]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
2005-02-15 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include <errno.h>
27 #include "gdb_string.h"
28 #include "target.h"
29 #include "gdbcmd.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "bfd.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_wait.h"
36 #include "dcache.h"
37 #include <signal.h>
38 #include "regcache.h"
39 #include "gdb_assert.h"
40 #include "gdbcore.h"
41
42 static void target_info (char *, int);
43
44 static void maybe_kill_then_attach (char *, int);
45
46 static void kill_or_be_killed (int);
47
48 static void default_terminal_info (char *, int);
49
50 static int default_region_size_ok_for_hw_watchpoint (int);
51
52 static int nosymbol (char *, CORE_ADDR *);
53
54 static void tcomplain (void);
55
56 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
57
58 static int return_zero (void);
59
60 static int return_one (void);
61
62 static int return_minus_one (void);
63
64 void target_ignore (void);
65
66 static void target_command (char *, int);
67
68 static struct target_ops *find_default_run_target (char *);
69
70 static void nosupport_runtime (void);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, void *readbuf,
75 const void *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 /* Transfer LEN bytes between target address MEMADDR and GDB address
79 MYADDR. Returns 0 for success, errno code for failure (which
80 includes partial transfers -- if you want a more useful response to
81 partial transfers, try either target_read_memory_partial or
82 target_write_memory_partial). */
83
84 static int target_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
85 int write);
86
87 static void init_dummy_target (void);
88
89 static struct target_ops debug_target;
90
91 static void debug_to_open (char *, int);
92
93 static void debug_to_close (int);
94
95 static void debug_to_attach (char *, int);
96
97 static void debug_to_detach (char *, int);
98
99 static void debug_to_disconnect (char *, int);
100
101 static void debug_to_resume (ptid_t, int, enum target_signal);
102
103 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
104
105 static void debug_to_fetch_registers (int);
106
107 static void debug_to_store_registers (int);
108
109 static void debug_to_prepare_to_store (void);
110
111 static int deprecated_debug_xfer_memory (CORE_ADDR, char *, int, int,
112 struct mem_attrib *,
113 struct target_ops *);
114
115 static void debug_to_files_info (struct target_ops *);
116
117 static int debug_to_insert_breakpoint (CORE_ADDR, char *);
118
119 static int debug_to_remove_breakpoint (CORE_ADDR, char *);
120
121 static int debug_to_can_use_hw_breakpoint (int, int, int);
122
123 static int debug_to_insert_hw_breakpoint (CORE_ADDR, char *);
124
125 static int debug_to_remove_hw_breakpoint (CORE_ADDR, char *);
126
127 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
130
131 static int debug_to_stopped_by_watchpoint (void);
132
133 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
134
135 static int debug_to_region_size_ok_for_hw_watchpoint (int);
136
137 static void debug_to_terminal_init (void);
138
139 static void debug_to_terminal_inferior (void);
140
141 static void debug_to_terminal_ours_for_output (void);
142
143 static void debug_to_terminal_save_ours (void);
144
145 static void debug_to_terminal_ours (void);
146
147 static void debug_to_terminal_info (char *, int);
148
149 static void debug_to_kill (void);
150
151 static void debug_to_load (char *, int);
152
153 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
154
155 static void debug_to_mourn_inferior (void);
156
157 static int debug_to_can_run (void);
158
159 static void debug_to_notice_signals (ptid_t);
160
161 static int debug_to_thread_alive (ptid_t);
162
163 static void debug_to_stop (void);
164
165 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
166 wierd and mysterious ways. Putting the variable here lets those
167 wierd and mysterious ways keep building while they are being
168 converted to the inferior inheritance structure. */
169 struct target_ops deprecated_child_ops;
170
171 /* Pointer to array of target architecture structures; the size of the
172 array; the current index into the array; the allocated size of the
173 array. */
174 struct target_ops **target_structs;
175 unsigned target_struct_size;
176 unsigned target_struct_index;
177 unsigned target_struct_allocsize;
178 #define DEFAULT_ALLOCSIZE 10
179
180 /* The initial current target, so that there is always a semi-valid
181 current target. */
182
183 static struct target_ops dummy_target;
184
185 /* Top of target stack. */
186
187 static struct target_ops *target_stack;
188
189 /* The target structure we are currently using to talk to a process
190 or file or whatever "inferior" we have. */
191
192 struct target_ops current_target;
193
194 /* Command list for target. */
195
196 static struct cmd_list_element *targetlist = NULL;
197
198 /* Nonzero if we are debugging an attached outside process
199 rather than an inferior. */
200
201 int attach_flag;
202
203 /* Non-zero if we want to see trace of target level stuff. */
204
205 static int targetdebug = 0;
206
207 static void setup_target_debug (void);
208
209 DCACHE *target_dcache;
210
211 /* The user just typed 'target' without the name of a target. */
212
213 static void
214 target_command (char *arg, int from_tty)
215 {
216 fputs_filtered ("Argument required (target name). Try `help target'\n",
217 gdb_stdout);
218 }
219
220 /* Add a possible target architecture to the list. */
221
222 void
223 add_target (struct target_ops *t)
224 {
225 /* Provide default values for all "must have" methods. */
226 if (t->to_xfer_partial == NULL)
227 t->to_xfer_partial = default_xfer_partial;
228
229 if (!target_structs)
230 {
231 target_struct_allocsize = DEFAULT_ALLOCSIZE;
232 target_structs = (struct target_ops **) xmalloc
233 (target_struct_allocsize * sizeof (*target_structs));
234 }
235 if (target_struct_size >= target_struct_allocsize)
236 {
237 target_struct_allocsize *= 2;
238 target_structs = (struct target_ops **)
239 xrealloc ((char *) target_structs,
240 target_struct_allocsize * sizeof (*target_structs));
241 }
242 target_structs[target_struct_size++] = t;
243
244 if (targetlist == NULL)
245 add_prefix_cmd ("target", class_run, target_command, _("\
246 Connect to a target machine or process.\n\
247 The first argument is the type or protocol of the target machine.\n\
248 Remaining arguments are interpreted by the target protocol. For more\n\
249 information on the arguments for a particular protocol, type\n\
250 `help target ' followed by the protocol name."),
251 &targetlist, "target ", 0, &cmdlist);
252 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
253 }
254
255 /* Stub functions */
256
257 void
258 target_ignore (void)
259 {
260 }
261
262 void
263 target_load (char *arg, int from_tty)
264 {
265 dcache_invalidate (target_dcache);
266 (*current_target.to_load) (arg, from_tty);
267 }
268
269 static int
270 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
271 struct target_ops *t)
272 {
273 errno = EIO; /* Can't read/write this location */
274 return 0; /* No bytes handled */
275 }
276
277 static void
278 tcomplain (void)
279 {
280 error (_("You can't do that when your target is `%s'"),
281 current_target.to_shortname);
282 }
283
284 void
285 noprocess (void)
286 {
287 error (_("You can't do that without a process to debug."));
288 }
289
290 static int
291 nosymbol (char *name, CORE_ADDR *addrp)
292 {
293 return 1; /* Symbol does not exist in target env */
294 }
295
296 static void
297 nosupport_runtime (void)
298 {
299 if (ptid_equal (inferior_ptid, null_ptid))
300 noprocess ();
301 else
302 error (_("No run-time support for this"));
303 }
304
305
306 static void
307 default_terminal_info (char *args, int from_tty)
308 {
309 printf_unfiltered (_("No saved terminal information.\n"));
310 }
311
312 /* This is the default target_create_inferior and target_attach function.
313 If the current target is executing, it asks whether to kill it off.
314 If this function returns without calling error(), it has killed off
315 the target, and the operation should be attempted. */
316
317 static void
318 kill_or_be_killed (int from_tty)
319 {
320 if (target_has_execution)
321 {
322 printf_unfiltered (_("You are already running a program:\n"));
323 target_files_info ();
324 if (query ("Kill it? "))
325 {
326 target_kill ();
327 if (target_has_execution)
328 error (_("Killing the program did not help."));
329 return;
330 }
331 else
332 {
333 error (_("Program not killed."));
334 }
335 }
336 tcomplain ();
337 }
338
339 static void
340 maybe_kill_then_attach (char *args, int from_tty)
341 {
342 kill_or_be_killed (from_tty);
343 target_attach (args, from_tty);
344 }
345
346 static void
347 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
348 int from_tty)
349 {
350 kill_or_be_killed (0);
351 target_create_inferior (exec, args, env, from_tty);
352 }
353
354 /* Go through the target stack from top to bottom, copying over zero
355 entries in current_target, then filling in still empty entries. In
356 effect, we are doing class inheritance through the pushed target
357 vectors.
358
359 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
360 is currently implemented, is that it discards any knowledge of
361 which target an inherited method originally belonged to.
