]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
Convert symbol_set_demangled_name to a method
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 /* Return the demangled name of GSYMBOL. */
694
695 const char *
696 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
697 {
698 if (gsymbol->language () == language_ada)
699 {
700 if (!gsymbol->ada_mangled)
701 return NULL;
702 /* Fall through. */
703 }
704
705 return gsymbol->language_specific.demangled_name;
706 }
707
708 \f
709 /* Initialize the language dependent portion of a symbol
710 depending upon the language for the symbol. */
711
712 void
713 general_symbol_info::set_language (enum language language,
714 struct obstack *obstack)
715 {
716 m_language = language;
717 if (language == language_cplus
718 || language == language_d
719 || language == language_go
720 || language == language_objc
721 || language == language_fortran)
722 {
723 set_demangled_name (NULL, obstack);
724 }
725 else if (language == language_ada)
726 {
727 gdb_assert (ada_mangled == 0);
728 language_specific.obstack = obstack;
729 }
730 else
731 {
732 memset (&language_specific, 0, sizeof (language_specific));
733 }
734 }
735
736 /* Functions to initialize a symbol's mangled name. */
737
738 /* Objects of this type are stored in the demangled name hash table. */
739 struct demangled_name_entry
740 {
741 demangled_name_entry (gdb::string_view mangled_name)
742 : mangled (mangled_name) {}
743
744 gdb::string_view mangled;
745 enum language language;
746 gdb::unique_xmalloc_ptr<char> demangled;
747 };
748
749 /* Hash function for the demangled name hash. */
750
751 static hashval_t
752 hash_demangled_name_entry (const void *data)
753 {
754 const struct demangled_name_entry *e
755 = (const struct demangled_name_entry *) data;
756
757 return fast_hash (e->mangled.data (), e->mangled.length ());
758 }
759
760 /* Equality function for the demangled name hash. */
761
762 static int
763 eq_demangled_name_entry (const void *a, const void *b)
764 {
765 const struct demangled_name_entry *da
766 = (const struct demangled_name_entry *) a;
767 const struct demangled_name_entry *db
768 = (const struct demangled_name_entry *) b;
769
770 return da->mangled == db->mangled;
771 }
772
773 static void
774 free_demangled_name_entry (void *data)
775 {
776 struct demangled_name_entry *e
777 = (struct demangled_name_entry *) data;
778
779 e->~demangled_name_entry();
780 }
781
782 /* Create the hash table used for demangled names. Each hash entry is
783 a pair of strings; one for the mangled name and one for the demangled
784 name. The entry is hashed via just the mangled name. */
785
786 static void
787 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
788 {
789 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
790 The hash table code will round this up to the next prime number.
791 Choosing a much larger table size wastes memory, and saves only about
792 1% in symbol reading. However, if the minsym count is already
793 initialized (e.g. because symbol name setting was deferred to
794 a background thread) we can initialize the hashtable with a count
795 based on that, because we will almost certainly have at least that
796 many entries. If we have a nonzero number but less than 256,
797 we still stay with 256 to have some space for psymbols, etc. */
798
799 /* htab will expand the table when it is 3/4th full, so we account for that
800 here. +2 to round up. */
801 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
802 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
803
804 per_bfd->demangled_names_hash.reset (htab_create_alloc
805 (count, hash_demangled_name_entry, eq_demangled_name_entry,
806 free_demangled_name_entry, xcalloc, xfree));
807 }
808
809 /* See symtab.h */
810
811 char *
812 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
813 const char *mangled)
814 {
815 char *demangled = NULL;
816 int i;
817
818 if (gsymbol->language () == language_unknown)
819 gsymbol->m_language = language_auto;
820
821 if (gsymbol->language () != language_auto)
822 {
823 const struct language_defn *lang = language_def (gsymbol->language ());
824
825 language_sniff_from_mangled_name (lang, mangled, &demangled);
826 return demangled;
827 }
828
829 for (i = language_unknown; i < nr_languages; ++i)
830 {
831 enum language l = (enum language) i;
832 const struct language_defn *lang = language_def (l);
833
834 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
835 {
836 gsymbol->m_language = l;
837 return demangled;
838 }
839 }
840
841 return NULL;
842 }
843
844 /* Set both the mangled and demangled (if any) names for GSYMBOL based
845 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
846 objfile's obstack; but if COPY_NAME is 0 and if NAME is
847 NUL-terminated, then this function assumes that NAME is already
848 correctly saved (either permanently or with a lifetime tied to the
849 objfile), and it will not be copied.
850
851 The hash table corresponding to OBJFILE is used, and the memory
852 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
853 so the pointer can be discarded after calling this function. */
854
855 void
856 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
857 bool copy_name,
858 objfile_per_bfd_storage *per_bfd,
859 gdb::optional<hashval_t> hash)
860 {
861 struct demangled_name_entry **slot;
862
863 if (language () == language_ada)
864 {
865 /* In Ada, we do the symbol lookups using the mangled name, so
866 we can save some space by not storing the demangled name. */
867 if (!copy_name)
868 m_name = linkage_name.data ();
869 else
870 m_name = obstack_strndup (&per_bfd->storage_obstack,
871 linkage_name.data (),
872 linkage_name.length ());
873 set_demangled_name (NULL, &per_bfd->storage_obstack);
874
875 return;
876 }
877
878 if (per_bfd->demangled_names_hash == NULL)
879 create_demangled_names_hash (per_bfd);
880
881 struct demangled_name_entry entry (linkage_name);
882 if (!hash.has_value ())
883 hash = hash_demangled_name_entry (&entry);
884 slot = ((struct demangled_name_entry **)
885 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
886 &entry, *hash, INSERT));
887
888 /* The const_cast is safe because the only reason it is already
889 initialized is if we purposefully set it from a background
890 thread to avoid doing the work here. However, it is still
891 allocated from the heap and needs to be freed by us, just
892 like if we called symbol_find_demangled_name here. If this is
893 nullptr, we call symbol_find_demangled_name below, but we put
894 this smart pointer here to be sure that we don't leak this name. */
895 gdb::unique_xmalloc_ptr<char> demangled_name
896 (const_cast<char *> (language_specific.demangled_name));
897
898 /* If this name is not in the hash table, add it. */
899 if (*slot == NULL
900 /* A C version of the symbol may have already snuck into the table.
901 This happens to, e.g., main.init (__go_init_main). Cope. */
902 || (language () == language_go && (*slot)->demangled == nullptr))
903 {
904 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
905 to true if the string might not be nullterminated. We have to make
906 this copy because demangling needs a nullterminated string. */
907 gdb::string_view linkage_name_copy;
908 if (copy_name)
909 {
910 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
911 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
912 alloc_name[linkage_name.length ()] = '\0';
913
914 linkage_name_copy = gdb::string_view (alloc_name,
915 linkage_name.length ());
916 }
917 else
918 linkage_name_copy = linkage_name;
919
920 if (demangled_name.get () == nullptr)
921 demangled_name.reset
922 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
923
924 /* Suppose we have demangled_name==NULL, copy_name==0, and
925 linkage_name_copy==linkage_name. In this case, we already have the
926 mangled name saved, and we don't have a demangled name. So,
927 you might think we could save a little space by not recording
928 this in the hash table at all.
929
930 It turns out that it is actually important to still save such
931 an entry in the hash table, because storing this name gives
932 us better bcache hit rates for partial symbols. */
933 if (!copy_name)
934 {
935 *slot
936 = ((struct demangled_name_entry *)
937 obstack_alloc (&per_bfd->storage_obstack,
938 sizeof (demangled_name_entry)));
939 new (*slot) demangled_name_entry (linkage_name);
940 }
941 else
942 {
943 /* If we must copy the mangled name, put it directly after
944 the struct so we can have a single allocation. */
945 *slot
946 = ((struct demangled_name_entry *)
947 obstack_alloc (&per_bfd->storage_obstack,
948 sizeof (demangled_name_entry)
949 + linkage_name.length () + 1));
950 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
951 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
952 mangled_ptr [linkage_name.length ()] = '\0';
953 new (*slot) demangled_name_entry
954 (gdb::string_view (mangled_ptr, linkage_name.length ()));
955 }
956 (*slot)->demangled = std::move (demangled_name);
957 (*slot)->language = language ();
958 }
959 else if (language () == language_unknown || language () == language_auto)
960 m_language = (*slot)->language;
961
962 m_name = (*slot)->mangled.data ();
963 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
964 }
965
966 /* See symtab.h. */
967
968 const char *
969 general_symbol_info::natural_name () const
970 {
971 switch (language ())
972 {
973 case language_cplus:
974 case language_d:
975 case language_go:
976 case language_objc:
977 case language_fortran:
978 if (symbol_get_demangled_name (this) != NULL)
979 return symbol_get_demangled_name (this);
980 break;
981 case language_ada:
982 return ada_decode_symbol (this);
983 default:
984 break;
985 }
986 return linkage_name ();
987 }
988
989 /* See symtab.h. */
990
991 const char *
992 general_symbol_info::demangled_name () const
993 {
994 const char *dem_name = NULL;
995
996 switch (language ())
997 {
998 case language_cplus:
999 case language_d:
1000 case language_go:
1001 case language_objc:
1002 case language_fortran:
1003 dem_name = symbol_get_demangled_name (this);
1004 break;
1005 case language_ada:
1006 dem_name = ada_decode_symbol (this);
1007 break;
1008 default:
1009 break;
1010 }
1011 return dem_name;
1012 }
1013
1014 /* See symtab.h. */
1015
1016 const char *
1017 general_symbol_info::search_name () const
1018 {
1019 if (language () == language_ada)
1020 return linkage_name ();
1021 else
1022 return natural_name ();
1023 }
1024
1025 /* See symtab.h. */
1026
1027 bool
1028 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1029 const lookup_name_info &name)
1030 {
1031 symbol_name_matcher_ftype *name_match
1032 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1033 return name_match (gsymbol->search_name (), name, NULL);
1034 }
1035
1036 \f
1037
1038 /* Return true if the two sections are the same, or if they could
1039 plausibly be copies of each other, one in an original object
1040 file and another in a separated debug file. */
1041
1042 bool
1043 matching_obj_sections (struct obj_section *obj_first,
1044 struct obj_section *obj_second)
1045 {
1046 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1047 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1048
1049 /* If they're the same section, then they match. */
1050 if (first == second)
1051 return true;
1052
1053 /* If either is NULL, give up. */
1054 if (first == NULL || second == NULL)
1055 return false;
1056
1057 /* This doesn't apply to absolute symbols. */
1058 if (first->owner == NULL || second->owner == NULL)
1059 return false;
1060
1061 /* If they're in the same object file, they must be different sections. */
1062 if (first->owner == second->owner)
1063 return false;
1064
1065 /* Check whether the two sections are potentially corresponding. They must
1066 have the same size, address, and name. We can't compare section indexes,
1067 which would be more reliable, because some sections may have been
1068 stripped. */
1069 if (bfd_section_size (first) != bfd_section_size (second))
1070 return false;
1071
1072 /* In-memory addresses may start at a different offset, relativize them. */
1073 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1074 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1075 return false;
1076
1077 if (bfd_section_name (first) == NULL
1078 || bfd_section_name (second) == NULL
1079 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1080 return false;
1081
1082 /* Otherwise check that they are in corresponding objfiles. */
1083
1084 struct objfile *obj = NULL;
1085 for (objfile *objfile : current_program_space->objfiles ())
1086 if (objfile->obfd == first->owner)
1087 {
1088 obj = objfile;
1089 break;
1090 }
1091 gdb_assert (obj != NULL);
1092
1093 if (obj->separate_debug_objfile != NULL
1094 && obj->separate_debug_objfile->obfd == second->owner)
1095 return true;
1096 if (obj->separate_debug_objfile_backlink != NULL
1097 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1098 return true;
1099
1100 return false;
1101 }
1102
1103 /* See symtab.h. */
1104
1105 void
1106 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1107 {
1108 struct bound_minimal_symbol msymbol;
1109
1110 /* If we know that this is not a text address, return failure. This is
1111 necessary because we loop based on texthigh and textlow, which do
1112 not include the data ranges. */
1113 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1114 if (msymbol.minsym && msymbol.minsym->data_p ())
1115 return;
1116
1117 for (objfile *objfile : current_program_space->objfiles ())
1118 {
1119 struct compunit_symtab *cust = NULL;
1120
1121 if (objfile->sf)
1122 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1123 pc, section, 0);
1124 if (cust)
1125 return;
1126 }
1127 }
1128 \f
1129 /* Hash function for the symbol cache. */
1130
1131 static unsigned int
1132 hash_symbol_entry (const struct objfile *objfile_context,
1133 const char *name, domain_enum domain)
1134 {
1135 unsigned int hash = (uintptr_t) objfile_context;
1136
1137 if (name != NULL)
1138 hash += htab_hash_string (name);
1139
1140 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1141 to map to the same slot. */
1142 if (domain == STRUCT_DOMAIN)
1143 hash += VAR_DOMAIN * 7;
1144 else
1145 hash += domain * 7;
1146
1147 return hash;
1148 }
1149
1150 /* Equality function for the symbol cache. */
1151
1152 static int
1153 eq_symbol_entry (const struct symbol_cache_slot *slot,
1154 const struct objfile *objfile_context,
1155 const char *name, domain_enum domain)
1156 {
1157 const char *slot_name;
1158 domain_enum slot_domain;
1159
1160 if (slot->state == SYMBOL_SLOT_UNUSED)
1161 return 0;
1162
1163 if (slot->objfile_context != objfile_context)
1164 return 0;
1165
1166 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1167 {
1168 slot_name = slot->value.not_found.name;
1169 slot_domain = slot->value.not_found.domain;
1170 }
1171 else
1172 {
1173 slot_name = slot->value.found.symbol->search_name ();
1174 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1175 }
1176
1177 /* NULL names match. */
1178 if (slot_name == NULL && name == NULL)
1179 {
1180 /* But there's no point in calling symbol_matches_domain in the
1181 SYMBOL_SLOT_FOUND case. */
1182 if (slot_domain != domain)
1183 return 0;
1184 }
1185 else if (slot_name != NULL && name != NULL)
1186 {
1187 /* It's important that we use the same comparison that was done
1188 the first time through. If the slot records a found symbol,
1189 then this means using the symbol name comparison function of
1190 the symbol's language with symbol->search_name (). See
1191 dictionary.c. It also means using symbol_matches_domain for
1192 found symbols. See block.c.
1193
1194 If the slot records a not-found symbol, then require a precise match.
1195 We could still be lax with whitespace like strcmp_iw though. */
1196
1197 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1198 {
1199 if (strcmp (slot_name, name) != 0)
1200 return 0;
1201 if (slot_domain != domain)
1202 return 0;
1203 }
1204 else
1205 {
1206 struct symbol *sym = slot->value.found.symbol;
1207 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1208
1209 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1210 return 0;
1211
1212 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1213 return 0;
1214 }
1215 }
1216 else
1217 {
1218 /* Only one name is NULL. */
1219 return 0;
1220 }
1221
1222 return 1;
1223 }
1224
1225 /* Given a cache of size SIZE, return the size of the struct (with variable
1226 length array) in bytes. */
1227
1228 static size_t
1229 symbol_cache_byte_size (unsigned int size)
1230 {
1231 return (sizeof (struct block_symbol_cache)
1232 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1233 }
1234
1235 /* Resize CACHE. */
1236
1237 static void
1238 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1239 {
1240 /* If there's no change in size, don't do anything.
1241 All caches have the same size, so we can just compare with the size
1242 of the global symbols cache. */
1243 if ((cache->global_symbols != NULL
1244 && cache->global_symbols->size == new_size)
1245 || (cache->global_symbols == NULL
1246 && new_size == 0))
1247 return;
1248
1249 destroy_block_symbol_cache (cache->global_symbols);
1250 destroy_block_symbol_cache (cache->static_symbols);
1251
1252 if (new_size == 0)
1253 {
1254 cache->global_symbols = NULL;
1255 cache->static_symbols = NULL;
1256 }
1257 else
1258 {
1259 size_t total_size = symbol_cache_byte_size (new_size);
1260
1261 cache->global_symbols
1262 = (struct block_symbol_cache *) xcalloc (1, total_size);
1263 cache->static_symbols
1264 = (struct block_symbol_cache *) xcalloc (1, total_size);
1265 cache->global_symbols->size = new_size;
1266 cache->static_symbols->size = new_size;
1267 }
1268 }
1269
1270 /* Return the symbol cache of PSPACE.
1271 Create one if it doesn't exist yet. */
1272
1273 static struct symbol_cache *
1274 get_symbol_cache (struct program_space *pspace)
1275 {
1276 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1277
1278 if (cache == NULL)
1279 {
1280 cache = symbol_cache_key.emplace (pspace);
1281 resize_symbol_cache (cache, symbol_cache_size);
1282 }
1283
1284 return cache;
1285 }
1286
1287 /* Set the size of the symbol cache in all program spaces. */
1288
1289 static void
1290 set_symbol_cache_size (unsigned int new_size)
1291 {
1292 struct program_space *pspace;
1293
1294 ALL_PSPACES (pspace)
1295 {
1296 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1297
1298 /* The pspace could have been created but not have a cache yet. */
1299 if (cache != NULL)
1300 resize_symbol_cache (cache, new_size);
1301 }
1302 }
1303
1304 /* Called when symbol-cache-size is set. */
1305
1306 static void
1307 set_symbol_cache_size_handler (const char *args, int from_tty,
1308 struct cmd_list_element *c)
1309 {
1310 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1311 {
1312 /* Restore the previous value.
1313 This is the value the "show" command prints. */
1314 new_symbol_cache_size = symbol_cache_size;
1315
1316 error (_("Symbol cache size is too large, max is %u."),
1317 MAX_SYMBOL_CACHE_SIZE);
1318 }
1319 symbol_cache_size = new_symbol_cache_size;
1320
1321 set_symbol_cache_size (symbol_cache_size);
1322 }
1323
1324 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1325 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1326 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1327 failed (and thus this one will too), or NULL if the symbol is not present
1328 in the cache.
1329 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1330 can be used to save the result of a full lookup attempt. */
1331
1332 static struct block_symbol
1333 symbol_cache_lookup (struct symbol_cache *cache,
1334 struct objfile *objfile_context, enum block_enum block,
1335 const char *name, domain_enum domain,
1336 struct block_symbol_cache **bsc_ptr,
1337 struct symbol_cache_slot **slot_ptr)
1338 {
1339 struct block_symbol_cache *bsc;
1340 unsigned int hash;
1341 struct symbol_cache_slot *slot;
1342
1343 if (block == GLOBAL_BLOCK)
1344 bsc = cache->global_symbols;
1345 else
1346 bsc = cache->static_symbols;
1347 if (bsc == NULL)
1348 {
1349 *bsc_ptr = NULL;
1350 *slot_ptr = NULL;
1351 return {};
1352 }
1353
1354 hash = hash_symbol_entry (objfile_context, name, domain);
1355 slot = bsc->symbols + hash % bsc->size;
1356
1357 *bsc_ptr = bsc;
1358 *slot_ptr = slot;
1359
1360 if (eq_symbol_entry (slot, objfile_context, name, domain))
1361 {
1362 if (symbol_lookup_debug)
1363 fprintf_unfiltered (gdb_stdlog,
1364 "%s block symbol cache hit%s for %s, %s\n",
1365 block == GLOBAL_BLOCK ? "Global" : "Static",
1366 slot->state == SYMBOL_SLOT_NOT_FOUND
1367 ? " (not found)" : "",
1368 name, domain_name (domain));
1369 ++bsc->hits;
1370 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1371 return SYMBOL_LOOKUP_FAILED;
1372 return slot->value.found;
1373 }
1374
1375 /* Symbol is not present in the cache. */
1376
1377 if (symbol_lookup_debug)
1378 {
1379 fprintf_unfiltered (gdb_stdlog,
1380 "%s block symbol cache miss for %s, %s\n",
1381 block == GLOBAL_BLOCK ? "Global" : "Static",
1382 name, domain_name (domain));
1383 }
1384 ++bsc->misses;
1385 return {};
1386 }
1387
1388 /* Mark SYMBOL as found in SLOT.
1389 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1390 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1391 necessarily the objfile the symbol was found in. */
1392
1393 static void
1394 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1395 struct symbol_cache_slot *slot,
1396 struct objfile *objfile_context,
1397 struct symbol *symbol,
1398 const struct block *block)
1399 {
1400 if (bsc == NULL)
1401 return;
1402 if (slot->state != SYMBOL_SLOT_UNUSED)
1403 {
1404 ++bsc->collisions;
1405 symbol_cache_clear_slot (slot);
1406 }
1407 slot->state = SYMBOL_SLOT_FOUND;
1408 slot->objfile_context = objfile_context;
1409 slot->value.found.symbol = symbol;
1410 slot->value.found.block = block;
1411 }
1412
1413 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1414 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1415 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1416
1417 static void
1418 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1419 struct symbol_cache_slot *slot,
1420 struct objfile *objfile_context,
1421 const char *name, domain_enum domain)
1422 {
1423 if (bsc == NULL)
1424 return;
1425 if (slot->state != SYMBOL_SLOT_UNUSED)
1426 {
1427 ++bsc->collisions;
1428 symbol_cache_clear_slot (slot);
1429 }
1430 slot->state = SYMBOL_SLOT_NOT_FOUND;
1431 slot->objfile_context = objfile_context;
1432 slot->value.not_found.name = xstrdup (name);
1433 slot->value.not_found.domain = domain;
1434 }
1435
1436 /* Flush the symbol cache of PSPACE. */
1437
1438 static void
1439 symbol_cache_flush (struct program_space *pspace)
1440 {
1441 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1442 int pass;
1443
1444 if (cache == NULL)
1445 return;
1446 if (cache->global_symbols == NULL)
1447 {
1448 gdb_assert (symbol_cache_size == 0);
1449 gdb_assert (cache->static_symbols == NULL);
1450 return;
1451 }
1452
1453 /* If the cache is untouched since the last flush, early exit.
