]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.h
boolean/auto-boolean commands, make "o" ambiguous
[thirdparty/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include "common/gdb_vecs.h"
27 #include "gdbtypes.h"
28 #include "gdb_regex.h"
29 #include "common/enum-flags.h"
30 #include "common/function-view.h"
31 #include "common/gdb_optional.h"
32 #include "common/next-iterator.h"
33 #include "completer.h"
34
35 /* Opaque declarations. */
36 struct ui_file;
37 struct frame_info;
38 struct symbol;
39 struct obstack;
40 struct objfile;
41 struct block;
42 struct blockvector;
43 struct axs_value;
44 struct agent_expr;
45 struct program_space;
46 struct language_defn;
47 struct common_block;
48 struct obj_section;
49 struct cmd_list_element;
50 class probe;
51 struct lookup_name_info;
52
53 /* How to match a lookup name against a symbol search name. */
54 enum class symbol_name_match_type
55 {
56 /* Wild matching. Matches unqualified symbol names in all
57 namespace/module/packages, etc. */
58 WILD,
59
60 /* Full matching. The lookup name indicates a fully-qualified name,
61 and only matches symbol search names in the specified
62 namespace/module/package. */
63 FULL,
64
65 /* Search name matching. This is like FULL, but the search name did
66 not come from the user; instead it is already a search name
67 retrieved from a SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call.
68 For Ada, this avoids re-encoding an already-encoded search name
69 (which would potentially incorrectly lowercase letters in the
70 linkage/search name that should remain uppercase). For C++, it
71 avoids trying to demangle a name we already know is
72 demangled. */
73 SEARCH_NAME,
74
75 /* Expression matching. The same as FULL matching in most
76 languages. The same as WILD matching in Ada. */
77 EXPRESSION,
78 };
79
80 /* Hash the given symbol search name according to LANGUAGE's
81 rules. */
82 extern unsigned int search_name_hash (enum language language,
83 const char *search_name);
84
85 /* Ada-specific bits of a lookup_name_info object. This is lazily
86 constructed on demand. */
87
88 class ada_lookup_name_info final
89 {
90 public:
91 /* Construct. */
92 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
93
94 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
95 as name match type. Returns true if there's a match, false
96 otherwise. If non-NULL, store the matching results in MATCH. */
97 bool matches (const char *symbol_search_name,
98 symbol_name_match_type match_type,
99 completion_match_result *comp_match_res) const;
100
101 /* The Ada-encoded lookup name. */
102 const std::string &lookup_name () const
103 { return m_encoded_name; }
104
105 /* Return true if we're supposed to be doing a wild match look
106 up. */
107 bool wild_match_p () const
108 { return m_wild_match_p; }
109
110 /* Return true if we're looking up a name inside package
111 Standard. */
112 bool standard_p () const
113 { return m_standard_p; }
114
115 /* Return true if doing a verbatim match. */
116 bool verbatim_p () const
117 { return m_verbatim_p; }
118
119 private:
120 /* The Ada-encoded lookup name. */
121 std::string m_encoded_name;
122
123 /* Whether the user-provided lookup name was Ada encoded. If so,
124 then return encoded names in the 'matches' method's 'completion
125 match result' output. */
126 bool m_encoded_p : 1;
127
128 /* True if really doing wild matching. Even if the user requests
129 wild matching, some cases require full matching. */
130 bool m_wild_match_p : 1;
131
132 /* True if doing a verbatim match. This is true if the decoded
133 version of the symbol name is wrapped in '<'/'>'. This is an
134 escape hatch users can use to look up symbols the Ada encoding
135 does not understand. */
136 bool m_verbatim_p : 1;
137
138 /* True if the user specified a symbol name that is inside package
139 Standard. Symbol names inside package Standard are handled
140 specially. We always do a non-wild match of the symbol name
141 without the "standard__" prefix, and only search static and
142 global symbols. This was primarily introduced in order to allow
143 the user to specifically access the standard exceptions using,
144 for instance, Standard.Constraint_Error when Constraint_Error is
145 ambiguous (due to the user defining its own Constraint_Error
146 entity inside its program). */
147 bool m_standard_p : 1;
148 };
149
150 /* Language-specific bits of a lookup_name_info object, for languages
151 that do name searching using demangled names (C++/D/Go). This is
152 lazily constructed on demand. */
153
154 struct demangle_for_lookup_info final
155 {
156 public:
157 demangle_for_lookup_info (const lookup_name_info &lookup_name,
158 language lang);
159
160 /* The demangled lookup name. */
161 const std::string &lookup_name () const
162 { return m_demangled_name; }
163
164 private:
165 /* The demangled lookup name. */
166 std::string m_demangled_name;
167 };
168
169 /* Object that aggregates all information related to a symbol lookup
170 name. I.e., the name that is matched against the symbol's search
171 name. Caches per-language information so that it doesn't require
172 recomputing it for every symbol comparison, like for example the
173 Ada encoded name and the symbol's name hash for a given language.
174 The object is conceptually immutable once constructed, and thus has
175 no setters. This is to prevent some code path from tweaking some
176 property of the lookup name for some local reason and accidentally
177 altering the results of any continuing search(es).
178 lookup_name_info objects are generally passed around as a const
179 reference to reinforce that. (They're not passed around by value
180 because they're not small.) */
181 class lookup_name_info final
182 {
183 public:
184 /* Create a new object. */
185 lookup_name_info (std::string name,
186 symbol_name_match_type match_type,
187 bool completion_mode = false,
188 bool ignore_parameters = false)
189 : m_match_type (match_type),
190 m_completion_mode (completion_mode),
191 m_ignore_parameters (ignore_parameters),
192 m_name (std::move (name))
193 {}
194
195 /* Getters. See description of each corresponding field. */
196 symbol_name_match_type match_type () const { return m_match_type; }
197 bool completion_mode () const { return m_completion_mode; }
198 const std::string &name () const { return m_name; }
199 const bool ignore_parameters () const { return m_ignore_parameters; }
200
201 /* Return a version of this lookup name that is usable with
202 comparisons against symbols have no parameter info, such as
203 psymbols and GDB index symbols. */
204 lookup_name_info make_ignore_params () const
205 {
206 return lookup_name_info (m_name, m_match_type, m_completion_mode,
207 true /* ignore params */);
208 }
209
210 /* Get the search name hash for searches in language LANG. */
211 unsigned int search_name_hash (language lang) const
212 {
213 /* Only compute each language's hash once. */
214 if (!m_demangled_hashes_p[lang])
215 {
216 m_demangled_hashes[lang]
217 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
218 m_demangled_hashes_p[lang] = true;
219 }
220 return m_demangled_hashes[lang];
221 }
222
223 /* Get the search name for searches in language LANG. */
224 const std::string &language_lookup_name (language lang) const
225 {
226 switch (lang)
227 {
228 case language_ada:
229 return ada ().lookup_name ();
230 case language_cplus:
231 return cplus ().lookup_name ();
232 case language_d:
233 return d ().lookup_name ();
234 case language_go:
235 return go ().lookup_name ();
236 default:
237 return m_name;
238 }
239 }
240
241 /* Get the Ada-specific lookup info. */
242 const ada_lookup_name_info &ada () const
243 {
244 maybe_init (m_ada);
245 return *m_ada;
246 }
247
248 /* Get the C++-specific lookup info. */
249 const demangle_for_lookup_info &cplus () const
250 {
251 maybe_init (m_cplus, language_cplus);
252 return *m_cplus;
253 }
254
255 /* Get the D-specific lookup info. */
256 const demangle_for_lookup_info &d () const
257 {
258 maybe_init (m_d, language_d);
259 return *m_d;
260 }
261
262 /* Get the Go-specific lookup info. */
263 const demangle_for_lookup_info &go () const
264 {
265 maybe_init (m_go, language_go);
266 return *m_go;
267 }
268
269 /* Get a reference to a lookup_name_info object that matches any
270 symbol name. */
271 static const lookup_name_info &match_any ();
272
273 private:
274 /* Initialize FIELD, if not initialized yet. */
275 template<typename Field, typename... Args>
276 void maybe_init (Field &field, Args&&... args) const
277 {
278 if (!field)
279 field.emplace (*this, std::forward<Args> (args)...);
280 }
281
282 /* The lookup info as passed to the ctor. */
283 symbol_name_match_type m_match_type;
284 bool m_completion_mode;
285 bool m_ignore_parameters;
286 std::string m_name;
287
288 /* Language-specific info. These fields are filled lazily the first
289 time a lookup is done in the corresponding language. They're
290 mutable because lookup_name_info objects are typically passed
291 around by const reference (see intro), and they're conceptually
292 "cache" that can always be reconstructed from the non-mutable
293 fields. */
294 mutable gdb::optional<ada_lookup_name_info> m_ada;
295 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
296 mutable gdb::optional<demangle_for_lookup_info> m_d;
297 mutable gdb::optional<demangle_for_lookup_info> m_go;
298
299 /* The demangled hashes. Stored in an array with one entry for each
300 possible language. The second array records whether we've
301 already computed the each language's hash. (These are separate
302 arrays instead of a single array of optional<unsigned> to avoid
303 alignment padding). */
304 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
305 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
306 };
307
308 /* Comparison function for completion symbol lookup.
