]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTR_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
121
122 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
123
124 static int debug_to_stopped_by_watchpoint (void);
125
126 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127
128 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
129 CORE_ADDR, CORE_ADDR, int);
130
131 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132
133 static void debug_to_terminal_init (void);
134
135 static void debug_to_terminal_inferior (void);
136
137 static void debug_to_terminal_ours_for_output (void);
138
139 static void debug_to_terminal_save_ours (void);
140
141 static void debug_to_terminal_ours (void);
142
143 static void debug_to_terminal_info (char *, int);
144
145 static void debug_to_load (char *, int);
146
147 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_notice_signals (ptid_t);
152
153 static void debug_to_stop (ptid_t);
154
155 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
156 wierd and mysterious ways. Putting the variable here lets those
157 wierd and mysterious ways keep building while they are being
158 converted to the inferior inheritance structure. */
159 struct target_ops deprecated_child_ops;
160
161 /* Pointer to array of target architecture structures; the size of the
162 array; the current index into the array; the allocated size of the
163 array. */
164 struct target_ops **target_structs;
165 unsigned target_struct_size;
166 unsigned target_struct_index;
167 unsigned target_struct_allocsize;
168 #define DEFAULT_ALLOCSIZE 10
169
170 /* The initial current target, so that there is always a semi-valid
171 current target. */
172
173 static struct target_ops dummy_target;
174
175 /* Top of target stack. */
176
177 static struct target_ops *target_stack;
178
179 /* The target structure we are currently using to talk to a process
180 or file or whatever "inferior" we have. */
181
182 struct target_ops current_target;
183
184 /* Command list for target. */
185
186 static struct cmd_list_element *targetlist = NULL;
187
188 /* Nonzero if we should trust readonly sections from the
189 executable when reading memory. */
190
191 static int trust_readonly = 0;
192
193 /* Nonzero if we should show true memory content including
194 memory breakpoint inserted by gdb. */
195
196 static int show_memory_breakpoints = 0;
197
198 /* Non-zero if we want to see trace of target level stuff. */
199
200 static int targetdebug = 0;
201 static void
202 show_targetdebug (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
206 }
207
208 static void setup_target_debug (void);
209
210 /* The option sets this. */
211 static int stack_cache_enabled_p_1 = 1;
212 /* And set_stack_cache_enabled_p updates this.
213 The reason for the separation is so that we don't flush the cache for
214 on->on transitions. */
215 static int stack_cache_enabled_p = 1;
216
217 /* This is called *after* the stack-cache has been set.
218 Flush the cache for off->on and on->off transitions.
219 There's no real need to flush the cache for on->off transitions,
220 except cleanliness. */
221
222 static void
223 set_stack_cache_enabled_p (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
227 target_dcache_invalidate ();
228
229 stack_cache_enabled_p = stack_cache_enabled_p_1;
230 }
231
232 static void
233 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
237 }
238
239 /* Cache of memory operations, to speed up remote access. */
240 static DCACHE *target_dcache;
241
242 /* Invalidate the target dcache. */
243
244 void
245 target_dcache_invalidate (void)
246 {
247 dcache_invalidate (target_dcache);
248 }
249
250 /* The user just typed 'target' without the name of a target. */
251
252 static void
253 target_command (char *arg, int from_tty)
254 {
255 fputs_filtered ("Argument required (target name). Try `help target'\n",
256 gdb_stdout);
257 }
258
259 /* Default target_has_* methods for process_stratum targets. */
260
261 int
262 default_child_has_all_memory (struct target_ops *ops)
263 {
264 /* If no inferior selected, then we can't read memory here. */
265 if (ptid_equal (inferior_ptid, null_ptid))
266 return 0;
267
268 return 1;
269 }
270
271 int
272 default_child_has_memory (struct target_ops *ops)
273 {
274 /* If no inferior selected, then we can't read memory here. */
275 if (ptid_equal (inferior_ptid, null_ptid))
276 return 0;
277
278 return 1;
279 }
280
281 int
282 default_child_has_stack (struct target_ops *ops)
283 {
284 /* If no inferior selected, there's no stack. */
285 if (ptid_equal (inferior_ptid, null_ptid))
286 return 0;
287
288 return 1;
289 }
290
291 int
292 default_child_has_registers (struct target_ops *ops)
293 {
294 /* Can't read registers from no inferior. */
295 if (ptid_equal (inferior_ptid, null_ptid))
296 return 0;
297
298 return 1;
299 }
300
301 int
302 default_child_has_execution (struct target_ops *ops)
303 {
304 /* If there's no thread selected, then we can't make it run through
305 hoops. */
306 if (ptid_equal (inferior_ptid, null_ptid))
307 return 0;
308
309 return 1;
310 }
311
312
313 int
314 target_has_all_memory_1 (void)
315 {
316 struct target_ops *t;
317
318 for (t = current_target.beneath; t != NULL; t = t->beneath)
319 if (t->to_has_all_memory (t))
320 return 1;
321
322 return 0;
323 }
324
325 int
326 target_has_memory_1 (void)
327 {
328 struct target_ops *t;
329
330 for (t = current_target.beneath; t != NULL; t = t->beneath)
331 if (t->to_has_memory (t))
332 return 1;
333
334 return 0;
335 }
336
337 int
338 target_has_stack_1 (void)
339 {
340 struct target_ops *t;
341
342 for (t = current_target.beneath; t != NULL; t = t->beneath)
343 if (t->to_has_stack (t))
344 return 1;
345
346 return 0;
347 }
348
349 int
350 target_has_registers_1 (void)
351 {
352 struct target_ops *t;
353
354 for (t = current_target.beneath; t != NULL; t = t->beneath)
355 if (t->to_has_registers (t))
356 return 1;
357
358 return 0;
359 }
360
361 int
362 target_has_execution_1 (void)
363 {
364 struct target_ops *t;
365
366 for (t = current_target.beneath; t != NULL; t = t->beneath)
367 if (t->to_has_execution (t))
368 return 1;
369
370 return 0;
371 }
372
373 /* Add a possible target architecture to the list. */
374
375 void
376 add_target (struct target_ops *t)
377 {
378 /* Provide default values for all "must have" methods. */
379 if (t->to_xfer_partial == NULL)
380 t->to_xfer_partial = default_xfer_partial;
381
382 if (t->to_has_all_memory == NULL)
383 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
384
385 if (t->to_has_memory == NULL)
386 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
387
388 if (t->to_has_stack == NULL)
389 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
390
391 if (t->to_has_registers == NULL)
392 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
393
394 if (t->to_has_execution == NULL)
395 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
421 }
422
423 /* Stub functions */
424
425 void
426 target_ignore (void)
427 {
428 }
429
430 void
431 target_kill (void)
432 {
433 struct target_ops *t;
434
435 for (t = current_target.beneath; t != NULL; t = t->beneath)
436 if (t->to_kill != NULL)
437 {
438 if (targetdebug)
439 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
440
441 t->to_kill (t);
442 return;
443 }
444
445 noprocess ();
446 }
447
448 void
449 target_load (char *arg, int from_tty)
450 {
451 target_dcache_invalidate ();
452 (*current_target.to_load) (arg, from_tty);
453 }
454
455 void
456 target_create_inferior (char *exec_file, char *args,
457 char **env, int from_tty)
458 {
459 struct target_ops *t;
460 for (t = current_target.beneath; t != NULL; t = t->beneath)
461 {
462 if (t->to_create_inferior != NULL)
463 {
464 t->to_create_inferior (t, exec_file, args, env, from_tty);
465 if (targetdebug)
466 fprintf_unfiltered (gdb_stdlog,
467 "target_create_inferior (%s, %s, xxx, %d)\n",
468 exec_file, args, from_tty);
469 return;
470 }
471 }
472
473 internal_error (__FILE__, __LINE__,
474 "could not find a target to create inferior");
475 }
476
477 void
478 target_terminal_inferior (void)
479 {
480 /* A background resume (``run&'') should leave GDB in control of the
481 terminal. Use target_can_async_p, not target_is_async_p, since at
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
485 return;
486
487 /* If GDB is resuming the inferior in the foreground, install
488 inferior's terminal modes. */
489 (*current_target.to_terminal_inferior) ();
490 }
491
492 static int
493 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
494 struct target_ops *t)
495 {
496 errno = EIO; /* Can't read/write this location */
497 return 0; /* No bytes handled */
498 }
499
500 static void
501 tcomplain (void)
502 {
503 error (_("You can't do that when your target is `%s'"),
504 current_target.to_shortname);
505 }
506
507 void
508 noprocess (void)
509 {
510 error (_("You can't do that without a process to debug."));
511 }
512
513 static int
514 nosymbol (char *name, CORE_ADDR *addrp)
515 {
516 return 1; /* Symbol does not exist in target env */
517 }
518
519 static void
520 default_terminal_info (char *args, int from_tty)
521 {
522 printf_unfiltered (_("No saved terminal information.\n"));
523 }
524
525 /* A default implementation for the to_get_ada_task_ptid target method.
526
527 This function builds the PTID by using both LWP and TID as part of
528 the PTID lwp and tid elements. The pid used is the pid of the
529 inferior_ptid. */
530
531 static ptid_t
532 default_get_ada_task_ptid (long lwp, long tid)
533 {
534 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
535 }
536
537 /* Go through the target stack from top to bottom, copying over zero
538 entries in current_target, then filling in still empty entries. In
539 effect, we are doing class inheritance through the pushed target
540 vectors.
541
542 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
543 is currently implemented, is that it discards any knowledge of
544 which target an inherited method originally belonged to.