1454 This is important for performance during the startup of a program linked
1455 with 100s (or 1000s) of shared libraries. */
1456 if (cache->global_symbols->misses == 0
1457 && cache->static_symbols->misses == 0)
1458 return;
1459
1460 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1461 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1462
1463 for (pass = 0; pass < 2; ++pass)
1464 {
1465 struct block_symbol_cache *bsc
1466 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1467 unsigned int i;
1468
1469 for (i = 0; i < bsc->size; ++i)
1470 symbol_cache_clear_slot (&bsc->symbols[i]);
1471 }
1472
1473 cache->global_symbols->hits = 0;
1474 cache->global_symbols->misses = 0;
1475 cache->global_symbols->collisions = 0;
1476 cache->static_symbols->hits = 0;
1477 cache->static_symbols->misses = 0;
1478 cache->static_symbols->collisions = 0;
1479 }
1480
1481 /* Dump CACHE. */
1482
1483 static void
1484 symbol_cache_dump (const struct symbol_cache *cache)
1485 {
1486 int pass;
1487
1488 if (cache->global_symbols == NULL)
1489 {
1490 printf_filtered (" <disabled>\n");
1491 return;
1492 }
1493
1494 for (pass = 0; pass < 2; ++pass)
1495 {
1496 const struct block_symbol_cache *bsc
1497 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1498 unsigned int i;
1499
1500 if (pass == 0)
1501 printf_filtered ("Global symbols:\n");
1502 else
1503 printf_filtered ("Static symbols:\n");
1504
1505 for (i = 0; i < bsc->size; ++i)
1506 {
1507 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1508
1509 QUIT;
1510
1511 switch (slot->state)
1512 {
1513 case SYMBOL_SLOT_UNUSED:
1514 break;
1515 case SYMBOL_SLOT_NOT_FOUND:
1516 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1517 host_address_to_string (slot->objfile_context),
1518 slot->value.not_found.name,
1519 domain_name (slot->value.not_found.domain));
1520 break;
1521 case SYMBOL_SLOT_FOUND:
1522 {
1523 struct symbol *found = slot->value.found.symbol;
1524 const struct objfile *context = slot->objfile_context;
1525
1526 printf_filtered (" [%4u] = %s, %s %s\n", i,
1527 host_address_to_string (context),
1528 found->print_name (),
1529 domain_name (SYMBOL_DOMAIN (found)));
1530 break;
1531 }
1532 }
1533 }
1534 }
1535 }
1536
1537 /* The "mt print symbol-cache" command. */
1538
1539 static void
1540 maintenance_print_symbol_cache (const char *args, int from_tty)
1541 {
1542 struct program_space *pspace;
1543
1544 ALL_PSPACES (pspace)
1545 {
1546 struct symbol_cache *cache;
1547
1548 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1549 pspace->num,
1550 pspace->symfile_object_file != NULL
1551 ? objfile_name (pspace->symfile_object_file)
1552 : "(no object file)");
1553
1554 /* If the cache hasn't been created yet, avoid creating one. */
1555 cache = symbol_cache_key.get (pspace);
1556 if (cache == NULL)
1557 printf_filtered (" <empty>\n");
1558 else
1559 symbol_cache_dump (cache);
1560 }
1561 }
1562
1563 /* The "mt flush-symbol-cache" command. */
1564
1565 static void
1566 maintenance_flush_symbol_cache (const char *args, int from_tty)
1567 {
1568 struct program_space *pspace;
1569
1570 ALL_PSPACES (pspace)
1571 {
1572 symbol_cache_flush (pspace);
1573 }
1574 }
1575
1576 /* Print usage statistics of CACHE. */
1577
1578 static void
1579 symbol_cache_stats (struct symbol_cache *cache)
1580 {
1581 int pass;
1582
1583 if (cache->global_symbols == NULL)
1584 {
1585 printf_filtered (" <disabled>\n");
1586 return;
1587 }
1588
1589 for (pass = 0; pass < 2; ++pass)
1590 {
1591 const struct block_symbol_cache *bsc
1592 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1593
1594 QUIT;
1595
1596 if (pass == 0)
1597 printf_filtered ("Global block cache stats:\n");
1598 else
1599 printf_filtered ("Static block cache stats:\n");
1600
1601 printf_filtered (" size: %u\n", bsc->size);
1602 printf_filtered (" hits: %u\n", bsc->hits);
1603 printf_filtered (" misses: %u\n", bsc->misses);
1604 printf_filtered (" collisions: %u\n", bsc->collisions);
1605 }
1606 }
1607
1608 /* The "mt print symbol-cache-statistics" command. */
1609
1610 static void
1611 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1612 {
1613 struct program_space *pspace;
1614
1615 ALL_PSPACES (pspace)
1616 {
1617 struct symbol_cache *cache;
1618
1619 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1620 pspace->num,
1621 pspace->symfile_object_file != NULL
1622 ? objfile_name (pspace->symfile_object_file)
1623 : "(no object file)");
1624
1625 /* If the cache hasn't been created yet, avoid creating one. */
1626 cache = symbol_cache_key.get (pspace);
1627 if (cache == NULL)
1628 printf_filtered (" empty, no stats available\n");
1629 else
1630 symbol_cache_stats (cache);
1631 }
1632 }
1633
1634 /* This module's 'new_objfile' observer. */
1635
1636 static void
1637 symtab_new_objfile_observer (struct objfile *objfile)
1638 {
1639 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1640 symbol_cache_flush (current_program_space);
1641 }
1642
1643 /* This module's 'free_objfile' observer. */
1644
1645 static void
1646 symtab_free_objfile_observer (struct objfile *objfile)
1647 {
1648 symbol_cache_flush (objfile->pspace);
1649 }
1650 \f
1651 /* Debug symbols usually don't have section information. We need to dig that
1652 out of the minimal symbols and stash that in the debug symbol. */
1653
1654 void
1655 fixup_section (struct general_symbol_info *ginfo,
1656 CORE_ADDR addr, struct objfile *objfile)
1657 {
1658 struct minimal_symbol *msym;
1659
1660 /* First, check whether a minimal symbol with the same name exists
1661 and points to the same address. The address check is required
1662 e.g. on PowerPC64, where the minimal symbol for a function will
1663 point to the function descriptor, while the debug symbol will
1664 point to the actual function code. */
1665 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1666 objfile);
1667 if (msym)
1668 ginfo->section = MSYMBOL_SECTION (msym);
1669 else
1670 {
1671 /* Static, function-local variables do appear in the linker
1672 (minimal) symbols, but are frequently given names that won't
1673 be found via lookup_minimal_symbol(). E.g., it has been
1674 observed in frv-uclinux (ELF) executables that a static,
1675 function-local variable named "foo" might appear in the
1676 linker symbols as "foo.6" or "foo.3". Thus, there is no
1677 point in attempting to extend the lookup-by-name mechanism to
1678 handle this case due to the fact that there can be multiple
1679 names.
1680
1681 So, instead, search the section table when lookup by name has
1682 failed. The ``addr'' and ``endaddr'' fields may have already
1683 been relocated. If so, the relocation offset needs to be
1684 subtracted from these values when performing the comparison.
1685 We unconditionally subtract it, because, when no relocation
1686 has been performed, the value will simply be zero.
1687
1688 The address of the symbol whose section we're fixing up HAS
1689 NOT BEEN adjusted (relocated) yet. It can't have been since
1690 the section isn't yet known and knowing the section is
1691 necessary in order to add the correct relocation value. In
1692 other words, we wouldn't even be in this function (attempting
1693 to compute the section) if it were already known.
1694
1695 Note that it is possible to search the minimal symbols
1696 (subtracting the relocation value if necessary) to find the
1697 matching minimal symbol, but this is overkill and much less
1698 efficient. It is not necessary to find the matching minimal
1699 symbol, only its section.
1700
1701 Note that this technique (of doing a section table search)
1702 can fail when unrelocated section addresses overlap. For
1703 this reason, we still attempt a lookup by name prior to doing
1704 a search of the section table. */
1705
1706 struct obj_section *s;
1707 int fallback = -1;
1708
1709 ALL_OBJFILE_OSECTIONS (objfile, s)
1710 {
1711 int idx = s - objfile->sections;
1712 CORE_ADDR offset = objfile->section_offsets[idx];
1713
1714 if (fallback == -1)
1715 fallback = idx;
1716
1717 if (obj_section_addr (s) - offset <= addr
1718 && addr < obj_section_endaddr (s) - offset)
1719 {
1720 ginfo->section = idx;
1721 return;
1722 }
1723 }
1724
1725 /* If we didn't find the section, assume it is in the first
1726 section. If there is no allocated section, then it hardly
1727 matters what we pick, so just pick zero. */
1728 if (fallback == -1)
1729 ginfo->section = 0;
1730 else
1731 ginfo->section = fallback;
1732 }
1733 }
1734
1735 struct symbol *
1736 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1737 {
1738 CORE_ADDR addr;
1739
1740 if (!sym)
1741 return NULL;
1742
1743 if (!SYMBOL_OBJFILE_OWNED (sym))
1744 return sym;
1745
1746 /* We either have an OBJFILE, or we can get at it from the sym's
1747 symtab. Anything else is a bug. */
1748 gdb_assert (objfile || symbol_symtab (sym));
1749
1750 if (objfile == NULL)
1751 objfile = symbol_objfile (sym);
1752
1753 if (SYMBOL_OBJ_SECTION (objfile, sym))
1754 return sym;
1755
1756 /* We should have an objfile by now. */
1757 gdb_assert (objfile);
1758
1759 switch (SYMBOL_CLASS (sym))
1760 {
1761 case LOC_STATIC:
1762 case LOC_LABEL:
1763 addr = SYMBOL_VALUE_ADDRESS (sym);
1764 break;
1765 case LOC_BLOCK:
1766 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1767 break;
1768
1769 default:
1770 /* Nothing else will be listed in the minsyms -- no use looking
1771 it up. */
1772 return sym;
1773 }
1774
1775 fixup_section (sym, addr, objfile);
1776
1777 return sym;
1778 }
1779
1780 /* See symtab.h. */
1781
1782 demangle_for_lookup_info::demangle_for_lookup_info
1783 (const lookup_name_info &lookup_name, language lang)
1784 {
1785 demangle_result_storage storage;
1786
1787 if (lookup_name.ignore_parameters () && lang == language_cplus)
1788 {
1789 gdb::unique_xmalloc_ptr<char> without_params
1790 = cp_remove_params_if_any (lookup_name.c_str (),
1791 lookup_name.completion_mode ());
1792
1793 if (without_params != NULL)
1794 {
1795 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1796 m_demangled_name = demangle_for_lookup (without_params.get (),
1797 lang, storage);
1798 return;
1799 }
1800 }
1801
1802 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1803 m_demangled_name = lookup_name.c_str ();
1804 else
1805 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1806 lang, storage);
1807 }
1808
1809 /* See symtab.h. */
1810
1811 const lookup_name_info &
1812 lookup_name_info::match_any ()
1813 {
1814 /* Lookup any symbol that "" would complete. I.e., this matches all
1815 symbol names. */
1816 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1817 true);
1818
1819 return lookup_name;
1820 }
1821
1822 /* Compute the demangled form of NAME as used by the various symbol
1823 lookup functions. The result can either be the input NAME
1824 directly, or a pointer to a buffer owned by the STORAGE object.
1825
1826 For Ada, this function just returns NAME, unmodified.
1827 Normally, Ada symbol lookups are performed using the encoded name
1828 rather than the demangled name, and so it might seem to make sense
1829 for this function to return an encoded version of NAME.
1830 Unfortunately, we cannot do this, because this function is used in
1831 circumstances where it is not appropriate to try to encode NAME.
1832 For instance, when displaying the frame info, we demangle the name
1833 of each parameter, and then perform a symbol lookup inside our
1834 function using that demangled name. In Ada, certain functions
1835 have internally-generated parameters whose name contain uppercase
1836 characters. Encoding those name would result in those uppercase
1837 characters to become lowercase, and thus cause the symbol lookup
1838 to fail. */
1839
1840 const char *
1841 demangle_for_lookup (const char *name, enum language lang,
1842 demangle_result_storage &storage)
1843 {
1844 /* If we are using C++, D, or Go, demangle the name before doing a
1845 lookup, so we can always binary search. */
1846 if (lang == language_cplus)
1847 {
1848 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1849 if (demangled_name != NULL)
1850 return storage.set_malloc_ptr (demangled_name);
1851
1852 /* If we were given a non-mangled name, canonicalize it
1853 according to the language (so far only for C++). */
1854 std::string canon = cp_canonicalize_string (name);
1855 if (!canon.empty ())
1856 return storage.swap_string (canon);
1857 }
1858 else if (lang == language_d)
1859 {
1860 char *demangled_name = d_demangle (name, 0);
1861 if (demangled_name != NULL)
1862 return storage.set_malloc_ptr (demangled_name);
1863 }
1864 else if (lang == language_go)
1865 {
1866 char *demangled_name = go_demangle (name, 0);
1867 if (demangled_name != NULL)
1868 return storage.set_malloc_ptr (demangled_name);
1869 }
1870
1871 return name;
1872 }
1873
1874 /* See symtab.h. */
1875
1876 unsigned int
1877 search_name_hash (enum language language, const char *search_name)
1878 {
1879 return language_def (language)->la_search_name_hash (search_name);
1880 }
1881
1882 /* See symtab.h.
1883
1884 This function (or rather its subordinates) have a bunch of loops and
1885 it would seem to be attractive to put in some QUIT's (though I'm not really
1886 sure whether it can run long enough to be really important). But there
1887 are a few calls for which it would appear to be bad news to quit
1888 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1889 that there is C++ code below which can error(), but that probably
1890 doesn't affect these calls since they are looking for a known
1891 variable and thus can probably assume it will never hit the C++
1892 code). */
1893
1894 struct block_symbol
1895 lookup_symbol_in_language (const char *name, const struct block *block,
1896 const domain_enum domain, enum language lang,
1897 struct field_of_this_result *is_a_field_of_this)
1898 {
1899 demangle_result_storage storage;
1900 const char *modified_name = demangle_for_lookup (name, lang, storage);
1901
1902 return lookup_symbol_aux (modified_name,
1903 symbol_name_match_type::FULL,
1904 block, domain, lang,
1905 is_a_field_of_this);
1906 }
1907
1908 /* See symtab.h. */
1909
1910 struct block_symbol
1911 lookup_symbol (const char *name, const struct block *block,
1912 domain_enum domain,
1913 struct field_of_this_result *is_a_field_of_this)
1914 {
1915 return lookup_symbol_in_language (name, block, domain,
1916 current_language->la_language,
1917 is_a_field_of_this);
1918 }
1919
1920 /* See symtab.h. */
1921
1922 struct block_symbol
1923 lookup_symbol_search_name (const char *search_name, const struct block *block,
1924 domain_enum domain)
1925 {
1926 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1927 block, domain, language_asm, NULL);
1928 }
1929
1930 /* See symtab.h. */
1931
1932 struct block_symbol
1933 lookup_language_this (const struct language_defn *lang,
1934 const struct block *block)
1935 {
1936 if (lang->la_name_of_this == NULL || block == NULL)
1937 return {};
1938
1939 if (symbol_lookup_debug > 1)
1940 {
1941 struct objfile *objfile = lookup_objfile_from_block (block);
1942
1943 fprintf_unfiltered (gdb_stdlog,
1944 "lookup_language_this (%s, %s (objfile %s))",
1945 lang->la_name, host_address_to_string (block),
1946 objfile_debug_name (objfile));
1947 }
1948
1949 while (block)
1950 {
1951 struct symbol *sym;
1952
1953 sym = block_lookup_symbol (block, lang->la_name_of_this,
1954 symbol_name_match_type::SEARCH_NAME,
1955 VAR_DOMAIN);
1956 if (sym != NULL)
1957 {
1958 if (symbol_lookup_debug > 1)
1959 {
1960 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1961 sym->print_name (),
1962 host_address_to_string (sym),
1963 host_address_to_string (block));
1964 }
1965 return (struct block_symbol) {sym, block};
1966 }
1967 if (BLOCK_FUNCTION (block))
1968 break;
1969 block = BLOCK_SUPERBLOCK (block);
1970 }
1971
1972 if (symbol_lookup_debug > 1)
1973 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1974 return {};
1975 }
1976
1977 /* Given TYPE, a structure/union,
1978 return 1 if the component named NAME from the ultimate target
1979 structure/union is defined, otherwise, return 0. */
1980
1981 static int
1982 check_field (struct type *type, const char *name,
1983 struct field_of_this_result *is_a_field_of_this)
1984 {
1985 int i;
1986
1987 /* The type may be a stub. */
1988 type = check_typedef (type);
1989
1990 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1991 {
1992 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1993
1994 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1995 {
1996 is_a_field_of_this->type = type;
1997 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1998 return 1;
1999 }
2000 }
2001
2002 /* C++: If it was not found as a data field, then try to return it
2003 as a pointer to a method. */
2004
2005 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2006 {
2007 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2008 {
2009 is_a_field_of_this->type = type;
2010 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2011 return 1;
2012 }
2013 }
2014
2015 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2016 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2017 return 1;
2018
2019 return 0;
2020 }
2021
2022 /* Behave like lookup_symbol except that NAME is the natural name
2023 (e.g., demangled name) of the symbol that we're looking for. */
2024
2025 static struct block_symbol
2026 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2027 const struct block *block,
2028 const domain_enum domain, enum language language,
2029 struct field_of_this_result *is_a_field_of_this)
2030 {
2031 struct block_symbol result;
2032 const struct language_defn *langdef;
2033
2034 if (symbol_lookup_debug)
2035 {
2036 struct objfile *objfile = lookup_objfile_from_block (block);
2037
2038 fprintf_unfiltered (gdb_stdlog,
2039 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2040 name, host_address_to_string (block),
2041 objfile != NULL
2042 ? objfile_debug_name (objfile) : "NULL",
2043 domain_name (domain), language_str (language));
2044 }
2045
2046 /* Make sure we do something sensible with is_a_field_of_this, since
2047 the callers that set this parameter to some non-null value will
2048 certainly use it later. If we don't set it, the contents of
2049 is_a_field_of_this are undefined. */
2050 if (is_a_field_of_this != NULL)
2051 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2052
2053 /* Search specified block and its superiors. Don't search
2054 STATIC_BLOCK or GLOBAL_BLOCK. */
2055
2056 result = lookup_local_symbol (name, match_type, block, domain, language);
2057 if (result.symbol != NULL)
2058 {
2059 if (symbol_lookup_debug)
2060 {
2061 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2062 host_address_to_string (result.symbol));
2063 }
2064 return result;
2065 }
2066
2067 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2068 check to see if NAME is a field of `this'. */
2069
2070 langdef = language_def (language);
2071
2072 /* Don't do this check if we are searching for a struct. It will
2073 not be found by check_field, but will be found by other
2074 means. */
2075 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2076 {
2077 result = lookup_language_this (langdef, block);
2078
2079 if (result.symbol)
2080 {
2081 struct type *t = result.symbol->type;
2082
2083 /* I'm not really sure that type of this can ever
2084 be typedefed; just be safe. */
2085 t = check_typedef (t);
2086 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2087 t = TYPE_TARGET_TYPE (t);
2088
2089 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2090 && TYPE_CODE (t) != TYPE_CODE_UNION)
2091 error (_("Internal error: `%s' is not an aggregate"),
2092 langdef->la_name_of_this);
2093
2094 if (check_field (t, name, is_a_field_of_this))
2095 {
2096 if (symbol_lookup_debug)
2097 {
2098 fprintf_unfiltered (gdb_stdlog,
2099 "lookup_symbol_aux (...) = NULL\n");
2100 }
2101 return {};
2102 }
2103 }
2104 }
2105
2106 /* Now do whatever is appropriate for LANGUAGE to look
2107 up static and global variables. */
2108
2109 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2110 if (result.symbol != NULL)
2111 {
2112 if (symbol_lookup_debug)
2113 {
2114 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2115 host_address_to_string (result.symbol));
2116 }
2117 return result;
2118 }
2119
2120 /* Now search all static file-level symbols. Not strictly correct,
2121 but more useful than an error. */
2122
2123 result = lookup_static_symbol (name, domain);
2124 if (symbol_lookup_debug)
2125 {
2126 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2127 result.symbol != NULL
2128 ? host_address_to_string (result.symbol)
2129 : "NULL");
2130 }
2131 return result;
2132 }
2133
2134 /* Check to see if the symbol is defined in BLOCK or its superiors.
2135 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2136
2137 static struct block_symbol
2138 lookup_local_symbol (const char *name,
2139 symbol_name_match_type match_type,
2140 const struct block *block,
2141 const domain_enum domain,
2142 enum language language)
2143 {
2144 struct symbol *sym;
2145 const struct block *static_block = block_static_block (block);
2146 const char *scope = block_scope (block);
2147
2148 /* Check if either no block is specified or it's a global block. */
2149
2150 if (static_block == NULL)
2151 return {};
2152
2153 while (block != static_block)
2154 {
2155 sym = lookup_symbol_in_block (name, match_type, block, domain);
2156 if (sym != NULL)
2157 return (struct block_symbol) {sym, block};
2158
2159 if (language == language_cplus || language == language_fortran)
2160 {
2161 struct block_symbol blocksym
2162 = cp_lookup_symbol_imports_or_template (scope, name, block,
2163 domain);
2164
2165 if (blocksym.symbol != NULL)
2166 return blocksym;
2167 }
2168
2169 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2170 break;
2171 block = BLOCK_SUPERBLOCK (block);
2172 }
2173
2174 /* We've reached the end of the function without finding a result. */
2175
2176 return {};
2177 }
2178
2179 /* See symtab.h. */
2180
2181 struct objfile *
2182 lookup_objfile_from_block (const struct block *block)
2183 {
2184 if (block == NULL)
2185 return NULL;
2186
2187 block = block_global_block (block);
2188 /* Look through all blockvectors. */
2189 for (objfile *obj : current_program_space->objfiles ())
2190 {
2191 for (compunit_symtab *cust : obj->compunits ())
2192 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2193 GLOBAL_BLOCK))
2194 {
2195 if (obj->separate_debug_objfile_backlink)
2196 obj = obj->separate_debug_objfile_backlink;
2197
2198 return obj;
2199 }
2200 }
2201
2202 return NULL;
2203 }
2204
2205 /* See symtab.h. */
2206
2207 struct symbol *
2208 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2209 const struct block *block,
2210 const domain_enum domain)
2211 {
2212 struct symbol *sym;
2213
2214 if (symbol_lookup_debug > 1)
2215 {
2216 struct objfile *objfile = lookup_objfile_from_block (block);
2217
2218 fprintf_unfiltered (gdb_stdlog,
2219 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2220 name, host_address_to_string (block),
2221 objfile_debug_name (objfile),
2222 domain_name (domain));
2223 }
2224
2225 sym = block_lookup_symbol (block, name, match_type, domain);
2226 if (sym)
2227 {
2228 if (symbol_lookup_debug > 1)
2229 {
2230 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2231 host_address_to_string (sym));
2232 }
2233 return fixup_symbol_section (sym, NULL);
2234 }
2235
2236 if (symbol_lookup_debug > 1)
2237 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2238 return NULL;
2239 }
2240
2241 /* See symtab.h. */
2242
2243 struct block_symbol
2244 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2245 enum block_enum block_index,
2246 const char *name,
2247 const domain_enum domain)
2248 {
2249 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2250
2251 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2252 {
2253 struct block_symbol result
2254 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2255
2256 if (result.symbol != nullptr)
2257 return result;
2258 }
2259
2260 return {};
2261 }
2262
2263 /* Check to see if the symbol is defined in one of the OBJFILE's
2264 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2265 depending on whether or not we want to search global symbols or
2266 static symbols. */
2267
2268 static struct block_symbol
2269 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2270 enum block_enum block_index, const char *name,
2271 const domain_enum domain)
2272 {
2273 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2274
2275 if (symbol_lookup_debug > 1)
2276 {
2277 fprintf_unfiltered (gdb_stdlog,
2278 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2279 objfile_debug_name (objfile),
2280 block_index == GLOBAL_BLOCK
2281 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2282 name, domain_name (domain));
2283 }
2284
2285 struct block_symbol other;
2286 other.symbol = NULL;
2287 for (compunit_symtab *cust : objfile->compunits ())
2288 {
2289 const struct blockvector *bv;
2290 const struct block *block;
2291 struct block_symbol result;
2292
2293 bv = COMPUNIT_BLOCKVECTOR (cust);
2294 block = BLOCKVECTOR_BLOCK (bv, block_index);
2295 result.symbol = block_lookup_symbol_primary (block, name, domain);
2296 result.block = block;
2297 if (result.symbol == NULL)
2298 continue;
2299 if (best_symbol (result.symbol, domain))
2300 {
2301 other = result;
2302 break;
2303 }
2304 if (symbol_matches_domain (result.symbol->language (),
2305 SYMBOL_DOMAIN (result.symbol), domain))
2306 {
2307 struct symbol *better
2308 = better_symbol (other.symbol, result.symbol, domain);
2309 if (better != other.symbol)
2310 {
2311 other.symbol = better;
2312 other.block = block;
2313 }
2314 }
2315 }
2316
2317 if (other.symbol != NULL)
2318 {
2319 if (symbol_lookup_debug > 1)
2320 {
2321 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2322 host_address_to_string (other.symbol),
2323 host_address_to_string (other.block));
2324 }
2325 other.symbol = fixup_symbol_section (other.symbol, objfile);
2326 return other;
2327 }
2328
2329 if (symbol_lookup_debug > 1)
2330 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2331 return {};
2332 }
2333
2334 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2335 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2336 and all associated separate debug objfiles.