309
310 Returns true if the symbol name matches against LOOKUP_NAME.
311
312 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
313
314 On success and if non-NULL, COMP_MATCH_RES->match is set to point
315 to the symbol name as should be presented to the user as a
316 completion match list element. In most languages, this is the same
317 as the symbol's search name, but in some, like Ada, the display
318 name is dynamically computed within the comparison routine.
319
320 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
321 points the part of SYMBOL_SEARCH_NAME that was considered to match
322 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
323 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
324 points to "function()" inside SYMBOL_SEARCH_NAME. */
325 typedef bool (symbol_name_matcher_ftype)
326 (const char *symbol_search_name,
327 const lookup_name_info &lookup_name,
328 completion_match_result *comp_match_res);
329
330 /* Some of the structures in this file are space critical.
331 The space-critical structures are:
332
333 struct general_symbol_info
334 struct symbol
335 struct partial_symbol
336
337 These structures are laid out to encourage good packing.
338 They use ENUM_BITFIELD and short int fields, and they order the
339 structure members so that fields less than a word are next
340 to each other so they can be packed together. */
341
342 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
343 all the space critical structures (plus struct minimal_symbol).
344 Memory usage dropped from 99360768 bytes to 90001408 bytes.
345 I measured this with before-and-after tests of
346 "HEAD-old-gdb -readnow HEAD-old-gdb" and
347 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
348 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
349 typing "maint space 1" at the first command prompt.
350
351 Here is another measurement (from andrew c):
352 # no /usr/lib/debug, just plain glibc, like a normal user
353 gdb HEAD-old-gdb
354 (gdb) break internal_error
355 (gdb) run
356 (gdb) maint internal-error
357 (gdb) backtrace
358 (gdb) maint space 1
359
360 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
361 gdb HEAD 2003-08-19 space used: 8904704
362 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
363 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
364
365 The third line shows the savings from the optimizations in symtab.h.
366 The fourth line shows the savings from the optimizations in
367 gdbtypes.h. Both optimizations are in gdb HEAD now.
368
369 --chastain 2003-08-21 */
370
371 /* Define a structure for the information that is common to all symbol types,
372 including minimal symbols, partial symbols, and full symbols. In a
373 multilanguage environment, some language specific information may need to
374 be recorded along with each symbol. */
375
376 /* This structure is space critical. See space comments at the top. */
377
378 struct general_symbol_info
379 {
380 /* Name of the symbol. This is a required field. Storage for the
381 name is allocated on the objfile_obstack for the associated
382 objfile. For languages like C++ that make a distinction between
383 the mangled name and demangled name, this is the mangled
384 name. */
385
386 const char *name;
387
388 /* Value of the symbol. Which member of this union to use, and what
389 it means, depends on what kind of symbol this is and its
390 SYMBOL_CLASS. See comments there for more details. All of these
391 are in host byte order (though what they point to might be in
392 target byte order, e.g. LOC_CONST_BYTES). */
393
394 union
395 {
396 LONGEST ivalue;
397
398 const struct block *block;
399
400 const gdb_byte *bytes;
401
402 CORE_ADDR address;
403
404 /* A common block. Used with LOC_COMMON_BLOCK. */
405
406 const struct common_block *common_block;
407
408 /* For opaque typedef struct chain. */
409
410 struct symbol *chain;
411 }
412 value;
413
414 /* Since one and only one language can apply, wrap the language specific
415 information inside a union. */
416
417 union
418 {
419 /* A pointer to an obstack that can be used for storage associated
420 with this symbol. This is only used by Ada, and only when the
421 'ada_mangled' field is zero. */
422 struct obstack *obstack;
423
424 /* This is used by languages which wish to store a demangled name.
425 currently used by Ada, C++, and Objective C. */
426 const char *demangled_name;
427 }
428 language_specific;
429
430 /* Record the source code language that applies to this symbol.
431 This is used to select one of the fields from the language specific
432 union above. */
433
434 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
435
436 /* This is only used by Ada. If set, then the 'demangled_name' field
437 of language_specific is valid. Otherwise, the 'obstack' field is
438 valid. */
439 unsigned int ada_mangled : 1;
440
441 /* Which section is this symbol in? This is an index into
442 section_offsets for this objfile. Negative means that the symbol
443 does not get relocated relative to a section. */
444
445 short section;
446 };
447
448 extern void symbol_set_demangled_name (struct general_symbol_info *,
449 const char *,
450 struct obstack *);
451
452 extern const char *symbol_get_demangled_name
453 (const struct general_symbol_info *);
454
455 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
456
457 /* Note that all the following SYMBOL_* macros are used with the
458 SYMBOL argument being either a partial symbol or
459 a full symbol. Both types have a ginfo field. In particular
460 the SYMBOL_SET_LANGUAGE, SYMBOL_DEMANGLED_NAME, etc.
461 macros cannot be entirely substituted by
462 functions, unless the callers are changed to pass in the ginfo
463 field only, instead of the SYMBOL parameter. */
464
465 #define SYMBOL_VALUE(symbol) (symbol)->ginfo.value.ivalue
466 #define SYMBOL_VALUE_ADDRESS(symbol) (symbol)->ginfo.value.address
467 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->ginfo.value.bytes
468 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->ginfo.value.common_block
469 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->ginfo.value.block
470 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->ginfo.value.chain
471 #define SYMBOL_LANGUAGE(symbol) (symbol)->ginfo.language
472 #define SYMBOL_SECTION(symbol) (symbol)->ginfo.section
473 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
474 (((symbol)->ginfo.section >= 0) \
475 ? (&(((objfile)->sections)[(symbol)->ginfo.section])) \
476 : NULL)
477
478 /* Initializes the language dependent portion of a symbol
479 depending upon the language for the symbol. */
480 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
481 (symbol_set_language (&(symbol)->ginfo, (language), (obstack)))
482 extern void symbol_set_language (struct general_symbol_info *symbol,
483 enum language language,
484 struct obstack *obstack);
485
486 /* Set just the linkage name of a symbol; do not try to demangle
487 it. Used for constructs which do not have a mangled name,
488 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
489 be terminated and either already on the objfile's obstack or
490 permanently allocated. */
491 #define SYMBOL_SET_LINKAGE_NAME(symbol,linkage_name) \
492 (symbol)->ginfo.name = (linkage_name)
493
494 /* Set the linkage and natural names of a symbol, by demangling
495 the linkage name. */
496 #define SYMBOL_SET_NAMES(symbol,linkage_name,len,copy_name,objfile) \
497 symbol_set_names (&(symbol)->ginfo, linkage_name, len, copy_name, \
498 (objfile)->per_bfd)
499 extern void symbol_set_names (struct general_symbol_info *symbol,
500 const char *linkage_name, int len, int copy_name,
501 struct objfile_per_bfd_storage *per_bfd);
502
503 /* Now come lots of name accessor macros. Short version as to when to
504 use which: Use SYMBOL_NATURAL_NAME to refer to the name of the
505 symbol in the original source code. Use SYMBOL_LINKAGE_NAME if you
506 want to know what the linker thinks the symbol's name is. Use
507 SYMBOL_PRINT_NAME for output. Use SYMBOL_DEMANGLED_NAME if you
508 specifically need to know whether SYMBOL_NATURAL_NAME and
509 SYMBOL_LINKAGE_NAME are different. */
510
511 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
512 the original source code. In languages like C++ where symbols may
513 be mangled for ease of manipulation by the linker, this is the
514 demangled name. */
515
516 #define SYMBOL_NATURAL_NAME(symbol) \
517 (symbol_natural_name (&(symbol)->ginfo))
518 extern const char *symbol_natural_name
519 (const struct general_symbol_info *symbol);
520
521 /* Return SYMBOL's name from the point of view of the linker. In
522 languages like C++ where symbols may be mangled for ease of
523 manipulation by the linker, this is the mangled name; otherwise,
524 it's the same as SYMBOL_NATURAL_NAME. */
525
526 #define SYMBOL_LINKAGE_NAME(symbol) (symbol)->ginfo.name
527
528 /* Return the demangled name for a symbol based on the language for
529 that symbol. If no demangled name exists, return NULL. */
530 #define SYMBOL_DEMANGLED_NAME(symbol) \
531 (symbol_demangled_name (&(symbol)->ginfo))
532 extern const char *symbol_demangled_name
533 (const struct general_symbol_info *symbol);
534
535 /* Macro that returns a version of the name of a symbol that is
536 suitable for output. In C++ this is the "demangled" form of the
537 name if demangle is on and the "mangled" form of the name if
538 demangle is off. In other languages this is just the symbol name.