545 Consequently, new new target methods should instead explicitly and
546 locally search the target stack for the target that can handle the
547 request. */
548
549 static void
550 update_current_target (void)
551 {
552 struct target_ops *t;
553
554 /* First, reset current's contents. */
555 memset (&current_target, 0, sizeof (current_target));
556
557 #define INHERIT(FIELD, TARGET) \
558 if (!current_target.FIELD) \
559 current_target.FIELD = (TARGET)->FIELD
560
561 for (t = target_stack; t; t = t->beneath)
562 {
563 INHERIT (to_shortname, t);
564 INHERIT (to_longname, t);
565 INHERIT (to_doc, t);
566 /* Do not inherit to_open. */
567 /* Do not inherit to_close. */
568 /* Do not inherit to_attach. */
569 INHERIT (to_post_attach, t);
570 INHERIT (to_attach_no_wait, t);
571 /* Do not inherit to_detach. */
572 /* Do not inherit to_disconnect. */
573 /* Do not inherit to_resume. */
574 /* Do not inherit to_wait. */
575 /* Do not inherit to_fetch_registers. */
576 /* Do not inherit to_store_registers. */
577 INHERIT (to_prepare_to_store, t);
578 INHERIT (deprecated_xfer_memory, t);
579 INHERIT (to_files_info, t);
580 INHERIT (to_insert_breakpoint, t);
581 INHERIT (to_remove_breakpoint, t);
582 INHERIT (to_can_use_hw_breakpoint, t);
583 INHERIT (to_insert_hw_breakpoint, t);
584 INHERIT (to_remove_hw_breakpoint, t);
585 INHERIT (to_insert_watchpoint, t);
586 INHERIT (to_remove_watchpoint, t);
587 INHERIT (to_stopped_data_address, t);
588 INHERIT (to_have_steppable_watchpoint, t);
589 INHERIT (to_have_continuable_watchpoint, t);
590 INHERIT (to_stopped_by_watchpoint, t);
591 INHERIT (to_watchpoint_addr_within_range, t);
592 INHERIT (to_region_ok_for_hw_watchpoint, t);
593 INHERIT (to_terminal_init, t);
594 INHERIT (to_terminal_inferior, t);
595 INHERIT (to_terminal_ours_for_output, t);
596 INHERIT (to_terminal_ours, t);
597 INHERIT (to_terminal_save_ours, t);
598 INHERIT (to_terminal_info, t);
599 /* Do not inherit to_kill. */
600 INHERIT (to_load, t);
601 INHERIT (to_lookup_symbol, t);
602 /* Do no inherit to_create_inferior. */
603 INHERIT (to_post_startup_inferior, t);
604 INHERIT (to_acknowledge_created_inferior, t);
605 INHERIT (to_insert_fork_catchpoint, t);
606 INHERIT (to_remove_fork_catchpoint, t);
607 INHERIT (to_insert_vfork_catchpoint, t);
608 INHERIT (to_remove_vfork_catchpoint, t);
609 /* Do not inherit to_follow_fork. */
610 INHERIT (to_insert_exec_catchpoint, t);
611 INHERIT (to_remove_exec_catchpoint, t);
612 INHERIT (to_set_syscall_catchpoint, t);
613 INHERIT (to_has_exited, t);
614 /* Do not inherit to_mourn_inferiour. */
615 INHERIT (to_can_run, t);
616 INHERIT (to_notice_signals, t);
617 /* Do not inherit to_thread_alive. */
618 /* Do not inherit to_find_new_threads. */
619 /* Do not inherit to_pid_to_str. */
620 INHERIT (to_extra_thread_info, t);
621 INHERIT (to_stop, t);
622 /* Do not inherit to_xfer_partial. */
623 INHERIT (to_rcmd, t);
624 INHERIT (to_pid_to_exec_file, t);
625 INHERIT (to_log_command, t);
626 INHERIT (to_stratum, t);
627 /* Do not inherit to_has_all_memory */
628 /* Do not inherit to_has_memory */
629 /* Do not inherit to_has_stack */
630 /* Do not inherit to_has_registers */
631 /* Do not inherit to_has_execution */
632 INHERIT (to_has_thread_control, t);
633 INHERIT (to_can_async_p, t);
634 INHERIT (to_is_async_p, t);
635 INHERIT (to_async, t);
636 INHERIT (to_async_mask, t);
637 INHERIT (to_find_memory_regions, t);
638 INHERIT (to_make_corefile_notes, t);
639 INHERIT (to_get_bookmark, t);
640 INHERIT (to_goto_bookmark, t);
641 /* Do not inherit to_get_thread_local_address. */
642 INHERIT (to_can_execute_reverse, t);
643 INHERIT (to_thread_architecture, t);
644 /* Do not inherit to_read_description. */
645 INHERIT (to_get_ada_task_ptid, t);
646 /* Do not inherit to_search_memory. */
647 INHERIT (to_supports_multi_process, t);
648 INHERIT (to_trace_init, t);
649 INHERIT (to_download_tracepoint, t);
650 INHERIT (to_download_trace_state_variable, t);
651 INHERIT (to_trace_set_readonly_regions, t);
652 INHERIT (to_trace_start, t);
653 INHERIT (to_get_trace_status, t);
654 INHERIT (to_trace_stop, t);
655 INHERIT (to_trace_find, t);
656 INHERIT (to_get_trace_state_variable_value, t);
657 INHERIT (to_save_trace_data, t);
658 INHERIT (to_upload_tracepoints, t);
659 INHERIT (to_upload_trace_state_variables, t);
660 INHERIT (to_get_raw_trace_data, t);
661 INHERIT (to_set_disconnected_tracing, t);
662 INHERIT (to_set_circular_trace_buffer, t);
663 INHERIT (to_magic, t);
664 /* Do not inherit to_memory_map. */
665 /* Do not inherit to_flash_erase. */
666 /* Do not inherit to_flash_done. */
667 }
668 #undef INHERIT
669
670 /* Clean up a target struct so it no longer has any zero pointers in
671 it. Some entries are defaulted to a method that print an error,
672 others are hard-wired to a standard recursive default. */
673
674 #define de_fault(field, value) \
675 if (!current_target.field) \
676 current_target.field = value
677
678 de_fault (to_open,
679 (void (*) (char *, int))
680 tcomplain);
681 de_fault (to_close,
682 (void (*) (int))
683 target_ignore);
684 de_fault (to_post_attach,
685 (void (*) (int))
686 target_ignore);
687 de_fault (to_prepare_to_store,
688 (void (*) (struct regcache *))
689 noprocess);
690 de_fault (deprecated_xfer_memory,
691 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
692 nomemory);
693 de_fault (to_files_info,
694 (void (*) (struct target_ops *))
695 target_ignore);
696 de_fault (to_insert_breakpoint,
697 memory_insert_breakpoint);
698 de_fault (to_remove_breakpoint,
699 memory_remove_breakpoint);
700 de_fault (to_can_use_hw_breakpoint,
701 (int (*) (int, int, int))
702 return_zero);
703 de_fault (to_insert_hw_breakpoint,
704 (int (*) (struct gdbarch *, struct bp_target_info *))
705 return_minus_one);
706 de_fault (to_remove_hw_breakpoint,
707 (int (*) (struct gdbarch *, struct bp_target_info *))
708 return_minus_one);
709 de_fault (to_insert_watchpoint,
710 (int (*) (CORE_ADDR, int, int))
711 return_minus_one);
712 de_fault (to_remove_watchpoint,
713 (int (*) (CORE_ADDR, int, int))
714 return_minus_one);
715 de_fault (to_stopped_by_watchpoint,
716 (int (*) (void))
717 return_zero);
718 de_fault (to_stopped_data_address,
719 (int (*) (struct target_ops *, CORE_ADDR *))
720 return_zero);
721 de_fault (to_watchpoint_addr_within_range,
722 default_watchpoint_addr_within_range);
723 de_fault (to_region_ok_for_hw_watchpoint,
724 default_region_ok_for_hw_watchpoint);
725 de_fault (to_terminal_init,
726 (void (*) (void))
727 target_ignore);
728 de_fault (to_terminal_inferior,
729 (void (*) (void))
730 target_ignore);
731 de_fault (to_terminal_ours_for_output,
732 (void (*) (void))
733 target_ignore);
734 de_fault (to_terminal_ours,
735 (void (*) (void))
736 target_ignore);
737 de_fault (to_terminal_save_ours,
738 (void (*) (void))
739 target_ignore);
740 de_fault (to_terminal_info,
741 default_terminal_info);
742 de_fault (to_load,
743 (void (*) (char *, int))
744 tcomplain);
745 de_fault (to_lookup_symbol,
746 (int (*) (char *, CORE_ADDR *))
747 nosymbol);
748 de_fault (to_post_startup_inferior,
749 (void (*) (ptid_t))
750 target_ignore);
751 de_fault (to_acknowledge_created_inferior,
752 (void (*) (int))
753 target_ignore);
754 de_fault (to_insert_fork_catchpoint,
755 (void (*) (int))
756 tcomplain);
757 de_fault (to_remove_fork_catchpoint,
758 (int (*) (int))
759 tcomplain);
760 de_fault (to_insert_vfork_catchpoint,
761 (void (*) (int))
762 tcomplain);
763 de_fault (to_remove_vfork_catchpoint,
764 (int (*) (int))
765 tcomplain);
766 de_fault (to_insert_exec_catchpoint,
767 (void (*) (int))
768 tcomplain);
769 de_fault (to_remove_exec_catchpoint,
770 (int (*) (int))
771 tcomplain);
772 de_fault (to_set_syscall_catchpoint,
773 (int (*) (int, int, int, int, int *))
774 tcomplain);
775 de_fault (to_has_exited,
776 (int (*) (int, int, int *))
777 return_zero);
778 de_fault (to_can_run,
779 return_zero);
780 de_fault (to_notice_signals,
781 (void (*) (ptid_t))
782 target_ignore);
783 de_fault (to_extra_thread_info,
784 (char *(*) (struct thread_info *))
785 return_zero);
786 de_fault (to_stop,
787 (void (*) (ptid_t))
788 target_ignore);
789 current_target.to_xfer_partial = current_xfer_partial;
790 de_fault (to_rcmd,
791 (void (*) (char *, struct ui_file *))
792 tcomplain);
793 de_fault (to_pid_to_exec_file,
794 (char *(*) (int))
795 return_zero);
796 de_fault (to_async,
797 (void (*) (void (*) (enum inferior_event_type, void*), void*))
798 tcomplain);
799 de_fault (to_async_mask,
800 (int (*) (int))
801 return_one);
802 de_fault (to_thread_architecture,
803 default_thread_architecture);
804 current_target.to_read_description = NULL;
805 de_fault (to_get_ada_task_ptid,
806 (ptid_t (*) (long, long))
807 default_get_ada_task_ptid);
808 de_fault (to_supports_multi_process,
809 (int (*) (void))
810 return_zero);
811 de_fault (to_trace_init,
812 (void (*) (void))
813 tcomplain);
814 de_fault (to_download_tracepoint,
815 (void (*) (struct breakpoint *))
816 tcomplain);
817 de_fault (to_download_trace_state_variable,
818 (void (*) (struct trace_state_variable *))
819 tcomplain);
820 de_fault (to_trace_set_readonly_regions,
821 (void (*) (void))
822 tcomplain);
823 de_fault (to_trace_start,
824 (void (*) (void))
825 tcomplain);
826 de_fault (to_get_trace_status,
827 (int (*) (struct trace_status *))
828 return_minus_one);
829 de_fault (to_trace_stop,
830 (void (*) (void))
831 tcomplain);
832 de_fault (to_trace_find,
833 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
834 return_zero);
835 de_fault (to_get_trace_state_variable_value,
836 (int (*) (int, LONGEST *))
837 return_zero);
838 de_fault (to_save_trace_data,
839 (int (*) (const char *))
840 tcomplain);
841 de_fault (to_upload_tracepoints,
842 (int (*) (struct uploaded_tp **))
843 return_zero);
844 de_fault (to_upload_trace_state_variables,
845 (int (*) (struct uploaded_tsv **))
846 return_zero);
847 de_fault (to_get_raw_trace_data,
848 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
849 tcomplain);
850 de_fault (to_set_disconnected_tracing,
851 (void (*) (int))
852 target_ignore);
853 de_fault (to_set_circular_trace_buffer,
854 (void (*) (int))
855 target_ignore);
856 #undef de_fault
857
858 /* Finally, position the target-stack beneath the squashed
859 "current_target". That way code looking for a non-inherited
860 target method can quickly and simply find it. */
861 current_target.beneath = target_stack;
862
863 if (targetdebug)
864 setup_target_debug ();
865 }
866
867 /* Push a new target type into the stack of the existing target accessors,
868 possibly superseding some of the existing accessors.
869
870 Result is zero if the pushed target ended up on top of the stack,
871 nonzero if at least one target is on top of it.
872
873 Rather than allow an empty stack, we always have the dummy target at
874 the bottom stratum, so we can call the function vectors without
875 checking them. */
876
877 int
878 push_target (struct target_ops *t)
879 {
880 struct target_ops **cur;
881
882 /* Check magic number. If wrong, it probably means someone changed
883 the struct definition, but not all the places that initialize one. */
884 if (t->to_magic != OPS_MAGIC)
885 {
886 fprintf_unfiltered (gdb_stderr,
887 "Magic number of %s target struct wrong\n",
888 t->to_shortname);
889 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
890 }
891
892 /* Find the proper stratum to install this target in. */
893 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
894 {
895 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
896 break;
897 }
898
899 /* If there's already targets at this stratum, remove them. */
900 /* FIXME: cagney/2003-10-15: I think this should be popping all
901 targets to CUR, and not just those at this stratum level. */
902 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
903 {
904 /* There's already something at this stratum level. Close it,
905 and un-hook it from the stack. */
906 struct target_ops *tmp = (*cur);
907 (*cur) = (*cur)->beneath;
908 tmp->beneath = NULL;
909 target_close (tmp, 0);
910 }
911
912 /* We have removed all targets in our stratum, now add the new one. */
913 t->beneath = (*cur);
914 (*cur) = t;
915
916 update_current_target ();
917
918 /* Not on top? */
919 return (t != target_stack);
920 }
921
922 /* Remove a target_ops vector from the stack, wherever it may be.