2337
2338 Normally we only look in OBJFILE, and not any separate debug objfiles
2339 because the outer loop will cause them to be searched too. This case is
2340 different. Here we're called from search_symbols where it will only
2341 call us for the objfile that contains a matching minsym. */
2342
2343 static struct block_symbol
2344 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2345 const char *linkage_name,
2346 domain_enum domain)
2347 {
2348 enum language lang = current_language->la_language;
2349 struct objfile *main_objfile;
2350
2351 demangle_result_storage storage;
2352 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2353
2354 if (objfile->separate_debug_objfile_backlink)
2355 main_objfile = objfile->separate_debug_objfile_backlink;
2356 else
2357 main_objfile = objfile;
2358
2359 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2360 {
2361 struct block_symbol result;
2362
2363 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2364 modified_name, domain);
2365 if (result.symbol == NULL)
2366 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2367 modified_name, domain);
2368 if (result.symbol != NULL)
2369 return result;
2370 }
2371
2372 return {};
2373 }
2374
2375 /* A helper function that throws an exception when a symbol was found
2376 in a psymtab but not in a symtab. */
2377
2378 static void ATTRIBUTE_NORETURN
2379 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2380 struct compunit_symtab *cust)
2381 {
2382 error (_("\
2383 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2384 %s may be an inlined function, or may be a template function\n \
2385 (if a template, try specifying an instantiation: %s<type>)."),
2386 block_index == GLOBAL_BLOCK ? "global" : "static",
2387 name,
2388 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2389 name, name);
2390 }
2391
2392 /* A helper function for various lookup routines that interfaces with
2393 the "quick" symbol table functions. */
2394
2395 static struct block_symbol
2396 lookup_symbol_via_quick_fns (struct objfile *objfile,
2397 enum block_enum block_index, const char *name,
2398 const domain_enum domain)
2399 {
2400 struct compunit_symtab *cust;
2401 const struct blockvector *bv;
2402 const struct block *block;
2403 struct block_symbol result;
2404
2405 if (!objfile->sf)
2406 return {};
2407
2408 if (symbol_lookup_debug > 1)
2409 {
2410 fprintf_unfiltered (gdb_stdlog,
2411 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2412 objfile_debug_name (objfile),
2413 block_index == GLOBAL_BLOCK
2414 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2415 name, domain_name (domain));
2416 }
2417
2418 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2419 if (cust == NULL)
2420 {
2421 if (symbol_lookup_debug > 1)
2422 {
2423 fprintf_unfiltered (gdb_stdlog,
2424 "lookup_symbol_via_quick_fns (...) = NULL\n");
2425 }
2426 return {};
2427 }
2428
2429 bv = COMPUNIT_BLOCKVECTOR (cust);
2430 block = BLOCKVECTOR_BLOCK (bv, block_index);
2431 result.symbol = block_lookup_symbol (block, name,
2432 symbol_name_match_type::FULL, domain);
2433 if (result.symbol == NULL)
2434 error_in_psymtab_expansion (block_index, name, cust);
2435
2436 if (symbol_lookup_debug > 1)
2437 {
2438 fprintf_unfiltered (gdb_stdlog,
2439 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2440 host_address_to_string (result.symbol),
2441 host_address_to_string (block));
2442 }
2443
2444 result.symbol = fixup_symbol_section (result.symbol, objfile);
2445 result.block = block;
2446 return result;
2447 }
2448
2449 /* See symtab.h. */
2450
2451 struct block_symbol
2452 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2453 const char *name,
2454 const struct block *block,
2455 const domain_enum domain)
2456 {
2457 struct block_symbol result;
2458
2459 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2460 the current objfile. Searching the current objfile first is useful
2461 for both matching user expectations as well as performance. */
2462
2463 result = lookup_symbol_in_static_block (name, block, domain);
2464 if (result.symbol != NULL)
2465 return result;
2466
2467 /* If we didn't find a definition for a builtin type in the static block,
2468 search for it now. This is actually the right thing to do and can be
2469 a massive performance win. E.g., when debugging a program with lots of
2470 shared libraries we could search all of them only to find out the
2471 builtin type isn't defined in any of them. This is common for types
2472 like "void". */
2473 if (domain == VAR_DOMAIN)
2474 {
2475 struct gdbarch *gdbarch;
2476
2477 if (block == NULL)
2478 gdbarch = target_gdbarch ();
2479 else
2480 gdbarch = block_gdbarch (block);
2481 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2482 gdbarch, name);
2483 result.block = NULL;
2484 if (result.symbol != NULL)
2485 return result;
2486 }
2487
2488 return lookup_global_symbol (name, block, domain);
2489 }
2490
2491 /* See symtab.h. */
2492
2493 struct block_symbol
2494 lookup_symbol_in_static_block (const char *name,
2495 const struct block *block,
2496 const domain_enum domain)
2497 {
2498 const struct block *static_block = block_static_block (block);
2499 struct symbol *sym;
2500
2501 if (static_block == NULL)
2502 return {};
2503
2504 if (symbol_lookup_debug)
2505 {
2506 struct objfile *objfile = lookup_objfile_from_block (static_block);
2507
2508 fprintf_unfiltered (gdb_stdlog,
2509 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2510 " %s)\n",
2511 name,
2512 host_address_to_string (block),
2513 objfile_debug_name (objfile),
2514 domain_name (domain));
2515 }
2516
2517 sym = lookup_symbol_in_block (name,
2518 symbol_name_match_type::FULL,
2519 static_block, domain);
2520 if (symbol_lookup_debug)
2521 {
2522 fprintf_unfiltered (gdb_stdlog,
2523 "lookup_symbol_in_static_block (...) = %s\n",
2524 sym != NULL ? host_address_to_string (sym) : "NULL");
2525 }
2526 return (struct block_symbol) {sym, static_block};
2527 }
2528
2529 /* Perform the standard symbol lookup of NAME in OBJFILE:
2530 1) First search expanded symtabs, and if not found
2531 2) Search the "quick" symtabs (partial or .gdb_index).
2532 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2533
2534 static struct block_symbol
2535 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2536 const char *name, const domain_enum domain)
2537 {
2538 struct block_symbol result;
2539
2540 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2541
2542 if (symbol_lookup_debug)
2543 {
2544 fprintf_unfiltered (gdb_stdlog,
2545 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2546 objfile_debug_name (objfile),
2547 block_index == GLOBAL_BLOCK
2548 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2549 name, domain_name (domain));
2550 }
2551
2552 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2553 name, domain);
2554 if (result.symbol != NULL)
2555 {
2556 if (symbol_lookup_debug)
2557 {
2558 fprintf_unfiltered (gdb_stdlog,
2559 "lookup_symbol_in_objfile (...) = %s"
2560 " (in symtabs)\n",
2561 host_address_to_string (result.symbol));
2562 }
2563 return result;
2564 }
2565
2566 result = lookup_symbol_via_quick_fns (objfile, block_index,
2567 name, domain);
2568 if (symbol_lookup_debug)
2569 {
2570 fprintf_unfiltered (gdb_stdlog,
2571 "lookup_symbol_in_objfile (...) = %s%s\n",
2572 result.symbol != NULL
2573 ? host_address_to_string (result.symbol)
2574 : "NULL",
2575 result.symbol != NULL ? " (via quick fns)" : "");
2576 }
2577 return result;
2578 }
2579
2580 /* Find the language for partial symbol with NAME. */
2581
2582 static enum language
2583 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2584 {
2585 for (objfile *objfile : current_program_space->objfiles ())
2586 {
2587 if (objfile->sf && objfile->sf->qf
2588 && objfile->sf->qf->lookup_global_symbol_language)
2589 continue;
2590 return language_unknown;
2591 }
2592
2593 for (objfile *objfile : current_program_space->objfiles ())
2594 {
2595 bool symbol_found_p;
2596 enum language lang
2597 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2598 &symbol_found_p);
2599 if (!symbol_found_p)
2600 continue;
2601 return lang;
2602 }
2603
2604 return language_unknown;
2605 }
2606
2607 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2608
2609 struct global_or_static_sym_lookup_data
2610 {
2611 /* The name of the symbol we are searching for. */
2612 const char *name;
2613
2614 /* The domain to use for our search. */
2615 domain_enum domain;
2616
2617 /* The block index in which to search. */
2618 enum block_enum block_index;
2619
2620 /* The field where the callback should store the symbol if found.
2621 It should be initialized to {NULL, NULL} before the search is started. */
2622 struct block_symbol result;
2623 };
2624
2625 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2626 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2627 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2628 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2629
2630 static int
2631 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2632 void *cb_data)
2633 {
2634 struct global_or_static_sym_lookup_data *data =
2635 (struct global_or_static_sym_lookup_data *) cb_data;
2636
2637 gdb_assert (data->result.symbol == NULL
2638 && data->result.block == NULL);
2639
2640 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2641 data->name, data->domain);
2642
2643 /* If we found a match, tell the iterator to stop. Otherwise,
2644 keep going. */
2645 return (data->result.symbol != NULL);
2646 }
2647
2648 /* This function contains the common code of lookup_{global,static}_symbol.
2649 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2650 the objfile to start the lookup in. */
2651
2652 static struct block_symbol
2653 lookup_global_or_static_symbol (const char *name,
2654 enum block_enum block_index,
2655 struct objfile *objfile,
2656 const domain_enum domain)
2657 {
2658 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2659 struct block_symbol result;
2660 struct global_or_static_sym_lookup_data lookup_data;
2661 struct block_symbol_cache *bsc;
2662 struct symbol_cache_slot *slot;
2663
2664 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2665 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2666
2667 /* First see if we can find the symbol in the cache.
2668 This works because we use the current objfile to qualify the lookup. */
2669 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2670 &bsc, &slot);
2671 if (result.symbol != NULL)
2672 {
2673 if (SYMBOL_LOOKUP_FAILED_P (result))
2674 return {};
2675 return result;
2676 }
2677
2678 /* Do a global search (of global blocks, heh). */
2679 if (result.symbol == NULL)
2680 {
2681 memset (&lookup_data, 0, sizeof (lookup_data));
2682 lookup_data.name = name;
2683 lookup_data.block_index = block_index;
2684 lookup_data.domain = domain;
2685 gdbarch_iterate_over_objfiles_in_search_order
2686 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2687 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2688 result = lookup_data.result;
2689 }
2690
2691 if (result.symbol != NULL)
2692 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2693 else
2694 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2695
2696 return result;
2697 }
2698
2699 /* See symtab.h. */
2700
2701 struct block_symbol
2702 lookup_static_symbol (const char *name, const domain_enum domain)
2703 {
2704 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2705 }
2706
2707 /* See symtab.h. */
2708
2709 struct block_symbol
2710 lookup_global_symbol (const char *name,
2711 const struct block *block,
2712 const domain_enum domain)
2713 {
2714 /* If a block was passed in, we want to search the corresponding
2715 global block first. This yields "more expected" behavior, and is
2716 needed to support 'FILENAME'::VARIABLE lookups. */
2717 const struct block *global_block = block_global_block (block);
2718 symbol *sym = NULL;
2719 if (global_block != nullptr)
2720 {
2721 sym = lookup_symbol_in_block (name,
2722 symbol_name_match_type::FULL,
2723 global_block, domain);
2724 if (sym != NULL && best_symbol (sym, domain))
2725 return { sym, global_block };
2726 }
2727
2728 struct objfile *objfile = lookup_objfile_from_block (block);
2729 block_symbol bs
2730 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2731 if (better_symbol (sym, bs.symbol, domain) == sym)
2732 return { sym, global_block };
2733 else
2734 return bs;
2735 }
2736
2737 bool
2738 symbol_matches_domain (enum language symbol_language,
2739 domain_enum symbol_domain,
2740 domain_enum domain)
2741 {
2742 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2743 Similarly, any Ada type declaration implicitly defines a typedef. */
2744 if (symbol_language == language_cplus
2745 || symbol_language == language_d
2746 || symbol_language == language_ada
2747 || symbol_language == language_rust)
2748 {
2749 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2750 && symbol_domain == STRUCT_DOMAIN)
2751 return true;
2752 }
2753 /* For all other languages, strict match is required. */
2754 return (symbol_domain == domain);
2755 }
2756
2757 /* See symtab.h. */
2758
2759 struct type *
2760 lookup_transparent_type (const char *name)
2761 {
2762 return current_language->la_lookup_transparent_type (name);
2763 }
2764
2765 /* A helper for basic_lookup_transparent_type that interfaces with the
2766 "quick" symbol table functions. */
2767
2768 static struct type *
2769 basic_lookup_transparent_type_quick (struct objfile *objfile,
2770 enum block_enum block_index,
2771 const char *name)
2772 {
2773 struct compunit_symtab *cust;
2774 const struct blockvector *bv;
2775 const struct block *block;
2776 struct symbol *sym;
2777
2778 if (!objfile->sf)
2779 return NULL;
2780 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2781 STRUCT_DOMAIN);
2782 if (cust == NULL)
2783 return NULL;
2784
2785 bv = COMPUNIT_BLOCKVECTOR (cust);
2786 block = BLOCKVECTOR_BLOCK (bv, block_index);
2787 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2788 block_find_non_opaque_type, NULL);
2789 if (sym == NULL)
2790 error_in_psymtab_expansion (block_index, name, cust);
2791 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2792 return SYMBOL_TYPE (sym);
2793 }
2794
2795 /* Subroutine of basic_lookup_transparent_type to simplify it.
2796 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2797 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2798
2799 static struct type *
2800 basic_lookup_transparent_type_1 (struct objfile *objfile,
2801 enum block_enum block_index,
2802 const char *name)
2803 {
2804 const struct blockvector *bv;
2805 const struct block *block;
2806 const struct symbol *sym;
2807
2808 for (compunit_symtab *cust : objfile->compunits ())
2809 {
2810 bv = COMPUNIT_BLOCKVECTOR (cust);
2811 block = BLOCKVECTOR_BLOCK (bv, block_index);
2812 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2813 block_find_non_opaque_type, NULL);
2814 if (sym != NULL)
2815 {
2816 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2817 return SYMBOL_TYPE (sym);
2818 }
2819 }
2820
2821 return NULL;
2822 }
2823
2824 /* The standard implementation of lookup_transparent_type. This code
2825 was modeled on lookup_symbol -- the parts not relevant to looking
2826 up types were just left out. In particular it's assumed here that
2827 types are available in STRUCT_DOMAIN and only in file-static or
2828 global blocks. */
2829
2830 struct type *
2831 basic_lookup_transparent_type (const char *name)
2832 {
2833 struct type *t;
2834
2835 /* Now search all the global symbols. Do the symtab's first, then
2836 check the psymtab's. If a psymtab indicates the existence
2837 of the desired name as a global, then do psymtab-to-symtab
2838 conversion on the fly and return the found symbol. */
2839
2840 for (objfile *objfile : current_program_space->objfiles ())
2841 {
2842 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2843 if (t)
2844 return t;
2845 }
2846
2847 for (objfile *objfile : current_program_space->objfiles ())
2848 {
2849 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2850 if (t)
2851 return t;
2852 }
2853
2854 /* Now search the static file-level symbols.
2855 Not strictly correct, but more useful than an error.
2856 Do the symtab's first, then
2857 check the psymtab's. If a psymtab indicates the existence
2858 of the desired name as a file-level static, then do psymtab-to-symtab
2859 conversion on the fly and return the found symbol. */
2860
2861 for (objfile *objfile : current_program_space->objfiles ())
2862 {
2863 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2864 if (t)
2865 return t;
2866 }
2867
2868 for (objfile *objfile : current_program_space->objfiles ())
2869 {
2870 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2871 if (t)
2872 return t;
2873 }
2874
2875 return (struct type *) 0;
2876 }
2877
2878 /* See symtab.h. */
2879
2880 bool
2881 iterate_over_symbols (const struct block *block,
2882 const lookup_name_info &name,
2883 const domain_enum domain,
2884 gdb::function_view<symbol_found_callback_ftype> callback)
2885 {
2886 struct block_iterator iter;
2887 struct symbol *sym;
2888
2889 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2890 {
2891 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2892 {
2893 struct block_symbol block_sym = {sym, block};
2894
2895 if (!callback (&block_sym))
2896 return false;
2897 }
2898 }
2899 return true;
2900 }
2901
2902 /* See symtab.h. */
2903
2904 bool
2905 iterate_over_symbols_terminated
2906 (const struct block *block,
2907 const lookup_name_info &name,
2908 const domain_enum domain,
2909 gdb::function_view<symbol_found_callback_ftype> callback)
2910 {
2911 if (!iterate_over_symbols (block, name, domain, callback))
2912 return false;
2913 struct block_symbol block_sym = {nullptr, block};
2914 return callback (&block_sym);
2915 }
2916
2917 /* Find the compunit symtab associated with PC and SECTION.
2918 This will read in debug info as necessary. */
2919
2920 struct compunit_symtab *
2921 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2922 {
2923 struct compunit_symtab *best_cust = NULL;
2924 CORE_ADDR distance = 0;
2925 struct bound_minimal_symbol msymbol;
2926
2927 /* If we know that this is not a text address, return failure. This is
2928 necessary because we loop based on the block's high and low code
2929 addresses, which do not include the data ranges, and because
2930 we call find_pc_sect_psymtab which has a similar restriction based
2931 on the partial_symtab's texthigh and textlow. */
2932 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2933 if (msymbol.minsym && msymbol.minsym->data_p ())
2934 return NULL;
2935
2936 /* Search all symtabs for the one whose file contains our address, and which
2937 is the smallest of all the ones containing the address. This is designed
2938 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2939 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2940 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2941
2942 This happens for native ecoff format, where code from included files
2943 gets its own symtab. The symtab for the included file should have
2944 been read in already via the dependency mechanism.
2945 It might be swifter to create several symtabs with the same name
2946 like xcoff does (I'm not sure).
2947
2948 It also happens for objfiles that have their functions reordered.
2949 For these, the symtab we are looking for is not necessarily read in. */
2950
2951 for (objfile *obj_file : current_program_space->objfiles ())
2952 {
2953 for (compunit_symtab *cust : obj_file->compunits ())
2954 {
2955 const struct block *b;
2956 const struct blockvector *bv;
2957
2958 bv = COMPUNIT_BLOCKVECTOR (cust);
2959 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2960
2961 if (BLOCK_START (b) <= pc
2962 && BLOCK_END (b) > pc
2963 && (distance == 0
2964 || BLOCK_END (b) - BLOCK_START (b) < distance))
2965 {
2966 /* For an objfile that has its functions reordered,
2967 find_pc_psymtab will find the proper partial symbol table
2968 and we simply return its corresponding symtab. */
2969 /* In order to better support objfiles that contain both
2970 stabs and coff debugging info, we continue on if a psymtab
2971 can't be found. */
2972 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2973 {
2974 struct compunit_symtab *result;
2975
2976 result
2977 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2978 msymbol,
2979 pc,
2980 section,
2981 0);
2982 if (result != NULL)
2983 return result;
2984 }
2985 if (section != 0)
2986 {
2987 struct block_iterator iter;
2988 struct symbol *sym = NULL;
2989
2990 ALL_BLOCK_SYMBOLS (b, iter, sym)
2991 {
2992 fixup_symbol_section (sym, obj_file);
2993 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2994 sym),
2995 section))
2996 break;
2997 }
2998 if (sym == NULL)
2999 continue; /* No symbol in this symtab matches
3000 section. */
3001 }
3002 distance = BLOCK_END (b) - BLOCK_START (b);
3003 best_cust = cust;
3004 }
3005 }
3006 }
3007
3008 if (best_cust != NULL)
3009 return best_cust;
3010
3011 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3012
3013 for (objfile *objf : current_program_space->objfiles ())
3014 {
3015 struct compunit_symtab *result;
3016
3017 if (!objf->sf)
3018 continue;
3019 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
3020 msymbol,
3021 pc, section,
3022 1);
3023 if (result != NULL)
3024 return result;
3025 }
3026
3027 return NULL;
3028 }
3029
3030 /* Find the compunit symtab associated with PC.
3031 This will read in debug info as necessary.
3032 Backward compatibility, no section. */
3033
3034 struct compunit_symtab *
3035 find_pc_compunit_symtab (CORE_ADDR pc)
3036 {
3037 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3038 }
3039
3040 /* See symtab.h. */
3041
3042 struct symbol *
3043 find_symbol_at_address (CORE_ADDR address)
3044 {
3045 for (objfile *objfile : current_program_space->objfiles ())
3046 {
3047 if (objfile->sf == NULL
3048 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3049 continue;
3050
3051 struct compunit_symtab *symtab
3052 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3053 if (symtab != NULL)
3054 {
3055 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3056
3057 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3058 {
3059 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3060 struct block_iterator iter;
3061 struct symbol *sym;
3062
3063 ALL_BLOCK_SYMBOLS (b, iter, sym)
3064 {
3065 if (SYMBOL_CLASS (sym) == LOC_STATIC
3066 && SYMBOL_VALUE_ADDRESS (sym) == address)
3067 return sym;
3068 }
3069 }
3070 }
3071 }
3072
3073 return NULL;
3074 }
3075
3076 \f
3077
3078 /* Find the source file and line number for a given PC value and SECTION.
3079 Return a structure containing a symtab pointer, a line number,
3080 and a pc range for the entire source line.
3081 The value's .pc field is NOT the specified pc.
3082 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3083 use the line that ends there. Otherwise, in that case, the line
3084 that begins there is used. */
3085
3086 /* The big complication here is that a line may start in one file, and end just
3087 before the start of another file. This usually occurs when you #include
3088 code in the middle of a subroutine. To properly find the end of a line's PC
3089 range, we must search all symtabs associated with this compilation unit, and
3090 find the one whose first PC is closer than that of the next line in this
3091 symtab. */
3092
3093 struct symtab_and_line
3094 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3095 {
3096 struct compunit_symtab *cust;
3097 struct linetable *l;
3098 int len;
3099 struct linetable_entry *item;
3100 const struct blockvector *bv;
3101 struct bound_minimal_symbol msymbol;
3102
3103 /* Info on best line seen so far, and where it starts, and its file. */
3104
3105 struct linetable_entry *best = NULL;
3106 CORE_ADDR best_end = 0;
3107 struct symtab *best_symtab = 0;
3108
3109 /* Store here the first line number
3110 of a file which contains the line at the smallest pc after PC.
