]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
convert to_insert_exec_catchpoint
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static void tcomplain (void) ATTRIBUTE_NORETURN;
61
62 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
63
64 static int return_zero (void);
65
66 static int return_one (void);
67
68 static int return_minus_one (void);
69
70 static void *return_null (void);
71
72 void target_ignore (void);
73
74 static void target_command (char *, int);
75
76 static struct target_ops *find_default_run_target (char *);
77
78 static target_xfer_partial_ftype default_xfer_partial;
79
80 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
81 ptid_t ptid);
82
83 static int find_default_can_async_p (struct target_ops *ignore);
84
85 static int find_default_is_async_p (struct target_ops *ignore);
86
87 #include "target-delegates.c"
88
89 static void init_dummy_target (void);
90
91 static struct target_ops debug_target;
92
93 static void debug_to_open (char *, int);
94
95 static void debug_to_prepare_to_store (struct target_ops *self,
96 struct regcache *);
97
98 static void debug_to_files_info (struct target_ops *);
99
100 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
101 struct bp_target_info *);
102
103 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
104 struct bp_target_info *);
105
106 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
107 int, int, int);
108
109 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
110 struct gdbarch *,
111 struct bp_target_info *);
112
113 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
114 struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_insert_watchpoint (struct target_ops *self,
118 CORE_ADDR, int, int,
119 struct expression *);
120
121 static int debug_to_remove_watchpoint (struct target_ops *self,
122 CORE_ADDR, int, int,
123 struct expression *);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
131 CORE_ADDR, int);
132
133 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
134 CORE_ADDR, int, int,
135 struct expression *);
136
137 static void debug_to_terminal_init (struct target_ops *self);
138
139 static void debug_to_terminal_inferior (struct target_ops *self);
140
141 static void debug_to_terminal_ours_for_output (struct target_ops *self);
142
143 static void debug_to_terminal_save_ours (struct target_ops *self);
144
145 static void debug_to_terminal_ours (struct target_ops *self);
146
147 static void debug_to_load (struct target_ops *self, char *, int);
148
149 static int debug_to_can_run (struct target_ops *self);
150
151 static void debug_to_stop (struct target_ops *self, ptid_t);
152
153 /* Pointer to array of target architecture structures; the size of the
154 array; the current index into the array; the allocated size of the
155 array. */
156 struct target_ops **target_structs;
157 unsigned target_struct_size;
158 unsigned target_struct_allocsize;
159 #define DEFAULT_ALLOCSIZE 10
160
161 /* The initial current target, so that there is always a semi-valid
162 current target. */
163
164 static struct target_ops dummy_target;
165
166 /* Top of target stack. */
167
168 static struct target_ops *target_stack;
169
170 /* The target structure we are currently using to talk to a process
171 or file or whatever "inferior" we have. */
172
173 struct target_ops current_target;
174
175 /* Command list for target. */
176
177 static struct cmd_list_element *targetlist = NULL;
178
179 /* Nonzero if we should trust readonly sections from the
180 executable when reading memory. */
181
182 static int trust_readonly = 0;
183
184 /* Nonzero if we should show true memory content including
185 memory breakpoint inserted by gdb. */
186
187 static int show_memory_breakpoints = 0;
188
189 /* These globals control whether GDB attempts to perform these
190 operations; they are useful for targets that need to prevent
191 inadvertant disruption, such as in non-stop mode. */
192
193 int may_write_registers = 1;
194
195 int may_write_memory = 1;
196
197 int may_insert_breakpoints = 1;
198
199 int may_insert_tracepoints = 1;
200
201 int may_insert_fast_tracepoints = 1;
202
203 int may_stop = 1;
204
205 /* Non-zero if we want to see trace of target level stuff. */
206
207 static unsigned int targetdebug = 0;
208 static void
209 show_targetdebug (struct ui_file *file, int from_tty,
210 struct cmd_list_element *c, const char *value)
211 {
212 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
213 }
214
215 static void setup_target_debug (void);
216
217 /* The user just typed 'target' without the name of a target. */
218
219 static void
220 target_command (char *arg, int from_tty)
221 {
222 fputs_filtered ("Argument required (target name). Try `help target'\n",
223 gdb_stdout);
224 }
225
226 /* Default target_has_* methods for process_stratum targets. */
227
228 int
229 default_child_has_all_memory (struct target_ops *ops)
230 {
231 /* If no inferior selected, then we can't read memory here. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_memory (struct target_ops *ops)
240 {
241 /* If no inferior selected, then we can't read memory here. */
242 if (ptid_equal (inferior_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248 int
249 default_child_has_stack (struct target_ops *ops)
250 {
251 /* If no inferior selected, there's no stack. */
252 if (ptid_equal (inferior_ptid, null_ptid))
253 return 0;
254
255 return 1;
256 }
257
258 int
259 default_child_has_registers (struct target_ops *ops)
260 {
261 /* Can't read registers from no inferior. */
262 if (ptid_equal (inferior_ptid, null_ptid))
263 return 0;
264
265 return 1;
266 }
267
268 int
269 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
270 {
271 /* If there's no thread selected, then we can't make it run through
272 hoops. */
273 if (ptid_equal (the_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279
280 int
281 target_has_all_memory_1 (void)
282 {
283 struct target_ops *t;
284
285 for (t = current_target.beneath; t != NULL; t = t->beneath)
286 if (t->to_has_all_memory (t))
287 return 1;
288
289 return 0;
290 }
291
292 int
293 target_has_memory_1 (void)
294 {
295 struct target_ops *t;
296
297 for (t = current_target.beneath; t != NULL; t = t->beneath)
298 if (t->to_has_memory (t))
299 return 1;
300
301 return 0;
302 }
303
304 int
305 target_has_stack_1 (void)
306 {
307 struct target_ops *t;
308
309 for (t = current_target.beneath; t != NULL; t = t->beneath)
310 if (t->to_has_stack (t))
311 return 1;
312
313 return 0;
314 }
315
316 int
317 target_has_registers_1 (void)
318 {
319 struct target_ops *t;
320
321 for (t = current_target.beneath; t != NULL; t = t->beneath)
322 if (t->to_has_registers (t))
323 return 1;
324
325 return 0;
326 }
327
328 int
329 target_has_execution_1 (ptid_t the_ptid)
330 {
331 struct target_ops *t;
332
333 for (t = current_target.beneath; t != NULL; t = t->beneath)
334 if (t->to_has_execution (t, the_ptid))
335 return 1;
336
337 return 0;
338 }
339
340 int
341 target_has_execution_current (void)
342 {
343 return target_has_execution_1 (inferior_ptid);
344 }
345
346 /* Complete initialization of T. This ensures that various fields in
347 T are set, if needed by the target implementation. */
348
349 void
350 complete_target_initialization (struct target_ops *t)
351 {
352 /* Provide default values for all "must have" methods. */
353 if (t->to_xfer_partial == NULL)
354 t->to_xfer_partial = default_xfer_partial;
355
356 if (t->to_has_all_memory == NULL)
357 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
358
359 if (t->to_has_memory == NULL)
360 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
361
362 if (t->to_has_stack == NULL)