923 Return how many times it was removed (0 or 1). */
924
925 int
926 unpush_target (struct target_ops *t)
927 {
928 struct target_ops **cur;
929 struct target_ops *tmp;
930
931 if (t->to_stratum == dummy_stratum)
932 internal_error (__FILE__, __LINE__,
933 "Attempt to unpush the dummy target");
934
935 /* Look for the specified target. Note that we assume that a target
936 can only occur once in the target stack. */
937
938 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
939 {
940 if ((*cur) == t)
941 break;
942 }
943
944 if ((*cur) == NULL)
945 return 0; /* Didn't find target_ops, quit now */
946
947 /* NOTE: cagney/2003-12-06: In '94 the close call was made
948 unconditional by moving it to before the above check that the
949 target was in the target stack (something about "Change the way
950 pushing and popping of targets work to support target overlays
951 and inheritance"). This doesn't make much sense - only open
952 targets should be closed. */
953 target_close (t, 0);
954
955 /* Unchain the target */
956 tmp = (*cur);
957 (*cur) = (*cur)->beneath;
958 tmp->beneath = NULL;
959
960 update_current_target ();
961
962 return 1;
963 }
964
965 void
966 pop_target (void)
967 {
968 target_close (target_stack, 0); /* Let it clean up */
969 if (unpush_target (target_stack) == 1)
970 return;
971
972 fprintf_unfiltered (gdb_stderr,
973 "pop_target couldn't find target %s\n",
974 current_target.to_shortname);
975 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
976 }
977
978 void
979 pop_all_targets_above (enum strata above_stratum, int quitting)
980 {
981 while ((int) (current_target.to_stratum) > (int) above_stratum)
982 {
983 target_close (target_stack, quitting);
984 if (!unpush_target (target_stack))
985 {
986 fprintf_unfiltered (gdb_stderr,
987 "pop_all_targets couldn't find target %s\n",
988 target_stack->to_shortname);
989 internal_error (__FILE__, __LINE__,
990 _("failed internal consistency check"));
991 break;
992 }
993 }
994 }
995
996 void
997 pop_all_targets (int quitting)
998 {
999 pop_all_targets_above (dummy_stratum, quitting);
1000 }
1001
1002 /* Using the objfile specified in OBJFILE, find the address for the
1003 current thread's thread-local storage with offset OFFSET. */
1004 CORE_ADDR
1005 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1006 {
1007 volatile CORE_ADDR addr = 0;
1008 struct target_ops *target;
1009
1010 for (target = current_target.beneath;
1011 target != NULL;
1012 target = target->beneath)
1013 {
1014 if (target->to_get_thread_local_address != NULL)
1015 break;
1016 }
1017
1018 if (target != NULL
1019 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1020 {
1021 ptid_t ptid = inferior_ptid;
1022 volatile struct gdb_exception ex;
1023
1024 TRY_CATCH (ex, RETURN_MASK_ALL)
1025 {
1026 CORE_ADDR lm_addr;
1027
1028 /* Fetch the load module address for this objfile. */
1029 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1030 objfile);
1031 /* If it's 0, throw the appropriate exception. */
1032 if (lm_addr == 0)
1033 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1034 _("TLS load module not found"));
1035
1036 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1037 }
1038 /* If an error occurred, print TLS related messages here. Otherwise,
1039 throw the error to some higher catcher. */
1040 if (ex.reason < 0)
1041 {
1042 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1043
1044 switch (ex.error)
1045 {
1046 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1047 error (_("Cannot find thread-local variables in this thread library."));
1048 break;
1049 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1050 if (objfile_is_library)
1051 error (_("Cannot find shared library `%s' in dynamic"
1052 " linker's load module list"), objfile->name);
1053 else
1054 error (_("Cannot find executable file `%s' in dynamic"
1055 " linker's load module list"), objfile->name);
1056 break;
1057 case TLS_NOT_ALLOCATED_YET_ERROR:
1058 if (objfile_is_library)
1059 error (_("The inferior has not yet allocated storage for"
1060 " thread-local variables in\n"
1061 "the shared library `%s'\n"
1062 "for %s"),
1063 objfile->name, target_pid_to_str (ptid));
1064 else
1065 error (_("The inferior has not yet allocated storage for"
1066 " thread-local variables in\n"
1067 "the executable `%s'\n"
1068 "for %s"),
1069 objfile->name, target_pid_to_str (ptid));
1070 break;
1071 case TLS_GENERIC_ERROR:
1072 if (objfile_is_library)
1073 error (_("Cannot find thread-local storage for %s, "
1074 "shared library %s:\n%s"),
1075 target_pid_to_str (ptid),
1076 objfile->name, ex.message);
1077 else
1078 error (_("Cannot find thread-local storage for %s, "
1079 "executable file %s:\n%s"),
1080 target_pid_to_str (ptid),
1081 objfile->name, ex.message);
1082 break;
1083 default:
1084 throw_exception (ex);
1085 break;
1086 }
1087 }
1088 }
1089 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1090 TLS is an ABI-specific thing. But we don't do that yet. */
1091 else
1092 error (_("Cannot find thread-local variables on this target"));
1093
1094 return addr;
1095 }
1096
1097 #undef MIN
1098 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1099
1100 /* target_read_string -- read a null terminated string, up to LEN bytes,
1101 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1102 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1103 is responsible for freeing it. Return the number of bytes successfully
1104 read. */
1105
1106 int
1107 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1108 {
1109 int tlen, origlen, offset, i;
1110 gdb_byte buf[4];
1111 int errcode = 0;
1112 char *buffer;
1113 int buffer_allocated;
1114 char *bufptr;
1115 unsigned int nbytes_read = 0;
1116
1117 gdb_assert (string);
1118
1119 /* Small for testing. */
1120 buffer_allocated = 4;
1121 buffer = xmalloc (buffer_allocated);
1122 bufptr = buffer;
1123
1124 origlen = len;
1125
1126 while (len > 0)
1127 {
1128 tlen = MIN (len, 4 - (memaddr & 3));
1129 offset = memaddr & 3;
1130
1131 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1132 if (errcode != 0)
1133 {
1134 /* The transfer request might have crossed the boundary to an
1135 unallocated region of memory. Retry the transfer, requesting
1136 a single byte. */
1137 tlen = 1;
1138 offset = 0;
1139 errcode = target_read_memory (memaddr, buf, 1);
1140 if (errcode != 0)
1141 goto done;
1142 }
1143
1144 if (bufptr - buffer + tlen > buffer_allocated)
1145 {
1146 unsigned int bytes;
1147 bytes = bufptr - buffer;
1148 buffer_allocated *= 2;
1149 buffer = xrealloc (buffer, buffer_allocated);
1150 bufptr = buffer + bytes;
1151 }
1152
1153 for (i = 0; i < tlen; i++)
1154 {
1155 *bufptr++ = buf[i + offset];
1156 if (buf[i + offset] == '\000')
1157 {
1158 nbytes_read += i + 1;
1159 goto done;
1160 }
1161 }
1162
1163 memaddr += tlen;
1164 len -= tlen;
1165 nbytes_read += tlen;
1166 }
1167 done:
1168 *string = buffer;
1169 if (errnop != NULL)
1170 *errnop = errcode;
1171 return nbytes_read;
1172 }
1173
1174 struct target_section_table *
1175 target_get_section_table (struct target_ops *target)
1176 {
1177 struct target_ops *t;
1178
1179 if (targetdebug)
1180 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1181
1182 for (t = target; t != NULL; t = t->beneath)
1183 if (t->to_get_section_table != NULL)
1184 return (*t->to_get_section_table) (t);
1185
1186 return NULL;
1187 }
1188
1189 /* Find a section containing ADDR. */
1190
1191 struct target_section *
1192 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1193 {
1194 struct target_section_table *table = target_get_section_table (target);
1195 struct target_section *secp;
1196
1197 if (table == NULL)
1198 return NULL;
1199
1200 for (secp = table->sections; secp < table->sections_end; secp++)
1201 {
1202 if (addr >= secp->addr && addr < secp->endaddr)
1203 return secp;
1204 }
1205 return NULL;
1206 }
1207
1208 /* Perform a partial memory transfer.
1209 For docs see target.h, to_xfer_partial. */
1210
1211 static LONGEST
1212 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1213 void *readbuf, const void *writebuf, ULONGEST memaddr,
1214 LONGEST len)
1215 {
1216 LONGEST res;
1217 int reg_len;
1218 struct mem_region *region;
1219 struct inferior *inf;
1220
1221 /* Zero length requests are ok and require no work. */
1222 if (len == 0)
1223 return 0;
1224
1225 /* For accesses to unmapped overlay sections, read directly from
1226 files. Must do this first, as MEMADDR may need adjustment. */
1227 if (readbuf != NULL && overlay_debugging)
1228 {
1229 struct obj_section *section = find_pc_overlay (memaddr);
1230 if (pc_in_unmapped_range (memaddr, section))
1231 {
1232 struct target_section_table *table
1233 = target_get_section_table (ops);
1234 const char *section_name = section->the_bfd_section->name;
1235 memaddr = overlay_mapped_address (memaddr, section);
1236 return section_table_xfer_memory_partial (readbuf, writebuf,
1237 memaddr, len,
1238 table->sections,
1239 table->sections_end,
1240 section_name);
1241 }
1242 }
1243
1244 /* Try the executable files, if "trust-readonly-sections" is set. */
1245 if (readbuf != NULL && trust_readonly)
1246 {
1247 struct target_section *secp;
1248 struct target_section_table *table;
1249
1250 secp = target_section_by_addr (ops, memaddr);
1251 if (secp != NULL
1252 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1253 & SEC_READONLY))
1254 {
1255 table = target_get_section_table (ops);
1256 return section_table_xfer_memory_partial (readbuf, writebuf,
1257 memaddr, len,
1258 table->sections,
1259 table->sections_end,
1260 NULL);
1261 }
1262 }
1263
1264 /* Try GDB's internal data cache. */
1265 region = lookup_mem_region (memaddr);
1266 /* region->hi == 0 means there's no upper bound. */
1267 if (memaddr + len < region->hi || region->hi == 0)
1268 reg_len = len;
1269 else
1270 reg_len = region->hi - memaddr;
1271
1272 switch (region->attrib.mode)
1273 {
1274 case MEM_RO:
1275 if (writebuf != NULL)
1276 return -1;
1277 break;
1278
1279 case MEM_WO:
1280 if (readbuf != NULL)
1281 return -1;
1282 break;
1283
1284 case MEM_FLASH:
1285 /* We only support writing to flash during "load" for now. */
1286 if (writebuf != NULL)
1287 error (_("Writing to flash memory forbidden in this context"));
1288 break;
1289
1290 case MEM_NONE:
1291 return -1;
1292 }
1293
1294 if (!ptid_equal (inferior_ptid, null_ptid))
1295 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1296 else
1297 inf = NULL;
1298
1299 if (inf != NULL
1300 /* The dcache reads whole cache lines; that doesn't play well
1301 with reading from a trace buffer, because reading outside of
1302 the collected memory range fails. */
1303 && get_traceframe_number () == -1
1304 && (region->attrib.cache
1305 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1306 {
1307 if (readbuf != NULL)
1308 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1309 reg_len, 0);
1310 else
1311 /* FIXME drow/2006-08-09: If we're going to preserve const
1312 correctness dcache_xfer_memory should take readbuf and
1313 writebuf. */
1314 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1315 (void *) writebuf,
1316 reg_len, 1);
1317 if (res <= 0)
1318 return -1;
1319 else
1320 {
1321 if (readbuf && !show_memory_breakpoints)
1322 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1323 return res;
1324 }
1325 }
1326
1327 /* If none of those methods found the memory we wanted, fall back
1328 to a target partial transfer. Normally a single call to
1329 to_xfer_partial is enough; if it doesn't recognize an object
1330 it will call the to_xfer_partial of the next target down.
1331 But for memory this won't do. Memory is the only target
1332 object which can be read from more than one valid target.
1333 A core file, for instance, could have some of memory but
1334 delegate other bits to the target below it. So, we must
1335 manually try all targets. */
1336
1337 do
1338 {
1339 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1340 readbuf, writebuf, memaddr, reg_len);
1341 if (res > 0)
1342 break;
1343
1344 /* We want to continue past core files to executables, but not
1345 past a running target's memory. */
1346 if (ops->to_has_all_memory (ops))
1347 break;
1348
1349 ops = ops->beneath;
1350 }
1351 while (ops != NULL);
1352
1353 if (readbuf && !show_memory_breakpoints)
1354 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1355
1356 /* Make sure the cache gets updated no matter what - if we are writing
1357 to the stack. Even if this write is not tagged as such, we still need
1358 to update the cache. */
1359
1360 if (res > 0
1361 && inf != NULL
1362 && writebuf != NULL
1363 && !region->attrib.cache
1364 && stack_cache_enabled_p
1365 && object != TARGET_OBJECT_STACK_MEMORY)
1366 {
1367 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1368 }
1369
1370 /* If we still haven't got anything, return the last error. We
1371 give up. */
1372 return res;
1373 }
1374
1375 static void
1376 restore_show_memory_breakpoints (void *arg)
1377 {
1378 show_memory_breakpoints = (uintptr_t) arg;
1379 }
1380
1381 struct cleanup *
1382 make_show_memory_breakpoints_cleanup (int show)
1383 {
1384 int current = show_memory_breakpoints;
1385 show_memory_breakpoints = show;
1386
1387 return make_cleanup (restore_show_memory_breakpoints,
1388 (void *) (uintptr_t) current);
1389 }
1390
1391 /* For docs see target.h, to_xfer_partial. */
1392
1393 static LONGEST
1394 target_xfer_partial (struct target_ops *ops,
1395 enum target_object object, const char *annex,
1396 void *readbuf, const void *writebuf,
1397 ULONGEST offset, LONGEST len)
1398 {
1399 LONGEST retval;
1400
1401 gdb_assert (ops->to_xfer_partial != NULL);
1402
1403 /* If this is a memory transfer, let the memory-specific code
1404 have a look at it instead. Memory transfers are more
1405 complicated. */
1406 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1407 retval = memory_xfer_partial (ops, object, readbuf,
1408 writebuf, offset, len);
1409 else
1410 {
1411 enum target_object raw_object = object;
1412
1413 /* If this is a raw memory transfer, request the normal
1414 memory object from other layers. */
1415 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1416 raw_object = TARGET_OBJECT_MEMORY;
1417
1418 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1419 writebuf, offset, len);
1420 }
1421
1422 if (targetdebug)
1423 {
1424 const unsigned char *myaddr = NULL;
1425
1426 fprintf_unfiltered (gdb_stdlog,
1427 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1428 ops->to_shortname,
1429 (int) object,
1430 (annex ? annex : "(null)"),
1431 host_address_to_string (readbuf),
1432 host_address_to_string (writebuf),
1433 core_addr_to_string_nz (offset),
1434 plongest (len), plongest (retval));
1435
1436 if (readbuf)
1437 myaddr = readbuf;
1438 if (writebuf)
1439 myaddr = writebuf;
1440 if (retval > 0 && myaddr != NULL)
1441 {
1442 int i;
1443
1444 fputs_unfiltered (", bytes =", gdb_stdlog);
1445 for (i = 0; i < retval; i++)
1446 {
1447 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1448 {
1449 if (targetdebug < 2 && i > 0)
1450 {
1451 fprintf_unfiltered (gdb_stdlog, " ...");
1452 break;
1453 }
1454 fprintf_unfiltered (gdb_stdlog, "\n");
1455 }
1456
1457 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1458 }
1459 }
1460
1461 fputc_unfiltered ('\n', gdb_stdlog);
1462 }
1463 return retval;
1464 }
1465
1466 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1467 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1468 if any error occurs.
