]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
completion_list_add_name wrapper functions
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66
67 /* Forward declarations for local functions. */
68
69 static void rbreak_command (char *, int);
70
71 static int find_line_common (struct linetable *, int, int *, int);
72
73 static struct block_symbol
74 lookup_symbol_aux (const char *name,
75 const struct block *block,
76 const domain_enum domain,
77 enum language language,
78 struct field_of_this_result *);
79
80 static
81 struct block_symbol lookup_local_symbol (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language);
85
86 static struct block_symbol
87 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
88 const char *name, const domain_enum domain);
89
90 /* See symtab.h. */
91 const struct block_symbol null_block_symbol = { NULL, NULL };
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* Program space key for finding its symbol cache. */
113
114 static const struct program_space_data *symbol_cache_key;
115
116 /* The default symbol cache size.
117 There is no extra cpu cost for large N (except when flushing the cache,
118 which is rare). The value here is just a first attempt. A better default
119 value may be higher or lower. A prime number can make up for a bad hash
120 computation, so that's why the number is what it is. */
121 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
122
123 /* The maximum symbol cache size.
124 There's no method to the decision of what value to use here, other than
125 there's no point in allowing a user typo to make gdb consume all memory. */
126 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
127
128 /* symbol_cache_lookup returns this if a previous lookup failed to find the
129 symbol in any objfile. */
130 #define SYMBOL_LOOKUP_FAILED \
131 ((struct block_symbol) {(struct symbol *) 1, NULL})
132 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
133
134 /* Recording lookups that don't find the symbol is just as important, if not
135 more so, than recording found symbols. */
136
137 enum symbol_cache_slot_state
138 {
139 SYMBOL_SLOT_UNUSED,
140 SYMBOL_SLOT_NOT_FOUND,
141 SYMBOL_SLOT_FOUND
142 };
143
144 struct symbol_cache_slot
145 {
146 enum symbol_cache_slot_state state;
147
148 /* The objfile that was current when the symbol was looked up.
149 This is only needed for global blocks, but for simplicity's sake
150 we allocate the space for both. If data shows the extra space used
151 for static blocks is a problem, we can split things up then.
152
153 Global blocks need cache lookup to include the objfile context because
154 we need to account for gdbarch_iterate_over_objfiles_in_search_order
155 which can traverse objfiles in, effectively, any order, depending on
156 the current objfile, thus affecting which symbol is found. Normally,
157 only the current objfile is searched first, and then the rest are
158 searched in recorded order; but putting cache lookup inside
159 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
160 Instead we just make the current objfile part of the context of
161 cache lookup. This means we can record the same symbol multiple times,
162 each with a different "current objfile" that was in effect when the
163 lookup was saved in the cache, but cache space is pretty cheap. */
164 const struct objfile *objfile_context;
165
166 union
167 {
168 struct block_symbol found;
169 struct
170 {
171 char *name;
172 domain_enum domain;
173 } not_found;
174 } value;
175 };
176
177 /* Symbols don't specify global vs static block.
178 So keep them in separate caches. */
179
180 struct block_symbol_cache
181 {
182 unsigned int hits;
183 unsigned int misses;
184 unsigned int collisions;
185
186 /* SYMBOLS is a variable length array of this size.
187 One can imagine that in general one cache (global/static) should be a
188 fraction of the size of the other, but there's no data at the moment
189 on which to decide. */
190 unsigned int size;
191
192 struct symbol_cache_slot symbols[1];
193 };
194
195 /* The symbol cache.
196
197 Searching for symbols in the static and global blocks over multiple objfiles
198 again and again can be slow, as can searching very big objfiles. This is a
199 simple cache to improve symbol lookup performance, which is critical to
200 overall gdb performance.
201
202 Symbols are hashed on the name, its domain, and block.
203 They are also hashed on their objfile for objfile-specific lookups. */
204
205 struct symbol_cache
206 {
207 struct block_symbol_cache *global_symbols;
208 struct block_symbol_cache *static_symbols;
209 };
210
211 /* When non-zero, print debugging messages related to symtab creation. */
212 unsigned int symtab_create_debug = 0;
213
214 /* When non-zero, print debugging messages related to symbol lookup. */
215 unsigned int symbol_lookup_debug = 0;
216
217 /* The size of the cache is staged here. */
218 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
219
220 /* The current value of the symbol cache size.
221 This is saved so that if the user enters a value too big we can restore
222 the original value from here. */
223 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
224
225 /* Non-zero if a file may be known by two different basenames.
226 This is the uncommon case, and significantly slows down gdb.
227 Default set to "off" to not slow down the common case. */
228 int basenames_may_differ = 0;
229
230 /* Allow the user to configure the debugger behavior with respect
231 to multiple-choice menus when more than one symbol matches during
232 a symbol lookup. */
233
234 const char multiple_symbols_ask[] = "ask";
235 const char multiple_symbols_all[] = "all";
236 const char multiple_symbols_cancel[] = "cancel";
237 static const char *const multiple_symbols_modes[] =
238 {
239 multiple_symbols_ask,
240 multiple_symbols_all,
241 multiple_symbols_cancel,
242 NULL
243 };
244 static const char *multiple_symbols_mode = multiple_symbols_all;
245
246 /* Read-only accessor to AUTO_SELECT_MODE. */
247
248 const char *
249 multiple_symbols_select_mode (void)
250 {
251 return multiple_symbols_mode;
252 }
253
254 /* Return the name of a domain_enum. */
255
256 const char *
257 domain_name (domain_enum e)
258 {
259 switch (e)
260 {
261 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
262 case VAR_DOMAIN: return "VAR_DOMAIN";
263 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
264 case MODULE_DOMAIN: return "MODULE_DOMAIN";
265 case LABEL_DOMAIN: return "LABEL_DOMAIN";
266 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
267 default: gdb_assert_not_reached ("bad domain_enum");
268 }
269 }
270
271 /* Return the name of a search_domain . */
272
273 const char *
274 search_domain_name (enum search_domain e)
275 {
276 switch (e)
277 {
278 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
279 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
280 case TYPES_DOMAIN: return "TYPES_DOMAIN";
281 case ALL_DOMAIN: return "ALL_DOMAIN";
282 default: gdb_assert_not_reached ("bad search_domain");
283 }
284 }
285
286 /* See symtab.h. */
287
288 struct symtab *
289 compunit_primary_filetab (const struct compunit_symtab *cust)
290 {
291 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
292
293 /* The primary file symtab is the first one in the list. */
294 return COMPUNIT_FILETABS (cust);
295 }
296
297 /* See symtab.h. */
298
299 enum language
300 compunit_language (const struct compunit_symtab *cust)
301 {
302 struct symtab *symtab = compunit_primary_filetab (cust);
303
304 /* The language of the compunit symtab is the language of its primary
305 source file. */
306 return SYMTAB_LANGUAGE (symtab);
307 }
308
309 /* See whether FILENAME matches SEARCH_NAME using the rule that we
310 advertise to the user. (The manual's description of linespecs
311 describes what we advertise). Returns true if they match, false
312 otherwise. */
313
314 int
315 compare_filenames_for_search (const char *filename, const char *search_name)
316 {
317 int len = strlen (filename);
318 size_t search_len = strlen (search_name);
319
320 if (len < search_len)
321 return 0;
322
323 /* The tail of FILENAME must match. */
324 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
325 return 0;
326
327 /* Either the names must completely match, or the character
328 preceding the trailing SEARCH_NAME segment of FILENAME must be a
329 directory separator.
330
331 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
332 cannot match FILENAME "/path//dir/file.c" - as user has requested
333 absolute path. The sama applies for "c:\file.c" possibly
334 incorrectly hypothetically matching "d:\dir\c:\file.c".
335
336 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
337 compatible with SEARCH_NAME "file.c". In such case a compiler had
338 to put the "c:file.c" name into debug info. Such compatibility
339 works only on GDB built for DOS host. */
340 return (len == search_len
341 || (!IS_ABSOLUTE_PATH (search_name)
342 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
343 || (HAS_DRIVE_SPEC (filename)
344 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
345 }
346
347 /* Same as compare_filenames_for_search, but for glob-style patterns.
348 Heads up on the order of the arguments. They match the order of
349 compare_filenames_for_search, but it's the opposite of the order of
350 arguments to gdb_filename_fnmatch. */
351
352 int
353 compare_glob_filenames_for_search (const char *filename,
354 const char *search_name)
355 {
356 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
357 all /s have to be explicitly specified. */
358 int file_path_elements = count_path_elements (filename);
359 int search_path_elements = count_path_elements (search_name);
360
361 if (search_path_elements > file_path_elements)
362 return 0;
363
364 if (IS_ABSOLUTE_PATH (search_name))
365 {
366 return (search_path_elements == file_path_elements
367 && gdb_filename_fnmatch (search_name, filename,
368 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
369 }
370
371 {
372 const char *file_to_compare
373 = strip_leading_path_elements (filename,
374 file_path_elements - search_path_elements);
375
376 return gdb_filename_fnmatch (search_name, file_to_compare,
377 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
378 }
379 }
380
381 /* Check for a symtab of a specific name by searching some symtabs.
382 This is a helper function for callbacks of iterate_over_symtabs.
383
384 If NAME is not absolute, then REAL_PATH is NULL
385 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
386
387 The return value, NAME, REAL_PATH and CALLBACK are identical to the
388 `map_symtabs_matching_filename' method of quick_symbol_functions.
389
390 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
391 Each symtab within the specified compunit symtab is also searched.
392 AFTER_LAST is one past the last compunit symtab to search; NULL means to
393 search until the end of the list. */
394
395 bool
396 iterate_over_some_symtabs (const char *name,
397 const char *real_path,
398 struct compunit_symtab *first,
399 struct compunit_symtab *after_last,
400 gdb::function_view<bool (symtab *)> callback)
401 {
402 struct compunit_symtab *cust;
403 struct symtab *s;
404 const char* base_name = lbasename (name);
405
406 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
407 {
408 ALL_COMPUNIT_FILETABS (cust, s)
409 {
410 if (compare_filenames_for_search (s->filename, name))
411 {
412 if (callback (s))
413 return true;
414 continue;
415 }
416
417 /* Before we invoke realpath, which can get expensive when many
418 files are involved, do a quick comparison of the basenames. */
419 if (! basenames_may_differ
420 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
421 continue;
422
423 if (compare_filenames_for_search (symtab_to_fullname (s), name))
424 {
425 if (callback (s))
426 return true;
427 continue;
428 }
429
430 /* If the user gave us an absolute path, try to find the file in
431 this symtab and use its absolute path. */
432 if (real_path != NULL)
433 {
434 const char *fullname = symtab_to_fullname (s);
435
436 gdb_assert (IS_ABSOLUTE_PATH (real_path));
437 gdb_assert (IS_ABSOLUTE_PATH (name));
438 if (FILENAME_CMP (real_path, fullname) == 0)
439 {
440 if (callback (s))
441 return true;
442 continue;
443 }
444 }
445 }
446 }
447
448 return false;
449 }
450
451 /* Check for a symtab of a specific name; first in symtabs, then in
452 psymtabs. *If* there is no '/' in the name, a match after a '/'
453 in the symtab filename will also work.
454
455 Calls CALLBACK with each symtab that is found. If CALLBACK returns
456 true, the search stops. */
457
458 void
459 iterate_over_symtabs (const char *name,
460 gdb::function_view<bool (symtab *)> callback)
461 {
462 struct objfile *objfile;
463 gdb::unique_xmalloc_ptr<char> real_path;
464
465 /* Here we are interested in canonicalizing an absolute path, not
466 absolutizing a relative path. */
467 if (IS_ABSOLUTE_PATH (name))
468 {
469 real_path.reset (gdb_realpath (name));
470 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
471 }
472
473 ALL_OBJFILES (objfile)
474 {
475 if (iterate_over_some_symtabs (name, real_path.get (),
476 objfile->compunit_symtabs, NULL,
477 callback))
478 return;
479 }
480
481 /* Same search rules as above apply here, but now we look thru the
482 psymtabs. */
483
484 ALL_OBJFILES (objfile)
485 {
486 if (objfile->sf
487 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
488 name,
489 real_path.get (),
490 callback))
491 return;
492 }
493 }
494
495 /* A wrapper for iterate_over_symtabs that returns the first matching
496 symtab, or NULL. */
497
498 struct symtab *
499 lookup_symtab (const char *name)
500 {
501 struct symtab *result = NULL;
502
503 iterate_over_symtabs (name, [&] (symtab *symtab)
504 {
505 result = symtab;
506 return true;
507 });
508
509 return result;
510 }
511
512 \f
513 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
514 full method name, which consist of the class name (from T), the unadorned
515 method name from METHOD_ID, and the signature for the specific overload,
516 specified by SIGNATURE_ID. Note that this function is g++ specific. */
517
518 char *
519 gdb_mangle_name (struct type *type, int method_id, int signature_id)
520 {
521 int mangled_name_len;
522 char *mangled_name;
523 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
524 struct fn_field *method = &f[signature_id];
525 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
526 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
527 const char *newname = type_name_no_tag (type);
528
529 /* Does the form of physname indicate that it is the full mangled name
530 of a constructor (not just the args)? */
531 int is_full_physname_constructor;
532
533 int is_constructor;
534 int is_destructor = is_destructor_name (physname);
535 /* Need a new type prefix. */
536 const char *const_prefix = method->is_const ? "C" : "";
537 const char *volatile_prefix = method->is_volatile ? "V" : "";
538 char buf[20];
539 int len = (newname == NULL ? 0 : strlen (newname));
540
541 /* Nothing to do if physname already contains a fully mangled v3 abi name
542 or an operator name. */
543 if ((physname[0] == '_' && physname[1] == 'Z')
544 || is_operator_name (field_name))
545 return xstrdup (physname);
546
547 is_full_physname_constructor = is_constructor_name (physname);
548
549 is_constructor = is_full_physname_constructor
550 || (newname && strcmp (field_name, newname) == 0);
551
552 if (!is_destructor)
553 is_destructor = (startswith (physname, "__dt"));
554
555 if (is_destructor || is_full_physname_constructor)
556 {
557 mangled_name = (char *) xmalloc (strlen (physname) + 1);
558 strcpy (mangled_name, physname);
559 return mangled_name;
560 }
561
562 if (len == 0)
563 {
564 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
565 }
566 else if (physname[0] == 't' || physname[0] == 'Q')
567 {
568 /* The physname for template and qualified methods already includes
569 the class name. */
570 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
571 newname = NULL;
572 len = 0;
573 }
574 else
575 {
576 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
577 volatile_prefix, len);
578 }
579 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
580 + strlen (buf) + len + strlen (physname) + 1);
581
582 mangled_name = (char *) xmalloc (mangled_name_len);
583 if (is_constructor)
584 mangled_name[0] = '\0';
585 else
586 strcpy (mangled_name, field_name);
587
588 strcat (mangled_name, buf);
589 /* If the class doesn't have a name, i.e. newname NULL, then we just
590 mangle it using 0 for the length of the class. Thus it gets mangled
591 as something starting with `::' rather than `classname::'. */
592 if (newname != NULL)
593 strcat (mangled_name, newname);
594
595 strcat (mangled_name, physname);
596 return (mangled_name);
597 }
598
599 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
600 correctly allocated. */
601
602 void
603 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
604 const char *name,
605 struct obstack *obstack)
606 {
607 if (gsymbol->language == language_ada)
608 {
609 if (name == NULL)
610 {
611 gsymbol->ada_mangled = 0;
612 gsymbol->language_specific.obstack = obstack;
613 }
614 else
615 {
616 gsymbol->ada_mangled = 1;
617 gsymbol->language_specific.demangled_name = name;
618 }
619 }
620 else
621 gsymbol->language_specific.demangled_name = name;
622 }
623
624 /* Return the demangled name of GSYMBOL. */
625
626 const char *
627 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
628 {
629 if (gsymbol->language == language_ada)
630 {
631 if (!gsymbol->ada_mangled)
632 return NULL;
633 /* Fall through. */
634 }
635
636 return gsymbol->language_specific.demangled_name;
637 }
638
639 \f
640 /* Initialize the language dependent portion of a symbol
641 depending upon the language for the symbol. */
642
643 void
644 symbol_set_language (struct general_symbol_info *gsymbol,
645 enum language language,
646 struct obstack *obstack)
647 {
648 gsymbol->language = language;
649 if (gsymbol->language == language_cplus
650 || gsymbol->language == language_d
651 || gsymbol->language == language_go
652 || gsymbol->language == language_objc
653 || gsymbol->language == language_fortran)
654 {
655 symbol_set_demangled_name (gsymbol, NULL, obstack);
656 }
657 else if (gsymbol->language == language_ada)
658 {
659 gdb_assert (gsymbol->ada_mangled == 0);
660 gsymbol->language_specific.obstack = obstack;
661 }
662 else
663 {
664 memset (&gsymbol->language_specific, 0,
665 sizeof (gsymbol->language_specific));
666 }
667 }
668
669 /* Functions to initialize a symbol's mangled name. */
670
671 /* Objects of this type are stored in the demangled name hash table. */
672 struct demangled_name_entry
673 {
674 const char *mangled;
675 char demangled[1];
676 };
677
678 /* Hash function for the demangled name hash. */
679
680 static hashval_t
681 hash_demangled_name_entry (const void *data)
682 {
683 const struct demangled_name_entry *e
684 = (const struct demangled_name_entry *) data;
685
686 return htab_hash_string (e->mangled);
687 }
688
689 /* Equality function for the demangled name hash. */
690
691 static int
692 eq_demangled_name_entry (const void *a, const void *b)
693 {
694 const struct demangled_name_entry *da
695 = (const struct demangled_name_entry *) a;
696 const struct demangled_name_entry *db
697 = (const struct demangled_name_entry *) b;
698
699 return strcmp (da->mangled, db->mangled) == 0;
700 }
701
702 /* Create the hash table used for demangled names. Each hash entry is
703 a pair of strings; one for the mangled name and one for the demangled
704 name. The entry is hashed via just the mangled name. */
705
706 static void
707 create_demangled_names_hash (struct objfile *objfile)
708 {
709 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
710 The hash table code will round this up to the next prime number.
711 Choosing a much larger table size wastes memory, and saves only about
712 1% in symbol reading. */
713
714 objfile->per_bfd->demangled_names_hash = htab_create_alloc
715 (256, hash_demangled_name_entry, eq_demangled_name_entry,
716 NULL, xcalloc, xfree);
717 }
718
719 /* Try to determine the demangled name for a symbol, based on the
720 language of that symbol. If the language is set to language_auto,
721 it will attempt to find any demangling algorithm that works and
722 then set the language appropriately. The returned name is allocated
723 by the demangler and should be xfree'd. */
724
725 static char *
726 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
727 const char *mangled)
728 {
729 char *demangled = NULL;
730 int i;
731 int recognized;
732
733 if (gsymbol->language == language_unknown)
734 gsymbol->language = language_auto;
735
736 if (gsymbol->language != language_auto)
737 {
738 const struct language_defn *lang = language_def (gsymbol->language);
739
740 language_sniff_from_mangled_name (lang, mangled, &demangled);
741 return demangled;
742 }
743
744 for (i = language_unknown; i < nr_languages; ++i)
745 {
746 enum language l = (enum language) i;
747 const struct language_defn *lang = language_def (l);
748
749 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
750 {
751 gsymbol->language = l;
752 return demangled;
753 }
754 }
755
756 return NULL;
757 }
758
759 /* Set both the mangled and demangled (if any) names for GSYMBOL based
760 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
761 objfile's obstack; but if COPY_NAME is 0 and if NAME is
762 NUL-terminated, then this function assumes that NAME is already
763 correctly saved (either permanently or with a lifetime tied to the
764 objfile), and it will not be copied.
765
766 The hash table corresponding to OBJFILE is used, and the memory
767 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
768 so the pointer can be discarded after calling this function. */
769
770 void
771 symbol_set_names (struct general_symbol_info *gsymbol,
772 const char *linkage_name, int len, int copy_name,
773 struct objfile *objfile)
774 {
775 struct demangled_name_entry **slot;
776 /* A 0-terminated copy of the linkage name. */
777 const char *linkage_name_copy;
778 struct demangled_name_entry entry;
779 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
780
781 if (gsymbol->language == language_ada)
782 {
783 /* In Ada, we do the symbol lookups using the mangled name, so
784 we can save some space by not storing the demangled name. */
785 if (!copy_name)
786 gsymbol->name = linkage_name;
787 else
788 {
789 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
790 len + 1);
791
792 memcpy (name, linkage_name, len);
793 name[len] = '\0';
794 gsymbol->name = name;
795 }
796 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
797
798 return;
799 }
800
801 if (per_bfd->demangled_names_hash == NULL)
802 create_demangled_names_hash (objfile);
803
804 if (linkage_name[len] != '\0')
805 {
806 char *alloc_name;
807
808 alloc_name = (char *) alloca (len + 1);
809 memcpy (alloc_name, linkage_name, len);
810 alloc_name[len] = '\0';
811
812 linkage_name_copy = alloc_name;
813 }
814 else
815 linkage_name_copy = linkage_name;
816
817 entry.mangled = linkage_name_copy;
818 slot = ((struct demangled_name_entry **)
819 htab_find_slot (per_bfd->demangled_names_hash,
820 &entry, INSERT));
821
822 /* If this name is not in the hash table, add it. */
823 if (*slot == NULL
824 /* A C version of the symbol may have already snuck into the table.
825 This happens to, e.g., main.init (__go_init_main). Cope. */
826 || (gsymbol->language == language_go
827 && (*slot)->demangled[0] == '\0'))
828 {
829 char *demangled_name = symbol_find_demangled_name (gsymbol,
830 linkage_name_copy);
831 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
832
833 /* Suppose we have demangled_name==NULL, copy_name==0, and
834 linkage_name_copy==linkage_name. In this case, we already have the
835 mangled name saved, and we don't have a demangled name. So,
836 you might think we could save a little space by not recording
837 this in the hash table at all.
