]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.h
gdb: remove SYMTAB_LANGUAGE macro, add getter/setter
[thirdparty/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include <set>
27 #include "gdbsupport/gdb_vecs.h"
28 #include "gdbtypes.h"
29 #include "gdbsupport/gdb_obstack.h"
30 #include "gdbsupport/gdb_regex.h"
31 #include "gdbsupport/enum-flags.h"
32 #include "gdbsupport/function-view.h"
33 #include "gdbsupport/gdb_optional.h"
34 #include "gdbsupport/gdb_string_view.h"
35 #include "gdbsupport/next-iterator.h"
36 #include "gdbsupport/iterator-range.h"
37 #include "completer.h"
38 #include "gdb-demangle.h"
39
40 /* Opaque declarations. */
41 struct ui_file;
42 struct frame_info;
43 struct symbol;
44 struct obstack;
45 struct objfile;
46 struct block;
47 struct blockvector;
48 struct axs_value;
49 struct agent_expr;
50 struct program_space;
51 struct language_defn;
52 struct common_block;
53 struct obj_section;
54 struct cmd_list_element;
55 class probe;
56 struct lookup_name_info;
57
58 /* How to match a lookup name against a symbol search name. */
59 enum class symbol_name_match_type
60 {
61 /* Wild matching. Matches unqualified symbol names in all
62 namespace/module/packages, etc. */
63 WILD,
64
65 /* Full matching. The lookup name indicates a fully-qualified name,
66 and only matches symbol search names in the specified
67 namespace/module/package. */
68 FULL,
69
70 /* Search name matching. This is like FULL, but the search name did
71 not come from the user; instead it is already a search name
72 retrieved from a search_name () call.
73 For Ada, this avoids re-encoding an already-encoded search name
74 (which would potentially incorrectly lowercase letters in the
75 linkage/search name that should remain uppercase). For C++, it
76 avoids trying to demangle a name we already know is
77 demangled. */
78 SEARCH_NAME,
79
80 /* Expression matching. The same as FULL matching in most
81 languages. The same as WILD matching in Ada. */
82 EXPRESSION,
83 };
84
85 /* Hash the given symbol search name according to LANGUAGE's
86 rules. */
87 extern unsigned int search_name_hash (enum language language,
88 const char *search_name);
89
90 /* Ada-specific bits of a lookup_name_info object. This is lazily
91 constructed on demand. */
92
93 class ada_lookup_name_info final
94 {
95 public:
96 /* Construct. */
97 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
98
99 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
100 as name match type. Returns true if there's a match, false
101 otherwise. If non-NULL, store the matching results in MATCH. */
102 bool matches (const char *symbol_search_name,
103 symbol_name_match_type match_type,
104 completion_match_result *comp_match_res) const;
105
106 /* The Ada-encoded lookup name. */
107 const std::string &lookup_name () const
108 { return m_encoded_name; }
109
110 /* Return true if we're supposed to be doing a wild match look
111 up. */
112 bool wild_match_p () const
113 { return m_wild_match_p; }
114
115 /* Return true if we're looking up a name inside package
116 Standard. */
117 bool standard_p () const
118 { return m_standard_p; }
119
120 /* Return true if doing a verbatim match. */
121 bool verbatim_p () const
122 { return m_verbatim_p; }
123
124 private:
125 /* The Ada-encoded lookup name. */
126 std::string m_encoded_name;
127
128 /* Whether the user-provided lookup name was Ada encoded. If so,
129 then return encoded names in the 'matches' method's 'completion
130 match result' output. */
131 bool m_encoded_p : 1;
132
133 /* True if really doing wild matching. Even if the user requests
134 wild matching, some cases require full matching. */
135 bool m_wild_match_p : 1;
136
137 /* True if doing a verbatim match. This is true if the decoded
138 version of the symbol name is wrapped in '<'/'>'. This is an
139 escape hatch users can use to look up symbols the Ada encoding
140 does not understand. */
141 bool m_verbatim_p : 1;
142
143 /* True if the user specified a symbol name that is inside package
144 Standard. Symbol names inside package Standard are handled
145 specially. We always do a non-wild match of the symbol name
146 without the "standard__" prefix, and only search static and
147 global symbols. This was primarily introduced in order to allow
148 the user to specifically access the standard exceptions using,
149 for instance, Standard.Constraint_Error when Constraint_Error is
150 ambiguous (due to the user defining its own Constraint_Error
151 entity inside its program). */
152 bool m_standard_p : 1;
153 };
154
155 /* Language-specific bits of a lookup_name_info object, for languages
156 that do name searching using demangled names (C++/D/Go). This is
157 lazily constructed on demand. */
158
159 struct demangle_for_lookup_info final
160 {
161 public:
162 demangle_for_lookup_info (const lookup_name_info &lookup_name,
163 language lang);
164
165 /* The demangled lookup name. */
166 const std::string &lookup_name () const
167 { return m_demangled_name; }
168
169 private:
170 /* The demangled lookup name. */
171 std::string m_demangled_name;
172 };
173
174 /* Object that aggregates all information related to a symbol lookup
175 name. I.e., the name that is matched against the symbol's search
176 name. Caches per-language information so that it doesn't require
177 recomputing it for every symbol comparison, like for example the
178 Ada encoded name and the symbol's name hash for a given language.
179 The object is conceptually immutable once constructed, and thus has
180 no setters. This is to prevent some code path from tweaking some
181 property of the lookup name for some local reason and accidentally
182 altering the results of any continuing search(es).
183 lookup_name_info objects are generally passed around as a const
184 reference to reinforce that. (They're not passed around by value
185 because they're not small.) */
186 class lookup_name_info final
187 {
188 public:
189 /* We delete this overload so that the callers are required to
190 explicitly handle the lifetime of the name. */
191 lookup_name_info (std::string &&name,
192 symbol_name_match_type match_type,
193 bool completion_mode = false,
194 bool ignore_parameters = false) = delete;
195
196 /* This overload requires that NAME have a lifetime at least as long
197 as the lifetime of this object. */
198 lookup_name_info (const std::string &name,
199 symbol_name_match_type match_type,
200 bool completion_mode = false,
201 bool ignore_parameters = false)
202 : m_match_type (match_type),
203 m_completion_mode (completion_mode),
204 m_ignore_parameters (ignore_parameters),
205 m_name (name)
206 {}
207
208 /* This overload requires that NAME have a lifetime at least as long
209 as the lifetime of this object. */
210 lookup_name_info (const char *name,
211 symbol_name_match_type match_type,
212 bool completion_mode = false,
213 bool ignore_parameters = false)
214 : m_match_type (match_type),
215 m_completion_mode (completion_mode),
216 m_ignore_parameters (ignore_parameters),
217 m_name (name)
218 {}
219
220 /* Getters. See description of each corresponding field. */
221 symbol_name_match_type match_type () const { return m_match_type; }
222 bool completion_mode () const { return m_completion_mode; }
223 gdb::string_view name () const { return m_name; }
224 const bool ignore_parameters () const { return m_ignore_parameters; }
225
226 /* Like the "name" method but guarantees that the returned string is
227 \0-terminated. */
228 const char *c_str () const
229 {
230 /* Actually this is always guaranteed due to how the class is
231 constructed. */
232 return m_name.data ();
233 }
234
235 /* Return a version of this lookup name that is usable with
236 comparisons against symbols have no parameter info, such as
237 psymbols and GDB index symbols. */
238 lookup_name_info make_ignore_params () const
239 {
240 return lookup_name_info (c_str (), m_match_type, m_completion_mode,
241 true /* ignore params */);
242 }
243
244 /* Get the search name hash for searches in language LANG. */
245 unsigned int search_name_hash (language lang) const
246 {
247 /* Only compute each language's hash once. */
248 if (!m_demangled_hashes_p[lang])
249 {
250 m_demangled_hashes[lang]
251 = ::search_name_hash (lang, language_lookup_name (lang));
252 m_demangled_hashes_p[lang] = true;
253 }
254 return m_demangled_hashes[lang];
255 }
256
257 /* Get the search name for searches in language LANG. */
258 const char *language_lookup_name (language lang) const
259 {
260 switch (lang)
261 {
262 case language_ada:
263 return ada ().lookup_name ().c_str ();
264 case language_cplus:
265 return cplus ().lookup_name ().c_str ();
266 case language_d:
267 return d ().lookup_name ().c_str ();
268 case language_go:
269 return go ().lookup_name ().c_str ();
270 default:
271 return m_name.data ();
272 }
273 }
274
275 /* Get the Ada-specific lookup info. */
276 const ada_lookup_name_info &ada () const
277 {
278 maybe_init (m_ada);
279 return *m_ada;
280 }
281
282 /* Get the C++-specific lookup info. */
283 const demangle_for_lookup_info &cplus () const
284 {
285 maybe_init (m_cplus, language_cplus);
286 return *m_cplus;
287 }
288
289 /* Get the D-specific lookup info. */
290 const demangle_for_lookup_info &d () const
291 {
292 maybe_init (m_d, language_d);
293 return *m_d;
294 }
295
296 /* Get the Go-specific lookup info. */
297 const demangle_for_lookup_info &go () const
298 {
299 maybe_init (m_go, language_go);
300 return *m_go;
301 }
302
303 /* Get a reference to a lookup_name_info object that matches any
304 symbol name. */
305 static const lookup_name_info &match_any ();
306
307 private:
308 /* Initialize FIELD, if not initialized yet. */
309 template<typename Field, typename... Args>
310 void maybe_init (Field &field, Args&&... args) const
311 {
312 if (!field)
313 field.emplace (*this, std::forward<Args> (args)...);
314 }
315
316 /* The lookup info as passed to the ctor. */
317 symbol_name_match_type m_match_type;
318 bool m_completion_mode;
319 bool m_ignore_parameters;
320 gdb::string_view m_name;
321
322 /* Language-specific info. These fields are filled lazily the first
323 time a lookup is done in the corresponding language. They're
324 mutable because lookup_name_info objects are typically passed
325 around by const reference (see intro), and they're conceptually
326 "cache" that can always be reconstructed from the non-mutable
327 fields. */
328 mutable gdb::optional<ada_lookup_name_info> m_ada;
329 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
330 mutable gdb::optional<demangle_for_lookup_info> m_d;
331 mutable gdb::optional<demangle_for_lookup_info> m_go;
332
333 /* The demangled hashes. Stored in an array with one entry for each
334 possible language. The second array records whether we've
335 already computed the each language's hash. (These are separate
336 arrays instead of a single array of optional<unsigned> to avoid
337 alignment padding). */
338 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
339 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
340 };
341
342 /* Comparison function for completion symbol lookup.