362 Consequently, new new target methods should instead explicitly and
363 locally search the target stack for the target that can handle the
364 request. */
365
366 static void
367 update_current_target (void)
368 {
369 struct target_ops *t;
370
371 /* First, reset curren'ts contents. */
372 memset (&current_target, 0, sizeof (current_target));
373
374 #define INHERIT(FIELD, TARGET) \
375 if (!current_target.FIELD) \
376 current_target.FIELD = (TARGET)->FIELD
377
378 for (t = target_stack; t; t = t->beneath)
379 {
380 INHERIT (to_shortname, t);
381 INHERIT (to_longname, t);
382 INHERIT (to_doc, t);
383 INHERIT (to_open, t);
384 INHERIT (to_close, t);
385 INHERIT (to_attach, t);
386 INHERIT (to_post_attach, t);
387 INHERIT (to_detach, t);
388 INHERIT (to_disconnect, t);
389 INHERIT (to_resume, t);
390 INHERIT (to_wait, t);
391 INHERIT (to_fetch_registers, t);
392 INHERIT (to_store_registers, t);
393 INHERIT (to_prepare_to_store, t);
394 INHERIT (deprecated_xfer_memory, t);
395 INHERIT (to_files_info, t);
396 INHERIT (to_insert_breakpoint, t);
397 INHERIT (to_remove_breakpoint, t);
398 INHERIT (to_can_use_hw_breakpoint, t);
399 INHERIT (to_insert_hw_breakpoint, t);
400 INHERIT (to_remove_hw_breakpoint, t);
401 INHERIT (to_insert_watchpoint, t);
402 INHERIT (to_remove_watchpoint, t);
403 INHERIT (to_stopped_data_address, t);
404 INHERIT (to_stopped_by_watchpoint, t);
405 INHERIT (to_have_continuable_watchpoint, t);
406 INHERIT (to_region_size_ok_for_hw_watchpoint, t);
407 INHERIT (to_terminal_init, t);
408 INHERIT (to_terminal_inferior, t);
409 INHERIT (to_terminal_ours_for_output, t);
410 INHERIT (to_terminal_ours, t);
411 INHERIT (to_terminal_save_ours, t);
412 INHERIT (to_terminal_info, t);
413 INHERIT (to_kill, t);
414 INHERIT (to_load, t);
415 INHERIT (to_lookup_symbol, t);
416 INHERIT (to_create_inferior, t);
417 INHERIT (to_post_startup_inferior, t);
418 INHERIT (to_acknowledge_created_inferior, t);
419 INHERIT (to_insert_fork_catchpoint, t);
420 INHERIT (to_remove_fork_catchpoint, t);
421 INHERIT (to_insert_vfork_catchpoint, t);
422 INHERIT (to_remove_vfork_catchpoint, t);
423 INHERIT (to_follow_fork, t);
424 INHERIT (to_insert_exec_catchpoint, t);
425 INHERIT (to_remove_exec_catchpoint, t);
426 INHERIT (to_reported_exec_events_per_exec_call, t);
427 INHERIT (to_has_exited, t);
428 INHERIT (to_mourn_inferior, t);
429 INHERIT (to_can_run, t);
430 INHERIT (to_notice_signals, t);
431 INHERIT (to_thread_alive, t);
432 INHERIT (to_find_new_threads, t);
433 INHERIT (to_pid_to_str, t);
434 INHERIT (to_extra_thread_info, t);
435 INHERIT (to_stop, t);
436 /* Do not inherit to_xfer_partial. */
437 INHERIT (to_rcmd, t);
438 INHERIT (to_enable_exception_callback, t);
439 INHERIT (to_get_current_exception_event, t);
440 INHERIT (to_pid_to_exec_file, t);
441 INHERIT (to_stratum, t);
442 INHERIT (to_has_all_memory, t);
443 INHERIT (to_has_memory, t);
444 INHERIT (to_has_stack, t);
445 INHERIT (to_has_registers, t);
446 INHERIT (to_has_execution, t);
447 INHERIT (to_has_thread_control, t);
448 INHERIT (to_sections, t);
449 INHERIT (to_sections_end, t);
450 INHERIT (to_can_async_p, t);
451 INHERIT (to_is_async_p, t);
452 INHERIT (to_async, t);
453 INHERIT (to_async_mask_value, t);
454 INHERIT (to_find_memory_regions, t);
455 INHERIT (to_make_corefile_notes, t);
456 INHERIT (to_get_thread_local_address, t);
457 INHERIT (to_magic, t);
458 }
459 #undef INHERIT
460
461 /* Clean up a target struct so it no longer has any zero pointers in
462 it. Some entries are defaulted to a method that print an error,
463 others are hard-wired to a standard recursive default. */
464
465 #define de_fault(field, value) \
466 if (!current_target.field) \
467 current_target.field = value
468
469 de_fault (to_open,
470 (void (*) (char *, int))
471 tcomplain);
472 de_fault (to_close,
473 (void (*) (int))
474 target_ignore);
475 de_fault (to_attach,
476 maybe_kill_then_attach);
477 de_fault (to_post_attach,
478 (void (*) (int))
479 target_ignore);
480 de_fault (to_detach,
481 (void (*) (char *, int))
482 target_ignore);
483 de_fault (to_disconnect,
484 (void (*) (char *, int))
485 tcomplain);
486 de_fault (to_resume,
487 (void (*) (ptid_t, int, enum target_signal))
488 noprocess);
489 de_fault (to_wait,
490 (ptid_t (*) (ptid_t, struct target_waitstatus *))
491 noprocess);
492 de_fault (to_fetch_registers,
493 (void (*) (int))
494 target_ignore);
495 de_fault (to_store_registers,
496 (void (*) (int))
497 noprocess);
498 de_fault (to_prepare_to_store,
499 (void (*) (void))
500 noprocess);
501 de_fault (deprecated_xfer_memory,
502 (int (*) (CORE_ADDR, char *, int, int, struct mem_attrib *, struct target_ops *))
503 nomemory);
504 de_fault (to_files_info,
505 (void (*) (struct target_ops *))
506 target_ignore);
507 de_fault (to_insert_breakpoint,
508 memory_insert_breakpoint);
509 de_fault (to_remove_breakpoint,
510 memory_remove_breakpoint);
511 de_fault (to_can_use_hw_breakpoint,
512 (int (*) (int, int, int))
513 return_zero);
514 de_fault (to_insert_hw_breakpoint,
515 (int (*) (CORE_ADDR, char *))
516 return_minus_one);
517 de_fault (to_remove_hw_breakpoint,
518 (int (*) (CORE_ADDR, char *))
519 return_minus_one);
520 de_fault (to_insert_watchpoint,
521 (int (*) (CORE_ADDR, int, int))
522 return_minus_one);
523 de_fault (to_remove_watchpoint,
524 (int (*) (CORE_ADDR, int, int))
525 return_minus_one);
526 de_fault (to_stopped_by_watchpoint,
527 (int (*) (void))
528 return_zero);
529 de_fault (to_stopped_data_address,
530 (int (*) (struct target_ops *, CORE_ADDR *))
531 return_zero);
532 de_fault (to_region_size_ok_for_hw_watchpoint,
533 default_region_size_ok_for_hw_watchpoint);
534 de_fault (to_terminal_init,
535 (void (*) (void))
536 target_ignore);
537 de_fault (to_terminal_inferior,
538 (void (*) (void))
539 target_ignore);
540 de_fault (to_terminal_ours_for_output,
541 (void (*) (void))
542 target_ignore);
543 de_fault (to_terminal_ours,
544 (void (*) (void))
545 target_ignore);
546 de_fault (to_terminal_save_ours,
547 (void (*) (void))
548 target_ignore);
549 de_fault (to_terminal_info,
550 default_terminal_info);
551 de_fault (to_kill,
552 (void (*) (void))
553 noprocess);
554 de_fault (to_load,
555 (void (*) (char *, int))
556 tcomplain);
557 de_fault (to_lookup_symbol,
558 (int (*) (char *, CORE_ADDR *))
559 nosymbol);
560 de_fault (to_create_inferior,
561 maybe_kill_then_create_inferior);
562 de_fault (to_post_startup_inferior,
563 (void (*) (ptid_t))
564 target_ignore);
565 de_fault (to_acknowledge_created_inferior,
566 (void (*) (int))
567 target_ignore);
568 de_fault (to_insert_fork_catchpoint,
569 (void (*) (int))
570 tcomplain);
571 de_fault (to_remove_fork_catchpoint,
572 (int (*) (int))
573 tcomplain);
574 de_fault (to_insert_vfork_catchpoint,
575 (void (*) (int))
576 tcomplain);
577 de_fault (to_remove_vfork_catchpoint,
578 (int (*) (int))
579 tcomplain);
580 de_fault (to_follow_fork,
581 (int (*) (int))
582 target_ignore);
583 de_fault (to_insert_exec_catchpoint,
584 (void (*) (int))
585 tcomplain);
586 de_fault (to_remove_exec_catchpoint,
587 (int (*) (int))
588 tcomplain);
589 de_fault (to_reported_exec_events_per_exec_call,
590 (int (*) (void))
591 return_one);
592 de_fault (to_has_exited,
593 (int (*) (int, int, int *))
594 return_zero);
595 de_fault (to_mourn_inferior,
596 (void (*) (void))
597 noprocess);
598 de_fault (to_can_run,
599 return_zero);
600 de_fault (to_notice_signals,
601 (void (*) (ptid_t))
602 target_ignore);
603 de_fault (to_thread_alive,
604 (int (*) (ptid_t))
605 return_zero);
606 de_fault (to_find_new_threads,
607 (void (*) (void))
608 target_ignore);
609 de_fault (to_extra_thread_info,
610 (char *(*) (struct thread_info *))
611 return_zero);
612 de_fault (to_stop,
613 (void (*) (void))
614 target_ignore);
615 current_target.to_xfer_partial = default_xfer_partial;
616 de_fault (to_rcmd,
617 (void (*) (char *, struct ui_file *))
618 tcomplain);
619 de_fault (to_enable_exception_callback,
620 (struct symtab_and_line * (*) (enum exception_event_kind, int))
621 nosupport_runtime);
622 de_fault (to_get_current_exception_event,
623 (struct exception_event_record * (*) (void))
624 nosupport_runtime);
625 de_fault (to_pid_to_exec_file,
626 (char *(*) (int))
627 return_zero);
628 de_fault (to_can_async_p,
629 (int (*) (void))
630 return_zero);
631 de_fault (to_is_async_p,
632 (int (*) (void))
633 return_zero);
634 de_fault (to_async,
635 (void (*) (void (*) (enum inferior_event_type, void*), void*))
636 tcomplain);
637 #undef de_fault
638
639 /* Finally, position the target-stack beneath the squashed
640 "current_target". That way code looking for a non-inherited
641 target method can quickly and simply find it. */
642 current_target.beneath = target_stack;
643 }
644
645 /* Push a new target type into the stack of the existing target accessors,
646 possibly superseding some of the existing accessors.