1469
1470 If an error occurs, no guarantee is made about the contents of the data at
1471 MYADDR. In particular, the caller should not depend upon partial reads
1472 filling the buffer with good data. There is no way for the caller to know
1473 how much good data might have been transfered anyway. Callers that can
1474 deal with partial reads should call target_read (which will retry until
1475 it makes no progress, and then return how much was transferred). */
1476
1477 int
1478 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1479 {
1480 /* Dispatch to the topmost target, not the flattened current_target.
1481 Memory accesses check target->to_has_(all_)memory, and the
1482 flattened target doesn't inherit those. */
1483 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1484 myaddr, memaddr, len) == len)
1485 return 0;
1486 else
1487 return EIO;
1488 }
1489
1490 /* Like target_read_memory, but specify explicitly that this is a read from
1491 the target's stack. This may trigger different cache behavior. */
1492
1493 int
1494 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1495 {
1496 /* Dispatch to the topmost target, not the flattened current_target.
1497 Memory accesses check target->to_has_(all_)memory, and the
1498 flattened target doesn't inherit those. */
1499
1500 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1501 myaddr, memaddr, len) == len)
1502 return 0;
1503 else
1504 return EIO;
1505 }
1506
1507 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1508 Returns either 0 for success or an errno value if any error occurs.
1509 If an error occurs, no guarantee is made about how much data got written.
1510 Callers that can deal with partial writes should call target_write. */
1511
1512 int
1513 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1514 {
1515 /* Dispatch to the topmost target, not the flattened current_target.
1516 Memory accesses check target->to_has_(all_)memory, and the
1517 flattened target doesn't inherit those. */
1518 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1519 myaddr, memaddr, len) == len)
1520 return 0;
1521 else
1522 return EIO;
1523 }
1524
1525 /* Fetch the target's memory map. */
1526
1527 VEC(mem_region_s) *
1528 target_memory_map (void)
1529 {
1530 VEC(mem_region_s) *result;
1531 struct mem_region *last_one, *this_one;
1532 int ix;
1533 struct target_ops *t;
1534
1535 if (targetdebug)
1536 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1537
1538 for (t = current_target.beneath; t != NULL; t = t->beneath)
1539 if (t->to_memory_map != NULL)
1540 break;
1541
1542 if (t == NULL)
1543 return NULL;
1544
1545 result = t->to_memory_map (t);
1546 if (result == NULL)
1547 return NULL;
1548
1549 qsort (VEC_address (mem_region_s, result),
1550 VEC_length (mem_region_s, result),
1551 sizeof (struct mem_region), mem_region_cmp);
1552
1553 /* Check that regions do not overlap. Simultaneously assign
1554 a numbering for the "mem" commands to use to refer to
1555 each region. */
1556 last_one = NULL;
1557 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1558 {
1559 this_one->number = ix;
1560
1561 if (last_one && last_one->hi > this_one->lo)
1562 {
1563 warning (_("Overlapping regions in memory map: ignoring"));
1564 VEC_free (mem_region_s, result);
1565 return NULL;
1566 }
1567 last_one = this_one;
1568 }
1569
1570 return result;
1571 }
1572
1573 void
1574 target_flash_erase (ULONGEST address, LONGEST length)
1575 {
1576 struct target_ops *t;
1577
1578 for (t = current_target.beneath; t != NULL; t = t->beneath)
1579 if (t->to_flash_erase != NULL)
1580 {
1581 if (targetdebug)
1582 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1583 hex_string (address), phex (length, 0));
1584 t->to_flash_erase (t, address, length);
1585 return;
1586 }
1587
1588 tcomplain ();
1589 }
1590
1591 void
1592 target_flash_done (void)
1593 {
1594 struct target_ops *t;
1595
1596 for (t = current_target.beneath; t != NULL; t = t->beneath)
1597 if (t->to_flash_done != NULL)
1598 {
1599 if (targetdebug)
1600 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1601 t->to_flash_done (t);
1602 return;
1603 }
1604
1605 tcomplain ();
1606 }
1607
1608 static void
1609 show_trust_readonly (struct ui_file *file, int from_tty,
1610 struct cmd_list_element *c, const char *value)
1611 {
1612 fprintf_filtered (file, _("\
1613 Mode for reading from readonly sections is %s.\n"),
1614 value);
1615 }
1616
1617 /* More generic transfers. */
1618
1619 static LONGEST
1620 default_xfer_partial (struct target_ops *ops, enum target_object object,
1621 const char *annex, gdb_byte *readbuf,
1622 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1623 {
1624 if (object == TARGET_OBJECT_MEMORY
1625 && ops->deprecated_xfer_memory != NULL)
1626 /* If available, fall back to the target's
1627 "deprecated_xfer_memory" method. */
1628 {
1629 int xfered = -1;
1630 errno = 0;
1631 if (writebuf != NULL)
1632 {
1633 void *buffer = xmalloc (len);
1634 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1635 memcpy (buffer, writebuf, len);
1636 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1637 1/*write*/, NULL, ops);
1638 do_cleanups (cleanup);
1639 }
1640 if (readbuf != NULL)
1641 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1642 0/*read*/, NULL, ops);
1643 if (xfered > 0)
1644 return xfered;
1645 else if (xfered == 0 && errno == 0)
1646 /* "deprecated_xfer_memory" uses 0, cross checked against
1647 ERRNO as one indication of an error. */
1648 return 0;
1649 else
1650 return -1;
1651 }
1652 else if (ops->beneath != NULL)
1653 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1654 readbuf, writebuf, offset, len);
1655 else
1656 return -1;
1657 }
1658
1659 /* The xfer_partial handler for the topmost target. Unlike the default,
1660 it does not need to handle memory specially; it just passes all
1661 requests down the stack. */
1662
1663 static LONGEST
1664 current_xfer_partial (struct target_ops *ops, enum target_object object,
1665 const char *annex, gdb_byte *readbuf,
1666 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1667 {
1668 if (ops->beneath != NULL)
1669 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1670 readbuf, writebuf, offset, len);
1671 else
1672 return -1;
1673 }
1674
1675 /* Target vector read/write partial wrapper functions. */
1676
1677 static LONGEST
1678 target_read_partial (struct target_ops *ops,
1679 enum target_object object,
1680 const char *annex, gdb_byte *buf,
1681 ULONGEST offset, LONGEST len)
1682 {
1683 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1684 }
1685
1686 static LONGEST
1687 target_write_partial (struct target_ops *ops,
1688 enum target_object object,
1689 const char *annex, const gdb_byte *buf,
1690 ULONGEST offset, LONGEST len)
1691 {
1692 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1693 }
1694
1695 /* Wrappers to perform the full transfer. */
1696
1697 /* For docs on target_read see target.h. */
1698
1699 LONGEST
1700 target_read (struct target_ops *ops,
1701 enum target_object object,
1702 const char *annex, gdb_byte *buf,
1703 ULONGEST offset, LONGEST len)
1704 {
1705 LONGEST xfered = 0;
1706 while (xfered < len)
1707 {
1708 LONGEST xfer = target_read_partial (ops, object, annex,
1709 (gdb_byte *) buf + xfered,
1710 offset + xfered, len - xfered);
1711 /* Call an observer, notifying them of the xfer progress? */
1712 if (xfer == 0)
1713 return xfered;
1714 if (xfer < 0)
1715 return -1;
1716 xfered += xfer;
1717 QUIT;
1718 }
1719 return len;
1720 }
1721
1722 LONGEST
1723 target_read_until_error (struct target_ops *ops,
1724 enum target_object object,
1725 const char *annex, gdb_byte *buf,
1726 ULONGEST offset, LONGEST len)
1727 {
1728 LONGEST xfered = 0;
1729 while (xfered < len)
1730 {
1731 LONGEST xfer = target_read_partial (ops, object, annex,
1732 (gdb_byte *) buf + xfered,
1733 offset + xfered, len - xfered);
1734 /* Call an observer, notifying them of the xfer progress? */
1735 if (xfer == 0)
1736 return xfered;
1737 if (xfer < 0)
1738 {
1739 /* We've got an error. Try to read in smaller blocks. */
1740 ULONGEST start = offset + xfered;
1741 ULONGEST remaining = len - xfered;
1742 ULONGEST half;
1743
1744 /* If an attempt was made to read a random memory address,
1745 it's likely that the very first byte is not accessible.
