041 p += CP_OPERATOR_LEN;
4042
4043 /* Don't get faked out by `operator' being part of a longer
4044 identifier. */
4045 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4046 return *end;
4047
4048 /* Allow some whitespace between `operator' and the operator symbol. */
4049 while (*p == ' ' || *p == '\t')
4050 p++;
4051
4052 /* Recognize 'operator TYPENAME'. */
4053
4054 if (isalpha (*p) || *p == '_' || *p == '$')
4055 {
4056 const char *q = p + 1;
4057
4058 while (isalnum (*q) || *q == '_' || *q == '$')
4059 q++;
4060 *end = q;
4061 return p;
4062 }
4063
4064 while (*p)
4065 switch (*p)
4066 {
4067 case '\\': /* regexp quoting */
4068 if (p[1] == '*')
4069 {
4070 if (p[2] == '=') /* 'operator\*=' */
4071 *end = p + 3;
4072 else /* 'operator\*' */
4073 *end = p + 2;
4074 return p;
4075 }
4076 else if (p[1] == '[')
4077 {
4078 if (p[2] == ']')
4079 error (_("mismatched quoting on brackets, "
4080 "try 'operator\\[\\]'"));
4081 else if (p[2] == '\\' && p[3] == ']')
4082 {
4083 *end = p + 4; /* 'operator\[\]' */
4084 return p;
4085 }
4086 else
4087 error (_("nothing is allowed between '[' and ']'"));
4088 }
4089 else
4090 {
4091 /* Gratuitous quote: skip it and move on. */
4092 p++;
4093 continue;
4094 }
4095 break;
4096 case '!':
4097 case '=':
4098 case '*':
4099 case '/':
4100 case '%':
4101 case '^':
4102 if (p[1] == '=')
4103 *end = p + 2;
4104 else
4105 *end = p + 1;
4106 return p;
4107 case '<':
4108 case '>':
4109 case '+':
4110 case '-':
4111 case '&':
4112 case '|':
4113 if (p[0] == '-' && p[1] == '>')
4114 {
4115 /* Struct pointer member operator 'operator->'. */
4116 if (p[2] == '*')
4117 {
4118 *end = p + 3; /* 'operator->*' */
4119 return p;
4120 }
4121 else if (p[2] == '\\')
4122 {
4123 *end = p + 4; /* Hopefully 'operator->\*' */
4124 return p;
4125 }
4126 else
4127 {
4128 *end = p + 2; /* 'operator->' */
4129 return p;
4130 }
4131 }
4132 if (p[1] == '=' || p[1] == p[0])
4133 *end = p + 2;
4134 else
4135 *end = p + 1;
4136 return p;
4137 case '~':
4138 case ',':
4139 *end = p + 1;
4140 return p;
4141 case '(':
4142 if (p[1] != ')')
4143 error (_("`operator ()' must be specified "
4144 "without whitespace in `()'"));
4145 *end = p + 2;
4146 return p;
4147 case '?':
4148 if (p[1] != ':')
4149 error (_("`operator ?:' must be specified "
4150 "without whitespace in `?:'"));
4151 *end = p + 2;
4152 return p;
4153 case '[':
4154 if (p[1] != ']')
4155 error (_("`operator []' must be specified "
4156 "without whitespace in `[]'"));
4157 *end = p + 2;
4158 return p;
4159 default:
4160 error (_("`operator %s' not supported"), p);
4161 break;
4162 }
4163
4164 *end = "";
4165 return *end;
4166 }
4167 \f
4168
4169 /* What part to match in a file name. */
4170
4171 struct filename_partial_match_opts
4172 {
4173 /* Only match the directory name part. */
4174 bool dirname = false;
4175
4176 /* Only match the basename part. */
4177 bool basename = false;
4178 };
4179
4180 /* Data structure to maintain printing state for output_source_filename. */
4181
4182 struct output_source_filename_data
4183 {
4184 /* Output only filenames matching REGEXP. */
4185 std::string regexp;
4186 gdb::optional<compiled_regex> c_regexp;
4187 /* Possibly only match a part of the filename. */
4188 filename_partial_match_opts partial_match;
4189
4190
4191 /* Cache of what we've seen so far. */
4192 struct filename_seen_cache *filename_seen_cache;
4193
4194 /* Flag of whether we're printing the first one. */
4195 int first;
4196 };
4197
4198 /* Slave routine for sources_info. Force line breaks at ,'s.
4199 NAME is the name to print.
4200 DATA contains the state for printing and watching for duplicates. */
4201
4202 static void
4203 output_source_filename (const char *name,
4204 struct output_source_filename_data *data)
4205 {
4206 /* Since a single source file can result in several partial symbol
4207 tables, we need to avoid printing it more than once. Note: if
4208 some of the psymtabs are read in and some are not, it gets
4209 printed both under "Source files for which symbols have been
4210 read" and "Source files for which symbols will be read in on
4211 demand". I consider this a reasonable way to deal with the
4212 situation. I'm not sure whether this can also happen for
4213 symtabs; it doesn't hurt to check. */
4214
4215 /* Was NAME already seen? */
4216 if (data->filename_seen_cache->seen (name))
4217 {
4218 /* Yes; don't print it again. */
4219 return;
4220 }
4221
4222 /* Does it match data->regexp? */
4223 if (data->c_regexp.has_value ())
4224 {
4225 const char *to_match;
4226 std::string dirname;
4227
4228 if (data->partial_match.dirname)
4229 {
4230 dirname = ldirname (name);
4231 to_match = dirname.c_str ();
4232 }
4233 else if (data->partial_match.basename)
4234 to_match = lbasename (name);
4235 else
4236 to_match = name;
4237
4238 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4239 return;
4240 }
4241
4242 /* Print it and reset *FIRST. */
4243 if (! data->first)
4244 printf_filtered (", ");
4245 data->first = 0;
4246
4247 wrap_here ("");
4248 fputs_styled (name, file_name_style.style (), gdb_stdout);
4249 }
4250
4251 /* A callback for map_partial_symbol_filenames. */
4252
4253 static void
4254 output_partial_symbol_filename (const char *filename, const char *fullname,
4255 void *data)
4256 {
4257 output_source_filename (fullname ? fullname : filename,
4258 (struct output_source_filename_data *) data);
4259 }
4260
4261 using isrc_flag_option_def
4262 = gdb::option::flag_option_def<filename_partial_match_opts>;
4263
4264 static const gdb::option::option_def info_sources_option_defs[] = {
4265
4266 isrc_flag_option_def {
4267 "dirname",
4268 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4269 N_("Show only the files having a dirname matching REGEXP."),
4270 },
4271
4272 isrc_flag_option_def {
4273 "basename",
4274 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4275 N_("Show only the files having a basename matching REGEXP."),
4276 },
4277
4278 };
4279
4280 /* Create an option_def_group for the "info sources" options, with
4281 ISRC_OPTS as context. */
4282
4283 static inline gdb::option::option_def_group
4284 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4285 {
4286 return {{info_sources_option_defs}, isrc_opts};
4287 }
4288
4289 /* Prints the header message for the source files that will be printed
4290 with the matching info present in DATA. SYMBOL_MSG is a message
4291 that tells what will or has been done with the symbols of the
4292 matching source files. */
4293
4294 static void
4295 print_info_sources_header (const char *symbol_msg,
4296 const struct output_source_filename_data *data)
4297 {
4298 puts_filtered (symbol_msg);
4299 if (!data->regexp.empty ())
4300 {
4301 if (data->partial_match.dirname)
4302 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4303 data->regexp.c_str ());
4304 else if (data->partial_match.basename)
4305 printf_filtered (_("(basename matching regular expression \"%s\")"),
4306 data->regexp.c_str ());
4307 else
4308 printf_filtered (_("(filename matching regular expression \"%s\")"),
4309 data->regexp.c_str ());
4310 }
4311 puts_filtered ("\n");
4312 }
4313
4314 /* Completer for "info sources". */
4315
4316 static void
4317 info_sources_command_completer (cmd_list_element *ignore,
4318 completion_tracker &tracker,
4319 const char *text, const char *word)
4320 {
4321 const auto group = make_info_sources_options_def_group (nullptr);
4322 if (gdb::option::complete_options
4323 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4324 return;
4325 }
4326
4327 static void
4328 info_sources_command (const char *args, int from_tty)
4329 {
4330 struct output_source_filename_data data;
4331
4332 if (!have_full_symbols () && !have_partial_symbols ())
4333 {
4334 error (_("No symbol table is loaded. Use the \"file\" command."));
4335 }
4336
4337 filename_seen_cache filenames_seen;
4338
4339 auto group = make_info_sources_options_def_group (&data.partial_match);
4340
4341 gdb::option::process_options
4342 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4343
4344 if (args != NULL && *args != '\000')
4345 data.regexp = args;
4346
4347 data.filename_seen_cache = &filenames_seen;
4348 data.first = 1;
4349
4350 if (data.partial_match.dirname && data.partial_match.basename)
4351 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4352 if ((data.partial_match.dirname || data.partial_match.basename)
4353 && data.regexp.empty ())
4354 error (_("Missing REGEXP for 'info sources'."));
4355
4356 if (data.regexp.empty ())
4357 data.c_regexp.reset ();
4358 else
4359 {
4360 int cflags = REG_NOSUB;
4361 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4362 cflags |= REG_ICASE;
4363 #endif
4364 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4365 _("Invalid regexp"));
4366 }
4367
4368 print_info_sources_header
4369 (_("Source files for which symbols have been read in:\n"), &data);
4370
4371 for (objfile *objfile : current_program_space->objfiles ())
4372 {
4373 for (compunit_symtab *cu : objfile->compunits ())
4374 {
4375 for (symtab *s : compunit_filetabs (cu))
4376 {
4377 const char *fullname = symtab_to_fullname (s);
4378
4379 output_source_filename (fullname, &data);
4380 }
4381 }
4382 }
4383 printf_filtered ("\n\n");
4384
4385 print_info_sources_header
4386 (_("Source files for which symbols will be read in on demand:\n"), &data);
4387
4388 filenames_seen.clear ();
4389 data.first = 1;
4390 map_symbol_filenames (output_partial_symbol_filename, &data,
4391 1 /*need_fullname*/);
4392 printf_filtered ("\n");
4393 }
4394
4395 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4396 true compare only lbasename of FILENAMES. */
4397
4398 static bool
4399 file_matches (const char *file, const std::vector<const char *> &filenames,
4400 bool basenames)
4401 {
4402 if (filenames.empty ())
4403 return true;
4404
4405 for (const char *name : filenames)
4406 {
4407 name = (basenames ? lbasename (name) : name);
4408 if (compare_filenames_for_search (file, name))
4409 return true;
4410 }
4411
4412 return false;
4413 }
4414
4415 /* Helper function for std::sort on symbol_search objects. Can only sort
4416 symbols, not minimal symbols. */
4417
4418 int
4419 symbol_search::compare_search_syms (const symbol_search &sym_a,
4420 const symbol_search &sym_b)
4421 {
4422 int c;
4423
4424 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4425 symbol_symtab (sym_b.symbol)->filename);
4426 if (c != 0)
4427 return c;
4428
4429 if (sym_a.block != sym_b.block)
4430 return sym_a.block - sym_b.block;
4431
4432 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4433 }
4434
4435 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4436 If SYM has no symbol_type or symbol_name, returns false. */
4437
4438 bool
4439 treg_matches_sym_type_name (const compiled_regex &treg,
4440 const struct symbol *sym)
4441 {
4442 struct type *sym_type;
4443 std::string printed_sym_type_name;
4444
4445 if (symbol_lookup_debug > 1)
4446 {
4447 fprintf_unfiltered (gdb_stdlog,
4448 "treg_matches_sym_type_name\n sym %s\n",
4449 sym->natural_name ());
4450 }
4451
4452 sym_type = SYMBOL_TYPE (sym);
4453 if (sym_type == NULL)
4454 return false;
4455
4456 {
4457 scoped_switch_to_sym_language_if_auto l (sym);
4458
4459 printed_sym_type_name = type_to_string (sym_type);
4460 }
4461
4462
4463 if (symbol_lookup_debug > 1)
4464 {
4465 fprintf_unfiltered (gdb_stdlog,
4466 " sym_type_name %s\n",
4467 printed_sym_type_name.c_str ());
4468 }
4469
4470
4471 if (printed_sym_type_name.empty ())
4472 return false;
4473
4474 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4475 }
4476
4477 /* See symtab.h. */
4478
4479 bool
4480 global_symbol_searcher::is_suitable_msymbol
4481 (const enum search_domain kind, const minimal_symbol *msymbol)
4482 {
4483 switch (MSYMBOL_TYPE (msymbol))
4484 {
4485 case mst_data:
4486 case mst_bss:
4487 case mst_file_data:
4488 case mst_file_bss:
4489 return kind == VARIABLES_DOMAIN;
4490 case mst_text:
4491 case mst_file_text:
4492 case mst_solib_trampoline:
4493 case mst_text_gnu_ifunc:
4494 return kind == FUNCTIONS_DOMAIN;
4495 default:
4496 return false;
4497 }
4498 }
4499
4500 /* See symtab.h. */
4501
4502 bool
4503 global_symbol_searcher::expand_symtabs
4504 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4505 {
4506 enum search_domain kind = m_kind;
4507 bool found_msymbol = false;
4508
4509 if (objfile->sf)
4510 objfile->sf->qf->expand_symtabs_matching
4511 (objfile,
4512 [&] (const char *filename, bool basenames)
4513 {
4514 return file_matches (filename, filenames, basenames);
4515 },
4516 lookup_name_info::match_any (),
4517 [&] (const char *symname)
4518 {
4519 return (!preg.has_value ()
4520 || preg->exec (symname, 0, NULL, 0) == 0);
4521 },
4522 NULL,
4523 kind);
4524
4525 /* Here, we search through the minimal symbol tables for functions and
4526 variables that match, and force their symbols to be read. This is in
4527 particular necessary for demangled variable names, which are no longer
4528 put into the partial symbol tables. The symbol will then be found
4529 during the scan of symtabs later.