363 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
364
365 if (t->to_has_registers == NULL)
366 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
367
368 if (t->to_has_execution == NULL)
369 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
370
371 install_delegators (t);
372 }
373
374 /* Add possible target architecture T to the list and add a new
375 command 'target T->to_shortname'. Set COMPLETER as the command's
376 completer if not NULL. */
377
378 void
379 add_target_with_completer (struct target_ops *t,
380 completer_ftype *completer)
381 {
382 struct cmd_list_element *c;
383
384 complete_target_initialization (t);
385
386 if (!target_structs)
387 {
388 target_struct_allocsize = DEFAULT_ALLOCSIZE;
389 target_structs = (struct target_ops **) xmalloc
390 (target_struct_allocsize * sizeof (*target_structs));
391 }
392 if (target_struct_size >= target_struct_allocsize)
393 {
394 target_struct_allocsize *= 2;
395 target_structs = (struct target_ops **)
396 xrealloc ((char *) target_structs,
397 target_struct_allocsize * sizeof (*target_structs));
398 }
399 target_structs[target_struct_size++] = t;
400
401 if (targetlist == NULL)
402 add_prefix_cmd ("target", class_run, target_command, _("\
403 Connect to a target machine or process.\n\
404 The first argument is the type or protocol of the target machine.\n\
405 Remaining arguments are interpreted by the target protocol. For more\n\
406 information on the arguments for a particular protocol, type\n\
407 `help target ' followed by the protocol name."),
408 &targetlist, "target ", 0, &cmdlist);
409 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
410 &targetlist);
411 if (completer != NULL)
412 set_cmd_completer (c, completer);
413 }
414
415 /* Add a possible target architecture to the list. */
416
417 void
418 add_target (struct target_ops *t)
419 {
420 add_target_with_completer (t, NULL);
421 }
422
423 /* See target.h. */
424
425 void
426 add_deprecated_target_alias (struct target_ops *t, char *alias)
427 {
428 struct cmd_list_element *c;
429 char *alt;
430
431 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
432 see PR cli/15104. */
433 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
434 alt = xstrprintf ("target %s", t->to_shortname);
435 deprecate_cmd (c, alt);
436 }
437
438 /* Stub functions */
439
440 void
441 target_ignore (void)
442 {
443 }
444
445 void
446 target_kill (void)
447 {
448 struct target_ops *t;
449
450 for (t = current_target.beneath; t != NULL; t = t->beneath)
451 if (t->to_kill != NULL)
452 {
453 if (targetdebug)
454 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
455
456 t->to_kill (t);
457 return;
458 }
459
460 noprocess ();
461 }
462
463 void
464 target_load (char *arg, int from_tty)
465 {
466 target_dcache_invalidate ();
467 (*current_target.to_load) (&current_target, arg, from_tty);
468 }
469
470 void
471 target_create_inferior (char *exec_file, char *args,
472 char **env, int from_tty)
473 {
474 struct target_ops *t;
475
476 for (t = current_target.beneath; t != NULL; t = t->beneath)
477 {
478 if (t->to_create_inferior != NULL)
479 {
480 t->to_create_inferior (t, exec_file, args, env, from_tty);
481 if (targetdebug)
482 fprintf_unfiltered (gdb_stdlog,
483 "target_create_inferior (%s, %s, xxx, %d)\n",
484 exec_file, args, from_tty);
485 return;
486 }
487 }
488
489 internal_error (__FILE__, __LINE__,
490 _("could not find a target to create inferior"));
491 }
492
493 void
494 target_terminal_inferior (void)
495 {
496 /* A background resume (``run&'') should leave GDB in control of the
497 terminal. Use target_can_async_p, not target_is_async_p, since at
498 this point the target is not async yet. However, if sync_execution
499 is not set, we know it will become async prior to resume. */
500 if (target_can_async_p () && !sync_execution)
501 return;
502
503 /* If GDB is resuming the inferior in the foreground, install
504 inferior's terminal modes. */
505 (*current_target.to_terminal_inferior) (&current_target);
506 }
507
508 static int
509 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
510 struct target_ops *t)
511 {
512 errno = EIO; /* Can't read/write this location. */
513 return 0; /* No bytes handled. */
514 }
515
516 static void
517 tcomplain (void)
518 {
519 error (_("You can't do that when your target is `%s'"),
520 current_target.to_shortname);
521 }
522
523 void
524 noprocess (void)
525 {
526 error (_("You can't do that without a process to debug."));
527 }
528
529 static void
530 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
531 {
532 printf_unfiltered (_("No saved terminal information.\n"));
533 }
534
535 /* A default implementation for the to_get_ada_task_ptid target method.
536
537 This function builds the PTID by using both LWP and TID as part of
538 the PTID lwp and tid elements. The pid used is the pid of the
539 inferior_ptid. */
540
541 static ptid_t
542 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
543 {
544 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
545 }
546
547 static enum exec_direction_kind
548 default_execution_direction (struct target_ops *self)
549 {
550 if (!target_can_execute_reverse)
551 return EXEC_FORWARD;
552 else if (!target_can_async_p ())
553 return EXEC_FORWARD;
554 else
555 gdb_assert_not_reached ("\
556 to_execution_direction must be implemented for reverse async");
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 /* Install the delegators. */
580 install_delegators (&current_target);
581
582 #define INHERIT(FIELD, TARGET) \
583 if (!current_target.FIELD) \
584 current_target.FIELD = (TARGET)->FIELD
585
586 for (t = target_stack; t; t = t->beneath)
587 {
588 INHERIT (to_shortname, t);
589 INHERIT (to_longname, t);
590 INHERIT (to_doc, t);
591 /* Do not inherit to_open. */
592 /* Do not inherit to_close. */
593 /* Do not inherit to_attach. */
594 /* Do not inherit to_post_attach. */
595 INHERIT (to_attach_no_wait, t);
596 /* Do not inherit to_detach. */
597 /* Do not inherit to_disconnect. */
598 /* Do not inherit to_resume. */
599 /* Do not inherit to_wait. */
600 /* Do not inherit to_fetch_registers. */
601 /* Do not inherit to_store_registers. */
602 /* Do not inherit to_prepare_to_store. */
603 INHERIT (deprecated_xfer_memory, t);
604 /* Do not inherit to_files_info. */
605 /* Do not inherit to_insert_breakpoint. */
606 /* Do not inherit to_remove_breakpoint. */
607 /* Do not inherit to_can_use_hw_breakpoint. */
608 /* Do not inherit to_insert_hw_breakpoint. */
609 /* Do not inherit to_remove_hw_breakpoint. */
610 /* Do not inherit to_ranged_break_num_registers. */
611 /* Do not inherit to_insert_watchpoint. */
612 /* Do not inherit to_remove_watchpoint. */
613 /* Do not inherit to_insert_mask_watchpoint. */
614 /* Do not inherit to_remove_mask_watchpoint. */
615 /* Do not inherit to_stopped_data_address. */
616 INHERIT (to_have_steppable_watchpoint, t);
617 INHERIT (to_have_continuable_watchpoint, t);
618 /* Do not inherit to_stopped_by_watchpoint. */
619 /* Do not inherit to_watchpoint_addr_within_range. */
620 /* Do not inherit to_region_ok_for_hw_watchpoint. */
621 /* Do not inherit to_can_accel_watchpoint_condition. */
622 /* Do not inherit to_masked_watch_num_registers. */
623 /* Do not inherit to_terminal_init. */
624 /* Do not inherit to_terminal_inferior. */
625 /* Do not inherit to_terminal_ours_for_output. */
626 /* Do not inherit to_terminal_ours. */
627 /* Do not inherit to_terminal_save_ours. */
628 /* Do not inherit to_terminal_info. */
629 /* Do not inherit to_kill. */
630 /* Do not inherit to_load. */
631 /* Do no inherit to_create_inferior. */
632 /* Do not inherit to_post_startup_inferior. */