647
648 Result is zero if the pushed target ended up on top of the stack,
649 nonzero if at least one target is on top of it.
650
651 Rather than allow an empty stack, we always have the dummy target at
652 the bottom stratum, so we can call the function vectors without
653 checking them. */
654
655 int
656 push_target (struct target_ops *t)
657 {
658 struct target_ops **cur;
659
660 /* Check magic number. If wrong, it probably means someone changed
661 the struct definition, but not all the places that initialize one. */
662 if (t->to_magic != OPS_MAGIC)
663 {
664 fprintf_unfiltered (gdb_stderr,
665 "Magic number of %s target struct wrong\n",
666 t->to_shortname);
667 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
668 }
669
670 /* Find the proper stratum to install this target in. */
671 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
672 {
673 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
674 break;
675 }
676
677 /* If there's already targets at this stratum, remove them. */
678 /* FIXME: cagney/2003-10-15: I think this should be poping all
679 targets to CUR, and not just those at this stratum level. */
680 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
681 {
682 /* There's already something at this stratum level. Close it,
683 and un-hook it from the stack. */
684 struct target_ops *tmp = (*cur);
685 (*cur) = (*cur)->beneath;
686 tmp->beneath = NULL;
687 target_close (tmp, 0);
688 }
689
690 /* We have removed all targets in our stratum, now add the new one. */
691 t->beneath = (*cur);
692 (*cur) = t;
693
694 update_current_target ();
695
696 if (targetdebug)
697 setup_target_debug ();
698
699 /* Not on top? */
700 return (t != target_stack);
701 }
702
703 /* Remove a target_ops vector from the stack, wherever it may be.
704 Return how many times it was removed (0 or 1). */
705
706 int
707 unpush_target (struct target_ops *t)
708 {
709 struct target_ops **cur;
710 struct target_ops *tmp;
711
712 /* Look for the specified target. Note that we assume that a target
713 can only occur once in the target stack. */
714
715 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
716 {
717 if ((*cur) == t)
718 break;
719 }
720
721 if ((*cur) == NULL)
722 return 0; /* Didn't find target_ops, quit now */
723
724 /* NOTE: cagney/2003-12-06: In '94 the close call was made
725 unconditional by moving it to before the above check that the
726 target was in the target stack (something about "Change the way
727 pushing and popping of targets work to support target overlays
728 and inheritance"). This doesn't make much sense - only open
729 targets should be closed. */
730 target_close (t, 0);
731
732 /* Unchain the target */
733 tmp = (*cur);
734 (*cur) = (*cur)->beneath;
735 tmp->beneath = NULL;
736
737 update_current_target ();
738
739 return 1;
740 }
741
742 void
743 pop_target (void)
744 {
745 target_close (&current_target, 0); /* Let it clean up */
746 if (unpush_target (target_stack) == 1)
747 return;
748
749 fprintf_unfiltered (gdb_stderr,
750 "pop_target couldn't find target %s\n",
751 current_target.to_shortname);
752 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
753 }
754
755 #undef MIN
756 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
757
758 /* target_read_string -- read a null terminated string, up to LEN bytes,
759 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
760 Set *STRING to a pointer to malloc'd memory containing the data; the caller
761 is responsible for freeing it. Return the number of bytes successfully
762 read. */
763
764 int
765 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
766 {
767 int tlen, origlen, offset, i;
768 char buf[4];
769 int errcode = 0;
770 char *buffer;
771 int buffer_allocated;
772 char *bufptr;
773 unsigned int nbytes_read = 0;
774
775 /* Small for testing. */
776 buffer_allocated = 4;
777 buffer = xmalloc (buffer_allocated);
778 bufptr = buffer;
779
780 origlen = len;
781
782 while (len > 0)
783 {
784 tlen = MIN (len, 4 - (memaddr & 3));
785 offset = memaddr & 3;
786
787 errcode = target_read_memory (memaddr & ~3, buf, 4);
788 if (errcode != 0)
789 {
790 /* The transfer request might have crossed the boundary to an
791 unallocated region of memory. Retry the transfer, requesting
792 a single byte. */
793 tlen = 1;
794 offset = 0;
795 errcode = target_read_memory (memaddr, buf, 1);
796 if (errcode != 0)
797 goto done;
798 }
799
800 if (bufptr - buffer + tlen > buffer_allocated)
801 {
802 unsigned int bytes;
803 bytes = bufptr - buffer;
804 buffer_allocated *= 2;
805 buffer = xrealloc (buffer, buffer_allocated);
806 bufptr = buffer + bytes;
807 }
808
809 for (i = 0; i < tlen; i++)
810 {
811 *bufptr++ = buf[i + offset];
812 if (buf[i + offset] == '\000')
813 {
814 nbytes_read += i + 1;
815 goto done;
816 }
817 }
818
819 memaddr += tlen;
820 len -= tlen;
821 nbytes_read += tlen;
822 }
823 done:
824 if (errnop != NULL)
825 *errnop = errcode;
826 if (string != NULL)
827 *string = buffer;
828 return nbytes_read;
829 }
830
831 /* Find a section containing ADDR. */
832 struct section_table *
833 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
834 {
835 struct section_table *secp;
836 for (secp = target->to_sections;
837 secp < target->to_sections_end;
838 secp++)
839 {
840 if (addr >= secp->addr && addr < secp->endaddr)
841 return secp;
842 }
843 return NULL;
844 }
845
846 /* Return non-zero when the target vector has supplied an xfer_partial
847 method and it, rather than xfer_memory, should be used. */
848 static int
849 target_xfer_partial_p (void)
850 {
851 return (target_stack != NULL
852 && target_stack->to_xfer_partial != default_xfer_partial);
853 }
854
855 static LONGEST
856 target_xfer_partial (struct target_ops *ops,
857 enum target_object object, const char *annex,
858 void *readbuf, const void *writebuf,
859 ULONGEST offset, LONGEST len)
860 {
861 LONGEST retval;
862
863 gdb_assert (ops->to_xfer_partial != NULL);
864 retval = ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
865 offset, len);
866 if (targetdebug)
867 {
868 const unsigned char *myaddr = NULL;
869
870 fprintf_unfiltered (gdb_stdlog,
871 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
872 ops->to_shortname,
873 (int) object,
874 (annex ? annex : "(null)"),
875 (long) readbuf, (long) writebuf,
876 paddr_nz (offset), paddr_d (len), paddr_d (retval));
877
878 if (readbuf)
879 myaddr = readbuf;
880 if (writebuf)
881 myaddr = writebuf;
882 if (retval > 0 && myaddr != NULL)
883 {
884 int i;
885
886 fputs_unfiltered (", bytes =", gdb_stdlog);
887 for (i = 0; i < retval; i++)
888 {
889 if ((((long) &(myaddr[i])) & 0xf) == 0)
890 {
891 if (targetdebug < 2 && i > 0)
892 {
893 fprintf_unfiltered (gdb_stdlog, " ...");
894 break;
895 }
896 fprintf_unfiltered (gdb_stdlog, "\n");
897 }
898
899 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
900 }
901 }
902
903 fputc_unfiltered ('\n', gdb_stdlog);
904 }
905 return retval;
906 }
907
908 /* Attempt a transfer all LEN bytes starting at OFFSET between the
909 inferior's KIND:ANNEX space and GDB's READBUF/WRITEBUF buffer. If
910 the transfer succeeds, return zero, otherwize the host ERRNO is
911 returned.