838
839 It turns out that it is actually important to still save such
840 an entry in the hash table, because storing this name gives
841 us better bcache hit rates for partial symbols. */
842 if (!copy_name && linkage_name_copy == linkage_name)
843 {
844 *slot
845 = ((struct demangled_name_entry *)
846 obstack_alloc (&per_bfd->storage_obstack,
847 offsetof (struct demangled_name_entry, demangled)
848 + demangled_len + 1));
849 (*slot)->mangled = linkage_name;
850 }
851 else
852 {
853 char *mangled_ptr;
854
855 /* If we must copy the mangled name, put it directly after
856 the demangled name so we can have a single
857 allocation. */
858 *slot
859 = ((struct demangled_name_entry *)
860 obstack_alloc (&per_bfd->storage_obstack,
861 offsetof (struct demangled_name_entry, demangled)
862 + len + demangled_len + 2));
863 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
864 strcpy (mangled_ptr, linkage_name_copy);
865 (*slot)->mangled = mangled_ptr;
866 }
867
868 if (demangled_name != NULL)
869 {
870 strcpy ((*slot)->demangled, demangled_name);
871 xfree (demangled_name);
872 }
873 else
874 (*slot)->demangled[0] = '\0';
875 }
876
877 gsymbol->name = (*slot)->mangled;
878 if ((*slot)->demangled[0] != '\0')
879 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
880 &per_bfd->storage_obstack);
881 else
882 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
883 }
884
885 /* Return the source code name of a symbol. In languages where
886 demangling is necessary, this is the demangled name. */
887
888 const char *
889 symbol_natural_name (const struct general_symbol_info *gsymbol)
890 {
891 switch (gsymbol->language)
892 {
893 case language_cplus:
894 case language_d:
895 case language_go:
896 case language_objc:
897 case language_fortran:
898 if (symbol_get_demangled_name (gsymbol) != NULL)
899 return symbol_get_demangled_name (gsymbol);
900 break;
901 case language_ada:
902 return ada_decode_symbol (gsymbol);
903 default:
904 break;
905 }
906 return gsymbol->name;
907 }
908
909 /* Return the demangled name for a symbol based on the language for
910 that symbol. If no demangled name exists, return NULL. */
911
912 const char *
913 symbol_demangled_name (const struct general_symbol_info *gsymbol)
914 {
915 const char *dem_name = NULL;
916
917 switch (gsymbol->language)
918 {
919 case language_cplus:
920 case language_d:
921 case language_go:
922 case language_objc:
923 case language_fortran:
924 dem_name = symbol_get_demangled_name (gsymbol);
925 break;
926 case language_ada:
927 dem_name = ada_decode_symbol (gsymbol);
928 break;
929 default:
930 break;
931 }
932 return dem_name;
933 }
934
935 /* Return the search name of a symbol---generally the demangled or
936 linkage name of the symbol, depending on how it will be searched for.
937 If there is no distinct demangled name, then returns the same value
938 (same pointer) as SYMBOL_LINKAGE_NAME. */
939
940 const char *
941 symbol_search_name (const struct general_symbol_info *gsymbol)
942 {
943 if (gsymbol->language == language_ada)
944 return gsymbol->name;
945 else
946 return symbol_natural_name (gsymbol);
947 }
948
949 /* Initialize the structure fields to zero values. */
950
951 void
952 init_sal (struct symtab_and_line *sal)
953 {
954 memset (sal, 0, sizeof (*sal));
955 }
956 \f
957
958 /* Return 1 if the two sections are the same, or if they could
959 plausibly be copies of each other, one in an original object
960 file and another in a separated debug file. */
961
962 int
963 matching_obj_sections (struct obj_section *obj_first,
964 struct obj_section *obj_second)
965 {
966 asection *first = obj_first? obj_first->the_bfd_section : NULL;
967 asection *second = obj_second? obj_second->the_bfd_section : NULL;
968 struct objfile *obj;
969
970 /* If they're the same section, then they match. */
971 if (first == second)
972 return 1;
973
974 /* If either is NULL, give up. */
975 if (first == NULL || second == NULL)
976 return 0;
977
978 /* This doesn't apply to absolute symbols. */
979 if (first->owner == NULL || second->owner == NULL)
980 return 0;
981
982 /* If they're in the same object file, they must be different sections. */
983 if (first->owner == second->owner)
984 return 0;
985
986 /* Check whether the two sections are potentially corresponding. They must
987 have the same size, address, and name. We can't compare section indexes,
988 which would be more reliable, because some sections may have been
989 stripped. */
990 if (bfd_get_section_size (first) != bfd_get_section_size (second))
991 return 0;
992
993 /* In-memory addresses may start at a different offset, relativize them. */
994 if (bfd_get_section_vma (first->owner, first)
995 - bfd_get_start_address (first->owner)
996 != bfd_get_section_vma (second->owner, second)
997 - bfd_get_start_address (second->owner))
998 return 0;
999
1000 if (bfd_get_section_name (first->owner, first) == NULL
1001 || bfd_get_section_name (second->owner, second) == NULL
1002 || strcmp (bfd_get_section_name (first->owner, first),
1003 bfd_get_section_name (second->owner, second)) != 0)
1004 return 0;
1005
1006 /* Otherwise check that they are in corresponding objfiles. */
1007
1008 ALL_OBJFILES (obj)
1009 if (obj->obfd == first->owner)
1010 break;
1011 gdb_assert (obj != NULL);
1012
1013 if (obj->separate_debug_objfile != NULL
1014 && obj->separate_debug_objfile->obfd == second->owner)
1015 return 1;
1016 if (obj->separate_debug_objfile_backlink != NULL
1017 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1018 return 1;
1019
1020 return 0;
1021 }
1022
1023 /* See symtab.h. */
1024
1025 void
1026 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1027 {
1028 struct objfile *objfile;
1029 struct bound_minimal_symbol msymbol;
1030
1031 /* If we know that this is not a text address, return failure. This is
1032 necessary because we loop based on texthigh and textlow, which do
1033 not include the data ranges. */
1034 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1035 if (msymbol.minsym
1036 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1037 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1038 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1039 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1040 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1041 return;
1042
1043 ALL_OBJFILES (objfile)
1044 {
1045 struct compunit_symtab *cust = NULL;
1046
1047 if (objfile->sf)
1048 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1049 pc, section, 0);
1050 if (cust)
1051 return;
1052 }
1053 }
1054 \f
1055 /* Hash function for the symbol cache. */
1056
1057 static unsigned int
1058 hash_symbol_entry (const struct objfile *objfile_context,
1059 const char *name, domain_enum domain)
1060 {
1061 unsigned int hash = (uintptr_t) objfile_context;
1062
1063 if (name != NULL)
1064 hash += htab_hash_string (name);
1065
1066 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1067 to map to the same slot. */
1068 if (domain == STRUCT_DOMAIN)
1069 hash += VAR_DOMAIN * 7;
1070 else
1071 hash += domain * 7;
1072
1073 return hash;
1074 }
1075
1076 /* Equality function for the symbol cache. */
1077
1078 static int
1079 eq_symbol_entry (const struct symbol_cache_slot *slot,
1080 const struct objfile *objfile_context,
1081 const char *name, domain_enum domain)
1082 {
1083 const char *slot_name;
1084 domain_enum slot_domain;
1085
1086 if (slot->state == SYMBOL_SLOT_UNUSED)
1087 return 0;
1088
1089 if (slot->objfile_context != objfile_context)
1090 return 0;
1091
1092 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1093 {
1094 slot_name = slot->value.not_found.name;
1095 slot_domain = slot->value.not_found.domain;
1096 }
1097 else
1098 {
1099 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1100 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1101 }
1102
1103 /* NULL names match. */
1104 if (slot_name == NULL && name == NULL)
1105 {
1106 /* But there's no point in calling symbol_matches_domain in the
1107 SYMBOL_SLOT_FOUND case. */
1108 if (slot_domain != domain)
1109 return 0;
1110 }
1111 else if (slot_name != NULL && name != NULL)
1112 {
1113 /* It's important that we use the same comparison that was done the
1114 first time through. If the slot records a found symbol, then this
1115 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1116 It also means using symbol_matches_domain for found symbols.
1117 See block.c.
1118
1119 If the slot records a not-found symbol, then require a precise match.
1120 We could still be lax with whitespace like strcmp_iw though. */
1121
1122 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1123 {
1124 if (strcmp (slot_name, name) != 0)
1125 return 0;
1126 if (slot_domain != domain)
1127 return 0;
1128 }
1129 else
1130 {
1131 struct symbol *sym = slot->value.found.symbol;
1132
1133 if (strcmp_iw (slot_name, name) != 0)
1134 return 0;
1135 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1136 slot_domain, domain))
1137 return 0;
1138 }
1139 }
1140 else
1141 {
1142 /* Only one name is NULL. */
1143 return 0;
1144 }
1145
1146 return 1;
1147 }
1148
1149 /* Given a cache of size SIZE, return the size of the struct (with variable
1150 length array) in bytes. */
1151
1152 static size_t
1153 symbol_cache_byte_size (unsigned int size)
1154 {
1155 return (sizeof (struct block_symbol_cache)
1156 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1157 }
1158
1159 /* Resize CACHE. */
1160
1161 static void
1162 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1163 {
1164 /* If there's no change in size, don't do anything.
1165 All caches have the same size, so we can just compare with the size
1166 of the global symbols cache. */
1167 if ((cache->global_symbols != NULL
1168 && cache->global_symbols->size == new_size)
1169 || (cache->global_symbols == NULL
1170 && new_size == 0))
1171 return;
1172
1173 xfree (cache->global_symbols);
1174 xfree (cache->static_symbols);
1175
1176 if (new_size == 0)
1177 {
1178 cache->global_symbols = NULL;
1179 cache->static_symbols = NULL;
1180 }
1181 else
1182 {
1183 size_t total_size = symbol_cache_byte_size (new_size);
1184
1185 cache->global_symbols
1186 = (struct block_symbol_cache *) xcalloc (1, total_size);
1187 cache->static_symbols
1188 = (struct block_symbol_cache *) xcalloc (1, total_size);
1189 cache->global_symbols->size = new_size;
1190 cache->static_symbols->size = new_size;
1191 }
1192 }
1193
1194 /* Make a symbol cache of size SIZE. */
1195
1196 static struct symbol_cache *
1197 make_symbol_cache (unsigned int size)
1198 {
1199 struct symbol_cache *cache;
1200
1201 cache = XCNEW (struct symbol_cache);
1202 resize_symbol_cache (cache, symbol_cache_size);
1203 return cache;
1204 }
1205
1206 /* Free the space used by CACHE. */
1207
1208 static void
1209 free_symbol_cache (struct symbol_cache *cache)
1210 {
1211 xfree (cache->global_symbols);
1212 xfree (cache->static_symbols);
1213 xfree (cache);
1214 }
1215
1216 /* Return the symbol cache of PSPACE.
1217 Create one if it doesn't exist yet. */
1218
1219 static struct symbol_cache *
1220 get_symbol_cache (struct program_space *pspace)
1221 {
1222 struct symbol_cache *cache
1223 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1224
1225 if (cache == NULL)
1226 {
1227 cache = make_symbol_cache (symbol_cache_size);
1228 set_program_space_data (pspace, symbol_cache_key, cache);
1229 }
1230
1231 return cache;
1232 }
1233
1234 /* Delete the symbol cache of PSPACE.
1235 Called when PSPACE is destroyed. */
1236
1237 static void
1238 symbol_cache_cleanup (struct program_space *pspace, void *data)
1239 {
1240 struct symbol_cache *cache = (struct symbol_cache *) data;
1241
1242 free_symbol_cache (cache);
1243 }
1244
1245 /* Set the size of the symbol cache in all program spaces. */
1246
1247 static void
1248 set_symbol_cache_size (unsigned int new_size)
1249 {
1250 struct program_space *pspace;
1251
1252 ALL_PSPACES (pspace)
1253 {
1254 struct symbol_cache *cache
1255 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1256
1257 /* The pspace could have been created but not have a cache yet. */
1258 if (cache != NULL)
1259 resize_symbol_cache (cache, new_size);
1260 }
1261 }
1262
1263 /* Called when symbol-cache-size is set. */
1264
1265 static void
1266 set_symbol_cache_size_handler (char *args, int from_tty,
1267 struct cmd_list_element *c)
1268 {
1269 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1270 {
1271 /* Restore the previous value.
1272 This is the value the "show" command prints. */
1273 new_symbol_cache_size = symbol_cache_size;
1274
1275 error (_("Symbol cache size is too large, max is %u."),
1276 MAX_SYMBOL_CACHE_SIZE);
1277 }
1278 symbol_cache_size = new_symbol_cache_size;
1279
1280 set_symbol_cache_size (symbol_cache_size);
1281 }
1282
1283 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1284 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1285 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1286 failed (and thus this one will too), or NULL if the symbol is not present
1287 in the cache.
1288 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1289 set to the cache and slot of the symbol to save the result of a full lookup
1290 attempt. */
1291
1292 static struct block_symbol
1293 symbol_cache_lookup (struct symbol_cache *cache,
1294 struct objfile *objfile_context, int block,
1295 const char *name, domain_enum domain,
1296 struct block_symbol_cache **bsc_ptr,
1297 struct symbol_cache_slot **slot_ptr)
1298 {
1299 struct block_symbol_cache *bsc;
1300 unsigned int hash;
1301 struct symbol_cache_slot *slot;
1302
1303 if (block == GLOBAL_BLOCK)
1304 bsc = cache->global_symbols;
1305 else
1306 bsc = cache->static_symbols;
1307 if (bsc == NULL)
1308 {
1309 *bsc_ptr = NULL;
1310 *slot_ptr = NULL;
1311 return (struct block_symbol) {NULL, NULL};
1312 }
1313
1314 hash = hash_symbol_entry (objfile_context, name, domain);
1315 slot = bsc->symbols + hash % bsc->size;
1316
1317 if (eq_symbol_entry (slot, objfile_context, name, domain))
1318 {
1319 if (symbol_lookup_debug)
1320 fprintf_unfiltered (gdb_stdlog,
1321 "%s block symbol cache hit%s for %s, %s\n",
1322 block == GLOBAL_BLOCK ? "Global" : "Static",
1323 slot->state == SYMBOL_SLOT_NOT_FOUND
1324 ? " (not found)" : "",
1325 name, domain_name (domain));
1326 ++bsc->hits;
1327 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1328 return SYMBOL_LOOKUP_FAILED;
1329 return slot->value.found;
1330 }
1331
1332 /* Symbol is not present in the cache. */
1333
1334 *bsc_ptr = bsc;
1335 *slot_ptr = slot;
1336
1337 if (symbol_lookup_debug)
1338 {
1339 fprintf_unfiltered (gdb_stdlog,
1340 "%s block symbol cache miss for %s, %s\n",
1341 block == GLOBAL_BLOCK ? "Global" : "Static",
1342 name, domain_name (domain));
1343 }
1344 ++bsc->misses;
1345 return (struct block_symbol) {NULL, NULL};
1346 }
1347
1348 /* Clear out SLOT. */
1349
1350 static void
1351 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1352 {
1353 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1354 xfree (slot->value.not_found.name);
1355 slot->state = SYMBOL_SLOT_UNUSED;
1356 }
1357
1358 /* Mark SYMBOL as found in SLOT.
1359 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1360 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1361 necessarily the objfile the symbol was found in. */
1362
1363 static void
1364 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1365 struct symbol_cache_slot *slot,
1366 struct objfile *objfile_context,
1367 struct symbol *symbol,
1368 const struct block *block)
1369 {
1370 if (bsc == NULL)
1371 return;
1372 if (slot->state != SYMBOL_SLOT_UNUSED)
1373 {
1374 ++bsc->collisions;
1375 symbol_cache_clear_slot (slot);
1376 }
1377 slot->state = SYMBOL_SLOT_FOUND;
1378 slot->objfile_context = objfile_context;
1379 slot->value.found.symbol = symbol;
1380 slot->value.found.block = block;
1381 }
1382
1383 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1384 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1385 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1386
1387 static void
1388 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1389 struct symbol_cache_slot *slot,
1390 struct objfile *objfile_context,
1391 const char *name, domain_enum domain)
1392 {
1393 if (bsc == NULL)
1394 return;
1395 if (slot->state != SYMBOL_SLOT_UNUSED)
1396 {
1397 ++bsc->collisions;
1398 symbol_cache_clear_slot (slot);
1399 }
1400 slot->state = SYMBOL_SLOT_NOT_FOUND;
1401 slot->objfile_context = objfile_context;
1402 slot->value.not_found.name = xstrdup (name);
1403 slot->value.not_found.domain = domain;
1404 }
1405
1406 /* Flush the symbol cache of PSPACE. */
1407
1408 static void
1409 symbol_cache_flush (struct program_space *pspace)
1410 {
1411 struct symbol_cache *cache
1412 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1413 int pass;
1414
1415 if (cache == NULL)
1416 return;
1417 if (cache->global_symbols == NULL)
1418 {
1419 gdb_assert (symbol_cache_size == 0);
1420 gdb_assert (cache->static_symbols == NULL);
1421 return;
1422 }
1423
1424 /* If the cache is untouched since the last flush, early exit.
1425 This is important for performance during the startup of a program linked
1426 with 100s (or 1000s) of shared libraries. */
1427 if (cache->global_symbols->misses == 0
1428 && cache->static_symbols->misses == 0)
1429 return;
1430
1431 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1432 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1433
1434 for (pass = 0; pass < 2; ++pass)
1435 {
1436 struct block_symbol_cache *bsc
1437 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1438 unsigned int i;
1439
1440 for (i = 0; i < bsc->size; ++i)
1441 symbol_cache_clear_slot (&bsc->symbols[i]);
1442 }
1443
1444 cache->global_symbols->hits = 0;
1445 cache->global_symbols->misses = 0;
1446 cache->global_symbols->collisions = 0;
1447 cache->static_symbols->hits = 0;
1448 cache->static_symbols->misses = 0;
1449 cache->static_symbols->collisions = 0;
1450 }
1451
1452 /* Dump CACHE. */
1453
1454 static void
1455 symbol_cache_dump (const struct symbol_cache *cache)
1456 {
1457 int pass;
1458
1459 if (cache->global_symbols == NULL)
1460 {
1461 printf_filtered (" <disabled>\n");
1462 return;
1463 }
1464
1465 for (pass = 0; pass < 2; ++pass)
1466 {
1467 const struct block_symbol_cache *bsc
1468 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1469 unsigned int i;
1470
1471 if (pass == 0)
1472 printf_filtered ("Global symbols:\n");
1473 else
1474 printf_filtered ("Static symbols:\n");
1475
1476 for (i = 0; i < bsc->size; ++i)
1477 {
1478 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1479
1480 QUIT;
1481
1482 switch (slot->state)
1483 {
1484 case SYMBOL_SLOT_UNUSED:
1485 break;
1486 case SYMBOL_SLOT_NOT_FOUND:
1487 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1488 host_address_to_string (slot->objfile_context),
1489 slot->value.not_found.name,
1490 domain_name (slot->value.not_found.domain));
1491 break;
1492 case SYMBOL_SLOT_FOUND:
1493 {
1494 struct symbol *found = slot->value.found.symbol;
1495 const struct objfile *context = slot->objfile_context;
1496
1497 printf_filtered (" [%4u] = %s, %s %s\n", i,
1498 host_address_to_string (context),
1499 SYMBOL_PRINT_NAME (found),
1500 domain_name (SYMBOL_DOMAIN (found)));
1501 break;
1502 }
1503 }
1504 }
1505 }
1506 }
1507
1508 /* The "mt print symbol-cache" command. */
1509
1510 static void
1511 maintenance_print_symbol_cache (char *args, int from_tty)
1512 {
1513 struct program_space *pspace;
1514
1515 ALL_PSPACES (pspace)
1516 {
1517 struct symbol_cache *cache;
1518
1519 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1520 pspace->num,
1521 pspace->symfile_object_file != NULL
1522 ? objfile_name (pspace->symfile_object_file)
1523 : "(no object file)");
1524
1525 /* If the cache hasn't been created yet, avoid creating one. */
1526 cache
1527 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1528 if (cache == NULL)
1529 printf_filtered (" <empty>\n");
1530 else
1531 symbol_cache_dump (cache);
1532 }
1533 }
1534
1535 /* The "mt flush-symbol-cache" command. */
1536
1537 static void
1538 maintenance_flush_symbol_cache (char *args, int from_tty)
1539 {
1540 struct program_space *pspace;
1541
1542 ALL_PSPACES (pspace)
1543 {
1544 symbol_cache_flush (pspace);
1545 }
1546 }
1547
1548 /* Print usage statistics of CACHE. */
1549
1550 static void
1551 symbol_cache_stats (struct symbol_cache *cache)
1552 {
1553 int pass;
1554
1555 if (cache->global_symbols == NULL)
1556 {
1557 printf_filtered (" <disabled>\n");
1558 return;
1559 }
1560
1561 for (pass = 0; pass < 2; ++pass)
1562 {
1563 const struct block_symbol_cache *bsc
1564 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1565
1566 QUIT;
1567
1568 if (pass == 0)
1569 printf_filtered ("Global block cache stats:\n");
1570 else
1571 printf_filtered ("Static block cache stats:\n");
1572
1573 printf_filtered (" size: %u\n", bsc->size);
1574 printf_filtered (" hits: %u\n", bsc->hits);
1575 printf_filtered (" misses: %u\n", bsc->misses);
1576 printf_filtered (" collisions: %u\n", bsc->collisions);
1577 }
1578 }
1579
1580 /* The "mt print symbol-cache-statistics" command. */
1581
1582 static void
1583 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1584 {
1585 struct program_space *pspace;
1586
1587 ALL_PSPACES (pspace)
1588 {
1589 struct symbol_cache *cache;
1590
1591 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1592 pspace->num,
1593 pspace->symfile_object_file != NULL
1594 ? objfile_name (pspace->symfile_object_file)
1595 : "(no object file)");
1596
1597 /* If the cache hasn't been created yet, avoid creating one. */
1598 cache
1599 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1600 if (cache == NULL)
1601 printf_filtered (" empty, no stats available\n");
1602 else
1603 symbol_cache_stats (cache);
1604 }
1605 }
1606
1607 /* This module's 'new_objfile' observer. */
1608
1609 static void
1610 symtab_new_objfile_observer (struct objfile *objfile)
1611 {
1612 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1613 symbol_cache_flush (current_program_space);
1614 }
1615
1616 /* This module's 'free_objfile' observer. */
1617
1618 static void
1619 symtab_free_objfile_observer (struct objfile *objfile)
1620 {
1621 symbol_cache_flush (objfile->pspace);
1622 }
1623 \f
1624 /* Debug symbols usually don't have section information. We need to dig that
1625 out of the minimal symbols and stash that in the debug symbol. */
1626
1627 void
1628 fixup_section (struct general_symbol_info *ginfo,
1629 CORE_ADDR addr, struct objfile *objfile)
1630 {
1631 struct minimal_symbol *msym;
1632
1633 /* First, check whether a minimal symbol with the same name exists
1634 and points to the same address. The address check is required
1635 e.g. on PowerPC64, where the minimal symbol for a function will
1636 point to the function descriptor, while the debug symbol will
1637 point to the actual function code. */
1638 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1639 if (msym)
1640 ginfo->section = MSYMBOL_SECTION (msym);
1641 else
1642 {
1643 /* Static, function-local variables do appear in the linker
1644 (minimal) symbols, but are frequently given names that won't
1645 be found via lookup_minimal_symbol(). E.g., it has been
1646 observed in frv-uclinux (ELF) executables that a static,
1647 function-local variable named "foo" might appear in the
1648 linker symbols as "foo.6" or "foo.3". Thus, there is no
1649 point in attempting to extend the lookup-by-name mechanism to
1650 handle this case due to the fact that there can be multiple
1651 names.