539 The result should never be NULL. Don't use this for internal
540 purposes (e.g. storing in a hashtable): it's only suitable for output.
541
542 N.B. symbol may be anything with a ginfo member,
543 e.g., struct symbol or struct minimal_symbol. */
544
545 #define SYMBOL_PRINT_NAME(symbol) \
546 (demangle ? SYMBOL_NATURAL_NAME (symbol) : SYMBOL_LINKAGE_NAME (symbol))
547 extern int demangle;
548
549 /* Macro that returns the name to be used when sorting and searching symbols.
550 In C++, we search for the demangled form of a name,
551 and so sort symbols accordingly. In Ada, however, we search by mangled
552 name. If there is no distinct demangled name, then SYMBOL_SEARCH_NAME
553 returns the same value (same pointer) as SYMBOL_LINKAGE_NAME. */
554 #define SYMBOL_SEARCH_NAME(symbol) \
555 (symbol_search_name (&(symbol)->ginfo))
556 extern const char *symbol_search_name (const struct general_symbol_info *ginfo);
557
558 /* Return true if NAME matches the "search" name of SYMBOL, according
559 to the symbol's language. */
560 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
561 symbol_matches_search_name (&(symbol)->ginfo, (name))
562
563 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
564 and psymbols. */
565 extern bool symbol_matches_search_name
566 (const struct general_symbol_info *gsymbol,
567 const lookup_name_info &name);
568
569 /* Compute the hash of the given symbol search name of a symbol of
570 language LANGUAGE. */
571 extern unsigned int search_name_hash (enum language language,
572 const char *search_name);
573
574 /* Classification types for a minimal symbol. These should be taken as
575 "advisory only", since if gdb can't easily figure out a
576 classification it simply selects mst_unknown. It may also have to
577 guess when it can't figure out which is a better match between two
578 types (mst_data versus mst_bss) for example. Since the minimal
579 symbol info is sometimes derived from the BFD library's view of a
580 file, we need to live with what information bfd supplies. */
581
582 enum minimal_symbol_type
583 {
584 mst_unknown = 0, /* Unknown type, the default */
585 mst_text, /* Generally executable instructions */
586
587 /* A GNU ifunc symbol, in the .text section. GDB uses to know
588 whether the user is setting a breakpoint on a GNU ifunc function,
589 and thus GDB needs to actually set the breakpoint on the target
590 function. It is also used to know whether the program stepped
591 into an ifunc resolver -- the resolver may get a separate
592 symbol/alias under a different name, but it'll have the same
593 address as the ifunc symbol. */
594 mst_text_gnu_ifunc, /* Executable code returning address
595 of executable code */
596
597 /* A GNU ifunc function descriptor symbol, in a data section
598 (typically ".opd"). Seen on architectures that use function
599 descriptors, like PPC64/ELFv1. In this case, this symbol's value
600 is the address of the descriptor. There'll be a corresponding
601 mst_text_gnu_ifunc synthetic symbol for the text/entry
602 address. */
603 mst_data_gnu_ifunc, /* Executable code returning address
604 of executable code */
605
606 mst_slot_got_plt, /* GOT entries for .plt sections */
607 mst_data, /* Generally initialized data */
608 mst_bss, /* Generally uninitialized data */
609 mst_abs, /* Generally absolute (nonrelocatable) */
610 /* GDB uses mst_solib_trampoline for the start address of a shared
611 library trampoline entry. Breakpoints for shared library functions
612 are put there if the shared library is not yet loaded.
613 After the shared library is loaded, lookup_minimal_symbol will
614 prefer the minimal symbol from the shared library (usually
615 a mst_text symbol) over the mst_solib_trampoline symbol, and the
616 breakpoints will be moved to their true address in the shared
617 library via breakpoint_re_set. */
618 mst_solib_trampoline, /* Shared library trampoline code */
619 /* For the mst_file* types, the names are only guaranteed to be unique
620 within a given .o file. */
621 mst_file_text, /* Static version of mst_text */
622 mst_file_data, /* Static version of mst_data */
623 mst_file_bss, /* Static version of mst_bss */
624 nr_minsym_types
625 };
626
627 /* The number of enum minimal_symbol_type values, with some padding for
628 reasonable growth. */
629 #define MINSYM_TYPE_BITS 4
630 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
631
632 /* Define a simple structure used to hold some very basic information about
633 all defined global symbols (text, data, bss, abs, etc). The only required
634 information is the general_symbol_info.
635
636 In many cases, even if a file was compiled with no special options for
637 debugging at all, as long as was not stripped it will contain sufficient
638 information to build a useful minimal symbol table using this structure.
639 Even when a file contains enough debugging information to build a full
640 symbol table, these minimal symbols are still useful for quickly mapping
641 between names and addresses, and vice versa. They are also sometimes
642 used to figure out what full symbol table entries need to be read in. */
643
644 struct minimal_symbol : public general_symbol_info
645 {
646 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
647 information to calculate the end of the partial symtab based on the
648 address of the last symbol plus the size of the last symbol. */
649
650 unsigned long size;
651
652 /* Which source file is this symbol in? Only relevant for mst_file_*. */
653 const char *filename;
654
655 /* Classification type for this minimal symbol. */
656
657 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
658
659 /* Non-zero if this symbol was created by gdb.
660 Such symbols do not appear in the output of "info var|fun". */
661 unsigned int created_by_gdb : 1;
662
663 /* Two flag bits provided for the use of the target. */
664 unsigned int target_flag_1 : 1;
665 unsigned int target_flag_2 : 1;
666
667 /* Nonzero iff the size of the minimal symbol has been set.
668 Symbol size information can sometimes not be determined, because
669 the object file format may not carry that piece of information. */
670 unsigned int has_size : 1;
671
672 /* Minimal symbols with the same hash key are kept on a linked
673 list. This is the link. */
674
675 struct minimal_symbol *hash_next;
676
677 /* Minimal symbols are stored in two different hash tables. This is
678 the `next' pointer for the demangled hash table. */
679
680 struct minimal_symbol *demangled_hash_next;
681
682 /* True if this symbol is of some data type. */
683
684 bool data_p () const;
685
686 /* True if MSYMBOL is of some text type. */
687
688 bool text_p () const;
689 };
690
691 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
692 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
693 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
694 #define SET_MSYMBOL_SIZE(msymbol, sz) \
695 do \
696 { \
697 (msymbol)->size = sz; \
698 (msymbol)->has_size = 1; \
699 } while (0)
700 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
701 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
702
703 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
704 /* The unrelocated address of the minimal symbol. */
705 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
706 /* The relocated address of the minimal symbol, using the section
707 offsets from OBJFILE. */
708 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
709 ((symbol)->value.address \
710 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section)))
711 /* For a bound minsym, we can easily compute the address directly. */
712 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
713 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
714 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
715 ((symbol)->value.address = (new_value))
716 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
717 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
718 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
719 #define MSYMBOL_LANGUAGE(symbol) (symbol)->language
720 #define MSYMBOL_SECTION(symbol) (symbol)->section
721 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
722 (((symbol)->section >= 0) \
723 ? (&(((objfile)->sections)[(symbol)->section])) \
724 : NULL)
725
726 #define MSYMBOL_NATURAL_NAME(symbol) \
727 (symbol_natural_name (symbol))
728 #define MSYMBOL_LINKAGE_NAME(symbol) (symbol)->name
729 #define MSYMBOL_PRINT_NAME(symbol) \
730 (demangle ? MSYMBOL_NATURAL_NAME (symbol) : MSYMBOL_LINKAGE_NAME (symbol))
731 #define MSYMBOL_DEMANGLED_NAME(symbol) \
732 (symbol_demangled_name (symbol))
733 #define MSYMBOL_SEARCH_NAME(symbol) \
734 (symbol_search_name (symbol))
735
736 #include "minsyms.h"
737
738 \f
739
740 /* Represent one symbol name; a variable, constant, function or typedef. */
741
742 /* Different name domains for symbols. Looking up a symbol specifies a
743 domain and ignores symbol definitions in other name domains. */
744
745 typedef enum domain_enum_tag
746 {
747 /* UNDEF_DOMAIN is used when a domain has not been discovered or
748 none of the following apply. This usually indicates an error either
749 in the symbol information or in gdb's handling of symbols. */
750
751 UNDEF_DOMAIN,
752
753 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
754 function names, typedef names and enum type values. */
755
756 VAR_DOMAIN,
757
758 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
759 Thus, if `struct foo' is used in a C program, it produces a symbol named
760 `foo' in the STRUCT_DOMAIN. */
761
762 STRUCT_DOMAIN,
763
764 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
765
766 MODULE_DOMAIN,
767
768 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
769
770 LABEL_DOMAIN,
771
772 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
773 They also always use LOC_COMMON_BLOCK. */
774 COMMON_BLOCK_DOMAIN,
775
776 /* This must remain last. */
777 NR_DOMAINS
778 } domain_enum;
779
780 /* The number of bits in a symbol used to represent the domain. */
781
782 #define SYMBOL_DOMAIN_BITS 3
783 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
784
785 extern const char *domain_name (domain_enum);
786
787 /* Searching domains, used for `search_symbols'. Element numbers are
788 hardcoded in GDB, check all enum uses before changing it. */
789
790 enum search_domain
791 {
792 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
793 TYPES_DOMAIN. */
794 VARIABLES_DOMAIN = 0,
795
796 /* All functions -- for some reason not methods, though. */
797 FUNCTIONS_DOMAIN = 1,
798
799 /* All defined types */
800 TYPES_DOMAIN = 2,
801
802 /* Any type. */
803 ALL_DOMAIN = 3
804 };
805
806 extern const char *search_domain_name (enum search_domain);
807
808 /* An address-class says where to find the value of a symbol. */
809
810 enum address_class
811 {
812 /* Not used; catches errors. */
813
814 LOC_UNDEF,
815
816 /* Value is constant int SYMBOL_VALUE, host byteorder. */
817
818 LOC_CONST,
819
820 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
821
822 LOC_STATIC,
823
824 /* Value is in register. SYMBOL_VALUE is the register number
825 in the original debug format. SYMBOL_REGISTER_OPS holds a
826 function that can be called to transform this into the
827 actual register number this represents in a specific target
828 architecture (gdbarch).