633 /* Do not inherit to_insert_fork_catchpoint. */
634 /* Do not inherit to_remove_fork_catchpoint. */
635 /* Do not inherit to_insert_vfork_catchpoint. */
636 /* Do not inherit to_remove_vfork_catchpoint. */
637 /* Do not inherit to_follow_fork. */
638 /* Do not inherit to_insert_exec_catchpoint. */
639 INHERIT (to_remove_exec_catchpoint, t);
640 INHERIT (to_set_syscall_catchpoint, t);
641 INHERIT (to_has_exited, t);
642 /* Do not inherit to_mourn_inferior. */
643 INHERIT (to_can_run, t);
644 /* Do not inherit to_pass_signals. */
645 /* Do not inherit to_program_signals. */
646 /* Do not inherit to_thread_alive. */
647 /* Do not inherit to_find_new_threads. */
648 /* Do not inherit to_pid_to_str. */
649 INHERIT (to_extra_thread_info, t);
650 INHERIT (to_thread_name, t);
651 INHERIT (to_stop, t);
652 /* Do not inherit to_xfer_partial. */
653 /* Do not inherit to_rcmd. */
654 INHERIT (to_pid_to_exec_file, t);
655 INHERIT (to_log_command, t);
656 INHERIT (to_stratum, t);
657 /* Do not inherit to_has_all_memory. */
658 /* Do not inherit to_has_memory. */
659 /* Do not inherit to_has_stack. */
660 /* Do not inherit to_has_registers. */
661 /* Do not inherit to_has_execution. */
662 INHERIT (to_has_thread_control, t);
663 /* Do not inherit to_can_async_p. */
664 /* Do not inherit to_is_async_p. */
665 /* Do not inherit to_async. */
666 INHERIT (to_find_memory_regions, t);
667 INHERIT (to_make_corefile_notes, t);
668 INHERIT (to_get_bookmark, t);
669 INHERIT (to_goto_bookmark, t);
670 /* Do not inherit to_get_thread_local_address. */
671 INHERIT (to_can_execute_reverse, t);
672 INHERIT (to_execution_direction, t);
673 INHERIT (to_thread_architecture, t);
674 /* Do not inherit to_read_description. */
675 INHERIT (to_get_ada_task_ptid, t);
676 /* Do not inherit to_search_memory. */
677 INHERIT (to_supports_multi_process, t);
678 INHERIT (to_supports_enable_disable_tracepoint, t);
679 INHERIT (to_supports_string_tracing, t);
680 INHERIT (to_trace_init, t);
681 INHERIT (to_download_tracepoint, t);
682 INHERIT (to_can_download_tracepoint, t);
683 INHERIT (to_download_trace_state_variable, t);
684 INHERIT (to_enable_tracepoint, t);
685 INHERIT (to_disable_tracepoint, t);
686 INHERIT (to_trace_set_readonly_regions, t);
687 INHERIT (to_trace_start, t);
688 INHERIT (to_get_trace_status, t);
689 INHERIT (to_get_tracepoint_status, t);
690 INHERIT (to_trace_stop, t);
691 INHERIT (to_trace_find, t);
692 INHERIT (to_get_trace_state_variable_value, t);
693 INHERIT (to_save_trace_data, t);
694 INHERIT (to_upload_tracepoints, t);
695 INHERIT (to_upload_trace_state_variables, t);
696 INHERIT (to_get_raw_trace_data, t);
697 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
698 INHERIT (to_set_disconnected_tracing, t);
699 INHERIT (to_set_circular_trace_buffer, t);
700 INHERIT (to_set_trace_buffer_size, t);
701 INHERIT (to_set_trace_notes, t);
702 INHERIT (to_get_tib_address, t);
703 INHERIT (to_set_permissions, t);
704 INHERIT (to_static_tracepoint_marker_at, t);
705 INHERIT (to_static_tracepoint_markers_by_strid, t);
706 INHERIT (to_traceframe_info, t);
707 INHERIT (to_use_agent, t);
708 INHERIT (to_can_use_agent, t);
709 INHERIT (to_augmented_libraries_svr4_read, t);
710 INHERIT (to_magic, t);
711 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
712 INHERIT (to_can_run_breakpoint_commands, t);
713 /* Do not inherit to_memory_map. */
714 /* Do not inherit to_flash_erase. */
715 /* Do not inherit to_flash_done. */
716 }
717 #undef INHERIT
718
719 /* Clean up a target struct so it no longer has any zero pointers in
720 it. Some entries are defaulted to a method that print an error,
721 others are hard-wired to a standard recursive default. */
722
723 #define de_fault(field, value) \
724 if (!current_target.field) \
725 current_target.field = value
726
727 de_fault (to_open,
728 (void (*) (char *, int))
729 tcomplain);
730 de_fault (to_close,
731 (void (*) (struct target_ops *))
732 target_ignore);
733 de_fault (deprecated_xfer_memory,
734 (int (*) (CORE_ADDR, gdb_byte *, int, int,
735 struct mem_attrib *, struct target_ops *))
736 nomemory);
737 de_fault (to_remove_exec_catchpoint,
738 (int (*) (struct target_ops *, int))
739 return_one);
740 de_fault (to_set_syscall_catchpoint,
741 (int (*) (struct target_ops *, int, int, int, int, int *))
742 return_one);
743 de_fault (to_has_exited,
744 (int (*) (struct target_ops *, int, int, int *))
745 return_zero);
746 de_fault (to_can_run,
747 (int (*) (struct target_ops *))
748 return_zero);
749 de_fault (to_extra_thread_info,
750 (char *(*) (struct target_ops *, struct thread_info *))
751 return_null);
752 de_fault (to_thread_name,
753 (char *(*) (struct target_ops *, struct thread_info *))
754 return_null);
755 de_fault (to_stop,
756 (void (*) (struct target_ops *, ptid_t))
757 target_ignore);
758 de_fault (to_pid_to_exec_file,
759 (char *(*) (struct target_ops *, int))
760 return_null);
761 de_fault (to_thread_architecture,
762 default_thread_architecture);
763 current_target.to_read_description = NULL;
764 de_fault (to_get_ada_task_ptid,
765 (ptid_t (*) (struct target_ops *, long, long))
766 default_get_ada_task_ptid);
767 de_fault (to_supports_multi_process,
768 (int (*) (struct target_ops *))
769 return_zero);
770 de_fault (to_supports_enable_disable_tracepoint,
771 (int (*) (struct target_ops *))
772 return_zero);
773 de_fault (to_supports_string_tracing,
774 (int (*) (struct target_ops *))
775 return_zero);
776 de_fault (to_trace_init,
777 (void (*) (struct target_ops *))
778 tcomplain);
779 de_fault (to_download_tracepoint,
780 (void (*) (struct target_ops *, struct bp_location *))
781 tcomplain);
782 de_fault (to_can_download_tracepoint,
783 (int (*) (struct target_ops *))
784 return_zero);
785 de_fault (to_download_trace_state_variable,
786 (void (*) (struct target_ops *, struct trace_state_variable *))
787 tcomplain);
788 de_fault (to_enable_tracepoint,
789 (void (*) (struct target_ops *, struct bp_location *))
790 tcomplain);
791 de_fault (to_disable_tracepoint,
792 (void (*) (struct target_ops *, struct bp_location *))
793 tcomplain);
794 de_fault (to_trace_set_readonly_regions,
795 (void (*) (struct target_ops *))
796 tcomplain);
797 de_fault (to_trace_start,
798 (void (*) (struct target_ops *))
799 tcomplain);
800 de_fault (to_get_trace_status,
801 (int (*) (struct target_ops *, struct trace_status *))
802 return_minus_one);
803 de_fault (to_get_tracepoint_status,
804 (void (*) (struct target_ops *, struct breakpoint *,
805 struct uploaded_tp *))
806 tcomplain);
807 de_fault (to_trace_stop,
808 (void (*) (struct target_ops *))
809 tcomplain);
810 de_fault (to_trace_find,
811 (int (*) (struct target_ops *,
812 enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
813 return_minus_one);
814 de_fault (to_get_trace_state_variable_value,
815 (int (*) (struct target_ops *, int, LONGEST *))
816 return_zero);
817 de_fault (to_save_trace_data,
818 (int (*) (struct target_ops *, const char *))
819 tcomplain);
820 de_fault (to_upload_tracepoints,
821 (int (*) (struct target_ops *, struct uploaded_tp **))
822 return_zero);
823 de_fault (to_upload_trace_state_variables,
824 (int (*) (struct target_ops *, struct uploaded_tsv **))
825 return_zero);
826 de_fault (to_get_raw_trace_data,
827 (LONGEST (*) (struct target_ops *, gdb_byte *, ULONGEST, LONGEST))
828 tcomplain);
829 de_fault (to_get_min_fast_tracepoint_insn_len,
830 (int (*) (struct target_ops *))
831 return_minus_one);
832 de_fault (to_set_disconnected_tracing,
833 (void (*) (struct target_ops *, int))
834 target_ignore);
835 de_fault (to_set_circular_trace_buffer,
836 (void (*) (struct target_ops *, int))
837 target_ignore);