1652
1653 So, instead, search the section table when lookup by name has
1654 failed. The ``addr'' and ``endaddr'' fields may have already
1655 been relocated. If so, the relocation offset (i.e. the
1656 ANOFFSET value) needs to be subtracted from these values when
1657 performing the comparison. We unconditionally subtract it,
1658 because, when no relocation has been performed, the ANOFFSET
1659 value will simply be zero.
1660
1661 The address of the symbol whose section we're fixing up HAS
1662 NOT BEEN adjusted (relocated) yet. It can't have been since
1663 the section isn't yet known and knowing the section is
1664 necessary in order to add the correct relocation value. In
1665 other words, we wouldn't even be in this function (attempting
1666 to compute the section) if it were already known.
1667
1668 Note that it is possible to search the minimal symbols
1669 (subtracting the relocation value if necessary) to find the
1670 matching minimal symbol, but this is overkill and much less
1671 efficient. It is not necessary to find the matching minimal
1672 symbol, only its section.
1673
1674 Note that this technique (of doing a section table search)
1675 can fail when unrelocated section addresses overlap. For
1676 this reason, we still attempt a lookup by name prior to doing
1677 a search of the section table. */
1678
1679 struct obj_section *s;
1680 int fallback = -1;
1681
1682 ALL_OBJFILE_OSECTIONS (objfile, s)
1683 {
1684 int idx = s - objfile->sections;
1685 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1686
1687 if (fallback == -1)
1688 fallback = idx;
1689
1690 if (obj_section_addr (s) - offset <= addr
1691 && addr < obj_section_endaddr (s) - offset)
1692 {
1693 ginfo->section = idx;
1694 return;
1695 }
1696 }
1697
1698 /* If we didn't find the section, assume it is in the first
1699 section. If there is no allocated section, then it hardly
1700 matters what we pick, so just pick zero. */
1701 if (fallback == -1)
1702 ginfo->section = 0;
1703 else
1704 ginfo->section = fallback;
1705 }
1706 }
1707
1708 struct symbol *
1709 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1710 {
1711 CORE_ADDR addr;
1712
1713 if (!sym)
1714 return NULL;
1715
1716 if (!SYMBOL_OBJFILE_OWNED (sym))
1717 return sym;
1718
1719 /* We either have an OBJFILE, or we can get at it from the sym's
1720 symtab. Anything else is a bug. */
1721 gdb_assert (objfile || symbol_symtab (sym));
1722
1723 if (objfile == NULL)
1724 objfile = symbol_objfile (sym);
1725
1726 if (SYMBOL_OBJ_SECTION (objfile, sym))
1727 return sym;
1728
1729 /* We should have an objfile by now. */
1730 gdb_assert (objfile);
1731
1732 switch (SYMBOL_CLASS (sym))
1733 {
1734 case LOC_STATIC:
1735 case LOC_LABEL:
1736 addr = SYMBOL_VALUE_ADDRESS (sym);
1737 break;
1738 case LOC_BLOCK:
1739 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1740 break;
1741
1742 default:
1743 /* Nothing else will be listed in the minsyms -- no use looking
1744 it up. */
1745 return sym;
1746 }
1747
1748 fixup_section (&sym->ginfo, addr, objfile);
1749
1750 return sym;
1751 }
1752
1753 /* Compute the demangled form of NAME as used by the various symbol
1754 lookup functions. The result can either be the input NAME
1755 directly, or a pointer to a buffer owned by the STORAGE object.
1756
1757 For Ada, this function just returns NAME, unmodified.
1758 Normally, Ada symbol lookups are performed using the encoded name
1759 rather than the demangled name, and so it might seem to make sense
1760 for this function to return an encoded version of NAME.
1761 Unfortunately, we cannot do this, because this function is used in
1762 circumstances where it is not appropriate to try to encode NAME.
1763 For instance, when displaying the frame info, we demangle the name
1764 of each parameter, and then perform a symbol lookup inside our
1765 function using that demangled name. In Ada, certain functions
1766 have internally-generated parameters whose name contain uppercase
1767 characters. Encoding those name would result in those uppercase
1768 characters to become lowercase, and thus cause the symbol lookup
1769 to fail. */
1770
1771 const char *
1772 demangle_for_lookup (const char *name, enum language lang,
1773 demangle_result_storage &storage)
1774 {
1775 /* If we are using C++, D, or Go, demangle the name before doing a
1776 lookup, so we can always binary search. */
1777 if (lang == language_cplus)
1778 {
1779 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1780 if (demangled_name != NULL)
1781 return storage.set_malloc_ptr (demangled_name);
1782
1783 /* If we were given a non-mangled name, canonicalize it
1784 according to the language (so far only for C++). */
1785 std::string canon = cp_canonicalize_string (name);
1786 if (!canon.empty ())
1787 return storage.swap_string (canon);
1788 }
1789 else if (lang == language_d)
1790 {
1791 char *demangled_name = d_demangle (name, 0);
1792 if (demangled_name != NULL)
1793 return storage.set_malloc_ptr (demangled_name);
1794 }
1795 else if (lang == language_go)
1796 {
1797 char *demangled_name = go_demangle (name, 0);
1798 if (demangled_name != NULL)
1799 return storage.set_malloc_ptr (demangled_name);
1800 }
1801
1802 return name;
1803 }
1804
1805 /* See symtab.h.
1806
1807 This function (or rather its subordinates) have a bunch of loops and
1808 it would seem to be attractive to put in some QUIT's (though I'm not really
1809 sure whether it can run long enough to be really important). But there
1810 are a few calls for which it would appear to be bad news to quit
1811 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1812 that there is C++ code below which can error(), but that probably
1813 doesn't affect these calls since they are looking for a known
1814 variable and thus can probably assume it will never hit the C++
1815 code). */
1816
1817 struct block_symbol
1818 lookup_symbol_in_language (const char *name, const struct block *block,
1819 const domain_enum domain, enum language lang,
1820 struct field_of_this_result *is_a_field_of_this)
1821 {
1822 demangle_result_storage storage;
1823 const char *modified_name = demangle_for_lookup (name, lang, storage);
1824
1825 return lookup_symbol_aux (modified_name, block, domain, lang,
1826 is_a_field_of_this);
1827 }
1828
1829 /* See symtab.h. */
1830
1831 struct block_symbol
1832 lookup_symbol (const char *name, const struct block *block,
1833 domain_enum domain,
1834 struct field_of_this_result *is_a_field_of_this)
1835 {
1836 return lookup_symbol_in_language (name, block, domain,
1837 current_language->la_language,
1838 is_a_field_of_this);
1839 }
1840
1841 /* See symtab.h. */
1842
1843 struct block_symbol
1844 lookup_language_this (const struct language_defn *lang,
1845 const struct block *block)
1846 {
1847 if (lang->la_name_of_this == NULL || block == NULL)
1848 return (struct block_symbol) {NULL, NULL};
1849
1850 if (symbol_lookup_debug > 1)
1851 {
1852 struct objfile *objfile = lookup_objfile_from_block (block);
1853
1854 fprintf_unfiltered (gdb_stdlog,
1855 "lookup_language_this (%s, %s (objfile %s))",
1856 lang->la_name, host_address_to_string (block),
1857 objfile_debug_name (objfile));
1858 }
1859
1860 while (block)
1861 {
1862 struct symbol *sym;
1863
1864 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1865 if (sym != NULL)
1866 {
1867 if (symbol_lookup_debug > 1)
1868 {
1869 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1870 SYMBOL_PRINT_NAME (sym),
1871 host_address_to_string (sym),
1872 host_address_to_string (block));
1873 }
1874 return (struct block_symbol) {sym, block};
1875 }
1876 if (BLOCK_FUNCTION (block))
1877 break;
1878 block = BLOCK_SUPERBLOCK (block);
1879 }
1880
1881 if (symbol_lookup_debug > 1)
1882 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1883 return (struct block_symbol) {NULL, NULL};
1884 }
1885
1886 /* Given TYPE, a structure/union,
1887 return 1 if the component named NAME from the ultimate target
1888 structure/union is defined, otherwise, return 0. */
1889
1890 static int
1891 check_field (struct type *type, const char *name,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 int i;
1895
1896 /* The type may be a stub. */
1897 type = check_typedef (type);
1898
1899 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1900 {
1901 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1902
1903 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1904 {
1905 is_a_field_of_this->type = type;
1906 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1907 return 1;
1908 }
1909 }
1910
1911 /* C++: If it was not found as a data field, then try to return it
1912 as a pointer to a method. */
1913
1914 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1915 {
1916 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1917 {
1918 is_a_field_of_this->type = type;
1919 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1920 return 1;
1921 }
1922 }
1923
1924 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1925 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1926 return 1;
1927
1928 return 0;
1929 }
1930
1931 /* Behave like lookup_symbol except that NAME is the natural name
1932 (e.g., demangled name) of the symbol that we're looking for. */
1933
1934 static struct block_symbol
1935 lookup_symbol_aux (const char *name, const struct block *block,
1936 const domain_enum domain, enum language language,
1937 struct field_of_this_result *is_a_field_of_this)
1938 {
1939 struct block_symbol result;
1940 const struct language_defn *langdef;
1941
1942 if (symbol_lookup_debug)
1943 {
1944 struct objfile *objfile = lookup_objfile_from_block (block);
1945
1946 fprintf_unfiltered (gdb_stdlog,
1947 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1948 name, host_address_to_string (block),
1949 objfile != NULL
1950 ? objfile_debug_name (objfile) : "NULL",
1951 domain_name (domain), language_str (language));
1952 }
1953
1954 /* Make sure we do something sensible with is_a_field_of_this, since
1955 the callers that set this parameter to some non-null value will
1956 certainly use it later. If we don't set it, the contents of
1957 is_a_field_of_this are undefined. */
1958 if (is_a_field_of_this != NULL)
1959 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1960
1961 /* Search specified block and its superiors. Don't search
1962 STATIC_BLOCK or GLOBAL_BLOCK. */
1963
1964 result = lookup_local_symbol (name, block, domain, language);
1965 if (result.symbol != NULL)
1966 {
1967 if (symbol_lookup_debug)
1968 {
1969 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1970 host_address_to_string (result.symbol));
1971 }
1972 return result;
1973 }
1974
1975 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1976 check to see if NAME is a field of `this'. */
1977
1978 langdef = language_def (language);
1979
1980 /* Don't do this check if we are searching for a struct. It will
1981 not be found by check_field, but will be found by other
1982 means. */
1983 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1984 {
1985 result = lookup_language_this (langdef, block);
1986
1987 if (result.symbol)
1988 {
1989 struct type *t = result.symbol->type;
1990
1991 /* I'm not really sure that type of this can ever
1992 be typedefed; just be safe. */
1993 t = check_typedef (t);
1994 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1995 t = TYPE_TARGET_TYPE (t);
1996
1997 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1998 && TYPE_CODE (t) != TYPE_CODE_UNION)
1999 error (_("Internal error: `%s' is not an aggregate"),
2000 langdef->la_name_of_this);
2001
2002 if (check_field (t, name, is_a_field_of_this))
2003 {
2004 if (symbol_lookup_debug)
2005 {
2006 fprintf_unfiltered (gdb_stdlog,
2007 "lookup_symbol_aux (...) = NULL\n");
2008 }
2009 return (struct block_symbol) {NULL, NULL};
2010 }
2011 }
2012 }
2013
2014 /* Now do whatever is appropriate for LANGUAGE to look
2015 up static and global variables. */
2016
2017 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2018 if (result.symbol != NULL)
2019 {
2020 if (symbol_lookup_debug)
2021 {
2022 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2023 host_address_to_string (result.symbol));
2024 }
2025 return result;
2026 }
2027
2028 /* Now search all static file-level symbols. Not strictly correct,
2029 but more useful than an error. */
2030
2031 result = lookup_static_symbol (name, domain);
2032 if (symbol_lookup_debug)
2033 {
2034 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2035 result.symbol != NULL
2036 ? host_address_to_string (result.symbol)
2037 : "NULL");
2038 }
2039 return result;
2040 }
2041
2042 /* Check to see if the symbol is defined in BLOCK or its superiors.
2043 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2044
2045 static struct block_symbol
2046 lookup_local_symbol (const char *name, const struct block *block,
2047 const domain_enum domain,
2048 enum language language)
2049 {
2050 struct symbol *sym;
2051 const struct block *static_block = block_static_block (block);
2052 const char *scope = block_scope (block);
2053
2054 /* Check if either no block is specified or it's a global block. */
2055
2056 if (static_block == NULL)
2057 return (struct block_symbol) {NULL, NULL};
2058
2059 while (block != static_block)
2060 {
2061 sym = lookup_symbol_in_block (name, block, domain);
2062 if (sym != NULL)
2063 return (struct block_symbol) {sym, block};
2064
2065 if (language == language_cplus || language == language_fortran)
2066 {
2067 struct block_symbol sym
2068 = cp_lookup_symbol_imports_or_template (scope, name, block,
2069 domain);
2070
2071 if (sym.symbol != NULL)
2072 return sym;
2073 }
2074
2075 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2076 break;
2077 block = BLOCK_SUPERBLOCK (block);
2078 }
2079
2080 /* We've reached the end of the function without finding a result. */
2081
2082 return (struct block_symbol) {NULL, NULL};
2083 }
2084
2085 /* See symtab.h. */
2086
2087 struct objfile *
2088 lookup_objfile_from_block (const struct block *block)
2089 {
2090 struct objfile *obj;
2091 struct compunit_symtab *cust;
2092
2093 if (block == NULL)
2094 return NULL;
2095
2096 block = block_global_block (block);
2097 /* Look through all blockvectors. */
2098 ALL_COMPUNITS (obj, cust)
2099 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2100 GLOBAL_BLOCK))
2101 {
2102 if (obj->separate_debug_objfile_backlink)
2103 obj = obj->separate_debug_objfile_backlink;
2104
2105 return obj;
2106 }
2107
2108 return NULL;
2109 }
2110
2111 /* See symtab.h. */
2112
2113 struct symbol *
2114 lookup_symbol_in_block (const char *name, const struct block *block,
2115 const domain_enum domain)
2116 {
2117 struct symbol *sym;
2118
2119 if (symbol_lookup_debug > 1)
2120 {
2121 struct objfile *objfile = lookup_objfile_from_block (block);
2122
2123 fprintf_unfiltered (gdb_stdlog,
2124 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2125 name, host_address_to_string (block),
2126 objfile_debug_name (objfile),
2127 domain_name (domain));
2128 }
2129
2130 sym = block_lookup_symbol (block, name, domain);
2131 if (sym)
2132 {
2133 if (symbol_lookup_debug > 1)
2134 {
2135 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2136 host_address_to_string (sym));
2137 }
2138 return fixup_symbol_section (sym, NULL);
2139 }
2140
2141 if (symbol_lookup_debug > 1)
2142 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2143 return NULL;
2144 }
2145
2146 /* See symtab.h. */
2147
2148 struct block_symbol
2149 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2150 const char *name,
2151 const domain_enum domain)
2152 {
2153 struct objfile *objfile;
2154
2155 for (objfile = main_objfile;
2156 objfile;
2157 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2158 {
2159 struct block_symbol result
2160 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2161
2162 if (result.symbol != NULL)
2163 return result;
2164 }
2165
2166 return (struct block_symbol) {NULL, NULL};
2167 }
2168
2169 /* Check to see if the symbol is defined in one of the OBJFILE's
2170 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2171 depending on whether or not we want to search global symbols or
2172 static symbols. */
2173
2174 static struct block_symbol
2175 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2176 const char *name, const domain_enum domain)
2177 {
2178 struct compunit_symtab *cust;
2179
2180 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2181
2182 if (symbol_lookup_debug > 1)
2183 {
2184 fprintf_unfiltered (gdb_stdlog,
2185 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2186 objfile_debug_name (objfile),
2187 block_index == GLOBAL_BLOCK
2188 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2189 name, domain_name (domain));
2190 }
2191
2192 ALL_OBJFILE_COMPUNITS (objfile, cust)
2193 {
2194 const struct blockvector *bv;
2195 const struct block *block;
2196 struct block_symbol result;
2197
2198 bv = COMPUNIT_BLOCKVECTOR (cust);
2199 block = BLOCKVECTOR_BLOCK (bv, block_index);
2200 result.symbol = block_lookup_symbol_primary (block, name, domain);
2201 result.block = block;
2202 if (result.symbol != NULL)
2203 {
2204 if (symbol_lookup_debug > 1)
2205 {
2206 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2207 host_address_to_string (result.symbol),
2208 host_address_to_string (block));
2209 }
2210 result.symbol = fixup_symbol_section (result.symbol, objfile);
2211 return result;
2212
2213 }
2214 }
2215
2216 if (symbol_lookup_debug > 1)
2217 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2218 return (struct block_symbol) {NULL, NULL};
2219 }
2220
2221 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2222 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2223 and all associated separate debug objfiles.
2224
2225 Normally we only look in OBJFILE, and not any separate debug objfiles
2226 because the outer loop will cause them to be searched too. This case is
2227 different. Here we're called from search_symbols where it will only
2228 call us for the the objfile that contains a matching minsym. */
2229
2230 static struct block_symbol
2231 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2232 const char *linkage_name,
2233 domain_enum domain)
2234 {
2235 enum language lang = current_language->la_language;
2236 struct objfile *main_objfile, *cur_objfile;
2237
2238 demangle_result_storage storage;
2239 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2240
2241 if (objfile->separate_debug_objfile_backlink)
2242 main_objfile = objfile->separate_debug_objfile_backlink;
2243 else
2244 main_objfile = objfile;
2245
2246 for (cur_objfile = main_objfile;
2247 cur_objfile;
2248 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2249 {
2250 struct block_symbol result;
2251
2252 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2253 modified_name, domain);
2254 if (result.symbol == NULL)
2255 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2256 modified_name, domain);
2257 if (result.symbol != NULL)
2258 return result;
2259 }
2260
2261 return (struct block_symbol) {NULL, NULL};
2262 }
2263
2264 /* A helper function that throws an exception when a symbol was found
2265 in a psymtab but not in a symtab. */
2266
2267 static void ATTRIBUTE_NORETURN
2268 error_in_psymtab_expansion (int block_index, const char *name,
2269 struct compunit_symtab *cust)
2270 {
2271 error (_("\
2272 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2273 %s may be an inlined function, or may be a template function\n \
2274 (if a template, try specifying an instantiation: %s<type>)."),
2275 block_index == GLOBAL_BLOCK ? "global" : "static",
2276 name,
2277 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2278 name, name);
2279 }
2280
2281 /* A helper function for various lookup routines that interfaces with
2282 the "quick" symbol table functions. */
2283
2284 static struct block_symbol
2285 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2286 const char *name, const domain_enum domain)
2287 {
2288 struct compunit_symtab *cust;
2289 const struct blockvector *bv;
2290 const struct block *block;
2291 struct block_symbol result;
2292
2293 if (!objfile->sf)
2294 return (struct block_symbol) {NULL, NULL};
2295
2296 if (symbol_lookup_debug > 1)
2297 {
2298 fprintf_unfiltered (gdb_stdlog,
2299 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2300 objfile_debug_name (objfile),
2301 block_index == GLOBAL_BLOCK
2302 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2303 name, domain_name (domain));
2304 }
2305
2306 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2307 if (cust == NULL)
2308 {
2309 if (symbol_lookup_debug > 1)
2310 {
2311 fprintf_unfiltered (gdb_stdlog,
2312 "lookup_symbol_via_quick_fns (...) = NULL\n");
2313 }
2314 return (struct block_symbol) {NULL, NULL};
2315 }
2316
2317 bv = COMPUNIT_BLOCKVECTOR (cust);
2318 block = BLOCKVECTOR_BLOCK (bv, block_index);
2319 result.symbol = block_lookup_symbol (block, name, domain);
2320 if (result.symbol == NULL)
2321 error_in_psymtab_expansion (block_index, name, cust);
2322
2323 if (symbol_lookup_debug > 1)
2324 {
2325 fprintf_unfiltered (gdb_stdlog,
2326 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2327 host_address_to_string (result.symbol),
2328 host_address_to_string (block));
2329 }
2330
2331 result.symbol = fixup_symbol_section (result.symbol, objfile);
2332 result.block = block;
2333 return result;
2334 }
2335
2336 /* See symtab.h. */
2337
2338 struct block_symbol
2339 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2340 const char *name,
2341 const struct block *block,
2342 const domain_enum domain)
2343 {
2344 struct block_symbol result;
2345
2346 /* NOTE: carlton/2003-05-19: The comments below were written when
2347 this (or what turned into this) was part of lookup_symbol_aux;
2348 I'm much less worried about these questions now, since these
2349 decisions have turned out well, but I leave these comments here
2350 for posterity. */
2351
2352 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2353 not it would be appropriate to search the current global block
2354 here as well. (That's what this code used to do before the
2355 is_a_field_of_this check was moved up.) On the one hand, it's
2356 redundant with the lookup in all objfiles search that happens
2357 next. On the other hand, if decode_line_1 is passed an argument
2358 like filename:var, then the user presumably wants 'var' to be
2359 searched for in filename. On the third hand, there shouldn't be
2360 multiple global variables all of which are named 'var', and it's
2361 not like decode_line_1 has ever restricted its search to only
2362 global variables in a single filename. All in all, only
2363 searching the static block here seems best: it's correct and it's
2364 cleanest. */
2365
2366 /* NOTE: carlton/2002-12-05: There's also a possible performance
2367 issue here: if you usually search for global symbols in the
2368 current file, then it would be slightly better to search the
2369 current global block before searching all the symtabs. But there
2370 are other factors that have a much greater effect on performance
2371 than that one, so I don't think we should worry about that for
2372 now. */
2373
2374 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2375 the current objfile. Searching the current objfile first is useful
2376 for both matching user expectations as well as performance. */
2377
2378 result = lookup_symbol_in_static_block (name, block, domain);
2379 if (result.symbol != NULL)
2380 return result;
2381
2382 /* If we didn't find a definition for a builtin type in the static block,
2383 search for it now. This is actually the right thing to do and can be
2384 a massive performance win. E.g., when debugging a program with lots of
2385 shared libraries we could search all of them only to find out the
2386 builtin type isn't defined in any of them. This is common for types
2387 like "void". */
2388 if (domain == VAR_DOMAIN)
2389 {
2390 struct gdbarch *gdbarch;
2391
2392 if (block == NULL)
2393 gdbarch = target_gdbarch ();
2394 else
2395 gdbarch = block_gdbarch (block);
2396 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2397 gdbarch, name);
2398 result.block = NULL;
2399 if (result.symbol != NULL)
2400 return result;
2401 }
2402
2403 return lookup_global_symbol (name, block, domain);
2404 }
2405
2406 /* See symtab.h. */
2407
2408 struct block_symbol
2409 lookup_symbol_in_static_block (const char *name,
2410 const struct block *block,
2411 const domain_enum domain)
2412 {
2413 const struct block *static_block = block_static_block (block);
2414 struct symbol *sym;
2415
2416 if (static_block == NULL)
2417 return (struct block_symbol) {NULL, NULL};
2418
2419 if (symbol_lookup_debug)
2420 {
2421 struct objfile *objfile = lookup_objfile_from_block (static_block);
2422
2423 fprintf_unfiltered (gdb_stdlog,
2424 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2425 " %s)\n",
2426 name,
2427 host_address_to_string (block),
2428 objfile_debug_name (objfile),
2429 domain_name (domain));
2430 }
2431
2432 sym = lookup_symbol_in_block (name, static_block, domain);
2433 if (symbol_lookup_debug)
2434 {
2435 fprintf_unfiltered (gdb_stdlog,
2436 "lookup_symbol_in_static_block (...) = %s\n",
2437 sym != NULL ? host_address_to_string (sym) : "NULL");
2438 }
2439 return (struct block_symbol) {sym, static_block};
2440 }
2441
2442 /* Perform the standard symbol lookup of NAME in OBJFILE:
2443 1) First search expanded symtabs, and if not found
2444 2) Search the "quick" symtabs (partial or .gdb_index).