829
830 For some symbol formats (stabs, for some compilers at least),
831 the compiler generates two symbols, an argument and a register.
832 In some cases we combine them to a single LOC_REGISTER in symbol
833 reading, but currently not for all cases (e.g. it's passed on the
834 stack and then loaded into a register). */
835
836 LOC_REGISTER,
837
838 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
839
840 LOC_ARG,
841
842 /* Value address is at SYMBOL_VALUE offset in arglist. */
843
844 LOC_REF_ARG,
845
846 /* Value is in specified register. Just like LOC_REGISTER except the
847 register holds the address of the argument instead of the argument
848 itself. This is currently used for the passing of structs and unions
849 on sparc and hppa. It is also used for call by reference where the
850 address is in a register, at least by mipsread.c. */
851
852 LOC_REGPARM_ADDR,
853
854 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
855
856 LOC_LOCAL,
857
858 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
859 STRUCT_DOMAIN all have this class. */
860
861 LOC_TYPEDEF,
862
863 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
864
865 LOC_LABEL,
866
867 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
868 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
869 of the block. Function names have this class. */
870
871 LOC_BLOCK,
872
873 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
874 target byte order. */
875
876 LOC_CONST_BYTES,
877
878 /* Value is at fixed address, but the address of the variable has
879 to be determined from the minimal symbol table whenever the
880 variable is referenced.
881 This happens if debugging information for a global symbol is
882 emitted and the corresponding minimal symbol is defined
883 in another object file or runtime common storage.
884 The linker might even remove the minimal symbol if the global
885 symbol is never referenced, in which case the symbol remains
886 unresolved.
887
888 GDB would normally find the symbol in the minimal symbol table if it will
889 not find it in the full symbol table. But a reference to an external
890 symbol in a local block shadowing other definition requires full symbol
891 without possibly having its address available for LOC_STATIC. Testcase
892 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
893
894 This is also used for thread local storage (TLS) variables. In this case,
895 the address of the TLS variable must be determined when the variable is
896 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
897 of the TLS variable in the thread local storage of the shared
898 library/object. */
899
900 LOC_UNRESOLVED,
901
902 /* The variable does not actually exist in the program.
903 The value is ignored. */
904
905 LOC_OPTIMIZED_OUT,
906
907 /* The variable's address is computed by a set of location
908 functions (see "struct symbol_computed_ops" below). */
909 LOC_COMPUTED,
910
911 /* The variable uses general_symbol_info->value->common_block field.
912 It also always uses COMMON_BLOCK_DOMAIN. */
913 LOC_COMMON_BLOCK,
914
915 /* Not used, just notes the boundary of the enum. */
916 LOC_FINAL_VALUE
917 };
918
919 /* The number of bits needed for values in enum address_class, with some
920 padding for reasonable growth, and room for run-time registered address
921 classes. See symtab.c:MAX_SYMBOL_IMPLS.
922 This is a #define so that we can have a assertion elsewhere to
923 verify that we have reserved enough space for synthetic address
924 classes. */
925 #define SYMBOL_ACLASS_BITS 5
926 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
927
928 /* The methods needed to implement LOC_COMPUTED. These methods can
929 use the symbol's .aux_value for additional per-symbol information.
930
931 At present this is only used to implement location expressions. */
932
933 struct symbol_computed_ops
934 {
935
936 /* Return the value of the variable SYMBOL, relative to the stack
937 frame FRAME. If the variable has been optimized out, return
938 zero.
939
940 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
941 FRAME may be zero. */
942
943 struct value *(*read_variable) (struct symbol * symbol,
944 struct frame_info * frame);
945
946 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
947 entry. SYMBOL should be a function parameter, otherwise
948 NO_ENTRY_VALUE_ERROR will be thrown. */
949 struct value *(*read_variable_at_entry) (struct symbol *symbol,
950 struct frame_info *frame);
951
952 /* Find the "symbol_needs_kind" value for the given symbol. This
953 value determines whether reading the symbol needs memory (e.g., a
954 global variable), just registers (a thread-local), or a frame (a
955 local variable). */
956 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
957
958 /* Write to STREAM a natural-language description of the location of
959 SYMBOL, in the context of ADDR. */
960 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
961 struct ui_file * stream);
962
963 /* Non-zero if this symbol's address computation is dependent on PC. */
964 unsigned char location_has_loclist;
965
966 /* Tracepoint support. Append bytecodes to the tracepoint agent
967 expression AX that push the address of the object SYMBOL. Set
968 VALUE appropriately. Note --- for objects in registers, this
969 needn't emit any code; as long as it sets VALUE properly, then
970 the caller will generate the right code in the process of
971 treating this as an lvalue or rvalue. */
972
973 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
974 struct axs_value *value);
975
976 /* Generate C code to compute the location of SYMBOL. The C code is
977 emitted to STREAM. GDBARCH is the current architecture and PC is
978 the PC at which SYMBOL's location should be evaluated.
979 REGISTERS_USED is a vector indexed by register number; the
980 generator function should set an element in this vector if the
981 corresponding register is needed by the location computation.
982 The generated C code must assign the location to a local
983 variable; this variable's name is RESULT_NAME. */
984
985 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
986 struct gdbarch *gdbarch,
987 unsigned char *registers_used,
988 CORE_ADDR pc, const char *result_name);
989
990 };
991
992 /* The methods needed to implement LOC_BLOCK for inferior functions.
993 These methods can use the symbol's .aux_value for additional
994 per-symbol information. */
995
996 struct symbol_block_ops
997 {
998 /* Fill in *START and *LENGTH with DWARF block data of function
999 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1000 zero if such location is not valid for PC; *START is left
1001 uninitialized in such case. */
1002 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1003 const gdb_byte **start, size_t *length);
1004
1005 /* Return the frame base address. FRAME is the frame for which we want to
1006 compute the base address while FRAMEFUNC is the symbol for the
1007 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1008 information we need).
1009
1010 This method is designed to work with static links (nested functions
1011 handling). Static links are function properties whose evaluation returns
1012 the frame base address for the enclosing frame. However, there are
1013 multiple definitions for "frame base": the content of the frame base
1014 register, the CFA as defined by DWARF unwinding information, ...
1015
1016 So this specific method is supposed to compute the frame base address such
1017 as for nested fuctions, the static link computes the same address. For
1018 instance, considering DWARF debugging information, the static link is
1019 computed with DW_AT_static_link and this method must be used to compute
1020 the corresponding DW_AT_frame_base attribute. */
1021 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1022 struct frame_info *frame);
1023 };
1024
1025 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1026
1027 struct symbol_register_ops
1028 {
1029 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1030 };
1031
1032 /* Objects of this type are used to find the address class and the
1033 various computed ops vectors of a symbol. */
1034
1035 struct symbol_impl
1036 {
1037 enum address_class aclass;
1038
1039 /* Used with LOC_COMPUTED. */
1040 const struct symbol_computed_ops *ops_computed;
1041
1042 /* Used with LOC_BLOCK. */
1043 const struct symbol_block_ops *ops_block;
1044
1045 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1046 const struct symbol_register_ops *ops_register;
1047 };
1048
1049 /* struct symbol has some subclasses. This enum is used to
1050 differentiate between them. */
1051
1052 enum symbol_subclass_kind
1053 {
1054 /* Plain struct symbol. */
1055 SYMBOL_NONE,
1056
1057 /* struct template_symbol. */
1058 SYMBOL_TEMPLATE,
1059
1060 /* struct rust_vtable_symbol. */
1061 SYMBOL_RUST_VTABLE
1062 };
1063
1064 /* This structure is space critical. See space comments at the top. */
1065
1066 struct symbol
1067 {
1068
1069 /* The general symbol info required for all types of symbols. */
1070
1071 struct general_symbol_info ginfo;
1072
1073 /* Data type of value */
1074
1075 struct type *type;
1076
1077 /* The owner of this symbol.