4530
4531 For functions, find_pc_symtab should succeed if we have debug info for
4532 the function, for variables we have to call
4533 lookup_symbol_in_objfile_from_linkage_name to determine if the
4534 variable has debug info. If the lookup fails, set found_msymbol so
4535 that we will rescan to print any matching symbols without debug info.
4536 We only search the objfile the msymbol came from, we no longer search
4537 all objfiles. In large programs (1000s of shared libs) searching all
4538 objfiles is not worth the pain. */
4539 if (filenames.empty ()
4540 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4541 {
4542 for (minimal_symbol *msymbol : objfile->msymbols ())
4543 {
4544 QUIT;
4545
4546 if (msymbol->created_by_gdb)
4547 continue;
4548
4549 if (is_suitable_msymbol (kind, msymbol))
4550 {
4551 if (!preg.has_value ()
4552 || preg->exec (msymbol->natural_name (), 0,
4553 NULL, 0) == 0)
4554 {
4555 /* An important side-effect of these lookup functions is
4556 to expand the symbol table if msymbol is found, later
4557 in the process we will add matching symbols or
4558 msymbols to the results list, and that requires that
4559 the symbols tables are expanded. */
4560 if (kind == FUNCTIONS_DOMAIN
4561 ? (find_pc_compunit_symtab
4562 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4563 == NULL)
4564 : (lookup_symbol_in_objfile_from_linkage_name
4565 (objfile, msymbol->linkage_name (),
4566 VAR_DOMAIN)
4567 .symbol == NULL))
4568 found_msymbol = true;
4569 }
4570 }
4571 }
4572 }
4573
4574 return found_msymbol;
4575 }
4576
4577 /* See symtab.h. */
4578
4579 bool
4580 global_symbol_searcher::add_matching_symbols
4581 (objfile *objfile,
4582 const gdb::optional<compiled_regex> &preg,
4583 const gdb::optional<compiled_regex> &treg,
4584 std::set<symbol_search> *result_set) const
4585 {
4586 enum search_domain kind = m_kind;
4587
4588 /* Add matching symbols (if not already present). */
4589 for (compunit_symtab *cust : objfile->compunits ())
4590 {
4591 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4592
4593 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4594 {
4595 struct block_iterator iter;
4596 struct symbol *sym;
4597 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4598
4599 ALL_BLOCK_SYMBOLS (b, iter, sym)
4600 {
4601 struct symtab *real_symtab = symbol_symtab (sym);
4602
4603 QUIT;
4604
4605 /* Check first sole REAL_SYMTAB->FILENAME. It does
4606 not need to be a substring of symtab_to_fullname as
4607 it may contain "./" etc. */
4608 if ((file_matches (real_symtab->filename, filenames, false)
4609 || ((basenames_may_differ
4610 || file_matches (lbasename (real_symtab->filename),
4611 filenames, true))
4612 && file_matches (symtab_to_fullname (real_symtab),
4613 filenames, false)))
4614 && ((!preg.has_value ()
4615 || preg->exec (sym->natural_name (), 0,
4616 NULL, 0) == 0)
4617 && ((kind == VARIABLES_DOMAIN
4618 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4619 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4620 && SYMBOL_CLASS (sym) != LOC_BLOCK
4621 /* LOC_CONST can be used for more than
4622 just enums, e.g., c++ static const
4623 members. We only want to skip enums
4624 here. */
4625 && !(SYMBOL_CLASS (sym) == LOC_CONST
4626 && (TYPE_CODE (SYMBOL_TYPE (sym))
4627 == TYPE_CODE_ENUM))
4628 && (!treg.has_value ()
4629 || treg_matches_sym_type_name (*treg, sym)))
4630 || (kind == FUNCTIONS_DOMAIN
4631 && SYMBOL_CLASS (sym) == LOC_BLOCK
4632 && (!treg.has_value ()
4633 || treg_matches_sym_type_name (*treg,
4634 sym)))
4635 || (kind == TYPES_DOMAIN
4636 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4637 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4638 || (kind == MODULES_DOMAIN
4639 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4640 && SYMBOL_LINE (sym) != 0))))
4641 {
4642 if (result_set->size () < m_max_search_results)
4643 {
4644 /* Match, insert if not already in the results. */
4645 symbol_search ss (block, sym);
4646 if (result_set->find (ss) == result_set->end ())
4647 result_set->insert (ss);
4648 }
4649 else
4650 return false;
4651 }
4652 }
4653 }
4654 }
4655
4656 return true;
4657 }
4658
4659 /* See symtab.h. */
4660
4661 bool
4662 global_symbol_searcher::add_matching_msymbols
4663 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4664 std::vector<symbol_search> *results) const
4665 {
4666 enum search_domain kind = m_kind;
4667
4668 for (minimal_symbol *msymbol : objfile->msymbols ())
4669 {
4670 QUIT;
4671
4672 if (msymbol->created_by_gdb)
4673 continue;
4674
4675 if (is_suitable_msymbol (kind, msymbol))
4676 {
4677 if (!preg.has_value ()
4678 || preg->exec (msymbol->natural_name (), 0,
4679 NULL, 0) == 0)
4680 {
4681 /* For functions we can do a quick check of whether the
4682 symbol might be found via find_pc_symtab. */
4683 if (kind != FUNCTIONS_DOMAIN
4684 || (find_pc_compunit_symtab
4685 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4686 == NULL))
4687 {
4688 if (lookup_symbol_in_objfile_from_linkage_name
4689 (objfile, msymbol->linkage_name (),
4690 VAR_DOMAIN).symbol == NULL)
4691 {
4692 /* Matching msymbol, add it to the results list. */
4693 if (results->size () < m_max_search_results)
4694 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4695 else
4696 return false;
4697 }
4698 }
4699 }
4700 }
4701 }
4702
4703 return true;
4704 }
4705
4706 /* See symtab.h. */
4707
4708 std::vector<symbol_search>
4709 global_symbol_searcher::search () const
4710 {
4711 gdb::optional<compiled_regex> preg;
4712 gdb::optional<compiled_regex> treg;
4713
4714 gdb_assert (m_kind != ALL_DOMAIN);
4715
4716 if (m_symbol_name_regexp != NULL)
4717 {
4718 const char *symbol_name_regexp = m_symbol_name_regexp;
4719
4720 /* Make sure spacing is right for C++ operators.