912
913 The inferior is formed from several layers. In the case of
914 corefiles, inf-corefile is layered above inf-exec and a request for
915 text (corefiles do not include text pages) will be first sent to
916 the core-stratum, fail, and then sent to the object-file where it
917 will succeed.
918
919 NOTE: cagney/2004-09-30:
920
921 The old code tried to use four separate mechanisms for mapping an
922 object:offset:len tuple onto an inferior and its address space: the
923 target stack; the inferior's TO_SECTIONS; solib's SO_LIST;
924 overlays.
925
926 This is stupid.
927
928 The code below is instead using a single mechanism (currently
929 strata). If that mechanism proves insufficient then re-factor it
930 implementing another singluar mechanism (for instance, a generic
931 object:annex onto inferior:object:annex say). */
932
933 static LONGEST
934 xfer_using_stratum (enum target_object object, const char *annex,
935 ULONGEST offset, LONGEST len, void *readbuf,
936 const void *writebuf)
937 {
938 LONGEST xfered;
939 struct target_ops *target;
940
941 /* Always successful. */
942 if (len == 0)
943 return 0;
944 /* Never successful. */
945 if (target_stack == NULL)
946 return EIO;
947
948 target = target_stack;
949 while (1)
950 {
951 xfered = target_xfer_partial (target, object, annex,
952 readbuf, writebuf, offset, len);
953 if (xfered > 0)
954 {
955 /* The partial xfer succeeded, update the counts, check that
956 the xfer hasn't finished and if it hasn't set things up
957 for the next round. */
958 len -= xfered;
959 if (len <= 0)
960 return 0;
961 offset += xfered;
962 if (readbuf != NULL)
963 readbuf = (bfd_byte *) readbuf + xfered;
964 if (writebuf != NULL)
965 writebuf = (bfd_byte *) writebuf + xfered;
966 target = target_stack;
967 }
968 else if (xfered < 0)
969 {
970 /* Something totally screwed up, abandon the attempt to
971 xfer. */
972 if (errno)
973 return errno;
974 else
975 return EIO;
976 }
977 else
978 {
979 /* This "stratum" didn't work, try the next one down. */
980 target = target->beneath;
981 if (target == NULL)
982 return EIO;
983 }
984 }
985 }
986
987 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
988 GDB's memory at MYADDR. Returns either 0 for success or an errno value
989 if any error occurs.
990
991 If an error occurs, no guarantee is made about the contents of the data at
992 MYADDR. In particular, the caller should not depend upon partial reads
993 filling the buffer with good data. There is no way for the caller to know
994 how much good data might have been transfered anyway. Callers that can
995 deal with partial reads should call target_read_memory_partial. */
996
997 int
998 target_read_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len)
999 {
1000 if (target_xfer_partial_p ())
1001 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
1002 memaddr, len, myaddr, NULL);
1003 else
1004 return target_xfer_memory (memaddr, myaddr, len, 0);
1005 }
1006
1007 int
1008 target_write_memory (CORE_ADDR memaddr, const bfd_byte *myaddr, int len)
1009 {
1010 bfd_byte *bytes = alloca (len);
1011 memcpy (bytes, myaddr, len);
1012 if (target_xfer_partial_p ())
1013 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
1014 memaddr, len, NULL, bytes);
1015 else
1016 return target_xfer_memory (memaddr, bytes, len, 1);
1017 }
1018
1019 #ifndef target_stopped_data_address_p
1020 int
1021 target_stopped_data_address_p (struct target_ops *target)
1022 {
1023 if (target->to_stopped_data_address
1024 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1025 return 0;
1026 if (target->to_stopped_data_address == debug_to_stopped_data_address
1027 && (debug_target.to_stopped_data_address
1028 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1029 return 0;
1030 return 1;
1031 }
1032 #endif
1033
1034 static int trust_readonly = 0;
1035
1036 /* Move memory to or from the targets. The top target gets priority;
1037 if it cannot handle it, it is offered to the next one down, etc.
1038
1039 Result is -1 on error, or the number of bytes transfered. */
1040
1041 int
1042 do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
1043 struct mem_attrib *attrib)
1044 {
1045 int res;
1046 int done = 0;
1047 struct target_ops *t;
1048
1049 /* Zero length requests are ok and require no work. */
1050 if (len == 0)
1051 return 0;
1052
1053 /* deprecated_xfer_memory is not guaranteed to set errno, even when
1054 it returns 0. */
1055 errno = 0;
1056
1057 if (!write && trust_readonly)
1058 {
1059 struct section_table *secp;
1060 /* User-settable option, "trust-readonly-sections". If true,
1061 then memory from any SEC_READONLY bfd section may be read
1062 directly from the bfd file. */
1063 secp = target_section_by_addr (&current_target, memaddr);
1064 if (secp != NULL
1065 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1066 & SEC_READONLY))
1067 return xfer_memory (memaddr, myaddr, len, 0, attrib, &current_target);
1068 }
1069
1070 /* The quick case is that the top target can handle the transfer. */
1071 res = current_target.deprecated_xfer_memory
1072 (memaddr, myaddr, len, write, attrib, &current_target);
1073
1074 /* If res <= 0 then we call it again in the loop. Ah well. */
1075 if (res <= 0)
1076 {
1077 for (t = target_stack; t != NULL; t = t->beneath)
1078 {
1079 if (!t->to_has_memory)
1080 continue;
1081
1082 res = t->deprecated_xfer_memory (memaddr, myaddr, len, write, attrib, t);
1083 if (res > 0)
1084 break; /* Handled all or part of xfer */
1085 if (t->to_has_all_memory)
1086 break;
1087 }
1088
1089 if (res <= 0)
1090 return -1;
1091 }
1092
1093 return res;
1094 }
1095
1096
1097 /* Perform a memory transfer. Iterate until the entire region has
1098 been transfered.
1099
1100 Result is 0 or errno value. */
1101
1102 static int
1103 target_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write)
1104 {
1105 int res;
1106 int reg_len;
1107 struct mem_region *region;
1108
1109 /* Zero length requests are ok and require no work. */
1110 if (len == 0)
1111 {
1112 return 0;
1113 }
1114
1115 while (len > 0)
1116 {
1117 region = lookup_mem_region(memaddr);
1118 if (memaddr + len < region->hi)
1119 reg_len = len;
1120 else
1121 reg_len = region->hi - memaddr;
1122
1123 switch (region->attrib.mode)
1124 {
1125 case MEM_RO:
1126 if (write)
1127 return EIO;
1128 break;
1129
1130 case MEM_WO:
1131 if (!write)
1132 return EIO;
1133 break;
1134 }
1135
1136 while (reg_len > 0)
1137 {
1138 if (region->attrib.cache)
1139 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1140 reg_len, write);
1141 else
1142 res = do_xfer_memory (memaddr, myaddr, reg_len, write,
1143 &region->attrib);
1144
1145 if (res <= 0)
1146 {
1147 /* If this address is for nonexistent memory, read zeros
1148 if reading, or do nothing if writing. Return
1149 error. */
1150 if (!write)
1151 memset (myaddr, 0, len);
1152 if (errno == 0)
1153 return EIO;
1154 else
1155 return errno;
1156 }
1157
1158 memaddr += res;
1159 myaddr += res;
1160 len -= res;
1161 reg_len -= res;
1162 }
1163 }
1164
1165 return 0; /* We managed to cover it all somehow. */
1166 }
1167
1168
1169 /* Perform a partial memory transfer.