1078 Which one to use is defined by symbol.is_objfile_owned. */
1079
1080 union
1081 {
1082 /* The symbol table containing this symbol. This is the file associated
1083 with LINE. It can be NULL during symbols read-in but it is never NULL
1084 during normal operation. */
1085 struct symtab *symtab;
1086
1087 /* For types defined by the architecture. */
1088 struct gdbarch *arch;
1089 } owner;
1090
1091 /* Domain code. */
1092
1093 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1094
1095 /* Address class. This holds an index into the 'symbol_impls'
1096 table. The actual enum address_class value is stored there,
1097 alongside any per-class ops vectors. */
1098
1099 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1100
1101 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1102 Otherwise symbol is arch-owned, use owner.arch. */
1103
1104 unsigned int is_objfile_owned : 1;
1105
1106 /* Whether this is an argument. */
1107
1108 unsigned is_argument : 1;
1109
1110 /* Whether this is an inlined function (class LOC_BLOCK only). */
1111 unsigned is_inlined : 1;
1112
1113 /* The concrete type of this symbol. */
1114
1115 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1116
1117 /* Line number of this symbol's definition, except for inlined
1118 functions. For an inlined function (class LOC_BLOCK and
1119 SYMBOL_INLINED set) this is the line number of the function's call
1120 site. Inlined function symbols are not definitions, and they are
1121 never found by symbol table lookup.
1122 If this symbol is arch-owned, LINE shall be zero.
1123
1124 FIXME: Should we really make the assumption that nobody will try
1125 to debug files longer than 64K lines? What about machine
1126 generated programs? */
1127
1128 unsigned short line;
1129
1130 /* An arbitrary data pointer, allowing symbol readers to record
1131 additional information on a per-symbol basis. Note that this data
1132 must be allocated using the same obstack as the symbol itself. */
1133 /* So far it is only used by:
1134 LOC_COMPUTED: to find the location information
1135 LOC_BLOCK (DWARF2 function): information used internally by the
1136 DWARF 2 code --- specifically, the location expression for the frame
1137 base for this function. */
1138 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1139 to add a magic symbol to the block containing this information,
1140 or to have a generic debug info annotation slot for symbols. */
1141
1142 void *aux_value;
1143
1144 struct symbol *hash_next;
1145 };
1146
1147 /* Several lookup functions return both a symbol and the block in which the
1148 symbol is found. This structure is used in these cases. */
1149
1150 struct block_symbol
1151 {
1152 /* The symbol that was found, or NULL if no symbol was found. */
1153 struct symbol *symbol;
1154
1155 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1156 defined. */
1157 const struct block *block;
1158 };
1159
1160 extern const struct symbol_impl *symbol_impls;
1161
1162 /* Note: There is no accessor macro for symbol.owner because it is
1163 "private". */
1164
1165 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1166 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1167 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1168 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1169 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1170 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1171 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1172 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1173 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1174 #define SYMBOL_TYPE(symbol) (symbol)->type
1175 #define SYMBOL_LINE(symbol) (symbol)->line
1176 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1177 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1178 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1179 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1180
1181 extern int register_symbol_computed_impl (enum address_class,
1182 const struct symbol_computed_ops *);
1183
1184 extern int register_symbol_block_impl (enum address_class aclass,
1185 const struct symbol_block_ops *ops);
1186
1187 extern int register_symbol_register_impl (enum address_class,
1188 const struct symbol_register_ops *);
1189
1190 /* Return the OBJFILE of SYMBOL.
1191 It is an error to call this if symbol.is_objfile_owned is false, which
1192 only happens for architecture-provided types. */
1193
1194 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1195
1196 /* Return the ARCH of SYMBOL. */
1197
1198 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1199
1200 /* Return the SYMTAB of SYMBOL.
1201 It is an error to call this if symbol.is_objfile_owned is false, which
1202 only happens for architecture-provided types. */
1203
1204 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1205
1206 /* Set the symtab of SYMBOL to SYMTAB.
1207 It is an error to call this if symbol.is_objfile_owned is false, which
1208 only happens for architecture-provided types. */
1209
1210 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1211
1212 /* An instance of this type is used to represent a C++ template
1213 function. A symbol is really of this type iff
1214 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1215
1216 struct template_symbol : public symbol
1217 {
1218 /* The number of template arguments. */
1219 int n_template_arguments;
1220
1221 /* The template arguments. This is an array with
1222 N_TEMPLATE_ARGUMENTS elements. */
1223 struct symbol **template_arguments;
1224 };
1225
1226 /* A symbol that represents a Rust virtual table object. */
1227
1228 struct rust_vtable_symbol : public symbol
1229 {
1230 /* The concrete type for which this vtable was created; that is, in
1231 "impl Trait for Type", this is "Type". */
1232 struct type *concrete_type;
1233 };
1234
1235 \f
1236 /* Each item represents a line-->pc (or the reverse) mapping. This is
1237 somewhat more wasteful of space than one might wish, but since only
1238 the files which are actually debugged are read in to core, we don't
1239 waste much space. */
1240
1241 struct linetable_entry
1242 {
1243 int line;
1244 CORE_ADDR pc;
1245 };
1246
1247 /* The order of entries in the linetable is significant. They should
1248 be sorted by increasing values of the pc field. If there is more than
1249 one entry for a given pc, then I'm not sure what should happen (and
1250 I not sure whether we currently handle it the best way).
1251
1252 Example: a C for statement generally looks like this
1253
1254 10 0x100 - for the init/test part of a for stmt.
1255 20 0x200
1256 30 0x300
1257 10 0x400 - for the increment part of a for stmt.
1258
1259 If an entry has a line number of zero, it marks the start of a PC
1260 range for which no line number information is available. It is
1261 acceptable, though wasteful of table space, for such a range to be
1262 zero length. */
1263
1264 struct linetable
1265 {
1266 int nitems;
1267
1268 /* Actually NITEMS elements. If you don't like this use of the
1269 `struct hack', you can shove it up your ANSI (seriously, if the
1270 committee tells us how to do it, we can probably go along). */
1271 struct linetable_entry item[1];
1272 };
1273
1274 /* How to relocate the symbols from each section in a symbol file.
1275 Each struct contains an array of offsets.
1276 The ordering and meaning of the offsets is file-type-dependent;
1277 typically it is indexed by section numbers or symbol types or
1278 something like that.
1279
1280 To give us flexibility in changing the internal representation
1281 of these offsets, the ANOFFSET macro must be used to insert and
1282 extract offset values in the struct. */
1283
1284 struct section_offsets
1285 {
1286 CORE_ADDR offsets[1]; /* As many as needed. */
1287 };
1288
1289 #define ANOFFSET(secoff, whichone) \
1290 ((whichone == -1) \
1291 ? (internal_error (__FILE__, __LINE__, \
1292 _("Section index is uninitialized")), -1) \
1293 : secoff->offsets[whichone])
1294
1295 /* The size of a section_offsets table for N sections. */
1296 #define SIZEOF_N_SECTION_OFFSETS(n) \
1297 (sizeof (struct section_offsets) \
1298 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1299
1300 /* Each source file or header is represented by a struct symtab.
1301 The name "symtab" is historical, another name for it is "filetab".
1302 These objects are chained through the `next' field. */
1303
1304 struct symtab
1305 {
1306 /* Unordered chain of all filetabs in the compunit, with the exception
1307 that the "main" source file is the first entry in the list. */
1308
1309 struct symtab *next;
1310
1311 /* Backlink to containing compunit symtab. */
1312
1313 struct compunit_symtab *compunit_symtab;
1314
1315 /* Table mapping core addresses to line numbers for this file.
1316 Can be NULL if none. Never shared between different symtabs. */
1317
1318 struct linetable *linetable;
1319
1320 /* Name of this source file. This pointer is never NULL. */
1321
1322 const char *filename;
1323
1324 /* Total number of lines found in source file. */
1325
1326 int nlines;
1327
1328 /* line_charpos[N] is the position of the (N-1)th line of the
1329 source file. "position" means something we can lseek() to; it
1330 is not guaranteed to be useful any other way. */
1331
1332 int *line_charpos;
1333
1334 /* Language of this source file. */
1335
1336 enum language language;
1337
1338 /* Full name of file as found by searching the source path.
1339 NULL if not yet known. */
1340
1341 char *fullname;
1342 };
1343
1344 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1345 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1346 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1347 #define SYMTAB_BLOCKVECTOR(symtab) \
1348 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1349 #define SYMTAB_OBJFILE(symtab) \
1350 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1351 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1352 #define SYMTAB_DIRNAME(symtab) \
1353 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1354
1355 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1356 as the list of all source files (what gdb has historically associated with
1357 the term "symtab").