4721 This is just a courtesy to make the matching less sensitive
4722 to how many spaces the user leaves between 'operator'
4723 and <TYPENAME> or <OPERATOR>. */
4724 const char *opend;
4725 const char *opname = operator_chars (symbol_name_regexp, &opend);
4726
4727 if (*opname)
4728 {
4729 int fix = -1; /* -1 means ok; otherwise number of
4730 spaces needed. */
4731
4732 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4733 {
4734 /* There should 1 space between 'operator' and 'TYPENAME'. */
4735 if (opname[-1] != ' ' || opname[-2] == ' ')
4736 fix = 1;
4737 }
4738 else
4739 {
4740 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4741 if (opname[-1] == ' ')
4742 fix = 0;
4743 }
4744 /* If wrong number of spaces, fix it. */
4745 if (fix >= 0)
4746 {
4747 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4748
4749 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4750 symbol_name_regexp = tmp;
4751 }
4752 }
4753
4754 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4755 ? REG_ICASE : 0);
4756 preg.emplace (symbol_name_regexp, cflags,
4757 _("Invalid regexp"));
4758 }
4759
4760 if (m_symbol_type_regexp != NULL)
4761 {
4762 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4763 ? REG_ICASE : 0);
4764 treg.emplace (m_symbol_type_regexp, cflags,
4765 _("Invalid regexp"));
4766 }
4767
4768 bool found_msymbol = false;
4769 std::set<symbol_search> result_set;
4770 for (objfile *objfile : current_program_space->objfiles ())
4771 {
4772 /* Expand symtabs within objfile that possibly contain matching
4773 symbols. */
4774 found_msymbol |= expand_symtabs (objfile, preg);
4775
4776 /* Find matching symbols within OBJFILE and add them in to the
4777 RESULT_SET set. Use a set here so that we can easily detect
4778 duplicates as we go, and can therefore track how many unique
4779 matches we have found so far. */
4780 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4781 break;
4782 }
4783
4784 /* Convert the result set into a sorted result list, as std::set is
4785 defined to be sorted then no explicit call to std::sort is needed. */
4786 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4787
4788 /* If there are no debug symbols, then add matching minsyms. But if the
4789 user wants to see symbols matching a type regexp, then never give a
4790 minimal symbol, as we assume that a minimal symbol does not have a
4791 type. */
4792 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4793 && !m_exclude_minsyms
4794 && !treg.has_value ())
4795 {
4796 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4797 for (objfile *objfile : current_program_space->objfiles ())
4798 if (!add_matching_msymbols (objfile, preg, &result))
4799 break;
4800 }
4801
4802 return result;
4803 }
4804
4805 /* See symtab.h. */
4806
4807 std::string
4808 symbol_to_info_string (struct symbol *sym, int block,
4809 enum search_domain kind)
4810 {
4811 std::string str;
4812
4813 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4814
4815 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4816 str += "static ";
4817
4818 /* Typedef that is not a C++ class. */
4819 if (kind == TYPES_DOMAIN
4820 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4821 {
4822 string_file tmp_stream;
4823
4824 /* FIXME: For C (and C++) we end up with a difference in output here
4825 between how a typedef is printed, and non-typedefs are printed.
4826 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4827 appear C-like, while TYPE_PRINT doesn't.
4828
4829 For the struct printing case below, things are worse, we force
4830 printing of the ";" in this function, which is going to be wrong
4831 for languages that don't require a ";" between statements. */
4832 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4833 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4834 else
4835 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4836 str += tmp_stream.string ();
4837 }
4838 /* variable, func, or typedef-that-is-c++-class. */
4839 else if (kind < TYPES_DOMAIN
4840 || (kind == TYPES_DOMAIN
4841 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4842 {
4843 string_file tmp_stream;
4844
4845 type_print (SYMBOL_TYPE (sym),
4846 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4847 ? "" : sym->print_name ()),
4848 &tmp_stream, 0);
4849
4850 str += tmp_stream.string ();
4851 str += ";";
4852 }
4853 /* Printing of modules is currently done here, maybe at some future
4854 point we might want a language specific method to print the module
4855 symbol so that we can customise the output more. */
4856 else if (kind == MODULES_DOMAIN)
4857 str += sym->print_name ();
4858
4859 return str;
4860 }
4861
4862 /* Helper function for symbol info commands, for example 'info functions',
4863 'info variables', etc. KIND is the kind of symbol we searched for, and
4864 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4865 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4866 print file and line number information for the symbol as well. Skip
4867 printing the filename if it matches LAST. */
4868
4869 static void
4870 print_symbol_info (enum search_domain kind,
4871 struct symbol *sym,
4872 int block, const char *last)
4873 {
4874 scoped_switch_to_sym_language_if_auto l (sym);
4875 struct symtab *s = symbol_symtab (sym);
4876
4877 if (last != NULL)
4878 {
4879 const char *s_filename = symtab_to_filename_for_display (s);
4880
4881 if (filename_cmp (last, s_filename) != 0)
4882 {
4883 printf_filtered (_("\nFile %ps:\n"),
4884 styled_string (file_name_style.style (),
4885 s_filename));
4886 }
4887
4888 if (SYMBOL_LINE (sym) != 0)
4889 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4890 else
4891 puts_filtered ("\t");
4892 }
4893
4894 std::string str = symbol_to_info_string (sym, block, kind);
4895 printf_filtered ("%s\n", str.c_str ());
4896 }
4897
4898 /* This help function for symtab_symbol_info() prints information
4899 for non-debugging symbols to gdb_stdout. */
4900
4901 static void
4902 print_msymbol_info (struct bound_minimal_symbol msymbol)
4903 {
4904 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4905 char *tmp;
4906
4907 if (gdbarch_addr_bit (gdbarch) <= 32)
4908 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4909 & (CORE_ADDR) 0xffffffff,
4910 8);
4911 else
4912 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4913 16);
4914
4915 ui_file_style sym_style = (msymbol.minsym->text_p ()
4916 ? function_name_style.style ()
4917 : ui_file_style ());
4918
4919 printf_filtered (_("%ps %ps\n"),
4920 styled_string (address_style.style (), tmp),
4921 styled_string (sym_style, msymbol.minsym->print_name ()));
4922 }
4923
4924 /* This is the guts of the commands "info functions", "info types", and
4925 "info variables". It calls search_symbols to find all matches and then
4926 print_[m]symbol_info to print out some useful information about the
4927 matches. */
4928
4929 static void
4930 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4931 const char *regexp, enum search_domain kind,
4932 const char *t_regexp, int from_tty)
4933 {
4934 static const char * const classnames[] =
4935 {"variable", "function", "type", "module"};
4936 const char *last_filename = "";
4937 int first = 1;
4938
4939 gdb_assert (kind != ALL_DOMAIN);
4940
4941 if (regexp != nullptr && *regexp == '\0')
4942 regexp = nullptr;
4943
4944 global_symbol_searcher spec (kind, regexp);
4945 spec.set_symbol_type_regexp (t_regexp);
4946 spec.set_exclude_minsyms (exclude_minsyms);
4947 std::vector<symbol_search> symbols = spec.search ();
4948
4949 if (!quiet)
4950 {
4951 if (regexp != NULL)
4952 {
4953 if (t_regexp != NULL)
4954 printf_filtered
4955 (_("All %ss matching regular expression \"%s\""
4956 " with type matching regular expression \"%s\":\n"),
4957 classnames[kind], regexp, t_regexp);
4958 else
4959 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4960 classnames[kind], regexp);
4961 }
4962 else
4963 {
4964 if (t_regexp != NULL)
4965 printf_filtered
4966 (_("All defined %ss"
4967 " with type matching regular expression \"%s\" :\n"),
4968 classnames[kind], t_regexp);
4969 else
4970 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4971 }
4972 }
4973
4974 for (const symbol_search &p : symbols)
4975 {
4976 QUIT;
4977
4978 if (p.msymbol.minsym != NULL)
4979 {
4980 if (first)
4981 {
4982 if (!quiet)
4983 printf_filtered (_("\nNon-debugging symbols:\n"));
4984 first = 0;
4985 }
4986 print_msymbol_info (p.msymbol);
4987 }
4988 else
4989 {
4990 print_symbol_info (kind,
4991 p.symbol,
4992 p.block,
4993 last_filename);
4994 last_filename
4995 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4996 }
4997 }
4998 }
4999
5000 /* Structure to hold the values of the options used by the 'info variables'
5001 and 'info functions' commands. These correspond to the -q, -t, and -n
5002 options. */
5003
5004 struct info_vars_funcs_options
5005 {
5006 bool quiet = false;
5007 bool exclude_minsyms = false;
5008 char *type_regexp = nullptr;
5009
5010 ~info_vars_funcs_options ()
5011 {
5012 xfree (type_regexp);
5013 }
5014 };
5015
5016 /* The options used by the 'info variables' and 'info functions'
5017 commands. */
5018
5019 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5020 gdb::option::boolean_option_def<info_vars_funcs_options> {
5021 "q",
5022 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5023 nullptr, /* show_cmd_cb */
5024 nullptr /* set_doc */
5025 },
5026
5027 gdb::option::boolean_option_def<info_vars_funcs_options> {
5028 "n",
5029 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5030 nullptr, /* show_cmd_cb */
5031 nullptr /* set_doc */
5032 },
5033
5034 gdb::option::string_option_def<info_vars_funcs_options> {
5035 "t",
5036 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5037 },
5038 nullptr, /* show_cmd_cb */
5039 nullptr /* set_doc */
5040 }
5041 };
5042
5043 /* Returns the option group used by 'info variables' and 'info
5044 functions'. */
5045
5046 static gdb::option::option_def_group
5047 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5048 {
5049 return {{info_vars_funcs_options_defs}, opts};
5050 }
5051
5052 /* Command completer for 'info variables' and 'info functions'. */
5053
5054 static void
5055 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5056 completion_tracker &tracker,
5057 const char *text, const char * /* word */)
5058 {
5059 const auto group
5060 = make_info_vars_funcs_options_def_group (nullptr);
5061 if (gdb::option::complete_options
5062 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5063 return;
5064
5065 const char *word = advance_to_expression_complete_word_point (tracker, text);
5066 symbol_completer (ignore, tracker, text, word);
5067 }
5068
5069 /* Implement the 'info variables' command. */
5070
5071 static void
5072 info_variables_command (const char *args, int from_tty)
5073 {
5074 info_vars_funcs_options opts;
5075 auto grp = make_info_vars_funcs_options_def_group (&opts);
5076 gdb::option::process_options
5077 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5078 if (args != nullptr && *args == '\0')