3111 If we don't find a line whose range contains PC,
3112 we will use a line one less than this,
3113 with a range from the start of that file to the first line's pc. */
3114 struct linetable_entry *alt = NULL;
3115
3116 /* Info on best line seen in this file. */
3117
3118 struct linetable_entry *prev;
3119
3120 /* If this pc is not from the current frame,
3121 it is the address of the end of a call instruction.
3122 Quite likely that is the start of the following statement.
3123 But what we want is the statement containing the instruction.
3124 Fudge the pc to make sure we get that. */
3125
3126 /* It's tempting to assume that, if we can't find debugging info for
3127 any function enclosing PC, that we shouldn't search for line
3128 number info, either. However, GAS can emit line number info for
3129 assembly files --- very helpful when debugging hand-written
3130 assembly code. In such a case, we'd have no debug info for the
3131 function, but we would have line info. */
3132
3133 if (notcurrent)
3134 pc -= 1;
3135
3136 /* elz: added this because this function returned the wrong
3137 information if the pc belongs to a stub (import/export)
3138 to call a shlib function. This stub would be anywhere between
3139 two functions in the target, and the line info was erroneously
3140 taken to be the one of the line before the pc. */
3141
3142 /* RT: Further explanation:
3143
3144 * We have stubs (trampolines) inserted between procedures.
3145 *
3146 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3147 * exists in the main image.
3148 *
3149 * In the minimal symbol table, we have a bunch of symbols
3150 * sorted by start address. The stubs are marked as "trampoline",
3151 * the others appear as text. E.g.:
3152 *
3153 * Minimal symbol table for main image
3154 * main: code for main (text symbol)
3155 * shr1: stub (trampoline symbol)
3156 * foo: code for foo (text symbol)
3157 * ...
3158 * Minimal symbol table for "shr1" image:
3159 * ...
3160 * shr1: code for shr1 (text symbol)
3161 * ...
3162 *
3163 * So the code below is trying to detect if we are in the stub
3164 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3165 * and if found, do the symbolization from the real-code address
3166 * rather than the stub address.
3167 *
3168 * Assumptions being made about the minimal symbol table:
3169 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3170 * if we're really in the trampoline.s If we're beyond it (say
3171 * we're in "foo" in the above example), it'll have a closer
3172 * symbol (the "foo" text symbol for example) and will not
3173 * return the trampoline.
3174 * 2. lookup_minimal_symbol_text() will find a real text symbol
3175 * corresponding to the trampoline, and whose address will
3176 * be different than the trampoline address. I put in a sanity
3177 * check for the address being the same, to avoid an
3178 * infinite recursion.
3179 */
3180 msymbol = lookup_minimal_symbol_by_pc (pc);
3181 if (msymbol.minsym != NULL)
3182 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3183 {
3184 struct bound_minimal_symbol mfunsym
3185 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3186 NULL);
3187
3188 if (mfunsym.minsym == NULL)
3189 /* I eliminated this warning since it is coming out
3190 * in the following situation:
3191 * gdb shmain // test program with shared libraries
3192 * (gdb) break shr1 // function in shared lib
3193 * Warning: In stub for ...
3194 * In the above situation, the shared lib is not loaded yet,
3195 * so of course we can't find the real func/line info,
3196 * but the "break" still works, and the warning is annoying.
3197 * So I commented out the warning. RT */
3198 /* warning ("In stub for %s; unable to find real function/line info",
3199 msymbol->linkage_name ()); */
3200 ;
3201 /* fall through */
3202 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3203 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3204 /* Avoid infinite recursion */
3205 /* See above comment about why warning is commented out. */
3206 /* warning ("In stub for %s; unable to find real function/line info",
3207 msymbol->linkage_name ()); */
3208 ;
3209 /* fall through */
3210 else
3211 {
3212 /* Detect an obvious case of infinite recursion. If this
3213 should occur, we'd like to know about it, so error out,
3214 fatally. */
3215 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3216 internal_error (__FILE__, __LINE__,
3217 _("Infinite recursion detected in find_pc_sect_line;"
3218 "please file a bug report"));
3219
3220 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3221 }
3222 }
3223
3224 symtab_and_line val;
3225 val.pspace = current_program_space;
3226
3227 cust = find_pc_sect_compunit_symtab (pc, section);
3228 if (cust == NULL)
3229 {
3230 /* If no symbol information, return previous pc. */
3231 if (notcurrent)
3232 pc++;
3233 val.pc = pc;
3234 return val;
3235 }
3236
3237 bv = COMPUNIT_BLOCKVECTOR (cust);
3238
3239 /* Look at all the symtabs that share this blockvector.
3240 They all have the same apriori range, that we found was right;
3241 but they have different line tables. */
3242
3243 for (symtab *iter_s : compunit_filetabs (cust))
3244 {
3245 /* Find the best line in this symtab. */
3246 l = SYMTAB_LINETABLE (iter_s);
3247 if (!l)
3248 continue;
3249 len = l->nitems;
3250 if (len <= 0)
3251 {
3252 /* I think len can be zero if the symtab lacks line numbers
3253 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3254 I'm not sure which, and maybe it depends on the symbol
3255 reader). */
3256 continue;
3257 }
3258
3259 prev = NULL;
3260 item = l->item; /* Get first line info. */
3261
3262 /* Is this file's first line closer than the first lines of other files?
3263 If so, record this file, and its first line, as best alternate. */
3264 if (item->pc > pc && (!alt || item->pc < alt->pc))
3265 alt = item;
3266
3267 auto pc_compare = [](const CORE_ADDR & comp_pc,
3268 const struct linetable_entry & lhs)->bool
3269 {
3270 return comp_pc < lhs.pc;
3271 };
3272
3273 struct linetable_entry *first = item;
3274 struct linetable_entry *last = item + len;
3275 item = std::upper_bound (first, last, pc, pc_compare);
3276 if (item != first)
3277 {
3278 /* Found a matching item. Skip backwards over any end of
3279 sequence markers. */
3280 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3281 /* Nothing. */;
3282 }
3283
3284 /* At this point, prev points at the line whose start addr is <= pc, and
3285 item points at the next line. If we ran off the end of the linetable
3286 (pc >= start of the last line), then prev == item. If pc < start of
3287 the first line, prev will not be set. */
3288
3289 /* Is this file's best line closer than the best in the other files?
3290 If so, record this file, and its best line, as best so far. Don't
3291 save prev if it represents the end of a function (i.e. line number
3292 0) instead of a real line. */
3293
3294 if (prev && prev->line && (!best || prev->pc > best->pc))
3295 {
3296 best = prev;
3297 best_symtab = iter_s;
3298
3299 /* If during the binary search we land on a non-statement entry,
3300 scan backward through entries at the same address to see if
3301 there is an entry marked as is-statement. In theory this
3302 duplication should have been removed from the line table
3303 during construction, this is just a double check. If the line
3304 table has had the duplication removed then this should be
3305 pretty cheap. */
3306 if (!best->is_stmt)
3307 {
3308 struct linetable_entry *tmp = best;
3309 while (tmp > first && (tmp - 1)->pc == tmp->pc
3310 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3311 --tmp;
3312 if (tmp->is_stmt)
3313 best = tmp;
3314 }
3315
3316 /* Discard BEST_END if it's before the PC of the current BEST. */
3317 if (best_end <= best->pc)
3318 best_end = 0;
3319 }
3320
3321 /* If another line (denoted by ITEM) is in the linetable and its
3322 PC is after BEST's PC, but before the current BEST_END, then
3323 use ITEM's PC as the new best_end. */
3324 if (best && item < last && item->pc > best->pc
3325 && (best_end == 0 || best_end > item->pc))
3326 best_end = item->pc;
3327 }
3328
3329 if (!best_symtab)
3330 {
3331 /* If we didn't find any line number info, just return zeros.
3332 We used to return alt->line - 1 here, but that could be
3333 anywhere; if we don't have line number info for this PC,
3334 don't make some up. */
3335 val.pc = pc;
3336 }
3337 else if (best->line == 0)
3338 {
3339 /* If our best fit is in a range of PC's for which no line
3340 number info is available (line number is zero) then we didn't
3341 find any valid line information. */
3342 val.pc = pc;
3343 }
3344 else
3345 {
3346 val.is_stmt = best->is_stmt;
3347 val.symtab = best_symtab;
3348 val.line = best->line;
3349 val.pc = best->pc;
3350 if (best_end && (!alt || best_end < alt->pc))
3351 val.end = best_end;
3352 else if (alt)
3353 val.end = alt->pc;
3354 else
3355 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3356 }
3357 val.section = section;
3358 return val;
3359 }
3360
3361 /* Backward compatibility (no section). */
3362
3363 struct symtab_and_line
3364 find_pc_line (CORE_ADDR pc, int notcurrent)
3365 {
3366 struct obj_section *section;
3367
3368 section = find_pc_overlay (pc);
3369 if (pc_in_unmapped_range (pc, section))
3370 pc = overlay_mapped_address (pc, section);
3371 return find_pc_sect_line (pc, section, notcurrent);
3372 }
3373
3374 /* See symtab.h. */
3375
3376 struct symtab *
3377 find_pc_line_symtab (CORE_ADDR pc)
3378 {
3379 struct symtab_and_line sal;
3380
3381 /* This always passes zero for NOTCURRENT to find_pc_line.
3382 There are currently no callers that ever pass non-zero. */
3383 sal = find_pc_line (pc, 0);
3384 return sal.symtab;
3385 }
3386 \f
3387 /* Find line number LINE in any symtab whose name is the same as
3388 SYMTAB.
3389
3390 If found, return the symtab that contains the linetable in which it was
3391 found, set *INDEX to the index in the linetable of the best entry
3392 found, and set *EXACT_MATCH to true if the value returned is an
3393 exact match.
3394
3395 If not found, return NULL. */
3396
3397 struct symtab *
3398 find_line_symtab (struct symtab *sym_tab, int line,
3399 int *index, bool *exact_match)
3400 {
3401 int exact = 0; /* Initialized here to avoid a compiler warning. */
3402
3403 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3404 so far seen. */
3405
3406 int best_index;
3407 struct linetable *best_linetable;
3408 struct symtab *best_symtab;
3409
3410 /* First try looking it up in the given symtab. */
3411 best_linetable = SYMTAB_LINETABLE (sym_tab);
3412 best_symtab = sym_tab;
3413 best_index = find_line_common (best_linetable, line, &exact, 0);
3414 if (best_index < 0 || !exact)
3415 {
3416 /* Didn't find an exact match. So we better keep looking for
3417 another symtab with the same name. In the case of xcoff,
3418 multiple csects for one source file (produced by IBM's FORTRAN
3419 compiler) produce multiple symtabs (this is unavoidable
3420 assuming csects can be at arbitrary places in memory and that
3421 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3422
3423 /* BEST is the smallest linenumber > LINE so far seen,
3424 or 0 if none has been seen so far.
3425 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3426 int best;
3427
3428 if (best_index >= 0)
3429 best = best_linetable->item[best_index].line;
3430 else
3431 best = 0;
3432
3433 for (objfile *objfile : current_program_space->objfiles ())
3434 {
3435 if (objfile->sf)
3436 objfile->sf->qf->expand_symtabs_with_fullname
3437 (objfile, symtab_to_fullname (sym_tab));
3438 }
3439
3440 for (objfile *objfile : current_program_space->objfiles ())
3441 {
3442 for (compunit_symtab *cu : objfile->compunits ())
3443 {
3444 for (symtab *s : compunit_filetabs (cu))
3445 {
3446 struct linetable *l;
3447 int ind;
3448
3449 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3450 continue;
3451 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3452 symtab_to_fullname (s)) != 0)
3453 continue;
3454 l = SYMTAB_LINETABLE (s);
3455 ind = find_line_common (l, line, &exact, 0);
3456 if (ind >= 0)
3457 {
3458 if (exact)
3459 {
3460 best_index = ind;
3461 best_linetable = l;
3462 best_symtab = s;
3463 goto done;
3464 }
3465 if (best == 0 || l->item[ind].line < best)
3466 {
3467 best = l->item[ind].line;
3468 best_index = ind;
3469 best_linetable = l;
3470 best_symtab = s;
3471 }
3472 }
3473 }
3474 }
3475 }
3476 }
3477 done:
3478 if (best_index < 0)
3479 return NULL;
3480
3481 if (index)
3482 *index = best_index;
3483 if (exact_match)
3484 *exact_match = (exact != 0);
3485
3486 return best_symtab;
3487 }
3488
3489 /* Given SYMTAB, returns all the PCs function in the symtab that
3490 exactly match LINE. Returns an empty vector if there are no exact
3491 matches, but updates BEST_ITEM in this case. */
3492
3493 std::vector<CORE_ADDR>
3494 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3495 struct linetable_entry **best_item)
3496 {
3497 int start = 0;
3498 std::vector<CORE_ADDR> result;
3499
3500 /* First, collect all the PCs that are at this line. */
3501 while (1)
3502 {
3503 int was_exact;
3504 int idx;
3505
3506 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3507 start);
3508 if (idx < 0)
3509 break;
3510
3511 if (!was_exact)
3512 {
3513 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3514
3515 if (*best_item == NULL
3516 || (item->line < (*best_item)->line && item->is_stmt))
3517 *best_item = item;
3518
3519 break;
3520 }
3521
3522 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3523 start = idx + 1;
3524 }
3525
3526 return result;
3527 }
3528
3529 \f
3530 /* Set the PC value for a given source file and line number and return true.
3531 Returns false for invalid line number (and sets the PC to 0).
3532 The source file is specified with a struct symtab. */
3533
3534 bool
3535 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3536 {
3537 struct linetable *l;
3538 int ind;
3539
3540 *pc = 0;
3541 if (symtab == 0)
3542 return false;
3543
3544 symtab = find_line_symtab (symtab, line, &ind, NULL);
3545 if (symtab != NULL)
3546 {
3547 l = SYMTAB_LINETABLE (symtab);
3548 *pc = l->item[ind].pc;
3549 return true;
3550 }
3551 else
3552 return false;
3553 }
3554
3555 /* Find the range of pc values in a line.
3556 Store the starting pc of the line into *STARTPTR
3557 and the ending pc (start of next line) into *ENDPTR.
3558 Returns true to indicate success.
3559 Returns false if could not find the specified line. */
3560
3561 bool
3562 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3563 CORE_ADDR *endptr)
3564 {
3565 CORE_ADDR startaddr;
3566 struct symtab_and_line found_sal;
3567
3568 startaddr = sal.pc;
3569 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3570 return false;
3571
3572 /* This whole function is based on address. For example, if line 10 has
3573 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3574 "info line *0x123" should say the line goes from 0x100 to 0x200
3575 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3576 This also insures that we never give a range like "starts at 0x134
3577 and ends at 0x12c". */
3578
3579 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3580 if (found_sal.line != sal.line)
3581 {
3582 /* The specified line (sal) has zero bytes. */
3583 *startptr = found_sal.pc;
3584 *endptr = found_sal.pc;
3585 }
3586 else
3587 {
3588 *startptr = found_sal.pc;
3589 *endptr = found_sal.end;
3590 }
3591 return true;
3592 }
3593
3594 /* Given a line table and a line number, return the index into the line
3595 table for the pc of the nearest line whose number is >= the specified one.
3596 Return -1 if none is found. The value is >= 0 if it is an index.
3597 START is the index at which to start searching the line table.
3598
3599 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3600
3601 static int
3602 find_line_common (struct linetable *l, int lineno,
3603 int *exact_match, int start)
3604 {
3605 int i;
3606 int len;
3607
3608 /* BEST is the smallest linenumber > LINENO so far seen,
3609 or 0 if none has been seen so far.
3610 BEST_INDEX identifies the item for it. */
3611
3612 int best_index = -1;
3613 int best = 0;
3614
3615 *exact_match = 0;
3616
3617 if (lineno <= 0)
3618 return -1;
3619 if (l == 0)
3620 return -1;
3621
3622 len = l->nitems;
3623 for (i = start; i < len; i++)
3624 {
3625 struct linetable_entry *item = &(l->item[i]);
3626
3627 /* Ignore non-statements. */
3628 if (!item->is_stmt)
3629 continue;
3630
3631 if (item->line == lineno)
3632 {
3633 /* Return the first (lowest address) entry which matches. */
3634 *exact_match = 1;
3635 return i;
3636 }
3637
3638 if (item->line > lineno && (best == 0 || item->line < best))
3639 {
3640 best = item->line;
3641 best_index = i;
3642 }
3643 }
3644
3645 /* If we got here, we didn't get an exact match. */
3646 return best_index;
3647 }
3648
3649 bool
3650 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3651 {
3652 struct symtab_and_line sal;
3653
3654 sal = find_pc_line (pc, 0);
3655 *startptr = sal.pc;
3656 *endptr = sal.end;
3657 return sal.symtab != 0;
3658 }
3659
3660 /* Helper for find_function_start_sal. Does most of the work, except
3661 setting the sal's symbol. */
3662
3663 static symtab_and_line
3664 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3665 bool funfirstline)
3666 {
3667 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3668
3669 if (funfirstline && sal.symtab != NULL
3670 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3671 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3672 {
3673 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3674
3675 sal.pc = func_addr;
3676 if (gdbarch_skip_entrypoint_p (gdbarch))
3677 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3678 return sal;
3679 }
3680
3681 /* We always should have a line for the function start address.
3682 If we don't, something is odd. Create a plain SAL referring
3683 just the PC and hope that skip_prologue_sal (if requested)
3684 can find a line number for after the prologue. */
3685 if (sal.pc < func_addr)
3686 {
3687 sal = {};
3688 sal.pspace = current_program_space;
3689 sal.pc = func_addr;
3690 sal.section = section;
3691 }
3692
3693 if (funfirstline)
3694 skip_prologue_sal (&sal);
3695
3696 return sal;
3697 }
3698
3699 /* See symtab.h. */
3700
3701 symtab_and_line
3702 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3703 bool funfirstline)
3704 {
3705 symtab_and_line sal
3706 = find_function_start_sal_1 (func_addr, section, funfirstline);
3707
3708 /* find_function_start_sal_1 does a linetable search, so it finds
3709 the symtab and linenumber, but not a symbol. Fill in the
3710 function symbol too. */
3711 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3712
3713 return sal;
3714 }
3715
3716 /* See symtab.h. */
3717
3718 symtab_and_line
3719 find_function_start_sal (symbol *sym, bool funfirstline)
3720 {
3721 fixup_symbol_section (sym, NULL);
3722 symtab_and_line sal
3723 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3724 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3725 funfirstline);
3726 sal.symbol = sym;
3727 return sal;
3728 }
3729
3730
3731 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3732 address for that function that has an entry in SYMTAB's line info
3733 table. If such an entry cannot be found, return FUNC_ADDR
3734 unaltered. */
3735
3736 static CORE_ADDR
3737 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3738 {
3739 CORE_ADDR func_start, func_end;
3740 struct linetable *l;
3741 int i;
3742
3743 /* Give up if this symbol has no lineinfo table. */
3744 l = SYMTAB_LINETABLE (symtab);
3745 if (l == NULL)
3746 return func_addr;
3747
3748 /* Get the range for the function's PC values, or give up if we
3749 cannot, for some reason. */
3750 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3751 return func_addr;
3752
3753 /* Linetable entries are ordered by PC values, see the commentary in
3754 symtab.h where `struct linetable' is defined. Thus, the first
3755 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3756 address we are looking for. */
3757 for (i = 0; i < l->nitems; i++)
3758 {
3759 struct linetable_entry *item = &(l->item[i]);
3760
3761 /* Don't use line numbers of zero, they mark special entries in
3762 the table. See the commentary on symtab.h before the
3763 definition of struct linetable. */
3764 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3765 return item->pc;
3766 }
3767
3768 return func_addr;
3769 }
3770
3771 /* Adjust SAL to the first instruction past the function prologue.
3772 If the PC was explicitly specified, the SAL is not changed.
3773 If the line number was explicitly specified then the SAL can still be
3774 updated, unless the language for SAL is assembler, in which case the SAL
3775 will be left unchanged.
3776 If SAL is already past the prologue, then do nothing. */
3777
3778 void
3779 skip_prologue_sal (struct symtab_and_line *sal)
3780 {
3781 struct symbol *sym;
3782 struct symtab_and_line start_sal;
3783 CORE_ADDR pc, saved_pc;
3784 struct obj_section *section;
3785 const char *name;
3786 struct objfile *objfile;
3787 struct gdbarch *gdbarch;
3788 const struct block *b, *function_block;
3789 int force_skip, skip;
3790
3791 /* Do not change the SAL if PC was specified explicitly. */
3792 if (sal->explicit_pc)
3793 return;
3794
3795 /* In assembly code, if the user asks for a specific line then we should
3796 not adjust the SAL. The user already has instruction level
3797 visibility in this case, so selecting a line other than one requested
3798 is likely to be the wrong choice. */
3799 if (sal->symtab != nullptr
3800 && sal->explicit_line
3801 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3802 return;
3803
3804 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3805
3806 switch_to_program_space_and_thread (sal->pspace);
3807
3808 sym = find_pc_sect_function (sal->pc, sal->section);
3809 if (sym != NULL)
3810 {
3811 fixup_symbol_section (sym, NULL);
3812
3813 objfile = symbol_objfile (sym);
3814 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3815 section = SYMBOL_OBJ_SECTION (objfile, sym);
3816 name = sym->linkage_name ();
3817 }
3818 else
3819 {
3820 struct bound_minimal_symbol msymbol
3821 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3822
3823 if (msymbol.minsym == NULL)
3824 return;
3825
3826 objfile = msymbol.objfile;
3827 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3828 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3829 name = msymbol.minsym->linkage_name ();
3830 }
3831
3832 gdbarch = objfile->arch ();
3833
3834 /* Process the prologue in two passes. In the first pass try to skip the
3835 prologue (SKIP is true) and verify there is a real need for it (indicated
3836 by FORCE_SKIP). If no such reason was found run a second pass where the
3837 prologue is not skipped (SKIP is false). */
3838
3839 skip = 1;
3840 force_skip = 1;
3841
3842 /* Be conservative - allow direct PC (without skipping prologue) only if we
3843 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3844 have to be set by the caller so we use SYM instead. */
3845 if (sym != NULL
3846 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3847 force_skip = 0;
3848
3849 saved_pc = pc;
3850 do
3851 {
3852 pc = saved_pc;
3853
3854 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3855 so that gdbarch_skip_prologue has something unique to work on. */
3856 if (section_is_overlay (section) && !section_is_mapped (section))
3857 pc = overlay_unmapped_address (pc, section);
3858
3859 /* Skip "first line" of function (which is actually its prologue). */
3860 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3861 if (gdbarch_skip_entrypoint_p (gdbarch))
3862 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3863 if (skip)
3864 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3865
3866 /* For overlays, map pc back into its mapped VMA range. */
3867 pc = overlay_mapped_address (pc, section);
3868
3869 /* Calculate line number. */
3870 start_sal = find_pc_sect_line (pc, section, 0);
3871
3872 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3873 line is still part of the same function. */
3874 if (skip && start_sal.pc != pc
3875 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3876 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3877 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3878 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3879 {
3880 /* First pc of next line */
3881 pc = start_sal.end;
3882 /* Recalculate the line number (might not be N+1). */
3883 start_sal = find_pc_sect_line (pc, section, 0);
3884 }
3885
3886 /* On targets with executable formats that don't have a concept of
3887 constructors (ELF with .init has, PE doesn't), gcc emits a call
3888 to `__main' in `main' between the prologue and before user
3889 code. */
3890 if (gdbarch_skip_main_prologue_p (gdbarch)
3891 && name && strcmp_iw (name, "main") == 0)
3892 {
3893 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3894 /* Recalculate the line number (might not be N+1). */
3895 start_sal = find_pc_sect_line (pc, section, 0);
3896 force_skip = 1;
3897 }
3898 }
3899 while (!force_skip && skip--);
3900
3901 /* If we still don't have a valid source line, try to find the first
3902 PC in the lineinfo table that belongs to the same function. This
3903 happens with COFF debug info, which does not seem to have an
3904 entry in lineinfo table for the code after the prologue which has
3905 no direct relation to source. For example, this was found to be
3906 the case with the DJGPP target using "gcc -gcoff" when the
3907 compiler inserted code after the prologue to make sure the stack
3908 is aligned. */
3909 if (!force_skip && sym && start_sal.symtab == NULL)
3910 {
3911 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3912 /* Recalculate the line number. */
3913 start_sal = find_pc_sect_line (pc, section, 0);
3914 }
3915
3916 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3917 forward SAL to the end of the prologue. */
3918 if (sal->pc >= pc)
3919 return;
3920
3921 sal->pc = pc;
3922 sal->section = section;
3923 sal->symtab = start_sal.symtab;
3924 sal->line = start_sal.line;
3925 sal->end = start_sal.end;
3926
3927 /* Check if we are now inside an inlined function. If we can,
3928 use the call site of the function instead. */
3929 b = block_for_pc_sect (sal->pc, sal->section);
3930 function_block = NULL;
3931 while (b != NULL)
3932 {
3933 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3934 function_block = b;
3935 else if (BLOCK_FUNCTION (b) != NULL)
3936 break;
3937 b = BLOCK_SUPERBLOCK (b);
3938 }
3939 if (function_block != NULL
3940 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3941 {
3942 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3943 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3944 }
3945 }
3946
3947 /* Given PC at the function's start address, attempt to find the
3948 prologue end using SAL information. Return zero if the skip fails.