1358 Additional information is recorded here that is common to all symtabs in a
1359 compilation unit (DWARF or otherwise).
1360
1361 Example:
1362 For the case of a program built out of these files:
1363
1364 foo.c
1365 foo1.h
1366 foo2.h
1367 bar.c
1368 foo1.h
1369 bar.h
1370
1371 This is recorded as:
1372
1373 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1374 | |
1375 v v
1376 foo.c bar.c
1377 | |
1378 v v
1379 foo1.h foo1.h
1380 | |
1381 v v
1382 foo2.h bar.h
1383 | |
1384 v v
1385 NULL NULL
1386
1387 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1388 and the files foo.c, etc. are struct symtab objects. */
1389
1390 struct compunit_symtab
1391 {
1392 /* Unordered chain of all compunit symtabs of this objfile. */
1393 struct compunit_symtab *next;
1394
1395 /* Object file from which this symtab information was read. */
1396 struct objfile *objfile;
1397
1398 /* Name of the symtab.
1399 This is *not* intended to be a usable filename, and is
1400 for debugging purposes only. */
1401 const char *name;
1402
1403 /* Unordered list of file symtabs, except that by convention the "main"
1404 source file (e.g., .c, .cc) is guaranteed to be first.
1405 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1406 or header (e.g., .h). */
1407 struct symtab *filetabs;
1408
1409 /* Last entry in FILETABS list.
1410 Subfiles are added to the end of the list so they accumulate in order,
1411 with the main source subfile living at the front.
1412 The main reason is so that the main source file symtab is at the head
1413 of the list, and the rest appear in order for debugging convenience. */
1414 struct symtab *last_filetab;
1415
1416 /* Non-NULL string that identifies the format of the debugging information,
1417 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1418 for automated testing of gdb but may also be information that is
1419 useful to the user. */
1420 const char *debugformat;
1421
1422 /* String of producer version information, or NULL if we don't know. */
1423 const char *producer;
1424
1425 /* Directory in which it was compiled, or NULL if we don't know. */
1426 const char *dirname;
1427
1428 /* List of all symbol scope blocks for this symtab. It is shared among
1429 all symtabs in a given compilation unit. */
1430 const struct blockvector *blockvector;
1431
1432 /* Section in objfile->section_offsets for the blockvector and
1433 the linetable. Probably always SECT_OFF_TEXT. */
1434 int block_line_section;
1435
1436 /* Symtab has been compiled with both optimizations and debug info so that
1437 GDB may stop skipping prologues as variables locations are valid already
1438 at function entry points. */
1439 unsigned int locations_valid : 1;
1440
1441 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1442 instruction). This is supported by GCC since 4.5.0. */
1443 unsigned int epilogue_unwind_valid : 1;
1444
1445 /* struct call_site entries for this compilation unit or NULL. */
1446 htab_t call_site_htab;
1447
1448 /* The macro table for this symtab. Like the blockvector, this
1449 is shared between different symtabs in a given compilation unit.
1450 It's debatable whether it *should* be shared among all the symtabs in
1451 the given compilation unit, but it currently is. */
1452 struct macro_table *macro_table;
1453
1454 /* If non-NULL, then this points to a NULL-terminated vector of
1455 included compunits. When searching the static or global
1456 block of this compunit, the corresponding block of all
1457 included compunits will also be searched. Note that this
1458 list must be flattened -- the symbol reader is responsible for
1459 ensuring that this vector contains the transitive closure of all
1460 included compunits. */
1461 struct compunit_symtab **includes;
1462
1463 /* If this is an included compunit, this points to one includer
1464 of the table. This user is considered the canonical compunit
1465 containing this one. An included compunit may itself be
1466 included by another. */
1467 struct compunit_symtab *user;
1468 };
1469
1470 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1471 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1472 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1473 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1474 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1475 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1476 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1477 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1478 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1479 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1480 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1481
1482 /* A range adapter to allowing iterating over all the file tables
1483 within a compunit. */
1484
1485 struct compunit_filetabs : public next_adapter<struct symtab>
1486 {
1487 compunit_filetabs (struct compunit_symtab *cu)
1488 : next_adapter<struct symtab> (cu->filetabs)
1489 {
1490 }
1491 };
1492
1493 /* Return the primary symtab of CUST. */
1494
1495 extern struct symtab *
1496 compunit_primary_filetab (const struct compunit_symtab *cust);
1497
1498 /* Return the language of CUST. */
1499
1500 extern enum language compunit_language (const struct compunit_symtab *cust);
1501
1502 \f
1503
1504 /* The virtual function table is now an array of structures which have the
1505 form { int16 offset, delta; void *pfn; }.
1506
1507 In normal virtual function tables, OFFSET is unused.
1508 DELTA is the amount which is added to the apparent object's base
1509 address in order to point to the actual object to which the
1510 virtual function should be applied.
1511 PFN is a pointer to the virtual function.
1512
1513 Note that this macro is g++ specific (FIXME). */
1514
1515 #define VTBL_FNADDR_OFFSET 2
1516
1517 /* External variables and functions for the objects described above. */
1518
1519 /* True if we are nested inside psymtab_to_symtab. */
1520
1521 extern int currently_reading_symtab;
1522
1523 /* symtab.c lookup functions */
1524
1525 extern const char multiple_symbols_ask[];
1526 extern const char multiple_symbols_all[];
1527 extern const char multiple_symbols_cancel[];
1528
1529 const char *multiple_symbols_select_mode (void);
1530
1531 int symbol_matches_domain (enum language symbol_language,
1532 domain_enum symbol_domain,
1533 domain_enum domain);
1534
1535 /* lookup a symbol table by source file name. */
1536
1537 extern struct symtab *lookup_symtab (const char *);
1538
1539 /* An object of this type is passed as the 'is_a_field_of_this'
1540 argument to lookup_symbol and lookup_symbol_in_language. */
1541
1542 struct field_of_this_result
1543 {
1544 /* The type in which the field was found. If this is NULL then the
1545 symbol was not found in 'this'. If non-NULL, then one of the
1546 other fields will be non-NULL as well. */
1547
1548 struct type *type;
1549
1550 /* If the symbol was found as an ordinary field of 'this', then this
1551 is non-NULL and points to the particular field. */
1552
1553 struct field *field;
1554
1555 /* If the symbol was found as a function field of 'this', then this
1556 is non-NULL and points to the particular field. */
1557
1558 struct fn_fieldlist *fn_field;
1559 };
1560
1561 /* Find the definition for a specified symbol name NAME
1562 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1563 if non-NULL or from global/static blocks if BLOCK is NULL.
1564 Returns the struct symbol pointer, or NULL if no symbol is found.
1565 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1566 NAME is a field of the current implied argument `this'. If so fill in the
1567 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1568 The symbol's section is fixed up if necessary. */
1569
1570 extern struct block_symbol
1571 lookup_symbol_in_language (const char *,
1572 const struct block *,
1573 const domain_enum,
1574 enum language,
1575 struct field_of_this_result *);
1576
1577 /* Same as lookup_symbol_in_language, but using the current language. */
1578
1579 extern struct block_symbol lookup_symbol (const char *,
1580 const struct block *,
1581 const domain_enum,
1582 struct field_of_this_result *);
1583
1584 /* Find the definition for a specified symbol search name in domain
1585 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1586 global/static blocks if BLOCK is NULL. The passed-in search name
1587 should not come from the user; instead it should already be a
1588 search name as retrieved from a
1589 SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call. See definition of
1590 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1591 pointer, or NULL if no symbol is found. The symbol's section is
1592 fixed up if necessary. */
1593
1594 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1595 const struct block *block,
1596 domain_enum domain);
1597
1598 /* A default version of lookup_symbol_nonlocal for use by languages
1599 that can't think of anything better to do.
1600 This implements the C lookup rules. */
1601
1602 extern struct block_symbol
1603 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1604 const char *,
1605 const struct block *,
1606 const domain_enum);
1607
1608 /* Some helper functions for languages that need to write their own
1609 lookup_symbol_nonlocal functions. */
1610
1611 /* Lookup a symbol in the static block associated to BLOCK, if there
1612 is one; do nothing if BLOCK is NULL or a global block.
1613 Upon success fixes up the symbol's section if necessary. */
1614
1615 extern struct block_symbol
1616 lookup_symbol_in_static_block (const char *name,
1617 const struct block *block,
1618 const domain_enum domain);
1619
1620 /* Search all static file-level symbols for NAME from DOMAIN.
1621 Upon success fixes up the symbol's section if necessary. */
1622
1623 extern struct block_symbol lookup_static_symbol (const char *name,
1624 const domain_enum domain);
1625
1626 /* Lookup a symbol in all files' global blocks.
1627
1628 If BLOCK is non-NULL then it is used for two things:
1629 1) If a target-specific lookup routine for libraries exists, then use the
1630 routine for the objfile of BLOCK, and
1631 2) The objfile of BLOCK is used to assist in determining the search order
1632 if the target requires it.