2445 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2446
2447 static struct block_symbol
2448 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2449 const char *name, const domain_enum domain)
2450 {
2451 struct block_symbol result;
2452
2453 if (symbol_lookup_debug)
2454 {
2455 fprintf_unfiltered (gdb_stdlog,
2456 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2457 objfile_debug_name (objfile),
2458 block_index == GLOBAL_BLOCK
2459 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2460 name, domain_name (domain));
2461 }
2462
2463 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2464 name, domain);
2465 if (result.symbol != NULL)
2466 {
2467 if (symbol_lookup_debug)
2468 {
2469 fprintf_unfiltered (gdb_stdlog,
2470 "lookup_symbol_in_objfile (...) = %s"
2471 " (in symtabs)\n",
2472 host_address_to_string (result.symbol));
2473 }
2474 return result;
2475 }
2476
2477 result = lookup_symbol_via_quick_fns (objfile, block_index,
2478 name, domain);
2479 if (symbol_lookup_debug)
2480 {
2481 fprintf_unfiltered (gdb_stdlog,
2482 "lookup_symbol_in_objfile (...) = %s%s\n",
2483 result.symbol != NULL
2484 ? host_address_to_string (result.symbol)
2485 : "NULL",
2486 result.symbol != NULL ? " (via quick fns)" : "");
2487 }
2488 return result;
2489 }
2490
2491 /* See symtab.h. */
2492
2493 struct block_symbol
2494 lookup_static_symbol (const char *name, const domain_enum domain)
2495 {
2496 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2497 struct objfile *objfile;
2498 struct block_symbol result;
2499 struct block_symbol_cache *bsc;
2500 struct symbol_cache_slot *slot;
2501
2502 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2503 NULL for OBJFILE_CONTEXT. */
2504 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2505 &bsc, &slot);
2506 if (result.symbol != NULL)
2507 {
2508 if (SYMBOL_LOOKUP_FAILED_P (result))
2509 return (struct block_symbol) {NULL, NULL};
2510 return result;
2511 }
2512
2513 ALL_OBJFILES (objfile)
2514 {
2515 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2516 if (result.symbol != NULL)
2517 {
2518 /* Still pass NULL for OBJFILE_CONTEXT here. */
2519 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2520 result.block);
2521 return result;
2522 }
2523 }
2524
2525 /* Still pass NULL for OBJFILE_CONTEXT here. */
2526 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2527 return (struct block_symbol) {NULL, NULL};
2528 }
2529
2530 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2531
2532 struct global_sym_lookup_data
2533 {
2534 /* The name of the symbol we are searching for. */
2535 const char *name;
2536
2537 /* The domain to use for our search. */
2538 domain_enum domain;
2539
2540 /* The field where the callback should store the symbol if found.
2541 It should be initialized to {NULL, NULL} before the search is started. */
2542 struct block_symbol result;
2543 };
2544
2545 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2546 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2547 OBJFILE. The arguments for the search are passed via CB_DATA,
2548 which in reality is a pointer to struct global_sym_lookup_data. */
2549
2550 static int
2551 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2552 void *cb_data)
2553 {
2554 struct global_sym_lookup_data *data =
2555 (struct global_sym_lookup_data *) cb_data;
2556
2557 gdb_assert (data->result.symbol == NULL
2558 && data->result.block == NULL);
2559
2560 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2561 data->name, data->domain);
2562
2563 /* If we found a match, tell the iterator to stop. Otherwise,
2564 keep going. */
2565 return (data->result.symbol != NULL);
2566 }
2567
2568 /* See symtab.h. */
2569
2570 struct block_symbol
2571 lookup_global_symbol (const char *name,
2572 const struct block *block,
2573 const domain_enum domain)
2574 {
2575 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2576 struct block_symbol result;
2577 struct objfile *objfile;
2578 struct global_sym_lookup_data lookup_data;
2579 struct block_symbol_cache *bsc;
2580 struct symbol_cache_slot *slot;
2581
2582 objfile = lookup_objfile_from_block (block);
2583
2584 /* First see if we can find the symbol in the cache.
2585 This works because we use the current objfile to qualify the lookup. */
2586 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2587 &bsc, &slot);
2588 if (result.symbol != NULL)
2589 {
2590 if (SYMBOL_LOOKUP_FAILED_P (result))
2591 return (struct block_symbol) {NULL, NULL};
2592 return result;
2593 }
2594
2595 /* Call library-specific lookup procedure. */
2596 if (objfile != NULL)
2597 result = solib_global_lookup (objfile, name, domain);
2598
2599 /* If that didn't work go a global search (of global blocks, heh). */
2600 if (result.symbol == NULL)
2601 {
2602 memset (&lookup_data, 0, sizeof (lookup_data));
2603 lookup_data.name = name;
2604 lookup_data.domain = domain;
2605 gdbarch_iterate_over_objfiles_in_search_order
2606 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2607 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2608 result = lookup_data.result;
2609 }
2610
2611 if (result.symbol != NULL)
2612 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2613 else
2614 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2615
2616 return result;
2617 }
2618
2619 int
2620 symbol_matches_domain (enum language symbol_language,
2621 domain_enum symbol_domain,
2622 domain_enum domain)
2623 {
2624 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2625 Similarly, any Ada type declaration implicitly defines a typedef. */
2626 if (symbol_language == language_cplus
2627 || symbol_language == language_d
2628 || symbol_language == language_ada)
2629 {
2630 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2631 && symbol_domain == STRUCT_DOMAIN)
2632 return 1;
2633 }
2634 /* For all other languages, strict match is required. */
2635 return (symbol_domain == domain);
2636 }
2637
2638 /* See symtab.h. */
2639
2640 struct type *
2641 lookup_transparent_type (const char *name)
2642 {
2643 return current_language->la_lookup_transparent_type (name);
2644 }
2645
2646 /* A helper for basic_lookup_transparent_type that interfaces with the
2647 "quick" symbol table functions. */
2648
2649 static struct type *
2650 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2651 const char *name)
2652 {
2653 struct compunit_symtab *cust;
2654 const struct blockvector *bv;
2655 struct block *block;
2656 struct symbol *sym;
2657
2658 if (!objfile->sf)
2659 return NULL;
2660 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2661 STRUCT_DOMAIN);
2662 if (cust == NULL)
2663 return NULL;
2664
2665 bv = COMPUNIT_BLOCKVECTOR (cust);
2666 block = BLOCKVECTOR_BLOCK (bv, block_index);
2667 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2668 block_find_non_opaque_type, NULL);
2669 if (sym == NULL)
2670 error_in_psymtab_expansion (block_index, name, cust);
2671 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2672 return SYMBOL_TYPE (sym);
2673 }
2674
2675 /* Subroutine of basic_lookup_transparent_type to simplify it.
2676 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2677 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2678
2679 static struct type *
2680 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2681 const char *name)
2682 {
2683 const struct compunit_symtab *cust;
2684 const struct blockvector *bv;
2685 const struct block *block;
2686 const struct symbol *sym;
2687
2688 ALL_OBJFILE_COMPUNITS (objfile, cust)
2689 {
2690 bv = COMPUNIT_BLOCKVECTOR (cust);
2691 block = BLOCKVECTOR_BLOCK (bv, block_index);
2692 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2693 block_find_non_opaque_type, NULL);
2694 if (sym != NULL)
2695 {
2696 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2697 return SYMBOL_TYPE (sym);
2698 }
2699 }
2700
2701 return NULL;
2702 }
2703
2704 /* The standard implementation of lookup_transparent_type. This code
2705 was modeled on lookup_symbol -- the parts not relevant to looking
2706 up types were just left out. In particular it's assumed here that
2707 types are available in STRUCT_DOMAIN and only in file-static or
2708 global blocks. */
2709
2710 struct type *
2711 basic_lookup_transparent_type (const char *name)
2712 {
2713 struct objfile *objfile;
2714 struct type *t;
2715
2716 /* Now search all the global symbols. Do the symtab's first, then
2717 check the psymtab's. If a psymtab indicates the existence
2718 of the desired name as a global, then do psymtab-to-symtab
2719 conversion on the fly and return the found symbol. */
2720
2721 ALL_OBJFILES (objfile)
2722 {
2723 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2724 if (t)
2725 return t;
2726 }
2727
2728 ALL_OBJFILES (objfile)
2729 {
2730 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2731 if (t)
2732 return t;
2733 }
2734
2735 /* Now search the static file-level symbols.
2736 Not strictly correct, but more useful than an error.
2737 Do the symtab's first, then
2738 check the psymtab's. If a psymtab indicates the existence
2739 of the desired name as a file-level static, then do psymtab-to-symtab
2740 conversion on the fly and return the found symbol. */
2741
2742 ALL_OBJFILES (objfile)
2743 {
2744 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2745 if (t)
2746 return t;
2747 }
2748
2749 ALL_OBJFILES (objfile)
2750 {
2751 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2752 if (t)
2753 return t;
2754 }
2755
2756 return (struct type *) 0;
2757 }
2758
2759 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2760
2761 For each symbol that matches, CALLBACK is called. The symbol is
2762 passed to the callback.
2763
2764 If CALLBACK returns false, the iteration ends. Otherwise, the
2765 search continues. */
2766
2767 void
2768 iterate_over_symbols (const struct block *block, const char *name,
2769 const domain_enum domain,
2770 gdb::function_view<symbol_found_callback_ftype> callback)
2771 {
2772 struct block_iterator iter;
2773 struct symbol *sym;
2774
2775 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2776 {
2777 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2778 SYMBOL_DOMAIN (sym), domain))
2779 {
2780 if (!callback (sym))
2781 return;
2782 }
2783 }
2784 }
2785
2786 /* Find the compunit symtab associated with PC and SECTION.
2787 This will read in debug info as necessary. */
2788
2789 struct compunit_symtab *
2790 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2791 {
2792 struct compunit_symtab *cust;
2793 struct compunit_symtab *best_cust = NULL;
2794 struct objfile *objfile;
2795 CORE_ADDR distance = 0;
2796 struct bound_minimal_symbol msymbol;
2797
2798 /* If we know that this is not a text address, return failure. This is
2799 necessary because we loop based on the block's high and low code
2800 addresses, which do not include the data ranges, and because
2801 we call find_pc_sect_psymtab which has a similar restriction based
2802 on the partial_symtab's texthigh and textlow. */
2803 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2804 if (msymbol.minsym
2805 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2806 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2807 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2808 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2809 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2810 return NULL;
2811
2812 /* Search all symtabs for the one whose file contains our address, and which
2813 is the smallest of all the ones containing the address. This is designed
2814 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2815 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2816 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2817
2818 This happens for native ecoff format, where code from included files
2819 gets its own symtab. The symtab for the included file should have
2820 been read in already via the dependency mechanism.
2821 It might be swifter to create several symtabs with the same name
2822 like xcoff does (I'm not sure).
2823
2824 It also happens for objfiles that have their functions reordered.
2825 For these, the symtab we are looking for is not necessarily read in. */
2826
2827 ALL_COMPUNITS (objfile, cust)
2828 {
2829 struct block *b;
2830 const struct blockvector *bv;
2831
2832 bv = COMPUNIT_BLOCKVECTOR (cust);
2833 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2834
2835 if (BLOCK_START (b) <= pc
2836 && BLOCK_END (b) > pc
2837 && (distance == 0
2838 || BLOCK_END (b) - BLOCK_START (b) < distance))
2839 {
2840 /* For an objfile that has its functions reordered,
2841 find_pc_psymtab will find the proper partial symbol table
2842 and we simply return its corresponding symtab. */
2843 /* In order to better support objfiles that contain both
2844 stabs and coff debugging info, we continue on if a psymtab
2845 can't be found. */
2846 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2847 {
2848 struct compunit_symtab *result;
2849
2850 result
2851 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2852 msymbol,
2853 pc, section,
2854 0);
2855 if (result != NULL)
2856 return result;
2857 }
2858 if (section != 0)
2859 {
2860 struct block_iterator iter;
2861 struct symbol *sym = NULL;
2862
2863 ALL_BLOCK_SYMBOLS (b, iter, sym)
2864 {
2865 fixup_symbol_section (sym, objfile);
2866 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2867 section))
2868 break;
2869 }
2870 if (sym == NULL)
2871 continue; /* No symbol in this symtab matches
2872 section. */
2873 }
2874 distance = BLOCK_END (b) - BLOCK_START (b);
2875 best_cust = cust;
2876 }
2877 }
2878
2879 if (best_cust != NULL)
2880 return best_cust;
2881
2882 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2883
2884 ALL_OBJFILES (objfile)
2885 {
2886 struct compunit_symtab *result;
2887
2888 if (!objfile->sf)
2889 continue;
2890 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2891 msymbol,
2892 pc, section,
2893 1);
2894 if (result != NULL)
2895 return result;
2896 }
2897
2898 return NULL;
2899 }
2900
2901 /* Find the compunit symtab associated with PC.
2902 This will read in debug info as necessary.
2903 Backward compatibility, no section. */
2904
2905 struct compunit_symtab *
2906 find_pc_compunit_symtab (CORE_ADDR pc)
2907 {
2908 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2909 }
2910 \f
2911
2912 /* Find the source file and line number for a given PC value and SECTION.
2913 Return a structure containing a symtab pointer, a line number,
2914 and a pc range for the entire source line.
2915 The value's .pc field is NOT the specified pc.
2916 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2917 use the line that ends there. Otherwise, in that case, the line
2918 that begins there is used. */
2919
2920 /* The big complication here is that a line may start in one file, and end just
2921 before the start of another file. This usually occurs when you #include
2922 code in the middle of a subroutine. To properly find the end of a line's PC
2923 range, we must search all symtabs associated with this compilation unit, and
2924 find the one whose first PC is closer than that of the next line in this
2925 symtab. */
2926
2927 /* If it's worth the effort, we could be using a binary search. */
2928
2929 struct symtab_and_line
2930 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2931 {
2932 struct compunit_symtab *cust;
2933 struct symtab *iter_s;
2934 struct linetable *l;
2935 int len;
2936 int i;
2937 struct linetable_entry *item;
2938 struct symtab_and_line val;
2939 const struct blockvector *bv;
2940 struct bound_minimal_symbol msymbol;
2941
2942 /* Info on best line seen so far, and where it starts, and its file. */
2943
2944 struct linetable_entry *best = NULL;
2945 CORE_ADDR best_end = 0;
2946 struct symtab *best_symtab = 0;
2947
2948 /* Store here the first line number
2949 of a file which contains the line at the smallest pc after PC.
2950 If we don't find a line whose range contains PC,
2951 we will use a line one less than this,
2952 with a range from the start of that file to the first line's pc. */
2953 struct linetable_entry *alt = NULL;
2954
2955 /* Info on best line seen in this file. */
2956
2957 struct linetable_entry *prev;
2958
2959 /* If this pc is not from the current frame,
2960 it is the address of the end of a call instruction.
2961 Quite likely that is the start of the following statement.
2962 But what we want is the statement containing the instruction.
2963 Fudge the pc to make sure we get that. */
2964
2965 init_sal (&val); /* initialize to zeroes */
2966
2967 val.pspace = current_program_space;
2968
2969 /* It's tempting to assume that, if we can't find debugging info for
2970 any function enclosing PC, that we shouldn't search for line
2971 number info, either. However, GAS can emit line number info for
2972 assembly files --- very helpful when debugging hand-written
2973 assembly code. In such a case, we'd have no debug info for the
2974 function, but we would have line info. */
2975
2976 if (notcurrent)
2977 pc -= 1;
2978
2979 /* elz: added this because this function returned the wrong
2980 information if the pc belongs to a stub (import/export)
2981 to call a shlib function. This stub would be anywhere between
2982 two functions in the target, and the line info was erroneously
2983 taken to be the one of the line before the pc. */
2984
2985 /* RT: Further explanation:
2986
2987 * We have stubs (trampolines) inserted between procedures.
2988 *
2989 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2990 * exists in the main image.
2991 *
2992 * In the minimal symbol table, we have a bunch of symbols
2993 * sorted by start address. The stubs are marked as "trampoline",
2994 * the others appear as text. E.g.:
2995 *
2996 * Minimal symbol table for main image
2997 * main: code for main (text symbol)
2998 * shr1: stub (trampoline symbol)
2999 * foo: code for foo (text symbol)
3000 * ...
3001 * Minimal symbol table for "shr1" image:
3002 * ...
3003 * shr1: code for shr1 (text symbol)
3004 * ...
3005 *
3006 * So the code below is trying to detect if we are in the stub
3007 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3008 * and if found, do the symbolization from the real-code address
3009 * rather than the stub address.
3010 *
3011 * Assumptions being made about the minimal symbol table:
3012 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3013 * if we're really in the trampoline.s If we're beyond it (say
3014 * we're in "foo" in the above example), it'll have a closer
3015 * symbol (the "foo" text symbol for example) and will not
3016 * return the trampoline.
3017 * 2. lookup_minimal_symbol_text() will find a real text symbol
3018 * corresponding to the trampoline, and whose address will
3019 * be different than the trampoline address. I put in a sanity
3020 * check for the address being the same, to avoid an
3021 * infinite recursion.
3022 */
3023 msymbol = lookup_minimal_symbol_by_pc (pc);
3024 if (msymbol.minsym != NULL)
3025 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3026 {
3027 struct bound_minimal_symbol mfunsym
3028 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3029 NULL);
3030
3031 if (mfunsym.minsym == NULL)
3032 /* I eliminated this warning since it is coming out
3033 * in the following situation:
3034 * gdb shmain // test program with shared libraries
3035 * (gdb) break shr1 // function in shared lib
3036 * Warning: In stub for ...
3037 * In the above situation, the shared lib is not loaded yet,
3038 * so of course we can't find the real func/line info,
3039 * but the "break" still works, and the warning is annoying.
3040 * So I commented out the warning. RT */
3041 /* warning ("In stub for %s; unable to find real function/line info",
3042 SYMBOL_LINKAGE_NAME (msymbol)); */
3043 ;
3044 /* fall through */
3045 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3046 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3047 /* Avoid infinite recursion */
3048 /* See above comment about why warning is commented out. */
3049 /* warning ("In stub for %s; unable to find real function/line info",
3050 SYMBOL_LINKAGE_NAME (msymbol)); */
3051 ;
3052 /* fall through */
3053 else
3054 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3055 }
3056
3057
3058 cust = find_pc_sect_compunit_symtab (pc, section);
3059 if (cust == NULL)
3060 {
3061 /* If no symbol information, return previous pc. */
3062 if (notcurrent)
3063 pc++;
3064 val.pc = pc;
3065 return val;
3066 }
3067
3068 bv = COMPUNIT_BLOCKVECTOR (cust);
3069
3070 /* Look at all the symtabs that share this blockvector.
3071 They all have the same apriori range, that we found was right;
3072 but they have different line tables. */
3073
3074 ALL_COMPUNIT_FILETABS (cust, iter_s)
3075 {
3076 /* Find the best line in this symtab. */
3077 l = SYMTAB_LINETABLE (iter_s);
3078 if (!l)
3079 continue;
3080 len = l->nitems;
3081 if (len <= 0)
3082 {
3083 /* I think len can be zero if the symtab lacks line numbers
3084 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3085 I'm not sure which, and maybe it depends on the symbol
3086 reader). */
3087 continue;
3088 }
3089
3090 prev = NULL;
3091 item = l->item; /* Get first line info. */
3092
3093 /* Is this file's first line closer than the first lines of other files?
3094 If so, record this file, and its first line, as best alternate. */
3095 if (item->pc > pc && (!alt || item->pc < alt->pc))
3096 alt = item;
3097
3098 for (i = 0; i < len; i++, item++)
3099 {
3100 /* Leave prev pointing to the linetable entry for the last line
3101 that started at or before PC. */
3102 if (item->pc > pc)
3103 break;
3104
3105 prev = item;
3106 }
3107
3108 /* At this point, prev points at the line whose start addr is <= pc, and
3109 item points at the next line. If we ran off the end of the linetable
3110 (pc >= start of the last line), then prev == item. If pc < start of
3111 the first line, prev will not be set. */
3112
3113 /* Is this file's best line closer than the best in the other files?