838 de_fault (to_set_trace_buffer_size,
839 (void (*) (struct target_ops *, LONGEST))
840 target_ignore);
841 de_fault (to_set_trace_notes,
842 (int (*) (struct target_ops *,
843 const char *, const char *, const char *))
844 return_zero);
845 de_fault (to_get_tib_address,
846 (int (*) (struct target_ops *, ptid_t, CORE_ADDR *))
847 tcomplain);
848 de_fault (to_set_permissions,
849 (void (*) (struct target_ops *))
850 target_ignore);
851 de_fault (to_static_tracepoint_marker_at,
852 (int (*) (struct target_ops *,
853 CORE_ADDR, struct static_tracepoint_marker *))
854 return_zero);
855 de_fault (to_static_tracepoint_markers_by_strid,
856 (VEC(static_tracepoint_marker_p) * (*) (struct target_ops *,
857 const char *))
858 tcomplain);
859 de_fault (to_traceframe_info,
860 (struct traceframe_info * (*) (struct target_ops *))
861 return_null);
862 de_fault (to_supports_evaluation_of_breakpoint_conditions,
863 (int (*) (struct target_ops *))
864 return_zero);
865 de_fault (to_can_run_breakpoint_commands,
866 (int (*) (struct target_ops *))
867 return_zero);
868 de_fault (to_use_agent,
869 (int (*) (struct target_ops *, int))
870 tcomplain);
871 de_fault (to_can_use_agent,
872 (int (*) (struct target_ops *))
873 return_zero);
874 de_fault (to_augmented_libraries_svr4_read,
875 (int (*) (struct target_ops *))
876 return_zero);
877 de_fault (to_execution_direction, default_execution_direction);
878
879 #undef de_fault
880
881 /* Finally, position the target-stack beneath the squashed
882 "current_target". That way code looking for a non-inherited
883 target method can quickly and simply find it. */
884 current_target.beneath = target_stack;
885
886 if (targetdebug)
887 setup_target_debug ();
888 }
889
890 /* Push a new target type into the stack of the existing target accessors,
891 possibly superseding some of the existing accessors.
892
893 Rather than allow an empty stack, we always have the dummy target at
894 the bottom stratum, so we can call the function vectors without
895 checking them. */
896
897 void
898 push_target (struct target_ops *t)
899 {
900 struct target_ops **cur;
901
902 /* Check magic number. If wrong, it probably means someone changed
903 the struct definition, but not all the places that initialize one. */
904 if (t->to_magic != OPS_MAGIC)
905 {
906 fprintf_unfiltered (gdb_stderr,
907 "Magic number of %s target struct wrong\n",
908 t->to_shortname);
909 internal_error (__FILE__, __LINE__,
910 _("failed internal consistency check"));
911 }
912
913 /* Find the proper stratum to install this target in. */
914 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
915 {
916 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
917 break;
918 }
919
920 /* If there's already targets at this stratum, remove them. */
921 /* FIXME: cagney/2003-10-15: I think this should be popping all
922 targets to CUR, and not just those at this stratum level. */
923 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
924 {
925 /* There's already something at this stratum level. Close it,
926 and un-hook it from the stack. */
927 struct target_ops *tmp = (*cur);
928
929 (*cur) = (*cur)->beneath;
930 tmp->beneath = NULL;
931 target_close (tmp);
932 }
933
934 /* We have removed all targets in our stratum, now add the new one. */
935 t->beneath = (*cur);
936 (*cur) = t;
937
938 update_current_target ();
939 }
940
941 /* Remove a target_ops vector from the stack, wherever it may be.
942 Return how many times it was removed (0 or 1). */
943
944 int
945 unpush_target (struct target_ops *t)
946 {
947 struct target_ops **cur;
948 struct target_ops *tmp;
949
950 if (t->to_stratum == dummy_stratum)
951 internal_error (__FILE__, __LINE__,
952 _("Attempt to unpush the dummy target"));
953
954 /* Look for the specified target. Note that we assume that a target
955 can only occur once in the target stack. */
956
957 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
958 {
959 if ((*cur) == t)
960 break;
961 }
962
963 /* If we don't find target_ops, quit. Only open targets should be
964 closed. */
965 if ((*cur) == NULL)
966 return 0;
967
968 /* Unchain the target. */
969 tmp = (*cur);
970 (*cur) = (*cur)->beneath;
971 tmp->beneath = NULL;
972
973 update_current_target ();
974
975 /* Finally close the target. Note we do this after unchaining, so
976 any target method calls from within the target_close
977 implementation don't end up in T anymore. */
978 target_close (t);
979
980 return 1;
981 }
982
983 void
984 pop_all_targets_above (enum strata above_stratum)
985 {
986 while ((int) (current_target.to_stratum) > (int) above_stratum)
987 {
988 if (!unpush_target (target_stack))
989 {
990 fprintf_unfiltered (gdb_stderr,
991 "pop_all_targets couldn't find target %s\n",
992 target_stack->to_shortname);
993 internal_error (__FILE__, __LINE__,
994 _("failed internal consistency check"));
995 break;
996 }
997 }
998 }
999
1000 void
1001 pop_all_targets (void)
1002 {
1003 pop_all_targets_above (dummy_stratum);
1004 }
1005
1006 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1007
1008 int
1009 target_is_pushed (struct target_ops *t)
1010 {
1011 struct target_ops **cur;
1012
1013 /* Check magic number. If wrong, it probably means someone changed
1014 the struct definition, but not all the places that initialize one. */
1015 if (t->to_magic != OPS_MAGIC)
1016 {
1017 fprintf_unfiltered (gdb_stderr,
1018 "Magic number of %s target struct wrong\n",
1019 t->to_shortname);
1020 internal_error (__FILE__, __LINE__,
1021 _("failed internal consistency check"));
1022 }
1023
1024 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1025 if (*cur == t)
1026 return 1;
1027
1028 return 0;
1029 }
1030
1031 /* Using the objfile specified in OBJFILE, find the address for the
1032 current thread's thread-local storage with offset OFFSET. */
1033 CORE_ADDR
1034 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1035 {
1036 volatile CORE_ADDR addr = 0;
1037 struct target_ops *target;
1038
1039 for (target = current_target.beneath;
1040 target != NULL;
1041 target = target->beneath)
1042 {
1043 if (target->to_get_thread_local_address != NULL)
1044 break;
1045 }
1046
1047 if (target != NULL
1048 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1049 {
1050 ptid_t ptid = inferior_ptid;
1051 volatile struct gdb_exception ex;
1052
1053 TRY_CATCH (ex, RETURN_MASK_ALL)
1054 {
1055 CORE_ADDR lm_addr;
1056
1057 /* Fetch the load module address for this objfile. */
1058 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1059 objfile);
1060 /* If it's 0, throw the appropriate exception. */
1061 if (lm_addr == 0)
1062 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1063 _("TLS load module not found"));
1064
1065 addr = target->to_get_thread_local_address (target, ptid,
1066 lm_addr, offset);
1067 }
1068 /* If an error occurred, print TLS related messages here. Otherwise,
1069 throw the error to some higher catcher. */
1070 if (ex.reason < 0)
1071 {
1072 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1073
1074 switch (ex.error)
1075 {
1076 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1077 error (_("Cannot find thread-local variables "
1078 "in this thread library."));
1079 break;
1080 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1081 if (objfile_is_library)
1082 error (_("Cannot find shared library `%s' in dynamic"
1083 " linker's load module list"), objfile_name (objfile));
1084 else
1085 error (_("Cannot find executable file `%s' in dynamic"
1086 " linker's load module list"), objfile_name (objfile));
1087 break;
1088 case TLS_NOT_ALLOCATED_YET_ERROR:
1089 if (objfile_is_library)
1090 error (_("The inferior has not yet allocated storage for"