5079 args = nullptr;
5080
5081 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5082 opts.type_regexp, from_tty);
5083 }
5084
5085 /* Implement the 'info functions' command. */
5086
5087 static void
5088 info_functions_command (const char *args, int from_tty)
5089 {
5090 info_vars_funcs_options opts;
5091
5092 auto grp = make_info_vars_funcs_options_def_group (&opts);
5093 gdb::option::process_options
5094 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5095 if (args != nullptr && *args == '\0')
5096 args = nullptr;
5097
5098 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5099 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5100 }
5101
5102 /* Holds the -q option for the 'info types' command. */
5103
5104 struct info_types_options
5105 {
5106 bool quiet = false;
5107 };
5108
5109 /* The options used by the 'info types' command. */
5110
5111 static const gdb::option::option_def info_types_options_defs[] = {
5112 gdb::option::boolean_option_def<info_types_options> {
5113 "q",
5114 [] (info_types_options *opt) { return &opt->quiet; },
5115 nullptr, /* show_cmd_cb */
5116 nullptr /* set_doc */
5117 }
5118 };
5119
5120 /* Returns the option group used by 'info types'. */
5121
5122 static gdb::option::option_def_group
5123 make_info_types_options_def_group (info_types_options *opts)
5124 {
5125 return {{info_types_options_defs}, opts};
5126 }
5127
5128 /* Implement the 'info types' command. */
5129
5130 static void
5131 info_types_command (const char *args, int from_tty)
5132 {
5133 info_types_options opts;
5134
5135 auto grp = make_info_types_options_def_group (&opts);
5136 gdb::option::process_options
5137 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5138 if (args != nullptr && *args == '\0')
5139 args = nullptr;
5140 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5141 }
5142
5143 /* Command completer for 'info types' command. */
5144
5145 static void
5146 info_types_command_completer (struct cmd_list_element *ignore,
5147 completion_tracker &tracker,
5148 const char *text, const char * /* word */)
5149 {
5150 const auto group
5151 = make_info_types_options_def_group (nullptr);
5152 if (gdb::option::complete_options
5153 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5154 return;
5155
5156 const char *word = advance_to_expression_complete_word_point (tracker, text);
5157 symbol_completer (ignore, tracker, text, word);
5158 }
5159
5160 /* Implement the 'info modules' command. */
5161
5162 static void
5163 info_modules_command (const char *args, int from_tty)
5164 {
5165 info_types_options opts;
5166
5167 auto grp = make_info_types_options_def_group (&opts);
5168 gdb::option::process_options
5169 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5170 if (args != nullptr && *args == '\0')
5171 args = nullptr;
5172 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5173 from_tty);
5174 }
5175
5176 static void
5177 rbreak_command (const char *regexp, int from_tty)
5178 {
5179 std::string string;
5180 const char *file_name = nullptr;
5181
5182 if (regexp != nullptr)
5183 {
5184 const char *colon = strchr (regexp, ':');
5185
5186 if (colon && *(colon + 1) != ':')
5187 {
5188 int colon_index;
5189 char *local_name;
5190
5191 colon_index = colon - regexp;
5192 local_name = (char *) alloca (colon_index + 1);
5193 memcpy (local_name, regexp, colon_index);
5194 local_name[colon_index--] = 0;
5195 while (isspace (local_name[colon_index]))
5196 local_name[colon_index--] = 0;
5197 file_name = local_name;
5198 regexp = skip_spaces (colon + 1);
5199 }
5200 }
5201
5202 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5203 if (file_name != nullptr)
5204 spec.filenames.push_back (file_name);
5205 std::vector<symbol_search> symbols = spec.search ();
5206
5207 scoped_rbreak_breakpoints finalize;
5208 for (const symbol_search &p : symbols)
5209 {
5210 if (p.msymbol.minsym == NULL)
5211 {
5212 struct symtab *symtab = symbol_symtab (p.symbol);
5213 const char *fullname = symtab_to_fullname (symtab);
5214
5215 string = string_printf ("%s:'%s'", fullname,
5216 p.symbol->linkage_name ());
5217 break_command (&string[0], from_tty);
5218 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5219 }
5220 else
5221 {
5222 string = string_printf ("'%s'",
5223 p.msymbol.minsym->linkage_name ());
5224
5225 break_command (&string[0], from_tty);
5226 printf_filtered ("<function, no debug info> %s;\n",
5227 p.msymbol.minsym->print_name ());
5228 }
5229 }
5230 }
5231 \f
5232
5233 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5234
5235 static int
5236 compare_symbol_name (const char *symbol_name, language symbol_language,
5237 const lookup_name_info &lookup_name,
5238 completion_match_result &match_res)
5239 {
5240 const language_defn *lang = language_def (symbol_language);
5241
5242 symbol_name_matcher_ftype *name_match
5243 = get_symbol_name_matcher (lang, lookup_name);
5244
5245 return name_match (symbol_name, lookup_name, &match_res);
5246 }
5247
5248 /* See symtab.h. */
5249
5250 void
5251 completion_list_add_name (completion_tracker &tracker,
5252 language symbol_language,
5253 const char *symname,
5254 const lookup_name_info &lookup_name,
5255 const char *text, const char *word)
5256 {
5257 completion_match_result &match_res
5258 = tracker.reset_completion_match_result ();
5259
5260 /* Clip symbols that cannot match. */
5261 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5262 return;
5263
5264 /* Refresh SYMNAME from the match string. It's potentially
5265 different depending on language. (E.g., on Ada, the match may be
5266 the encoded symbol name wrapped in "<>"). */
5267 symname = match_res.match.match ();
5268 gdb_assert (symname != NULL);
5269
5270 /* We have a match for a completion, so add SYMNAME to the current list
5271 of matches. Note that the name is moved to freshly malloc'd space. */
5272
5273 {
5274 gdb::unique_xmalloc_ptr<char> completion
5275 = make_completion_match_str (symname, text, word);
5276
5277 /* Here we pass the match-for-lcd object to add_completion. Some
5278 languages match the user text against substrings of symbol
5279 names in some cases. E.g., in C++, "b push_ba" completes to
5280 "std::vector::push_back", "std::string::push_back", etc., and
5281 in this case we want the completion lowest common denominator
5282 to be "push_back" instead of "std::". */
5283 tracker.add_completion (std::move (completion),
5284 &match_res.match_for_lcd, text, word);
5285 }
5286 }
5287
5288 /* completion_list_add_name wrapper for struct symbol. */
5289
5290 static void
5291 completion_list_add_symbol (completion_tracker &tracker,
5292 symbol *sym,
5293 const lookup_name_info &lookup_name,
5294 const char *text, const char *word)
5295 {
5296 completion_list_add_name (tracker, sym->language (),
5297 sym->natural_name (),
5298 lookup_name, text, word);
5299
5300 /* C++ function symbols include the parameters within both the msymbol
5301 name and the symbol name. The problem is that the msymbol name will
5302 describe the parameters in the most basic way, with typedefs stripped
5303 out, while the symbol name will represent the types as they appear in
5304 the program. This means we will see duplicate entries in the
5305 completion tracker. The following converts the symbol name back to
5306 the msymbol name and removes the msymbol name from the completion
5307 tracker. */
5308 if (sym->language () == language_cplus
5309 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5310 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5311 {
5312 /* The call to canonicalize returns the empty string if the input
5313 string is already in canonical form, thanks to this we don't
5314 remove the symbol we just added above. */
5315 std::string str
5316 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5317 if (!str.empty ())
5318 tracker.remove_completion (str.c_str ());
5319 }
5320 }
5321
5322 /* completion_list_add_name wrapper for struct minimal_symbol. */
5323
5324 static void
5325 completion_list_add_msymbol (completion_tracker &tracker,
5326 minimal_symbol *sym,
5327 const lookup_name_info &lookup_name,
5328 const char *text, const char *word)
5329 {
5330 completion_list_add_name (tracker, sym->language (),
5331 sym->natural_name (),
5332 lookup_name, text, word);
5333 }
5334
5335
5336 /* ObjC: In case we are completing on a selector, look as the msymbol
5337 again and feed all the selectors into the mill. */
5338
5339 static void
5340 completion_list_objc_symbol (completion_tracker &tracker,
5341 struct minimal_symbol *msymbol,
5342 const lookup_name_info &lookup_name,
5343 const char *text, const char *word)
5344 {
5345 static char *tmp = NULL;
5346 static unsigned int tmplen = 0;
5347
5348 const char *method, *category, *selector;
5349 char *tmp2 = NULL;
5350
5351 method = msymbol->natural_name ();
5352
5353 /* Is it a method? */
5354 if ((method[0] != '-') && (method[0] != '+'))
5355 return;
5356
5357 if (text[0] == '[')
5358 /* Complete on shortened method method. */
5359 completion_list_add_name (tracker, language_objc,
5360 method + 1,
5361 lookup_name,
5362 text, word);
5363
5364 while ((strlen (method) + 1) >= tmplen)
5365 {
5366 if (tmplen == 0)
5367 tmplen = 1024;
5368 else
5369 tmplen *= 2;
5370 tmp = (char *) xrealloc (tmp, tmplen);
5371 }
5372 selector = strchr (method, ' ');
5373 if (selector != NULL)
5374 selector++;
5375
5376 category = strchr (method, '(');
5377
5378 if ((category != NULL) && (selector != NULL))
5379 {
5380 memcpy (tmp, method, (category - method));
5381 tmp[category - method] = ' ';
5382 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5383 completion_list_add_name (tracker, language_objc, tmp,
5384 lookup_name, text, word);
5385 if (text[0] == '[')
5386 completion_list_add_name (tracker, language_objc, tmp + 1,
5387 lookup_name, text, word);
5388 }
5389
5390 if (selector != NULL)
5391 {
5392 /* Complete on selector only. */
5393 strcpy (tmp, selector);
5394 tmp2 = strchr (tmp, ']');
5395 if (tmp2 != NULL)
5396 *tmp2 = '\0';
5397
5398 completion_list_add_name (tracker, language_objc, tmp,
5399 lookup_name, text, word);
5400 }
5401 }
5402
5403 /* Break the non-quoted text based on the characters which are in
5404 symbols. FIXME: This should probably be language-specific. */
5405
5406 static const char *
5407 language_search_unquoted_string (const char *text, const char *p)
5408 {
5409 for (; p > text; --p)
5410 {
5411 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5412 continue;
5413 else
5414 {
5415 if ((current_language->la_language == language_objc))
5416 {
5417 if (p[-1] == ':') /* Might be part of a method name. */
5418 continue;
5419 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5420 p -= 2; /* Beginning of a method name. */
5421 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5422 { /* Might be part of a method name. */
5423 const char *t = p;
5424
5425 /* Seeing a ' ' or a '(' is not conclusive evidence
5426 that we are in the middle of a method name. However,
5427 finding "-[" or "+[" should be pretty un-ambiguous.