3114 If so, record this file, and its best line, as best so far. Don't
3115 save prev if it represents the end of a function (i.e. line number
3116 0) instead of a real line. */
3117
3118 if (prev && prev->line && (!best || prev->pc > best->pc))
3119 {
3120 best = prev;
3121 best_symtab = iter_s;
3122
3123 /* Discard BEST_END if it's before the PC of the current BEST. */
3124 if (best_end <= best->pc)
3125 best_end = 0;
3126 }
3127
3128 /* If another line (denoted by ITEM) is in the linetable and its
3129 PC is after BEST's PC, but before the current BEST_END, then
3130 use ITEM's PC as the new best_end. */
3131 if (best && i < len && item->pc > best->pc
3132 && (best_end == 0 || best_end > item->pc))
3133 best_end = item->pc;
3134 }
3135
3136 if (!best_symtab)
3137 {
3138 /* If we didn't find any line number info, just return zeros.
3139 We used to return alt->line - 1 here, but that could be
3140 anywhere; if we don't have line number info for this PC,
3141 don't make some up. */
3142 val.pc = pc;
3143 }
3144 else if (best->line == 0)
3145 {
3146 /* If our best fit is in a range of PC's for which no line
3147 number info is available (line number is zero) then we didn't
3148 find any valid line information. */
3149 val.pc = pc;
3150 }
3151 else
3152 {
3153 val.symtab = best_symtab;
3154 val.line = best->line;
3155 val.pc = best->pc;
3156 if (best_end && (!alt || best_end < alt->pc))
3157 val.end = best_end;
3158 else if (alt)
3159 val.end = alt->pc;
3160 else
3161 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3162 }
3163 val.section = section;
3164 return val;
3165 }
3166
3167 /* Backward compatibility (no section). */
3168
3169 struct symtab_and_line
3170 find_pc_line (CORE_ADDR pc, int notcurrent)
3171 {
3172 struct obj_section *section;
3173
3174 section = find_pc_overlay (pc);
3175 if (pc_in_unmapped_range (pc, section))
3176 pc = overlay_mapped_address (pc, section);
3177 return find_pc_sect_line (pc, section, notcurrent);
3178 }
3179
3180 /* See symtab.h. */
3181
3182 struct symtab *
3183 find_pc_line_symtab (CORE_ADDR pc)
3184 {
3185 struct symtab_and_line sal;
3186
3187 /* This always passes zero for NOTCURRENT to find_pc_line.
3188 There are currently no callers that ever pass non-zero. */
3189 sal = find_pc_line (pc, 0);
3190 return sal.symtab;
3191 }
3192 \f
3193 /* Find line number LINE in any symtab whose name is the same as
3194 SYMTAB.
3195
3196 If found, return the symtab that contains the linetable in which it was
3197 found, set *INDEX to the index in the linetable of the best entry
3198 found, and set *EXACT_MATCH nonzero if the value returned is an
3199 exact match.
3200
3201 If not found, return NULL. */
3202
3203 struct symtab *
3204 find_line_symtab (struct symtab *symtab, int line,
3205 int *index, int *exact_match)
3206 {
3207 int exact = 0; /* Initialized here to avoid a compiler warning. */
3208
3209 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3210 so far seen. */
3211
3212 int best_index;
3213 struct linetable *best_linetable;
3214 struct symtab *best_symtab;
3215
3216 /* First try looking it up in the given symtab. */
3217 best_linetable = SYMTAB_LINETABLE (symtab);
3218 best_symtab = symtab;
3219 best_index = find_line_common (best_linetable, line, &exact, 0);
3220 if (best_index < 0 || !exact)
3221 {
3222 /* Didn't find an exact match. So we better keep looking for
3223 another symtab with the same name. In the case of xcoff,
3224 multiple csects for one source file (produced by IBM's FORTRAN
3225 compiler) produce multiple symtabs (this is unavoidable
3226 assuming csects can be at arbitrary places in memory and that
3227 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3228
3229 /* BEST is the smallest linenumber > LINE so far seen,
3230 or 0 if none has been seen so far.
3231 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3232 int best;
3233
3234 struct objfile *objfile;
3235 struct compunit_symtab *cu;
3236 struct symtab *s;
3237
3238 if (best_index >= 0)
3239 best = best_linetable->item[best_index].line;
3240 else
3241 best = 0;
3242
3243 ALL_OBJFILES (objfile)
3244 {
3245 if (objfile->sf)
3246 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3247 symtab_to_fullname (symtab));
3248 }
3249
3250 ALL_FILETABS (objfile, cu, s)
3251 {
3252 struct linetable *l;
3253 int ind;
3254
3255 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3256 continue;
3257 if (FILENAME_CMP (symtab_to_fullname (symtab),
3258 symtab_to_fullname (s)) != 0)
3259 continue;
3260 l = SYMTAB_LINETABLE (s);
3261 ind = find_line_common (l, line, &exact, 0);
3262 if (ind >= 0)
3263 {
3264 if (exact)
3265 {
3266 best_index = ind;
3267 best_linetable = l;
3268 best_symtab = s;
3269 goto done;
3270 }
3271 if (best == 0 || l->item[ind].line < best)
3272 {
3273 best = l->item[ind].line;
3274 best_index = ind;
3275 best_linetable = l;
3276 best_symtab = s;
3277 }
3278 }
3279 }
3280 }
3281 done:
3282 if (best_index < 0)
3283 return NULL;
3284
3285 if (index)
3286 *index = best_index;
3287 if (exact_match)
3288 *exact_match = exact;
3289
3290 return best_symtab;
3291 }
3292
3293 /* Given SYMTAB, returns all the PCs function in the symtab that
3294 exactly match LINE. Returns an empty vector if there are no exact
3295 matches, but updates BEST_ITEM in this case. */
3296
3297 std::vector<CORE_ADDR>
3298 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3299 struct linetable_entry **best_item)
3300 {
3301 int start = 0;
3302 std::vector<CORE_ADDR> result;
3303
3304 /* First, collect all the PCs that are at this line. */
3305 while (1)
3306 {
3307 int was_exact;
3308 int idx;
3309
3310 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3311 start);
3312 if (idx < 0)
3313 break;
3314
3315 if (!was_exact)
3316 {
3317 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3318
3319 if (*best_item == NULL || item->line < (*best_item)->line)
3320 *best_item = item;
3321
3322 break;
3323 }
3324
3325 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3326 start = idx + 1;
3327 }
3328
3329 return result;
3330 }
3331
3332 \f
3333 /* Set the PC value for a given source file and line number and return true.
3334 Returns zero for invalid line number (and sets the PC to 0).
3335 The source file is specified with a struct symtab. */
3336
3337 int
3338 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3339 {
3340 struct linetable *l;
3341 int ind;
3342
3343 *pc = 0;
3344 if (symtab == 0)
3345 return 0;
3346
3347 symtab = find_line_symtab (symtab, line, &ind, NULL);
3348 if (symtab != NULL)
3349 {
3350 l = SYMTAB_LINETABLE (symtab);
3351 *pc = l->item[ind].pc;
3352 return 1;
3353 }
3354 else
3355 return 0;
3356 }
3357
3358 /* Find the range of pc values in a line.
3359 Store the starting pc of the line into *STARTPTR
3360 and the ending pc (start of next line) into *ENDPTR.
3361 Returns 1 to indicate success.
3362 Returns 0 if could not find the specified line. */
3363
3364 int
3365 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3366 CORE_ADDR *endptr)
3367 {
3368 CORE_ADDR startaddr;
3369 struct symtab_and_line found_sal;
3370
3371 startaddr = sal.pc;
3372 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3373 return 0;
3374
3375 /* This whole function is based on address. For example, if line 10 has
3376 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3377 "info line *0x123" should say the line goes from 0x100 to 0x200
3378 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3379 This also insures that we never give a range like "starts at 0x134
3380 and ends at 0x12c". */
3381
3382 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3383 if (found_sal.line != sal.line)
3384 {
3385 /* The specified line (sal) has zero bytes. */
3386 *startptr = found_sal.pc;
3387 *endptr = found_sal.pc;
3388 }
3389 else
3390 {
3391 *startptr = found_sal.pc;
3392 *endptr = found_sal.end;
3393 }
3394 return 1;
3395 }
3396
3397 /* Given a line table and a line number, return the index into the line
3398 table for the pc of the nearest line whose number is >= the specified one.
3399 Return -1 if none is found. The value is >= 0 if it is an index.
3400 START is the index at which to start searching the line table.
3401
3402 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3403
3404 static int
3405 find_line_common (struct linetable *l, int lineno,
3406 int *exact_match, int start)
3407 {
3408 int i;
3409 int len;
3410
3411 /* BEST is the smallest linenumber > LINENO so far seen,
3412 or 0 if none has been seen so far.
3413 BEST_INDEX identifies the item for it. */
3414
3415 int best_index = -1;
3416 int best = 0;
3417
3418 *exact_match = 0;
3419
3420 if (lineno <= 0)
3421 return -1;
3422 if (l == 0)
3423 return -1;
3424
3425 len = l->nitems;
3426 for (i = start; i < len; i++)
3427 {
3428 struct linetable_entry *item = &(l->item[i]);
3429
3430 if (item->line == lineno)
3431 {
3432 /* Return the first (lowest address) entry which matches. */
3433 *exact_match = 1;
3434 return i;
3435 }
3436
3437 if (item->line > lineno && (best == 0 || item->line < best))
3438 {
3439 best = item->line;
3440 best_index = i;
3441 }
3442 }
3443
3444 /* If we got here, we didn't get an exact match. */
3445 return best_index;
3446 }
3447
3448 int
3449 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3450 {
3451 struct symtab_and_line sal;
3452
3453 sal = find_pc_line (pc, 0);
3454 *startptr = sal.pc;
3455 *endptr = sal.end;
3456 return sal.symtab != 0;
3457 }
3458
3459 /* Given a function symbol SYM, find the symtab and line for the start
3460 of the function.
3461 If the argument FUNFIRSTLINE is nonzero, we want the first line
3462 of real code inside the function.
3463 This function should return SALs matching those from minsym_found,
3464 otherwise false multiple-locations breakpoints could be placed. */
3465
3466 struct symtab_and_line
3467 find_function_start_sal (struct symbol *sym, int funfirstline)
3468 {
3469 struct symtab_and_line sal;
3470 struct obj_section *section;
3471
3472 fixup_symbol_section (sym, NULL);
3473 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3474 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3475
3476 if (funfirstline && sal.symtab != NULL
3477 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3478 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3479 {
3480 struct gdbarch *gdbarch = symbol_arch (sym);
3481
3482 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3483 if (gdbarch_skip_entrypoint_p (gdbarch))
3484 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3485 return sal;
3486 }
3487
3488 /* We always should have a line for the function start address.
3489 If we don't, something is odd. Create a plain SAL refering
3490 just the PC and hope that skip_prologue_sal (if requested)
3491 can find a line number for after the prologue. */
3492 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3493 {
3494 init_sal (&sal);
3495 sal.pspace = current_program_space;
3496 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3497 sal.section = section;
3498 }
3499
3500 if (funfirstline)
3501 skip_prologue_sal (&sal);
3502
3503 return sal;
3504 }
3505
3506 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3507 address for that function that has an entry in SYMTAB's line info
3508 table. If such an entry cannot be found, return FUNC_ADDR
3509 unaltered. */
3510
3511 static CORE_ADDR
3512 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3513 {
3514 CORE_ADDR func_start, func_end;
3515 struct linetable *l;
3516 int i;
3517
3518 /* Give up if this symbol has no lineinfo table. */
3519 l = SYMTAB_LINETABLE (symtab);
3520 if (l == NULL)
3521 return func_addr;
3522
3523 /* Get the range for the function's PC values, or give up if we
3524 cannot, for some reason. */
3525 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3526 return func_addr;
3527
3528 /* Linetable entries are ordered by PC values, see the commentary in
3529 symtab.h where `struct linetable' is defined. Thus, the first
3530 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3531 address we are looking for. */
3532 for (i = 0; i < l->nitems; i++)
3533 {
3534 struct linetable_entry *item = &(l->item[i]);
3535
3536 /* Don't use line numbers of zero, they mark special entries in
3537 the table. See the commentary on symtab.h before the
3538 definition of struct linetable. */
3539 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3540 return item->pc;
3541 }
3542
3543 return func_addr;
3544 }
3545
3546 /* Adjust SAL to the first instruction past the function prologue.
3547 If the PC was explicitly specified, the SAL is not changed.
3548 If the line number was explicitly specified, at most the SAL's PC
3549 is updated. If SAL is already past the prologue, then do nothing. */
3550
3551 void
3552 skip_prologue_sal (struct symtab_and_line *sal)
3553 {
3554 struct symbol *sym;
3555 struct symtab_and_line start_sal;
3556 CORE_ADDR pc, saved_pc;
3557 struct obj_section *section;
3558 const char *name;
3559 struct objfile *objfile;
3560 struct gdbarch *gdbarch;
3561 const struct block *b, *function_block;
3562 int force_skip, skip;
3563
3564 /* Do not change the SAL if PC was specified explicitly. */
3565 if (sal->explicit_pc)
3566 return;
3567
3568 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3569
3570 switch_to_program_space_and_thread (sal->pspace);
3571
3572 sym = find_pc_sect_function (sal->pc, sal->section);
3573 if (sym != NULL)
3574 {
3575 fixup_symbol_section (sym, NULL);
3576
3577 objfile = symbol_objfile (sym);
3578 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3579 section = SYMBOL_OBJ_SECTION (objfile, sym);
3580 name = SYMBOL_LINKAGE_NAME (sym);
3581 }
3582 else
3583 {
3584 struct bound_minimal_symbol msymbol
3585 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3586
3587 if (msymbol.minsym == NULL)
3588 return;
3589
3590 objfile = msymbol.objfile;
3591 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3592 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3593 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3594 }
3595
3596 gdbarch = get_objfile_arch (objfile);
3597
3598 /* Process the prologue in two passes. In the first pass try to skip the
3599 prologue (SKIP is true) and verify there is a real need for it (indicated
3600 by FORCE_SKIP). If no such reason was found run a second pass where the
3601 prologue is not skipped (SKIP is false). */
3602
3603 skip = 1;
3604 force_skip = 1;
3605
3606 /* Be conservative - allow direct PC (without skipping prologue) only if we
3607 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3608 have to be set by the caller so we use SYM instead. */
3609 if (sym != NULL
3610 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3611 force_skip = 0;
3612
3613 saved_pc = pc;
3614 do
3615 {
3616 pc = saved_pc;
3617
3618 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3619 so that gdbarch_skip_prologue has something unique to work on. */
3620 if (section_is_overlay (section) && !section_is_mapped (section))
3621 pc = overlay_unmapped_address (pc, section);
3622
3623 /* Skip "first line" of function (which is actually its prologue). */
3624 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3625 if (gdbarch_skip_entrypoint_p (gdbarch))
3626 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3627 if (skip)
3628 pc = gdbarch_skip_prologue (gdbarch, pc);
3629
3630 /* For overlays, map pc back into its mapped VMA range. */
3631 pc = overlay_mapped_address (pc, section);
3632
3633 /* Calculate line number. */
3634 start_sal = find_pc_sect_line (pc, section, 0);
3635
3636 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3637 line is still part of the same function. */
3638 if (skip && start_sal.pc != pc
3639 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3640 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3641 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3642 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3643 {
3644 /* First pc of next line */
3645 pc = start_sal.end;
3646 /* Recalculate the line number (might not be N+1). */
3647 start_sal = find_pc_sect_line (pc, section, 0);
3648 }
3649
3650 /* On targets with executable formats that don't have a concept of
3651 constructors (ELF with .init has, PE doesn't), gcc emits a call
3652 to `__main' in `main' between the prologue and before user
3653 code. */
3654 if (gdbarch_skip_main_prologue_p (gdbarch)
3655 && name && strcmp_iw (name, "main") == 0)
3656 {
3657 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3658 /* Recalculate the line number (might not be N+1). */
3659 start_sal = find_pc_sect_line (pc, section, 0);
3660 force_skip = 1;
3661 }
3662 }
3663 while (!force_skip && skip--);
3664
3665 /* If we still don't have a valid source line, try to find the first
3666 PC in the lineinfo table that belongs to the same function. This
3667 happens with COFF debug info, which does not seem to have an
3668 entry in lineinfo table for the code after the prologue which has
3669 no direct relation to source. For example, this was found to be
3670 the case with the DJGPP target using "gcc -gcoff" when the
3671 compiler inserted code after the prologue to make sure the stack
3672 is aligned. */
3673 if (!force_skip && sym && start_sal.symtab == NULL)
3674 {
3675 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3676 /* Recalculate the line number. */
3677 start_sal = find_pc_sect_line (pc, section, 0);
3678 }
3679
3680 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3681 forward SAL to the end of the prologue. */
3682 if (sal->pc >= pc)
3683 return;
3684
3685 sal->pc = pc;
3686 sal->section = section;
3687
3688 /* Unless the explicit_line flag was set, update the SAL line
3689 and symtab to correspond to the modified PC location. */
3690 if (sal->explicit_line)
3691 return;
3692
3693 sal->symtab = start_sal.symtab;
3694 sal->line = start_sal.line;
3695 sal->end = start_sal.end;
3696
3697 /* Check if we are now inside an inlined function. If we can,
3698 use the call site of the function instead. */
3699 b = block_for_pc_sect (sal->pc, sal->section);
3700 function_block = NULL;
3701 while (b != NULL)
3702 {
3703 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3704 function_block = b;
3705 else if (BLOCK_FUNCTION (b) != NULL)
3706 break;
3707 b = BLOCK_SUPERBLOCK (b);
3708 }
3709 if (function_block != NULL
3710 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3711 {
3712 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3713 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3714 }
3715 }
3716
3717 /* Given PC at the function's start address, attempt to find the
3718 prologue end using SAL information. Return zero if the skip fails.
3719
3720 A non-optimized prologue traditionally has one SAL for the function
3721 and a second for the function body. A single line function has
3722 them both pointing at the same line.
3723
3724 An optimized prologue is similar but the prologue may contain
3725 instructions (SALs) from the instruction body. Need to skip those
3726 while not getting into the function body.
3727
3728 The functions end point and an increasing SAL line are used as
3729 indicators of the prologue's endpoint.
3730
3731 This code is based on the function refine_prologue_limit
3732 (found in ia64). */
3733
3734 CORE_ADDR
3735 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3736 {
3737 struct symtab_and_line prologue_sal;
3738 CORE_ADDR start_pc;
3739 CORE_ADDR end_pc;
3740 const struct block *bl;
3741
3742 /* Get an initial range for the function. */
3743 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3744 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3745
3746 prologue_sal = find_pc_line (start_pc, 0);
3747 if (prologue_sal.line != 0)
3748 {
3749 /* For languages other than assembly, treat two consecutive line
3750 entries at the same address as a zero-instruction prologue.
3751 The GNU assembler emits separate line notes for each instruction
3752 in a multi-instruction macro, but compilers generally will not
3753 do this. */
3754 if (prologue_sal.symtab->language != language_asm)
3755 {
3756 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3757 int idx = 0;
3758
3759 /* Skip any earlier lines, and any end-of-sequence marker
3760 from a previous function. */
3761 while (linetable->item[idx].pc != prologue_sal.pc
3762 || linetable->item[idx].line == 0)
3763 idx++;
3764
3765 if (idx+1 < linetable->nitems
3766 && linetable->item[idx+1].line != 0
3767 && linetable->item[idx+1].pc == start_pc)
3768 return start_pc;
3769 }
3770
3771 /* If there is only one sal that covers the entire function,
3772 then it is probably a single line function, like
3773 "foo(){}". */
3774 if (prologue_sal.end >= end_pc)
3775 return 0;
3776
3777 while (prologue_sal.end < end_pc)
3778 {
3779 struct symtab_and_line sal;
3780
3781 sal = find_pc_line (prologue_sal.end, 0);
3782 if (sal.line == 0)
3783 break;
3784 /* Assume that a consecutive SAL for the same (or larger)
3785 line mark the prologue -> body transition. */
3786 if (sal.line >= prologue_sal.line)
3787 break;
3788 /* Likewise if we are in a different symtab altogether
3789 (e.g. within a file included via #include).  */
3790 if (sal.symtab != prologue_sal.symtab)
3791 break;
3792
3793 /* The line number is smaller. Check that it's from the
3794 same function, not something inlined. If it's inlined,
3795 then there is no point comparing the line numbers. */
3796 bl = block_for_pc (prologue_sal.end);
3797 while (bl)
3798 {
3799 if (block_inlined_p (bl))
3800 break;
3801 if (BLOCK_FUNCTION (bl))
3802 {
3803 bl = NULL;
3804 break;
3805 }
3806 bl = BLOCK_SUPERBLOCK (bl);
3807 }
3808 if (bl != NULL)
3809 break;
3810
3811 /* The case in which compiler's optimizer/scheduler has
3812 moved instructions into the prologue. We look ahead in
3813 the function looking for address ranges whose
3814 corresponding line number is less the first one that we
3815 found for the function. This is more conservative then
3816 refine_prologue_limit which scans a large number of SALs
3817 looking for any in the prologue. */
3818 prologue_sal = sal;
3819 }
3820 }
3821
3822 if (prologue_sal.end < end_pc)
3823 /* Return the end of this line, or zero if we could not find a
3824 line. */
3825 return prologue_sal.end;
3826 else
3827 /* Don't return END_PC, which is past the end of the function. */
3828 return prologue_sal.pc;
3829 }
3830 \f
3831 /* If P is of the form "operator[ \t]+..." where `...' is
3832 some legitimate operator text, return a pointer to the
3833 beginning of the substring of the operator text.