1091 " thread-local variables in\n"
1092 "the shared library `%s'\n"
1093 "for %s"),
1094 objfile_name (objfile), target_pid_to_str (ptid));
1095 else
1096 error (_("The inferior has not yet allocated storage for"
1097 " thread-local variables in\n"
1098 "the executable `%s'\n"
1099 "for %s"),
1100 objfile_name (objfile), target_pid_to_str (ptid));
1101 break;
1102 case TLS_GENERIC_ERROR:
1103 if (objfile_is_library)
1104 error (_("Cannot find thread-local storage for %s, "
1105 "shared library %s:\n%s"),
1106 target_pid_to_str (ptid),
1107 objfile_name (objfile), ex.message);
1108 else
1109 error (_("Cannot find thread-local storage for %s, "
1110 "executable file %s:\n%s"),
1111 target_pid_to_str (ptid),
1112 objfile_name (objfile), ex.message);
1113 break;
1114 default:
1115 throw_exception (ex);
1116 break;
1117 }
1118 }
1119 }
1120 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1121 TLS is an ABI-specific thing. But we don't do that yet. */
1122 else
1123 error (_("Cannot find thread-local variables on this target"));
1124
1125 return addr;
1126 }
1127
1128 const char *
1129 target_xfer_status_to_string (enum target_xfer_status err)
1130 {
1131 #define CASE(X) case X: return #X
1132 switch (err)
1133 {
1134 CASE(TARGET_XFER_E_IO);
1135 CASE(TARGET_XFER_E_UNAVAILABLE);
1136 default:
1137 return "<unknown>";
1138 }
1139 #undef CASE
1140 };
1141
1142
1143 #undef MIN
1144 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1145
1146 /* target_read_string -- read a null terminated string, up to LEN bytes,
1147 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1148 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1149 is responsible for freeing it. Return the number of bytes successfully
1150 read. */
1151
1152 int
1153 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1154 {
1155 int tlen, offset, i;
1156 gdb_byte buf[4];
1157 int errcode = 0;
1158 char *buffer;
1159 int buffer_allocated;
1160 char *bufptr;
1161 unsigned int nbytes_read = 0;
1162
1163 gdb_assert (string);
1164
1165 /* Small for testing. */
1166 buffer_allocated = 4;
1167 buffer = xmalloc (buffer_allocated);
1168 bufptr = buffer;
1169
1170 while (len > 0)
1171 {
1172 tlen = MIN (len, 4 - (memaddr & 3));
1173 offset = memaddr & 3;
1174
1175 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1176 if (errcode != 0)
1177 {
1178 /* The transfer request might have crossed the boundary to an
1179 unallocated region of memory. Retry the transfer, requesting
1180 a single byte. */
1181 tlen = 1;
1182 offset = 0;
1183 errcode = target_read_memory (memaddr, buf, 1);
1184 if (errcode != 0)
1185 goto done;
1186 }
1187
1188 if (bufptr - buffer + tlen > buffer_allocated)
1189 {
1190 unsigned int bytes;
1191
1192 bytes = bufptr - buffer;
1193 buffer_allocated *= 2;
1194 buffer = xrealloc (buffer, buffer_allocated);
1195 bufptr = buffer + bytes;
1196 }
1197
1198 for (i = 0; i < tlen; i++)
1199 {
1200 *bufptr++ = buf[i + offset];
1201 if (buf[i + offset] == '\000')
1202 {
1203 nbytes_read += i + 1;
1204 goto done;
1205 }
1206 }
1207
1208 memaddr += tlen;
1209 len -= tlen;
1210 nbytes_read += tlen;
1211 }
1212 done:
1213 *string = buffer;
1214 if (errnop != NULL)
1215 *errnop = errcode;
1216 return nbytes_read;
1217 }
1218
1219 struct target_section_table *
1220 target_get_section_table (struct target_ops *target)
1221 {
1222 struct target_ops *t;
1223
1224 if (targetdebug)
1225 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1226
1227 for (t = target; t != NULL; t = t->beneath)
1228 if (t->to_get_section_table != NULL)
1229 return (*t->to_get_section_table) (t);
1230
1231 return NULL;
1232 }
1233
1234 /* Find a section containing ADDR. */
1235
1236 struct target_section *
1237 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1238 {
1239 struct target_section_table *table = target_get_section_table (target);
1240 struct target_section *secp;
1241
1242 if (table == NULL)
1243 return NULL;
1244
1245 for (secp = table->sections; secp < table->sections_end; secp++)
1246 {
1247 if (addr >= secp->addr && addr < secp->endaddr)
1248 return secp;
1249 }
1250 return NULL;
1251 }
1252
1253 /* Read memory from the live target, even if currently inspecting a
1254 traceframe. The return is the same as that of target_read. */
1255
1256 static enum target_xfer_status
1257 target_read_live_memory (enum target_object object,
1258 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1259 ULONGEST *xfered_len)
1260 {
1261 enum target_xfer_status ret;
1262 struct cleanup *cleanup;
1263
1264 /* Switch momentarily out of tfind mode so to access live memory.
1265 Note that this must not clear global state, such as the frame
1266 cache, which must still remain valid for the previous traceframe.
1267 We may be _building_ the frame cache at this point. */
1268 cleanup = make_cleanup_restore_traceframe_number ();
1269 set_traceframe_number (-1);
1270
1271 ret = target_xfer_partial (current_target.beneath, object, NULL,
1272 myaddr, NULL, memaddr, len, xfered_len);
1273
1274 do_cleanups (cleanup);
1275 return ret;
1276 }
1277
1278 /* Using the set of read-only target sections of OPS, read live
1279 read-only memory. Note that the actual reads start from the
1280 top-most target again.
1281
1282 For interface/parameters/return description see target.h,
1283 to_xfer_partial. */
1284
1285 static enum target_xfer_status
1286 memory_xfer_live_readonly_partial (struct target_ops *ops,
1287 enum target_object object,
1288 gdb_byte *readbuf, ULONGEST memaddr,
1289 ULONGEST len, ULONGEST *xfered_len)
1290 {
1291 struct target_section *secp;
1292 struct target_section_table *table;
1293
1294 secp = target_section_by_addr (ops, memaddr);
1295 if (secp != NULL
1296 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1297 secp->the_bfd_section)
1298 & SEC_READONLY))
1299 {
1300 struct target_section *p;
1301 ULONGEST memend = memaddr + len;
1302
1303 table = target_get_section_table (ops);
1304
1305 for (p = table->sections; p < table->sections_end; p++)
1306 {
1307 if (memaddr >= p->addr)
1308 {
1309 if (memend <= p->endaddr)
1310 {
1311 /* Entire transfer is within this section. */
1312 return target_read_live_memory (object, memaddr,
1313 readbuf, len, xfered_len);
1314 }
1315 else if (memaddr >= p->endaddr)
1316 {
1317 /* This section ends before the transfer starts. */
1318 continue;
1319 }
1320 else
1321 {
1322 /* This section overlaps the transfer. Just do half. */
1323 len = p->endaddr - memaddr;
1324 return target_read_live_memory (object, memaddr,
1325 readbuf, len, xfered_len);
1326 }
1327 }
1328 }
1329 }
1330
1331 return TARGET_XFER_EOF;
1332 }
1333
1334 /* Read memory from more than one valid target. A core file, for
1335 instance, could have some of memory but delegate other bits to
1336 the target below it. So, we must manually try all targets. */
1337
1338 static enum target_xfer_status
1339 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1340 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1341 ULONGEST *xfered_len)
1342 {
1343 enum target_xfer_status res;
1344
1345 do
1346 {
1347 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1348 readbuf, writebuf, memaddr, len,
1349 xfered_len);
1350 if (res == TARGET_XFER_OK)
1351 break;
1352
1353 /* Stop if the target reports that the memory is not available. */
1354 if (res == TARGET_XFER_E_UNAVAILABLE)
1355 break;
1356
1357 /* We want to continue past core files to executables, but not
1358 past a running target's memory. */
1359 if (ops->to_has_all_memory (ops))
1360 break;
1361
1362 ops = ops->beneath;
1363 }
1364 while (ops != NULL);
1365
1366 return res;
1367 }
1368
1369 /* Perform a partial memory transfer.