343
344 Returns true if the symbol name matches against LOOKUP_NAME.
345
346 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
347
348 On success and if non-NULL, COMP_MATCH_RES->match is set to point
349 to the symbol name as should be presented to the user as a
350 completion match list element. In most languages, this is the same
351 as the symbol's search name, but in some, like Ada, the display
352 name is dynamically computed within the comparison routine.
353
354 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
355 points the part of SYMBOL_SEARCH_NAME that was considered to match
356 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
357 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
358 points to "function()" inside SYMBOL_SEARCH_NAME. */
359 typedef bool (symbol_name_matcher_ftype)
360 (const char *symbol_search_name,
361 const lookup_name_info &lookup_name,
362 completion_match_result *comp_match_res);
363
364 /* Some of the structures in this file are space critical.
365 The space-critical structures are:
366
367 struct general_symbol_info
368 struct symbol
369 struct partial_symbol
370
371 These structures are laid out to encourage good packing.
372 They use ENUM_BITFIELD and short int fields, and they order the
373 structure members so that fields less than a word are next
374 to each other so they can be packed together. */
375
376 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
377 all the space critical structures (plus struct minimal_symbol).
378 Memory usage dropped from 99360768 bytes to 90001408 bytes.
379 I measured this with before-and-after tests of
380 "HEAD-old-gdb -readnow HEAD-old-gdb" and
381 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
382 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
383 typing "maint space 1" at the first command prompt.
384
385 Here is another measurement (from andrew c):
386 # no /usr/lib/debug, just plain glibc, like a normal user
387 gdb HEAD-old-gdb
388 (gdb) break internal_error
389 (gdb) run
390 (gdb) maint internal-error
391 (gdb) backtrace
392 (gdb) maint space 1
393
394 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
395 gdb HEAD 2003-08-19 space used: 8904704
396 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
397 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
398
399 The third line shows the savings from the optimizations in symtab.h.
400 The fourth line shows the savings from the optimizations in
401 gdbtypes.h. Both optimizations are in gdb HEAD now.
402
403 --chastain 2003-08-21 */
404
405 /* Define a structure for the information that is common to all symbol types,
406 including minimal symbols, partial symbols, and full symbols. In a
407 multilanguage environment, some language specific information may need to
408 be recorded along with each symbol. */
409
410 /* This structure is space critical. See space comments at the top. */
411
412 struct general_symbol_info
413 {
414 /* Short version as to when to use which name accessor:
415 Use natural_name () to refer to the name of the symbol in the original
416 source code. Use linkage_name () if you want to know what the linker
417 thinks the symbol's name is. Use print_name () for output. Use
418 demangled_name () if you specifically need to know whether natural_name ()
419 and linkage_name () are different. */
420
421 const char *linkage_name () const
422 { return m_name; }
423
424 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
425 the original source code. In languages like C++ where symbols may
426 be mangled for ease of manipulation by the linker, this is the
427 demangled name. */
428 const char *natural_name () const;
429
430 /* Returns a version of the name of a symbol that is
431 suitable for output. In C++ this is the "demangled" form of the
432 name if demangle is on and the "mangled" form of the name if
433 demangle is off. In other languages this is just the symbol name.
434 The result should never be NULL. Don't use this for internal
435 purposes (e.g. storing in a hashtable): it's only suitable for output. */
436 const char *print_name () const
437 { return demangle ? natural_name () : linkage_name (); }
438
439 /* Return the demangled name for a symbol based on the language for
440 that symbol. If no demangled name exists, return NULL. */
441 const char *demangled_name () const;
442
443 /* Returns the name to be used when sorting and searching symbols.
444 In C++, we search for the demangled form of a name,
445 and so sort symbols accordingly. In Ada, however, we search by mangled
446 name. If there is no distinct demangled name, then this
447 returns the same value (same pointer) as linkage_name (). */
448 const char *search_name () const;
449
450 /* Set just the linkage name of a symbol; do not try to demangle
451 it. Used for constructs which do not have a mangled name,
452 e.g. struct tags. Unlike compute_and_set_names, linkage_name must
453 be terminated and either already on the objfile's obstack or
454 permanently allocated. */
455 void set_linkage_name (const char *linkage_name)
456 { m_name = linkage_name; }
457
458 /* Set the demangled name of this symbol to NAME. NAME must be
459 already correctly allocated. If the symbol's language is Ada,
460 then the name is ignored and the obstack is set. */
461 void set_demangled_name (const char *name, struct obstack *obstack);
462
463 enum language language () const
464 { return m_language; }
465
466 /* Initializes the language dependent portion of a symbol
467 depending upon the language for the symbol. */
468 void set_language (enum language language, struct obstack *obstack);
469
470 /* Set the linkage and natural names of a symbol, by demangling
471 the linkage name. If linkage_name may not be nullterminated,
472 copy_name must be set to true. */
473 void compute_and_set_names (gdb::string_view linkage_name, bool copy_name,
474 struct objfile_per_bfd_storage *per_bfd,
475 gdb::optional<hashval_t> hash
476 = gdb::optional<hashval_t> ());
477
478 /* Name of the symbol. This is a required field. Storage for the
479 name is allocated on the objfile_obstack for the associated
480 objfile. For languages like C++ that make a distinction between
481 the mangled name and demangled name, this is the mangled
482 name. */
483
484 const char *m_name;
485
486 /* Value of the symbol. Which member of this union to use, and what
487 it means, depends on what kind of symbol this is and its
488 SYMBOL_CLASS. See comments there for more details. All of these
489 are in host byte order (though what they point to might be in
490 target byte order, e.g. LOC_CONST_BYTES). */
491
492 union
493 {
494 LONGEST ivalue;
495
496 const struct block *block;
497
498 const gdb_byte *bytes;
499
500 CORE_ADDR address;
501
502 /* A common block. Used with LOC_COMMON_BLOCK. */
503
504 const struct common_block *common_block;
505
506 /* For opaque typedef struct chain. */
507
508 struct symbol *chain;
509 }
510 value;
511
512 /* Since one and only one language can apply, wrap the language specific
513 information inside a union. */
514
515 union
516 {
517 /* A pointer to an obstack that can be used for storage associated
518 with this symbol. This is only used by Ada, and only when the
519 'ada_mangled' field is zero. */
520 struct obstack *obstack;
521
522 /* This is used by languages which wish to store a demangled name.
523 currently used by Ada, C++, and Objective C. */
524 const char *demangled_name;
525 }
526 language_specific;
527
528 /* Record the source code language that applies to this symbol.
529 This is used to select one of the fields from the language specific
530 union above. */
531
532 ENUM_BITFIELD(language) m_language : LANGUAGE_BITS;
533
534 /* This is only used by Ada. If set, then the 'demangled_name' field
535 of language_specific is valid. Otherwise, the 'obstack' field is
536 valid. */
537 unsigned int ada_mangled : 1;
538
539 /* Which section is this symbol in? This is an index into
540 section_offsets for this objfile. Negative means that the symbol
541 does not get relocated relative to a section. */
542
543 short m_section;
544
545 /* Set the index into the obj_section list (within the containing
546 objfile) for the section that contains this symbol. See M_SECTION
547 for more details. */
548
549 void set_section_index (short idx)
550 { m_section = idx; }
551
552 /* Return the index into the obj_section list (within the containing
553 objfile) for the section that contains this symbol. See M_SECTION
554 for more details. */
555
556 short section_index () const
557 { return m_section; }
558
559 /* Return the obj_section from OBJFILE for this symbol. The symbol
560 returned is based on the SECTION member variable, and can be nullptr
561 if SECTION is negative. */
562
563 struct obj_section *obj_section (const struct objfile *objfile) const;
564 };
565
566 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
567
568 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
569 SYM. If SYM appears in the main program's minimal symbols, then
570 that minsym's address is returned; otherwise, SYM's address is
571 returned. This should generally only be used via the
572 SYMBOL_VALUE_ADDRESS macro. */
573
574 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
575
576 /* Note that these macros only work with symbol, not partial_symbol. */
577
578 #define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
579 #define SYMBOL_VALUE_ADDRESS(symbol) \
580 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
581 : ((symbol)->value.address))
582 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
583 ((symbol)->value.address = (new_value))
584 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
585 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
586 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
587 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
588
589 /* Try to determine the demangled name for a symbol, based on the
590 language of that symbol. If the language is set to language_auto,
591 it will attempt to find any demangling algorithm that works and
592 then set the language appropriately. The returned name is allocated
593 by the demangler and should be xfree'd. */
594
595 extern gdb::unique_xmalloc_ptr<char> symbol_find_demangled_name
596 (struct general_symbol_info *gsymbol, const char *mangled);
597
598 /* Return true if NAME matches the "search" name of SYMBOL, according
599 to the symbol's language. */
600 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
601 symbol_matches_search_name ((symbol), (name))
602
603 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
604 and psymbols. */
605 extern bool symbol_matches_search_name
606 (const struct general_symbol_info *gsymbol,
607 const lookup_name_info &name);
608
609 /* Compute the hash of the given symbol search name of a symbol of
610 language LANGUAGE. */
611 extern unsigned int search_name_hash (enum language language,
612 const char *search_name);
613
614 /* Classification types for a minimal symbol. These should be taken as
615 "advisory only", since if gdb can't easily figure out a
616 classification it simply selects mst_unknown. It may also have to
617 guess when it can't figure out which is a better match between two
618 types (mst_data versus mst_bss) for example. Since the minimal
619 symbol info is sometimes derived from the BFD library's view of a
620 file, we need to live with what information bfd supplies. */
621
622 enum minimal_symbol_type
623 {
624 mst_unknown = 0, /* Unknown type, the default */
625 mst_text, /* Generally executable instructions */
626
627 /* A GNU ifunc symbol, in the .text section. GDB uses to know
628 whether the user is setting a breakpoint on a GNU ifunc function,
629 and thus GDB needs to actually set the breakpoint on the target
630 function. It is also used to know whether the program stepped
631 into an ifunc resolver -- the resolver may get a separate
632 symbol/alias under a different name, but it'll have the same
633 address as the ifunc symbol. */
634 mst_text_gnu_ifunc, /* Executable code returning address
635 of executable code */
636
637 /* A GNU ifunc function descriptor symbol, in a data section
638 (typically ".opd"). Seen on architectures that use function
639 descriptors, like PPC64/ELFv1. In this case, this symbol's value
640 is the address of the descriptor. There'll be a corresponding
641 mst_text_gnu_ifunc synthetic symbol for the text/entry
642 address. */
643 mst_data_gnu_ifunc, /* Executable code returning address
644 of executable code */
645
646 mst_slot_got_plt, /* GOT entries for .plt sections */
647 mst_data, /* Generally initialized data */
648 mst_bss, /* Generally uninitialized data */
649 mst_abs, /* Generally absolute (nonrelocatable) */
650 /* GDB uses mst_solib_trampoline for the start address of a shared
651 library trampoline entry. Breakpoints for shared library functions
652 are put there if the shared library is not yet loaded.