1746 Try reading the first byte, to avoid doing log N tries
1747 below. */
1748 xfer = target_read_partial (ops, object, annex,
1749 (gdb_byte *) buf + xfered, start, 1);
1750 if (xfer <= 0)
1751 return xfered;
1752 start += 1;
1753 remaining -= 1;
1754 half = remaining/2;
1755
1756 while (half > 0)
1757 {
1758 xfer = target_read_partial (ops, object, annex,
1759 (gdb_byte *) buf + xfered,
1760 start, half);
1761 if (xfer == 0)
1762 return xfered;
1763 if (xfer < 0)
1764 {
1765 remaining = half;
1766 }
1767 else
1768 {
1769 /* We have successfully read the first half. So, the
1770 error must be in the second half. Adjust start and
1771 remaining to point at the second half. */
1772 xfered += xfer;
1773 start += xfer;
1774 remaining -= xfer;
1775 }
1776 half = remaining/2;
1777 }
1778
1779 return xfered;
1780 }
1781 xfered += xfer;
1782 QUIT;
1783 }
1784 return len;
1785 }
1786
1787 /* An alternative to target_write with progress callbacks. */
1788
1789 LONGEST
1790 target_write_with_progress (struct target_ops *ops,
1791 enum target_object object,
1792 const char *annex, const gdb_byte *buf,
1793 ULONGEST offset, LONGEST len,
1794 void (*progress) (ULONGEST, void *), void *baton)
1795 {
1796 LONGEST xfered = 0;
1797
1798 /* Give the progress callback a chance to set up. */
1799 if (progress)
1800 (*progress) (0, baton);
1801
1802 while (xfered < len)
1803 {
1804 LONGEST xfer = target_write_partial (ops, object, annex,
1805 (gdb_byte *) buf + xfered,
1806 offset + xfered, len - xfered);
1807
1808 if (xfer == 0)
1809 return xfered;
1810 if (xfer < 0)
1811 return -1;
1812
1813 if (progress)
1814 (*progress) (xfer, baton);
1815
1816 xfered += xfer;
1817 QUIT;
1818 }
1819 return len;
1820 }
1821
1822 /* For docs on target_write see target.h. */
1823
1824 LONGEST
1825 target_write (struct target_ops *ops,
1826 enum target_object object,
1827 const char *annex, const gdb_byte *buf,
1828 ULONGEST offset, LONGEST len)
1829 {
1830 return target_write_with_progress (ops, object, annex, buf, offset, len,
1831 NULL, NULL);
1832 }
1833
1834 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1835 the size of the transferred data. PADDING additional bytes are
1836 available in *BUF_P. This is a helper function for
1837 target_read_alloc; see the declaration of that function for more
1838 information. */
1839
1840 static LONGEST
1841 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1842 const char *annex, gdb_byte **buf_p, int padding)
1843 {
1844 size_t buf_alloc, buf_pos;
1845 gdb_byte *buf;
1846 LONGEST n;
1847
1848 /* This function does not have a length parameter; it reads the
1849 entire OBJECT). Also, it doesn't support objects fetched partly
1850 from one target and partly from another (in a different stratum,
1851 e.g. a core file and an executable). Both reasons make it
1852 unsuitable for reading memory. */
1853 gdb_assert (object != TARGET_OBJECT_MEMORY);
1854
1855 /* Start by reading up to 4K at a time. The target will throttle
1856 this number down if necessary. */
1857 buf_alloc = 4096;
1858 buf = xmalloc (buf_alloc);
1859 buf_pos = 0;
1860 while (1)
1861 {
1862 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1863 buf_pos, buf_alloc - buf_pos - padding);
1864 if (n < 0)
1865 {
1866 /* An error occurred. */
1867 xfree (buf);
1868 return -1;
1869 }
1870 else if (n == 0)
1871 {
1872 /* Read all there was. */
1873 if (buf_pos == 0)
1874 xfree (buf);
1875 else
1876 *buf_p = buf;
1877 return buf_pos;
1878 }
1879
1880 buf_pos += n;
1881
1882 /* If the buffer is filling up, expand it. */
1883 if (buf_alloc < buf_pos * 2)
1884 {
1885 buf_alloc *= 2;
1886 buf = xrealloc (buf, buf_alloc);
1887 }
1888
1889 QUIT;
1890 }
1891 }
1892
1893 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1894 the size of the transferred data. See the declaration in "target.h"
1895 function for more information about the return value. */
1896
1897 LONGEST
1898 target_read_alloc (struct target_ops *ops, enum target_object object,
1899 const char *annex, gdb_byte **buf_p)
1900 {
1901 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1902 }
1903
1904 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1905 returned as a string, allocated using xmalloc. If an error occurs
1906 or the transfer is unsupported, NULL is returned. Empty objects
1907 are returned as allocated but empty strings. A warning is issued
1908 if the result contains any embedded NUL bytes. */
1909
1910 char *
1911 target_read_stralloc (struct target_ops *ops, enum target_object object,
1912 const char *annex)
1913 {
1914 gdb_byte *buffer;
1915 LONGEST transferred;
1916
1917 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1918
1919 if (transferred < 0)
1920 return NULL;
1921
1922 if (transferred == 0)
1923 return xstrdup ("");
1924
1925 buffer[transferred] = 0;
1926 if (strlen (buffer) < transferred)
1927 warning (_("target object %d, annex %s, "
1928 "contained unexpected null characters"),
1929 (int) object, annex ? annex : "(none)");
1930
1931 return (char *) buffer;
1932 }
1933
1934 /* Memory transfer methods. */
1935
1936 void
1937 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1938 LONGEST len)
1939 {
1940 /* This method is used to read from an alternate, non-current
1941 target. This read must bypass the overlay support (as symbols
1942 don't match this target), and GDB's internal cache (wrong cache
1943 for this target). */
1944 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1945 != len)
1946 memory_error (EIO, addr);
1947 }
1948
1949 ULONGEST
1950 get_target_memory_unsigned (struct target_ops *ops,
1951 CORE_ADDR addr, int len, enum bfd_endian byte_order)
1952 {
1953 gdb_byte buf[sizeof (ULONGEST)];
1954
1955 gdb_assert (len <= sizeof (buf));
1956 get_target_memory (ops, addr, buf, len);
1957 return extract_unsigned_integer (buf, len, byte_order);
1958 }
1959
1960 static void
1961 target_info (char *args, int from_tty)
1962 {
1963 struct target_ops *t;
1964 int has_all_mem = 0;
1965
1966 if (symfile_objfile != NULL)
1967 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1968
1969 for (t = target_stack; t != NULL; t = t->beneath)
1970 {
1971 if (!(*t->to_has_memory) (t))
1972 continue;
1973
1974 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1975 continue;
1976 if (has_all_mem)
1977 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1978 printf_unfiltered ("%s:\n", t->to_longname);
1979 (t->to_files_info) (t);
1980 has_all_mem = (*t->to_has_all_memory) (t);
1981 }
1982 }
1983
1984 /* This function is called before any new inferior is created, e.g.
1985 by running a program, attaching, or connecting to a target.
1986 It cleans up any state from previous invocations which might
1987 change between runs. This is a subset of what target_preopen
1988 resets (things which might change between targets). */
1989
1990 void
1991 target_pre_inferior (int from_tty)
1992 {
1993 /* Clear out solib state. Otherwise the solib state of the previous
1994 inferior might have survived and is entirely wrong for the new
1995 target. This has been observed on GNU/Linux using glibc 2.3. How
1996 to reproduce:
1997
1998 bash$ ./foo&
1999 [1] 4711
2000 bash$ ./foo&
2001 [1] 4712
2002 bash$ gdb ./foo
2003 [...]
2004 (gdb) attach 4711
2005 (gdb) detach
2006 (gdb) attach 4712
2007 Cannot access memory at address 0xdeadbeef
2008 */
2009
2010 /* In some OSs, the shared library list is the same/global/shared
2011 across inferiors. If code is shared between processes, so are
2012 memory regions and features. */
2013 if (!gdbarch_has_global_solist (target_gdbarch))
2014 {
2015 no_shared_libraries (NULL, from_tty);
2016
2017 invalidate_target_mem_regions ();
2018
2019 target_clear_description ();
2020 }
2021 }
2022
2023 /* Callback for iterate_over_inferiors. Gets rid of the given
2024 inferior. */
2025
2026 static int
2027 dispose_inferior (struct inferior *inf, void *args)
2028 {
2029 struct thread_info *thread;
2030
2031 thread = any_thread_of_process (inf->pid);
2032 if (thread)
2033 {
2034 switch_to_thread (thread->ptid);
2035
2036 /* Core inferiors actually should be detached, not killed. */
2037 if (target_has_execution)
2038 target_kill ();
2039 else
2040 target_detach (NULL, 0);
2041 }
2042
2043 return 0;
2044 }
2045
2046 /* This is to be called by the open routine before it does
2047 anything. */
2048
2049 void
2050 target_preopen (int from_tty)
2051 {
2052 dont_repeat ();
2053
2054 if (have_inferiors ())
2055 {
2056 if (!from_tty
2057 || !have_live_inferiors ()
2058 || query (_("A program is being debugged already. Kill it? ")))
2059 iterate_over_inferiors (dispose_inferior, NULL);
2060 else
2061 error (_("Program not killed."));
2062 }
2063
2064 /* Calling target_kill may remove the target from the stack. But if
2065 it doesn't (which seems like a win for UDI), remove it now. */
2066 /* Leave the exec target, though. The user may be switching from a
2067 live process to a core of the same program. */
2068 pop_all_targets_above (file_stratum, 0);
2069
2070 target_pre_inferior (from_tty);
2071 }
2072
2073 /* Detach a target after doing deferred register stores. */
2074
2075 void
2076 target_detach (char *args, int from_tty)
2077 {
2078 struct target_ops* t;
2079
2080 if (gdbarch_has_global_breakpoints (target_gdbarch))
2081 /* Don't remove global breakpoints here. They're removed on
2082 disconnection from the target. */
2083 ;
2084 else
2085 /* If we're in breakpoints-always-inserted mode, have to remove
2086 them before detaching. */
2087 remove_breakpoints_pid (PIDGET (inferior_ptid));
2088
2089 prepare_for_detach ();
2090
2091 for (t = current_target.beneath; t != NULL; t = t->beneath)
2092 {
2093 if (t->to_detach != NULL)
2094 {
2095 t->to_detach (t, args, from_tty);
2096 if (targetdebug)
2097 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2098 args, from_tty);
2099 return;
2100 }
2101 }
2102
2103 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2104 }
2105
2106 void
2107 target_disconnect (char *args, int from_tty)
2108 {
2109 struct target_ops *t;
2110
2111 /* If we're in breakpoints-always-inserted mode or if breakpoints
2112 are global across processes, we have to remove them before
2113 disconnecting. */
2114 remove_breakpoints ();
2115
2116 for (t = current_target.beneath; t != NULL; t = t->beneath)
2117 if (t->to_disconnect != NULL)
2118 {
2119 if (targetdebug)
2120 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2121 args, from_tty);
2122 t->to_disconnect (t, args, from_tty);
2123 return;
2124 }
2125
2126 tcomplain ();
2127 }
2128
2129 ptid_t
2130 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2131 {
2132 struct target_ops *t;
2133
2134 for (t = current_target.beneath; t != NULL; t = t->beneath)
2135 {
2136 if (t->to_wait != NULL)
2137 {
2138 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2139
2140 if (targetdebug)
2141 {
2142 char *status_string;
2143
2144 status_string = target_waitstatus_to_string (status);
2145 fprintf_unfiltered (gdb_stdlog,
2146 "target_wait (%d, status) = %d, %s\n",
2147 PIDGET (ptid), PIDGET (retval),
2148 status_string);
2149 xfree (status_string);
2150 }
2151
2152 return retval;
2153 }
2154 }
2155
2156 noprocess ();
2157 }
2158
2159 char *
2160 target_pid_to_str (ptid_t ptid)
2161 {
2162 struct target_ops *t;
2163
2164 for (t = current_target.beneath; t != NULL; t = t->beneath)
2165 {
2166 if (t->to_pid_to_str != NULL)
2167 return (*t->to_pid_to_str) (t, ptid);
2168 }
2169
2170 return normal_pid_to_str (ptid);
2171 }
2172
2173 void
2174 target_resume (ptid_t ptid, int step, enum target_signal signal)
2175 {
2176 struct target_ops *t;
2177
2178 target_dcache_invalidate ();
2179
2180 for (t = current_target.beneath; t != NULL; t = t->beneath)
2181 {
2182 if (t->to_resume != NULL)
2183 {
2184 t->to_resume (t, ptid, step, signal);
2185 if (targetdebug)
2186 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2187 PIDGET (ptid),
2188 step ? "step" : "continue",
2189 target_signal_to_name (signal));
2190
2191 set_executing (ptid, 1);
2192 set_running (ptid, 1);
2193 clear_inline_frame_state (ptid);
2194 return;
2195 }
2196 }
2197
2198 noprocess ();
2199 }
2200 /* Look through the list of possible targets for a target that can
2201 follow forks. */
2202
2203 int
2204 target_follow_fork (int follow_child)
2205 {
2206 struct target_ops *t;
2207
2208 for (t = current_target.beneath; t != NULL; t = t->beneath)
2209 {
2210 if (t->to_follow_fork != NULL)
2211 {
2212 int retval = t->to_follow_fork (t, follow_child);
2213 if (targetdebug)
2214 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2215 follow_child, retval);
2216 return retval;
2217 }
2218 }
2219
2220 /* Some target returned a fork event, but did not know how to follow it. */
2221 internal_error (__FILE__, __LINE__,
2222 "could not find a target to follow fork");
2223 }
2224
2225 void
2226 target_mourn_inferior (void)
2227 {
2228 struct target_ops *t;
2229 for (t = current_target.beneath; t != NULL; t = t->beneath)
2230 {
2231 if (t->to_mourn_inferior != NULL)
2232 {
2233 t->to_mourn_inferior (t);
2234 if (targetdebug)
2235 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2236
2237 /* We no longer need to keep handles on any of the object files.
2238 Make sure to release them to avoid unnecessarily locking any
2239 of them while we're not actually debugging. */
2240 bfd_cache_close_all ();
2241
2242 return;
2243 }
2244 }
2245
2246 internal_error (__FILE__, __LINE__,
2247 "could not find a target to follow mourn inferiour");
2248 }
2249
2250 /* Look for a target which can describe architectural features, starting
2251 from TARGET. If we find one, return its description. */
2252
2253 const struct target_desc *
2254 target_read_description (struct target_ops *target)
2255 {
2256 struct target_ops *t;
2257
2258 for (t = target; t != NULL; t = t->beneath)
2259 if (t->to_read_description != NULL)
2260 {
2261 const struct target_desc *tdesc;
2262
2263 tdesc = t->to_read_description (t);
2264 if (tdesc)
2265 return tdesc;
2266 }
2267
2268 return NULL;
2269 }
2270
2271 /* The default implementation of to_search_memory.
2272 This implements a basic search of memory, reading target memory and
2273 performing the search here (as opposed to performing the search in on the
2274 target side with, for example, gdbserver). */
2275
2276 int
2277 simple_search_memory (struct target_ops *ops,
2278 CORE_ADDR start_addr, ULONGEST search_space_len,
2279 const gdb_byte *pattern, ULONGEST pattern_len,
2280 CORE_ADDR *found_addrp)
2281 {
2282 /* NOTE: also defined in find.c testcase. */
2283 #define SEARCH_CHUNK_SIZE 16000
2284 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2285 /* Buffer to hold memory contents for searching. */
2286 gdb_byte *search_buf;
2287 unsigned search_buf_size;
2288 struct cleanup *old_cleanups;
2289
2290 search_buf_size = chunk_size + pattern_len - 1;
2291
2292 /* No point in trying to allocate a buffer larger than the search space. */
2293 if (search_space_len < search_buf_size)
2294 search_buf_size = search_space_len;
2295
2296 search_buf = malloc (search_buf_size);
2297 if (search_buf == NULL)
2298 error (_("Unable to allocate memory to perform the search."));
2299 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2300
2301 /* Prime the search buffer. */
2302
2303 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2304 search_buf, start_addr, search_buf_size) != search_buf_size)
2305 {
2306 warning (_("Unable to access target memory at %s, halting search."),
2307 hex_string (start_addr));
2308 do_cleanups (old_cleanups);
2309 return -1;
2310 }
2311
2312 /* Perform the search.