1370 For docs see target.h, to_xfer_partial. */
1371
1372 static enum target_xfer_status
1373 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1374 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1375 ULONGEST len, ULONGEST *xfered_len)
1376 {
1377 enum target_xfer_status res;
1378 int reg_len;
1379 struct mem_region *region;
1380 struct inferior *inf;
1381
1382 /* For accesses to unmapped overlay sections, read directly from
1383 files. Must do this first, as MEMADDR may need adjustment. */
1384 if (readbuf != NULL && overlay_debugging)
1385 {
1386 struct obj_section *section = find_pc_overlay (memaddr);
1387
1388 if (pc_in_unmapped_range (memaddr, section))
1389 {
1390 struct target_section_table *table
1391 = target_get_section_table (ops);
1392 const char *section_name = section->the_bfd_section->name;
1393
1394 memaddr = overlay_mapped_address (memaddr, section);
1395 return section_table_xfer_memory_partial (readbuf, writebuf,
1396 memaddr, len, xfered_len,
1397 table->sections,
1398 table->sections_end,
1399 section_name);
1400 }
1401 }
1402
1403 /* Try the executable files, if "trust-readonly-sections" is set. */
1404 if (readbuf != NULL && trust_readonly)
1405 {
1406 struct target_section *secp;
1407 struct target_section_table *table;
1408
1409 secp = target_section_by_addr (ops, memaddr);
1410 if (secp != NULL
1411 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1412 secp->the_bfd_section)
1413 & SEC_READONLY))
1414 {
1415 table = target_get_section_table (ops);
1416 return section_table_xfer_memory_partial (readbuf, writebuf,
1417 memaddr, len, xfered_len,
1418 table->sections,
1419 table->sections_end,
1420 NULL);
1421 }
1422 }
1423
1424 /* If reading unavailable memory in the context of traceframes, and
1425 this address falls within a read-only section, fallback to
1426 reading from live memory. */
1427 if (readbuf != NULL && get_traceframe_number () != -1)
1428 {
1429 VEC(mem_range_s) *available;
1430
1431 /* If we fail to get the set of available memory, then the
1432 target does not support querying traceframe info, and so we
1433 attempt reading from the traceframe anyway (assuming the
1434 target implements the old QTro packet then). */
1435 if (traceframe_available_memory (&available, memaddr, len))
1436 {
1437 struct cleanup *old_chain;
1438
1439 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1440
1441 if (VEC_empty (mem_range_s, available)
1442 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1443 {
1444 /* Don't read into the traceframe's available
1445 memory. */
1446 if (!VEC_empty (mem_range_s, available))
1447 {
1448 LONGEST oldlen = len;
1449
1450 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1451 gdb_assert (len <= oldlen);
1452 }
1453
1454 do_cleanups (old_chain);
1455
1456 /* This goes through the topmost target again. */
1457 res = memory_xfer_live_readonly_partial (ops, object,
1458 readbuf, memaddr,
1459 len, xfered_len);
1460 if (res == TARGET_XFER_OK)
1461 return TARGET_XFER_OK;
1462 else
1463 {
1464 /* No use trying further, we know some memory starting
1465 at MEMADDR isn't available. */
1466 *xfered_len = len;
1467 return TARGET_XFER_E_UNAVAILABLE;
1468 }
1469 }
1470
1471 /* Don't try to read more than how much is available, in
1472 case the target implements the deprecated QTro packet to
1473 cater for older GDBs (the target's knowledge of read-only
1474 sections may be outdated by now). */
1475 len = VEC_index (mem_range_s, available, 0)->length;
1476
1477 do_cleanups (old_chain);
1478 }
1479 }
1480
1481 /* Try GDB's internal data cache. */
1482 region = lookup_mem_region (memaddr);
1483 /* region->hi == 0 means there's no upper bound. */
1484 if (memaddr + len < region->hi || region->hi == 0)
1485 reg_len = len;
1486 else
1487 reg_len = region->hi - memaddr;
1488
1489 switch (region->attrib.mode)
1490 {
1491 case MEM_RO:
1492 if (writebuf != NULL)
1493 return TARGET_XFER_E_IO;
1494 break;
1495
1496 case MEM_WO:
1497 if (readbuf != NULL)
1498 return TARGET_XFER_E_IO;
1499 break;
1500
1501 case MEM_FLASH:
1502 /* We only support writing to flash during "load" for now. */
1503 if (writebuf != NULL)
1504 error (_("Writing to flash memory forbidden in this context"));
1505 break;
1506
1507 case MEM_NONE:
1508 return TARGET_XFER_E_IO;
1509 }
1510
1511 if (!ptid_equal (inferior_ptid, null_ptid))
1512 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1513 else
1514 inf = NULL;
1515
1516 if (inf != NULL
1517 /* The dcache reads whole cache lines; that doesn't play well
1518 with reading from a trace buffer, because reading outside of
1519 the collected memory range fails. */
1520 && get_traceframe_number () == -1
1521 && (region->attrib.cache
1522 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1523 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1524 {
1525 DCACHE *dcache = target_dcache_get_or_init ();
1526 int l;
1527
1528 if (readbuf != NULL)
1529 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1530 else
1531 /* FIXME drow/2006-08-09: If we're going to preserve const
1532 correctness dcache_xfer_memory should take readbuf and
1533 writebuf. */
1534 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1535 reg_len, 1);
1536 if (l <= 0)
1537 return TARGET_XFER_E_IO;
1538 else
1539 {
1540 *xfered_len = (ULONGEST) l;
1541 return TARGET_XFER_OK;
1542 }
1543 }
1544
1545 /* If none of those methods found the memory we wanted, fall back
1546 to a target partial transfer. Normally a single call to
1547 to_xfer_partial is enough; if it doesn't recognize an object
1548 it will call the to_xfer_partial of the next target down.
1549 But for memory this won't do. Memory is the only target
1550 object which can be read from more than one valid target.