653 After the shared library is loaded, lookup_minimal_symbol will
654 prefer the minimal symbol from the shared library (usually
655 a mst_text symbol) over the mst_solib_trampoline symbol, and the
656 breakpoints will be moved to their true address in the shared
657 library via breakpoint_re_set. */
658 mst_solib_trampoline, /* Shared library trampoline code */
659 /* For the mst_file* types, the names are only guaranteed to be unique
660 within a given .o file. */
661 mst_file_text, /* Static version of mst_text */
662 mst_file_data, /* Static version of mst_data */
663 mst_file_bss, /* Static version of mst_bss */
664 nr_minsym_types
665 };
666
667 /* The number of enum minimal_symbol_type values, with some padding for
668 reasonable growth. */
669 #define MINSYM_TYPE_BITS 4
670 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
671
672 /* Define a simple structure used to hold some very basic information about
673 all defined global symbols (text, data, bss, abs, etc). The only required
674 information is the general_symbol_info.
675
676 In many cases, even if a file was compiled with no special options for
677 debugging at all, as long as was not stripped it will contain sufficient
678 information to build a useful minimal symbol table using this structure.
679 Even when a file contains enough debugging information to build a full
680 symbol table, these minimal symbols are still useful for quickly mapping
681 between names and addresses, and vice versa. They are also sometimes
682 used to figure out what full symbol table entries need to be read in. */
683
684 struct minimal_symbol : public general_symbol_info
685 {
686 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
687 information to calculate the end of the partial symtab based on the
688 address of the last symbol plus the size of the last symbol. */
689
690 unsigned long size;
691
692 /* Which source file is this symbol in? Only relevant for mst_file_*. */
693 const char *filename;
694
695 /* Classification type for this minimal symbol. */
696
697 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
698
699 /* Non-zero if this symbol was created by gdb.
700 Such symbols do not appear in the output of "info var|fun". */
701 unsigned int created_by_gdb : 1;
702
703 /* Two flag bits provided for the use of the target. */
704 unsigned int target_flag_1 : 1;
705 unsigned int target_flag_2 : 1;
706
707 /* Nonzero iff the size of the minimal symbol has been set.
708 Symbol size information can sometimes not be determined, because
709 the object file format may not carry that piece of information. */
710 unsigned int has_size : 1;
711
712 /* For data symbols only, if this is set, then the symbol might be
713 subject to copy relocation. In this case, a minimal symbol
714 matching the symbol's linkage name is first looked for in the
715 main objfile. If found, then that address is used; otherwise the
716 address in this symbol is used. */
717
718 unsigned maybe_copied : 1;
719
720 /* Non-zero if this symbol ever had its demangled name set (even if
721 it was set to NULL). */
722 unsigned int name_set : 1;
723
724 /* Minimal symbols with the same hash key are kept on a linked
725 list. This is the link. */
726
727 struct minimal_symbol *hash_next;
728
729 /* Minimal symbols are stored in two different hash tables. This is
730 the `next' pointer for the demangled hash table. */
731
732 struct minimal_symbol *demangled_hash_next;
733
734 /* True if this symbol is of some data type. */
735
736 bool data_p () const;
737
738 /* True if MSYMBOL is of some text type. */
739
740 bool text_p () const;
741 };
742
743 /* Return the address of MINSYM, which comes from OBJF. The
744 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
745 main program's minimal symbols, then that minsym's address is
746 returned; otherwise, MINSYM's address is returned. This should
747 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
748
749 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
750 const struct minimal_symbol *minsym);
751
752 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
753 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
754 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
755 #define SET_MSYMBOL_SIZE(msymbol, sz) \
756 do \
757 { \
758 (msymbol)->size = sz; \
759 (msymbol)->has_size = 1; \
760 } while (0)
761 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
762 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
763
764 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
765 /* The unrelocated address of the minimal symbol. */
766 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
767 /* The relocated address of the minimal symbol, using the section
768 offsets from OBJFILE. */
769 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
770 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
771 : ((symbol)->value.address \
772 + (objfile)->section_offsets[(symbol)->section_index ()]))
773 /* For a bound minsym, we can easily compute the address directly. */
774 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
775 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
776 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
777 ((symbol)->value.address = (new_value))
778 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
779 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
780 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
781
782 #include "minsyms.h"
783
784 \f
785
786 /* Represent one symbol name; a variable, constant, function or typedef. */
787
788 /* Different name domains for symbols. Looking up a symbol specifies a
789 domain and ignores symbol definitions in other name domains. */
790
791 typedef enum domain_enum_tag
792 {
793 /* UNDEF_DOMAIN is used when a domain has not been discovered or
794 none of the following apply. This usually indicates an error either
795 in the symbol information or in gdb's handling of symbols. */
796
797 UNDEF_DOMAIN,
798
799 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
800 function names, typedef names and enum type values. */
801
802 VAR_DOMAIN,
803
804 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
805 Thus, if `struct foo' is used in a C program, it produces a symbol named
806 `foo' in the STRUCT_DOMAIN. */
807
808 STRUCT_DOMAIN,
809
810 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
811
812 MODULE_DOMAIN,
813
814 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
815
816 LABEL_DOMAIN,
817
818 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
819 They also always use LOC_COMMON_BLOCK. */
820 COMMON_BLOCK_DOMAIN,
821
822 /* This must remain last. */
823 NR_DOMAINS
824 } domain_enum;
825
826 /* The number of bits in a symbol used to represent the domain. */
827
828 #define SYMBOL_DOMAIN_BITS 3
829 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
830
831 extern const char *domain_name (domain_enum);
832
833 /* Searching domains, used when searching for symbols. Element numbers are
834 hardcoded in GDB, check all enum uses before changing it. */
835
836 enum search_domain
837 {
838 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
839 TYPES_DOMAIN. */
840 VARIABLES_DOMAIN = 0,
841
842 /* All functions -- for some reason not methods, though. */
843 FUNCTIONS_DOMAIN = 1,
844
845 /* All defined types */
846 TYPES_DOMAIN = 2,
847
848 /* All modules. */
849 MODULES_DOMAIN = 3,
850
851 /* Any type. */
852 ALL_DOMAIN = 4
853 };
854
855 extern const char *search_domain_name (enum search_domain);
856
857 /* An address-class says where to find the value of a symbol. */
858
859 enum address_class
860 {
861 /* Not used; catches errors. */
862
863 LOC_UNDEF,
864
865 /* Value is constant int SYMBOL_VALUE, host byteorder. */
866
867 LOC_CONST,
868
869 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
870
871 LOC_STATIC,
872
873 /* Value is in register. SYMBOL_VALUE is the register number
874 in the original debug format. SYMBOL_REGISTER_OPS holds a
875 function that can be called to transform this into the
876 actual register number this represents in a specific target
877 architecture (gdbarch).
878
879 For some symbol formats (stabs, for some compilers at least),
880 the compiler generates two symbols, an argument and a register.
881 In some cases we combine them to a single LOC_REGISTER in symbol
882 reading, but currently not for all cases (e.g. it's passed on the
883 stack and then loaded into a register). */
884
885 LOC_REGISTER,
886
887 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
888
889 LOC_ARG,
890
891 /* Value address is at SYMBOL_VALUE offset in arglist. */
892
893 LOC_REF_ARG,
894
895 /* Value is in specified register. Just like LOC_REGISTER except the
896 register holds the address of the argument instead of the argument
897 itself. This is currently used for the passing of structs and unions
898 on sparc and hppa. It is also used for call by reference where the
899 address is in a register, at least by mipsread.c. */
900
901 LOC_REGPARM_ADDR,
902
903 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
904
905 LOC_LOCAL,
906
907 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
908 STRUCT_DOMAIN all have this class. */
909
910 LOC_TYPEDEF,
911
912 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
913
914 LOC_LABEL,
915
916 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
917 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
918 of the block. Function names have this class. */
919
920 LOC_BLOCK,
921
922 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
923 target byte order. */
924
925 LOC_CONST_BYTES,
926
927 /* Value is at fixed address, but the address of the variable has
928 to be determined from the minimal symbol table whenever the
929 variable is referenced.
930 This happens if debugging information for a global symbol is
931 emitted and the corresponding minimal symbol is defined
932 in another object file or runtime common storage.
933 The linker might even remove the minimal symbol if the global
934 symbol is never referenced, in which case the symbol remains
935 unresolved.
936
937 GDB would normally find the symbol in the minimal symbol table if it will
938 not find it in the full symbol table. But a reference to an external
939 symbol in a local block shadowing other definition requires full symbol
940 without possibly having its address available for LOC_STATIC. Testcase
941 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
942
943 This is also used for thread local storage (TLS) variables. In this case,
944 the address of the TLS variable must be determined when the variable is
945 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
946 of the TLS variable in the thread local storage of the shared
947 library/object. */
948
949 LOC_UNRESOLVED,
950
951 /* The variable does not actually exist in the program.
952 The value is ignored. */
953
954 LOC_OPTIMIZED_OUT,
955
956 /* The variable's address is computed by a set of location
957 functions (see "struct symbol_computed_ops" below). */
958 LOC_COMPUTED,
959
960 /* The variable uses general_symbol_info->value->common_block field.