3834 Otherwise, return "". */
3835
3836 static const char *
3837 operator_chars (const char *p, const char **end)
3838 {
3839 *end = "";
3840 if (!startswith (p, "operator"))
3841 return *end;
3842 p += 8;
3843
3844 /* Don't get faked out by `operator' being part of a longer
3845 identifier. */
3846 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3847 return *end;
3848
3849 /* Allow some whitespace between `operator' and the operator symbol. */
3850 while (*p == ' ' || *p == '\t')
3851 p++;
3852
3853 /* Recognize 'operator TYPENAME'. */
3854
3855 if (isalpha (*p) || *p == '_' || *p == '$')
3856 {
3857 const char *q = p + 1;
3858
3859 while (isalnum (*q) || *q == '_' || *q == '$')
3860 q++;
3861 *end = q;
3862 return p;
3863 }
3864
3865 while (*p)
3866 switch (*p)
3867 {
3868 case '\\': /* regexp quoting */
3869 if (p[1] == '*')
3870 {
3871 if (p[2] == '=') /* 'operator\*=' */
3872 *end = p + 3;
3873 else /* 'operator\*' */
3874 *end = p + 2;
3875 return p;
3876 }
3877 else if (p[1] == '[')
3878 {
3879 if (p[2] == ']')
3880 error (_("mismatched quoting on brackets, "
3881 "try 'operator\\[\\]'"));
3882 else if (p[2] == '\\' && p[3] == ']')
3883 {
3884 *end = p + 4; /* 'operator\[\]' */
3885 return p;
3886 }
3887 else
3888 error (_("nothing is allowed between '[' and ']'"));
3889 }
3890 else
3891 {
3892 /* Gratuitous qoute: skip it and move on. */
3893 p++;
3894 continue;
3895 }
3896 break;
3897 case '!':
3898 case '=':
3899 case '*':
3900 case '/':
3901 case '%':
3902 case '^':
3903 if (p[1] == '=')
3904 *end = p + 2;
3905 else
3906 *end = p + 1;
3907 return p;
3908 case '<':
3909 case '>':
3910 case '+':
3911 case '-':
3912 case '&':
3913 case '|':
3914 if (p[0] == '-' && p[1] == '>')
3915 {
3916 /* Struct pointer member operator 'operator->'. */
3917 if (p[2] == '*')
3918 {
3919 *end = p + 3; /* 'operator->*' */
3920 return p;
3921 }
3922 else if (p[2] == '\\')
3923 {
3924 *end = p + 4; /* Hopefully 'operator->\*' */
3925 return p;
3926 }
3927 else
3928 {
3929 *end = p + 2; /* 'operator->' */
3930 return p;
3931 }
3932 }
3933 if (p[1] == '=' || p[1] == p[0])
3934 *end = p + 2;
3935 else
3936 *end = p + 1;
3937 return p;
3938 case '~':
3939 case ',':
3940 *end = p + 1;
3941 return p;
3942 case '(':
3943 if (p[1] != ')')
3944 error (_("`operator ()' must be specified "
3945 "without whitespace in `()'"));
3946 *end = p + 2;
3947 return p;
3948 case '?':
3949 if (p[1] != ':')
3950 error (_("`operator ?:' must be specified "
3951 "without whitespace in `?:'"));
3952 *end = p + 2;
3953 return p;
3954 case '[':
3955 if (p[1] != ']')
3956 error (_("`operator []' must be specified "
3957 "without whitespace in `[]'"));
3958 *end = p + 2;
3959 return p;
3960 default:
3961 error (_("`operator %s' not supported"), p);
3962 break;
3963 }
3964
3965 *end = "";
3966 return *end;
3967 }
3968 \f
3969
3970 /* Cache to watch for file names already seen by filename_seen. */
3971
3972 struct filename_seen_cache
3973 {
3974 /* Table of files seen so far. */
3975 htab_t tab;
3976 /* Initial size of the table. It automagically grows from here. */
3977 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3978 };
3979
3980 /* filename_seen_cache constructor. */
3981
3982 static struct filename_seen_cache *
3983 create_filename_seen_cache (void)
3984 {
3985 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
3986
3987 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3988 filename_hash, filename_eq,
3989 NULL, xcalloc, xfree);
3990
3991 return cache;
3992 }
3993
3994 /* Empty the cache, but do not delete it. */
3995
3996 static void
3997 clear_filename_seen_cache (struct filename_seen_cache *cache)
3998 {
3999 htab_empty (cache->tab);
4000 }
4001
4002 /* filename_seen_cache destructor.
4003 This takes a void * argument as it is generally used as a cleanup. */
4004
4005 static void
4006 delete_filename_seen_cache (void *ptr)
4007 {
4008 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4009
4010 htab_delete (cache->tab);
4011 xfree (cache);
4012 }
4013
4014 /* If FILE is not already in the table of files in CACHE, return zero;
4015 otherwise return non-zero. Optionally add FILE to the table if ADD
4016 is non-zero.
4017
4018 NOTE: We don't manage space for FILE, we assume FILE lives as long
4019 as the caller needs. */
4020
4021 static int
4022 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4023 {
4024 void **slot;
4025
4026 /* Is FILE in tab? */
4027 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4028 if (*slot != NULL)
4029 return 1;
4030
4031 /* No; maybe add it to tab. */
4032 if (add)
4033 *slot = (char *) file;
4034
4035 return 0;
4036 }
4037
4038 /* Data structure to maintain printing state for output_source_filename. */
4039
4040 struct output_source_filename_data
4041 {
4042 /* Cache of what we've seen so far. */
4043 struct filename_seen_cache *filename_seen_cache;
4044
4045 /* Flag of whether we're printing the first one. */
4046 int first;
4047 };
4048
4049 /* Slave routine for sources_info. Force line breaks at ,'s.
4050 NAME is the name to print.
4051 DATA contains the state for printing and watching for duplicates. */
4052
4053 static void
4054 output_source_filename (const char *name,
4055 struct output_source_filename_data *data)
4056 {
4057 /* Since a single source file can result in several partial symbol
4058 tables, we need to avoid printing it more than once. Note: if
4059 some of the psymtabs are read in and some are not, it gets
4060 printed both under "Source files for which symbols have been
4061 read" and "Source files for which symbols will be read in on
4062 demand". I consider this a reasonable way to deal with the
4063 situation. I'm not sure whether this can also happen for
4064 symtabs; it doesn't hurt to check. */
4065
4066 /* Was NAME already seen? */
4067 if (filename_seen (data->filename_seen_cache, name, 1))
4068 {
4069 /* Yes; don't print it again. */
4070 return;
4071 }
4072
4073 /* No; print it and reset *FIRST. */
4074 if (! data->first)
4075 printf_filtered (", ");
4076 data->first = 0;
4077
4078 wrap_here ("");
4079 fputs_filtered (name, gdb_stdout);
4080 }
4081
4082 /* A callback for map_partial_symbol_filenames. */
4083
4084 static void
4085 output_partial_symbol_filename (const char *filename, const char *fullname,
4086 void *data)
4087 {
4088 output_source_filename (fullname ? fullname : filename,
4089 (struct output_source_filename_data *) data);
4090 }
4091
4092 static void
4093 sources_info (char *ignore, int from_tty)
4094 {
4095 struct compunit_symtab *cu;
4096 struct symtab *s;
4097 struct objfile *objfile;
4098 struct output_source_filename_data data;
4099 struct cleanup *cleanups;
4100
4101 if (!have_full_symbols () && !have_partial_symbols ())
4102 {
4103 error (_("No symbol table is loaded. Use the \"file\" command."));
4104 }
4105
4106 data.filename_seen_cache = create_filename_seen_cache ();
4107 cleanups = make_cleanup (delete_filename_seen_cache,
4108 data.filename_seen_cache);
4109
4110 printf_filtered ("Source files for which symbols have been read in:\n\n");
4111
4112 data.first = 1;
4113 ALL_FILETABS (objfile, cu, s)
4114 {
4115 const char *fullname = symtab_to_fullname (s);
4116
4117 output_source_filename (fullname, &data);
4118 }
4119 printf_filtered ("\n\n");
4120
4121 printf_filtered ("Source files for which symbols "
4122 "will be read in on demand:\n\n");
4123
4124 clear_filename_seen_cache (data.filename_seen_cache);
4125 data.first = 1;
4126 map_symbol_filenames (output_partial_symbol_filename, &data,
4127 1 /*need_fullname*/);
4128 printf_filtered ("\n");
4129
4130 do_cleanups (cleanups);
4131 }
4132
4133 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4134 non-zero compare only lbasename of FILES. */
4135
4136 static int
4137 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4138 {
4139 int i;
4140
4141 if (file != NULL && nfiles != 0)
4142 {
4143 for (i = 0; i < nfiles; i++)
4144 {
4145 if (compare_filenames_for_search (file, (basenames
4146 ? lbasename (files[i])
4147 : files[i])))
4148 return 1;
4149 }
4150 }
4151 else if (nfiles == 0)
4152 return 1;
4153 return 0;
4154 }
4155
4156 /* Free any memory associated with a search. */
4157
4158 void
4159 free_search_symbols (struct symbol_search *symbols)
4160 {
4161 struct symbol_search *p;
4162 struct symbol_search *next;
4163
4164 for (p = symbols; p != NULL; p = next)
4165 {
4166 next = p->next;
4167 xfree (p);
4168 }
4169 }
4170
4171 static void
4172 do_free_search_symbols_cleanup (void *symbolsp)
4173 {
4174 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4175
4176 free_search_symbols (symbols);
4177 }
4178
4179 struct cleanup *
4180 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4181 {
4182 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4183 }
4184
4185 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4186 sort symbols, not minimal symbols. */
4187
4188 static int
4189 compare_search_syms (const void *sa, const void *sb)
4190 {
4191 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4192 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4193 int c;
4194
4195 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4196 symbol_symtab (sym_b->symbol)->filename);
4197 if (c != 0)
4198 return c;
4199
4200 if (sym_a->block != sym_b->block)
4201 return sym_a->block - sym_b->block;
4202
4203 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4204 SYMBOL_PRINT_NAME (sym_b->symbol));
4205 }
4206
4207 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4208 The duplicates are freed, and the new list is returned in
4209 *NEW_HEAD, *NEW_TAIL. */
4210
4211 static void
4212 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4213 struct symbol_search **new_head,
4214 struct symbol_search **new_tail)
4215 {
4216 struct symbol_search **symbols, *symp;
4217 int i, j, nunique;
4218
4219 gdb_assert (found != NULL && nfound > 0);
4220
4221 /* Build an array out of the list so we can easily sort them. */
4222 symbols = XNEWVEC (struct symbol_search *, nfound);
4223
4224 symp = found;
4225 for (i = 0; i < nfound; i++)
4226 {
4227 gdb_assert (symp != NULL);
4228 gdb_assert (symp->block >= 0 && symp->block <= 1);
4229 symbols[i] = symp;
4230 symp = symp->next;
4231 }
4232 gdb_assert (symp == NULL);
4233
4234 qsort (symbols, nfound, sizeof (struct symbol_search *),
4235 compare_search_syms);
4236
4237 /* Collapse out the dups. */
4238 for (i = 1, j = 1; i < nfound; ++i)
4239 {
4240 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4241 symbols[j++] = symbols[i];
4242 else
4243 xfree (symbols[i]);
4244 }
4245 nunique = j;
4246 symbols[j - 1]->next = NULL;
4247
4248 /* Rebuild the linked list. */
4249 for (i = 0; i < nunique - 1; i++)
4250 symbols[i]->next = symbols[i + 1];
4251 symbols[nunique - 1]->next = NULL;
4252
4253 *new_head = symbols[0];
4254 *new_tail = symbols[nunique - 1];
4255 xfree (symbols);
4256 }
4257
4258 /* Search the symbol table for matches to the regular expression REGEXP,
4259 returning the results in *MATCHES.
4260
4261 Only symbols of KIND are searched:
4262 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4263 and constants (enums)
4264 FUNCTIONS_DOMAIN - search all functions
4265 TYPES_DOMAIN - search all type names
4266 ALL_DOMAIN - an internal error for this function
4267
4268 free_search_symbols should be called when *MATCHES is no longer needed.
4269
4270 Within each file the results are sorted locally; each symtab's global and
4271 static blocks are separately alphabetized.
4272 Duplicate entries are removed. */
4273
4274 void
4275 search_symbols (const char *regexp, enum search_domain kind,
4276 int nfiles, const char *files[],
4277 struct symbol_search **matches)
4278 {
4279 struct compunit_symtab *cust;
4280 const struct blockvector *bv;
4281 struct block *b;
4282 int i = 0;
4283 struct block_iterator iter;
4284 struct symbol *sym;
4285 struct objfile *objfile;
4286 struct minimal_symbol *msymbol;
4287 int found_misc = 0;
4288 static const enum minimal_symbol_type types[]
4289 = {mst_data, mst_text, mst_abs};
4290 static const enum minimal_symbol_type types2[]
4291 = {mst_bss, mst_file_text, mst_abs};
4292 static const enum minimal_symbol_type types3[]
4293 = {mst_file_data, mst_solib_trampoline, mst_abs};
4294 static const enum minimal_symbol_type types4[]
4295 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4296 enum minimal_symbol_type ourtype;
4297 enum minimal_symbol_type ourtype2;
4298 enum minimal_symbol_type ourtype3;
4299 enum minimal_symbol_type ourtype4;
4300 struct symbol_search *found;
4301 struct symbol_search *tail;
4302 int nfound;
4303 gdb::optional<compiled_regex> preg;
4304
4305 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4306 CLEANUP_CHAIN is freed only in the case of an error. */
4307 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4308 struct cleanup *retval_chain;
4309
4310 gdb_assert (kind <= TYPES_DOMAIN);
4311
4312 ourtype = types[kind];
4313 ourtype2 = types2[kind];
4314 ourtype3 = types3[kind];
4315 ourtype4 = types4[kind];
4316
4317 *matches = NULL;
4318
4319 if (regexp != NULL)
4320 {
4321 /* Make sure spacing is right for C++ operators.
4322 This is just a courtesy to make the matching less sensitive
4323 to how many spaces the user leaves between 'operator'
4324 and <TYPENAME> or <OPERATOR>. */
4325 const char *opend;
4326 const char *opname = operator_chars (regexp, &opend);
4327 int errcode;
4328
4329 if (*opname)
4330 {
4331 int fix = -1; /* -1 means ok; otherwise number of
4332 spaces needed. */
4333
4334 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4335 {
4336 /* There should 1 space between 'operator' and 'TYPENAME'. */
4337 if (opname[-1] != ' ' || opname[-2] == ' ')
4338 fix = 1;
4339 }
4340 else
4341 {
4342 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4343 if (opname[-1] == ' ')
4344 fix = 0;
4345 }
4346 /* If wrong number of spaces, fix it. */
4347 if (fix >= 0)
4348 {
4349 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4350
4351 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4352 regexp = tmp;
4353 }
4354 }
4355
4356 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4357 ? REG_ICASE : 0);
4358 preg.emplace (regexp, cflags, _("Invalid regexp"));
4359 }
4360
4361 /* Search through the partial symtabs *first* for all symbols
4362 matching the regexp. That way we don't have to reproduce all of
4363 the machinery below. */
4364 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4365 {
4366 return file_matches (filename, files, nfiles,
4367 basenames);
4368 },
4369 [&] (const char *symname)
4370 {
4371 return (!preg || preg->exec (symname,
4372 0, NULL, 0) == 0);
4373 },
4374 NULL,
4375 kind);
4376
4377 /* Here, we search through the minimal symbol tables for functions
4378 and variables that match, and force their symbols to be read.
4379 This is in particular necessary for demangled variable names,
4380 which are no longer put into the partial symbol tables.
4381 The symbol will then be found during the scan of symtabs below.
4382
4383 For functions, find_pc_symtab should succeed if we have debug info
4384 for the function, for variables we have to call
4385 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4386 has debug info.
4387 If the lookup fails, set found_misc so that we will rescan to print
4388 any matching symbols without debug info.
4389 We only search the objfile the msymbol came from, we no longer search
4390 all objfiles. In large programs (1000s of shared libs) searching all
4391 objfiles is not worth the pain. */
4392
4393 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4394 {
4395 ALL_MSYMBOLS (objfile, msymbol)
4396 {
4397 QUIT;
4398
4399 if (msymbol->created_by_gdb)
4400 continue;
4401
4402 if (MSYMBOL_TYPE (msymbol) == ourtype
4403 || MSYMBOL_TYPE (msymbol) == ourtype2
4404 || MSYMBOL_TYPE (msymbol) == ourtype3
4405 || MSYMBOL_TYPE (msymbol) == ourtype4)
4406 {
4407 if (!preg
4408 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4409 NULL, 0) == 0)
4410 {
4411 /* Note: An important side-effect of these lookup functions
4412 is to expand the symbol table if msymbol is found, for the
4413 benefit of the next loop on ALL_COMPUNITS. */
4414 if (kind == FUNCTIONS_DOMAIN
4415 ? (find_pc_compunit_symtab
4416 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4417 : (lookup_symbol_in_objfile_from_linkage_name
4418 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4419 .symbol == NULL))
4420 found_misc = 1;
4421 }
4422 }
4423 }
4424 }
4425
4426 found = NULL;
4427 tail = NULL;
4428 nfound = 0;
4429 retval_chain = make_cleanup_free_search_symbols (&found);
4430
4431 ALL_COMPUNITS (objfile, cust)
4432 {
4433 bv = COMPUNIT_BLOCKVECTOR (cust);
4434 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4435 {
4436 b = BLOCKVECTOR_BLOCK (bv, i);
4437 ALL_BLOCK_SYMBOLS (b, iter, sym)
4438 {
4439 struct symtab *real_symtab = symbol_symtab (sym);
4440
4441 QUIT;
4442
4443 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4444 a substring of symtab_to_fullname as it may contain "./" etc. */
4445 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4446 || ((basenames_may_differ
4447 || file_matches (lbasename (real_symtab->filename),
4448 files, nfiles, 1))
4449 && file_matches (symtab_to_fullname (real_symtab),
4450 files, nfiles, 0)))
4451 && ((!preg
4452 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4453 NULL, 0) == 0)
4454 && ((kind == VARIABLES_DOMAIN
4455 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4456 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4457 && SYMBOL_CLASS (sym) != LOC_BLOCK
4458 /* LOC_CONST can be used for more than just enums,
4459 e.g., c++ static const members.
4460 We only want to skip enums here. */
4461 && !(SYMBOL_CLASS (sym) == LOC_CONST
4462 && (TYPE_CODE (SYMBOL_TYPE (sym))
4463 == TYPE_CODE_ENUM)))
4464 || (kind == FUNCTIONS_DOMAIN
4465 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4466 || (kind == TYPES_DOMAIN
4467 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4468 {
4469 /* match */
4470 struct symbol_search *psr = XCNEW (struct symbol_search);
4471
4472 psr->block = i;
4473 psr->symbol = sym;
4474 psr->next = NULL;
4475 if (tail == NULL)
4476 found = psr;
4477 else
4478 tail->next = psr;
4479 tail = psr;
4480 nfound ++;
4481 }
4482 }
4483 }
4484 }
4485
4486 if (found != NULL)
4487 {
4488 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4489 /* Note: nfound is no longer useful beyond this point. */
4490 }
4491
4492 /* If there are no eyes, avoid all contact. I mean, if there are
4493 no debug symbols, then add matching minsyms. */
4494
4495 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4496 {
4497 ALL_MSYMBOLS (objfile, msymbol)
4498 {
4499 QUIT;
4500
4501 if (msymbol->created_by_gdb)
4502 continue;
4503
4504 if (MSYMBOL_TYPE (msymbol) == ourtype
4505 || MSYMBOL_TYPE (msymbol) == ourtype2
4506 || MSYMBOL_TYPE (msymbol) == ourtype3
4507 || MSYMBOL_TYPE (msymbol) == ourtype4)
4508 {
4509 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4510 NULL, 0) == 0)
4511 {
4512 /* For functions we can do a quick check of whether the
4513 symbol might be found via find_pc_symtab. */
4514 if (kind != FUNCTIONS_DOMAIN
4515 || (find_pc_compunit_symtab
4516 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4517 {
4518 if (lookup_symbol_in_objfile_from_linkage_name
4519 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4520 .symbol == NULL)
4521 {
4522 /* match */
4523 struct symbol_search *psr = XNEW (struct symbol_search);
4524 psr->block = i;
4525 psr->msymbol.minsym = msymbol;
4526 psr->msymbol.objfile = objfile;
4527 psr->symbol = NULL;
4528 psr->next = NULL;
4529 if (tail == NULL)
4530 found = psr;
4531 else
4532 tail->next = psr;
4533 tail = psr;
4534 }
4535 }
4536 }
4537 }
4538 }
4539 }
4540
4541 discard_cleanups (retval_chain);
4542 do_cleanups (old_chain);
4543 *matches = found;
4544 }
4545
4546 /* Helper function for symtab_symbol_info, this function uses
4547 the data returned from search_symbols() to print information
4548 regarding the match to gdb_stdout. */
4549
4550 static void
4551 print_symbol_info (enum search_domain kind,
4552 struct symbol *sym,
4553 int block, const char *last)
4554 {
4555 struct symtab *s = symbol_symtab (sym);
4556 const char *s_filename = symtab_to_filename_for_display (s);
4557
4558 if (last == NULL || filename_cmp (last, s_filename) != 0)
4559 {
4560 fputs_filtered ("\nFile ", gdb_stdout);
4561 fputs_filtered (s_filename, gdb_stdout);
4562 fputs_filtered (":\n", gdb_stdout);
4563 }
4564
4565 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4566 printf_filtered ("static ");
4567
4568 /* Typedef that is not a C++ class. */
4569 if (kind == TYPES_DOMAIN
4570 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4571 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4572 /* variable, func, or typedef-that-is-c++-class. */
4573 else if (kind < TYPES_DOMAIN
4574 || (kind == TYPES_DOMAIN
4575 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4576 {
4577 type_print (SYMBOL_TYPE (sym),
4578 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4579 ? "" : SYMBOL_PRINT_NAME (sym)),
4580 gdb_stdout, 0);
4581
4582 printf_filtered (";\n");
4583 }
4584 }
4585
4586 /* This help function for symtab_symbol_info() prints information
4587 for non-debugging symbols to gdb_stdout. */
4588
4589 static void
4590 print_msymbol_info (struct bound_minimal_symbol msymbol)
4591 {
4592 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4593 char *tmp;
4594
4595 if (gdbarch_addr_bit (gdbarch) <= 32)
4596 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4597 & (CORE_ADDR) 0xffffffff,
4598 8);
4599 else
4600 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4601 16);
4602 printf_filtered ("%s %s\n",
4603 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4604 }
4605
4606 /* This is the guts of the commands "info functions", "info types", and
4607 "info variables". It calls search_symbols to find all matches and then
4608 print_[m]symbol_info to print out some useful information about the
4609 matches. */
4610
4611 static void
4612 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4613 {
4614 static const char * const classnames[] =
4615 {"variable", "function", "type"};
4616 struct symbol_search *symbols;
4617 struct symbol_search *p;
4618 struct cleanup *old_chain;
4619 const char *last_filename = NULL;
4620 int first = 1;
4621
4622 gdb_assert (kind <= TYPES_DOMAIN);
4623
4624 /* Must make sure that if we're interrupted, symbols gets freed. */
4625 search_symbols (regexp, kind, 0, NULL, &symbols);
4626 old_chain = make_cleanup_free_search_symbols (&symbols);
4627
4628 if (regexp != NULL)
4629 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4630 classnames[kind], regexp);
4631 else
4632 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4633
4634 for (p = symbols; p != NULL; p = p->next)
4635 {
4636 QUIT;
4637
4638 if (p->msymbol.minsym != NULL)
4639 {
4640 if (first)
4641 {
4642 printf_filtered (_("\nNon-debugging symbols:\n"));
4643 first = 0;
4644 }
4645 print_msymbol_info (p->msymbol);
4646 }
4647 else
4648 {
4649 print_symbol_info (kind,
4650 p->symbol,
4651 p->block,
4652 last_filename);
4653 last_filename
4654 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4655 }
4656 }
4657
4658 do_cleanups (old_chain);
4659 }
4660
4661 static void
4662 variables_info (char *regexp, int from_tty)
4663 {
4664 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4665 }
4666
4667 static void
4668 functions_info (char *regexp, int from_tty)
4669 {
4670 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4671 }
4672
4673
4674 static void
4675 types_info (char *regexp, int from_tty)
4676 {
4677 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4678 }
4679
4680 /* Breakpoint all functions matching regular expression. */
4681
4682 void
4683 rbreak_command_wrapper (char *regexp, int from_tty)
4684 {
4685 rbreak_command (regexp, from_tty);
4686 }
4687
4688 /* A cleanup function that calls end_rbreak_breakpoints. */
4689
4690 static void
4691 do_end_rbreak_breakpoints (void *ignore)
4692 {
4693 end_rbreak_breakpoints ();
4694 }
4695
4696 static void
4697 rbreak_command (char *regexp, int from_tty)
4698 {
4699 struct symbol_search *ss;
4700 struct symbol_search *p;
4701 struct cleanup *old_chain;
4702 char *string = NULL;
4703 int len = 0;
4704 const char **files = NULL;
4705 const char *file_name;
4706 int nfiles = 0;
4707
4708 if (regexp)
4709 {
4710 char *colon = strchr (regexp, ':');
4711
4712 if (colon && *(colon + 1) != ':')
4713 {
4714 int colon_index;
4715 char *local_name;
4716
4717 colon_index = colon - regexp;
4718 local_name = (char *) alloca (colon_index + 1);
4719 memcpy (local_name, regexp, colon_index);
4720 local_name[colon_index--] = 0;
4721 while (isspace (local_name[colon_index]))
4722 local_name[colon_index--] = 0;
4723 file_name = local_name;
4724 files = &file_name;
4725 nfiles = 1;
4726 regexp = skip_spaces (colon + 1);
4727 }
4728 }
4729
4730 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4731 old_chain = make_cleanup_free_search_symbols (&ss);
4732 make_cleanup (free_current_contents, &string);
4733
4734 start_rbreak_breakpoints ();
4735 make_cleanup (do_end_rbreak_breakpoints, NULL);
4736 for (p = ss; p != NULL; p = p->next)
4737 {
4738 if (p->msymbol.minsym == NULL)
4739 {
4740 struct symtab *symtab = symbol_symtab (p->symbol);
4741 const char *fullname = symtab_to_fullname (symtab);
4742
4743 int newlen = (strlen (fullname)
4744 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4745 + 4);
4746
4747 if (newlen > len)
4748 {
4749 string = (char *) xrealloc (string, newlen);
4750 len = newlen;
4751 }
4752 strcpy (string, fullname);
4753 strcat (string, ":'");
4754 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4755 strcat (string, "'");
4756 break_command (string, from_tty);
4757 print_symbol_info (FUNCTIONS_DOMAIN,
4758 p->symbol,
4759 p->block,
4760 symtab_to_filename_for_display (symtab));
4761 }
4762 else
4763 {
4764 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4765
4766 if (newlen > len)
4767 {
4768 string = (char *) xrealloc (string, newlen);
4769 len = newlen;
4770 }
4771 strcpy (string, "'");
4772 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4773 strcat (string, "'");
4774
4775 break_command (string, from_tty);
4776 printf_filtered ("<function, no debug info> %s;\n",
4777 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4778 }
4779 }
4780
4781 do_cleanups (old_chain);
4782 }
4783 \f
4784
4785 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4786
4787 Either sym_text[sym_text_len] != '(' and then we search for any
4788 symbol starting with SYM_TEXT text.