5428 Unfortunately we have to find it now to decide. */
5429
5430 while (t > text)
5431 if (isalnum (t[-1]) || t[-1] == '_' ||
5432 t[-1] == ' ' || t[-1] == ':' ||
5433 t[-1] == '(' || t[-1] == ')')
5434 --t;
5435 else
5436 break;
5437
5438 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5439 p = t - 2; /* Method name detected. */
5440 /* Else we leave with p unchanged. */
5441 }
5442 }
5443 break;
5444 }
5445 }
5446 return p;
5447 }
5448
5449 static void
5450 completion_list_add_fields (completion_tracker &tracker,
5451 struct symbol *sym,
5452 const lookup_name_info &lookup_name,
5453 const char *text, const char *word)
5454 {
5455 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5456 {
5457 struct type *t = SYMBOL_TYPE (sym);
5458 enum type_code c = TYPE_CODE (t);
5459 int j;
5460
5461 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5462 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5463 if (TYPE_FIELD_NAME (t, j))
5464 completion_list_add_name (tracker, sym->language (),
5465 TYPE_FIELD_NAME (t, j),
5466 lookup_name, text, word);
5467 }
5468 }
5469
5470 /* See symtab.h. */
5471
5472 bool
5473 symbol_is_function_or_method (symbol *sym)
5474 {
5475 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5476 {
5477 case TYPE_CODE_FUNC:
5478 case TYPE_CODE_METHOD:
5479 return true;
5480 default:
5481 return false;
5482 }
5483 }
5484
5485 /* See symtab.h. */
5486
5487 bool
5488 symbol_is_function_or_method (minimal_symbol *msymbol)
5489 {
5490 switch (MSYMBOL_TYPE (msymbol))
5491 {
5492 case mst_text:
5493 case mst_text_gnu_ifunc:
5494 case mst_solib_trampoline:
5495 case mst_file_text:
5496 return true;
5497 default:
5498 return false;
5499 }
5500 }
5501
5502 /* See symtab.h. */
5503
5504 bound_minimal_symbol
5505 find_gnu_ifunc (const symbol *sym)
5506 {
5507 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5508 return {};
5509
5510 lookup_name_info lookup_name (sym->search_name (),
5511 symbol_name_match_type::SEARCH_NAME);
5512 struct objfile *objfile = symbol_objfile (sym);
5513
5514 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5515 minimal_symbol *ifunc = NULL;
5516
5517 iterate_over_minimal_symbols (objfile, lookup_name,
5518 [&] (minimal_symbol *minsym)
5519 {
5520 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5521 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5522 {
5523 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5524 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5525 {
5526 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5527 msym_addr
5528 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5529 msym_addr,
5530 current_top_target ());
5531 }
5532 if (msym_addr == address)
5533 {
5534 ifunc = minsym;
5535 return true;
5536 }
5537 }
5538 return false;
5539 });
5540
5541 if (ifunc != NULL)
5542 return {ifunc, objfile};
5543 return {};
5544 }
5545
5546 /* Add matching symbols from SYMTAB to the current completion list. */
5547
5548 static void
5549 add_symtab_completions (struct compunit_symtab *cust,
5550 completion_tracker &tracker,
5551 complete_symbol_mode mode,
5552 const lookup_name_info &lookup_name,
5553 const char *text, const char *word,
5554 enum type_code code)
5555 {
5556 struct symbol *sym;
5557 const struct block *b;
5558 struct block_iterator iter;
5559 int i;
5560
5561 if (cust == NULL)
5562 return;
5563
5564 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5565 {
5566 QUIT;
5567 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5568 ALL_BLOCK_SYMBOLS (b, iter, sym)
5569 {
5570 if (completion_skip_symbol (mode, sym))
5571 continue;
5572
5573 if (code == TYPE_CODE_UNDEF
5574 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5575 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5576 completion_list_add_symbol (tracker, sym,
5577 lookup_name,
5578 text, word);
5579 }
5580 }
5581 }
5582
5583 void
5584 default_collect_symbol_completion_matches_break_on
5585 (completion_tracker &tracker, complete_symbol_mode mode,
5586 symbol_name_match_type name_match_type,
5587 const char *text, const char *word,
5588 const char *break_on, enum type_code code)
5589 {
5590 /* Problem: All of the symbols have to be copied because readline
5591 frees them. I'm not going to worry about this; hopefully there
5592 won't be that many. */
5593
5594 struct symbol *sym;
5595 const struct block *b;
5596 const struct block *surrounding_static_block, *surrounding_global_block;
5597 struct block_iterator iter;
5598 /* The symbol we are completing on. Points in same buffer as text. */
5599 const char *sym_text;
5600
5601 /* Now look for the symbol we are supposed to complete on. */
5602 if (mode == complete_symbol_mode::LINESPEC)
5603 sym_text = text;
5604 else
5605 {
5606 const char *p;
5607 char quote_found;
5608 const char *quote_pos = NULL;
5609
5610 /* First see if this is a quoted string. */
5611 quote_found = '\0';
5612 for (p = text; *p != '\0'; ++p)
5613 {
5614 if (quote_found != '\0')
5615 {
5616 if (*p == quote_found)
5617 /* Found close quote. */
5618 quote_found = '\0';
5619 else if (*p == '\\' && p[1] == quote_found)
5620 /* A backslash followed by the quote character
5621 doesn't end the string. */
5622 ++p;
5623 }
5624 else if (*p == '\'' || *p == '"')
5625 {
5626 quote_found = *p;
5627 quote_pos = p;
5628 }
5629 }
5630 if (quote_found == '\'')
5631 /* A string within single quotes can be a symbol, so complete on it. */
5632 sym_text = quote_pos + 1;
5633 else if (quote_found == '"')
5634 /* A double-quoted string is never a symbol, nor does it make sense
5635 to complete it any other way. */
5636 {
5637 return;
5638 }
5639 else
5640 {
5641 /* It is not a quoted string. Break it based on the characters
5642 which are in symbols. */
5643 while (p > text)
5644 {
5645 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5646 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5647 --p;
5648 else
5649 break;
5650 }
5651 sym_text = p;
5652 }
5653 }
5654
5655 lookup_name_info lookup_name (sym_text, name_match_type, true);
5656
5657 /* At this point scan through the misc symbol vectors and add each
5658 symbol you find to the list. Eventually we want to ignore
5659 anything that isn't a text symbol (everything else will be
5660 handled by the psymtab code below). */
5661
5662 if (code == TYPE_CODE_UNDEF)
5663 {
5664 for (objfile *objfile : current_program_space->objfiles ())
5665 {
5666 for (minimal_symbol *msymbol : objfile->msymbols ())
5667 {
5668 QUIT;
5669
5670 if (completion_skip_symbol (mode, msymbol))
5671 continue;
5672
5673 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5674 sym_text, word);
5675
5676 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5677 sym_text, word);
5678 }
5679 }
5680 }
5681
5682 /* Add completions for all currently loaded symbol tables. */
5683 for (objfile *objfile : current_program_space->objfiles ())
5684 {
5685 for (compunit_symtab *cust : objfile->compunits ())
5686 add_symtab_completions (cust, tracker, mode, lookup_name,
5687 sym_text, word, code);
5688 }
5689
5690 /* Look through the partial symtabs for all symbols which begin by
5691 matching SYM_TEXT. Expand all CUs that you find to the list. */
5692 expand_symtabs_matching (NULL,
5693 lookup_name,
5694 NULL,
5695 [&] (compunit_symtab *symtab) /* expansion notify */
5696 {
5697 add_symtab_completions (symtab,
5698 tracker, mode, lookup_name,
5699 sym_text, word, code);
5700 },
5701 ALL_DOMAIN);
5702
5703 /* Search upwards from currently selected frame (so that we can
5704 complete on local vars). Also catch fields of types defined in
5705 this places which match our text string. Only complete on types
5706 visible from current context. */
5707
5708 b = get_selected_block (0);
5709 surrounding_static_block = block_static_block (b);
5710 surrounding_global_block = block_global_block (b);
5711 if (surrounding_static_block != NULL)
5712 while (b != surrounding_static_block)
5713 {
5714 QUIT;
5715
5716 ALL_BLOCK_SYMBOLS (b, iter, sym)
5717 {
5718 if (code == TYPE_CODE_UNDEF)
5719 {
5720 completion_list_add_symbol (tracker, sym, lookup_name,
5721 sym_text, word);
5722 completion_list_add_fields (tracker, sym, lookup_name,
5723 sym_text, word);
5724 }
5725 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5726 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5727 completion_list_add_symbol (tracker, sym, lookup_name,
5728 sym_text, word);
5729 }
5730
5731 /* Stop when we encounter an enclosing function. Do not stop for
5732 non-inlined functions - the locals of the enclosing function
5733 are in scope for a nested function. */
5734 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5735 break;
5736 b = BLOCK_SUPERBLOCK (b);
5737 }
5738
5739 /* Add fields from the file's types; symbols will be added below. */
5740
5741 if (code == TYPE_CODE_UNDEF)
5742 {
5743 if (surrounding_static_block != NULL)
5744 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5745 completion_list_add_fields (tracker, sym, lookup_name,
5746 sym_text, word);
5747
5748 if (surrounding_global_block != NULL)
5749 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5750 completion_list_add_fields (tracker, sym, lookup_name,
5751 sym_text, word);
5752 }
5753
5754 /* Skip macros if we are completing a struct tag -- arguable but
5755 usually what is expected. */
5756 if (current_language->la_macro_expansion == macro_expansion_c
5757 && code == TYPE_CODE_UNDEF)
5758 {
5759 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5760
5761 /* This adds a macro's name to the current completion list. */
5762 auto add_macro_name = [&] (const char *macro_name,
5763 const macro_definition *,
5764 macro_source_file *,
5765 int)
5766 {
5767 completion_list_add_name (tracker, language_c, macro_name,
5768 lookup_name, sym_text, word);
5769 };
5770
5771 /* Add any macros visible in the default scope. Note that this
5772 may yield the occasional wrong result, because an expression
5773 might be evaluated in a scope other than the default. For
5774 example, if the user types "break file:line if <TAB>", the
5775 resulting expression will be evaluated at "file:line" -- but
5776 at there does not seem to be a way to detect this at
5777 completion time. */
5778 scope = default_macro_scope ();
5779 if (scope)
5780 macro_for_each_in_scope (scope->file, scope->line,
5781 add_macro_name);
5782
5783 /* User-defined macros are always visible. */
5784 macro_for_each (macro_user_macros, add_macro_name);
5785 }
5786 }
5787
5788 void
5789 default_collect_symbol_completion_matches (completion_tracker &tracker,
5790 complete_symbol_mode mode,
5791 symbol_name_match_type name_match_type,
5792 const char *text, const char *word,
5793 enum type_code code)
5794 {
5795 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5796 name_match_type,
5797 text, word, "",
5798 code);
5799 }
5800
5801 /* Collect all symbols (regardless of class) which begin by matching
5802 TEXT. */
5803
5804 void
5805 collect_symbol_completion_matches (completion_tracker &tracker,
5806 complete_symbol_mode mode,
5807 symbol_name_match_type name_match_type,
5808 const char *text, const char *word)
5809 {
5810 current_language->la_collect_symbol_completion_matches (tracker, mode,
5811 name_match_type,
5812 text, word,
5813 TYPE_CODE_UNDEF);
5814 }
5815
5816 /* Like collect_symbol_completion_matches, but only collect
5817 STRUCT_DOMAIN symbols whose type code is CODE. */
5818
5819 void
5820 collect_symbol_completion_matches_type (completion_tracker &tracker,
5821 const char *text, const char *word,
5822 enum type_code code)
5823 {
5824 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5825 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5826
5827 gdb_assert (code == TYPE_CODE_UNION
5828 || code == TYPE_CODE_STRUCT
5829 || code == TYPE_CODE_ENUM);
5830 current_language->la_collect_symbol_completion_matches (tracker, mode,
5831 name_match_type,
5832 text, word, code);
5833 }
5834
5835 /* Like collect_symbol_completion_matches, but collects a list of
5836 symbols defined in all source files named SRCFILE. */
5837
5838 void
5839 collect_file_symbol_completion_matches (completion_tracker &tracker,
5840 complete_symbol_mode mode,
5841 symbol_name_match_type name_match_type,
5842 const char *text, const char *word,
5843 const char *srcfile)
5844 {
5845 /* The symbol we are completing on. Points in same buffer as text. */
5846 const char *sym_text;
5847
5848 /* Now look for the symbol we are supposed to complete on.