961 It also always uses COMMON_BLOCK_DOMAIN. */
962 LOC_COMMON_BLOCK,
963
964 /* Not used, just notes the boundary of the enum. */
965 LOC_FINAL_VALUE
966 };
967
968 /* The number of bits needed for values in enum address_class, with some
969 padding for reasonable growth, and room for run-time registered address
970 classes. See symtab.c:MAX_SYMBOL_IMPLS.
971 This is a #define so that we can have a assertion elsewhere to
972 verify that we have reserved enough space for synthetic address
973 classes. */
974 #define SYMBOL_ACLASS_BITS 5
975 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
976
977 /* The methods needed to implement LOC_COMPUTED. These methods can
978 use the symbol's .aux_value for additional per-symbol information.
979
980 At present this is only used to implement location expressions. */
981
982 struct symbol_computed_ops
983 {
984
985 /* Return the value of the variable SYMBOL, relative to the stack
986 frame FRAME. If the variable has been optimized out, return
987 zero.
988
989 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
990 FRAME may be zero. */
991
992 struct value *(*read_variable) (struct symbol * symbol,
993 struct frame_info * frame);
994
995 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
996 entry. SYMBOL should be a function parameter, otherwise
997 NO_ENTRY_VALUE_ERROR will be thrown. */
998 struct value *(*read_variable_at_entry) (struct symbol *symbol,
999 struct frame_info *frame);
1000
1001 /* Find the "symbol_needs_kind" value for the given symbol. This
1002 value determines whether reading the symbol needs memory (e.g., a
1003 global variable), just registers (a thread-local), or a frame (a
1004 local variable). */
1005 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
1006
1007 /* Write to STREAM a natural-language description of the location of
1008 SYMBOL, in the context of ADDR. */
1009 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
1010 struct ui_file * stream);
1011
1012 /* Non-zero if this symbol's address computation is dependent on PC. */
1013 unsigned char location_has_loclist;
1014
1015 /* Tracepoint support. Append bytecodes to the tracepoint agent
1016 expression AX that push the address of the object SYMBOL. Set
1017 VALUE appropriately. Note --- for objects in registers, this
1018 needn't emit any code; as long as it sets VALUE properly, then
1019 the caller will generate the right code in the process of
1020 treating this as an lvalue or rvalue. */
1021
1022 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
1023 struct axs_value *value);
1024
1025 /* Generate C code to compute the location of SYMBOL. The C code is
1026 emitted to STREAM. GDBARCH is the current architecture and PC is
1027 the PC at which SYMBOL's location should be evaluated.
1028 REGISTERS_USED is a vector indexed by register number; the
1029 generator function should set an element in this vector if the
1030 corresponding register is needed by the location computation.
1031 The generated C code must assign the location to a local
1032 variable; this variable's name is RESULT_NAME. */
1033
1034 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1035 struct gdbarch *gdbarch,
1036 std::vector<bool> &registers_used,
1037 CORE_ADDR pc, const char *result_name);
1038
1039 };
1040
1041 /* The methods needed to implement LOC_BLOCK for inferior functions.
1042 These methods can use the symbol's .aux_value for additional
1043 per-symbol information. */
1044
1045 struct symbol_block_ops
1046 {
1047 /* Fill in *START and *LENGTH with DWARF block data of function
1048 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1049 zero if such location is not valid for PC; *START is left
1050 uninitialized in such case. */
1051 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1052 const gdb_byte **start, size_t *length);
1053
1054 /* Return the frame base address. FRAME is the frame for which we want to
1055 compute the base address while FRAMEFUNC is the symbol for the
1056 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1057 information we need).
1058
1059 This method is designed to work with static links (nested functions
1060 handling). Static links are function properties whose evaluation returns
1061 the frame base address for the enclosing frame. However, there are
1062 multiple definitions for "frame base": the content of the frame base
1063 register, the CFA as defined by DWARF unwinding information, ...
1064
1065 So this specific method is supposed to compute the frame base address such
1066 as for nested functions, the static link computes the same address. For
1067 instance, considering DWARF debugging information, the static link is
1068 computed with DW_AT_static_link and this method must be used to compute
1069 the corresponding DW_AT_frame_base attribute. */
1070 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1071 struct frame_info *frame);
1072 };
1073
1074 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1075
1076 struct symbol_register_ops
1077 {
1078 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1079 };
1080
1081 /* Objects of this type are used to find the address class and the
1082 various computed ops vectors of a symbol. */
1083
1084 struct symbol_impl
1085 {
1086 enum address_class aclass;
1087
1088 /* Used with LOC_COMPUTED. */
1089 const struct symbol_computed_ops *ops_computed;
1090
1091 /* Used with LOC_BLOCK. */
1092 const struct symbol_block_ops *ops_block;
1093
1094 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1095 const struct symbol_register_ops *ops_register;
1096 };
1097
1098 /* struct symbol has some subclasses. This enum is used to
1099 differentiate between them. */
1100
1101 enum symbol_subclass_kind
1102 {
1103 /* Plain struct symbol. */
1104 SYMBOL_NONE,
1105
1106 /* struct template_symbol. */
1107 SYMBOL_TEMPLATE,
1108
1109 /* struct rust_vtable_symbol. */
1110 SYMBOL_RUST_VTABLE
1111 };
1112
1113 /* This structure is space critical. See space comments at the top. */
1114
1115 struct symbol : public general_symbol_info, public allocate_on_obstack
1116 {
1117 symbol ()
1118 /* Class-initialization of bitfields is only allowed in C++20. */
1119 : domain (UNDEF_DOMAIN),
1120 aclass_index (0),
1121 is_objfile_owned (1),
1122 is_argument (0),
1123 is_inlined (0),
1124 maybe_copied (0),
1125 subclass (SYMBOL_NONE),
1126 artificial (false)
1127 {
1128 /* We can't use an initializer list for members of a base class, and
1129 general_symbol_info needs to stay a POD type. */
1130 m_name = nullptr;
1131 value.ivalue = 0;
1132 language_specific.obstack = nullptr;
1133 m_language = language_unknown;
1134 ada_mangled = 0;
1135 m_section = -1;
1136 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1137 initialization of unions, so we initialize it manually here. */
1138 owner.symtab = nullptr;
1139 }
1140
1141 symbol (const symbol &) = default;
1142 symbol &operator= (const symbol &) = default;
1143
1144 /* Data type of value */
1145
1146 struct type *type = nullptr;
1147
1148 /* The owner of this symbol.
1149 Which one to use is defined by symbol.is_objfile_owned. */
1150
1151 union
1152 {
1153 /* The symbol table containing this symbol. This is the file associated
1154 with LINE. It can be NULL during symbols read-in but it is never NULL
1155 during normal operation. */
1156 struct symtab *symtab;
1157
1158 /* For types defined by the architecture. */
1159 struct gdbarch *arch;
1160 } owner;
1161
1162 /* Domain code. */
1163
1164 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1165
1166 /* Address class. This holds an index into the 'symbol_impls'
1167 table. The actual enum address_class value is stored there,
1168 alongside any per-class ops vectors. */
1169
1170 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1171
1172 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1173 Otherwise symbol is arch-owned, use owner.arch. */
1174
1175 unsigned int is_objfile_owned : 1;
1176
1177 /* Whether this is an argument. */
1178
1179 unsigned is_argument : 1;
1180
1181 /* Whether this is an inlined function (class LOC_BLOCK only). */
1182 unsigned is_inlined : 1;
1183
1184 /* For LOC_STATIC only, if this is set, then the symbol might be
1185 subject to copy relocation. In this case, a minimal symbol
1186 matching the symbol's linkage name is first looked for in the
1187 main objfile. If found, then that address is used; otherwise the
1188 address in this symbol is used. */
1189
1190 unsigned maybe_copied : 1;
1191
1192 /* The concrete type of this symbol. */
1193
1194 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1195
1196 /* Whether this symbol is artificial. */
1197
1198 bool artificial : 1;
1199
1200 /* Line number of this symbol's definition, except for inlined
1201 functions. For an inlined function (class LOC_BLOCK and
1202 SYMBOL_INLINED set) this is the line number of the function's call
1203 site. Inlined function symbols are not definitions, and they are
1204 never found by symbol table lookup.
1205 If this symbol is arch-owned, LINE shall be zero.
1206
1207 FIXME: Should we really make the assumption that nobody will try
1208 to debug files longer than 64K lines? What about machine
1209 generated programs? */
1210
1211 unsigned short line = 0;
1212
1213 /* An arbitrary data pointer, allowing symbol readers to record
1214 additional information on a per-symbol basis. Note that this data
1215 must be allocated using the same obstack as the symbol itself. */
1216 /* So far it is only used by:
1217 LOC_COMPUTED: to find the location information
1218 LOC_BLOCK (DWARF2 function): information used internally by the
1219 DWARF 2 code --- specifically, the location expression for the frame
1220 base for this function. */
1221 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1222 to add a magic symbol to the block containing this information,
1223 or to have a generic debug info annotation slot for symbols. */
1224
1225 void *aux_value = nullptr;
1226
1227 struct symbol *hash_next = nullptr;
1228 };
1229
1230 /* Several lookup functions return both a symbol and the block in which the
1231 symbol is found. This structure is used in these cases. */
1232
1233 struct block_symbol
1234 {
1235 /* The symbol that was found, or NULL if no symbol was found. */
1236 struct symbol *symbol;
1237
1238 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1239 defined. */
1240 const struct block *block;
1241 };
1242
1243 extern const struct symbol_impl *symbol_impls;
1244
1245 /* Note: There is no accessor macro for symbol.owner because it is
1246 "private". */
1247
1248 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1249 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1250 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1251 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1252 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1253 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1254 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1255 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1256 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1257 #define SYMBOL_TYPE(symbol) (symbol)->type
1258 #define SYMBOL_LINE(symbol) (symbol)->line
1259 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1260 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1261 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1262 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1263
1264 extern int register_symbol_computed_impl (enum address_class,
1265 const struct symbol_computed_ops *);
1266
1267 extern int register_symbol_block_impl (enum address_class aclass,
1268 const struct symbol_block_ops *ops);
1269
1270 extern int register_symbol_register_impl (enum address_class,
1271 const struct symbol_register_ops *);
1272
1273 /* Return the OBJFILE of SYMBOL.