3949
3950 A non-optimized prologue traditionally has one SAL for the function
3951 and a second for the function body. A single line function has
3952 them both pointing at the same line.
3953
3954 An optimized prologue is similar but the prologue may contain
3955 instructions (SALs) from the instruction body. Need to skip those
3956 while not getting into the function body.
3957
3958 The functions end point and an increasing SAL line are used as
3959 indicators of the prologue's endpoint.
3960
3961 This code is based on the function refine_prologue_limit
3962 (found in ia64). */
3963
3964 CORE_ADDR
3965 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3966 {
3967 struct symtab_and_line prologue_sal;
3968 CORE_ADDR start_pc;
3969 CORE_ADDR end_pc;
3970 const struct block *bl;
3971
3972 /* Get an initial range for the function. */
3973 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3974 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3975
3976 prologue_sal = find_pc_line (start_pc, 0);
3977 if (prologue_sal.line != 0)
3978 {
3979 /* For languages other than assembly, treat two consecutive line
3980 entries at the same address as a zero-instruction prologue.
3981 The GNU assembler emits separate line notes for each instruction
3982 in a multi-instruction macro, but compilers generally will not
3983 do this. */
3984 if (prologue_sal.symtab->language != language_asm)
3985 {
3986 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3987 int idx = 0;
3988
3989 /* Skip any earlier lines, and any end-of-sequence marker
3990 from a previous function. */
3991 while (linetable->item[idx].pc != prologue_sal.pc
3992 || linetable->item[idx].line == 0)
3993 idx++;
3994
3995 if (idx+1 < linetable->nitems
3996 && linetable->item[idx+1].line != 0
3997 && linetable->item[idx+1].pc == start_pc)
3998 return start_pc;
3999 }
4000
4001 /* If there is only one sal that covers the entire function,
4002 then it is probably a single line function, like
4003 "foo(){}". */
4004 if (prologue_sal.end >= end_pc)
4005 return 0;
4006
4007 while (prologue_sal.end < end_pc)
4008 {
4009 struct symtab_and_line sal;
4010
4011 sal = find_pc_line (prologue_sal.end, 0);
4012 if (sal.line == 0)
4013 break;
4014 /* Assume that a consecutive SAL for the same (or larger)
4015 line mark the prologue -> body transition. */
4016 if (sal.line >= prologue_sal.line)
4017 break;
4018 /* Likewise if we are in a different symtab altogether
4019 (e.g. within a file included via #include).  */
4020 if (sal.symtab != prologue_sal.symtab)
4021 break;
4022
4023 /* The line number is smaller. Check that it's from the
4024 same function, not something inlined. If it's inlined,
4025 then there is no point comparing the line numbers. */
4026 bl = block_for_pc (prologue_sal.end);
4027 while (bl)
4028 {
4029 if (block_inlined_p (bl))
4030 break;
4031 if (BLOCK_FUNCTION (bl))
4032 {
4033 bl = NULL;
4034 break;
4035 }
4036 bl = BLOCK_SUPERBLOCK (bl);
4037 }
4038 if (bl != NULL)
4039 break;
4040
4041 /* The case in which compiler's optimizer/scheduler has
4042 moved instructions into the prologue. We look ahead in
4043 the function looking for address ranges whose
4044 corresponding line number is less the first one that we
4045 found for the function. This is more conservative then
4046 refine_prologue_limit which scans a large number of SALs
4047 looking for any in the prologue. */
4048 prologue_sal = sal;
4049 }
4050 }
4051
4052 if (prologue_sal.end < end_pc)
4053 /* Return the end of this line, or zero if we could not find a
4054 line. */
4055 return prologue_sal.end;
4056 else
4057 /* Don't return END_PC, which is past the end of the function. */
4058 return prologue_sal.pc;
4059 }
4060
4061 /* See symtab.h. */
4062
4063 symbol *
4064 find_function_alias_target (bound_minimal_symbol msymbol)
4065 {
4066 CORE_ADDR func_addr;
4067 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4068 return NULL;
4069
4070 symbol *sym = find_pc_function (func_addr);
4071 if (sym != NULL
4072 && SYMBOL_CLASS (sym) == LOC_BLOCK
4073 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4074 return sym;
4075
4076 return NULL;
4077 }
4078
4079 \f
4080 /* If P is of the form "operator[ \t]+..." where `...' is
4081 some legitimate operator text, return a pointer to the
4082 beginning of the substring of the operator text.
4083 Otherwise, return "". */
4084
4085 static const char *
4086 operator_chars (const char *p, const char **end)
4087 {
4088 *end = "";
4089 if (!startswith (p, CP_OPERATOR_STR))
4090 return *end;
4091 p += CP_OPERATOR_LEN;
4092
4093 /* Don't get faked out by `operator' being part of a longer
4094 identifier. */
4095 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4096 return *end;
4097
4098 /* Allow some whitespace between `operator' and the operator symbol. */
4099 while (*p == ' ' || *p == '\t')
4100 p++;
4101
4102 /* Recognize 'operator TYPENAME'. */
4103
4104 if (isalpha (*p) || *p == '_' || *p == '$')
4105 {
4106 const char *q = p + 1;
4107
4108 while (isalnum (*q) || *q == '_' || *q == '$')
4109 q++;
4110 *end = q;
4111 return p;
4112 }
4113
4114 while (*p)
4115 switch (*p)
4116 {
4117 case '\\': /* regexp quoting */
4118 if (p[1] == '*')
4119 {
4120 if (p[2] == '=') /* 'operator\*=' */
4121 *end = p + 3;
4122 else /* 'operator\*' */
4123 *end = p + 2;
4124 return p;
4125 }
4126 else if (p[1] == '[')
4127 {
4128 if (p[2] == ']')
4129 error (_("mismatched quoting on brackets, "
4130 "try 'operator\\[\\]'"));
4131 else if (p[2] == '\\' && p[3] == ']')
4132 {
4133 *end = p + 4; /* 'operator\[\]' */
4134 return p;
4135 }
4136 else
4137 error (_("nothing is allowed between '[' and ']'"));
4138 }
4139 else
4140 {
4141 /* Gratuitous quote: skip it and move on. */
4142 p++;
4143 continue;
4144 }
4145 break;
4146 case '!':
4147 case '=':
4148 case '*':
4149 case '/':
4150 case '%':
4151 case '^':
4152 if (p[1] == '=')
4153 *end = p + 2;
4154 else
4155 *end = p + 1;
4156 return p;
4157 case '<':
4158 case '>':
4159 case '+':
4160 case '-':
4161 case '&':
4162 case '|':
4163 if (p[0] == '-' && p[1] == '>')
4164 {
4165 /* Struct pointer member operator 'operator->'. */
4166 if (p[2] == '*')
4167 {
4168 *end = p + 3; /* 'operator->*' */
4169 return p;
4170 }
4171 else if (p[2] == '\\')
4172 {
4173 *end = p + 4; /* Hopefully 'operator->\*' */
4174 return p;
4175 }
4176 else
4177 {
4178 *end = p + 2; /* 'operator->' */
4179 return p;
4180 }
4181 }
4182 if (p[1] == '=' || p[1] == p[0])
4183 *end = p + 2;
4184 else
4185 *end = p + 1;
4186 return p;
4187 case '~':
4188 case ',':
4189 *end = p + 1;
4190 return p;
4191 case '(':
4192 if (p[1] != ')')
4193 error (_("`operator ()' must be specified "
4194 "without whitespace in `()'"));
4195 *end = p + 2;
4196 return p;
4197 case '?':
4198 if (p[1] != ':')
4199 error (_("`operator ?:' must be specified "
4200 "without whitespace in `?:'"));
4201 *end = p + 2;
4202 return p;
4203 case '[':
4204 if (p[1] != ']')
4205 error (_("`operator []' must be specified "
4206 "without whitespace in `[]'"));
4207 *end = p + 2;
4208 return p;
4209 default:
4210 error (_("`operator %s' not supported"), p);
4211 break;
4212 }
4213
4214 *end = "";
4215 return *end;
4216 }
4217 \f
4218
4219 /* What part to match in a file name. */
4220
4221 struct filename_partial_match_opts
4222 {
4223 /* Only match the directory name part. */
4224 bool dirname = false;
4225
4226 /* Only match the basename part. */
4227 bool basename = false;
4228 };
4229
4230 /* Data structure to maintain printing state for output_source_filename. */
4231
4232 struct output_source_filename_data
4233 {
4234 /* Output only filenames matching REGEXP. */
4235 std::string regexp;
4236 gdb::optional<compiled_regex> c_regexp;
4237 /* Possibly only match a part of the filename. */
4238 filename_partial_match_opts partial_match;
4239
4240
4241 /* Cache of what we've seen so far. */
4242 struct filename_seen_cache *filename_seen_cache;
4243
4244 /* Flag of whether we're printing the first one. */
4245 int first;
4246 };
4247
4248 /* Slave routine for sources_info. Force line breaks at ,'s.
4249 NAME is the name to print.
4250 DATA contains the state for printing and watching for duplicates. */
4251
4252 static void
4253 output_source_filename (const char *name,
4254 struct output_source_filename_data *data)
4255 {
4256 /* Since a single source file can result in several partial symbol
4257 tables, we need to avoid printing it more than once. Note: if
4258 some of the psymtabs are read in and some are not, it gets
4259 printed both under "Source files for which symbols have been
4260 read" and "Source files for which symbols will be read in on
4261 demand". I consider this a reasonable way to deal with the
4262 situation. I'm not sure whether this can also happen for
4263 symtabs; it doesn't hurt to check. */
4264
4265 /* Was NAME already seen? */
4266 if (data->filename_seen_cache->seen (name))
4267 {
4268 /* Yes; don't print it again. */
4269 return;
4270 }
4271
4272 /* Does it match data->regexp? */
4273 if (data->c_regexp.has_value ())
4274 {
4275 const char *to_match;
4276 std::string dirname;
4277
4278 if (data->partial_match.dirname)
4279 {
4280 dirname = ldirname (name);
4281 to_match = dirname.c_str ();
4282 }
4283 else if (data->partial_match.basename)
4284 to_match = lbasename (name);
4285 else
4286 to_match = name;
4287
4288 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4289 return;
4290 }
4291
4292 /* Print it and reset *FIRST. */
4293 if (! data->first)
4294 printf_filtered (", ");
4295 data->first = 0;
4296
4297 wrap_here ("");
4298 fputs_styled (name, file_name_style.style (), gdb_stdout);
4299 }
4300
4301 /* A callback for map_partial_symbol_filenames. */
4302
4303 static void
4304 output_partial_symbol_filename (const char *filename, const char *fullname,
4305 void *data)
4306 {
4307 output_source_filename (fullname ? fullname : filename,
4308 (struct output_source_filename_data *) data);
4309 }
4310
4311 using isrc_flag_option_def
4312 = gdb::option::flag_option_def<filename_partial_match_opts>;
4313
4314 static const gdb::option::option_def info_sources_option_defs[] = {
4315
4316 isrc_flag_option_def {
4317 "dirname",
4318 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4319 N_("Show only the files having a dirname matching REGEXP."),
4320 },
4321
4322 isrc_flag_option_def {
4323 "basename",
4324 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4325 N_("Show only the files having a basename matching REGEXP."),
4326 },
4327
4328 };
4329
4330 /* Create an option_def_group for the "info sources" options, with
4331 ISRC_OPTS as context. */
4332
4333 static inline gdb::option::option_def_group
4334 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4335 {
4336 return {{info_sources_option_defs}, isrc_opts};
4337 }
4338
4339 /* Prints the header message for the source files that will be printed
4340 with the matching info present in DATA. SYMBOL_MSG is a message
4341 that tells what will or has been done with the symbols of the
4342 matching source files. */
4343
4344 static void
4345 print_info_sources_header (const char *symbol_msg,
4346 const struct output_source_filename_data *data)
4347 {
4348 puts_filtered (symbol_msg);
4349 if (!data->regexp.empty ())
4350 {
4351 if (data->partial_match.dirname)
4352 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4353 data->regexp.c_str ());
4354 else if (data->partial_match.basename)
4355 printf_filtered (_("(basename matching regular expression \"%s\")"),
4356 data->regexp.c_str ());
4357 else
4358 printf_filtered (_("(filename matching regular expression \"%s\")"),
4359 data->regexp.c_str ());
4360 }
4361 puts_filtered ("\n");
4362 }
4363
4364 /* Completer for "info sources". */
4365
4366 static void
4367 info_sources_command_completer (cmd_list_element *ignore,
4368 completion_tracker &tracker,
4369 const char *text, const char *word)
4370 {
4371 const auto group = make_info_sources_options_def_group (nullptr);
4372 if (gdb::option::complete_options
4373 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4374 return;
4375 }
4376
4377 static void
4378 info_sources_command (const char *args, int from_tty)
4379 {
4380 struct output_source_filename_data data;
4381
4382 if (!have_full_symbols () && !have_partial_symbols ())
4383 {
4384 error (_("No symbol table is loaded. Use the \"file\" command."));
4385 }
4386
4387 filename_seen_cache filenames_seen;
4388
4389 auto group = make_info_sources_options_def_group (&data.partial_match);
4390
4391 gdb::option::process_options
4392 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4393
4394 if (args != NULL && *args != '\000')
4395 data.regexp = args;
4396
4397 data.filename_seen_cache = &filenames_seen;
4398 data.first = 1;
4399
4400 if (data.partial_match.dirname && data.partial_match.basename)
4401 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4402 if ((data.partial_match.dirname || data.partial_match.basename)
4403 && data.regexp.empty ())
4404 error (_("Missing REGEXP for 'info sources'."));
4405
4406 if (data.regexp.empty ())
4407 data.c_regexp.reset ();
4408 else
4409 {
4410 int cflags = REG_NOSUB;
4411 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4412 cflags |= REG_ICASE;
4413 #endif
4414 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4415 _("Invalid regexp"));
4416 }
4417
4418 print_info_sources_header
4419 (_("Source files for which symbols have been read in:\n"), &data);
4420
4421 for (objfile *objfile : current_program_space->objfiles ())
4422 {
4423 for (compunit_symtab *cu : objfile->compunits ())
4424 {
4425 for (symtab *s : compunit_filetabs (cu))
4426 {
4427 const char *fullname = symtab_to_fullname (s);
4428
4429 output_source_filename (fullname, &data);
4430 }
4431 }
4432 }
4433 printf_filtered ("\n\n");
4434
4435 print_info_sources_header
4436 (_("Source files for which symbols will be read in on demand:\n"), &data);
4437
4438 filenames_seen.clear ();
4439 data.first = 1;
4440 map_symbol_filenames (output_partial_symbol_filename, &data,
4441 1 /*need_fullname*/);
4442 printf_filtered ("\n");
4443 }
4444
4445 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4446 true compare only lbasename of FILENAMES. */
4447
4448 static bool
4449 file_matches (const char *file, const std::vector<const char *> &filenames,
4450 bool basenames)
4451 {
4452 if (filenames.empty ())
4453 return true;
4454
4455 for (const char *name : filenames)
4456 {
4457 name = (basenames ? lbasename (name) : name);
4458 if (compare_filenames_for_search (file, name))
4459 return true;
4460 }
4461
4462 return false;
4463 }
4464
4465 /* Helper function for std::sort on symbol_search objects. Can only sort
4466 symbols, not minimal symbols. */
4467
4468 int
4469 symbol_search::compare_search_syms (const symbol_search &sym_a,
4470 const symbol_search &sym_b)
4471 {
4472 int c;
4473
4474 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4475 symbol_symtab (sym_b.symbol)->filename);
4476 if (c != 0)
4477 return c;
4478
4479 if (sym_a.block != sym_b.block)
4480 return sym_a.block - sym_b.block;
4481
4482 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4483 }
4484
4485 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4486 If SYM has no symbol_type or symbol_name, returns false. */
4487
4488 bool
4489 treg_matches_sym_type_name (const compiled_regex &treg,
4490 const struct symbol *sym)
4491 {
4492 struct type *sym_type;
4493 std::string printed_sym_type_name;
4494
4495 if (symbol_lookup_debug > 1)
4496 {
4497 fprintf_unfiltered (gdb_stdlog,
4498 "treg_matches_sym_type_name\n sym %s\n",
4499 sym->natural_name ());
4500 }
4501
4502 sym_type = SYMBOL_TYPE (sym);
4503 if (sym_type == NULL)
4504 return false;
4505
4506 {
4507 scoped_switch_to_sym_language_if_auto l (sym);
4508
4509 printed_sym_type_name = type_to_string (sym_type);
4510 }
4511
4512
4513 if (symbol_lookup_debug > 1)
4514 {
4515 fprintf_unfiltered (gdb_stdlog,
4516 " sym_type_name %s\n",
4517 printed_sym_type_name.c_str ());
4518 }
4519
4520
4521 if (printed_sym_type_name.empty ())
4522 return false;
4523
4524 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4525 }
4526
4527 /* See symtab.h. */
4528
4529 bool
4530 global_symbol_searcher::is_suitable_msymbol
4531 (const enum search_domain kind, const minimal_symbol *msymbol)
4532 {
4533 switch (MSYMBOL_TYPE (msymbol))
4534 {
4535 case mst_data:
4536 case mst_bss:
4537 case mst_file_data:
4538 case mst_file_bss:
4539 return kind == VARIABLES_DOMAIN;
4540 case mst_text:
4541 case mst_file_text:
4542 case mst_solib_trampoline:
4543 case mst_text_gnu_ifunc:
4544 return kind == FUNCTIONS_DOMAIN;
4545 default:
4546 return false;
4547 }
4548 }
4549
4550 /* See symtab.h. */
4551
4552 bool
4553 global_symbol_searcher::expand_symtabs
4554 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4555 {
4556 enum search_domain kind = m_kind;
4557 bool found_msymbol = false;
4558
4559 if (objfile->sf)
4560 objfile->sf->qf->expand_symtabs_matching
4561 (objfile,
4562 [&] (const char *filename, bool basenames)
4563 {
4564 return file_matches (filename, filenames, basenames);
4565 },
4566 &lookup_name_info::match_any (),
4567 [&] (const char *symname)
4568 {
4569 return (!preg.has_value ()
4570 || preg->exec (symname, 0, NULL, 0) == 0);
4571 },
4572 NULL,
4573 kind);
4574
4575 /* Here, we search through the minimal symbol tables for functions and
4576 variables that match, and force their symbols to be read. This is in
4577 particular necessary for demangled variable names, which are no longer
4578 put into the partial symbol tables. The symbol will then be found
4579 during the scan of symtabs later.
4580
4581 For functions, find_pc_symtab should succeed if we have debug info for
4582 the function, for variables we have to call
4583 lookup_symbol_in_objfile_from_linkage_name to determine if the
4584 variable has debug info. If the lookup fails, set found_msymbol so
4585 that we will rescan to print any matching symbols without debug info.