1170
1171 Result is -1 on error, or the number of bytes transfered. */
1172
1173 static int
1174 target_xfer_memory_partial (CORE_ADDR memaddr, char *myaddr, int len,
1175 int write_p, int *err)
1176 {
1177 int res;
1178 int reg_len;
1179 struct mem_region *region;
1180
1181 /* Zero length requests are ok and require no work. */
1182 if (len == 0)
1183 {
1184 *err = 0;
1185 return 0;
1186 }
1187
1188 region = lookup_mem_region(memaddr);
1189 if (memaddr + len < region->hi)
1190 reg_len = len;
1191 else
1192 reg_len = region->hi - memaddr;
1193
1194 switch (region->attrib.mode)
1195 {
1196 case MEM_RO:
1197 if (write_p)
1198 {
1199 *err = EIO;
1200 return -1;
1201 }
1202 break;
1203
1204 case MEM_WO:
1205 if (write_p)
1206 {
1207 *err = EIO;
1208 return -1;
1209 }
1210 break;
1211 }
1212
1213 if (region->attrib.cache)
1214 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1215 reg_len, write_p);
1216 else
1217 res = do_xfer_memory (memaddr, myaddr, reg_len, write_p,
1218 &region->attrib);
1219
1220 if (res <= 0)
1221 {
1222 if (errno != 0)
1223 *err = errno;
1224 else
1225 *err = EIO;
1226
1227 return -1;
1228 }
1229
1230 *err = 0;
1231 return res;
1232 }
1233
1234 int
1235 target_read_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1236 {
1237 if (target_xfer_partial_p ())
1238 return target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY, NULL,
1239 buf, NULL, memaddr, len);
1240 else
1241 return target_xfer_memory_partial (memaddr, buf, len, 0, err);
1242 }
1243
1244 int
1245 target_write_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1246 {
1247 if (target_xfer_partial_p ())
1248 return target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY, NULL,
1249 NULL, buf, memaddr, len);
1250 else
1251 return target_xfer_memory_partial (memaddr, buf, len, 1, err);
1252 }
1253
1254 /* More generic transfers. */
1255
1256 static LONGEST
1257 default_xfer_partial (struct target_ops *ops, enum target_object object,
1258 const char *annex, void *readbuf,
1259 const void *writebuf, ULONGEST offset, LONGEST len)
1260 {
1261 if (object == TARGET_OBJECT_MEMORY
1262 && ops->deprecated_xfer_memory != NULL)
1263 /* If available, fall back to the target's
1264 "deprecated_xfer_memory" method. */
1265 {
1266 int xfered = -1;
1267 errno = 0;
1268 if (writebuf != NULL)
1269 {
1270 void *buffer = xmalloc (len);
1271 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1272 memcpy (buffer, writebuf, len);
1273 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1274 1/*write*/, NULL, ops);
1275 do_cleanups (cleanup);
1276 }
1277 if (readbuf != NULL)
1278 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1279 NULL, ops);
1280 if (xfered > 0)
1281 return xfered;
1282 else if (xfered == 0 && errno == 0)
1283 /* "deprecated_xfer_memory" uses 0, cross checked against
1284 ERRNO as one indication of an error. */
1285 return 0;
1286 else
1287 return -1;
1288 }
1289 else if (ops->beneath != NULL)
1290 return target_xfer_partial (ops->beneath, object, annex,
1291 readbuf, writebuf, offset, len);
1292 else
1293 return -1;
1294 }
1295
1296 /* Target vector read/write partial wrapper functions.
1297
1298 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1299 (inbuf, outbuf)", instead of separate read/write methods, make life
1300 easier. */
1301
1302 LONGEST
1303 target_read_partial (struct target_ops *ops,
1304 enum target_object object,
1305 const char *annex, void *buf,
1306 ULONGEST offset, LONGEST len)
1307 {
1308 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1309 }
1310
1311 LONGEST
1312 target_write_partial (struct target_ops *ops,
1313 enum target_object object,
1314 const char *annex, const void *buf,
1315 ULONGEST offset, LONGEST len)
1316 {
1317 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1318 }
1319
1320 /* Wrappers to perform the full transfer. */
1321 LONGEST
1322 target_read (struct target_ops *ops,
1323 enum target_object object,
1324 const char *annex, void *buf,
1325 ULONGEST offset, LONGEST len)
1326 {
1327 LONGEST xfered = 0;
1328 while (xfered < len)
1329 {
1330 LONGEST xfer = target_read_partial (ops, object, annex,
1331 (bfd_byte *) buf + xfered,
1332 offset + xfered, len - xfered);
1333 /* Call an observer, notifying them of the xfer progress? */
1334 if (xfer <= 0)
1335 /* Call memory_error? */
1336 return -1;
1337 xfered += xfer;
1338 QUIT;
1339 }
1340 return len;
1341 }
1342
1343 LONGEST
1344 target_write (struct target_ops *ops,
1345 enum target_object object,
1346 const char *annex, const void *buf,
1347 ULONGEST offset, LONGEST len)
1348 {
1349 LONGEST xfered = 0;
1350 while (xfered < len)
1351 {
1352 LONGEST xfer = target_write_partial (ops, object, annex,
1353 (bfd_byte *) buf + xfered,
1354 offset + xfered, len - xfered);
1355 /* Call an observer, notifying them of the xfer progress? */
1356 if (xfer <= 0)
1357 /* Call memory_error? */
1358 return -1;
1359 xfered += xfer;
1360 QUIT;
1361 }
1362 return len;
1363 }
1364
1365 /* Memory transfer methods. */
1366
1367 void
1368 get_target_memory (struct target_ops *ops, CORE_ADDR addr, void *buf,
1369 LONGEST len)
1370 {
1371 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1372 != len)
1373 memory_error (EIO, addr);
1374 }
1375
1376 ULONGEST
1377 get_target_memory_unsigned (struct target_ops *ops,
1378 CORE_ADDR addr, int len)
1379 {
1380 char buf[sizeof (ULONGEST)];
1381
1382 gdb_assert (len <= sizeof (buf));
1383 get_target_memory (ops, addr, buf, len);
1384 return extract_unsigned_integer (buf, len);
1385 }
1386
1387 static void
1388 target_info (char *args, int from_tty)
1389 {
1390 struct target_ops *t;
1391 int has_all_mem = 0;
1392
1393 if (symfile_objfile != NULL)
1394 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1395
1396 for (t = target_stack; t != NULL; t = t->beneath)
1397 {
1398 if (!t->to_has_memory)
1399 continue;
1400
1401 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1402 continue;
1403 if (has_all_mem)
1404 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1405 printf_unfiltered ("%s:\n", t->to_longname);
1406 (t->to_files_info) (t);
1407 has_all_mem = t->to_has_all_memory;
1408 }
1409 }
1410
1411 /* This is to be called by the open routine before it does
1412 anything. */
1413
1414 void
1415 target_preopen (int from_tty)
1416 {
1417 dont_repeat ();
1418
1419 if (target_has_execution)
1420 {
1421 if (!from_tty
1422 || query (_("A program is being debugged already. Kill it? ")))
1423 target_kill ();
1424 else
1425 error (_("Program not killed."));
1426 }
1427
1428 /* Calling target_kill may remove the target from the stack. But if
1429 it doesn't (which seems like a win for UDI), remove it now. */
1430
1431 if (target_has_execution)
1432 pop_target ();
1433 }
1434
1435 /* Detach a target after doing deferred register stores. */
1436
1437 void
1438 target_detach (char *args, int from_tty)
1439 {
1440 (current_target.to_detach) (args, from_tty);
1441 }
1442
1443 void
1444 target_disconnect (char *args, int from_tty)
1445 {
1446 (current_target.to_disconnect) (args, from_tty);
1447 }
1448
1449 void
1450 target_link (char *modname, CORE_ADDR *t_reloc)
1451 {
1452 if (DEPRECATED_STREQ (current_target.to_shortname, "rombug"))
1453 {
1454 (current_target.to_lookup_symbol) (modname, t_reloc);
1455 if (*t_reloc == 0)
1456 error (_("Unable to link to %s and get relocation in rombug"), modname);
1457 }
1458 else
1459 *t_reloc = (CORE_ADDR) -1;
1460 }
1461
1462 int
1463 target_async_mask (int mask)
1464 {
1465 int saved_async_masked_status = target_async_mask_value;
1466 target_async_mask_value = mask;
1467 return saved_async_masked_status;
1468 }
1469
1470 /* Look through the list of possible targets for a target that can
1471 execute a run or attach command without any other data. This is
1472 used to locate the default process stratum.
1473
1474 Result is always valid (error() is called for errors). */
1475
1476 static struct target_ops *
1477 find_default_run_target (char *do_mesg)
1478 {
1479 struct target_ops **t;
1480 struct target_ops *runable = NULL;
1481 int count;
1482
1483 count = 0;
1484
1485 for (t = target_structs; t < target_structs + target_struct_size;
1486 ++t)
1487 {
1488 if ((*t)->to_can_run && target_can_run (*t))
1489 {
1490 runable = *t;
1491 ++count;
1492 }
1493 }
1494
1495 if (count != 1)
1496 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1497
1498 return runable;
1499 }
1500
1501 void
1502 find_default_attach (char *args, int from_tty)
1503 {
1504 struct target_ops *t;
1505
1506 t = find_default_run_target ("attach");
1507 (t->to_attach) (args, from_tty);
1508 return;
1509 }
1510
1511 void
1512 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1513 int from_tty)
1514 {
1515 struct target_ops *t;
1516
1517 t = find_default_run_target ("run");
1518 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1519 return;
1520 }
1521
1522 static int
1523 default_region_size_ok_for_hw_watchpoint (int byte_count)
1524 {
1525 return (byte_count <= TYPE_LENGTH (builtin_type_void_data_ptr));
1526 }
1527
1528 static int
1529 return_zero (void)
1530 {
1531 return 0;
1532 }
1533
1534 static int
1535 return_one (void)
1536 {
1537 return 1;
1538 }
1539
1540 static int
1541 return_minus_one (void)
1542 {
1543 return -1;
1544 }
1545
1546 /*
1547 * Resize the to_sections pointer. Also make sure that anyone that
1548 * was holding on to an old value of it gets updated.
1549 * Returns the old size.