5849 FIXME: This should be language-specific. */
5850 if (mode == complete_symbol_mode::LINESPEC)
5851 sym_text = text;
5852 else
5853 {
5854 const char *p;
5855 char quote_found;
5856 const char *quote_pos = NULL;
5857
5858 /* First see if this is a quoted string. */
5859 quote_found = '\0';
5860 for (p = text; *p != '\0'; ++p)
5861 {
5862 if (quote_found != '\0')
5863 {
5864 if (*p == quote_found)
5865 /* Found close quote. */
5866 quote_found = '\0';
5867 else if (*p == '\\' && p[1] == quote_found)
5868 /* A backslash followed by the quote character
5869 doesn't end the string. */
5870 ++p;
5871 }
5872 else if (*p == '\'' || *p == '"')
5873 {
5874 quote_found = *p;
5875 quote_pos = p;
5876 }
5877 }
5878 if (quote_found == '\'')
5879 /* A string within single quotes can be a symbol, so complete on it. */
5880 sym_text = quote_pos + 1;
5881 else if (quote_found == '"')
5882 /* A double-quoted string is never a symbol, nor does it make sense
5883 to complete it any other way. */
5884 {
5885 return;
5886 }
5887 else
5888 {
5889 /* Not a quoted string. */
5890 sym_text = language_search_unquoted_string (text, p);
5891 }
5892 }
5893
5894 lookup_name_info lookup_name (sym_text, name_match_type, true);
5895
5896 /* Go through symtabs for SRCFILE and check the externs and statics
5897 for symbols which match. */
5898 iterate_over_symtabs (srcfile, [&] (symtab *s)
5899 {
5900 add_symtab_completions (SYMTAB_COMPUNIT (s),
5901 tracker, mode, lookup_name,
5902 sym_text, word, TYPE_CODE_UNDEF);
5903 return false;
5904 });
5905 }
5906
5907 /* A helper function for make_source_files_completion_list. It adds
5908 another file name to a list of possible completions, growing the
5909 list as necessary. */
5910
5911 static void
5912 add_filename_to_list (const char *fname, const char *text, const char *word,
5913 completion_list *list)
5914 {
5915 list->emplace_back (make_completion_match_str (fname, text, word));
5916 }
5917
5918 static int
5919 not_interesting_fname (const char *fname)
5920 {
5921 static const char *illegal_aliens[] = {
5922 "_globals_", /* inserted by coff_symtab_read */
5923 NULL
5924 };
5925 int i;
5926
5927 for (i = 0; illegal_aliens[i]; i++)
5928 {
5929 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5930 return 1;
5931 }
5932 return 0;
5933 }
5934
5935 /* An object of this type is passed as the user_data argument to
5936 map_partial_symbol_filenames. */
5937 struct add_partial_filename_data
5938 {
5939 struct filename_seen_cache *filename_seen_cache;
5940 const char *text;
5941 const char *word;
5942 int text_len;
5943 completion_list *list;
5944 };
5945
5946 /* A callback for map_partial_symbol_filenames. */
5947
5948 static void
5949 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5950 void *user_data)
5951 {
5952 struct add_partial_filename_data *data
5953 = (struct add_partial_filename_data *) user_data;
5954
5955 if (not_interesting_fname (filename))
5956 return;
5957 if (!data->filename_seen_cache->seen (filename)
5958 && filename_ncmp (filename, data->text, data->text_len) == 0)
5959 {
5960 /* This file matches for a completion; add it to the
5961 current list of matches. */
5962 add_filename_to_list (filename, data->text, data->word, data->list);
5963 }
5964 else
5965 {
5966 const char *base_name = lbasename (filename);
5967
5968 if (base_name != filename
5969 && !data->filename_seen_cache->seen (base_name)
5970 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5971 add_filename_to_list (base_name, data->text, data->word, data->list);
5972 }
5973 }
5974
5975 /* Return a list of all source files whose names begin with matching
5976 TEXT. The file names are looked up in the symbol tables of this
5977 program. */
5978
5979 completion_list
5980 make_source_files_completion_list (const char *text, const char *word)
5981 {
5982 size_t text_len = strlen (text);
5983 completion_list list;
5984 const char *base_name;
5985 struct add_partial_filename_data datum;
5986
5987 if (!have_full_symbols () && !have_partial_symbols ())
5988 return list;
5989
5990 filename_seen_cache filenames_seen;
5991
5992 for (objfile *objfile : current_program_space->objfiles ())
5993 {
5994 for (compunit_symtab *cu : objfile->compunits ())
5995 {
5996 for (symtab *s : compunit_filetabs (cu))
5997 {
5998 if (not_interesting_fname (s->filename))
5999 continue;
6000 if (!filenames_seen.seen (s->filename)
6001 && filename_ncmp (s->filename, text, text_len) == 0)
6002 {
6003 /* This file matches for a completion; add it to the current
6004 list of matches. */
6005 add_filename_to_list (s->filename, text, word, &list);
6006 }
6007 else
6008 {
6009 /* NOTE: We allow the user to type a base name when the
6010 debug info records leading directories, but not the other
6011 way around. This is what subroutines of breakpoint
6012 command do when they parse file names. */
6013 base_name = lbasename (s->filename);
6014 if (base_name != s->filename
6015 && !filenames_seen.seen (base_name)
6016 && filename_ncmp (base_name, text, text_len) == 0)
6017 add_filename_to_list (base_name, text, word, &list);
6018 }
6019 }
6020 }
6021 }
6022
6023 datum.filename_seen_cache = &filenames_seen;
6024 datum.text = text;
6025 datum.word = word;
6026 datum.text_len = text_len;
6027 datum.list = &list;
6028 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6029 0 /*need_fullname*/);
6030
6031 return list;
6032 }
6033 \f
6034 /* Track MAIN */
6035
6036 /* Return the "main_info" object for the current program space. If
6037 the object has not yet been created, create it and fill in some
6038 default values. */
6039
6040 static struct main_info *
6041 get_main_info (void)
6042 {
6043 struct main_info *info = main_progspace_key.get (current_program_space);
6044
6045 if (info == NULL)
6046 {
6047 /* It may seem strange to store the main name in the progspace
6048 and also in whatever objfile happens to see a main name in
6049 its debug info. The reason for this is mainly historical:
6050 gdb returned "main" as the name even if no function named
6051 "main" was defined the program; and this approach lets us
6052 keep compatibility. */
6053 info = main_progspace_key.emplace (current_program_space);
6054 }
6055
6056 return info;
6057 }
6058
6059 static void
6060 set_main_name (const char *name, enum language lang)
6061 {
6062 struct main_info *info = get_main_info ();
6063
6064 if (info->name_of_main != NULL)
6065 {
6066 xfree (info->name_of_main);
6067 info->name_of_main = NULL;
6068 info->language_of_main = language_unknown;
6069 }
6070 if (name != NULL)
6071 {
6072 info->name_of_main = xstrdup (name);
6073 info->language_of_main = lang;
6074 }
6075 }
6076
6077 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6078 accordingly. */
6079
6080 static void
6081 find_main_name (void)
6082 {
6083 const char *new_main_name;
6084
6085 /* First check the objfiles to see whether a debuginfo reader has
6086 picked up the appropriate main name. Historically the main name
6087 was found in a more or less random way; this approach instead
6088 relies on the order of objfile creation -- which still isn't
6089 guaranteed to get the correct answer, but is just probably more
6090 accurate. */
6091 for (objfile *objfile : current_program_space->objfiles ())
6092 {
6093 if (objfile->per_bfd->name_of_main != NULL)
6094 {
6095 set_main_name (objfile->per_bfd->name_of_main,
6096 objfile->per_bfd->language_of_main);
6097 return;
6098 }
6099 }
6100
6101 /* Try to see if the main procedure is in Ada. */
6102 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6103 be to add a new method in the language vector, and call this
6104 method for each language until one of them returns a non-empty
6105 name. This would allow us to remove this hard-coded call to
6106 an Ada function. It is not clear that this is a better approach
6107 at this point, because all methods need to be written in a way
6108 such that false positives never be returned. For instance, it is
6109 important that a method does not return a wrong name for the main
6110 procedure if the main procedure is actually written in a different
6111 language. It is easy to guaranty this with Ada, since we use a
6112 special symbol generated only when the main in Ada to find the name
6113 of the main procedure. It is difficult however to see how this can
6114 be guarantied for languages such as C, for instance. This suggests
6115 that order of call for these methods becomes important, which means
6116 a more complicated approach. */
6117 new_main_name = ada_main_name ();
6118 if (new_main_name != NULL)
6119 {
6120 set_main_name (new_main_name, language_ada);
6121 return;
6122 }
6123
6124 new_main_name = d_main_name ();
6125 if (new_main_name != NULL)
6126 {
6127 set_main_name (new_main_name, language_d);
6128 return;
6129 }
6130
6131 new_main_name = go_main_name ();
6132 if (new_main_name != NULL)
6133 {
6134 set_main_name (new_main_name, language_go);
6135 return;
6136 }
6137
6138 new_main_name = pascal_main_name ();
6139 if (new_main_name != NULL)
6140 {
6141 set_main_name (new_main_name, language_pascal);
6142 return;
6143 }
6144
6145 /* The languages above didn't identify the name of the main procedure.