4586 We only search the objfile the msymbol came from, we no longer search
4587 all objfiles. In large programs (1000s of shared libs) searching all
4588 objfiles is not worth the pain. */
4589 if (filenames.empty ()
4590 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4591 {
4592 for (minimal_symbol *msymbol : objfile->msymbols ())
4593 {
4594 QUIT;
4595
4596 if (msymbol->created_by_gdb)
4597 continue;
4598
4599 if (is_suitable_msymbol (kind, msymbol))
4600 {
4601 if (!preg.has_value ()
4602 || preg->exec (msymbol->natural_name (), 0,
4603 NULL, 0) == 0)
4604 {
4605 /* An important side-effect of these lookup functions is
4606 to expand the symbol table if msymbol is found, later
4607 in the process we will add matching symbols or
4608 msymbols to the results list, and that requires that
4609 the symbols tables are expanded. */
4610 if (kind == FUNCTIONS_DOMAIN
4611 ? (find_pc_compunit_symtab
4612 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4613 == NULL)
4614 : (lookup_symbol_in_objfile_from_linkage_name
4615 (objfile, msymbol->linkage_name (),
4616 VAR_DOMAIN)
4617 .symbol == NULL))
4618 found_msymbol = true;
4619 }
4620 }
4621 }
4622 }
4623
4624 return found_msymbol;
4625 }
4626
4627 /* See symtab.h. */
4628
4629 bool
4630 global_symbol_searcher::add_matching_symbols
4631 (objfile *objfile,
4632 const gdb::optional<compiled_regex> &preg,
4633 const gdb::optional<compiled_regex> &treg,
4634 std::set<symbol_search> *result_set) const
4635 {
4636 enum search_domain kind = m_kind;
4637
4638 /* Add matching symbols (if not already present). */
4639 for (compunit_symtab *cust : objfile->compunits ())
4640 {
4641 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4642
4643 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4644 {
4645 struct block_iterator iter;
4646 struct symbol *sym;
4647 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4648
4649 ALL_BLOCK_SYMBOLS (b, iter, sym)
4650 {
4651 struct symtab *real_symtab = symbol_symtab (sym);
4652
4653 QUIT;
4654
4655 /* Check first sole REAL_SYMTAB->FILENAME. It does
4656 not need to be a substring of symtab_to_fullname as
4657 it may contain "./" etc. */
4658 if ((file_matches (real_symtab->filename, filenames, false)
4659 || ((basenames_may_differ
4660 || file_matches (lbasename (real_symtab->filename),
4661 filenames, true))
4662 && file_matches (symtab_to_fullname (real_symtab),
4663 filenames, false)))
4664 && ((!preg.has_value ()
4665 || preg->exec (sym->natural_name (), 0,
4666 NULL, 0) == 0)
4667 && ((kind == VARIABLES_DOMAIN
4668 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4669 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4670 && SYMBOL_CLASS (sym) != LOC_BLOCK
4671 /* LOC_CONST can be used for more than
4672 just enums, e.g., c++ static const
4673 members. We only want to skip enums
4674 here. */
4675 && !(SYMBOL_CLASS (sym) == LOC_CONST
4676 && (TYPE_CODE (SYMBOL_TYPE (sym))
4677 == TYPE_CODE_ENUM))
4678 && (!treg.has_value ()
4679 || treg_matches_sym_type_name (*treg, sym)))
4680 || (kind == FUNCTIONS_DOMAIN
4681 && SYMBOL_CLASS (sym) == LOC_BLOCK
4682 && (!treg.has_value ()
4683 || treg_matches_sym_type_name (*treg,
4684 sym)))
4685 || (kind == TYPES_DOMAIN
4686 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4687 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4688 || (kind == MODULES_DOMAIN
4689 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4690 && SYMBOL_LINE (sym) != 0))))
4691 {
4692 if (result_set->size () < m_max_search_results)
4693 {
4694 /* Match, insert if not already in the results. */
4695 symbol_search ss (block, sym);
4696 if (result_set->find (ss) == result_set->end ())
4697 result_set->insert (ss);
4698 }
4699 else
4700 return false;
4701 }
4702 }
4703 }
4704 }
4705
4706 return true;
4707 }
4708
4709 /* See symtab.h. */
4710
4711 bool
4712 global_symbol_searcher::add_matching_msymbols
4713 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4714 std::vector<symbol_search> *results) const
4715 {
4716 enum search_domain kind = m_kind;
4717
4718 for (minimal_symbol *msymbol : objfile->msymbols ())
4719 {
4720 QUIT;
4721
4722 if (msymbol->created_by_gdb)
4723 continue;
4724
4725 if (is_suitable_msymbol (kind, msymbol))
4726 {
4727 if (!preg.has_value ()
4728 || preg->exec (msymbol->natural_name (), 0,
4729 NULL, 0) == 0)
4730 {
4731 /* For functions we can do a quick check of whether the
4732 symbol might be found via find_pc_symtab. */
4733 if (kind != FUNCTIONS_DOMAIN
4734 || (find_pc_compunit_symtab
4735 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4736 == NULL))
4737 {
4738 if (lookup_symbol_in_objfile_from_linkage_name
4739 (objfile, msymbol->linkage_name (),
4740 VAR_DOMAIN).symbol == NULL)
4741 {
4742 /* Matching msymbol, add it to the results list. */
4743 if (results->size () < m_max_search_results)
4744 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4745 else
4746 return false;
4747 }
4748 }
4749 }
4750 }
4751 }
4752
4753 return true;
4754 }
4755
4756 /* See symtab.h. */
4757
4758 std::vector<symbol_search>
4759 global_symbol_searcher::search () const
4760 {
4761 gdb::optional<compiled_regex> preg;
4762 gdb::optional<compiled_regex> treg;
4763
4764 gdb_assert (m_kind != ALL_DOMAIN);
4765
4766 if (m_symbol_name_regexp != NULL)
4767 {
4768 const char *symbol_name_regexp = m_symbol_name_regexp;
4769
4770 /* Make sure spacing is right for C++ operators.
4771 This is just a courtesy to make the matching less sensitive
4772 to how many spaces the user leaves between 'operator'
4773 and <TYPENAME> or <OPERATOR>. */
4774 const char *opend;
4775 const char *opname = operator_chars (symbol_name_regexp, &opend);
4776
4777 if (*opname)
4778 {
4779 int fix = -1; /* -1 means ok; otherwise number of
4780 spaces needed. */
4781
4782 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4783 {
4784 /* There should 1 space between 'operator' and 'TYPENAME'. */
4785 if (opname[-1] != ' ' || opname[-2] == ' ')
4786 fix = 1;
4787 }
4788 else
4789 {
4790 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4791 if (opname[-1] == ' ')
4792 fix = 0;
4793 }
4794 /* If wrong number of spaces, fix it. */
4795 if (fix >= 0)
4796 {
4797 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4798
4799 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4800 symbol_name_regexp = tmp;
4801 }
4802 }
4803
4804 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4805 ? REG_ICASE : 0);
4806 preg.emplace (symbol_name_regexp, cflags,
4807 _("Invalid regexp"));
4808 }
4809
4810 if (m_symbol_type_regexp != NULL)
4811 {
4812 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4813 ? REG_ICASE : 0);
4814 treg.emplace (m_symbol_type_regexp, cflags,
4815 _("Invalid regexp"));
4816 }
4817
4818 bool found_msymbol = false;
4819 std::set<symbol_search> result_set;
4820 for (objfile *objfile : current_program_space->objfiles ())
4821 {
4822 /* Expand symtabs within objfile that possibly contain matching
4823 symbols. */
4824 found_msymbol |= expand_symtabs (objfile, preg);
4825
4826 /* Find matching symbols within OBJFILE and add them in to the
4827 RESULT_SET set. Use a set here so that we can easily detect
4828 duplicates as we go, and can therefore track how many unique
4829 matches we have found so far. */
4830 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4831 break;
4832 }
4833
4834 /* Convert the result set into a sorted result list, as std::set is
4835 defined to be sorted then no explicit call to std::sort is needed. */
4836 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4837
4838 /* If there are no debug symbols, then add matching minsyms. But if the
4839 user wants to see symbols matching a type regexp, then never give a
4840 minimal symbol, as we assume that a minimal symbol does not have a
4841 type. */
4842 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4843 && !m_exclude_minsyms
4844 && !treg.has_value ())
4845 {
4846 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4847 for (objfile *objfile : current_program_space->objfiles ())
4848 if (!add_matching_msymbols (objfile, preg, &result))
4849 break;
4850 }
4851
4852 return result;
4853 }
4854
4855 /* See symtab.h. */
4856
4857 std::string
4858 symbol_to_info_string (struct symbol *sym, int block,
4859 enum search_domain kind)
4860 {
4861 std::string str;
4862
4863 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4864
4865 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4866 str += "static ";
4867
4868 /* Typedef that is not a C++ class. */
4869 if (kind == TYPES_DOMAIN
4870 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4871 {
4872 string_file tmp_stream;
4873
4874 /* FIXME: For C (and C++) we end up with a difference in output here
4875 between how a typedef is printed, and non-typedefs are printed.
4876 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4877 appear C-like, while TYPE_PRINT doesn't.
4878
4879 For the struct printing case below, things are worse, we force
4880 printing of the ";" in this function, which is going to be wrong
4881 for languages that don't require a ";" between statements. */
4882 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4883 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4884 else
4885 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4886 str += tmp_stream.string ();
4887 }
4888 /* variable, func, or typedef-that-is-c++-class. */
4889 else if (kind < TYPES_DOMAIN
4890 || (kind == TYPES_DOMAIN
4891 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4892 {
4893 string_file tmp_stream;
4894
4895 type_print (SYMBOL_TYPE (sym),
4896 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4897 ? "" : sym->print_name ()),
4898 &tmp_stream, 0);
4899
4900 str += tmp_stream.string ();
4901 str += ";";
4902 }
4903 /* Printing of modules is currently done here, maybe at some future
4904 point we might want a language specific method to print the module
4905 symbol so that we can customise the output more. */
4906 else if (kind == MODULES_DOMAIN)
4907 str += sym->print_name ();
4908
4909 return str;
4910 }
4911
4912 /* Helper function for symbol info commands, for example 'info functions',
4913 'info variables', etc. KIND is the kind of symbol we searched for, and
4914 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4915 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4916 print file and line number information for the symbol as well. Skip
4917 printing the filename if it matches LAST. */
4918
4919 static void
4920 print_symbol_info (enum search_domain kind,
4921 struct symbol *sym,
4922 int block, const char *last)
4923 {
4924 scoped_switch_to_sym_language_if_auto l (sym);
4925 struct symtab *s = symbol_symtab (sym);
4926
4927 if (last != NULL)
4928 {
4929 const char *s_filename = symtab_to_filename_for_display (s);
4930
4931 if (filename_cmp (last, s_filename) != 0)
4932 {
4933 printf_filtered (_("\nFile %ps:\n"),
4934 styled_string (file_name_style.style (),
4935 s_filename));
4936 }
4937
4938 if (SYMBOL_LINE (sym) != 0)
4939 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4940 else
4941 puts_filtered ("\t");
4942 }
4943
4944 std::string str = symbol_to_info_string (sym, block, kind);
4945 printf_filtered ("%s\n", str.c_str ());
4946 }
4947
4948 /* This help function for symtab_symbol_info() prints information
4949 for non-debugging symbols to gdb_stdout. */
4950
4951 static void
4952 print_msymbol_info (struct bound_minimal_symbol msymbol)
4953 {
4954 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4955 char *tmp;
4956
4957 if (gdbarch_addr_bit (gdbarch) <= 32)
4958 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4959 & (CORE_ADDR) 0xffffffff,
4960 8);
4961 else
4962 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4963 16);
4964
4965 ui_file_style sym_style = (msymbol.minsym->text_p ()
4966 ? function_name_style.style ()
4967 : ui_file_style ());
4968
4969 printf_filtered (_("%ps %ps\n"),
4970 styled_string (address_style.style (), tmp),
4971 styled_string (sym_style, msymbol.minsym->print_name ()));
4972 }
4973
4974 /* This is the guts of the commands "info functions", "info types", and
4975 "info variables". It calls search_symbols to find all matches and then
4976 print_[m]symbol_info to print out some useful information about the
4977 matches. */
4978
4979 static void
4980 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4981 const char *regexp, enum search_domain kind,
4982 const char *t_regexp, int from_tty)
4983 {
4984 static const char * const classnames[] =
4985 {"variable", "function", "type", "module"};
4986 const char *last_filename = "";
4987 int first = 1;
4988
4989 gdb_assert (kind != ALL_DOMAIN);
4990
4991 if (regexp != nullptr && *regexp == '\0')
4992 regexp = nullptr;
4993
4994 global_symbol_searcher spec (kind, regexp);
4995 spec.set_symbol_type_regexp (t_regexp);
4996 spec.set_exclude_minsyms (exclude_minsyms);
4997 std::vector<symbol_search> symbols = spec.search ();
4998
4999 if (!quiet)
5000 {
5001 if (regexp != NULL)
5002 {
5003 if (t_regexp != NULL)
5004 printf_filtered
5005 (_("All %ss matching regular expression \"%s\""
5006 " with type matching regular expression \"%s\":\n"),
5007 classnames[kind], regexp, t_regexp);
5008 else
5009 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
5010 classnames[kind], regexp);
5011 }
5012 else
5013 {
5014 if (t_regexp != NULL)
5015 printf_filtered
5016 (_("All defined %ss"
5017 " with type matching regular expression \"%s\" :\n"),
5018 classnames[kind], t_regexp);
5019 else
5020 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5021 }
5022 }
5023
5024 for (const symbol_search &p : symbols)
5025 {
5026 QUIT;
5027
5028 if (p.msymbol.minsym != NULL)
5029 {
5030 if (first)
5031 {
5032 if (!quiet)
5033 printf_filtered (_("\nNon-debugging symbols:\n"));
5034 first = 0;
5035 }
5036 print_msymbol_info (p.msymbol);
5037 }
5038 else
5039 {
5040 print_symbol_info (kind,
5041 p.symbol,
5042 p.block,
5043 last_filename);
5044 last_filename
5045 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5046 }
5047 }
5048 }
5049
5050 /* Structure to hold the values of the options used by the 'info variables'
5051 and 'info functions' commands. These correspond to the -q, -t, and -n
5052 options. */
5053
5054 struct info_vars_funcs_options
5055 {
5056 bool quiet = false;
5057 bool exclude_minsyms = false;
5058 char *type_regexp = nullptr;
5059
5060 ~info_vars_funcs_options ()
5061 {
5062 xfree (type_regexp);
5063 }
5064 };
5065
5066 /* The options used by the 'info variables' and 'info functions'
5067 commands. */
5068
5069 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5070 gdb::option::boolean_option_def<info_vars_funcs_options> {
5071 "q",
5072 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5073 nullptr, /* show_cmd_cb */
5074 nullptr /* set_doc */
5075 },
5076
5077 gdb::option::boolean_option_def<info_vars_funcs_options> {
5078 "n",
5079 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5080 nullptr, /* show_cmd_cb */
5081 nullptr /* set_doc */
5082 },
5083
5084 gdb::option::string_option_def<info_vars_funcs_options> {
5085 "t",
5086 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5087 },
5088 nullptr, /* show_cmd_cb */
5089 nullptr /* set_doc */
5090 }
5091 };
5092
5093 /* Returns the option group used by 'info variables' and 'info
5094 functions'. */
5095
5096 static gdb::option::option_def_group
5097 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5098 {
5099 return {{info_vars_funcs_options_defs}, opts};
5100 }
5101
5102 /* Command completer for 'info variables' and 'info functions'. */
5103
5104 static void
5105 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5106 completion_tracker &tracker,
5107 const char *text, const char * /* word */)
5108 {
5109 const auto group
5110 = make_info_vars_funcs_options_def_group (nullptr);
5111 if (gdb::option::complete_options
5112 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5113 return;
5114
5115 const char *word = advance_to_expression_complete_word_point (tracker, text);
5116 symbol_completer (ignore, tracker, text, word);
5117 }
5118
5119 /* Implement the 'info variables' command. */
5120
5121 static void
5122 info_variables_command (const char *args, int from_tty)
5123 {
5124 info_vars_funcs_options opts;
5125 auto grp = make_info_vars_funcs_options_def_group (&opts);
5126 gdb::option::process_options
5127 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5128 if (args != nullptr && *args == '\0')
5129 args = nullptr;
5130
5131 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5132 opts.type_regexp, from_tty);
5133 }
5134
5135 /* Implement the 'info functions' command. */
5136
5137 static void
5138 info_functions_command (const char *args, int from_tty)
5139 {
5140 info_vars_funcs_options opts;
5141
5142 auto grp = make_info_vars_funcs_options_def_group (&opts);
5143 gdb::option::process_options
5144 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5145 if (args != nullptr && *args == '\0')
5146 args = nullptr;
5147
5148 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5149 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5150 }
5151
5152 /* Holds the -q option for the 'info types' command. */
5153
5154 struct info_types_options
5155 {
5156 bool quiet = false;
5157 };
5158
5159 /* The options used by the 'info types' command. */
5160
5161 static const gdb::option::option_def info_types_options_defs[] = {
5162 gdb::option::boolean_option_def<info_types_options> {
5163 "q",
5164 [] (info_types_options *opt) { return &opt->quiet; },
5165 nullptr, /* show_cmd_cb */
5166 nullptr /* set_doc */
5167 }
5168 };
5169
5170 /* Returns the option group used by 'info types'. */
5171
5172 static gdb::option::option_def_group
5173 make_info_types_options_def_group (info_types_options *opts)
5174 {
5175 return {{info_types_options_defs}, opts};
5176 }
5177
5178 /* Implement the 'info types' command. */
5179
5180 static void
5181 info_types_command (const char *args, int from_tty)
5182 {
5183 info_types_options opts;
5184
5185 auto grp = make_info_types_options_def_group (&opts);
5186 gdb::option::process_options
5187 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5188 if (args != nullptr && *args == '\0')
5189 args = nullptr;
5190 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5191 }
5192
5193 /* Command completer for 'info types' command. */
5194
5195 static void
5196 info_types_command_completer (struct cmd_list_element *ignore,
5197 completion_tracker &tracker,
5198 const char *text, const char * /* word */)
5199 {
5200 const auto group
5201 = make_info_types_options_def_group (nullptr);
5202 if (gdb::option::complete_options
5203 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5204 return;
5205
5206 const char *word = advance_to_expression_complete_word_point (tracker, text);
5207 symbol_completer (ignore, tracker, text, word);
5208 }
5209
5210 /* Implement the 'info modules' command. */
5211
5212 static void
5213 info_modules_command (const char *args, int from_tty)
5214 {
5215 info_types_options opts;
5216
5217 auto grp = make_info_types_options_def_group (&opts);
5218 gdb::option::process_options
5219 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5220 if (args != nullptr && *args == '\0')
5221 args = nullptr;
5222 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5223 from_tty);
5224 }
5225
5226 static void
5227 rbreak_command (const char *regexp, int from_tty)
5228 {
5229 std::string string;
5230 const char *file_name = nullptr;
5231
5232 if (regexp != nullptr)
5233 {
5234 const char *colon = strchr (regexp, ':');
5235
5236 if (colon && *(colon + 1) != ':')
5237 {
5238 int colon_index;
5239 char *local_name;
5240
5241 colon_index = colon - regexp;
5242 local_name = (char *) alloca (colon_index + 1);
5243 memcpy (local_name, regexp, colon_index);
5244 local_name[colon_index--] = 0;
5245 while (isspace (local_name[colon_index]))
5246 local_name[colon_index--] = 0;
5247 file_name = local_name;
5248 regexp = skip_spaces (colon + 1);
5249 }
5250 }
5251
5252 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5253 if (file_name != nullptr)
5254 spec.filenames.push_back (file_name);
5255 std::vector<symbol_search> symbols = spec.search ();
5256
5257 scoped_rbreak_breakpoints finalize;
5258 for (const symbol_search &p : symbols)
5259 {
5260 if (p.msymbol.minsym == NULL)
5261 {
5262 struct symtab *symtab = symbol_symtab (p.symbol);
5263 const char *fullname = symtab_to_fullname (symtab);
5264
5265 string = string_printf ("%s:'%s'", fullname,
5266 p.symbol->linkage_name ());
5267 break_command (&string[0], from_tty);
5268 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5269 }
5270 else
5271 {
5272 string = string_printf ("'%s'",
5273 p.msymbol.minsym->linkage_name ());
5274
5275 break_command (&string[0], from_tty);
5276 printf_filtered ("<function, no debug info> %s;\n",
5277 p.msymbol.minsym->print_name ());
5278 }
5279 }
5280 }
5281 \f
5282
5283 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5284
5285 static int
5286 compare_symbol_name (const char *symbol_name, language symbol_language,
5287 const lookup_name_info &lookup_name,
5288 completion_match_result &match_res)
5289 {
5290 const language_defn *lang = language_def (symbol_language);
5291
5292 symbol_name_matcher_ftype *name_match
5293 = get_symbol_name_matcher (lang, lookup_name);
5294
5295 return name_match (symbol_name, lookup_name, &match_res);
5296 }
5297
5298 /* See symtab.h. */
5299
5300 void
5301 completion_list_add_name (completion_tracker &tracker,
5302 language symbol_language,
5303 const char *symname,
5304 const lookup_name_info &lookup_name,
5305 const char *text, const char *word)
5306 {
5307 completion_match_result &match_res
5308 = tracker.reset_completion_match_result ();
5309
5310 /* Clip symbols that cannot match. */
5311 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5312 return;
5313
5314 /* Refresh SYMNAME from the match string. It's potentially
5315 different depending on language. (E.g., on Ada, the match may be
5316 the encoded symbol name wrapped in "<>"). */
5317 symname = match_res.match.match ();
5318 gdb_assert (symname != NULL);
5319
5320 /* We have a match for a completion, so add SYMNAME to the current list
5321 of matches. Note that the name is moved to freshly malloc'd space. */
5322
5323 {
5324 gdb::unique_xmalloc_ptr<char> completion
5325 = make_completion_match_str (symname, text, word);
5326
5327 /* Here we pass the match-for-lcd object to add_completion. Some
5328 languages match the user text against substrings of symbol
5329 names in some cases. E.g., in C++, "b push_ba" completes to
5330 "std::vector::push_back", "std::string::push_back", etc., and
5331 in this case we want the completion lowest common denominator
5332 to be "push_back" instead of "std::". */
5333 tracker.add_completion (std::move (completion),
5334 &match_res.match_for_lcd, text, word);
5335 }
5336 }
5337
5338 /* completion_list_add_name wrapper for struct symbol. */
5339
5340 static void
5341 completion_list_add_symbol (completion_tracker &tracker,
5342 symbol *sym,
5343 const lookup_name_info &lookup_name,
5344 const char *text, const char *word)
5345 {
5346 completion_list_add_name (tracker, sym->language (),
5347 sym->natural_name (),
5348 lookup_name, text, word);
5349
5350 /* C++ function symbols include the parameters within both the msymbol
5351 name and the symbol name. The problem is that the msymbol name will
5352 describe the parameters in the most basic way, with typedefs stripped
5353 out, while the symbol name will represent the types as they appear in
5354 the program. This means we will see duplicate entries in the
5355 completion tracker. The following converts the symbol name back to
5356 the msymbol name and removes the msymbol name from the completion
5357 tracker. */
5358 if (sym->language () == language_cplus
5359 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5360 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5361 {
5362 /* The call to canonicalize returns the empty string if the input
5363 string is already in canonical form, thanks to this we don't
5364 remove the symbol we just added above. */
5365 std::string str
5366 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5367 if (!str.empty ())
5368 tracker.remove_completion (str.c_str ());
5369 }
5370 }
5371
5372 /* completion_list_add_name wrapper for struct minimal_symbol. */
5373
5374 static void
5375 completion_list_add_msymbol (completion_tracker &tracker,
5376 minimal_symbol *sym,
5377 const lookup_name_info &lookup_name,
5378 const char *text, const char *word)
5379 {
5380 completion_list_add_name (tracker, sym->language (),
5381 sym->natural_name (),
5382 lookup_name, text, word);
5383 }
5384
5385
5386 /* ObjC: In case we are completing on a selector, look as the msymbol
5387 again and feed all the selectors into the mill. */
5388
5389 static void
5390 completion_list_objc_symbol (completion_tracker &tracker,
5391 struct minimal_symbol *msymbol,
5392 const lookup_name_info &lookup_name,
5393 const char *text, const char *word)
5394 {
5395 static char *tmp = NULL;
5396 static unsigned int tmplen = 0;
5397
5398 const char *method, *category, *selector;
5399 char *tmp2 = NULL;
5400
5401 method = msymbol->natural_name ();
5402
5403 /* Is it a method? */
5404 if ((method[0] != '-') && (method[0] != '+'))
5405 return;
5406
5407 if (text[0] == '[')
5408 /* Complete on shortened method method. */
5409 completion_list_add_name (tracker, language_objc,
5410 method + 1,
5411 lookup_name,
5412 text, word);
5413
5414 while ((strlen (method) + 1) >= tmplen)
5415 {
5416 if (tmplen == 0)
5417 tmplen = 1024;
5418 else
5419 tmplen *= 2;
5420 tmp = (char *) xrealloc (tmp, tmplen);
5421 }
5422 selector = strchr (method, ' ');
5423 if (selector != NULL)
5424 selector++;
5425
5426 category = strchr (method, '(');
5427
5428 if ((category != NULL) && (selector != NULL))
5429 {
5430 memcpy (tmp, method, (category - method));
5431 tmp[category - method] = ' ';
5432 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5433 completion_list_add_name (tracker, language_objc, tmp,
5434 lookup_name, text, word);
5435 if (text[0] == '[')
5436 completion_list_add_name (tracker, language_objc, tmp + 1,
5437 lookup_name, text, word);
5438 }
5439
5440 if (selector != NULL)
5441 {
5442 /* Complete on selector only. */
5443 strcpy (tmp, selector);
5444 tmp2 = strchr (tmp, ']');
5445 if (tmp2 != NULL)
5446 *tmp2 = '\0';
5447
5448 completion_list_add_name (tracker, language_objc, tmp,
5449 lookup_name, text, word);
5450 }
5451 }
5452
5453 /* Break the non-quoted text based on the characters which are in
5454 symbols. FIXME: This should probably be language-specific. */
5455
5456 static const char *
5457 language_search_unquoted_string (const char *text, const char *p)
5458 {
5459 for (; p > text; --p)
5460 {
5461 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5462 continue;
5463 else
5464 {
5465 if ((current_language->la_language == language_objc))
5466 {
5467 if (p[-1] == ':') /* Might be part of a method name. */
5468 continue;
5469 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5470 p -= 2; /* Beginning of a method name. */
5471 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5472 { /* Might be part of a method name. */
5473 const char *t = p;
5474
5475 /* Seeing a ' ' or a '(' is not conclusive evidence
5476 that we are in the middle of a method name. However,
5477 finding "-[" or "+[" should be pretty un-ambiguous.