2313
2314 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2315 When we've scanned N bytes we copy the trailing bytes to the start and
2316 read in another N bytes. */
2317
2318 while (search_space_len >= pattern_len)
2319 {
2320 gdb_byte *found_ptr;
2321 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2322
2323 found_ptr = memmem (search_buf, nr_search_bytes,
2324 pattern, pattern_len);
2325
2326 if (found_ptr != NULL)
2327 {
2328 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2329 *found_addrp = found_addr;
2330 do_cleanups (old_cleanups);
2331 return 1;
2332 }
2333
2334 /* Not found in this chunk, skip to next chunk. */
2335
2336 /* Don't let search_space_len wrap here, it's unsigned. */
2337 if (search_space_len >= chunk_size)
2338 search_space_len -= chunk_size;
2339 else
2340 search_space_len = 0;
2341
2342 if (search_space_len >= pattern_len)
2343 {
2344 unsigned keep_len = search_buf_size - chunk_size;
2345 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2346 int nr_to_read;
2347
2348 /* Copy the trailing part of the previous iteration to the front
2349 of the buffer for the next iteration. */
2350 gdb_assert (keep_len == pattern_len - 1);
2351 memcpy (search_buf, search_buf + chunk_size, keep_len);
2352
2353 nr_to_read = min (search_space_len - keep_len, chunk_size);
2354
2355 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2356 search_buf + keep_len, read_addr,
2357 nr_to_read) != nr_to_read)
2358 {
2359 warning (_("Unable to access target memory at %s, halting search."),
2360 hex_string (read_addr));
2361 do_cleanups (old_cleanups);
2362 return -1;
2363 }
2364
2365 start_addr += chunk_size;
2366 }
2367 }
2368
2369 /* Not found. */
2370
2371 do_cleanups (old_cleanups);
2372 return 0;
2373 }
2374
2375 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2376 sequence of bytes in PATTERN with length PATTERN_LEN.
2377
2378 The result is 1 if found, 0 if not found, and -1 if there was an error
2379 requiring halting of the search (e.g. memory read error).
2380 If the pattern is found the address is recorded in FOUND_ADDRP. */
2381
2382 int
2383 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2384 const gdb_byte *pattern, ULONGEST pattern_len,
2385 CORE_ADDR *found_addrp)
2386 {
2387 struct target_ops *t;
2388 int found;
2389
2390 /* We don't use INHERIT to set current_target.to_search_memory,
2391 so we have to scan the target stack and handle targetdebug
2392 ourselves. */
2393
2394 if (targetdebug)
2395 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2396 hex_string (start_addr));
2397
2398 for (t = current_target.beneath; t != NULL; t = t->beneath)
2399 if (t->to_search_memory != NULL)
2400 break;
2401
2402 if (t != NULL)
2403 {
2404 found = t->to_search_memory (t, start_addr, search_space_len,
2405 pattern, pattern_len, found_addrp);
2406 }
2407 else
2408 {
2409 /* If a special version of to_search_memory isn't available, use the
2410 simple version. */
2411 found = simple_search_memory (current_target.beneath,
2412 start_addr, search_space_len,
2413 pattern, pattern_len, found_addrp);
2414 }
2415
2416 if (targetdebug)
2417 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2418
2419 return found;
2420 }
2421
2422 /* Look through the currently pushed targets. If none of them will
2423 be able to restart the currently running process, issue an error
2424 message. */
2425
2426 void
2427 target_require_runnable (void)
2428 {
2429 struct target_ops *t;
2430
2431 for (t = target_stack; t != NULL; t = t->beneath)
2432 {
2433 /* If this target knows how to create a new program, then
2434 assume we will still be able to after killing the current
2435 one. Either killing and mourning will not pop T, or else
2436 find_default_run_target will find it again. */
2437 if (t->to_create_inferior != NULL)
2438 return;
2439
2440 /* Do not worry about thread_stratum targets that can not
2441 create inferiors. Assume they will be pushed again if
2442 necessary, and continue to the process_stratum. */
2443 if (t->to_stratum == thread_stratum
2444 || t->to_stratum == arch_stratum)
2445 continue;
2446
2447 error (_("\
2448 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2449 t->to_shortname);
2450 }
2451
2452 /* This function is only called if the target is running. In that
2453 case there should have been a process_stratum target and it
2454 should either know how to create inferiors, or not... */
2455 internal_error (__FILE__, __LINE__, "No targets found");
2456 }
2457
2458 /* Look through the list of possible targets for a target that can
2459 execute a run or attach command without any other data. This is
2460 used to locate the default process stratum.
2461
2462 If DO_MESG is not NULL, the result is always valid (error() is
2463 called for errors); else, return NULL on error. */
2464
2465 static struct target_ops *
2466 find_default_run_target (char *do_mesg)
2467 {
2468 struct target_ops **t;
2469 struct target_ops *runable = NULL;
2470 int count;
2471
2472 count = 0;
2473
2474 for (t = target_structs; t < target_structs + target_struct_size;
2475 ++t)
2476 {
2477 if ((*t)->to_can_run && target_can_run (*t))
2478 {
2479 runable = *t;
2480 ++count;
2481 }
2482 }
2483
2484 if (count != 1)
2485 {
2486 if (do_mesg)
2487 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2488 else
2489 return NULL;
2490 }
2491
2492 return runable;
2493 }
2494
2495 void
2496 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2497 {
2498 struct target_ops *t;
2499
2500 t = find_default_run_target ("attach");
2501 (t->to_attach) (t, args, from_tty);
2502 return;
2503 }
2504
2505 void
2506 find_default_create_inferior (struct target_ops *ops,
2507 char *exec_file, char *allargs, char **env,
2508 int from_tty)
2509 {
2510 struct target_ops *t;
2511
2512 t = find_default_run_target ("run");
2513 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2514 return;
2515 }
2516
2517 static int
2518 find_default_can_async_p (void)
2519 {
2520 struct target_ops *t;
2521
2522 /* This may be called before the target is pushed on the stack;
2523 look for the default process stratum. If there's none, gdb isn't
2524 configured with a native debugger, and target remote isn't
2525 connected yet. */
2526 t = find_default_run_target (NULL);
2527 if (t && t->to_can_async_p)
2528 return (t->to_can_async_p) ();
2529 return 0;
2530 }
2531
2532 static int
2533 find_default_is_async_p (void)
2534 {
2535 struct target_ops *t;
2536
2537 /* This may be called before the target is pushed on the stack;
2538 look for the default process stratum. If there's none, gdb isn't
2539 configured with a native debugger, and target remote isn't
2540 connected yet. */
2541 t = find_default_run_target (NULL);
2542 if (t && t->to_is_async_p)
2543 return (t->to_is_async_p) ();
2544 return 0;
2545 }
2546
2547 static int
2548 find_default_supports_non_stop (void)
2549 {
2550 struct target_ops *t;
2551
2552 t = find_default_run_target (NULL);
2553 if (t && t->to_supports_non_stop)
2554 return (t->to_supports_non_stop) ();
2555 return 0;
2556 }
2557
2558 int
2559 target_supports_non_stop (void)
2560 {
2561 struct target_ops *t;
2562 for (t = &current_target; t != NULL; t = t->beneath)
2563 if (t->to_supports_non_stop)
2564 return t->to_supports_non_stop ();
2565
2566 return 0;
2567 }
2568
2569
2570 char *
2571 target_get_osdata (const char *type)
2572 {
2573 char *document;
2574 struct target_ops *t;
2575
2576 /* If we're already connected to something that can get us OS
2577 related data, use it. Otherwise, try using the native
2578 target. */
2579 if (current_target.to_stratum >= process_stratum)
2580 t = current_target.beneath;
2581 else
2582 t = find_default_run_target ("get OS data");
2583
2584 if (!t)
2585 return NULL;
2586
2587 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2588 }
2589
2590 /* Determine the current address space of thread PTID. */
2591
2592 struct address_space *
2593 target_thread_address_space (ptid_t ptid)
2594 {
2595 struct address_space *aspace;
2596 struct inferior *inf;
2597 struct target_ops *t;
2598
2599 for (t = current_target.beneath; t != NULL; t = t->beneath)
2600 {
2601 if (t->to_thread_address_space != NULL)
2602 {
2603 aspace = t->to_thread_address_space (t, ptid);
2604 gdb_assert (aspace);
2605
2606 if (targetdebug)
2607 fprintf_unfiltered (gdb_stdlog,
2608 "target_thread_address_space (%s) = %d\n",
2609 target_pid_to_str (ptid),
2610 address_space_num (aspace));
2611 return aspace;
2612 }
2613 }
2614
2615 /* Fall-back to the "main" address space of the inferior. */
2616 inf = find_inferior_pid (ptid_get_pid (ptid));
2617
2618 if (inf == NULL || inf->aspace == NULL)
2619 internal_error (__FILE__, __LINE__, "\
2620 Can't determine the current address space of thread %s\n",
2621 target_pid_to_str (ptid));
2622
2623 return inf->aspace;
2624 }
2625
2626 static int
2627 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2628 {
2629 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2630 }
2631
2632 static int
2633 default_watchpoint_addr_within_range (struct target_ops *target,
2634 CORE_ADDR addr,
2635 CORE_ADDR start, int length)
2636 {
2637 return addr >= start && addr < start + length;
2638 }
2639
2640 static struct gdbarch *
2641 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2642 {
2643 return target_gdbarch;
2644 }
2645
2646 static int
2647 return_zero (void)
2648 {
2649 return 0;
2650 }
2651
2652 static int
2653 return_one (void)
2654 {
2655 return 1;
2656 }
2657
2658 static int
2659 return_minus_one (void)
2660 {
2661 return -1;
2662 }
2663
2664 /* Find a single runnable target in the stack and return it. If for
2665 some reason there is more than one, return NULL. */
2666
2667 struct target_ops *
2668 find_run_target (void)
2669 {
2670 struct target_ops **t;
2671 struct target_ops *runable = NULL;
2672 int count;
2673
2674 count = 0;
2675
2676 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2677 {
2678 if ((*t)->to_can_run && target_can_run (*t))
2679 {
2680 runable = *t;
2681 ++count;
2682 }
2683 }
2684
2685 return (count == 1 ? runable : NULL);
2686 }
2687
2688 /* Find a single core_stratum target in the list of targets and return it.
2689 If for some reason there is more than one, return NULL. */
2690
2691 struct target_ops *
2692 find_core_target (void)
2693 {
2694 struct target_ops **t;
2695 struct target_ops *runable = NULL;
2696 int count;
2697
2698 count = 0;
2699
2700 for (t = target_structs; t < target_structs + target_struct_size;
2701 ++t)
2702 {
2703 if ((*t)->to_stratum == core_stratum)
2704 {
2705 runable = *t;
2706 ++count;
2707 }
2708 }
2709
2710 return (count == 1 ? runable : NULL);
2711 }
2712
2713 /*
2714 * Find the next target down the stack from the specified target.
2715 */
2716
2717 struct target_ops *
2718 find_target_beneath (struct target_ops *t)
2719 {
2720 return t->beneath;
2721 }
2722
2723 \f
2724 /* The inferior process has died. Long live the inferior! */
2725
2726 void
2727 generic_mourn_inferior (void)
2728 {
2729 ptid_t ptid;
2730
2731 ptid = inferior_ptid;
2732 inferior_ptid = null_ptid;
2733
2734 if (!ptid_equal (ptid, null_ptid))
2735 {
2736 int pid = ptid_get_pid (ptid);
2737 exit_inferior (pid);
2738 }
2739
2740 breakpoint_init_inferior (inf_exited);
2741 registers_changed ();
2742
2743 reopen_exec_file ();
2744 reinit_frame_cache ();
2745
2746 if (deprecated_detach_hook)
2747 deprecated_detach_hook ();
2748 }
2749 \f
2750 /* Helper function for child_wait and the derivatives of child_wait.