1551 A core file, for instance, could have some of memory but
1552 delegate other bits to the target below it. So, we must
1553 manually try all targets. */
1554
1555 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1556 xfered_len);
1557
1558 /* Make sure the cache gets updated no matter what - if we are writing
1559 to the stack. Even if this write is not tagged as such, we still need
1560 to update the cache. */
1561
1562 if (res == TARGET_XFER_OK
1563 && inf != NULL
1564 && writebuf != NULL
1565 && target_dcache_init_p ()
1566 && !region->attrib.cache
1567 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1568 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1569 {
1570 DCACHE *dcache = target_dcache_get ();
1571
1572 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1573 }
1574
1575 /* If we still haven't got anything, return the last error. We
1576 give up. */
1577 return res;
1578 }
1579
1580 /* Perform a partial memory transfer. For docs see target.h,
1581 to_xfer_partial. */
1582
1583 static enum target_xfer_status
1584 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1585 gdb_byte *readbuf, const gdb_byte *writebuf,
1586 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1587 {
1588 enum target_xfer_status res;
1589
1590 /* Zero length requests are ok and require no work. */
1591 if (len == 0)
1592 return TARGET_XFER_EOF;
1593
1594 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1595 breakpoint insns, thus hiding out from higher layers whether
1596 there are software breakpoints inserted in the code stream. */
1597 if (readbuf != NULL)
1598 {
1599 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1600 xfered_len);
1601
1602 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1603 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1604 }
1605 else
1606 {
1607 void *buf;
1608 struct cleanup *old_chain;
1609
1610 /* A large write request is likely to be partially satisfied
1611 by memory_xfer_partial_1. We will continually malloc
1612 and free a copy of the entire write request for breakpoint
1613 shadow handling even though we only end up writing a small
1614 subset of it. Cap writes to 4KB to mitigate this. */
1615 len = min (4096, len);
1616
1617 buf = xmalloc (len);
1618 old_chain = make_cleanup (xfree, buf);
1619 memcpy (buf, writebuf, len);
1620
1621 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1622 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1623 xfered_len);
1624
1625 do_cleanups (old_chain);
1626 }
1627
1628 return res;
1629 }
1630
1631 static void
1632 restore_show_memory_breakpoints (void *arg)
1633 {
1634 show_memory_breakpoints = (uintptr_t) arg;
1635 }
1636
1637 struct cleanup *
1638 make_show_memory_breakpoints_cleanup (int show)
1639 {
1640 int current = show_memory_breakpoints;
1641
1642 show_memory_breakpoints = show;
1643 return make_cleanup (restore_show_memory_breakpoints,
1644 (void *) (uintptr_t) current);
1645 }
1646
1647 /* For docs see target.h, to_xfer_partial. */
1648
1649 enum target_xfer_status
1650 target_xfer_partial (struct target_ops *ops,
1651 enum target_object object, const char *annex,
1652 gdb_byte *readbuf, const gdb_byte *writebuf,
1653 ULONGEST offset, ULONGEST len,
1654 ULONGEST *xfered_len)
1655 {
1656 enum target_xfer_status retval;
1657
1658 gdb_assert (ops->to_xfer_partial != NULL);
1659
1660 /* Transfer is done when LEN is zero. */
1661 if (len == 0)
1662 return TARGET_XFER_EOF;
1663
1664 if (writebuf && !may_write_memory)
1665 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1666 core_addr_to_string_nz (offset), plongest (len));
1667
1668 *xfered_len = 0;
1669
1670 /* If this is a memory transfer, let the memory-specific code
1671 have a look at it instead. Memory transfers are more
1672 complicated. */
1673 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1674 || object == TARGET_OBJECT_CODE_MEMORY)
1675 retval = memory_xfer_partial (ops, object, readbuf,
1676 writebuf, offset, len, xfered_len);
1677 else if (object == TARGET_OBJECT_RAW_MEMORY)
1678 {
1679 /* Request the normal memory object from other layers. */
1680 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1681 xfered_len);
1682 }
1683 else
1684 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1685 writebuf, offset, len, xfered_len);
1686
1687 if (targetdebug)
1688 {
1689 const unsigned char *myaddr = NULL;
1690
1691 fprintf_unfiltered (gdb_stdlog,
1692 "%s:target_xfer_partial "
1693 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1694 ops->to_shortname,
1695 (int) object,
1696 (annex ? annex : "(null)"),
1697 host_address_to_string (readbuf),
1698 host_address_to_string (writebuf),
1699 core_addr_to_string_nz (offset),
1700 pulongest (len), retval,
1701 pulongest (*xfered_len));
1702
1703 if (readbuf)
1704 myaddr = readbuf;
1705 if (writebuf)
1706 myaddr = writebuf;
1707 if (retval == TARGET_XFER_OK && myaddr != NULL)
1708 {
1709 int i;
1710
1711 fputs_unfiltered (", bytes =", gdb_stdlog);
1712 for (i = 0; i < *xfered_len; i++)
1713 {
1714 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1715 {
1716 if (targetdebug < 2 && i > 0)
1717 {
1718 fprintf_unfiltered (gdb_stdlog, " ...");
1719 break;
1720 }
1721 fprintf_unfiltered (gdb_stdlog, "\n");
1722 }
1723
1724 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1725 }
1726 }
1727
1728 fputc_unfiltered ('\n', gdb_stdlog);
1729 }
1730
1731 /* Check implementations of to_xfer_partial update *XFERED_LEN
1732 properly. Do assertion after printing debug messages, so that we
1733 can find more clues on assertion failure from debugging messages. */
1734 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1735 gdb_assert (*xfered_len > 0);
1736
1737 return retval;
1738 }
1739
1740 /* Read LEN bytes of target memory at address MEMADDR, placing the
1741 results in GDB's memory at MYADDR. Returns either 0 for success or
1742 TARGET_XFER_E_IO if any error occurs.
1743
1744 If an error occurs, no guarantee is made about the contents of the data at
1745 MYADDR. In particular, the caller should not depend upon partial reads
1746 filling the buffer with good data. There is no way for the caller to know
1747 how much good data might have been transfered anyway. Callers that can
1748 deal with partial reads should call target_read (which will retry until
1749 it makes no progress, and then return how much was transferred). */
1750
1751 int
1752 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1753 {
1754 /* Dispatch to the topmost target, not the flattened current_target.
1755 Memory accesses check target->to_has_(all_)memory, and the
1756 flattened target doesn't inherit those. */
1757 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1758 myaddr, memaddr, len) == len)
1759 return 0;
1760 else
1761 return TARGET_XFER_E_IO;
1762 }
1763
1764 /* Like target_read_memory, but specify explicitly that this is a read
1765 from the target's raw memory. That is, this read bypasses the
1766 dcache, breakpoint shadowing, etc. */
1767
1768 int
1769 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1770 {
1771 /* See comment in target_read_memory about why the request starts at
1772 current_target.beneath. */
1773 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1774 myaddr, memaddr, len) == len)
1775 return 0;
1776 else
1777 return TARGET_XFER_E_IO;
1778 }
1779
1780 /* Like target_read_memory, but specify explicitly that this is a read from
1781 the target's stack. This may trigger different cache behavior. */
1782
1783 int
1784 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1785 {
1786 /* See comment in target_read_memory about why the request starts at
1787 current_target.beneath. */
1788 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1789 myaddr, memaddr, len) == len)
1790 return 0;
1791 else
1792 return TARGET_XFER_E_IO;
1793 }
1794
1795 /* Like target_read_memory, but specify explicitly that this is a read from
1796 the target's code. This may trigger different cache behavior. */
1797
1798 int
1799 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1800 {
1801 /* See comment in target_read_memory about why the request starts at
1802 current_target.beneath. */
1803 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1804 myaddr, memaddr, len) == len)
1805 return 0;
1806 else
1807 return TARGET_XFER_E_IO;
1808 }
1809
1810 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1811 Returns either 0 for success or TARGET_XFER_E_IO if any
1812 error occurs. If an error occurs, no guarantee is made about how
1813 much data got written. Callers that can deal with partial writes
1814 should call target_write. */
1815
1816 int