1550 */
1551
1552 int
1553 target_resize_to_sections (struct target_ops *target, int num_added)
1554 {
1555 struct target_ops **t;
1556 struct section_table *old_value;
1557 int old_count;
1558
1559 old_value = target->to_sections;
1560
1561 if (target->to_sections)
1562 {
1563 old_count = target->to_sections_end - target->to_sections;
1564 target->to_sections = (struct section_table *)
1565 xrealloc ((char *) target->to_sections,
1566 (sizeof (struct section_table)) * (num_added + old_count));
1567 }
1568 else
1569 {
1570 old_count = 0;
1571 target->to_sections = (struct section_table *)
1572 xmalloc ((sizeof (struct section_table)) * num_added);
1573 }
1574 target->to_sections_end = target->to_sections + (num_added + old_count);
1575
1576 /* Check to see if anyone else was pointing to this structure.
1577 If old_value was null, then no one was. */
1578
1579 if (old_value)
1580 {
1581 for (t = target_structs; t < target_structs + target_struct_size;
1582 ++t)
1583 {
1584 if ((*t)->to_sections == old_value)
1585 {
1586 (*t)->to_sections = target->to_sections;
1587 (*t)->to_sections_end = target->to_sections_end;
1588 }
1589 }
1590 /* There is a flattened view of the target stack in current_target,
1591 so its to_sections pointer might also need updating. */
1592 if (current_target.to_sections == old_value)
1593 {
1594 current_target.to_sections = target->to_sections;
1595 current_target.to_sections_end = target->to_sections_end;
1596 }
1597 }
1598
1599 return old_count;
1600
1601 }
1602
1603 /* Remove all target sections taken from ABFD.
1604
1605 Scan the current target stack for targets whose section tables
1606 refer to sections from BFD, and remove those sections. We use this
1607 when we notice that the inferior has unloaded a shared object, for
1608 example. */
1609 void
1610 remove_target_sections (bfd *abfd)
1611 {
1612 struct target_ops **t;
1613
1614 for (t = target_structs; t < target_structs + target_struct_size; t++)
1615 {
1616 struct section_table *src, *dest;
1617
1618 dest = (*t)->to_sections;
1619 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1620 if (src->bfd != abfd)
1621 {
1622 /* Keep this section. */
1623 if (dest < src) *dest = *src;
1624 dest++;
1625 }
1626
1627 /* If we've dropped any sections, resize the section table. */
1628 if (dest < src)
1629 target_resize_to_sections (*t, dest - src);
1630 }
1631 }
1632
1633
1634
1635
1636 /* Find a single runnable target in the stack and return it. If for
1637 some reason there is more than one, return NULL. */
1638
1639 struct target_ops *
1640 find_run_target (void)
1641 {
1642 struct target_ops **t;
1643 struct target_ops *runable = NULL;
1644 int count;
1645
1646 count = 0;
1647
1648 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1649 {
1650 if ((*t)->to_can_run && target_can_run (*t))
1651 {
1652 runable = *t;
1653 ++count;
1654 }
1655 }
1656
1657 return (count == 1 ? runable : NULL);
1658 }
1659
1660 /* Find a single core_stratum target in the list of targets and return it.
1661 If for some reason there is more than one, return NULL. */
1662
1663 struct target_ops *
1664 find_core_target (void)
1665 {
1666 struct target_ops **t;
1667 struct target_ops *runable = NULL;
1668 int count;
1669
1670 count = 0;
1671
1672 for (t = target_structs; t < target_structs + target_struct_size;
1673 ++t)
1674 {
1675 if ((*t)->to_stratum == core_stratum)
1676 {
1677 runable = *t;
1678 ++count;
1679 }
1680 }
1681
1682 return (count == 1 ? runable : NULL);
1683 }
1684
1685 /*
1686 * Find the next target down the stack from the specified target.
1687 */
1688
1689 struct target_ops *
1690 find_target_beneath (struct target_ops *t)
1691 {
1692 return t->beneath;
1693 }
1694
1695 \f
1696 /* The inferior process has died. Long live the inferior! */
1697
1698 void
1699 generic_mourn_inferior (void)
1700 {
1701 extern int show_breakpoint_hit_counts;
1702
1703 inferior_ptid = null_ptid;
1704 attach_flag = 0;
1705 breakpoint_init_inferior (inf_exited);
1706 registers_changed ();
1707
1708 reopen_exec_file ();
1709 reinit_frame_cache ();
1710
1711 /* It is confusing to the user for ignore counts to stick around
1712 from previous runs of the inferior. So clear them. */
1713 /* However, it is more confusing for the ignore counts to disappear when
1714 using hit counts. So don't clear them if we're counting hits. */
1715 if (!show_breakpoint_hit_counts)
1716 breakpoint_clear_ignore_counts ();
1717
1718 if (deprecated_detach_hook)
1719 deprecated_detach_hook ();
1720 }
1721 \f
1722 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1723 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1724 translation of that in OURSTATUS. */
1725 void
1726 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1727 {
1728 #ifdef CHILD_SPECIAL_WAITSTATUS
1729 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1730 if it wants to deal with hoststatus. */
1731 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1732 return;
1733 #endif
1734
1735 if (WIFEXITED (hoststatus))
1736 {
1737 ourstatus->kind = TARGET_WAITKIND_EXITED;
1738 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1739 }
1740 else if (!WIFSTOPPED (hoststatus))
1741 {
1742 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1743 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1744 }
1745 else
1746 {
1747 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1748 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1749 }
1750 }
1751 \f
1752 /* Returns zero to leave the inferior alone, one to interrupt it. */
1753 int (*target_activity_function) (void);
1754 int target_activity_fd;
1755 \f
1756 /* Convert a normal process ID to a string. Returns the string in a static
1757 buffer. */
1758
1759 char *
1760 normal_pid_to_str (ptid_t ptid)
1761 {
1762 static char buf[30];
1763
1764 sprintf (buf, "process %d", PIDGET (ptid));
1765 return buf;
1766 }
1767
1768 /* Error-catcher for target_find_memory_regions */
1769 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
1770 {
1771 error (_("No target."));
1772 return 0;
1773 }
1774
1775 /* Error-catcher for target_make_corefile_notes */
1776 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
1777 {
1778 error (_("No target."));
1779 return NULL;
1780 }
1781
1782 /* Set up the handful of non-empty slots needed by the dummy target
1783 vector. */
1784
1785 static void
1786 init_dummy_target (void)
1787 {
1788 dummy_target.to_shortname = "None";
1789 dummy_target.to_longname = "None";
1790 dummy_target.to_doc = "";
1791 dummy_target.to_attach = find_default_attach;
1792 dummy_target.to_create_inferior = find_default_create_inferior;
1793 dummy_target.to_pid_to_str = normal_pid_to_str;
1794 dummy_target.to_stratum = dummy_stratum;
1795 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
1796 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
1797 dummy_target.to_xfer_partial = default_xfer_partial;
1798 dummy_target.to_magic = OPS_MAGIC;
1799 }
1800 \f
1801 static void
1802 debug_to_open (char *args, int from_tty)
1803 {
1804 debug_target.to_open (args, from_tty);
1805
1806 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
1807 }
1808
1809 static void
1810 debug_to_close (int quitting)
1811 {
1812 target_close (&debug_target, quitting);
1813 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
1814 }
1815
1816 void
1817 target_close (struct target_ops *targ, int quitting)
1818 {
1819 if (targ->to_xclose != NULL)
1820 targ->to_xclose (targ, quitting);
1821 else if (targ->to_close != NULL)
1822 targ->to_close (quitting);
1823 }
1824
1825 static void
1826 debug_to_attach (char *args, int from_tty)
1827 {
1828 debug_target.to_attach (args, from_tty);
1829
1830 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
1831 }
1832
1833
1834 static void
1835 debug_to_post_attach (int pid)
1836 {
1837 debug_target.to_post_attach (pid);
1838
1839 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
1840 }
1841
1842 static void
1843 debug_to_detach (char *args, int from_tty)
1844 {
1845 debug_target.to_detach (args, from_tty);
1846
1847 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
1848 }
1849
1850 static void
1851 debug_to_disconnect (char *args, int from_tty)
1852 {
1853 debug_target.to_disconnect (args, from_tty);
1854
1855 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1856 args, from_tty);
1857 }
1858
1859 static void
1860 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
1861 {
1862 debug_target.to_resume (ptid, step, siggnal);
1863
1864 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
1865 step ? "step" : "continue",
1866 target_signal_to_name (siggnal));
1867 }
1868
1869 static ptid_t
1870 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
1871 {
1872 ptid_t retval;
1873
1874 retval = debug_target.to_wait (ptid, status);
1875
1876 fprintf_unfiltered (gdb_stdlog,
1877 "target_wait (%d, status) = %d, ", PIDGET (ptid),
1878 PIDGET (retval));
1879 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
1880 switch (status->kind)
1881 {
1882 case TARGET_WAITKIND_EXITED:
1883 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
1884 status->value.integer);
1885 break;
1886 case TARGET_WAITKIND_STOPPED:
1887 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
1888 target_signal_to_name (status->value.sig));
1889 break;
1890 case TARGET_WAITKIND_SIGNALLED:
1891 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
1892 target_signal_to_name (status->value.sig));
1893 break;
1894 case TARGET_WAITKIND_LOADED:
1895 fprintf_unfiltered (gdb_stdlog, "loaded\n");
1896 break;
1897 case TARGET_WAITKIND_FORKED:
1898 fprintf_unfiltered (gdb_stdlog, "forked\n");