2751 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2752 translation of that in OURSTATUS. */
2753 void
2754 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2755 {
2756 if (WIFEXITED (hoststatus))
2757 {
2758 ourstatus->kind = TARGET_WAITKIND_EXITED;
2759 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2760 }
2761 else if (!WIFSTOPPED (hoststatus))
2762 {
2763 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2764 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2765 }
2766 else
2767 {
2768 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2769 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2770 }
2771 }
2772 \f
2773 /* Convert a normal process ID to a string. Returns the string in a
2774 static buffer. */
2775
2776 char *
2777 normal_pid_to_str (ptid_t ptid)
2778 {
2779 static char buf[32];
2780
2781 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2782 return buf;
2783 }
2784
2785 static char *
2786 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2787 {
2788 return normal_pid_to_str (ptid);
2789 }
2790
2791 /* Error-catcher for target_find_memory_regions. */
2792 static int
2793 dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2794 {
2795 error (_("Command not implemented for this target."));
2796 return 0;
2797 }
2798
2799 /* Error-catcher for target_make_corefile_notes. */
2800 static char *
2801 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2802 {
2803 error (_("Command not implemented for this target."));
2804 return NULL;
2805 }
2806
2807 /* Error-catcher for target_get_bookmark. */
2808 static gdb_byte *
2809 dummy_get_bookmark (char *ignore1, int ignore2)
2810 {
2811 tcomplain ();
2812 return NULL;
2813 }
2814
2815 /* Error-catcher for target_goto_bookmark. */
2816 static void
2817 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
2818 {
2819 tcomplain ();
2820 }
2821
2822 /* Set up the handful of non-empty slots needed by the dummy target
2823 vector. */
2824
2825 static void
2826 init_dummy_target (void)
2827 {
2828 dummy_target.to_shortname = "None";
2829 dummy_target.to_longname = "None";
2830 dummy_target.to_doc = "";
2831 dummy_target.to_attach = find_default_attach;
2832 dummy_target.to_detach =
2833 (void (*)(struct target_ops *, char *, int))target_ignore;
2834 dummy_target.to_create_inferior = find_default_create_inferior;
2835 dummy_target.to_can_async_p = find_default_can_async_p;
2836 dummy_target.to_is_async_p = find_default_is_async_p;
2837 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2838 dummy_target.to_pid_to_str = dummy_pid_to_str;
2839 dummy_target.to_stratum = dummy_stratum;
2840 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2841 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2842 dummy_target.to_get_bookmark = dummy_get_bookmark;
2843 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
2844 dummy_target.to_xfer_partial = default_xfer_partial;
2845 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
2846 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
2847 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
2848 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
2849 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
2850 dummy_target.to_stopped_by_watchpoint = return_zero;
2851 dummy_target.to_stopped_data_address =
2852 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
2853 dummy_target.to_magic = OPS_MAGIC;
2854 }
2855 \f
2856 static void
2857 debug_to_open (char *args, int from_tty)
2858 {
2859 debug_target.to_open (args, from_tty);
2860
2861 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2862 }
2863
2864 void
2865 target_close (struct target_ops *targ, int quitting)
2866 {
2867 if (targ->to_xclose != NULL)
2868 targ->to_xclose (targ, quitting);
2869 else if (targ->to_close != NULL)
2870 targ->to_close (quitting);
2871
2872 if (targetdebug)
2873 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2874 }
2875
2876 void
2877 target_attach (char *args, int from_tty)
2878 {
2879 struct target_ops *t;
2880 for (t = current_target.beneath; t != NULL; t = t->beneath)
2881 {
2882 if (t->to_attach != NULL)
2883 {
2884 t->to_attach (t, args, from_tty);
2885 if (targetdebug)
2886 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2887 args, from_tty);
2888 return;
2889 }
2890 }
2891
2892 internal_error (__FILE__, __LINE__,
2893 "could not find a target to attach");
2894 }
2895
2896 int
2897 target_thread_alive (ptid_t ptid)
2898 {
2899 struct target_ops *t;
2900 for (t = current_target.beneath; t != NULL; t = t->beneath)
2901 {
2902 if (t->to_thread_alive != NULL)
2903 {
2904 int retval;
2905
2906 retval = t->to_thread_alive (t, ptid);
2907 if (targetdebug)
2908 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2909 PIDGET (ptid), retval);
2910
2911 return retval;
2912 }
2913 }
2914
2915 return 0;
2916 }
2917
2918 void
2919 target_find_new_threads (void)
2920 {
2921 struct target_ops *t;
2922 for (t = current_target.beneath; t != NULL; t = t->beneath)
2923 {
2924 if (t->to_find_new_threads != NULL)
2925 {
2926 t->to_find_new_threads (t);
2927 if (targetdebug)
2928 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
2929
2930 return;
2931 }
2932 }
2933 }
2934
2935 static void
2936 debug_to_post_attach (int pid)
2937 {
2938 debug_target.to_post_attach (pid);
2939
2940 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2941 }
2942
2943 /* Return a pretty printed form of target_waitstatus.
2944 Space for the result is malloc'd, caller must free. */
2945
2946 char *
2947 target_waitstatus_to_string (const struct target_waitstatus *ws)
2948 {
2949 const char *kind_str = "status->kind = ";
2950
2951 switch (ws->kind)
2952 {
2953 case TARGET_WAITKIND_EXITED:
2954 return xstrprintf ("%sexited, status = %d",
2955 kind_str, ws->value.integer);
2956 case TARGET_WAITKIND_STOPPED:
2957 return xstrprintf ("%sstopped, signal = %s",
2958 kind_str, target_signal_to_name (ws->value.sig));
2959 case TARGET_WAITKIND_SIGNALLED:
2960 return xstrprintf ("%ssignalled, signal = %s",
2961 kind_str, target_signal_to_name (ws->value.sig));
2962 case TARGET_WAITKIND_LOADED:
2963 return xstrprintf ("%sloaded", kind_str);
2964 case TARGET_WAITKIND_FORKED:
2965 return xstrprintf ("%sforked", kind_str);
2966 case TARGET_WAITKIND_VFORKED:
2967 return xstrprintf ("%svforked", kind_str);
2968 case TARGET_WAITKIND_EXECD:
2969 return xstrprintf ("%sexecd", kind_str);
2970 case TARGET_WAITKIND_SYSCALL_ENTRY:
2971 return xstrprintf ("%sentered syscall", kind_str);
2972 case TARGET_WAITKIND_SYSCALL_RETURN:
2973 return xstrprintf ("%sexited syscall", kind_str);
2974 case TARGET_WAITKIND_SPURIOUS:
2975 return xstrprintf ("%sspurious", kind_str);
2976 case TARGET_WAITKIND_IGNORE:
2977 return xstrprintf ("%signore", kind_str);
2978 case TARGET_WAITKIND_NO_HISTORY:
2979 return xstrprintf ("%sno-history", kind_str);
2980 default:
2981 return xstrprintf ("%sunknown???", kind_str);
2982 }
2983 }
2984
2985 static void
2986 debug_print_register (const char * func,
2987 struct regcache *regcache, int regno)
2988 {
2989 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2990 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2991 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2992 && gdbarch_register_name (gdbarch, regno) != NULL
2993 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2994 fprintf_unfiltered (gdb_stdlog, "(%s)",
2995 gdbarch_register_name (gdbarch, regno));
2996 else
2997 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2998 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2999 {
3000 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3001 int i, size = register_size (gdbarch, regno);
3002 unsigned char buf[MAX_REGISTER_SIZE];
3003 regcache_raw_collect (regcache, regno, buf);
3004 fprintf_unfiltered (gdb_stdlog, " = ");
3005 for (i = 0; i < size; i++)
3006 {
3007 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3008 }
3009 if (size <= sizeof (LONGEST))
3010 {
3011 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3012 fprintf_unfiltered (gdb_stdlog, " %s %s",
3013 core_addr_to_string_nz (val), plongest (val));
3014 }
3015 }
3016 fprintf_unfiltered (gdb_stdlog, "\n");
3017 }
3018
3019 void
3020 target_fetch_registers (struct regcache *regcache, int regno)
3021 {
3022 struct target_ops *t;
3023 for (t = current_target.beneath; t != NULL; t = t->beneath)
3024 {
3025 if (t->to_fetch_registers != NULL)
3026 {
3027 t->to_fetch_registers (t, regcache, regno);
3028 if (targetdebug)
3029 debug_print_register ("target_fetch_registers", regcache, regno);
3030 return;
3031 }
3032 }
3033 }
3034
3035 void
3036 target_store_registers (struct regcache *regcache, int regno)
3037 {
3038
3039 struct target_ops *t;
3040 for (t = current_target.beneath; t != NULL; t = t->beneath)
3041 {
3042 if (t->to_store_registers != NULL)
3043 {
3044 t->to_store_registers (t, regcache, regno);
3045 if (targetdebug)
3046 {
3047 debug_print_register ("target_store_registers", regcache, regno);
3048 }
3049 return;
3050 }
3051 }
3052
3053 noprocess ();
3054 }
3055
3056 int
3057 target_core_of_thread (ptid_t ptid)
3058 {
3059 struct target_ops *t;
3060
3061 for (t = current_target.beneath; t != NULL; t = t->beneath)
3062 {
3063 if (t->to_core_of_thread != NULL)
3064 {
3065 int retval = t->to_core_of_thread (t, ptid);
3066 if (targetdebug)
3067 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3068 PIDGET (ptid), retval);
3069 return retval;
3070 }
3071 }
3072
3073 return -1;
3074 }
3075
3076 int
3077 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3078 {
3079 struct target_ops *t;
3080
3081 for (t = current_target.beneath; t != NULL; t = t->beneath)
3082 {
3083 if (t->to_verify_memory != NULL)
3084 {
3085 int retval = t->to_verify_memory (t, data, memaddr, size);
3086 if (targetdebug)
3087 fprintf_unfiltered (gdb_stdlog, "target_verify_memory (%s, %s) = %d\n",
3088 paddress (target_gdbarch, memaddr),
3089 pulongest (size),
3090 retval);
3091 return retval;
3092 }
3093 }
3094
3095 tcomplain ();
3096 }
3097
3098 static void
3099 debug_to_prepare_to_store (struct regcache *regcache)
3100 {
3101 debug_target.to_prepare_to_store (regcache);
3102
3103 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3104 }
3105
3106 static int
3107 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3108 int write, struct mem_attrib *attrib,
3109 struct target_ops *target)
3110 {
3111 int retval;
3112
3113 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3114 attrib, target);
3115
3116 fprintf_unfiltered (gdb_stdlog,
3117 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3118 paddress (target_gdbarch, memaddr), len,
3119 write ? "write" : "read", retval);
3120
3121 if (retval > 0)
3122 {
3123 int i;
3124
3125 fputs_unfiltered (", bytes =", gdb_stdlog);
3126 for (i = 0; i < retval; i++)
3127 {
3128 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3129 {
3130 if (targetdebug < 2 && i > 0)
3131 {
3132 fprintf_unfiltered (gdb_stdlog, " ...");
3133 break;
3134 }
3135 fprintf_unfiltered (gdb_stdlog, "\n");
3136 }
3137
3138 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3139 }
3140 }
3141
3142 fputc_unfiltered ('\n', gdb_stdlog);
3143
3144 return retval;
3145 }
3146
3147 static void
3148 debug_to_files_info (struct target_ops *target)
3149 {
3150 debug_target.to_files_info (target);
3151
3152 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3153 }
3154
3155 static int
3156 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3157 struct bp_target_info *bp_tgt)
3158 {
3159 int retval;
3160
3161 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3162
3163 fprintf_unfiltered (gdb_stdlog,
3164 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
3165 (unsigned long) bp_tgt->placed_address,
3166 (unsigned long) retval);
3167 return retval;
3168 }
3169
3170 static int
3171 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3172 struct bp_target_info *bp_tgt)
3173 {
3174 int retval;
3175
3176 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3177
3178 fprintf_unfiltered (gdb_stdlog,
3179 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
3180 (unsigned long) bp_tgt->placed_address,
3181 (unsigned long) retval);
3182 return retval;
3183 }
3184
3185 static int
3186 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3187 {
3188 int retval;
3189
3190 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3191
3192 fprintf_unfiltered (gdb_stdlog,
3193 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3194 (unsigned long) type,
3195 (unsigned long) cnt,
3196 (unsigned long) from_tty,
3197 (unsigned long) retval);
3198 return retval;
3199 }
3200
3201 static int
3202 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3203 {
3204 CORE_ADDR retval;
3205
3206 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3207
3208 fprintf_unfiltered (gdb_stdlog,
3209 "target_region_ok_for_hw_watchpoint (%ld, %ld) = 0x%lx\n",
3210 (unsigned long) addr,
3211 (unsigned long) len,
3212 (unsigned long) retval);
3213 return retval;
3214 }
3215
3216 static int
3217 debug_to_stopped_by_watchpoint (void)
3218 {
3219 int retval;
3220
3221 retval = debug_target.to_stopped_by_watchpoint ();
3222
3223 fprintf_unfiltered (gdb_stdlog,
3224 "target_stopped_by_watchpoint () = %ld\n",
3225 (unsigned long) retval);
3226 return retval;
3227 }
3228
3229 static int
3230 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3231 {
3232 int retval;
3233
3234 retval = debug_target.to_stopped_data_address (target, addr);
3235
3236 fprintf_unfiltered (gdb_stdlog,
3237 "target_stopped_data_address ([0x%lx]) = %ld\n",
3238 (unsigned long)*addr,
3239 (unsigned long)retval);
3240 return retval;
3241 }
3242
3243 static int
3244 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3245 CORE_ADDR addr,
3246 CORE_ADDR start, int length)
3247 {
3248 int retval;
3249