1274 It is an error to call this if symbol.is_objfile_owned is false, which
1275 only happens for architecture-provided types. */
1276
1277 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1278
1279 /* Return the ARCH of SYMBOL. */
1280
1281 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1282
1283 /* Return the SYMTAB of SYMBOL.
1284 It is an error to call this if symbol.is_objfile_owned is false, which
1285 only happens for architecture-provided types. */
1286
1287 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1288
1289 /* Set the symtab of SYMBOL to SYMTAB.
1290 It is an error to call this if symbol.is_objfile_owned is false, which
1291 only happens for architecture-provided types. */
1292
1293 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1294
1295 /* An instance of this type is used to represent a C++ template
1296 function. A symbol is really of this type iff
1297 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1298
1299 struct template_symbol : public symbol
1300 {
1301 /* The number of template arguments. */
1302 int n_template_arguments = 0;
1303
1304 /* The template arguments. This is an array with
1305 N_TEMPLATE_ARGUMENTS elements. */
1306 struct symbol **template_arguments = nullptr;
1307 };
1308
1309 /* A symbol that represents a Rust virtual table object. */
1310
1311 struct rust_vtable_symbol : public symbol
1312 {
1313 /* The concrete type for which this vtable was created; that is, in
1314 "impl Trait for Type", this is "Type". */
1315 struct type *concrete_type = nullptr;
1316 };
1317
1318 \f
1319 /* Each item represents a line-->pc (or the reverse) mapping. This is
1320 somewhat more wasteful of space than one might wish, but since only
1321 the files which are actually debugged are read in to core, we don't
1322 waste much space. */
1323
1324 struct linetable_entry
1325 {
1326 /* The line number for this entry. */
1327 int line;
1328
1329 /* True if this PC is a good location to place a breakpoint for LINE. */
1330 unsigned is_stmt : 1;
1331
1332 /* The address for this entry. */
1333 CORE_ADDR pc;
1334 };
1335
1336 /* The order of entries in the linetable is significant. They should
1337 be sorted by increasing values of the pc field. If there is more than
1338 one entry for a given pc, then I'm not sure what should happen (and
1339 I not sure whether we currently handle it the best way).
1340
1341 Example: a C for statement generally looks like this
1342
1343 10 0x100 - for the init/test part of a for stmt.
1344 20 0x200
1345 30 0x300
1346 10 0x400 - for the increment part of a for stmt.
1347
1348 If an entry has a line number of zero, it marks the start of a PC
1349 range for which no line number information is available. It is
1350 acceptable, though wasteful of table space, for such a range to be
1351 zero length. */
1352
1353 struct linetable
1354 {
1355 int nitems;
1356
1357 /* Actually NITEMS elements. If you don't like this use of the
1358 `struct hack', you can shove it up your ANSI (seriously, if the
1359 committee tells us how to do it, we can probably go along). */
1360 struct linetable_entry item[1];
1361 };
1362
1363 /* How to relocate the symbols from each section in a symbol file.
1364 The ordering and meaning of the offsets is file-type-dependent;
1365 typically it is indexed by section numbers or symbol types or
1366 something like that. */
1367
1368 typedef std::vector<CORE_ADDR> section_offsets;
1369
1370 /* Each source file or header is represented by a struct symtab.
1371 The name "symtab" is historical, another name for it is "filetab".
1372 These objects are chained through the `next' field. */
1373
1374 struct symtab
1375 {
1376 struct compunit_symtab *compunit () const
1377 {
1378 return m_compunit;
1379 }
1380
1381 void set_compunit (struct compunit_symtab *compunit)
1382 {
1383 m_compunit = compunit;
1384 }
1385
1386 struct linetable *linetable () const
1387 {
1388 return m_linetable;
1389 }
1390
1391 void set_linetable (struct linetable *linetable)
1392 {
1393 m_linetable = linetable;
1394 }
1395
1396 enum language language () const
1397 {
1398 return m_language;
1399 }
1400
1401 void set_language (enum language language)
1402 {
1403 m_language = language;
1404 }
1405
1406 /* Unordered chain of all filetabs in the compunit, with the exception
1407 that the "main" source file is the first entry in the list. */
1408
1409 struct symtab *next;
1410
1411 /* Backlink to containing compunit symtab. */
1412
1413 struct compunit_symtab *m_compunit;
1414
1415 /* Table mapping core addresses to line numbers for this file.
1416 Can be NULL if none. Never shared between different symtabs. */
1417
1418 struct linetable *m_linetable;
1419
1420 /* Name of this source file. This pointer is never NULL. */
1421
1422 const char *filename;
1423
1424 /* Language of this source file. */
1425
1426 enum language m_language;
1427
1428 /* Full name of file as found by searching the source path.
1429 NULL if not yet known. */
1430
1431 char *fullname;
1432 };
1433
1434 /* A range adapter to allowing iterating over all the file tables in a list. */
1435
1436 using symtab_range = next_range<symtab>;
1437
1438 #define SYMTAB_BLOCKVECTOR(symtab) \
1439 (symtab->compunit ()->blockvector ())
1440 #define SYMTAB_OBJFILE(symtab) \
1441 (symtab->compunit ()->objfile ())
1442 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1443 #define SYMTAB_DIRNAME(symtab) ((symtab)->compunit ()->dirname ())
1444
1445 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1446 as the list of all source files (what gdb has historically associated with
1447 the term "symtab").
1448 Additional information is recorded here that is common to all symtabs in a
1449 compilation unit (DWARF or otherwise).
1450
1451 Example:
1452 For the case of a program built out of these files:
1453
1454 foo.c
1455 foo1.h
1456 foo2.h
1457 bar.c
1458 foo1.h
1459 bar.h
1460
1461 This is recorded as:
1462
1463 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1464 | |
1465 v v
1466 foo.c bar.c
1467 | |
1468 v v
1469 foo1.h foo1.h
1470 | |
1471 v v
1472 foo2.h bar.h
1473 | |
1474 v v
1475 NULL NULL
1476
1477 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1478 and the files foo.c, etc. are struct symtab objects. */
1479
1480 struct compunit_symtab
1481 {
1482 struct objfile *objfile () const
1483 {
1484 return m_objfile;
1485 }
1486
1487 void set_objfile (struct objfile *objfile)
1488 {
1489 m_objfile = objfile;
1490 }
1491
1492 symtab_range filetabs () const
1493 {
1494 return symtab_range (m_filetabs);
1495 }
1496
1497 void add_filetab (symtab *filetab)
1498 {
1499 if (m_filetabs == nullptr)
1500 {
1501 m_filetabs = filetab;
1502 m_last_filetab = filetab;
1503 }
1504 else
1505 {
1506 m_last_filetab->next = filetab;
1507 m_last_filetab = filetab;
1508 }
1509 }
1510
1511 const char *debugformat () const
1512 {
1513 return m_debugformat;
1514 }
1515
1516 void set_debugformat (const char *debugformat)
1517 {
1518 m_debugformat = debugformat;
1519 }
1520
1521 const char *producer () const
1522 {
1523 return m_producer;
1524 }
1525
1526 void set_producer (const char *producer)
1527 {
1528 m_producer = producer;
1529 }
1530
1531 const char *dirname () const
1532 {
1533 return m_dirname;
1534 }
1535
1536 void set_dirname (const char *dirname)
1537 {
1538 m_dirname = dirname;
1539 }
1540
1541 const struct blockvector *blockvector () const
1542 {
1543 return m_blockvector;
1544 }
1545
1546 void set_blockvector (const struct blockvector *blockvector)
1547 {
1548 m_blockvector = blockvector;
1549 }
1550
1551 int block_line_section () const
1552 {
1553 return m_block_line_section;
1554 }
1555
1556 void set_block_line_section (int block_line_section)
1557 {
1558 m_block_line_section = block_line_section;
1559 }
1560
1561 bool locations_valid () const
1562 {
1563 return m_locations_valid;
1564 }
1565
1566 void set_locations_valid (bool locations_valid)
1567 {
1568 m_locations_valid = locations_valid;
1569 }
1570
1571 bool epilogue_unwind_valid () const
1572 {
1573 return m_epilogue_unwind_valid;
1574 }
1575
1576 void set_epilogue_unwind_valid (bool epilogue_unwind_valid)
1577 {
1578 m_epilogue_unwind_valid = epilogue_unwind_valid;
1579 }
1580
1581 struct macro_table *macro_table () const
1582 {
1583 return m_macro_table;
1584 }
1585
1586 void set_macro_table (struct macro_table *macro_table)
1587 {
1588 m_macro_table = macro_table;
1589 }
1590
1591 /* Make PRIMARY_FILETAB the primary filetab of this compunit symtab.
1592
1593 PRIMARY_FILETAB must already be a filetab of this compunit symtab. */
1594
1595 void set_primary_filetab (symtab *primary_filetab);
1596
1597 /* Return the primary filetab of the compunit. */
1598 symtab *primary_filetab () const;
1599
1600 /* Set m_call_site_htab. */
1601 void set_call_site_htab (htab_t call_site_htab);
1602
1603 /* Find call_site info for PC. */
1604 call_site *find_call_site (CORE_ADDR pc) const;
1605
1606 /* Unordered chain of all compunit symtabs of this objfile. */
1607 struct compunit_symtab *next;
1608
1609 /* Object file from which this symtab information was read. */
1610 struct objfile *m_objfile;
1611
1612 /* Name of the symtab.
1613 This is *not* intended to be a usable filename, and is
1614 for debugging purposes only. */
1615 const char *name;
1616
1617 /* Unordered list of file symtabs, except that by convention the "main"
1618 source file (e.g., .c, .cc) is guaranteed to be first.
1619 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1620 or header (e.g., .h). */
1621 symtab *m_filetabs;
1622
1623 /* Last entry in FILETABS list.
1624 Subfiles are added to the end of the list so they accumulate in order,
1625 with the main source subfile living at the front.