1899 break;
1900 case TARGET_WAITKIND_VFORKED:
1901 fprintf_unfiltered (gdb_stdlog, "vforked\n");
1902 break;
1903 case TARGET_WAITKIND_EXECD:
1904 fprintf_unfiltered (gdb_stdlog, "execd\n");
1905 break;
1906 case TARGET_WAITKIND_SPURIOUS:
1907 fprintf_unfiltered (gdb_stdlog, "spurious\n");
1908 break;
1909 default:
1910 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
1911 break;
1912 }
1913
1914 return retval;
1915 }
1916
1917 static void
1918 debug_print_register (const char * func, int regno)
1919 {
1920 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1921 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
1922 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
1923 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
1924 else
1925 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1926 if (regno >= 0)
1927 {
1928 int i;
1929 unsigned char buf[MAX_REGISTER_SIZE];
1930 deprecated_read_register_gen (regno, buf);
1931 fprintf_unfiltered (gdb_stdlog, " = ");
1932 for (i = 0; i < register_size (current_gdbarch, regno); i++)
1933 {
1934 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1935 }
1936 if (register_size (current_gdbarch, regno) <= sizeof (LONGEST))
1937 {
1938 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
1939 paddr_nz (read_register (regno)),
1940 paddr_d (read_register (regno)));
1941 }
1942 }
1943 fprintf_unfiltered (gdb_stdlog, "\n");
1944 }
1945
1946 static void
1947 debug_to_fetch_registers (int regno)
1948 {
1949 debug_target.to_fetch_registers (regno);
1950 debug_print_register ("target_fetch_registers", regno);
1951 }
1952
1953 static void
1954 debug_to_store_registers (int regno)
1955 {
1956 debug_target.to_store_registers (regno);
1957 debug_print_register ("target_store_registers", regno);
1958 fprintf_unfiltered (gdb_stdlog, "\n");
1959 }
1960
1961 static void
1962 debug_to_prepare_to_store (void)
1963 {
1964 debug_target.to_prepare_to_store ();
1965
1966 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
1967 }
1968
1969 static int
1970 deprecated_debug_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
1971 int write, struct mem_attrib *attrib,
1972 struct target_ops *target)
1973 {
1974 int retval;
1975
1976 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
1977 attrib, target);
1978
1979 fprintf_unfiltered (gdb_stdlog,
1980 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
1981 (unsigned int) memaddr, /* possable truncate long long */
1982 len, write ? "write" : "read", retval);
1983
1984 if (retval > 0)
1985 {
1986 int i;
1987
1988 fputs_unfiltered (", bytes =", gdb_stdlog);
1989 for (i = 0; i < retval; i++)
1990 {
1991 if ((((long) &(myaddr[i])) & 0xf) == 0)
1992 {
1993 if (targetdebug < 2 && i > 0)
1994 {
1995 fprintf_unfiltered (gdb_stdlog, " ...");
1996 break;
1997 }
1998 fprintf_unfiltered (gdb_stdlog, "\n");
1999 }
2000
2001 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2002 }
2003 }
2004
2005 fputc_unfiltered ('\n', gdb_stdlog);
2006
2007 return retval;
2008 }
2009
2010 static void
2011 debug_to_files_info (struct target_ops *target)
2012 {
2013 debug_target.to_files_info (target);
2014
2015 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2016 }
2017
2018 static int
2019 debug_to_insert_breakpoint (CORE_ADDR addr, char *save)
2020 {
2021 int retval;
2022
2023 retval = debug_target.to_insert_breakpoint (addr, save);
2024
2025 fprintf_unfiltered (gdb_stdlog,
2026 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2027 (unsigned long) addr,
2028 (unsigned long) retval);
2029 return retval;
2030 }
2031
2032 static int
2033 debug_to_remove_breakpoint (CORE_ADDR addr, char *save)
2034 {
2035 int retval;
2036
2037 retval = debug_target.to_remove_breakpoint (addr, save);
2038
2039 fprintf_unfiltered (gdb_stdlog,
2040 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2041 (unsigned long) addr,
2042 (unsigned long) retval);
2043 return retval;
2044 }
2045
2046 static int
2047 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2048 {
2049 int retval;
2050
2051 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2052
2053 fprintf_unfiltered (gdb_stdlog,
2054 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2055 (unsigned long) type,
2056 (unsigned long) cnt,
2057 (unsigned long) from_tty,
2058 (unsigned long) retval);
2059 return retval;
2060 }
2061
2062 static int
2063 debug_to_region_size_ok_for_hw_watchpoint (int byte_count)
2064 {
2065 CORE_ADDR retval;
2066
2067 retval = debug_target.to_region_size_ok_for_hw_watchpoint (byte_count);
2068
2069 fprintf_unfiltered (gdb_stdlog,
2070 "TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT (%ld) = 0x%lx\n",
2071 (unsigned long) byte_count,
2072 (unsigned long) retval);
2073 return retval;
2074 }
2075
2076 static int
2077 debug_to_stopped_by_watchpoint (void)
2078 {
2079 int retval;
2080
2081 retval = debug_target.to_stopped_by_watchpoint ();
2082
2083 fprintf_unfiltered (gdb_stdlog,
2084 "STOPPED_BY_WATCHPOINT () = %ld\n",
2085 (unsigned long) retval);
2086 return retval;
2087 }
2088
2089 static int
2090 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2091 {
2092 int retval;
2093
2094 retval = debug_target.to_stopped_data_address (target, addr);
2095
2096 fprintf_unfiltered (gdb_stdlog,
2097 "target_stopped_data_address ([0x%lx]) = %ld\n",
2098 (unsigned long)*addr,
2099 (unsigned long)retval);
2100 return retval;
2101 }
2102
2103 static int
2104 debug_to_insert_hw_breakpoint (CORE_ADDR addr, char *save)
2105 {
2106 int retval;
2107
2108 retval = debug_target.to_insert_hw_breakpoint (addr, save);
2109
2110 fprintf_unfiltered (gdb_stdlog,
2111 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2112 (unsigned long) addr,
2113 (unsigned long) retval);
2114 return retval;
2115 }
2116
2117 static int
2118 debug_to_remove_hw_breakpoint (CORE_ADDR addr, char *save)
2119 {
2120 int retval;
2121
2122 retval = debug_target.to_remove_hw_breakpoint (addr, save);
2123
2124 fprintf_unfiltered (gdb_stdlog,
2125 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2126 (unsigned long) addr,
2127 (unsigned long) retval);
2128 return retval;
2129 }
2130
2131 static int
2132 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2133 {
2134 int retval;
2135
2136 retval = debug_target.to_insert_watchpoint (addr, len, type);
2137
2138 fprintf_unfiltered (gdb_stdlog,
2139 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2140 (unsigned long) addr, len, type, (unsigned long) retval);
2141 return retval;
2142 }
2143
2144 static int
2145 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2146 {
2147 int retval;
2148
2149 retval = debug_target.to_insert_watchpoint (addr, len, type);
2150
2151 fprintf_unfiltered (gdb_stdlog,
2152 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2153 (unsigned long) addr, len, type, (unsigned long) retval);
2154 return retval;
2155 }
2156
2157 static void
2158 debug_to_terminal_init (void)
2159 {
2160 debug_target.to_terminal_init ();
2161
2162 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2163 }
2164
2165 static void
2166 debug_to_terminal_inferior (void)
2167 {
2168 debug_target.to_terminal_inferior ();
2169
2170 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2171 }
2172
2173 static void
2174 debug_to_terminal_ours_for_output (void)
2175 {
2176 debug_target.to_terminal_ours_for_output ();
2177
2178 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2179 }
2180
2181 static void
2182 debug_to_terminal_ours (void)
2183 {
2184 debug_target.to_terminal_ours ();
2185
2186 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2187 }
2188
2189 static void
2190 debug_to_terminal_save_ours (void)
2191 {
2192 debug_target.to_terminal_save_ours ();
2193
2194 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2195 }
2196
2197 static void
2198 debug_to_terminal_info (char *arg, int from_tty)
2199 {
2200 debug_target.to_terminal_info (arg, from_tty);
2201
2202 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2203 from_tty);
2204 }
2205
2206 static void
2207 debug_to_kill (void)
2208 {
2209 debug_target.to_kill ();
2210
2211 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2212 }
2213
2214 static void
2215 debug_to_load (char *args, int from_tty)
2216 {
2217 debug_target.to_load (args, from_tty);
2218
2219 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2220 }
2221
2222 static int
2223 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2224 {
2225 int retval;
2226
2227 retval = debug_target.to_lookup_symbol (name, addrp);
2228
2229 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2230
2231 return retval;
2232 }
2233
2234 static void
2235 debug_to_create_inferior (char *exec_file, char *args, char **env,
2236 int from_tty)
2237 {
2238 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2239
2240 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2241 exec_file, args, from_tty);
2242 }
2243
2244 static void
2245 debug_to_post_startup_inferior (ptid_t ptid)
2246 {
2247 debug_target.to_post_startup_inferior (ptid);
2248
2249 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2250 PIDGET (ptid));
2251 }
2252
2253 static void
2254 debug_to_acknowledge_created_inferior (int pid)
2255 {
2256 debug_target.to_acknowledge_created_inferior (pid);
2257
2258 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2259 pid);
2260 }
2261
2262 static void
2263 debug_to_insert_fork_catchpoint (int pid)
2264 {
2265 debug_target.to_insert_fork_catchpoint (pid);
2266
2267 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2268 pid);
2269 }
2270
2271 static int
2272 debug_to_remove_fork_catchpoint (int pid)
2273 {
2274 int retval;
2275
2276 retval = debug_target.to_remove_fork_catchpoint (pid);