5478 Unfortunately we have to find it now to decide. */
5479
5480 while (t > text)
5481 if (isalnum (t[-1]) || t[-1] == '_' ||
5482 t[-1] == ' ' || t[-1] == ':' ||
5483 t[-1] == '(' || t[-1] == ')')
5484 --t;
5485 else
5486 break;
5487
5488 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5489 p = t - 2; /* Method name detected. */
5490 /* Else we leave with p unchanged. */
5491 }
5492 }
5493 break;
5494 }
5495 }
5496 return p;
5497 }
5498
5499 static void
5500 completion_list_add_fields (completion_tracker &tracker,
5501 struct symbol *sym,
5502 const lookup_name_info &lookup_name,
5503 const char *text, const char *word)
5504 {
5505 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5506 {
5507 struct type *t = SYMBOL_TYPE (sym);
5508 enum type_code c = TYPE_CODE (t);
5509 int j;
5510
5511 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5512 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5513 if (TYPE_FIELD_NAME (t, j))
5514 completion_list_add_name (tracker, sym->language (),
5515 TYPE_FIELD_NAME (t, j),
5516 lookup_name, text, word);
5517 }
5518 }
5519
5520 /* See symtab.h. */
5521
5522 bool
5523 symbol_is_function_or_method (symbol *sym)
5524 {
5525 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5526 {
5527 case TYPE_CODE_FUNC:
5528 case TYPE_CODE_METHOD:
5529 return true;
5530 default:
5531 return false;
5532 }
5533 }
5534
5535 /* See symtab.h. */
5536
5537 bool
5538 symbol_is_function_or_method (minimal_symbol *msymbol)
5539 {
5540 switch (MSYMBOL_TYPE (msymbol))
5541 {
5542 case mst_text:
5543 case mst_text_gnu_ifunc:
5544 case mst_solib_trampoline:
5545 case mst_file_text:
5546 return true;
5547 default:
5548 return false;
5549 }
5550 }
5551
5552 /* See symtab.h. */
5553
5554 bound_minimal_symbol
5555 find_gnu_ifunc (const symbol *sym)
5556 {
5557 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5558 return {};
5559
5560 lookup_name_info lookup_name (sym->search_name (),
5561 symbol_name_match_type::SEARCH_NAME);
5562 struct objfile *objfile = symbol_objfile (sym);
5563
5564 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5565 minimal_symbol *ifunc = NULL;
5566
5567 iterate_over_minimal_symbols (objfile, lookup_name,
5568 [&] (minimal_symbol *minsym)
5569 {
5570 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5571 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5572 {
5573 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5574 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5575 {
5576 struct gdbarch *gdbarch = objfile->arch ();
5577 msym_addr
5578 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5579 msym_addr,
5580 current_top_target ());
5581 }
5582 if (msym_addr == address)
5583 {
5584 ifunc = minsym;
5585 return true;
5586 }
5587 }
5588 return false;
5589 });
5590
5591 if (ifunc != NULL)
5592 return {ifunc, objfile};
5593 return {};
5594 }
5595
5596 /* Add matching symbols from SYMTAB to the current completion list. */
5597
5598 static void
5599 add_symtab_completions (struct compunit_symtab *cust,
5600 completion_tracker &tracker,
5601 complete_symbol_mode mode,
5602 const lookup_name_info &lookup_name,
5603 const char *text, const char *word,
5604 enum type_code code)
5605 {
5606 struct symbol *sym;
5607 const struct block *b;
5608 struct block_iterator iter;
5609 int i;
5610
5611 if (cust == NULL)
5612 return;
5613
5614 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5615 {
5616 QUIT;
5617 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5618 ALL_BLOCK_SYMBOLS (b, iter, sym)
5619 {
5620 if (completion_skip_symbol (mode, sym))
5621 continue;
5622
5623 if (code == TYPE_CODE_UNDEF
5624 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5625 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5626 completion_list_add_symbol (tracker, sym,
5627 lookup_name,
5628 text, word);
5629 }
5630 }
5631 }
5632
5633 void
5634 default_collect_symbol_completion_matches_break_on
5635 (completion_tracker &tracker, complete_symbol_mode mode,
5636 symbol_name_match_type name_match_type,
5637 const char *text, const char *word,
5638 const char *break_on, enum type_code code)
5639 {
5640 /* Problem: All of the symbols have to be copied because readline
5641 frees them. I'm not going to worry about this; hopefully there
5642 won't be that many. */
5643
5644 struct symbol *sym;
5645 const struct block *b;
5646 const struct block *surrounding_static_block, *surrounding_global_block;
5647 struct block_iterator iter;
5648 /* The symbol we are completing on. Points in same buffer as text. */
5649 const char *sym_text;
5650
5651 /* Now look for the symbol we are supposed to complete on. */
5652 if (mode == complete_symbol_mode::LINESPEC)
5653 sym_text = text;
5654 else
5655 {
5656 const char *p;
5657 char quote_found;
5658 const char *quote_pos = NULL;
5659
5660 /* First see if this is a quoted string. */
5661 quote_found = '\0';
5662 for (p = text; *p != '\0'; ++p)
5663 {
5664 if (quote_found != '\0')
5665 {
5666 if (*p == quote_found)
5667 /* Found close quote. */
5668 quote_found = '\0';
5669 else if (*p == '\\' && p[1] == quote_found)
5670 /* A backslash followed by the quote character
5671 doesn't end the string. */
5672 ++p;
5673 }
5674 else if (*p == '\'' || *p == '"')
5675 {
5676 quote_found = *p;
5677 quote_pos = p;
5678 }
5679 }
5680 if (quote_found == '\'')
5681 /* A string within single quotes can be a symbol, so complete on it. */
5682 sym_text = quote_pos + 1;
5683 else if (quote_found == '"')
5684 /* A double-quoted string is never a symbol, nor does it make sense
5685 to complete it any other way. */
5686 {
5687 return;
5688 }
5689 else
5690 {
5691 /* It is not a quoted string. Break it based on the characters
5692 which are in symbols. */
5693 while (p > text)
5694 {
5695 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5696 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5697 --p;
5698 else
5699 break;
5700 }
5701 sym_text = p;
5702 }
5703 }
5704
5705 lookup_name_info lookup_name (sym_text, name_match_type, true);
5706
5707 /* At this point scan through the misc symbol vectors and add each
5708 symbol you find to the list. Eventually we want to ignore
5709 anything that isn't a text symbol (everything else will be
5710 handled by the psymtab code below). */
5711
5712 if (code == TYPE_CODE_UNDEF)
5713 {
5714 for (objfile *objfile : current_program_space->objfiles ())
5715 {
5716 for (minimal_symbol *msymbol : objfile->msymbols ())
5717 {
5718 QUIT;
5719
5720 if (completion_skip_symbol (mode, msymbol))
5721 continue;
5722
5723 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5724 sym_text, word);
5725
5726 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5727 sym_text, word);
5728 }
5729 }
5730 }
5731
5732 /* Add completions for all currently loaded symbol tables. */
5733 for (objfile *objfile : current_program_space->objfiles ())
5734 {
5735 for (compunit_symtab *cust : objfile->compunits ())
5736 add_symtab_completions (cust, tracker, mode, lookup_name,
5737 sym_text, word, code);
5738 }
5739
5740 /* Look through the partial symtabs for all symbols which begin by
5741 matching SYM_TEXT. Expand all CUs that you find to the list. */
5742 expand_symtabs_matching (NULL,
5743 lookup_name,
5744 NULL,
5745 [&] (compunit_symtab *symtab) /* expansion notify */
5746 {
5747 add_symtab_completions (symtab,
5748 tracker, mode, lookup_name,
5749 sym_text, word, code);
5750 },
5751 ALL_DOMAIN);
5752
5753 /* Search upwards from currently selected frame (so that we can
5754 complete on local vars). Also catch fields of types defined in
5755 this places which match our text string. Only complete on types
5756 visible from current context. */
5757
5758 b = get_selected_block (0);
5759 surrounding_static_block = block_static_block (b);
5760 surrounding_global_block = block_global_block (b);
5761 if (surrounding_static_block != NULL)
5762 while (b != surrounding_static_block)
5763 {
5764 QUIT;
5765
5766 ALL_BLOCK_SYMBOLS (b, iter, sym)
5767 {
5768 if (code == TYPE_CODE_UNDEF)
5769 {
5770 completion_list_add_symbol (tracker, sym, lookup_name,
5771 sym_text, word);
5772 completion_list_add_fields (tracker, sym, lookup_name,
5773 sym_text, word);
5774 }
5775 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5776 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5777 completion_list_add_symbol (tracker, sym, lookup_name,
5778 sym_text, word);
5779 }
5780
5781 /* Stop when we encounter an enclosing function. Do not stop for
5782 non-inlined functions - the locals of the enclosing function
5783 are in scope for a nested function. */
5784 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5785 break;
5786 b = BLOCK_SUPERBLOCK (b);
5787 }
5788
5789 /* Add fields from the file's types; symbols will be added below. */
5790
5791 if (code == TYPE_CODE_UNDEF)
5792 {
5793 if (surrounding_static_block != NULL)
5794 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5795 completion_list_add_fields (tracker, sym, lookup_name,
5796 sym_text, word);
5797
5798 if (surrounding_global_block != NULL)
5799 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5800 completion_list_add_fields (tracker, sym, lookup_name,
5801 sym_text, word);
5802 }
5803
5804 /* Skip macros if we are completing a struct tag -- arguable but
5805 usually what is expected. */
5806 if (current_language->la_macro_expansion == macro_expansion_c
5807 && code == TYPE_CODE_UNDEF)
5808 {
5809 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5810
5811 /* This adds a macro's name to the current completion list. */
5812 auto add_macro_name = [&] (const char *macro_name,
5813 const macro_definition *,
5814 macro_source_file *,
5815 int)
5816 {
5817 completion_list_add_name (tracker, language_c, macro_name,
5818 lookup_name, sym_text, word);
5819 };
5820
5821 /* Add any macros visible in the default scope. Note that this
5822 may yield the occasional wrong result, because an expression
5823 might be evaluated in a scope other than the default. For
5824 example, if the user types "break file:line if <TAB>", the
5825 resulting expression will be evaluated at "file:line" -- but
5826 at there does not seem to be a way to detect this at
5827 completion time. */
5828 scope = default_macro_scope ();
5829 if (scope)
5830 macro_for_each_in_scope (scope->file, scope->line,
5831 add_macro_name);
5832
5833 /* User-defined macros are always visible. */
5834 macro_for_each (macro_user_macros, add_macro_name);
5835 }
5836 }
5837
5838 void
5839 default_collect_symbol_completion_matches (completion_tracker &tracker,
5840 complete_symbol_mode mode,
5841 symbol_name_match_type name_match_type,
5842 const char *text, const char *word,
5843 enum type_code code)
5844 {
5845 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5846 name_match_type,
5847 text, word, "",
5848 code);
5849 }
5850
5851 /* Collect all symbols (regardless of class) which begin by matching
5852 TEXT. */
5853
5854 void
5855 collect_symbol_completion_matches (completion_tracker &tracker,
5856 complete_symbol_mode mode,
5857 symbol_name_match_type name_match_type,
5858 const char *text, const char *word)
5859 {
5860 current_language->la_collect_symbol_completion_matches (tracker, mode,
5861 name_match_type,
5862 text, word,
5863 TYPE_CODE_UNDEF);
5864 }
5865
5866 /* Like collect_symbol_completion_matches, but only collect
5867 STRUCT_DOMAIN symbols whose type code is CODE. */
5868
5869 void
5870 collect_symbol_completion_matches_type (completion_tracker &tracker,
5871 const char *text, const char *word,
5872 enum type_code code)
5873 {
5874 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5875 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5876
5877 gdb_assert (code == TYPE_CODE_UNION
5878 || code == TYPE_CODE_STRUCT
5879 || code == TYPE_CODE_ENUM);
5880 current_language->la_collect_symbol_completion_matches (tracker, mode,
5881 name_match_type,
5882 text, word, code);
5883 }
5884
5885 /* Like collect_symbol_completion_matches, but collects a list of
5886 symbols defined in all source files named SRCFILE. */
5887
5888 void
5889 collect_file_symbol_completion_matches (completion_tracker &tracker,
5890 complete_symbol_mode mode,
5891 symbol_name_match_type name_match_type,
5892 const char *text, const char *word,
5893 const char *srcfile)
5894 {
5895 /* The symbol we are completing on. Points in same buffer as text. */
5896 const char *sym_text;
5897
5898 /* Now look for the symbol we are supposed to complete on.
5899 FIXME: This should be language-specific. */
5900 if (mode == complete_symbol_mode::LINESPEC)
5901 sym_text = text;
5902 else
5903 {
5904 const char *p;
5905 char quote_found;
5906 const char *quote_pos = NULL;
5907
5908 /* First see if this is a quoted string. */
5909 quote_found = '\0';
5910 for (p = text; *p != '\0'; ++p)
5911 {
5912 if (quote_found != '\0')
5913 {
5914 if (*p == quote_found)
5915 /* Found close quote. */
5916 quote_found = '\0';
5917 else if (*p == '\\' && p[1] == quote_found)
5918 /* A backslash followed by the quote character
5919 doesn't end the string. */
5920 ++p;
5921 }
5922 else if (*p == '\'' || *p == '"')
5923 {
5924 quote_found = *p;
5925 quote_pos = p;
5926 }
5927 }
5928 if (quote_found == '\'')
5929 /* A string within single quotes can be a symbol, so complete on it. */
5930 sym_text = quote_pos + 1;
5931 else if (quote_found == '"')
5932 /* A double-quoted string is never a symbol, nor does it make sense
5933 to complete it any other way. */
5934 {
5935 return;
5936 }
5937 else
5938 {
5939 /* Not a quoted string. */
5940 sym_text = language_search_unquoted_string (text, p);
5941 }
5942 }
5943
5944 lookup_name_info lookup_name (sym_text, name_match_type, true);
5945
5946 /* Go through symtabs for SRCFILE and check the externs and statics
5947 for symbols which match. */
5948 iterate_over_symtabs (srcfile, [&] (symtab *s)
5949 {
5950 add_symtab_completions (SYMTAB_COMPUNIT (s),
5951 tracker, mode, lookup_name,
5952 sym_text, word, TYPE_CODE_UNDEF);
5953 return false;
5954 });
5955 }
5956
5957 /* A helper function for make_source_files_completion_list. It adds
5958 another file name to a list of possible completions, growing the
5959 list as necessary. */
5960
5961 static void
5962 add_filename_to_list (const char *fname, const char *text, const char *word,
5963 completion_list *list)
5964 {
5965 list->emplace_back (make_completion_match_str (fname, text, word));
5966 }
5967
5968 static int
5969 not_interesting_fname (const char *fname)
5970 {
5971 static const char *illegal_aliens[] = {
5972 "_globals_", /* inserted by coff_symtab_read */
5973 NULL
5974 };
5975 int i;
5976
5977 for (i = 0; illegal_aliens[i]; i++)
5978 {
5979 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5980 return 1;
5981 }
5982 return 0;
5983 }
5984
5985 /* An object of this type is passed as the user_data argument to
5986 map_partial_symbol_filenames. */
5987 struct add_partial_filename_data
5988 {
5989 struct filename_seen_cache *filename_seen_cache;
5990 const char *text;
5991 const char *word;
5992 int text_len;
5993 completion_list *list;
5994 };
5995
5996 /* A callback for map_partial_symbol_filenames. */
5997
5998 static void
5999 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
6000 void *user_data)
6001 {
6002 struct add_partial_filename_data *data
6003 = (struct add_partial_filename_data *) user_data;
6004
6005 if (not_interesting_fname (filename))
6006 return;
6007 if (!data->filename_seen_cache->seen (filename)
6008 && filename_ncmp (filename, data->text, data->text_len) == 0)
6009 {
6010 /* This file matches for a completion; add it to the
6011 current list of matches. */
6012 add_filename_to_list (filename, data->text, data->word, data->list);
6013 }
6014 else
6015 {
6016 const char *base_name = lbasename (filename);
6017
6018 if (base_name != filename
6019 && !data->filename_seen_cache->seen (base_name)
6020 && filename_ncmp (base_name, data->text, data->text_len) == 0)
6021 add_filename_to_list (base_name, data->text, data->word, data->list);
6022 }
6023 }
6024
6025 /* Return a list of all source files whose names begin with matching
6026 TEXT. The file names are looked up in the symbol tables of this
6027 program. */
6028
6029 completion_list
6030 make_source_files_completion_list (const char *text, const char *word)
6031 {
6032 size_t text_len = strlen (text);
6033 completion_list list;
6034 const char *base_name;
6035 struct add_partial_filename_data datum;
6036
6037 if (!have_full_symbols () && !have_partial_symbols ())
6038 return list;
6039
6040 filename_seen_cache filenames_seen;
6041
6042 for (objfile *objfile : current_program_space->objfiles ())
6043 {
6044 for (compunit_symtab *cu : objfile->compunits ())
6045 {
6046 for (symtab *s : compunit_filetabs (cu))
6047 {
6048 if (not_interesting_fname (s->filename))
6049 continue;
6050 if (!filenames_seen.seen (s->filename)
6051 && filename_ncmp (s->filename, text, text_len) == 0)
6052 {
6053 /* This file matches for a completion; add it to the current
6054 list of matches. */
6055 add_filename_to_list (s->filename, text, word, &list);
6056 }
6057 else
6058 {
6059 /* NOTE: We allow the user to type a base name when the
6060 debug info records leading directories, but not the other
6061 way around. This is what subroutines of breakpoint
6062 command do when they parse file names. */
6063 base_name = lbasename (s->filename);
6064 if (base_name != s->filename
6065 && !filenames_seen.seen (base_name)
6066 && filename_ncmp (base_name, text, text_len) == 0)
6067 add_filename_to_list (base_name, text, word, &list);
6068 }
6069 }
6070 }
6071 }
6072
6073 datum.filename_seen_cache = &filenames_seen;
6074 datum.text = text;
6075 datum.word = word;
6076 datum.text_len = text_len;
6077 datum.list = &list;
6078 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6079 0 /*need_fullname*/);
6080
6081 return list;
6082 }
6083 \f
6084 /* Track MAIN */
6085
6086 /* Return the "main_info" object for the current program space. If
6087 the object has not yet been created, create it and fill in some
6088 default values. */
6089
6090 static struct main_info *
6091 get_main_info (void)
6092 {
6093 struct main_info *info = main_progspace_key.get (current_program_space);
6094
6095 if (info == NULL)
6096 {
6097 /* It may seem strange to store the main name in the progspace
6098 and also in whatever objfile happens to see a main name in
6099 its debug info. The reason for this is mainly historical:
6100 gdb returned "main" as the name even if no function named
6101 "main" was defined the program; and this approach lets us
6102 keep compatibility. */
6103 info = main_progspace_key.emplace (current_program_space);
6104 }
6105
6106 return info;
6107 }
6108
6109 static void
6110 set_main_name (const char *name, enum language lang)
6111 {
6112 struct main_info *info = get_main_info ();
6113
6114 if (info->name_of_main != NULL)
6115 {
6116 xfree (info->name_of_main);
6117 info->name_of_main = NULL;
6118 info->language_of_main = language_unknown;
6119 }
6120 if (name != NULL)
6121 {
6122 info->name_of_main = xstrdup (name);
6123 info->language_of_main = lang;
6124 }
6125 }
6126
6127 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6128 accordingly. */
6129
6130 static void
6131 find_main_name (void)
6132 {
6133 const char *new_main_name;
6134
6135 /* First check the objfiles to see whether a debuginfo reader has
6136 picked up the appropriate main name. Historically the main name
6137 was found in a more or less random way; this approach instead
6138 relies on the order of objfile creation -- which still isn't
6139 guaranteed to get the correct answer, but is just probably more
6140 accurate. */
6141 for (objfile *objfile : current_program_space->objfiles ())
6142 {
6143 if (objfile->per_bfd->name_of_main != NULL)
6144 {
6145 set_main_name (objfile->per_bfd->name_of_main,
6146 objfile->per_bfd->language_of_main);
6147 return;
6148 }
6149 }
6150
6151 /* Try to see if the main procedure is in Ada. */
6152 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6153 be to add a new method in the language vector, and call this
6154 method for each language until one of them returns a non-empty
6155 name. This would allow us to remove this hard-coded call to
6156 an Ada function. It is not clear that this is a better approach
6157 at this point, because all methods need to be written in a way
6158 such that false positives never be returned. For instance, it is
6159 important that a method does not return a wrong name for the main
6160 procedure if the main procedure is actually written in a different
6161 language. It is easy to guaranty this with Ada, since we use a
6162 special symbol generated only when the main in Ada to find the name
6163 of the main procedure. It is difficult however to see how this can
6164 be guarantied for languages such as C, for instance. This suggests
6165 that order of call for these methods becomes important, which means
6166 a more complicated approach. */
6167 new_main_name = ada_main_name ();
6168 if (new_main_name != NULL)
6169 {
6170 set_main_name (new_main_name, language_ada);
6171 return;
6172 }
6173
6174 new_main_name = d_main_name ();
6175 if (new_main_name != NULL)
6176 {
6177 set_main_name (new_main_name, language_d);
6178 return;
6179 }
6180
6181 new_main_name = go_main_name ();
6182 if (new_main_name != NULL)
6183 {
6184 set_main_name (new_main_name, language_go);
6185 return;
6186 }
6187
6188 new_main_name = pascal_main_name ();
6189 if (new_main_name != NULL)
6190 {
6191 set_main_name (new_main_name, language_pascal);
6192 return;
6193 }
6194
6195 /* The languages above didn't identify the name of the main procedure.