1626 The main reason is so that the main source file symtab is at the head
1627 of the list, and the rest appear in order for debugging convenience. */
1628 symtab *m_last_filetab;
1629
1630 /* Non-NULL string that identifies the format of the debugging information,
1631 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1632 for automated testing of gdb but may also be information that is
1633 useful to the user. */
1634 const char *m_debugformat;
1635
1636 /* String of producer version information, or NULL if we don't know. */
1637 const char *m_producer;
1638
1639 /* Directory in which it was compiled, or NULL if we don't know. */
1640 const char *m_dirname;
1641
1642 /* List of all symbol scope blocks for this symtab. It is shared among
1643 all symtabs in a given compilation unit. */
1644 const struct blockvector *m_blockvector;
1645
1646 /* Section in objfile->section_offsets for the blockvector and
1647 the linetable. Probably always SECT_OFF_TEXT. */
1648 int m_block_line_section;
1649
1650 /* Symtab has been compiled with both optimizations and debug info so that
1651 GDB may stop skipping prologues as variables locations are valid already
1652 at function entry points. */
1653 unsigned int m_locations_valid : 1;
1654
1655 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1656 instruction). This is supported by GCC since 4.5.0. */
1657 unsigned int m_epilogue_unwind_valid : 1;
1658
1659 /* struct call_site entries for this compilation unit or NULL. */
1660 htab_t m_call_site_htab;
1661
1662 /* The macro table for this symtab. Like the blockvector, this
1663 is shared between different symtabs in a given compilation unit.
1664 It's debatable whether it *should* be shared among all the symtabs in
1665 the given compilation unit, but it currently is. */
1666 struct macro_table *m_macro_table;
1667
1668 /* If non-NULL, then this points to a NULL-terminated vector of
1669 included compunits. When searching the static or global
1670 block of this compunit, the corresponding block of all
1671 included compunits will also be searched. Note that this
1672 list must be flattened -- the symbol reader is responsible for
1673 ensuring that this vector contains the transitive closure of all
1674 included compunits. */
1675 struct compunit_symtab **includes;
1676
1677 /* If this is an included compunit, this points to one includer
1678 of the table. This user is considered the canonical compunit
1679 containing this one. An included compunit may itself be
1680 included by another. */
1681 struct compunit_symtab *user;
1682 };
1683
1684 using compunit_symtab_range = next_range<compunit_symtab>;
1685
1686 /* Return the language of CUST. */
1687
1688 extern enum language compunit_language (const struct compunit_symtab *cust);
1689
1690 /* Return true if this symtab is the "main" symtab of its compunit_symtab. */
1691
1692 static inline bool
1693 is_main_symtab_of_compunit_symtab (struct symtab *symtab)
1694 {
1695 return symtab == symtab->compunit ()->primary_filetab ();
1696 }
1697 \f
1698
1699 /* The virtual function table is now an array of structures which have the
1700 form { int16 offset, delta; void *pfn; }.
1701
1702 In normal virtual function tables, OFFSET is unused.
1703 DELTA is the amount which is added to the apparent object's base
1704 address in order to point to the actual object to which the
1705 virtual function should be applied.
1706 PFN is a pointer to the virtual function.
1707
1708 Note that this macro is g++ specific (FIXME). */
1709
1710 #define VTBL_FNADDR_OFFSET 2
1711
1712 /* External variables and functions for the objects described above. */
1713
1714 /* True if we are nested inside psymtab_to_symtab. */
1715
1716 extern int currently_reading_symtab;
1717
1718 /* symtab.c lookup functions */
1719
1720 extern const char multiple_symbols_ask[];
1721 extern const char multiple_symbols_all[];
1722 extern const char multiple_symbols_cancel[];
1723
1724 const char *multiple_symbols_select_mode (void);
1725
1726 bool symbol_matches_domain (enum language symbol_language,
1727 domain_enum symbol_domain,
1728 domain_enum domain);
1729
1730 /* lookup a symbol table by source file name. */
1731
1732 extern struct symtab *lookup_symtab (const char *);
1733
1734 /* An object of this type is passed as the 'is_a_field_of_this'
1735 argument to lookup_symbol and lookup_symbol_in_language. */
1736
1737 struct field_of_this_result
1738 {
1739 /* The type in which the field was found. If this is NULL then the
1740 symbol was not found in 'this'. If non-NULL, then one of the
1741 other fields will be non-NULL as well. */
1742
1743 struct type *type;
1744
1745 /* If the symbol was found as an ordinary field of 'this', then this
1746 is non-NULL and points to the particular field. */
1747
1748 struct field *field;
1749
1750 /* If the symbol was found as a function field of 'this', then this
1751 is non-NULL and points to the particular field. */
1752
1753 struct fn_fieldlist *fn_field;
1754 };
1755
1756 /* Find the definition for a specified symbol name NAME
1757 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1758 if non-NULL or from global/static blocks if BLOCK is NULL.
1759 Returns the struct symbol pointer, or NULL if no symbol is found.
1760 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1761 NAME is a field of the current implied argument `this'. If so fill in the
1762 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1763 The symbol's section is fixed up if necessary. */
1764
1765 extern struct block_symbol
1766 lookup_symbol_in_language (const char *,
1767 const struct block *,
1768 const domain_enum,
1769 enum language,
1770 struct field_of_this_result *);
1771
1772 /* Same as lookup_symbol_in_language, but using the current language. */
1773
1774 extern struct block_symbol lookup_symbol (const char *,
1775 const struct block *,
1776 const domain_enum,
1777 struct field_of_this_result *);
1778
1779 /* Find the definition for a specified symbol search name in domain
1780 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1781 global/static blocks if BLOCK is NULL. The passed-in search name
1782 should not come from the user; instead it should already be a
1783 search name as retrieved from a search_name () call. See definition of
1784 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1785 pointer, or NULL if no symbol is found. The symbol's section is
1786 fixed up if necessary. */
1787
1788 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1789 const struct block *block,
1790 domain_enum domain);
1791
1792 /* Some helper functions for languages that need to write their own
1793 lookup_symbol_nonlocal functions. */
1794
1795 /* Lookup a symbol in the static block associated to BLOCK, if there
1796 is one; do nothing if BLOCK is NULL or a global block.
1797 Upon success fixes up the symbol's section if necessary. */
1798
1799 extern struct block_symbol
1800 lookup_symbol_in_static_block (const char *name,
1801 const struct block *block,
1802 const domain_enum domain);
1803
1804 /* Search all static file-level symbols for NAME from DOMAIN.
1805 Upon success fixes up the symbol's section if necessary. */
1806
1807 extern struct block_symbol lookup_static_symbol (const char *name,
1808 const domain_enum domain);
1809
1810 /* Lookup a symbol in all files' global blocks.
1811
1812 If BLOCK is non-NULL then it is used for two things:
1813 1) If a target-specific lookup routine for libraries exists, then use the
1814 routine for the objfile of BLOCK, and
1815 2) The objfile of BLOCK is used to assist in determining the search order
1816 if the target requires it.
1817 See gdbarch_iterate_over_objfiles_in_search_order.
1818
1819 Upon success fixes up the symbol's section if necessary. */
1820
1821 extern struct block_symbol
1822 lookup_global_symbol (const char *name,
1823 const struct block *block,
1824 const domain_enum domain);
1825
1826 /* Lookup a symbol in block BLOCK.
1827 Upon success fixes up the symbol's section if necessary. */
1828
1829 extern struct symbol *
1830 lookup_symbol_in_block (const char *name,
1831 symbol_name_match_type match_type,
1832 const struct block *block,
1833 const domain_enum domain);
1834
1835 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1836 found, or NULL if not found. */
1837
1838 extern struct block_symbol
1839 lookup_language_this (const struct language_defn *lang,
1840 const struct block *block);
1841
1842 /* Lookup a [struct, union, enum] by name, within a specified block. */
1843
1844 extern struct type *lookup_struct (const char *, const struct block *);
1845
1846 extern struct type *lookup_union (const char *, const struct block *);
1847
1848 extern struct type *lookup_enum (const char *, const struct block *);
1849
1850 /* from blockframe.c: */
1851
1852 /* lookup the function symbol corresponding to the address. The
1853 return value will not be an inlined function; the containing
1854 function will be returned instead. */
1855
1856 extern struct symbol *find_pc_function (CORE_ADDR);
1857
1858 /* lookup the function corresponding to the address and section. The
1859 return value will not be an inlined function; the containing
1860 function will be returned instead. */
1861
1862 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1863
1864 /* lookup the function symbol corresponding to the address and
1865 section. The return value will be the closest enclosing function,
1866 which might be an inline function. */
1867
1868 extern struct symbol *find_pc_sect_containing_function
1869 (CORE_ADDR pc, struct obj_section *section);
1870
1871 /* Find the symbol at the given address. Returns NULL if no symbol
1872 found. Only exact matches for ADDRESS are considered. */
1873
1874 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1875
1876 /* Finds the "function" (text symbol) that is smaller than PC but
1877 greatest of all of the potential text symbols in SECTION. Sets
1878 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1879 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1880 function (exclusive). If the optional parameter BLOCK is non-null,
1881 then set *BLOCK to the address of the block corresponding to the
1882 function symbol, if such a symbol could be found during the lookup;
1883 nullptr is used as a return value for *BLOCK if no block is found.
1884 This function either succeeds or fails (not halfway succeeds). If
1885 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1886 information and returns true. If it fails, it sets *NAME, *ADDRESS
1887 and *ENDADDR to zero and returns false.
1888
1889 If the function in question occupies non-contiguous ranges,
1890 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1891 to the start and end of the range in which PC is found. Thus
1892 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1893 from other functions might be found).
1894
1895 This property allows find_pc_partial_function to be used (as it had
1896 been prior to the introduction of non-contiguous range support) by
1897 various tdep files for finding a start address and limit address
1898 for prologue analysis. This still isn't ideal, however, because we
1899 probably shouldn't be doing prologue analysis (in which
1900 instructions are scanned to determine frame size and stack layout)
1901 for any range that doesn't contain the entry pc. Moreover, a good
1902 argument can be made that prologue analysis ought to be performed
1903 starting from the entry pc even when PC is within some other range.
1904 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1905 limits of the entry pc range, but that will cause the
1906 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1907 callers of find_pc_partial_function expect this condition to hold.
1908
1909 Callers which require the start and/or end addresses for the range
1910 containing the entry pc should instead call
1911 find_function_entry_range_from_pc. */
1912
1913 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1914 CORE_ADDR *address, CORE_ADDR *endaddr,
1915 const struct block **block = nullptr);
1916
1917 /* Like find_pc_partial_function, above, but returns the underlying
1918 general_symbol_info (rather than the name) as an out parameter. */
1919
1920 extern bool find_pc_partial_function_sym
1921 (CORE_ADDR pc, const general_symbol_info **sym,
1922 CORE_ADDR *address, CORE_ADDR *endaddr,
1923 const struct block **block = nullptr);
1924
1925 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1926 set to start and end addresses of the range containing the entry pc.