2277
2278 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2279 pid, retval);
2280
2281 return retval;
2282 }
2283
2284 static void
2285 debug_to_insert_vfork_catchpoint (int pid)
2286 {
2287 debug_target.to_insert_vfork_catchpoint (pid);
2288
2289 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2290 pid);
2291 }
2292
2293 static int
2294 debug_to_remove_vfork_catchpoint (int pid)
2295 {
2296 int retval;
2297
2298 retval = debug_target.to_remove_vfork_catchpoint (pid);
2299
2300 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2301 pid, retval);
2302
2303 return retval;
2304 }
2305
2306 static int
2307 debug_to_follow_fork (int follow_child)
2308 {
2309 int retval = debug_target.to_follow_fork (follow_child);
2310
2311 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2312 follow_child, retval);
2313
2314 return retval;
2315 }
2316
2317 static void
2318 debug_to_insert_exec_catchpoint (int pid)
2319 {
2320 debug_target.to_insert_exec_catchpoint (pid);
2321
2322 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2323 pid);
2324 }
2325
2326 static int
2327 debug_to_remove_exec_catchpoint (int pid)
2328 {
2329 int retval;
2330
2331 retval = debug_target.to_remove_exec_catchpoint (pid);
2332
2333 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2334 pid, retval);
2335
2336 return retval;
2337 }
2338
2339 static int
2340 debug_to_reported_exec_events_per_exec_call (void)
2341 {
2342 int reported_exec_events;
2343
2344 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2345
2346 fprintf_unfiltered (gdb_stdlog,
2347 "target_reported_exec_events_per_exec_call () = %d\n",
2348 reported_exec_events);
2349
2350 return reported_exec_events;
2351 }
2352
2353 static int
2354 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2355 {
2356 int has_exited;
2357
2358 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2359
2360 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2361 pid, wait_status, *exit_status, has_exited);
2362
2363 return has_exited;
2364 }
2365
2366 static void
2367 debug_to_mourn_inferior (void)
2368 {
2369 debug_target.to_mourn_inferior ();
2370
2371 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2372 }
2373
2374 static int
2375 debug_to_can_run (void)
2376 {
2377 int retval;
2378
2379 retval = debug_target.to_can_run ();
2380
2381 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2382
2383 return retval;
2384 }
2385
2386 static void
2387 debug_to_notice_signals (ptid_t ptid)
2388 {
2389 debug_target.to_notice_signals (ptid);
2390
2391 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2392 PIDGET (ptid));
2393 }
2394
2395 static int
2396 debug_to_thread_alive (ptid_t ptid)
2397 {
2398 int retval;
2399
2400 retval = debug_target.to_thread_alive (ptid);
2401
2402 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2403 PIDGET (ptid), retval);
2404
2405 return retval;
2406 }
2407
2408 static void
2409 debug_to_find_new_threads (void)
2410 {
2411 debug_target.to_find_new_threads ();
2412
2413 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2414 }
2415
2416 static void
2417 debug_to_stop (void)
2418 {
2419 debug_target.to_stop ();
2420
2421 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2422 }
2423
2424 static void
2425 debug_to_rcmd (char *command,
2426 struct ui_file *outbuf)
2427 {
2428 debug_target.to_rcmd (command, outbuf);
2429 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2430 }
2431
2432 static struct symtab_and_line *
2433 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2434 {
2435 struct symtab_and_line *result;
2436 result = debug_target.to_enable_exception_callback (kind, enable);
2437 fprintf_unfiltered (gdb_stdlog,
2438 "target get_exception_callback_sal (%d, %d)\n",
2439 kind, enable);
2440 return result;
2441 }
2442
2443 static struct exception_event_record *
2444 debug_to_get_current_exception_event (void)
2445 {
2446 struct exception_event_record *result;
2447 result = debug_target.to_get_current_exception_event ();
2448 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2449 return result;
2450 }
2451
2452 static char *
2453 debug_to_pid_to_exec_file (int pid)
2454 {
2455 char *exec_file;
2456
2457 exec_file = debug_target.to_pid_to_exec_file (pid);
2458
2459 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2460 pid, exec_file);
2461
2462 return exec_file;
2463 }
2464
2465 static void
2466 setup_target_debug (void)
2467 {
2468 memcpy (&debug_target, &current_target, sizeof debug_target);
2469
2470 current_target.to_open = debug_to_open;
2471 current_target.to_close = debug_to_close;
2472 current_target.to_attach = debug_to_attach;
2473 current_target.to_post_attach = debug_to_post_attach;
2474 current_target.to_detach = debug_to_detach;
2475 current_target.to_disconnect = debug_to_disconnect;
2476 current_target.to_resume = debug_to_resume;
2477 current_target.to_wait = debug_to_wait;
2478 current_target.to_fetch_registers = debug_to_fetch_registers;
2479 current_target.to_store_registers = debug_to_store_registers;
2480 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2481 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2482 current_target.to_files_info = debug_to_files_info;
2483 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2484 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2485 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2486 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2487 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2488 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2489 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2490 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2491 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2492 current_target.to_region_size_ok_for_hw_watchpoint = debug_to_region_size_ok_for_hw_watchpoint;
2493 current_target.to_terminal_init = debug_to_terminal_init;
2494 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2495 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2496 current_target.to_terminal_ours = debug_to_terminal_ours;
2497 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2498 current_target.to_terminal_info = debug_to_terminal_info;
2499 current_target.to_kill = debug_to_kill;
2500 current_target.to_load = debug_to_load;
2501 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2502 current_target.to_create_inferior = debug_to_create_inferior;
2503 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2504 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2505 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2506 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2507 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2508 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2509 current_target.to_follow_fork = debug_to_follow_fork;
2510 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2511 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2512 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2513 current_target.to_has_exited = debug_to_has_exited;
2514 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2515 current_target.to_can_run = debug_to_can_run;
2516 current_target.to_notice_signals = debug_to_notice_signals;
2517 current_target.to_thread_alive = debug_to_thread_alive;
2518 current_target.to_find_new_threads = debug_to_find_new_threads;
2519 current_target.to_stop = debug_to_stop;
2520 current_target.to_rcmd = debug_to_rcmd;
2521 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2522 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2523 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2524
2525 }
2526 \f
2527
2528 static char targ_desc[] =
2529 "Names of targets and files being debugged.\n\
2530 Shows the entire stack of targets currently in use (including the exec-file,\n\
2531 core-file, and process, if any), as well as the symbol file name.";
2532
2533 static void
2534 do_monitor_command (char *cmd,
2535 int from_tty)
2536 {
2537 if ((current_target.to_rcmd
2538 == (void (*) (char *, struct ui_file *)) tcomplain)
2539 || (current_target.to_rcmd == debug_to_rcmd
2540 && (debug_target.to_rcmd
2541 == (void (*) (char *, struct ui_file *)) tcomplain)))
2542 error (_("\"monitor\" command not supported by this target."));
2543 target_rcmd (cmd, gdb_stdtarg);
2544 }
2545
2546 void
2547 initialize_targets (void)
2548 {
2549 init_dummy_target ();
2550 push_target (&dummy_target);
2551
2552 add_info ("target", target_info, targ_desc);
2553 add_info ("files", target_info, targ_desc);
2554
2555 deprecated_add_show_from_set
2556 (add_set_cmd ("target", class_maintenance, var_zinteger,
2557 (char *) &targetdebug,
2558 "Set target debugging.\n\
2559 When non-zero, target debugging is enabled. Higher numbers are more\n\
2560 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2561 command.", &setdebuglist),
2562 &showdebuglist);
2563
2564 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2565 &trust_readonly, _("\
2566 Set mode for reading from readonly sections."), _("\
2567 Show mode for reading from readonly sections."), _("\
2568 When this mode is on, memory reads from readonly sections (such as .text)\n\
2569 will be read from the object file instead of from the target. This will\n\
2570 result in significant performance improvement for remote targets."),
2571 NULL, /* FIXME: i18n: Mode for reading from readonly sections is %s. */
2572 NULL, NULL,
2573 &setlist, &showlist);
2574
2575 add_com ("monitor", class_obscure, do_monitor_command,
2576 _("Send a command to the remote monitor (remote targets only)."));
2577
2578 target_dcache = dcache_init ();
2579 }