6196 Fallback to "main". */
6197
6198 /* Try to find language for main in psymtabs. */
6199 enum language lang
6200 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6201 if (lang != language_unknown)
6202 {
6203 set_main_name ("main", lang);
6204 return;
6205 }
6206
6207 set_main_name ("main", language_unknown);
6208 }
6209
6210 /* See symtab.h. */
6211
6212 const char *
6213 main_name ()
6214 {
6215 struct main_info *info = get_main_info ();
6216
6217 if (info->name_of_main == NULL)
6218 find_main_name ();
6219
6220 return info->name_of_main;
6221 }
6222
6223 /* Return the language of the main function. If it is not known,
6224 return language_unknown. */
6225
6226 enum language
6227 main_language (void)
6228 {
6229 struct main_info *info = get_main_info ();
6230
6231 if (info->name_of_main == NULL)
6232 find_main_name ();
6233
6234 return info->language_of_main;
6235 }
6236
6237 /* Handle ``executable_changed'' events for the symtab module. */
6238
6239 static void
6240 symtab_observer_executable_changed (void)
6241 {
6242 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6243 set_main_name (NULL, language_unknown);
6244 }
6245
6246 /* Return 1 if the supplied producer string matches the ARM RealView
6247 compiler (armcc). */
6248
6249 bool
6250 producer_is_realview (const char *producer)
6251 {
6252 static const char *const arm_idents[] = {
6253 "ARM C Compiler, ADS",
6254 "Thumb C Compiler, ADS",
6255 "ARM C++ Compiler, ADS",
6256 "Thumb C++ Compiler, ADS",
6257 "ARM/Thumb C/C++ Compiler, RVCT",
6258 "ARM C/C++ Compiler, RVCT"
6259 };
6260 int i;
6261
6262 if (producer == NULL)
6263 return false;
6264
6265 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6266 if (startswith (producer, arm_idents[i]))
6267 return true;
6268
6269 return false;
6270 }
6271
6272 \f
6273
6274 /* The next index to hand out in response to a registration request. */
6275
6276 static int next_aclass_value = LOC_FINAL_VALUE;
6277
6278 /* The maximum number of "aclass" registrations we support. This is
6279 constant for convenience. */
6280 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6281
6282 /* The objects representing the various "aclass" values. The elements
6283 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6284 elements are those registered at gdb initialization time. */
6285
6286 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6287
6288 /* The globally visible pointer. This is separate from 'symbol_impl'
6289 so that it can be const. */
6290
6291 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6292
6293 /* Make sure we saved enough room in struct symbol. */
6294
6295 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6296
6297 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6298 is the ops vector associated with this index. This returns the new
6299 index, which should be used as the aclass_index field for symbols
6300 of this type. */
6301
6302 int
6303 register_symbol_computed_impl (enum address_class aclass,
6304 const struct symbol_computed_ops *ops)
6305 {
6306 int result = next_aclass_value++;
6307
6308 gdb_assert (aclass == LOC_COMPUTED);
6309 gdb_assert (result < MAX_SYMBOL_IMPLS);
6310 symbol_impl[result].aclass = aclass;
6311 symbol_impl[result].ops_computed = ops;
6312
6313 /* Sanity check OPS. */
6314 gdb_assert (ops != NULL);
6315 gdb_assert (ops->tracepoint_var_ref != NULL);
6316 gdb_assert (ops->describe_location != NULL);
6317 gdb_assert (ops->get_symbol_read_needs != NULL);
6318 gdb_assert (ops->read_variable != NULL);
6319
6320 return result;
6321 }
6322
6323 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6324 OPS is the ops vector associated with this index. This returns the
6325 new index, which should be used as the aclass_index field for symbols
6326 of this type. */
6327
6328 int
6329 register_symbol_block_impl (enum address_class aclass,
6330 const struct symbol_block_ops *ops)
6331 {
6332 int result = next_aclass_value++;
6333
6334 gdb_assert (aclass == LOC_BLOCK);
6335 gdb_assert (result < MAX_SYMBOL_IMPLS);
6336 symbol_impl[result].aclass = aclass;
6337 symbol_impl[result].ops_block = ops;
6338
6339 /* Sanity check OPS. */
6340 gdb_assert (ops != NULL);
6341 gdb_assert (ops->find_frame_base_location != NULL);
6342
6343 return result;
6344 }
6345
6346 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6347 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6348 this index. This returns the new index, which should be used as
6349 the aclass_index field for symbols of this type. */
6350
6351 int
6352 register_symbol_register_impl (enum address_class aclass,
6353 const struct symbol_register_ops *ops)
6354 {
6355 int result = next_aclass_value++;
6356
6357 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6358 gdb_assert (result < MAX_SYMBOL_IMPLS);
6359 symbol_impl[result].aclass = aclass;
6360 symbol_impl[result].ops_register = ops;
6361
6362 return result;
6363 }
6364
6365 /* Initialize elements of 'symbol_impl' for the constants in enum
6366 address_class. */
6367
6368 static void
6369 initialize_ordinary_address_classes (void)
6370 {
6371 int i;
6372
6373 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6374 symbol_impl[i].aclass = (enum address_class) i;
6375 }
6376
6377 \f
6378
6379 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6380
6381 void
6382 initialize_objfile_symbol (struct symbol *sym)
6383 {
6384 SYMBOL_OBJFILE_OWNED (sym) = 1;
6385 SYMBOL_SECTION (sym) = -1;
6386 }
6387
6388 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6389 obstack. */
6390
6391 struct symbol *
6392 allocate_symbol (struct objfile *objfile)
6393 {
6394 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6395
6396 initialize_objfile_symbol (result);
6397
6398 return result;
6399 }
6400
6401 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6402 obstack. */
6403
6404 struct template_symbol *
6405 allocate_template_symbol (struct objfile *objfile)
6406 {
6407 struct template_symbol *result;
6408
6409 result = new (&objfile->objfile_obstack) template_symbol ();
6410 initialize_objfile_symbol (result);
6411
6412 return result;
6413 }
6414
6415 /* See symtab.h. */
6416
6417 struct objfile *
6418 symbol_objfile (const struct symbol *symbol)
6419 {
6420 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6421 return SYMTAB_OBJFILE (symbol->owner.symtab);
6422 }
6423
6424 /* See symtab.h. */
6425
6426 struct gdbarch *
6427 symbol_arch (const struct symbol *symbol)
6428 {
6429 if (!SYMBOL_OBJFILE_OWNED (symbol))
6430 return symbol->owner.arch;
6431 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6432 }
6433
6434 /* See symtab.h. */
6435
6436 struct symtab *
6437 symbol_symtab (const struct symbol *symbol)
6438 {
6439 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6440 return symbol->owner.symtab;
6441 }
6442
6443 /* See symtab.h. */
6444
6445 void
6446 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6447 {
6448 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6449 symbol->owner.symtab = symtab;
6450 }
6451
6452 /* See symtab.h. */
6453
6454 CORE_ADDR
6455 get_symbol_address (const struct symbol *sym)
6456 {
6457 gdb_assert (sym->maybe_copied);
6458 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6459
6460 const char *linkage_name = sym->linkage_name ();
6461
6462 for (objfile *objfile : current_program_space->objfiles ())
6463 {
6464 if (objfile->separate_debug_objfile_backlink != nullptr)
6465 continue;
6466
6467 bound_minimal_symbol minsym
6468 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6469 if (minsym.minsym != nullptr)
6470 return BMSYMBOL_VALUE_ADDRESS (minsym);
6471 }
6472 return sym->value.address;
6473 }
6474
6475 /* See symtab.h. */
6476
6477 CORE_ADDR
6478 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6479 {
6480 gdb_assert (minsym->maybe_copied);
6481 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6482
6483 const char *linkage_name = minsym->linkage_name ();
6484
6485 for (objfile *objfile : current_program_space->objfiles ())
6486 {
6487 if (objfile->separate_debug_objfile_backlink == nullptr
6488 && (objfile->flags & OBJF_MAINLINE) != 0)
6489 {
6490 bound_minimal_symbol found
6491 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6492 if (found.minsym != nullptr)
6493 return BMSYMBOL_VALUE_ADDRESS (found);
6494 }
6495 }
6496 return minsym->value.address + objf->section_offsets[minsym->section];
6497 }
6498
6499 \f
6500
6501 /* Hold the sub-commands of 'info module'. */
6502
6503 static struct cmd_list_element *info_module_cmdlist = NULL;
6504
6505 /* See symtab.h. */
6506
6507 std::vector<module_symbol_search>
6508 search_module_symbols (const char *module_regexp, const char *regexp,
6509 const char *type_regexp, search_domain kind)
6510 {
6511 std::vector<module_symbol_search> results;
6512
6513 /* Search for all modules matching MODULE_REGEXP. */
6514 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6515 spec1.set_exclude_minsyms (true);
6516 std::vector<symbol_search> modules = spec1.search ();
6517
6518 /* Now search for all symbols of the required KIND matching the required
6519 regular expressions. We figure out which ones are in which modules
6520 below. */
6521 global_symbol_searcher spec2 (kind, regexp);
6522 spec2.set_symbol_type_regexp (type_regexp);
6523 spec2.set_exclude_minsyms (true);
6524 std::vector<symbol_search> symbols = spec2.search ();
6525
6526 /* Now iterate over all MODULES, checking to see which items from
6527 SYMBOLS are in each module. */
6528 for (const symbol_search &p : modules)
6529 {
6530 QUIT;
6531
6532 /* This is a module. */
6533 gdb_assert (p.symbol != nullptr);
6534
6535 std::string prefix = p.symbol->print_name ();
6536 prefix += "::";
6537
6538 for (const symbol_search &q : symbols)
6539 {
6540 if (q.symbol == nullptr)
6541 continue;
6542
6543 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6544 prefix.size ()) != 0)
6545 continue;
6546
6547 results.push_back ({p, q});
6548 }
6549 }
6550
6551 return results;
6552 }
6553
6554 /* Implement the core of both 'info module functions' and 'info module
6555 variables'. */
6556
6557 static void
6558 info_module_subcommand (bool quiet, const char *module_regexp,
6559 const char *regexp, const char *type_regexp,
6560 search_domain kind)
6561 {
6562 /* Print a header line. Don't build the header line bit by bit as this
6563 prevents internationalisation. */
6564 if (!quiet)
6565 {
6566 if (module_regexp == nullptr)
6567 {
6568 if (type_regexp == nullptr)
6569 {
6570 if (regexp == nullptr)
6571 printf_filtered ((kind == VARIABLES_DOMAIN
6572 ? _("All variables in all modules:")
6573 : _("All functions in all modules:")));
6574 else
6575 printf_filtered
6576 ((kind == VARIABLES_DOMAIN
6577 ? _("All variables matching regular expression"
6578 " \"%s\" in all modules:")
6579 : _("All functions matching regular expression"
6580 " \"%s\" in all modules:")),
6581 regexp);
6582 }
6583 else
6584 {
6585 if (regexp == nullptr)
6586 printf_filtered
6587 ((kind == VARIABLES_DOMAIN
6588 ? _("All variables with type matching regular "
6589 "expression \"%s\" in all modules:")
6590 : _("All functions with type matching regular "
6591 "expression \"%s\" in all modules:")),
6592 type_regexp);
6593 else
6594 printf_filtered
6595 ((kind == VARIABLES_DOMAIN
6596 ? _("All variables matching regular expression "
6597 "\"%s\",\n\twith type matching regular "
6598 "expression \"%s\" in all modules:")
6599 : _("All functions matching regular expression "
6600 "\"%s\",\n\twith type matching regular "
6601 "expression \"%s\" in all modules:")),
6602 regexp, type_regexp);
6603 }
6604 }
6605 else
6606 {
6607 if (type_regexp == nullptr)
6608 {
6609 if (regexp == nullptr)
6610 printf_filtered
6611 ((kind == VARIABLES_DOMAIN
6612 ? _("All variables in all modules matching regular "
6613 "expression \"%s\":")
6614 : _("All functions in all modules matching regular "
6615 "expression \"%s\":")),
6616 module_regexp);
6617 else
6618 printf_filtered
6619 ((kind == VARIABLES_DOMAIN
6620 ? _("All variables matching regular expression "
6621 "\"%s\",\n\tin all modules matching regular "
6622 "expression \"%s\":")
6623 : _("All functions matching regular expression "
6624 "\"%s\",\n\tin all modules matching regular "
6625 "expression \"%s\":")),
6626 regexp, module_regexp);
6627 }
6628 else
6629 {
6630 if (regexp == nullptr)
6631 printf_filtered
6632 ((kind == VARIABLES_DOMAIN
6633 ? _("All variables with type matching regular "
6634 "expression \"%s\"\n\tin all modules matching "
6635 "regular expression \"%s\":")
6636 : _("All functions with type matching regular "
6637 "expression \"%s\"\n\tin all modules matching "
6638 "regular expression \"%s\":")),
6639 type_regexp, module_regexp);
6640 else
6641 printf_filtered
6642 ((kind == VARIABLES_DOMAIN
6643 ? _("All variables matching regular expression "
6644 "\"%s\",\n\twith type matching regular expression "
6645 "\"%s\",\n\tin all modules matching regular "
6646 "expression \"%s\":")
6647 : _("All functions matching regular expression "
6648 "\"%s\",\n\twith type matching regular expression "
6649 "\"%s\",\n\tin all modules matching regular "
6650 "expression \"%s\":")),
6651 regexp, type_regexp, module_regexp);
6652 }
6653 }
6654 printf_filtered ("\n");
6655 }
6656
6657 /* Find all symbols of type KIND matching the given regular expressions
6658 along with the symbols for the modules in which those symbols
6659 reside. */
6660 std::vector<module_symbol_search> module_symbols
6661 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6662
6663 std::sort (module_symbols.begin (), module_symbols.end (),
6664 [] (const module_symbol_search &a, const module_symbol_search &b)
6665 {
6666 if (a.first < b.first)
6667 return true;
6668 else if (a.first == b.first)
6669 return a.second < b.second;
6670 else
6671 return false;
6672 });
6673
6674 const char *last_filename = "";
6675 const symbol *last_module_symbol = nullptr;
6676 for (const module_symbol_search &ms : module_symbols)
6677 {
6678 const symbol_search &p = ms.first;
6679 const symbol_search &q = ms.second;
6680
6681 gdb_assert (q.symbol != nullptr);
6682
6683 if (last_module_symbol != p.symbol)
6684 {
6685 printf_filtered ("\n");
6686 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6687 last_module_symbol = p.symbol;
6688 last_filename = "";
6689 }
6690
6691 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6692 last_filename);
6693 last_filename
6694 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6695 }
6696 }
6697
6698 /* Hold the option values for the 'info module .....' sub-commands. */
6699
6700 struct info_modules_var_func_options
6701 {
6702 bool quiet = false;
6703 char *type_regexp = nullptr;
6704 char *module_regexp = nullptr;
6705
6706 ~info_modules_var_func_options ()
6707 {
6708 xfree (type_regexp);
6709 xfree (module_regexp);
6710 }
6711 };
6712
6713 /* The options used by 'info module variables' and 'info module functions'
6714 commands. */
6715
6716 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6717 gdb::option::boolean_option_def<info_modules_var_func_options> {
6718 "q",
6719 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6720 nullptr, /* show_cmd_cb */
6721 nullptr /* set_doc */
6722 },
6723
6724 gdb::option::string_option_def<info_modules_var_func_options> {
6725 "t",
6726 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6727 nullptr, /* show_cmd_cb */
6728 nullptr /* set_doc */
6729 },
6730
6731 gdb::option::string_option_def<info_modules_var_func_options> {
6732 "m",
6733 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6734 nullptr, /* show_cmd_cb */
6735 nullptr /* set_doc */
6736 }
6737 };
6738
6739 /* Return the option group used by the 'info module ...' sub-commands. */
6740
6741 static inline gdb::option::option_def_group
6742 make_info_modules_var_func_options_def_group
6743 (info_modules_var_func_options *opts)
6744 {
6745 return {{info_modules_var_func_options_defs}, opts};
6746 }
6747
6748 /* Implements the 'info module functions' command. */
6749
6750 static void
6751 info_module_functions_command (const char *args, int from_tty)
6752 {
6753 info_modules_var_func_options opts;
6754 auto grp = make_info_modules_var_func_options_def_group (&opts);
6755 gdb::option::process_options
6756 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6757 if (args != nullptr && *args == '\0')
6758 args = nullptr;
6759
6760 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6761 opts.type_regexp, FUNCTIONS_DOMAIN);
6762 }
6763
6764 /* Implements the 'info module variables' command. */
6765
6766 static void
6767 info_module_variables_command (const char *args, int from_tty)
6768 {
6769 info_modules_var_func_options opts;
6770 auto grp = make_info_modules_var_func_options_def_group (&opts);
6771 gdb::option::process_options
6772 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6773 if (args != nullptr && *args == '\0')
6774 args = nullptr;
6775
6776 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6777 opts.type_regexp, VARIABLES_DOMAIN);
6778 }
6779
6780 /* Command completer for 'info module ...' sub-commands. */
6781
6782 static void
6783 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6784 completion_tracker &tracker,
6785 const char *text,
6786 const char * /* word */)
6787 {
6788
6789 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6790 if (gdb::option::complete_options
6791 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6792 return;
6793
6794 const char *word = advance_to_expression_complete_word_point (tracker, text);
6795 symbol_completer (ignore, tracker, text, word);
6796 }
6797
6798 \f
6799
6800 void _initialize_symtab ();
6801 void
6802 _initialize_symtab ()
6803 {
6804 cmd_list_element *c;
6805
6806 initialize_ordinary_address_classes ();
6807
6808 c = add_info ("variables", info_variables_command,
6809 info_print_args_help (_("\
6810 All global and static variable names or those matching REGEXPs.\n\
6811 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6812 Prints the global and static variables.\n"),
6813 _("global and static variables"),
6814 true));
6815 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6816 if (dbx_commands)
6817 {
6818 c = add_com ("whereis", class_info, info_variables_command,
6819 info_print_args_help (_("\
6820 All global and static variable names, or those matching REGEXPs.\n\
6821 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6822 Prints the global and static variables.\n"),
6823 _("global and static variables"),
6824 true));
6825 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6826 }
6827
6828 c = add_info ("functions", info_functions_command,
6829 info_print_args_help (_("\
6830 All function names or those matching REGEXPs.\n\
6831 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6832 Prints the functions.\n"),
6833 _("functions"),
6834 true));
6835 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6836
6837 c = add_info ("types", info_types_command, _("\
6838 All type names, or those matching REGEXP.\n\
6839 Usage: info types [-q] [REGEXP]\n\
6840 Print information about all types matching REGEXP, or all types if no\n\
6841 REGEXP is given. The optional flag -q disables printing of headers."));
6842 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6843
6844 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6845
6846 static std::string info_sources_help
6847 = gdb::option::build_help (_("\
6848 All source files in the program or those matching REGEXP.\n\
6849 Usage: info sources [OPTION]... [REGEXP]\n\
6850 By default, REGEXP is used to match anywhere in the filename.\n\
6851 \n\
6852 Options:\n\
6853 %OPTIONS%"),
6854 info_sources_opts);
6855
6856 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6857 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6858
6859 c = add_info ("modules", info_modules_command,
6860 _("All module names, or those matching REGEXP."));
6861 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6862
6863 add_basic_prefix_cmd ("module", class_info, _("\
6864 Print information about modules."),
6865 &info_module_cmdlist, "info module ",
6866 0, &infolist);
6867
6868 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6869 Display functions arranged by modules.\n\
6870 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6871 Print a summary of all functions within each Fortran module, grouped by\n\
6872 module and file. For each function the line on which the function is\n\
6873 defined is given along with the type signature and name of the function.\n\
6874 \n\
6875 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6876 listed. If MODREGEXP is provided then only functions in modules matching\n\
6877 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6878 type signature matches TYPEREGEXP are listed.\n\
6879 \n\
6880 The -q flag suppresses printing some header information."),
6881 &info_module_cmdlist);
6882 set_cmd_completer_handle_brkchars
6883 (c, info_module_var_func_command_completer);
6884
6885 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6886 Display variables arranged by modules.\n\
6887 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6888 Print a summary of all variables within each Fortran module, grouped by\n\
6889 module and file. For each variable the line on which the variable is\n\
6890 defined is given along with the type and name of the variable.\n\
6891 \n\
6892 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6893 listed. If MODREGEXP is provided then only variables in modules matching\n\
6894 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6895 type matches TYPEREGEXP are listed.\n\
6896 \n\
6897 The -q flag suppresses printing some header information."),
6898 &info_module_cmdlist);
6899 set_cmd_completer_handle_brkchars
6900 (c, info_module_var_func_command_completer);
6901
6902 add_com ("rbreak", class_breakpoint, rbreak_command,
6903 _("Set a breakpoint for all functions matching REGEXP."));
6904
6905 add_setshow_enum_cmd ("multiple-symbols", no_class,
6906 multiple_symbols_modes, &multiple_symbols_mode,
6907 _("\
6908 Set how the debugger handles ambiguities in expressions."), _("\
6909 Show how the debugger handles ambiguities in expressions."), _("\
6910 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6911 NULL, NULL, &setlist, &showlist);
6912
6913 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6914 &basenames_may_differ, _("\
6915 Set whether a source file may have multiple base names."), _("\
6916 Show whether a source file may have multiple base names."), _("\
6917 (A \"base name\" is the name of a file with the directory part removed.\n\
6918 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6919 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6920 before comparing them. Canonicalization is an expensive operation,\n\
6921 but it allows the same file be known by more than one base name.\n\
6922 If not set (the default), all source files are assumed to have just\n\
6923 one base name, and gdb will do file name comparisons more efficiently."),
6924 NULL, NULL,
6925 &setlist, &showlist);
6926
6927 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6928 _("Set debugging of symbol table creation."),
6929 _("Show debugging of symbol table creation."), _("\
6930 When enabled (non-zero), debugging messages are printed when building\n\
6931 symbol tables. A value of 1 (one) normally provides enough information.\n\
6932 A value greater than 1 provides more verbose information."),
6933 NULL,
6934 NULL,
6935 &setdebuglist, &showdebuglist);
6936
6937 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6938 _("\
6939 Set debugging of symbol lookup."), _("\
6940 Show debugging of symbol lookup."), _("\
6941 When enabled (non-zero), symbol lookups are logged."),
6942 NULL, NULL,
6943 &setdebuglist, &showdebuglist);
6944
6945 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6946 &new_symbol_cache_size,
6947 _("Set the size of the symbol cache."),
6948 _("Show the size of the symbol cache."), _("\
6949 The size of the symbol cache.\n\
6950 If zero then the symbol cache is disabled."),
6951 set_symbol_cache_size_handler, NULL,
6952 &maintenance_set_cmdlist,
6953 &maintenance_show_cmdlist);
6954
6955 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6956 _("Dump the symbol cache for each program space."),
6957 &maintenanceprintlist);
6958
6959 add_cmd ("symbol-cache-statistics", class_maintenance,
6960 maintenance_print_symbol_cache_statistics,
6961 _("Print symbol cache statistics for each program space."),
6962 &maintenanceprintlist);
6963
6964 add_cmd ("flush-symbol-cache", class_maintenance,
6965 maintenance_flush_symbol_cache,
6966 _("Flush the symbol cache for each program space."),
6967 &maintenancelist);
6968
6969 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6970 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6971 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6972 }