1633 See gdbarch_iterate_over_objfiles_in_search_order.
1634
1635 Upon success fixes up the symbol's section if necessary. */
1636
1637 extern struct block_symbol
1638 lookup_global_symbol (const char *name,
1639 const struct block *block,
1640 const domain_enum domain);
1641
1642 /* Lookup a symbol in block BLOCK.
1643 Upon success fixes up the symbol's section if necessary. */
1644
1645 extern struct symbol *
1646 lookup_symbol_in_block (const char *name,
1647 symbol_name_match_type match_type,
1648 const struct block *block,
1649 const domain_enum domain);
1650
1651 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1652 found, or NULL if not found. */
1653
1654 extern struct block_symbol
1655 lookup_language_this (const struct language_defn *lang,
1656 const struct block *block);
1657
1658 /* Lookup a [struct, union, enum] by name, within a specified block. */
1659
1660 extern struct type *lookup_struct (const char *, const struct block *);
1661
1662 extern struct type *lookup_union (const char *, const struct block *);
1663
1664 extern struct type *lookup_enum (const char *, const struct block *);
1665
1666 /* from blockframe.c: */
1667
1668 /* lookup the function symbol corresponding to the address. The
1669 return value will not be an inlined function; the containing
1670 function will be returned instead. */
1671
1672 extern struct symbol *find_pc_function (CORE_ADDR);
1673
1674 /* lookup the function corresponding to the address and section. The
1675 return value will not be an inlined function; the containing
1676 function will be returned instead. */
1677
1678 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1679
1680 /* lookup the function symbol corresponding to the address and
1681 section. The return value will be the closest enclosing function,
1682 which might be an inline function. */
1683
1684 extern struct symbol *find_pc_sect_containing_function
1685 (CORE_ADDR pc, struct obj_section *section);
1686
1687 /* Find the symbol at the given address. Returns NULL if no symbol
1688 found. Only exact matches for ADDRESS are considered. */
1689
1690 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1691
1692 /* Finds the "function" (text symbol) that is smaller than PC but
1693 greatest of all of the potential text symbols in SECTION. Sets
1694 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1695 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1696 function (exclusive). If the optional parameter BLOCK is non-null,
1697 then set *BLOCK to the address of the block corresponding to the
1698 function symbol, if such a symbol could be found during the lookup;
1699 nullptr is used as a return value for *BLOCK if no block is found.
1700 This function either succeeds or fails (not halfway succeeds). If
1701 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1702 information and returns 1. If it fails, it sets *NAME, *ADDRESS
1703 and *ENDADDR to zero and returns 0.
1704
1705 If the function in question occupies non-contiguous ranges,
1706 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1707 to the start and end of the range in which PC is found. Thus
1708 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1709 from other functions might be found).
1710
1711 This property allows find_pc_partial_function to be used (as it had
1712 been prior to the introduction of non-contiguous range support) by
1713 various tdep files for finding a start address and limit address
1714 for prologue analysis. This still isn't ideal, however, because we
1715 probably shouldn't be doing prologue analysis (in which
1716 instructions are scanned to determine frame size and stack layout)
1717 for any range that doesn't contain the entry pc. Moreover, a good
1718 argument can be made that prologue analysis ought to be performed
1719 starting from the entry pc even when PC is within some other range.
1720 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1721 limits of the entry pc range, but that will cause the
1722 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1723 callers of find_pc_partial_function expect this condition to hold.
1724
1725 Callers which require the start and/or end addresses for the range
1726 containing the entry pc should instead call
1727 find_function_entry_range_from_pc. */
1728
1729 extern int find_pc_partial_function (CORE_ADDR pc, const char **name,
1730 CORE_ADDR *address, CORE_ADDR *endaddr,
1731 const struct block **block = nullptr);
1732
1733 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1734 set to start and end addresses of the range containing the entry pc.
1735
1736 Note that it is not necessarily the case that (for non-NULL ADDRESS
1737 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1738 hold.
1739
1740 See comment for find_pc_partial_function, above, for further
1741 explanation. */
1742
1743 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1744 const char **name,
1745 CORE_ADDR *address,
1746 CORE_ADDR *endaddr);
1747
1748 /* Return the type of a function with its first instruction exactly at
1749 the PC address. Return NULL otherwise. */
1750
1751 extern struct type *find_function_type (CORE_ADDR pc);
1752
1753 /* See if we can figure out the function's actual type from the type
1754 that the resolver returns. RESOLVER_FUNADDR is the address of the
1755 ifunc resolver. */
1756
1757 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1758
1759 /* Find the GNU ifunc minimal symbol that matches SYM. */
1760 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1761
1762 extern void clear_pc_function_cache (void);
1763
1764 /* Expand symtab containing PC, SECTION if not already expanded. */
1765
1766 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1767
1768 /* lookup full symbol table by address. */
1769
1770 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1771
1772 /* lookup full symbol table by address and section. */
1773
1774 extern struct compunit_symtab *
1775 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1776
1777 extern int find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1778
1779 extern void reread_symbols (void);
1780
1781 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1782 The type returned must not be opaque -- i.e., must have at least one field
1783 defined. */
1784
1785 extern struct type *lookup_transparent_type (const char *);
1786
1787 extern struct type *basic_lookup_transparent_type (const char *);
1788
1789 /* Macro for name of symbol to indicate a file compiled with gcc. */
1790 #ifndef GCC_COMPILED_FLAG_SYMBOL
1791 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1792 #endif
1793
1794 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1795 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1796 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1797 #endif
1798
1799 extern int in_gnu_ifunc_stub (CORE_ADDR pc);
1800
1801 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1802 for ELF symbol files. */
1803
1804 struct gnu_ifunc_fns
1805 {
1806 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1807 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1808
1809 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1810 int (*gnu_ifunc_resolve_name) (const char *function_name,
1811 CORE_ADDR *function_address_p);
1812
1813 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1814 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1815
1816 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1817 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1818 };
1819
1820 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1821 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1822 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1823 #define gnu_ifunc_resolver_return_stop \
1824 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1825
1826 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1827
1828 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1829
1830 struct symtab_and_line
1831 {
1832 /* The program space of this sal. */
1833 struct program_space *pspace = NULL;
1834
1835 struct symtab *symtab = NULL;
1836 struct symbol *symbol = NULL;
1837 struct obj_section *section = NULL;
1838 struct minimal_symbol *msymbol = NULL;
1839 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1840 0 is never a valid line number; it is used to indicate that line number
1841 information is not available. */
1842 int line = 0;
1843
1844 CORE_ADDR pc = 0;
1845 CORE_ADDR end = 0;
1846 bool explicit_pc = false;
1847 bool explicit_line = false;
1848
1849 /* The probe associated with this symtab_and_line. */
1850 probe *prob = NULL;
1851 /* If PROBE is not NULL, then this is the objfile in which the probe
1852 originated. */
1853 struct objfile *objfile = NULL;
1854 };
1855
1856 \f
1857
1858 /* Given a pc value, return line number it is in. Second arg nonzero means
1859 if pc is on the boundary use the previous statement's line number. */
1860
1861 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1862
1863 /* Same function, but specify a section as well as an address. */
1864
1865 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1866 struct obj_section *, int);
1867
1868 /* Wrapper around find_pc_line to just return the symtab. */
1869
1870 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1871
1872 /* Given a symtab and line number, return the pc there. */
1873
1874 extern int find_line_pc (struct symtab *, int, CORE_ADDR *);
1875
1876 extern int find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1877 CORE_ADDR *);
1878
1879 extern void resolve_sal_pc (struct symtab_and_line *);
1880
1881 /* solib.c */
1882
1883 extern void clear_solib (void);
1884
1885 /* The reason we're calling into a completion match list collector
1886 function. */
1887 enum class complete_symbol_mode
1888 {
1889 /* Completing an expression. */
1890 EXPRESSION,
1891
1892 /* Completing a linespec. */
1893 LINESPEC,
1894 };
1895
1896 extern void default_collect_symbol_completion_matches_break_on
1897 (completion_tracker &tracker,
1898 complete_symbol_mode mode,
1899 symbol_name_match_type name_match_type,
1900 const char *text, const char *word, const char *break_on,