1927
1928 Note that it is not necessarily the case that (for non-NULL ADDRESS
1929 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1930 hold.
1931
1932 See comment for find_pc_partial_function, above, for further
1933 explanation. */
1934
1935 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1936 const char **name,
1937 CORE_ADDR *address,
1938 CORE_ADDR *endaddr);
1939
1940 /* Return the type of a function with its first instruction exactly at
1941 the PC address. Return NULL otherwise. */
1942
1943 extern struct type *find_function_type (CORE_ADDR pc);
1944
1945 /* See if we can figure out the function's actual type from the type
1946 that the resolver returns. RESOLVER_FUNADDR is the address of the
1947 ifunc resolver. */
1948
1949 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1950
1951 /* Find the GNU ifunc minimal symbol that matches SYM. */
1952 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1953
1954 extern void clear_pc_function_cache (void);
1955
1956 /* Expand symtab containing PC, SECTION if not already expanded. */
1957
1958 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1959
1960 /* lookup full symbol table by address. */
1961
1962 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1963
1964 /* lookup full symbol table by address and section. */
1965
1966 extern struct compunit_symtab *
1967 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1968
1969 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1970
1971 extern void reread_symbols (int from_tty);
1972
1973 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1974 The type returned must not be opaque -- i.e., must have at least one field
1975 defined. */
1976
1977 extern struct type *lookup_transparent_type (const char *);
1978
1979 extern struct type *basic_lookup_transparent_type (const char *);
1980
1981 /* Macro for name of symbol to indicate a file compiled with gcc. */
1982 #ifndef GCC_COMPILED_FLAG_SYMBOL
1983 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1984 #endif
1985
1986 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1987 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1988 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1989 #endif
1990
1991 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1992
1993 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1994 for ELF symbol files. */
1995
1996 struct gnu_ifunc_fns
1997 {
1998 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1999 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
2000
2001 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
2002 bool (*gnu_ifunc_resolve_name) (const char *function_name,
2003 CORE_ADDR *function_address_p);
2004
2005 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
2006 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
2007
2008 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
2009 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
2010 };
2011
2012 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
2013 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
2014 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
2015 #define gnu_ifunc_resolver_return_stop \
2016 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
2017
2018 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
2019
2020 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
2021
2022 struct symtab_and_line
2023 {
2024 /* The program space of this sal. */
2025 struct program_space *pspace = NULL;
2026
2027 struct symtab *symtab = NULL;
2028 struct symbol *symbol = NULL;
2029 struct obj_section *section = NULL;
2030 struct minimal_symbol *msymbol = NULL;
2031 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
2032 0 is never a valid line number; it is used to indicate that line number
2033 information is not available. */
2034 int line = 0;
2035
2036 CORE_ADDR pc = 0;
2037 CORE_ADDR end = 0;
2038 bool explicit_pc = false;
2039 bool explicit_line = false;
2040
2041 /* If the line number information is valid, then this indicates if this
2042 line table entry had the is-stmt flag set or not. */
2043 bool is_stmt = false;
2044
2045 /* The probe associated with this symtab_and_line. */
2046 probe *prob = NULL;
2047 /* If PROBE is not NULL, then this is the objfile in which the probe
2048 originated. */
2049 struct objfile *objfile = NULL;
2050 };
2051
2052 \f
2053
2054 /* Given a pc value, return line number it is in. Second arg nonzero means
2055 if pc is on the boundary use the previous statement's line number. */
2056
2057 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
2058
2059 /* Same function, but specify a section as well as an address. */
2060
2061 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
2062 struct obj_section *, int);
2063
2064 /* Wrapper around find_pc_line to just return the symtab. */
2065
2066 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
2067
2068 /* Given a symtab and line number, return the pc there. */
2069
2070 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
2071
2072 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
2073 CORE_ADDR *);
2074
2075 extern void resolve_sal_pc (struct symtab_and_line *);
2076
2077 /* solib.c */
2078
2079 extern void clear_solib (void);
2080
2081 /* The reason we're calling into a completion match list collector
2082 function. */
2083 enum class complete_symbol_mode
2084 {
2085 /* Completing an expression. */
2086 EXPRESSION,
2087
2088 /* Completing a linespec. */
2089 LINESPEC,
2090 };
2091
2092 extern void default_collect_symbol_completion_matches_break_on
2093 (completion_tracker &tracker,
2094 complete_symbol_mode mode,
2095 symbol_name_match_type name_match_type,
2096 const char *text, const char *word, const char *break_on,
2097 enum type_code code);
2098 extern void collect_symbol_completion_matches
2099 (completion_tracker &tracker,
2100 complete_symbol_mode mode,
2101 symbol_name_match_type name_match_type,
2102 const char *, const char *);
2103 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
2104 const char *, const char *,
2105 enum type_code);
2106
2107 extern void collect_file_symbol_completion_matches
2108 (completion_tracker &tracker,
2109 complete_symbol_mode,
2110 symbol_name_match_type name_match_type,
2111 const char *, const char *, const char *);
2112
2113 extern completion_list
2114 make_source_files_completion_list (const char *, const char *);
2115
2116 /* Return whether SYM is a function/method, as opposed to a data symbol. */
2117
2118 extern bool symbol_is_function_or_method (symbol *sym);
2119
2120 /* Return whether MSYMBOL is a function/method, as opposed to a data
2121 symbol */
2122
2123 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
2124
2125 /* Return whether SYM should be skipped in completion mode MODE. In
2126 linespec mode, we're only interested in functions/methods. */
2127
2128 template<typename Symbol>
2129 static bool
2130 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
2131 {
2132 return (mode == complete_symbol_mode::LINESPEC
2133 && !symbol_is_function_or_method (sym));
2134 }
2135
2136 /* symtab.c */
2137
2138 bool matching_obj_sections (struct obj_section *, struct obj_section *);
2139
2140 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
2141
2142 /* Given a function symbol SYM, find the symtab and line for the start
2143 of the function. If FUNFIRSTLINE is true, we want the first line
2144 of real code inside the function. */
2145 extern symtab_and_line find_function_start_sal (symbol *sym, bool
2146 funfirstline);
2147
2148 /* Same, but start with a function address/section instead of a
2149 symbol. */
2150 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
2151 obj_section *section,
2152 bool funfirstline);
2153
2154 extern void skip_prologue_sal (struct symtab_and_line *);
2155
2156 /* symtab.c */
2157
2158 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2159 CORE_ADDR func_addr);
2160
2161 extern struct symbol *fixup_symbol_section (struct symbol *,
2162 struct objfile *);
2163
2164 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2165 the same address. Returns NULL if not found. This is necessary in
2166 case a function is an alias to some other function, because debug
2167 information is only emitted for the alias target function's
2168 definition, not for the alias. */
2169 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2170
2171 /* Symbol searching */
2172
2173 /* When using the symbol_searcher struct to search for symbols, a vector of
2174 the following structs is returned. */
2175 struct symbol_search
2176 {
2177 symbol_search (int block_, struct symbol *symbol_)
2178 : block (block_),
2179 symbol (symbol_)
2180 {
2181 msymbol.minsym = nullptr;
2182 msymbol.objfile = nullptr;
2183 }
2184
2185 symbol_search (int block_, struct minimal_symbol *minsym,
2186 struct objfile *objfile)
2187 : block (block_),
2188 symbol (nullptr)
2189 {
2190 msymbol.minsym = minsym;
2191 msymbol.objfile = objfile;
2192 }
2193
2194 bool operator< (const symbol_search &other) const
2195 {
2196 return compare_search_syms (*this, other) < 0;
2197 }
2198
2199 bool operator== (const symbol_search &other) const
2200 {
2201 return compare_search_syms (*this, other) == 0;
2202 }
2203
2204 /* The block in which the match was found. Could be, for example,
2205 STATIC_BLOCK or GLOBAL_BLOCK. */
2206 int block;
2207
2208 /* Information describing what was found.
2209
2210 If symbol is NOT NULL, then information was found for this match. */
2211 struct symbol *symbol;
2212
2213 /* If msymbol is non-null, then a match was made on something for
2214 which only minimal_symbols exist. */
2215 struct bound_minimal_symbol msymbol;
2216
2217 private:
2218
2219 static int compare_search_syms (const symbol_search &sym_a,
2220 const symbol_search &sym_b);
2221 };
2222
2223 /* In order to search for global symbols of a particular kind matching
2224 particular regular expressions, create an instance of this structure and
2225 call the SEARCH member function. */
2226 class global_symbol_searcher
2227 {
2228 public:
2229
2230 /* Constructor. */
2231 global_symbol_searcher (enum search_domain kind,
2232 const char *symbol_name_regexp)
2233 : m_kind (kind),
2234 m_symbol_name_regexp (symbol_name_regexp)
2235 {
2236 /* The symbol searching is designed to only find one kind of thing. */
2237 gdb_assert (m_kind != ALL_DOMAIN);
2238 }
2239
2240 /* Set the optional regexp that matches against the symbol type. */
2241 void set_symbol_type_regexp (const char *regexp)
2242 {
2243 m_symbol_type_regexp = regexp;
2244 }
2245
2246 /* Set the flag to exclude minsyms from the search results. */
2247 void set_exclude_minsyms (bool exclude_minsyms)
2248 {
2249 m_exclude_minsyms = exclude_minsyms;
2250 }
2251
2252 /* Set the maximum number of search results to be returned. */
2253 void set_max_search_results (size_t max_search_results)
2254 {
2255 m_max_search_results = max_search_results;
2256 }
2257
2258 /* Search the symbols from all objfiles in the current program space
2259 looking for matches as defined by the current state of this object.
2260
2261 Within each file the results are sorted locally; each symtab's global
2262 and static blocks are separately alphabetized. Duplicate entries are
2263 removed. */
2264 std::vector<symbol_search> search () const;
2265
2266 /* The set of source files to search in for matching symbols. This is
2267 currently public so that it can be populated after this object has
2268 been constructed. */
2269 std::vector<const char *> filenames;
2270
2271 private:
2272 /* The kind of symbols are we searching for.