4789
4790 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4791 be terminated at that point. Partial symbol tables do not have parameters
4792 information. */
4793
4794 static int
4795 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4796 {
4797 int (*ncmp) (const char *, const char *, size_t);
4798
4799 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4800
4801 if (ncmp (name, sym_text, sym_text_len) != 0)
4802 return 0;
4803
4804 if (sym_text[sym_text_len] == '(')
4805 {
4806 /* User searches for `name(someth...'. Require NAME to be terminated.
4807 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4808 present but accept even parameters presence. In this case this
4809 function is in fact strcmp_iw but whitespace skipping is not supported
4810 for tab completion. */
4811
4812 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4813 return 0;
4814 }
4815
4816 return 1;
4817 }
4818
4819 /* Free any memory associated with a completion list. */
4820
4821 static void
4822 free_completion_list (VEC (char_ptr) **list_ptr)
4823 {
4824 int i;
4825 char *p;
4826
4827 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4828 xfree (p);
4829 VEC_free (char_ptr, *list_ptr);
4830 }
4831
4832 /* Callback for make_cleanup. */
4833
4834 static void
4835 do_free_completion_list (void *list)
4836 {
4837 free_completion_list ((VEC (char_ptr) **) list);
4838 }
4839
4840 static VEC (char_ptr) *return_val;
4841
4842 /* Tracker for how many unique completions have been generated. Used
4843 to terminate completion list generation early if the list has grown
4844 to a size so large as to be useless. This helps avoid GDB seeming
4845 to lock up in the event the user requests to complete on something
4846 vague that necessitates the time consuming expansion of many symbol
4847 tables. */
4848
4849 static completion_tracker_t completion_tracker;
4850
4851 /* Test to see if the symbol specified by SYMNAME (which is already
4852 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4853 characters. If so, add it to the current completion list. */
4854
4855 static void
4856 completion_list_add_name (const char *symname,
4857 const char *sym_text, int sym_text_len,
4858 const char *text, const char *word)
4859 {
4860 /* Clip symbols that cannot match. */
4861 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4862 return;
4863
4864 /* We have a match for a completion, so add SYMNAME to the current list
4865 of matches. Note that the name is moved to freshly malloc'd space. */
4866
4867 {
4868 char *newobj;
4869 enum maybe_add_completion_enum add_status;
4870
4871 if (word == sym_text)
4872 {
4873 newobj = (char *) xmalloc (strlen (symname) + 5);
4874 strcpy (newobj, symname);
4875 }
4876 else if (word > sym_text)
4877 {
4878 /* Return some portion of symname. */
4879 newobj = (char *) xmalloc (strlen (symname) + 5);
4880 strcpy (newobj, symname + (word - sym_text));
4881 }
4882 else
4883 {
4884 /* Return some of SYM_TEXT plus symname. */
4885 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4886 strncpy (newobj, word, sym_text - word);
4887 newobj[sym_text - word] = '\0';
4888 strcat (newobj, symname);
4889 }
4890
4891 add_status = maybe_add_completion (completion_tracker, newobj);
4892
4893 switch (add_status)
4894 {
4895 case MAYBE_ADD_COMPLETION_OK:
4896 VEC_safe_push (char_ptr, return_val, newobj);
4897 break;
4898 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
4899 VEC_safe_push (char_ptr, return_val, newobj);
4900 throw_max_completions_reached_error ();
4901 case MAYBE_ADD_COMPLETION_MAX_REACHED:
4902 xfree (newobj);
4903 throw_max_completions_reached_error ();
4904 case MAYBE_ADD_COMPLETION_DUPLICATE:
4905 xfree (newobj);
4906 break;
4907 }
4908 }
4909 }
4910
4911 /* completion_list_add_name wrapper for struct symbol. */
4912
4913 static void
4914 completion_list_add_symbol (symbol *sym,
4915 const char *sym_text, int sym_text_len,
4916 const char *text, const char *word)
4917 {
4918 completion_list_add_name (SYMBOL_NATURAL_NAME (sym),
4919 sym_text, sym_text_len, text, word);
4920 }
4921
4922 /* completion_list_add_name wrapper for struct minimal_symbol. */
4923
4924 static void
4925 completion_list_add_msymbol (minimal_symbol *sym,
4926 const char *sym_text, int sym_text_len,
4927 const char *text, const char *word)
4928 {
4929 completion_list_add_name (MSYMBOL_NATURAL_NAME (sym),
4930 sym_text, sym_text_len, text, word);
4931 }
4932
4933 /* ObjC: In case we are completing on a selector, look as the msymbol
4934 again and feed all the selectors into the mill. */
4935
4936 static void
4937 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4938 const char *sym_text, int sym_text_len,
4939 const char *text, const char *word)
4940 {
4941 static char *tmp = NULL;
4942 static unsigned int tmplen = 0;
4943
4944 const char *method, *category, *selector;
4945 char *tmp2 = NULL;
4946
4947 method = MSYMBOL_NATURAL_NAME (msymbol);
4948
4949 /* Is it a method? */
4950 if ((method[0] != '-') && (method[0] != '+'))
4951 return;
4952
4953 if (sym_text[0] == '[')
4954 /* Complete on shortened method method. */
4955 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4956
4957 while ((strlen (method) + 1) >= tmplen)
4958 {
4959 if (tmplen == 0)
4960 tmplen = 1024;
4961 else
4962 tmplen *= 2;
4963 tmp = (char *) xrealloc (tmp, tmplen);
4964 }
4965 selector = strchr (method, ' ');
4966 if (selector != NULL)
4967 selector++;
4968
4969 category = strchr (method, '(');
4970
4971 if ((category != NULL) && (selector != NULL))
4972 {
4973 memcpy (tmp, method, (category - method));
4974 tmp[category - method] = ' ';
4975 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4976 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4977 if (sym_text[0] == '[')
4978 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4979 }
4980
4981 if (selector != NULL)
4982 {
4983 /* Complete on selector only. */
4984 strcpy (tmp, selector);
4985 tmp2 = strchr (tmp, ']');
4986 if (tmp2 != NULL)
4987 *tmp2 = '\0';
4988
4989 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4990 }
4991 }
4992
4993 /* Break the non-quoted text based on the characters which are in
4994 symbols. FIXME: This should probably be language-specific. */
4995
4996 static const char *
4997 language_search_unquoted_string (const char *text, const char *p)
4998 {
4999 for (; p > text; --p)
5000 {
5001 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5002 continue;
5003 else
5004 {
5005 if ((current_language->la_language == language_objc))
5006 {
5007 if (p[-1] == ':') /* Might be part of a method name. */
5008 continue;
5009 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5010 p -= 2; /* Beginning of a method name. */
5011 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5012 { /* Might be part of a method name. */
5013 const char *t = p;
5014
5015 /* Seeing a ' ' or a '(' is not conclusive evidence
5016 that we are in the middle of a method name. However,
5017 finding "-[" or "+[" should be pretty un-ambiguous.
5018 Unfortunately we have to find it now to decide. */
5019
5020 while (t > text)
5021 if (isalnum (t[-1]) || t[-1] == '_' ||
5022 t[-1] == ' ' || t[-1] == ':' ||
5023 t[-1] == '(' || t[-1] == ')')
5024 --t;
5025 else
5026 break;
5027
5028 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5029 p = t - 2; /* Method name detected. */
5030 /* Else we leave with p unchanged. */
5031 }
5032 }
5033 break;
5034 }
5035 }
5036 return p;
5037 }
5038
5039 static void
5040 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5041 int sym_text_len, const char *text,
5042 const char *word)
5043 {
5044 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5045 {
5046 struct type *t = SYMBOL_TYPE (sym);
5047 enum type_code c = TYPE_CODE (t);
5048 int j;
5049
5050 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5051 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5052 if (TYPE_FIELD_NAME (t, j))
5053 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5054 sym_text, sym_text_len, text, word);
5055 }
5056 }
5057
5058 /* Add matching symbols from SYMTAB to the current completion list. */
5059
5060 static void
5061 add_symtab_completions (struct compunit_symtab *cust,
5062 const char *sym_text, int sym_text_len,
5063 const char *text, const char *word,
5064 enum type_code code)
5065 {
5066 struct symbol *sym;
5067 const struct block *b;
5068 struct block_iterator iter;
5069 int i;
5070
5071 if (cust == NULL)
5072 return;
5073
5074 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5075 {
5076 QUIT;
5077 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5078 ALL_BLOCK_SYMBOLS (b, iter, sym)
5079 {
5080 if (code == TYPE_CODE_UNDEF
5081 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5082 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5083 completion_list_add_symbol (sym,
5084 sym_text, sym_text_len,
5085 text, word);
5086 }
5087 }
5088 }
5089
5090 static void
5091 default_make_symbol_completion_list_break_on_1 (const char *text,
5092 const char *word,
5093 const char *break_on,
5094 enum type_code code)
5095 {
5096 /* Problem: All of the symbols have to be copied because readline
5097 frees them. I'm not going to worry about this; hopefully there
5098 won't be that many. */
5099
5100 struct symbol *sym;
5101 struct compunit_symtab *cust;
5102 struct minimal_symbol *msymbol;
5103 struct objfile *objfile;
5104 const struct block *b;
5105 const struct block *surrounding_static_block, *surrounding_global_block;
5106 struct block_iterator iter;
5107 /* The symbol we are completing on. Points in same buffer as text. */
5108 const char *sym_text;
5109 /* Length of sym_text. */
5110 int sym_text_len;
5111 struct cleanup *cleanups;
5112
5113 /* Now look for the symbol we are supposed to complete on. */
5114 {
5115 const char *p;
5116 char quote_found;
5117 const char *quote_pos = NULL;
5118
5119 /* First see if this is a quoted string. */
5120 quote_found = '\0';
5121 for (p = text; *p != '\0'; ++p)
5122 {
5123 if (quote_found != '\0')
5124 {
5125 if (*p == quote_found)
5126 /* Found close quote. */
5127 quote_found = '\0';
5128 else if (*p == '\\' && p[1] == quote_found)
5129 /* A backslash followed by the quote character
5130 doesn't end the string. */
5131 ++p;
5132 }
5133 else if (*p == '\'' || *p == '"')
5134 {
5135 quote_found = *p;
5136 quote_pos = p;
5137 }
5138 }
5139 if (quote_found == '\'')
5140 /* A string within single quotes can be a symbol, so complete on it. */
5141 sym_text = quote_pos + 1;
5142 else if (quote_found == '"')
5143 /* A double-quoted string is never a symbol, nor does it make sense
5144 to complete it any other way. */
5145 {
5146 return;
5147 }
5148 else
5149 {
5150 /* It is not a quoted string. Break it based on the characters
5151 which are in symbols. */
5152 while (p > text)
5153 {
5154 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5155 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5156 --p;
5157 else
5158 break;
5159 }
5160 sym_text = p;
5161 }
5162 }
5163
5164 sym_text_len = strlen (sym_text);
5165
5166 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5167
5168 if (current_language->la_language == language_cplus
5169 || current_language->la_language == language_fortran)
5170 {
5171 /* These languages may have parameters entered by user but they are never
5172 present in the partial symbol tables. */
5173
5174 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5175
5176 if (cs)
5177 sym_text_len = cs - sym_text;
5178 }
5179 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5180
5181 completion_tracker = new_completion_tracker ();
5182 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5183
5184 /* At this point scan through the misc symbol vectors and add each
5185 symbol you find to the list. Eventually we want to ignore
5186 anything that isn't a text symbol (everything else will be
5187 handled by the psymtab code below). */
5188
5189 if (code == TYPE_CODE_UNDEF)
5190 {
5191 ALL_MSYMBOLS (objfile, msymbol)
5192 {
5193 QUIT;
5194 completion_list_add_msymbol (msymbol, sym_text, sym_text_len, text,
5195 word);
5196
5197 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5198 word);
5199 }
5200 }
5201
5202 /* Add completions for all currently loaded symbol tables. */
5203 ALL_COMPUNITS (objfile, cust)
5204 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5205 code);
5206
5207 /* Look through the partial symtabs for all symbols which begin by
5208 matching SYM_TEXT. Expand all CUs that you find to the list. */
5209 expand_symtabs_matching (NULL,
5210 [&] (const char *name) /* symbol matcher */
5211 {
5212 return compare_symbol_name (name,
5213 sym_text,
5214 sym_text_len);
5215 },
5216 [&] (compunit_symtab *symtab) /* expansion notify */
5217 {
5218 add_symtab_completions (symtab,
5219 sym_text, sym_text_len,
5220 text, word, code);
5221 },
5222 ALL_DOMAIN);
5223
5224 /* Search upwards from currently selected frame (so that we can
5225 complete on local vars). Also catch fields of types defined in
5226 this places which match our text string. Only complete on types
5227 visible from current context. */
5228
5229 b = get_selected_block (0);
5230 surrounding_static_block = block_static_block (b);
5231 surrounding_global_block = block_global_block (b);
5232 if (surrounding_static_block != NULL)
5233 while (b != surrounding_static_block)
5234 {
5235 QUIT;
5236
5237 ALL_BLOCK_SYMBOLS (b, iter, sym)
5238 {
5239 if (code == TYPE_CODE_UNDEF)
5240 {
5241 completion_list_add_symbol (sym, sym_text, sym_text_len, text,
5242 word);
5243 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5244 word);
5245 }
5246 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5247 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5248 completion_list_add_symbol (sym, sym_text, sym_text_len, text,
5249 word);
5250 }
5251
5252 /* Stop when we encounter an enclosing function. Do not stop for
5253 non-inlined functions - the locals of the enclosing function
5254 are in scope for a nested function. */
5255 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5256 break;
5257 b = BLOCK_SUPERBLOCK (b);
5258 }
5259
5260 /* Add fields from the file's types; symbols will be added below. */
5261
5262 if (code == TYPE_CODE_UNDEF)
5263 {
5264 if (surrounding_static_block != NULL)
5265 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5266 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5267
5268 if (surrounding_global_block != NULL)
5269 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5270 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5271 }
5272
5273 /* Skip macros if we are completing a struct tag -- arguable but
5274 usually what is expected. */
5275 if (current_language->la_macro_expansion == macro_expansion_c
5276 && code == TYPE_CODE_UNDEF)
5277 {
5278 struct macro_scope *scope;
5279
5280 /* This adds a macro's name to the current completion list. */
5281 auto add_macro_name = [&] (const char *macro_name,
5282 const macro_definition *,
5283 macro_source_file *,
5284 int)
5285 {
5286 completion_list_add_name (macro_name,
5287 sym_text, sym_text_len,
5288 text, word);
5289 };
5290
5291 /* Add any macros visible in the default scope. Note that this
5292 may yield the occasional wrong result, because an expression
5293 might be evaluated in a scope other than the default. For
5294 example, if the user types "break file:line if <TAB>", the
5295 resulting expression will be evaluated at "file:line" -- but
5296 at there does not seem to be a way to detect this at
5297 completion time. */
5298 scope = default_macro_scope ();
5299 if (scope)
5300 {
5301 macro_for_each_in_scope (scope->file, scope->line,
5302 add_macro_name);
5303 xfree (scope);
5304 }
5305
5306 /* User-defined macros are always visible. */
5307 macro_for_each (macro_user_macros, add_macro_name);
5308 }
5309
5310 do_cleanups (cleanups);
5311 }
5312
5313 VEC (char_ptr) *
5314 default_make_symbol_completion_list_break_on (const char *text,
5315 const char *word,
5316 const char *break_on,
5317 enum type_code code)
5318 {
5319 struct cleanup *back_to;
5320
5321 return_val = NULL;
5322 back_to = make_cleanup (do_free_completion_list, &return_val);
5323
5324 TRY
5325 {
5326 default_make_symbol_completion_list_break_on_1 (text, word,
5327 break_on, code);
5328 }
5329 CATCH (except, RETURN_MASK_ERROR)
5330 {
5331 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5332 throw_exception (except);
5333 }
5334 END_CATCH
5335
5336 discard_cleanups (back_to);
5337 return return_val;
5338 }
5339
5340 VEC (char_ptr) *
5341 default_make_symbol_completion_list (const char *text, const char *word,
5342 enum type_code code)
5343 {
5344 return default_make_symbol_completion_list_break_on (text, word, "", code);
5345 }
5346
5347 /* Return a vector of all symbols (regardless of class) which begin by
5348 matching TEXT. If the answer is no symbols, then the return value
5349 is NULL. */
5350
5351 VEC (char_ptr) *
5352 make_symbol_completion_list (const char *text, const char *word)
5353 {
5354 return current_language->la_make_symbol_completion_list (text, word,
5355 TYPE_CODE_UNDEF);
5356 }
5357
5358 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5359 symbols whose type code is CODE. */
5360
5361 VEC (char_ptr) *
5362 make_symbol_completion_type (const char *text, const char *word,
5363 enum type_code code)
5364 {
5365 gdb_assert (code == TYPE_CODE_UNION
5366 || code == TYPE_CODE_STRUCT
5367 || code == TYPE_CODE_ENUM);
5368 return current_language->la_make_symbol_completion_list (text, word, code);
5369 }
5370
5371 /* Like make_symbol_completion_list, but suitable for use as a
5372 completion function. */
5373
5374 VEC (char_ptr) *
5375 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5376 const char *text, const char *word)
5377 {
5378 return make_symbol_completion_list (text, word);
5379 }
5380
5381 /* Like make_symbol_completion_list, but returns a list of symbols
5382 defined in a source file FILE. */
5383
5384 static VEC (char_ptr) *
5385 make_file_symbol_completion_list_1 (const char *text, const char *word,
5386 const char *srcfile)
5387 {
5388 struct symtab *s;
5389 /* The symbol we are completing on. Points in same buffer as text. */
5390 const char *sym_text;
5391 /* Length of sym_text. */
5392 int sym_text_len;
5393
5394 /* Now look for the symbol we are supposed to complete on.