6146 Fallback to "main". */
6147 set_main_name ("main", language_unknown);
6148 }
6149
6150 /* See symtab.h. */
6151
6152 const char *
6153 main_name ()
6154 {
6155 struct main_info *info = get_main_info ();
6156
6157 if (info->name_of_main == NULL)
6158 find_main_name ();
6159
6160 return info->name_of_main;
6161 }
6162
6163 /* Return the language of the main function. If it is not known,
6164 return language_unknown. */
6165
6166 enum language
6167 main_language (void)
6168 {
6169 struct main_info *info = get_main_info ();
6170
6171 if (info->name_of_main == NULL)
6172 find_main_name ();
6173
6174 return info->language_of_main;
6175 }
6176
6177 /* Handle ``executable_changed'' events for the symtab module. */
6178
6179 static void
6180 symtab_observer_executable_changed (void)
6181 {
6182 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6183 set_main_name (NULL, language_unknown);
6184 }
6185
6186 /* Return 1 if the supplied producer string matches the ARM RealView
6187 compiler (armcc). */
6188
6189 bool
6190 producer_is_realview (const char *producer)
6191 {
6192 static const char *const arm_idents[] = {
6193 "ARM C Compiler, ADS",
6194 "Thumb C Compiler, ADS",
6195 "ARM C++ Compiler, ADS",
6196 "Thumb C++ Compiler, ADS",
6197 "ARM/Thumb C/C++ Compiler, RVCT",
6198 "ARM C/C++ Compiler, RVCT"
6199 };
6200 int i;
6201
6202 if (producer == NULL)
6203 return false;
6204
6205 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6206 if (startswith (producer, arm_idents[i]))
6207 return true;
6208
6209 return false;
6210 }
6211
6212 \f
6213
6214 /* The next index to hand out in response to a registration request. */
6215
6216 static int next_aclass_value = LOC_FINAL_VALUE;
6217
6218 /* The maximum number of "aclass" registrations we support. This is
6219 constant for convenience. */
6220 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6221
6222 /* The objects representing the various "aclass" values. The elements
6223 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6224 elements are those registered at gdb initialization time. */
6225
6226 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6227
6228 /* The globally visible pointer. This is separate from 'symbol_impl'
6229 so that it can be const. */
6230
6231 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6232
6233 /* Make sure we saved enough room in struct symbol. */
6234
6235 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6236
6237 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6238 is the ops vector associated with this index. This returns the new
6239 index, which should be used as the aclass_index field for symbols
6240 of this type. */
6241
6242 int
6243 register_symbol_computed_impl (enum address_class aclass,
6244 const struct symbol_computed_ops *ops)
6245 {
6246 int result = next_aclass_value++;
6247
6248 gdb_assert (aclass == LOC_COMPUTED);
6249 gdb_assert (result < MAX_SYMBOL_IMPLS);
6250 symbol_impl[result].aclass = aclass;
6251 symbol_impl[result].ops_computed = ops;
6252
6253 /* Sanity check OPS. */
6254 gdb_assert (ops != NULL);
6255 gdb_assert (ops->tracepoint_var_ref != NULL);
6256 gdb_assert (ops->describe_location != NULL);
6257 gdb_assert (ops->get_symbol_read_needs != NULL);
6258 gdb_assert (ops->read_variable != NULL);
6259
6260 return result;
6261 }
6262
6263 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6264 OPS is the ops vector associated with this index. This returns the
6265 new index, which should be used as the aclass_index field for symbols
6266 of this type. */
6267
6268 int
6269 register_symbol_block_impl (enum address_class aclass,
6270 const struct symbol_block_ops *ops)
6271 {
6272 int result = next_aclass_value++;
6273
6274 gdb_assert (aclass == LOC_BLOCK);
6275 gdb_assert (result < MAX_SYMBOL_IMPLS);
6276 symbol_impl[result].aclass = aclass;
6277 symbol_impl[result].ops_block = ops;
6278
6279 /* Sanity check OPS. */
6280 gdb_assert (ops != NULL);
6281 gdb_assert (ops->find_frame_base_location != NULL);
6282
6283 return result;
6284 }
6285
6286 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6287 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6288 this index. This returns the new index, which should be used as
6289 the aclass_index field for symbols of this type. */
6290
6291 int
6292 register_symbol_register_impl (enum address_class aclass,
6293 const struct symbol_register_ops *ops)
6294 {
6295 int result = next_aclass_value++;
6296
6297 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6298 gdb_assert (result < MAX_SYMBOL_IMPLS);
6299 symbol_impl[result].aclass = aclass;
6300 symbol_impl[result].ops_register = ops;
6301
6302 return result;
6303 }
6304
6305 /* Initialize elements of 'symbol_impl' for the constants in enum
6306 address_class. */
6307
6308 static void
6309 initialize_ordinary_address_classes (void)
6310 {
6311 int i;
6312
6313 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6314 symbol_impl[i].aclass = (enum address_class) i;
6315 }
6316
6317 \f
6318
6319 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6320
6321 void
6322 initialize_objfile_symbol (struct symbol *sym)
6323 {
6324 SYMBOL_OBJFILE_OWNED (sym) = 1;
6325 SYMBOL_SECTION (sym) = -1;
6326 }
6327
6328 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6329 obstack. */
6330
6331 struct symbol *
6332 allocate_symbol (struct objfile *objfile)
6333 {
6334 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6335
6336 initialize_objfile_symbol (result);
6337
6338 return result;
6339 }
6340
6341 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6342 obstack. */
6343
6344 struct template_symbol *
6345 allocate_template_symbol (struct objfile *objfile)
6346 {
6347 struct template_symbol *result;
6348
6349 result = new (&objfile->objfile_obstack) template_symbol ();
6350 initialize_objfile_symbol (result);
6351
6352 return result;
6353 }
6354
6355 /* See symtab.h. */
6356
6357 struct objfile *
6358 symbol_objfile (const struct symbol *symbol)
6359 {
6360 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6361 return SYMTAB_OBJFILE (symbol->owner.symtab);
6362 }
6363
6364 /* See symtab.h. */
6365
6366 struct gdbarch *
6367 symbol_arch (const struct symbol *symbol)
6368 {
6369 if (!SYMBOL_OBJFILE_OWNED (symbol))
6370 return symbol->owner.arch;
6371 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6372 }
6373
6374 /* See symtab.h. */
6375
6376 struct symtab *
6377 symbol_symtab (const struct symbol *symbol)
6378 {
6379 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6380 return symbol->owner.symtab;
6381 }
6382
6383 /* See symtab.h. */
6384
6385 void
6386 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6387 {
6388 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6389 symbol->owner.symtab = symtab;
6390 }
6391
6392 /* See symtab.h. */
6393
6394 CORE_ADDR
6395 get_symbol_address (const struct symbol *sym)
6396 {
6397 gdb_assert (sym->maybe_copied);
6398 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6399
6400 const char *linkage_name = sym->linkage_name ();
6401
6402 for (objfile *objfile : current_program_space->objfiles ())
6403 {
6404 bound_minimal_symbol minsym
6405 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6406 if (minsym.minsym != nullptr)
6407 return BMSYMBOL_VALUE_ADDRESS (minsym);
6408 }
6409 return sym->value.address;
6410 }
6411
6412 /* See symtab.h. */
6413
6414 CORE_ADDR
6415 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6416 {
6417 gdb_assert (minsym->maybe_copied);
6418 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6419
6420 const char *linkage_name = minsym->linkage_name ();
6421
6422 for (objfile *objfile : current_program_space->objfiles ())
6423 {
6424 if ((objfile->flags & OBJF_MAINLINE) != 0)
6425 {
6426 bound_minimal_symbol found
6427 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6428 if (found.minsym != nullptr)
6429 return BMSYMBOL_VALUE_ADDRESS (found);
6430 }
6431 }
6432 return minsym->value.address + objf->section_offsets[minsym->section];
6433 }
6434
6435 \f
6436
6437 /* Hold the sub-commands of 'info module'. */
6438
6439 static struct cmd_list_element *info_module_cmdlist = NULL;
6440
6441 /* Implement the 'info module' command, just displays some help text for
6442 the available sub-commands. */
6443
6444 static void
6445 info_module_command (const char *args, int from_tty)
6446 {
6447 help_list (info_module_cmdlist, "info module ", class_info, gdb_stdout);
6448 }
6449
6450 /* See symtab.h. */
6451
6452 std::vector<module_symbol_search>
6453 search_module_symbols (const char *module_regexp, const char *regexp,
6454 const char *type_regexp, search_domain kind)
6455 {
6456 std::vector<module_symbol_search> results;
6457
6458 /* Search for all modules matching MODULE_REGEXP. */
6459 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6460 spec1.set_exclude_minsyms (true);
6461 std::vector<symbol_search> modules = spec1.search ();
6462
6463 /* Now search for all symbols of the required KIND matching the required
6464 regular expressions. We figure out which ones are in which modules
6465 below. */
6466 global_symbol_searcher spec2 (kind, regexp);
6467 spec2.set_symbol_type_regexp (type_regexp);
6468 spec2.set_exclude_minsyms (true);
6469 std::vector<symbol_search> symbols = spec2.search ();
6470
6471 /* Now iterate over all MODULES, checking to see which items from
6472 SYMBOLS are in each module. */
6473 for (const symbol_search &p : modules)
6474 {
6475 QUIT;
6476
6477 /* This is a module. */
6478 gdb_assert (p.symbol != nullptr);
6479
6480 std::string prefix = p.symbol->print_name ();
6481 prefix += "::";
6482
6483 for (const symbol_search &q : symbols)
6484 {
6485 if (q.symbol == nullptr)
6486 continue;
6487
6488 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6489 prefix.size ()) != 0)
6490 continue;
6491
6492 results.push_back ({p, q});
6493 }
6494 }
6495
6496 return results;
6497 }
6498
6499 /* Implement the core of both 'info module functions' and 'info module
6500 variables'. */
6501
6502 static void
6503 info_module_subcommand (bool quiet, const char *module_regexp,
6504 const char *regexp, const char *type_regexp,
6505 search_domain kind)
6506 {
6507 /* Print a header line. Don't build the header line bit by bit as this
6508 prevents internationalisation. */
6509 if (!quiet)
6510 {
6511 if (module_regexp == nullptr)
6512 {
6513 if (type_regexp == nullptr)
6514 {
6515 if (regexp == nullptr)
6516 printf_filtered ((kind == VARIABLES_DOMAIN
6517 ? _("All variables in all modules:")
6518 : _("All functions in all modules:")));
6519 else
6520 printf_filtered
6521 ((kind == VARIABLES_DOMAIN
6522 ? _("All variables matching regular expression"
6523 " \"%s\" in all modules:")
6524 : _("All functions matching regular expression"
6525 " \"%s\" in all modules:")),
6526 regexp);
6527 }
6528 else
6529 {
6530 if (regexp == nullptr)
6531 printf_filtered
6532 ((kind == VARIABLES_DOMAIN
6533 ? _("All variables with type matching regular "
6534 "expression \"%s\" in all modules:")
6535 : _("All functions with type matching regular "
6536 "expression \"%s\" in all modules:")),
6537 type_regexp);
6538 else
6539 printf_filtered
6540 ((kind == VARIABLES_DOMAIN
6541 ? _("All variables matching regular expression "
6542 "\"%s\",\n\twith type matching regular "
6543 "expression \"%s\" in all modules:")
6544 : _("All functions matching regular expression "
6545 "\"%s\",\n\twith type matching regular "
6546 "expression \"%s\" in all modules:")),
6547 regexp, type_regexp);
6548 }
6549 }
6550 else
6551 {
6552 if (type_regexp == nullptr)
6553 {
6554 if (regexp == nullptr)
6555 printf_filtered
6556 ((kind == VARIABLES_DOMAIN
6557 ? _("All variables in all modules matching regular "
6558 "expression \"%s\":")
6559 : _("All functions in all modules matching regular "
6560 "expression \"%s\":")),
6561 module_regexp);
6562 else
6563 printf_filtered
6564 ((kind == VARIABLES_DOMAIN
6565 ? _("All variables matching regular expression "
6566 "\"%s\",\n\tin all modules matching regular "
6567 "expression \"%s\":")
6568 : _("All functions matching regular expression "
6569 "\"%s\",\n\tin all modules matching regular "
6570 "expression \"%s\":")),
6571 regexp, module_regexp);
6572 }
6573 else
6574 {
6575 if (regexp == nullptr)
6576 printf_filtered
6577 ((kind == VARIABLES_DOMAIN
6578 ? _("All variables with type matching regular "
6579 "expression \"%s\"\n\tin all modules matching "