2273 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2274 names, and constants (enums).
2275 FUNCTIONS_DOMAIN - Search all functions..
2276 TYPES_DOMAIN - Search all type names.
2277 MODULES_DOMAIN - Search all Fortran modules.
2278 ALL_DOMAIN - Not valid for this function. */
2279 enum search_domain m_kind;
2280
2281 /* Regular expression to match against the symbol name. */
2282 const char *m_symbol_name_regexp = nullptr;
2283
2284 /* Regular expression to match against the symbol type. */
2285 const char *m_symbol_type_regexp = nullptr;
2286
2287 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2288 be included in the results, otherwise they are excluded. */
2289 bool m_exclude_minsyms = false;
2290
2291 /* Maximum number of search results. We currently impose a hard limit
2292 of SIZE_MAX, there is no "unlimited". */
2293 size_t m_max_search_results = SIZE_MAX;
2294
2295 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return
2296 true if any msymbols were seen that we should later consider adding to
2297 the results list. */
2298 bool expand_symtabs (objfile *objfile,
2299 const gdb::optional<compiled_regex> &preg) const;
2300
2301 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are
2302 of type M_KIND, to the results set RESULTS_SET. Return false if we
2303 stop adding results early due to having already found too many results
2304 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true.
2305 Returning true does not indicate that any results were added, just
2306 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2307 bool add_matching_symbols (objfile *objfile,
2308 const gdb::optional<compiled_regex> &preg,
2309 const gdb::optional<compiled_regex> &treg,
2310 std::set<symbol_search> *result_set) const;
2311
2312 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results
2313 vector RESULTS. Return false if we stop adding results early due to
2314 having already found too many results (based on max search results
2315 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true
2316 does not indicate that any results were added, just that we didn't
2317 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2318 bool add_matching_msymbols (objfile *objfile,
2319 const gdb::optional<compiled_regex> &preg,
2320 std::vector<symbol_search> *results) const;
2321
2322 /* Return true if MSYMBOL is of type KIND. */
2323 static bool is_suitable_msymbol (const enum search_domain kind,
2324 const minimal_symbol *msymbol);
2325 };
2326
2327 /* When searching for Fortran symbols within modules (functions/variables)
2328 we return a vector of this type. The first item in the pair is the
2329 module symbol, and the second item is the symbol for the function or
2330 variable we found. */
2331 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2332
2333 /* Searches the symbols to find function and variables symbols (depending
2334 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2335 name of the module, REGEXP matches against the name of the symbol within
2336 the module, and TYPE_REGEXP matches against the type of the symbol
2337 within the module. */
2338 extern std::vector<module_symbol_search> search_module_symbols
2339 (const char *module_regexp, const char *regexp,
2340 const char *type_regexp, search_domain kind);
2341
2342 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2343 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2344 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2345 the type of symbol that was searched for which gave us SYM. */
2346
2347 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2348 enum search_domain kind);
2349
2350 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2351 const struct symbol *sym);
2352
2353 /* The name of the ``main'' function. */
2354 extern const char *main_name ();
2355 extern enum language main_language (void);
2356
2357 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2358 as specified by BLOCK_INDEX.
2359 This searches MAIN_OBJFILE as well as any associated separate debug info
2360 objfiles of MAIN_OBJFILE.
2361 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2362 Upon success fixes up the symbol's section if necessary. */
2363
2364 extern struct block_symbol
2365 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2366 enum block_enum block_index,
2367 const char *name,
2368 const domain_enum domain);
2369
2370 /* Return 1 if the supplied producer string matches the ARM RealView
2371 compiler (armcc). */
2372 bool producer_is_realview (const char *producer);
2373
2374 void fixup_section (struct general_symbol_info *ginfo,
2375 CORE_ADDR addr, struct objfile *objfile);
2376
2377 extern unsigned int symtab_create_debug;
2378
2379 extern unsigned int symbol_lookup_debug;
2380
2381 extern bool basenames_may_differ;
2382
2383 bool compare_filenames_for_search (const char *filename,
2384 const char *search_name);
2385
2386 bool compare_glob_filenames_for_search (const char *filename,
2387 const char *search_name);
2388
2389 bool iterate_over_some_symtabs (const char *name,
2390 const char *real_path,
2391 struct compunit_symtab *first,
2392 struct compunit_symtab *after_last,
2393 gdb::function_view<bool (symtab *)> callback);
2394
2395 void iterate_over_symtabs (const char *name,
2396 gdb::function_view<bool (symtab *)> callback);
2397
2398
2399 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2400 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2401
2402 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2403 is called once per matching symbol SYM. The callback should return
2404 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2405 iterating, or false to indicate that the iteration should end. */
2406
2407 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2408
2409 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2410
2411 For each symbol that matches, CALLBACK is called. The symbol is
2412 passed to the callback.
2413
2414 If CALLBACK returns false, the iteration ends and this function
2415 returns false. Otherwise, the search continues, and the function
2416 eventually returns true. */
2417
2418 bool iterate_over_symbols (const struct block *block,
2419 const lookup_name_info &name,
2420 const domain_enum domain,
2421 gdb::function_view<symbol_found_callback_ftype> callback);
2422
2423 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2424 true, then calls CALLBACK one additional time with a block_symbol
2425 that has a valid block but a NULL symbol. */
2426
2427 bool iterate_over_symbols_terminated
2428 (const struct block *block,
2429 const lookup_name_info &name,
2430 const domain_enum domain,
2431 gdb::function_view<symbol_found_callback_ftype> callback);
2432
2433 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2434 either returns a const char * pointer that points to either of the
2435 fields of this type, or a pointer to the input NAME. This is done
2436 this way to avoid depending on the precise details of the storage
2437 for the string. */
2438 class demangle_result_storage
2439 {
2440 public:
2441
2442 /* Swap the malloc storage to STR, and return a pointer to the
2443 beginning of the new string. */
2444 const char *set_malloc_ptr (gdb::unique_xmalloc_ptr<char> &&str)
2445 {
2446 m_malloc = std::move (str);
2447 return m_malloc.get ();
2448 }
2449
2450 /* Set the malloc storage to now point at PTR. Any previous malloc
2451 storage is released. */
2452 const char *set_malloc_ptr (char *ptr)
2453 {
2454 m_malloc.reset (ptr);
2455 return ptr;
2456 }
2457
2458 private:
2459
2460 /* The storage. */
2461 gdb::unique_xmalloc_ptr<char> m_malloc;
2462 };
2463
2464 const char *
2465 demangle_for_lookup (const char *name, enum language lang,
2466 demangle_result_storage &storage);
2467
2468 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2469 SYMNAME (which is already demangled for C++ symbols) matches
2470 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2471 the current completion list and return true. Otherwise, return
2472 false. */
2473 bool completion_list_add_name (completion_tracker &tracker,
2474 language symbol_language,
2475 const char *symname,
2476 const lookup_name_info &lookup_name,
2477 const char *text, const char *word);
2478
2479 /* A simple symbol searching class. */
2480
2481 class symbol_searcher
2482 {
2483 public:
2484 /* Returns the symbols found for the search. */
2485 const std::vector<block_symbol> &
2486 matching_symbols () const
2487 {
2488 return m_symbols;
2489 }
2490
2491 /* Returns the minimal symbols found for the search. */
2492 const std::vector<bound_minimal_symbol> &
2493 matching_msymbols () const
2494 {
2495 return m_minimal_symbols;
2496 }
2497
2498 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2499 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2500 to search all symtabs and program spaces. */
2501 void find_all_symbols (const std::string &name,
2502 const struct language_defn *language,
2503 enum search_domain search_domain,
2504 std::vector<symtab *> *search_symtabs,
2505 struct program_space *search_pspace);
2506
2507 /* Reset this object to perform another search. */
2508 void reset ()
2509 {
2510 m_symbols.clear ();
2511 m_minimal_symbols.clear ();
2512 }
2513
2514 private:
2515 /* Matching debug symbols. */
2516 std::vector<block_symbol> m_symbols;
2517
2518 /* Matching non-debug symbols. */
2519 std::vector<bound_minimal_symbol> m_minimal_symbols;
2520 };
2521
2522 /* Class used to encapsulate the filename filtering for the "info sources"
2523 command. */
2524
2525 struct info_sources_filter
2526 {
2527 /* If filename filtering is being used (see M_C_REGEXP) then which part
2528 of the filename is being filtered against? */
2529 enum class match_on
2530 {
2531 /* Match against the full filename. */
2532 FULLNAME,
2533
2534 /* Match only against the directory part of the full filename. */
2535 DIRNAME,
2536
2537 /* Match only against the basename part of the full filename. */
2538 BASENAME
2539 };
2540
2541 /* Create a filter of MATCH_TYPE using regular expression REGEXP. If
2542 REGEXP is nullptr then all files will match the filter and MATCH_TYPE
2543 is ignored.
2544
2545 The string pointed too by REGEXP must remain live and unchanged for
2546 this lifetime of this object as the object only retains a copy of the
2547 pointer. */
2548 info_sources_filter (match_on match_type, const char *regexp);
2549
2550 DISABLE_COPY_AND_ASSIGN (info_sources_filter);
2551
2552 /* Does FULLNAME match the filter defined by this object, return true if
2553 it does, otherwise, return false. If there is no filtering defined
2554 then this function will always return true. */
2555 bool matches (const char *fullname) const;
2556
2557 private:
2558
2559 /* The type of filtering in place. */
2560 match_on m_match_type;
2561
2562 /* Points to the original regexp used to create this filter. */
2563 const char *m_regexp;
2564
2565 /* A compiled version of M_REGEXP. This object is only given a value if
2566 M_REGEXP is not nullptr and is not the empty string. */
2567 gdb::optional<compiled_regex> m_c_regexp;
2568 };
2569
2570 /* Perform the core of the 'info sources' command.
2571
2572 FILTER is used to perform regular expression based filtering on the
2573 source files that will be displayed.
2574
2575 Output is written to UIOUT in CLI or MI style as appropriate. */
2576
2577 extern void info_sources_worker (struct ui_out *uiout,
2578 bool group_by_objfile,
2579 const info_sources_filter &filter);
2580
2581 #endif /* !defined(SYMTAB_H) */