1901 enum type_code code);
1902 extern void default_collect_symbol_completion_matches
1903 (completion_tracker &tracker,
1904 complete_symbol_mode,
1905 symbol_name_match_type name_match_type,
1906 const char *,
1907 const char *,
1908 enum type_code);
1909 extern void collect_symbol_completion_matches
1910 (completion_tracker &tracker,
1911 complete_symbol_mode mode,
1912 symbol_name_match_type name_match_type,
1913 const char *, const char *);
1914 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1915 const char *, const char *,
1916 enum type_code);
1917
1918 extern void collect_file_symbol_completion_matches
1919 (completion_tracker &tracker,
1920 complete_symbol_mode,
1921 symbol_name_match_type name_match_type,
1922 const char *, const char *, const char *);
1923
1924 extern completion_list
1925 make_source_files_completion_list (const char *, const char *);
1926
1927 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1928
1929 extern bool symbol_is_function_or_method (symbol *sym);
1930
1931 /* Return whether MSYMBOL is a function/method, as opposed to a data
1932 symbol */
1933
1934 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1935
1936 /* Return whether SYM should be skipped in completion mode MODE. In
1937 linespec mode, we're only interested in functions/methods. */
1938
1939 template<typename Symbol>
1940 static bool
1941 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1942 {
1943 return (mode == complete_symbol_mode::LINESPEC
1944 && !symbol_is_function_or_method (sym));
1945 }
1946
1947 /* symtab.c */
1948
1949 int matching_obj_sections (struct obj_section *, struct obj_section *);
1950
1951 extern struct symtab *find_line_symtab (struct symtab *, int, int *, int *);
1952
1953 /* Given a function symbol SYM, find the symtab and line for the start
1954 of the function. If FUNFIRSTLINE is true, we want the first line
1955 of real code inside the function. */
1956 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1957 funfirstline);
1958
1959 /* Same, but start with a function address/section instead of a
1960 symbol. */
1961 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1962 obj_section *section,
1963 bool funfirstline);
1964
1965 extern void skip_prologue_sal (struct symtab_and_line *);
1966
1967 /* symtab.c */
1968
1969 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
1970 CORE_ADDR func_addr);
1971
1972 extern struct symbol *fixup_symbol_section (struct symbol *,
1973 struct objfile *);
1974
1975 /* If MSYMBOL is an text symbol, look for a function debug symbol with
1976 the same address. Returns NULL if not found. This is necessary in
1977 case a function is an alias to some other function, because debug
1978 information is only emitted for the alias target function's
1979 definition, not for the alias. */
1980 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
1981
1982 /* Symbol searching */
1983 /* Note: struct symbol_search, search_symbols, et.al. are declared here,
1984 instead of making them local to symtab.c, for gdbtk's sake. */
1985
1986 /* When using search_symbols, a vector of the following structs is
1987 returned. */
1988 struct symbol_search
1989 {
1990 symbol_search (int block_, struct symbol *symbol_)
1991 : block (block_),
1992 symbol (symbol_)
1993 {
1994 msymbol.minsym = nullptr;
1995 msymbol.objfile = nullptr;
1996 }
1997
1998 symbol_search (int block_, struct minimal_symbol *minsym,
1999 struct objfile *objfile)
2000 : block (block_),
2001 symbol (nullptr)
2002 {
2003 msymbol.minsym = minsym;
2004 msymbol.objfile = objfile;
2005 }
2006
2007 bool operator< (const symbol_search &other) const
2008 {
2009 return compare_search_syms (*this, other) < 0;
2010 }
2011
2012 bool operator== (const symbol_search &other) const
2013 {
2014 return compare_search_syms (*this, other) == 0;
2015 }
2016
2017 /* The block in which the match was found. Could be, for example,
2018 STATIC_BLOCK or GLOBAL_BLOCK. */
2019 int block;
2020
2021 /* Information describing what was found.
2022
2023 If symbol is NOT NULL, then information was found for this match. */
2024 struct symbol *symbol;
2025
2026 /* If msymbol is non-null, then a match was made on something for
2027 which only minimal_symbols exist. */
2028 struct bound_minimal_symbol msymbol;
2029
2030 private:
2031
2032 static int compare_search_syms (const symbol_search &sym_a,
2033 const symbol_search &sym_b);
2034 };
2035
2036 extern std::vector<symbol_search> search_symbols (const char *,
2037 enum search_domain,
2038 const char *,
2039 int,
2040 const char **);
2041 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2042 const struct symbol *sym);
2043
2044 /* The name of the ``main'' function.
2045 FIXME: cagney/2001-03-20: Can't make main_name() const since some
2046 of the calling code currently assumes that the string isn't
2047 const. */
2048 extern /*const */ char *main_name (void);
2049 extern enum language main_language (void);
2050
2051 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global blocks.
2052 This searches MAIN_OBJFILE as well as any associated separate debug info
2053 objfiles of MAIN_OBJFILE.
2054 Upon success fixes up the symbol's section if necessary. */
2055
2056 extern struct block_symbol
2057 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2058 const char *name,
2059 const domain_enum domain);
2060
2061 /* Return 1 if the supplied producer string matches the ARM RealView
2062 compiler (armcc). */
2063 int producer_is_realview (const char *producer);
2064
2065 void fixup_section (struct general_symbol_info *ginfo,
2066 CORE_ADDR addr, struct objfile *objfile);
2067
2068 /* Look up objfile containing BLOCK. */
2069
2070 struct objfile *lookup_objfile_from_block (const struct block *block);
2071
2072 extern unsigned int symtab_create_debug;
2073
2074 extern unsigned int symbol_lookup_debug;
2075
2076 extern int basenames_may_differ;
2077
2078 int compare_filenames_for_search (const char *filename,
2079 const char *search_name);
2080
2081 int compare_glob_filenames_for_search (const char *filename,
2082 const char *search_name);
2083
2084 bool iterate_over_some_symtabs (const char *name,
2085 const char *real_path,
2086 struct compunit_symtab *first,
2087 struct compunit_symtab *after_last,
2088 gdb::function_view<bool (symtab *)> callback);
2089
2090 void iterate_over_symtabs (const char *name,
2091 gdb::function_view<bool (symtab *)> callback);
2092
2093
2094 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2095 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2096
2097 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2098 is called once per matching symbol SYM. The callback should return
2099 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2100 iterating, or false to indicate that the iteration should end. */
2101
2102 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2103
2104 void iterate_over_symbols (const struct block *block,
2105 const lookup_name_info &name,
2106 const domain_enum domain,
2107 gdb::function_view<symbol_found_callback_ftype> callback);
2108
2109 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2110 either returns a const char * pointer that points to either of the
2111 fields of this type, or a pointer to the input NAME. This is done
2112 this way because the underlying functions that demangle_for_lookup
2113 calls either return a std::string (e.g., cp_canonicalize_string) or
2114 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2115 unnecessary reallocation/string copying. */
2116 class demangle_result_storage
2117 {
2118 public:
2119
2120 /* Swap the std::string storage with STR, and return a pointer to
2121 the beginning of the new string. */
2122 const char *swap_string (std::string &str)
2123 {
2124 std::swap (m_string, str);
2125 return m_string.c_str ();
2126 }
2127
2128 /* Set the malloc storage to now point at PTR. Any previous malloc
2129 storage is released. */
2130 const char *set_malloc_ptr (char *ptr)
2131 {
2132 m_malloc.reset (ptr);
2133 return ptr;
2134 }
2135
2136 private:
2137
2138 /* The storage. */
2139 std::string m_string;
2140 gdb::unique_xmalloc_ptr<char> m_malloc;
2141 };
2142
2143 const char *
2144 demangle_for_lookup (const char *name, enum language lang,
2145 demangle_result_storage &storage);
2146
2147 struct symbol *allocate_symbol (struct objfile *);
2148
2149 void initialize_objfile_symbol (struct symbol *);
2150
2151 struct template_symbol *allocate_template_symbol (struct objfile *);
2152
2153 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2154 SYMNAME (which is already demangled for C++ symbols) matches
2155 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2156 the current completion list. */
2157 void completion_list_add_name (completion_tracker &tracker,
2158 language symbol_language,
2159 const char *symname,
2160 const lookup_name_info &lookup_name,
2161 const char *text, const char *word);
2162
2163 /* A simple symbol searching class. */
2164
2165 class symbol_searcher
2166 {
2167 public:
2168 /* Returns the symbols found for the search. */
2169 const std::vector<block_symbol> &
2170 matching_symbols () const
2171 {
2172 return m_symbols;
2173 }
2174
2175 /* Returns the minimal symbols found for the search. */
2176 const std::vector<bound_minimal_symbol> &
2177 matching_msymbols () const
2178 {
2179 return m_minimal_symbols;
2180 }
2181
2182 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2183 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2184 to search all symtabs and program spaces. */
2185 void find_all_symbols (const std::string &name,
2186 const struct language_defn *language,
2187 enum search_domain search_domain,
2188 std::vector<symtab *> *search_symtabs,
2189 struct program_space *search_pspace);
2190
2191 /* Reset this object to perform another search. */
2192 void reset ()
2193 {
2194 m_symbols.clear ();
2195 m_minimal_symbols.clear ();
2196 }
2197
2198 private:
2199 /* Matching debug symbols. */
2200 std::vector<block_symbol> m_symbols;
2201
2202 /* Matching non-debug symbols. */
2203 std::vector<bound_minimal_symbol> m_minimal_symbols;
2204 };
2205
2206 #endif /* !defined(SYMTAB_H) */