6580 "regular expression \"%s\":")
6581 : _("All functions with type matching regular "
6582 "expression \"%s\"\n\tin all modules matching "
6583 "regular expression \"%s\":")),
6584 type_regexp, module_regexp);
6585 else
6586 printf_filtered
6587 ((kind == VARIABLES_DOMAIN
6588 ? _("All variables matching regular expression "
6589 "\"%s\",\n\twith type matching regular expression "
6590 "\"%s\",\n\tin all modules matching regular "
6591 "expression \"%s\":")
6592 : _("All functions matching regular expression "
6593 "\"%s\",\n\twith type matching regular expression "
6594 "\"%s\",\n\tin all modules matching regular "
6595 "expression \"%s\":")),
6596 regexp, type_regexp, module_regexp);
6597 }
6598 }
6599 printf_filtered ("\n");
6600 }
6601
6602 /* Find all symbols of type KIND matching the given regular expressions
6603 along with the symbols for the modules in which those symbols
6604 reside. */
6605 std::vector<module_symbol_search> module_symbols
6606 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6607
6608 std::sort (module_symbols.begin (), module_symbols.end (),
6609 [] (const module_symbol_search &a, const module_symbol_search &b)
6610 {
6611 if (a.first < b.first)
6612 return true;
6613 else if (a.first == b.first)
6614 return a.second < b.second;
6615 else
6616 return false;
6617 });
6618
6619 const char *last_filename = "";
6620 const symbol *last_module_symbol = nullptr;
6621 for (const module_symbol_search &ms : module_symbols)
6622 {
6623 const symbol_search &p = ms.first;
6624 const symbol_search &q = ms.second;
6625
6626 gdb_assert (q.symbol != nullptr);
6627
6628 if (last_module_symbol != p.symbol)
6629 {
6630 printf_filtered ("\n");
6631 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6632 last_module_symbol = p.symbol;
6633 last_filename = "";
6634 }
6635
6636 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6637 last_filename);
6638 last_filename
6639 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6640 }
6641 }
6642
6643 /* Hold the option values for the 'info module .....' sub-commands. */
6644
6645 struct info_modules_var_func_options
6646 {
6647 bool quiet = false;
6648 char *type_regexp = nullptr;
6649 char *module_regexp = nullptr;
6650
6651 ~info_modules_var_func_options ()
6652 {
6653 xfree (type_regexp);
6654 xfree (module_regexp);
6655 }
6656 };
6657
6658 /* The options used by 'info module variables' and 'info module functions'
6659 commands. */
6660
6661 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6662 gdb::option::boolean_option_def<info_modules_var_func_options> {
6663 "q",
6664 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6665 nullptr, /* show_cmd_cb */
6666 nullptr /* set_doc */
6667 },
6668
6669 gdb::option::string_option_def<info_modules_var_func_options> {
6670 "t",
6671 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6672 nullptr, /* show_cmd_cb */
6673 nullptr /* set_doc */
6674 },
6675
6676 gdb::option::string_option_def<info_modules_var_func_options> {
6677 "m",
6678 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6679 nullptr, /* show_cmd_cb */
6680 nullptr /* set_doc */
6681 }
6682 };
6683
6684 /* Return the option group used by the 'info module ...' sub-commands. */
6685
6686 static inline gdb::option::option_def_group
6687 make_info_modules_var_func_options_def_group
6688 (info_modules_var_func_options *opts)
6689 {
6690 return {{info_modules_var_func_options_defs}, opts};
6691 }
6692
6693 /* Implements the 'info module functions' command. */
6694
6695 static void
6696 info_module_functions_command (const char *args, int from_tty)
6697 {
6698 info_modules_var_func_options opts;
6699 auto grp = make_info_modules_var_func_options_def_group (&opts);
6700 gdb::option::process_options
6701 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6702 if (args != nullptr && *args == '\0')
6703 args = nullptr;
6704
6705 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6706 opts.type_regexp, FUNCTIONS_DOMAIN);
6707 }
6708
6709 /* Implements the 'info module variables' command. */
6710
6711 static void
6712 info_module_variables_command (const char *args, int from_tty)
6713 {
6714 info_modules_var_func_options opts;
6715 auto grp = make_info_modules_var_func_options_def_group (&opts);
6716 gdb::option::process_options
6717 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6718 if (args != nullptr && *args == '\0')
6719 args = nullptr;
6720
6721 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6722 opts.type_regexp, VARIABLES_DOMAIN);
6723 }
6724
6725 /* Command completer for 'info module ...' sub-commands. */
6726
6727 static void
6728 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6729 completion_tracker &tracker,
6730 const char *text,
6731 const char * /* word */)
6732 {
6733
6734 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6735 if (gdb::option::complete_options
6736 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6737 return;
6738
6739 const char *word = advance_to_expression_complete_word_point (tracker, text);
6740 symbol_completer (ignore, tracker, text, word);
6741 }
6742
6743 \f
6744
6745 void _initialize_symtab ();
6746 void
6747 _initialize_symtab ()
6748 {
6749 cmd_list_element *c;
6750
6751 initialize_ordinary_address_classes ();
6752
6753 c = add_info ("variables", info_variables_command,
6754 info_print_args_help (_("\
6755 All global and static variable names or those matching REGEXPs.\n\
6756 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6757 Prints the global and static variables.\n"),
6758 _("global and static variables"),
6759 true));
6760 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6761 if (dbx_commands)
6762 {
6763 c = add_com ("whereis", class_info, info_variables_command,
6764 info_print_args_help (_("\
6765 All global and static variable names, or those matching REGEXPs.\n\
6766 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6767 Prints the global and static variables.\n"),
6768 _("global and static variables"),
6769 true));
6770 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6771 }
6772
6773 c = add_info ("functions", info_functions_command,
6774 info_print_args_help (_("\
6775 All function names or those matching REGEXPs.\n\
6776 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6777 Prints the functions.\n"),
6778 _("functions"),
6779 true));
6780 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6781
6782 c = add_info ("types", info_types_command, _("\
6783 All type names, or those matching REGEXP.\n\
6784 Usage: info types [-q] [REGEXP]\n\
6785 Print information about all types matching REGEXP, or all types if no\n\
6786 REGEXP is given. The optional flag -q disables printing of headers."));
6787 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6788
6789 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6790
6791 static std::string info_sources_help
6792 = gdb::option::build_help (_("\
6793 All source files in the program or those matching REGEXP.\n\
6794 Usage: info sources [OPTION]... [REGEXP]\n\
6795 By default, REGEXP is used to match anywhere in the filename.\n\
6796 \n\
6797 Options:\n\
6798 %OPTIONS%"),
6799 info_sources_opts);
6800
6801 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6802 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6803
6804 c = add_info ("modules", info_modules_command,
6805 _("All module names, or those matching REGEXP."));
6806 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6807
6808 add_prefix_cmd ("module", class_info, info_module_command, _("\
6809 Print information about modules."),
6810 &info_module_cmdlist, "info module ",
6811 0, &infolist);
6812
6813 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6814 Display functions arranged by modules.\n\
6815 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6816 Print a summary of all functions within each Fortran module, grouped by\n\
6817 module and file. For each function the line on which the function is\n\
6818 defined is given along with the type signature and name of the function.\n\
6819 \n\
6820 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6821 listed. If MODREGEXP is provided then only functions in modules matching\n\
6822 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6823 type signature matches TYPEREGEXP are listed.\n\
6824 \n\
6825 The -q flag suppresses printing some header information."),
6826 &info_module_cmdlist);
6827 set_cmd_completer_handle_brkchars
6828 (c, info_module_var_func_command_completer);
6829
6830 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6831 Display variables arranged by modules.\n\
6832 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6833 Print a summary of all variables within each Fortran module, grouped by\n\
6834 module and file. For each variable the line on which the variable is\n\
6835 defined is given along with the type and name of the variable.\n\
6836 \n\
6837 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6838 listed. If MODREGEXP is provided then only variables in modules matching\n\
6839 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6840 type matches TYPEREGEXP are listed.\n\
6841 \n\
6842 The -q flag suppresses printing some header information."),
6843 &info_module_cmdlist);
6844 set_cmd_completer_handle_brkchars
6845 (c, info_module_var_func_command_completer);
6846
6847 add_com ("rbreak", class_breakpoint, rbreak_command,
6848 _("Set a breakpoint for all functions matching REGEXP."));
6849
6850 add_setshow_enum_cmd ("multiple-symbols", no_class,
6851 multiple_symbols_modes, &multiple_symbols_mode,
6852 _("\
6853 Set how the debugger handles ambiguities in expressions."), _("\
6854 Show how the debugger handles ambiguities in expressions."), _("\
6855 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6856 NULL, NULL, &setlist, &showlist);
6857
6858 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6859 &basenames_may_differ, _("\
6860 Set whether a source file may have multiple base names."), _("\
6861 Show whether a source file may have multiple base names."), _("\
6862 (A \"base name\" is the name of a file with the directory part removed.\n\
6863 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6864 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6865 before comparing them. Canonicalization is an expensive operation,\n\
6866 but it allows the same file be known by more than one base name.\n\
6867 If not set (the default), all source files are assumed to have just\n\
6868 one base name, and gdb will do file name comparisons more efficiently."),
6869 NULL, NULL,
6870 &setlist, &showlist);
6871
6872 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6873 _("Set debugging of symbol table creation."),
6874 _("Show debugging of symbol table creation."), _("\
6875 When enabled (non-zero), debugging messages are printed when building\n\
6876 symbol tables. A value of 1 (one) normally provides enough information.\n\
6877 A value greater than 1 provides more verbose information."),
6878 NULL,
6879 NULL,
6880 &setdebuglist, &showdebuglist);
6881
6882 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6883 _("\
6884 Set debugging of symbol lookup."), _("\
6885 Show debugging of symbol lookup."), _("\
6886 When enabled (non-zero), symbol lookups are logged."),
6887 NULL, NULL,
6888 &setdebuglist, &showdebuglist);
6889
6890 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6891 &new_symbol_cache_size,
6892 _("Set the size of the symbol cache."),
6893 _("Show the size of the symbol cache."), _("\
6894 The size of the symbol cache.\n\
6895 If zero then the symbol cache is disabled."),
6896 set_symbol_cache_size_handler, NULL,
6897 &maintenance_set_cmdlist,
6898 &maintenance_show_cmdlist);
6899
6900 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6901 _("Dump the symbol cache for each program space."),
6902 &maintenanceprintlist);
6903
6904 add_cmd ("symbol-cache-statistics", class_maintenance,
6905 maintenance_print_symbol_cache_statistics,
6906 _("Print symbol cache statistics for each program space."),
6907 &maintenanceprintlist);
6908
6909 add_cmd ("flush-symbol-cache", class_maintenance,
6910 maintenance_flush_symbol_cache,
6911 _("Flush the symbol cache for each program space."),
6912 &maintenancelist);
6913
6914 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6915 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6916 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6917 }