3250 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3251 start, length);
3252
3253 fprintf_filtered (gdb_stdlog,
3254 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
3255 (unsigned long) addr, (unsigned long) start, length,
3256 retval);
3257 return retval;
3258 }
3259
3260 static int
3261 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3262 struct bp_target_info *bp_tgt)
3263 {
3264 int retval;
3265
3266 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3267
3268 fprintf_unfiltered (gdb_stdlog,
3269 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
3270 (unsigned long) bp_tgt->placed_address,
3271 (unsigned long) retval);
3272 return retval;
3273 }
3274
3275 static int
3276 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3277 struct bp_target_info *bp_tgt)
3278 {
3279 int retval;
3280
3281 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3282
3283 fprintf_unfiltered (gdb_stdlog,
3284 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
3285 (unsigned long) bp_tgt->placed_address,
3286 (unsigned long) retval);
3287 return retval;
3288 }
3289
3290 static int
3291 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
3292 {
3293 int retval;
3294
3295 retval = debug_target.to_insert_watchpoint (addr, len, type);
3296
3297 fprintf_unfiltered (gdb_stdlog,
3298 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
3299 (unsigned long) addr, len, type, (unsigned long) retval);
3300 return retval;
3301 }
3302
3303 static int
3304 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
3305 {
3306 int retval;
3307
3308 retval = debug_target.to_remove_watchpoint (addr, len, type);
3309
3310 fprintf_unfiltered (gdb_stdlog,
3311 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
3312 (unsigned long) addr, len, type, (unsigned long) retval);
3313 return retval;
3314 }
3315
3316 static void
3317 debug_to_terminal_init (void)
3318 {
3319 debug_target.to_terminal_init ();
3320
3321 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3322 }
3323
3324 static void
3325 debug_to_terminal_inferior (void)
3326 {
3327 debug_target.to_terminal_inferior ();
3328
3329 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3330 }
3331
3332 static void
3333 debug_to_terminal_ours_for_output (void)
3334 {
3335 debug_target.to_terminal_ours_for_output ();
3336
3337 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3338 }
3339
3340 static void
3341 debug_to_terminal_ours (void)
3342 {
3343 debug_target.to_terminal_ours ();
3344
3345 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3346 }
3347
3348 static void
3349 debug_to_terminal_save_ours (void)
3350 {
3351 debug_target.to_terminal_save_ours ();
3352
3353 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3354 }
3355
3356 static void
3357 debug_to_terminal_info (char *arg, int from_tty)
3358 {
3359 debug_target.to_terminal_info (arg, from_tty);
3360
3361 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3362 from_tty);
3363 }
3364
3365 static void
3366 debug_to_load (char *args, int from_tty)
3367 {
3368 debug_target.to_load (args, from_tty);
3369
3370 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3371 }
3372
3373 static int
3374 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3375 {
3376 int retval;
3377
3378 retval = debug_target.to_lookup_symbol (name, addrp);
3379
3380 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3381
3382 return retval;
3383 }
3384
3385 static void
3386 debug_to_post_startup_inferior (ptid_t ptid)
3387 {
3388 debug_target.to_post_startup_inferior (ptid);
3389
3390 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3391 PIDGET (ptid));
3392 }
3393
3394 static void
3395 debug_to_acknowledge_created_inferior (int pid)
3396 {
3397 debug_target.to_acknowledge_created_inferior (pid);
3398
3399 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3400 pid);
3401 }
3402
3403 static void
3404 debug_to_insert_fork_catchpoint (int pid)
3405 {
3406 debug_target.to_insert_fork_catchpoint (pid);
3407
3408 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3409 pid);
3410 }
3411
3412 static int
3413 debug_to_remove_fork_catchpoint (int pid)
3414 {
3415 int retval;
3416
3417 retval = debug_target.to_remove_fork_catchpoint (pid);
3418
3419 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3420 pid, retval);
3421
3422 return retval;
3423 }
3424
3425 static void
3426 debug_to_insert_vfork_catchpoint (int pid)
3427 {
3428 debug_target.to_insert_vfork_catchpoint (pid);
3429
3430 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3431 pid);
3432 }
3433
3434 static int
3435 debug_to_remove_vfork_catchpoint (int pid)
3436 {
3437 int retval;
3438
3439 retval = debug_target.to_remove_vfork_catchpoint (pid);
3440
3441 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3442 pid, retval);
3443
3444 return retval;
3445 }
3446
3447 static void
3448 debug_to_insert_exec_catchpoint (int pid)
3449 {
3450 debug_target.to_insert_exec_catchpoint (pid);
3451
3452 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3453 pid);
3454 }
3455
3456 static int
3457 debug_to_remove_exec_catchpoint (int pid)
3458 {
3459 int retval;
3460
3461 retval = debug_target.to_remove_exec_catchpoint (pid);
3462
3463 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3464 pid, retval);
3465
3466 return retval;
3467 }
3468
3469 static int
3470 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3471 {
3472 int has_exited;
3473
3474 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3475
3476 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3477 pid, wait_status, *exit_status, has_exited);
3478
3479 return has_exited;
3480 }
3481
3482 static int
3483 debug_to_can_run (void)
3484 {
3485 int retval;
3486
3487 retval = debug_target.to_can_run ();
3488
3489 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3490
3491 return retval;
3492 }
3493
3494 static void
3495 debug_to_notice_signals (ptid_t ptid)
3496 {
3497 debug_target.to_notice_signals (ptid);
3498
3499 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3500 PIDGET (ptid));
3501 }
3502
3503 static struct gdbarch *
3504 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3505 {
3506 struct gdbarch *retval;
3507
3508 retval = debug_target.to_thread_architecture (ops, ptid);
3509
3510 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3511 target_pid_to_str (ptid), host_address_to_string (retval),
3512 gdbarch_bfd_arch_info (retval)->printable_name);
3513 return retval;
3514 }
3515
3516 static void
3517 debug_to_stop (ptid_t ptid)
3518 {
3519 debug_target.to_stop (ptid);
3520
3521 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3522 target_pid_to_str (ptid));
3523 }
3524
3525 static void
3526 debug_to_rcmd (char *command,
3527 struct ui_file *outbuf)
3528 {
3529 debug_target.to_rcmd (command, outbuf);
3530 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3531 }
3532
3533 static char *
3534 debug_to_pid_to_exec_file (int pid)
3535 {
3536 char *exec_file;
3537
3538 exec_file = debug_target.to_pid_to_exec_file (pid);
3539
3540 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3541 pid, exec_file);
3542
3543 return exec_file;
3544 }
3545
3546 static void
3547 setup_target_debug (void)
3548 {
3549 memcpy (&debug_target, &current_target, sizeof debug_target);
3550
3551 current_target.to_open = debug_to_open;
3552 current_target.to_post_attach = debug_to_post_attach;
3553 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3554 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3555 current_target.to_files_info = debug_to_files_info;
3556 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3557 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3558 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3559 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3560 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3561 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3562 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3563 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3564 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3565 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3566 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3567 current_target.to_terminal_init = debug_to_terminal_init;
3568 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3569 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3570 current_target.to_terminal_ours = debug_to_terminal_ours;
3571 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3572 current_target.to_terminal_info = debug_to_terminal_info;
3573 current_target.to_load = debug_to_load;
3574 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3575 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3576 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3577 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3578 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3579 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3580 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3581 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3582 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3583 current_target.to_has_exited = debug_to_has_exited;
3584 current_target.to_can_run = debug_to_can_run;
3585 current_target.to_notice_signals = debug_to_notice_signals;
3586 current_target.to_stop = debug_to_stop;
3587 current_target.to_rcmd = debug_to_rcmd;
3588 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3589 current_target.to_thread_architecture = debug_to_thread_architecture;
3590 }
3591 \f
3592
3593 static char targ_desc[] =
3594 "Names of targets and files being debugged.\n\
3595 Shows the entire stack of targets currently in use (including the exec-file,\n\
3596 core-file, and process, if any), as well as the symbol file name.";
3597
3598 static void
3599 do_monitor_command (char *cmd,
3600 int from_tty)
3601 {
3602 if ((current_target.to_rcmd
3603 == (void (*) (char *, struct ui_file *)) tcomplain)
3604 || (current_target.to_rcmd == debug_to_rcmd
3605 && (debug_target.to_rcmd
3606 == (void (*) (char *, struct ui_file *)) tcomplain)))
3607 error (_("\"monitor\" command not supported by this target."));
3608 target_rcmd (cmd, gdb_stdtarg);
3609 }
3610
3611 /* Print the name of each layers of our target stack. */
3612
3613 static void
3614 maintenance_print_target_stack (char *cmd, int from_tty)
3615 {
3616 struct target_ops *t;
3617
3618 printf_filtered (_("The current target stack is:\n"));
3619
3620 for (t = target_stack; t != NULL; t = t->beneath)
3621 {
3622 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3623 }
3624 }
3625
3626 /* Controls if async mode is permitted. */
3627 int target_async_permitted = 0;
3628
3629 /* The set command writes to this variable. If the inferior is
3630 executing, linux_nat_async_permitted is *not* updated. */
3631 static int target_async_permitted_1 = 0;
3632
3633 static void
3634 set_maintenance_target_async_permitted (char *args, int from_tty,
3635 struct cmd_list_element *c)
3636 {
3637 if (have_live_inferiors ())
3638 {
3639 target_async_permitted_1 = target_async_permitted;
3640 error (_("Cannot change this setting while the inferior is running."));
3641 }
3642
3643 target_async_permitted = target_async_permitted_1;
3644 }
3645
3646 static void
3647 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3648 struct cmd_list_element *c,
3649 const char *value)
3650 {
3651 fprintf_filtered (file, _("\
3652 Controlling the inferior in asynchronous mode is %s.\n"), value);
3653 }
3654
3655 void
3656 initialize_targets (void)
3657 {
3658 init_dummy_target ();
3659 push_target (&dummy_target);
3660
3661 add_info ("target", target_info, targ_desc);
3662 add_info ("files", target_info, targ_desc);
3663
3664 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3665 Set target debugging."), _("\
3666 Show target debugging."), _("\
3667 When non-zero, target debugging is enabled. Higher numbers are more\n\
3668 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3669 command."),
3670 NULL,
3671 show_targetdebug,
3672 &setdebuglist, &showdebuglist);
3673
3674 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3675 &trust_readonly, _("\
3676 Set mode for reading from readonly sections."), _("\
3677 Show mode for reading from readonly sections."), _("\
3678 When this mode is on, memory reads from readonly sections (such as .text)\n\
3679 will be read from the object file instead of from the target. This will\n\
3680 result in significant performance improvement for remote targets."),
3681 NULL,
3682 show_trust_readonly,
3683 &setlist, &showlist);
3684
3685 add_com ("monitor", class_obscure, do_monitor_command,
3686 _("Send a command to the remote monitor (remote targets only)."));
3687
3688 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3689 _("Print the name of each layer of the internal target stack."),
3690 &maintenanceprintlist);
3691
3692 add_setshow_boolean_cmd ("target-async", no_class,
3693 &target_async_permitted_1, _("\
3694 Set whether gdb controls the inferior in asynchronous mode."), _("\
3695 Show whether gdb controls the inferior in asynchronous mode."), _("\
3696 Tells gdb whether to control the inferior in asynchronous mode."),
3697 set_maintenance_target_async_permitted,
3698 show_maintenance_target_async_permitted,
3699 &setlist,
3700 &showlist);
3701
3702 add_setshow_boolean_cmd ("stack-cache", class_support,
3703 &stack_cache_enabled_p_1, _("\
3704 Set cache use for stack access."), _("\
3705 Show cache use for stack access."), _("\
3706 When on, use the data cache for all stack access, regardless of any\n\
3707 configured memory regions. This improves remote performance significantly.\n\
3708 By default, caching for stack access is on."),
3709 set_stack_cache_enabled_p,
3710 show_stack_cache_enabled_p,
3711 &setlist, &showlist);
3712
3713 target_dcache = dcache_init ();
3714 }