5395 FIXME: This should be language-specific. */
5396 {
5397 const char *p;
5398 char quote_found;
5399 const char *quote_pos = NULL;
5400
5401 /* First see if this is a quoted string. */
5402 quote_found = '\0';
5403 for (p = text; *p != '\0'; ++p)
5404 {
5405 if (quote_found != '\0')
5406 {
5407 if (*p == quote_found)
5408 /* Found close quote. */
5409 quote_found = '\0';
5410 else if (*p == '\\' && p[1] == quote_found)
5411 /* A backslash followed by the quote character
5412 doesn't end the string. */
5413 ++p;
5414 }
5415 else if (*p == '\'' || *p == '"')
5416 {
5417 quote_found = *p;
5418 quote_pos = p;
5419 }
5420 }
5421 if (quote_found == '\'')
5422 /* A string within single quotes can be a symbol, so complete on it. */
5423 sym_text = quote_pos + 1;
5424 else if (quote_found == '"')
5425 /* A double-quoted string is never a symbol, nor does it make sense
5426 to complete it any other way. */
5427 {
5428 return NULL;
5429 }
5430 else
5431 {
5432 /* Not a quoted string. */
5433 sym_text = language_search_unquoted_string (text, p);
5434 }
5435 }
5436
5437 sym_text_len = strlen (sym_text);
5438
5439 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5440 in). */
5441 s = lookup_symtab (srcfile);
5442 if (s == NULL)
5443 {
5444 /* Maybe they typed the file with leading directories, while the
5445 symbol tables record only its basename. */
5446 const char *tail = lbasename (srcfile);
5447
5448 if (tail > srcfile)
5449 s = lookup_symtab (tail);
5450 }
5451
5452 /* If we have no symtab for that file, return an empty list. */
5453 if (s == NULL)
5454 return (return_val);
5455
5456 /* Go through this symtab and check the externs and statics for
5457 symbols which match. */
5458 add_symtab_completions (SYMTAB_COMPUNIT (s),
5459 sym_text, sym_text_len,
5460 text, word, TYPE_CODE_UNDEF);
5461
5462 return (return_val);
5463 }
5464
5465 /* Wrapper around make_file_symbol_completion_list_1
5466 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5467
5468 VEC (char_ptr) *
5469 make_file_symbol_completion_list (const char *text, const char *word,
5470 const char *srcfile)
5471 {
5472 struct cleanup *back_to, *cleanups;
5473
5474 completion_tracker = new_completion_tracker ();
5475 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5476 return_val = NULL;
5477 back_to = make_cleanup (do_free_completion_list, &return_val);
5478
5479 TRY
5480 {
5481 make_file_symbol_completion_list_1 (text, word, srcfile);
5482 }
5483 CATCH (except, RETURN_MASK_ERROR)
5484 {
5485 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5486 throw_exception (except);
5487 }
5488 END_CATCH
5489
5490 discard_cleanups (back_to);
5491 do_cleanups (cleanups);
5492 return return_val;
5493 }
5494
5495 /* A helper function for make_source_files_completion_list. It adds
5496 another file name to a list of possible completions, growing the
5497 list as necessary. */
5498
5499 static void
5500 add_filename_to_list (const char *fname, const char *text, const char *word,
5501 VEC (char_ptr) **list)
5502 {
5503 char *newobj;
5504 size_t fnlen = strlen (fname);
5505
5506 if (word == text)
5507 {
5508 /* Return exactly fname. */
5509 newobj = (char *) xmalloc (fnlen + 5);
5510 strcpy (newobj, fname);
5511 }
5512 else if (word > text)
5513 {
5514 /* Return some portion of fname. */
5515 newobj = (char *) xmalloc (fnlen + 5);
5516 strcpy (newobj, fname + (word - text));
5517 }
5518 else
5519 {
5520 /* Return some of TEXT plus fname. */
5521 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5522 strncpy (newobj, word, text - word);
5523 newobj[text - word] = '\0';
5524 strcat (newobj, fname);
5525 }
5526 VEC_safe_push (char_ptr, *list, newobj);
5527 }
5528
5529 static int
5530 not_interesting_fname (const char *fname)
5531 {
5532 static const char *illegal_aliens[] = {
5533 "_globals_", /* inserted by coff_symtab_read */
5534 NULL
5535 };
5536 int i;
5537
5538 for (i = 0; illegal_aliens[i]; i++)
5539 {
5540 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5541 return 1;
5542 }
5543 return 0;
5544 }
5545
5546 /* An object of this type is passed as the user_data argument to
5547 map_partial_symbol_filenames. */
5548 struct add_partial_filename_data
5549 {
5550 struct filename_seen_cache *filename_seen_cache;
5551 const char *text;
5552 const char *word;
5553 int text_len;
5554 VEC (char_ptr) **list;
5555 };
5556
5557 /* A callback for map_partial_symbol_filenames. */
5558
5559 static void
5560 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5561 void *user_data)
5562 {
5563 struct add_partial_filename_data *data
5564 = (struct add_partial_filename_data *) user_data;
5565
5566 if (not_interesting_fname (filename))
5567 return;
5568 if (!filename_seen (data->filename_seen_cache, filename, 1)
5569 && filename_ncmp (filename, data->text, data->text_len) == 0)
5570 {
5571 /* This file matches for a completion; add it to the
5572 current list of matches. */
5573 add_filename_to_list (filename, data->text, data->word, data->list);
5574 }
5575 else
5576 {
5577 const char *base_name = lbasename (filename);
5578
5579 if (base_name != filename
5580 && !filename_seen (data->filename_seen_cache, base_name, 1)
5581 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5582 add_filename_to_list (base_name, data->text, data->word, data->list);
5583 }
5584 }
5585
5586 /* Return a vector of all source files whose names begin with matching
5587 TEXT. The file names are looked up in the symbol tables of this
5588 program. If the answer is no matchess, then the return value is
5589 NULL. */
5590
5591 VEC (char_ptr) *
5592 make_source_files_completion_list (const char *text, const char *word)
5593 {
5594 struct compunit_symtab *cu;
5595 struct symtab *s;
5596 struct objfile *objfile;
5597 size_t text_len = strlen (text);
5598 VEC (char_ptr) *list = NULL;
5599 const char *base_name;
5600 struct add_partial_filename_data datum;
5601 struct filename_seen_cache *filename_seen_cache;
5602 struct cleanup *back_to, *cache_cleanup;
5603
5604 if (!have_full_symbols () && !have_partial_symbols ())
5605 return list;
5606
5607 back_to = make_cleanup (do_free_completion_list, &list);
5608
5609 filename_seen_cache = create_filename_seen_cache ();
5610 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5611 filename_seen_cache);
5612
5613 ALL_FILETABS (objfile, cu, s)
5614 {
5615 if (not_interesting_fname (s->filename))
5616 continue;
5617 if (!filename_seen (filename_seen_cache, s->filename, 1)
5618 && filename_ncmp (s->filename, text, text_len) == 0)
5619 {
5620 /* This file matches for a completion; add it to the current
5621 list of matches. */
5622 add_filename_to_list (s->filename, text, word, &list);
5623 }
5624 else
5625 {
5626 /* NOTE: We allow the user to type a base name when the
5627 debug info records leading directories, but not the other
5628 way around. This is what subroutines of breakpoint
5629 command do when they parse file names. */
5630 base_name = lbasename (s->filename);
5631 if (base_name != s->filename
5632 && !filename_seen (filename_seen_cache, base_name, 1)
5633 && filename_ncmp (base_name, text, text_len) == 0)
5634 add_filename_to_list (base_name, text, word, &list);
5635 }
5636 }
5637
5638 datum.filename_seen_cache = filename_seen_cache;
5639 datum.text = text;
5640 datum.word = word;
5641 datum.text_len = text_len;
5642 datum.list = &list;
5643 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5644 0 /*need_fullname*/);
5645
5646 do_cleanups (cache_cleanup);
5647 discard_cleanups (back_to);
5648
5649 return list;
5650 }
5651 \f
5652 /* Track MAIN */
5653
5654 /* Return the "main_info" object for the current program space. If
5655 the object has not yet been created, create it and fill in some
5656 default values. */
5657
5658 static struct main_info *
5659 get_main_info (void)
5660 {
5661 struct main_info *info
5662 = (struct main_info *) program_space_data (current_program_space,
5663 main_progspace_key);
5664
5665 if (info == NULL)
5666 {
5667 /* It may seem strange to store the main name in the progspace
5668 and also in whatever objfile happens to see a main name in
5669 its debug info. The reason for this is mainly historical:
5670 gdb returned "main" as the name even if no function named
5671 "main" was defined the program; and this approach lets us
5672 keep compatibility. */
5673 info = XCNEW (struct main_info);
5674 info->language_of_main = language_unknown;
5675 set_program_space_data (current_program_space, main_progspace_key,
5676 info);
5677 }
5678
5679 return info;
5680 }
5681
5682 /* A cleanup to destroy a struct main_info when a progspace is
5683 destroyed. */
5684
5685 static void
5686 main_info_cleanup (struct program_space *pspace, void *data)
5687 {
5688 struct main_info *info = (struct main_info *) data;
5689
5690 if (info != NULL)
5691 xfree (info->name_of_main);
5692 xfree (info);
5693 }
5694
5695 static void
5696 set_main_name (const char *name, enum language lang)
5697 {
5698 struct main_info *info = get_main_info ();
5699
5700 if (info->name_of_main != NULL)
5701 {
5702 xfree (info->name_of_main);
5703 info->name_of_main = NULL;
5704 info->language_of_main = language_unknown;
5705 }
5706 if (name != NULL)
5707 {
5708 info->name_of_main = xstrdup (name);
5709 info->language_of_main = lang;
5710 }
5711 }
5712
5713 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5714 accordingly. */
5715
5716 static void
5717 find_main_name (void)
5718 {
5719 const char *new_main_name;
5720 struct objfile *objfile;
5721
5722 /* First check the objfiles to see whether a debuginfo reader has
5723 picked up the appropriate main name. Historically the main name
5724 was found in a more or less random way; this approach instead
5725 relies on the order of objfile creation -- which still isn't
5726 guaranteed to get the correct answer, but is just probably more
5727 accurate. */
5728 ALL_OBJFILES (objfile)
5729 {
5730 if (objfile->per_bfd->name_of_main != NULL)
5731 {
5732 set_main_name (objfile->per_bfd->name_of_main,
5733 objfile->per_bfd->language_of_main);
5734 return;
5735 }
5736 }
5737
5738 /* Try to see if the main procedure is in Ada. */
5739 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5740 be to add a new method in the language vector, and call this
5741 method for each language until one of them returns a non-empty
5742 name. This would allow us to remove this hard-coded call to
5743 an Ada function. It is not clear that this is a better approach
5744 at this point, because all methods need to be written in a way
5745 such that false positives never be returned. For instance, it is
5746 important that a method does not return a wrong name for the main
5747 procedure if the main procedure is actually written in a different
5748 language. It is easy to guaranty this with Ada, since we use a
5749 special symbol generated only when the main in Ada to find the name
5750 of the main procedure. It is difficult however to see how this can
5751 be guarantied for languages such as C, for instance. This suggests
5752 that order of call for these methods becomes important, which means
5753 a more complicated approach. */
5754 new_main_name = ada_main_name ();
5755 if (new_main_name != NULL)
5756 {
5757 set_main_name (new_main_name, language_ada);
5758 return;
5759 }
5760
5761 new_main_name = d_main_name ();
5762 if (new_main_name != NULL)
5763 {
5764 set_main_name (new_main_name, language_d);
5765 return;
5766 }
5767
5768 new_main_name = go_main_name ();
5769 if (new_main_name != NULL)
5770 {
5771 set_main_name (new_main_name, language_go);
5772 return;
5773 }
5774
5775 new_main_name = pascal_main_name ();
5776 if (new_main_name != NULL)
5777 {
5778 set_main_name (new_main_name, language_pascal);
5779 return;
5780 }
5781
5782 /* The languages above didn't identify the name of the main procedure.
5783 Fallback to "main". */
5784 set_main_name ("main", language_unknown);
5785 }
5786
5787 char *
5788 main_name (void)
5789 {
5790 struct main_info *info = get_main_info ();
5791
5792 if (info->name_of_main == NULL)
5793 find_main_name ();
5794
5795 return info->name_of_main;
5796 }
5797
5798 /* Return the language of the main function. If it is not known,
5799 return language_unknown. */
5800
5801 enum language
5802 main_language (void)
5803 {
5804 struct main_info *info = get_main_info ();
5805
5806 if (info->name_of_main == NULL)
5807 find_main_name ();
5808
5809 return info->language_of_main;
5810 }
5811
5812 /* Handle ``executable_changed'' events for the symtab module. */
5813
5814 static void
5815 symtab_observer_executable_changed (void)
5816 {
5817 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5818 set_main_name (NULL, language_unknown);
5819 }
5820
5821 /* Return 1 if the supplied producer string matches the ARM RealView
5822 compiler (armcc). */
5823
5824 int
5825 producer_is_realview (const char *producer)
5826 {
5827 static const char *const arm_idents[] = {
5828 "ARM C Compiler, ADS",
5829 "Thumb C Compiler, ADS",
5830 "ARM C++ Compiler, ADS",
5831 "Thumb C++ Compiler, ADS",
5832 "ARM/Thumb C/C++ Compiler, RVCT",
5833 "ARM C/C++ Compiler, RVCT"
5834 };
5835 int i;
5836
5837 if (producer == NULL)
5838 return 0;
5839
5840 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5841 if (startswith (producer, arm_idents[i]))
5842 return 1;
5843
5844 return 0;
5845 }
5846
5847 \f
5848
5849 /* The next index to hand out in response to a registration request. */
5850
5851 static int next_aclass_value = LOC_FINAL_VALUE;
5852
5853 /* The maximum number of "aclass" registrations we support. This is
5854 constant for convenience. */
5855 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5856
5857 /* The objects representing the various "aclass" values. The elements
5858 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5859 elements are those registered at gdb initialization time. */
5860
5861 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5862
5863 /* The globally visible pointer. This is separate from 'symbol_impl'
5864 so that it can be const. */
5865
5866 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5867
5868 /* Make sure we saved enough room in struct symbol. */
5869
5870 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5871
5872 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5873 is the ops vector associated with this index. This returns the new
5874 index, which should be used as the aclass_index field for symbols
5875 of this type. */
5876
5877 int
5878 register_symbol_computed_impl (enum address_class aclass,
5879 const struct symbol_computed_ops *ops)
5880 {
5881 int result = next_aclass_value++;
5882
5883 gdb_assert (aclass == LOC_COMPUTED);
5884 gdb_assert (result < MAX_SYMBOL_IMPLS);
5885 symbol_impl[result].aclass = aclass;
5886 symbol_impl[result].ops_computed = ops;
5887
5888 /* Sanity check OPS. */
5889 gdb_assert (ops != NULL);
5890 gdb_assert (ops->tracepoint_var_ref != NULL);
5891 gdb_assert (ops->describe_location != NULL);
5892 gdb_assert (ops->get_symbol_read_needs != NULL);
5893 gdb_assert (ops->read_variable != NULL);
5894
5895 return result;
5896 }
5897
5898 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5899 OPS is the ops vector associated with this index. This returns the
5900 new index, which should be used as the aclass_index field for symbols
5901 of this type. */
5902
5903 int
5904 register_symbol_block_impl (enum address_class aclass,
5905 const struct symbol_block_ops *ops)
5906 {
5907 int result = next_aclass_value++;
5908
5909 gdb_assert (aclass == LOC_BLOCK);
5910 gdb_assert (result < MAX_SYMBOL_IMPLS);
5911 symbol_impl[result].aclass = aclass;
5912 symbol_impl[result].ops_block = ops;
5913
5914 /* Sanity check OPS. */
5915 gdb_assert (ops != NULL);
5916 gdb_assert (ops->find_frame_base_location != NULL);
5917
5918 return result;
5919 }
5920
5921 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5922 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5923 this index. This returns the new index, which should be used as
5924 the aclass_index field for symbols of this type. */
5925
5926 int
5927 register_symbol_register_impl (enum address_class aclass,
5928 const struct symbol_register_ops *ops)
5929 {
5930 int result = next_aclass_value++;
5931
5932 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5933 gdb_assert (result < MAX_SYMBOL_IMPLS);
5934 symbol_impl[result].aclass = aclass;
5935 symbol_impl[result].ops_register = ops;
5936
5937 return result;
5938 }
5939
5940 /* Initialize elements of 'symbol_impl' for the constants in enum
5941 address_class. */
5942
5943 static void
5944 initialize_ordinary_address_classes (void)
5945 {
5946 int i;
5947
5948 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5949 symbol_impl[i].aclass = (enum address_class) i;
5950 }
5951
5952 \f
5953
5954 /* Helper function to initialize the fields of an objfile-owned symbol.
5955 It assumed that *SYM is already all zeroes. */
5956
5957 static void
5958 initialize_objfile_symbol_1 (struct symbol *sym)
5959 {
5960 SYMBOL_OBJFILE_OWNED (sym) = 1;
5961 SYMBOL_SECTION (sym) = -1;
5962 }
5963
5964 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5965
5966 void
5967 initialize_objfile_symbol (struct symbol *sym)
5968 {
5969 memset (sym, 0, sizeof (*sym));
5970 initialize_objfile_symbol_1 (sym);
5971 }
5972
5973 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5974 obstack. */
5975
5976 struct symbol *
5977 allocate_symbol (struct objfile *objfile)
5978 {
5979 struct symbol *result;
5980
5981 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5982 initialize_objfile_symbol_1 (result);
5983
5984 return result;
5985 }
5986
5987 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5988 obstack. */
5989
5990 struct template_symbol *
5991 allocate_template_symbol (struct objfile *objfile)
5992 {
5993 struct template_symbol *result;
5994
5995 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5996 initialize_objfile_symbol_1 (&result->base);
5997
5998 return result;
5999 }
6000
6001 /* See symtab.h. */
6002
6003 struct objfile *
6004 symbol_objfile (const struct symbol *symbol)
6005 {
6006 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6007 return SYMTAB_OBJFILE (symbol->owner.symtab);
6008 }
6009
6010 /* See symtab.h. */
6011
6012 struct gdbarch *
6013 symbol_arch (const struct symbol *symbol)
6014 {
6015 if (!SYMBOL_OBJFILE_OWNED (symbol))
6016 return symbol->owner.arch;
6017 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6018 }
6019
6020 /* See symtab.h. */
6021
6022 struct symtab *
6023 symbol_symtab (const struct symbol *symbol)
6024 {
6025 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6026 return symbol->owner.symtab;
6027 }
6028
6029 /* See symtab.h. */
6030
6031 void
6032 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6033 {
6034 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6035 symbol->owner.symtab = symtab;
6036 }
6037
6038 \f
6039
6040 void
6041 _initialize_symtab (void)
6042 {
6043 initialize_ordinary_address_classes ();
6044
6045 main_progspace_key
6046 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6047
6048 symbol_cache_key
6049 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6050
6051 add_info ("variables", variables_info, _("\
6052 All global and static variable names, or those matching REGEXP."));
6053 if (dbx_commands)
6054 add_com ("whereis", class_info, variables_info, _("\
6055 All global and static variable names, or those matching REGEXP."));
6056
6057 add_info ("functions", functions_info,
6058 _("All function names, or those matching REGEXP."));
6059
6060 /* FIXME: This command has at least the following problems:
6061 1. It prints builtin types (in a very strange and confusing fashion).
6062 2. It doesn't print right, e.g. with
6063 typedef struct foo *FOO
6064 type_print prints "FOO" when we want to make it (in this situation)
6065 print "struct foo *".
6066 I also think "ptype" or "whatis" is more likely to be useful (but if
6067 there is much disagreement "info types" can be fixed). */
6068 add_info ("types", types_info,
6069 _("All type names, or those matching REGEXP."));
6070
6071 add_info ("sources", sources_info,
6072 _("Source files in the program."));
6073
6074 add_com ("rbreak", class_breakpoint, rbreak_command,
6075 _("Set a breakpoint for all functions matching REGEXP."));
6076
6077 add_setshow_enum_cmd ("multiple-symbols", no_class,
6078 multiple_symbols_modes, &multiple_symbols_mode,
6079 _("\
6080 Set the debugger behavior when more than one symbol are possible matches\n\
6081 in an expression."), _("\
6082 Show how the debugger handles ambiguities in expressions."), _("\
6083 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6084 NULL, NULL, &setlist, &showlist);
6085
6086 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6087 &basenames_may_differ, _("\
6088 Set whether a source file may have multiple base names."), _("\
6089 Show whether a source file may have multiple base names."), _("\
6090 (A \"base name\" is the name of a file with the directory part removed.\n\
6091 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6092 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6093 before comparing them. Canonicalization is an expensive operation,\n\
6094 but it allows the same file be known by more than one base name.\n\
6095 If not set (the default), all source files are assumed to have just\n\
6096 one base name, and gdb will do file name comparisons more efficiently."),
6097 NULL, NULL,
6098 &setlist, &showlist);
6099
6100 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6101 _("Set debugging of symbol table creation."),
6102 _("Show debugging of symbol table creation."), _("\
6103 When enabled (non-zero), debugging messages are printed when building\n\
6104 symbol tables. A value of 1 (one) normally provides enough information.\n\
6105 A value greater than 1 provides more verbose information."),
6106 NULL,
6107 NULL,
6108 &setdebuglist, &showdebuglist);
6109
6110 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6111 _("\
6112 Set debugging of symbol lookup."), _("\
6113 Show debugging of symbol lookup."), _("\
6114 When enabled (non-zero), symbol lookups are logged."),
6115 NULL, NULL,
6116 &setdebuglist, &showdebuglist);
6117
6118 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6119 &new_symbol_cache_size,
6120 _("Set the size of the symbol cache."),
6121 _("Show the size of the symbol cache."), _("\
6122 The size of the symbol cache.\n\
6123 If zero then the symbol cache is disabled."),
6124 set_symbol_cache_size_handler, NULL,
6125 &maintenance_set_cmdlist,
6126 &maintenance_show_cmdlist);
6127
6128 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6129 _("Dump the symbol cache for each program space."),
6130 &maintenanceprintlist);
6131
6132 add_cmd ("symbol-cache-statistics", class_maintenance,
6133 maintenance_print_symbol_cache_statistics,
6134 _("Print symbol cache statistics for each program space."),
6135 &maintenanceprintlist);
6136
6137 add_cmd ("flush-symbol-cache", class_maintenance,
6138 maintenance_flush_symbol_cache,
6139 _("Flush the symbol cache for each program space."),
6140 &maintenancelist);
6141
6142 observer_attach_executable_changed (symtab_observer_executable_changed);
6143 observer_attach_new_objfile (symtab_new_objfile_observer);
6144 observer_attach_free_objfile (symtab_free_objfile_observer);
6145 }