1817 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1818 {
1819 /* See comment in target_read_memory about why the request starts at
1820 current_target.beneath. */
1821 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1822 myaddr, memaddr, len) == len)
1823 return 0;
1824 else
1825 return TARGET_XFER_E_IO;
1826 }
1827
1828 /* Write LEN bytes from MYADDR to target raw memory at address
1829 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1830 if any error occurs. If an error occurs, no guarantee is made
1831 about how much data got written. Callers that can deal with
1832 partial writes should call target_write. */
1833
1834 int
1835 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1836 {
1837 /* See comment in target_read_memory about why the request starts at
1838 current_target.beneath. */
1839 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1840 myaddr, memaddr, len) == len)
1841 return 0;
1842 else
1843 return TARGET_XFER_E_IO;
1844 }
1845
1846 /* Fetch the target's memory map. */
1847
1848 VEC(mem_region_s) *
1849 target_memory_map (void)
1850 {
1851 VEC(mem_region_s) *result;
1852 struct mem_region *last_one, *this_one;
1853 int ix;
1854 struct target_ops *t;
1855
1856 if (targetdebug)
1857 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1858
1859 for (t = current_target.beneath; t != NULL; t = t->beneath)
1860 if (t->to_memory_map != NULL)
1861 break;
1862
1863 if (t == NULL)
1864 return NULL;
1865
1866 result = t->to_memory_map (t);
1867 if (result == NULL)
1868 return NULL;
1869
1870 qsort (VEC_address (mem_region_s, result),
1871 VEC_length (mem_region_s, result),
1872 sizeof (struct mem_region), mem_region_cmp);
1873
1874 /* Check that regions do not overlap. Simultaneously assign
1875 a numbering for the "mem" commands to use to refer to
1876 each region. */
1877 last_one = NULL;
1878 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1879 {
1880 this_one->number = ix;
1881
1882 if (last_one && last_one->hi > this_one->lo)
1883 {
1884 warning (_("Overlapping regions in memory map: ignoring"));
1885 VEC_free (mem_region_s, result);
1886 return NULL;
1887 }
1888 last_one = this_one;
1889 }
1890
1891 return result;
1892 }
1893
1894 void
1895 target_flash_erase (ULONGEST address, LONGEST length)
1896 {
1897 struct target_ops *t;
1898
1899 for (t = current_target.beneath; t != NULL; t = t->beneath)
1900 if (t->to_flash_erase != NULL)
1901 {
1902 if (targetdebug)
1903 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1904 hex_string (address), phex (length, 0));
1905 t->to_flash_erase (t, address, length);
1906 return;
1907 }
1908
1909 tcomplain ();
1910 }
1911
1912 void
1913 target_flash_done (void)
1914 {
1915 struct target_ops *t;
1916
1917 for (t = current_target.beneath; t != NULL; t = t->beneath)
1918 if (t->to_flash_done != NULL)
1919 {
1920 if (targetdebug)
1921 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1922 t->to_flash_done (t);
1923 return;
1924 }
1925
1926 tcomplain ();
1927 }
1928
1929 static void
1930 show_trust_readonly (struct ui_file *file, int from_tty,
1931 struct cmd_list_element *c, const char *value)
1932 {
1933 fprintf_filtered (file,
1934 _("Mode for reading from readonly sections is %s.\n"),
1935 value);
1936 }
1937
1938 /* More generic transfers. */
1939
1940 static enum target_xfer_status
1941 default_xfer_partial (struct target_ops *ops, enum target_object object,
1942 const char *annex, gdb_byte *readbuf,
1943 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1944 ULONGEST *xfered_len)
1945 {
1946 if (object == TARGET_OBJECT_MEMORY
1947 && ops->deprecated_xfer_memory != NULL)
1948 /* If available, fall back to the target's
1949 "deprecated_xfer_memory" method. */
1950 {
1951 int xfered = -1;
1952
1953 errno = 0;
1954 if (writebuf != NULL)
1955 {
1956 void *buffer = xmalloc (len);
1957 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1958
1959 memcpy (buffer, writebuf, len);
1960 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1961 1/*write*/, NULL, ops);
1962 do_cleanups (cleanup);
1963 }
1964 if (readbuf != NULL)
1965 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1966 0/*read*/, NULL, ops);
1967 if (xfered > 0)
1968 {
1969 *xfered_len = (ULONGEST) xfered;
1970 return TARGET_XFER_E_IO;
1971 }
1972 else if (xfered == 0 && errno == 0)
1973 /* "deprecated_xfer_memory" uses 0, cross checked against
1974 ERRNO as one indication of an error. */
1975 return TARGET_XFER_EOF;
1976 else
1977 return TARGET_XFER_E_IO;
1978 }
1979 else
1980 {
1981 gdb_assert (ops->beneath != NULL);
1982 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1983 readbuf, writebuf, offset, len,
1984 xfered_len);
1985 }
1986 }
1987
1988 /* Target vector read/write partial wrapper functions. */
1989
1990 static enum target_xfer_status
1991 target_read_partial (struct target_ops *ops,
1992 enum target_object object,
1993 const char *annex, gdb_byte *buf,
1994 ULONGEST offset, ULONGEST len,
1995 ULONGEST *xfered_len)
1996 {
1997 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1998 xfered_len);
1999 }
2000
2001 static enum target_xfer_status
2002 target_write_partial (struct target_ops *ops,
2003 enum target_object object,
2004 const char *annex, const gdb_byte *buf,
2005 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
2006 {
2007 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
2008 xfered_len);
2009 }
2010
2011 /* Wrappers to perform the full transfer. */
2012
2013 /* For docs on target_read see target.h. */
2014
2015 LONGEST
2016 target_read (struct target_ops *ops,
2017 enum target_object object,
2018 const char *annex, gdb_byte *buf,
2019 ULONGEST offset, LONGEST len)
2020 {
2021 LONGEST xfered = 0;
2022
2023 while (xfered < len)
2024 {
2025 ULONGEST xfered_len;
2026 enum target_xfer_status status;
2027
2028 status = target_read_partial (ops, object, annex,
2029 (gdb_byte *) buf + xfered,
2030 offset + xfered, len - xfered,
2031 &xfered_len);
2032
2033 /* Call an observer, notifying them of the xfer progress? */
2034 if (status == TARGET_XFER_EOF)
2035 return xfered;
2036 else if (status == TARGET_XFER_OK)
2037 {
2038 xfered += xfered_len;
2039 QUIT;
2040 }
2041 else
2042 return -1;
2043
2044 }
2045 return len;
2046 }
2047
2048 /* Assuming that the entire [begin, end) range of memory cannot be
2049 read, try to read whatever subrange is possible to read.
2050
2051 The function returns, in RESULT, either zero or one memory block.
2052 If there's a readable subrange at the beginning, it is completely
2053 read and returned. Any further readable subrange will not be read.
2054 Otherwise, if there's a readable subrange at the end, it will be
2055 completely read and returned. Any readable subranges before it
2056 (obviously, not starting at the beginning), will be ignored. In
2057 other cases -- either no readable subrange, or readable subrange(s)
2058 that is neither at the beginning, or end, nothing is returned.
2059
2060 The purpose of this function is to handle a read across a boundary
2061 of accessible memory in a case when memory map is not available.
2062 The above restrictions are fine for this case, but will give
2063 incorrect results if the memory is 'patchy'. However, supporting
2064 'patchy' memory would require trying to read every single byte,
2065 and it seems unacceptable solution. Explicit memory map is
2066 recommended for this case -- and target_read_memory_robust will
2067 take care of reading multiple ranges then. */
2068
2069 static void
2070 read_whatever_is_readable (struct target_ops *ops,
2071 ULONGEST begin, ULONGEST end,
2072 VEC(memory_read_result_s) **result)
2073 {
2074 gdb_byte *buf = xmalloc (end - begin);
2075 ULONGEST current_begin = begin;
2076 ULONGEST current_end = end;
2077 int forward;
2078 memory_read_result_s r;
2079 ULONGEST xfered_len;
2080
2081 /* If we previously failed to read 1 byte, nothing can be done here. */
2082 if (end - begin <= 1)
2083 {
2084 xfree (buf);
2085 return;
2086 }
2087
2088 /* Check that either first or the last byte is readable, and give up
2089 if not. This heuristic is meant to permit reading accessible memory
2090 at the boundary of accessible region. */
2091 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2092 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2093 {
2094 forward = 1;
2095 ++current_begin;
2096 }
2097 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2098 buf + (end-begin) - 1, end - 1, 1,
2099 &xfered_len) == TARGET_XFER_OK)
2100 {
2101 forward = 0;
2102 --current_end;
2103 }
2104 else
2105 {
2106 xfree (buf);
2107 return;
2108 }
2109
2110 /* Loop invariant is that the [current_begin, current_end) was previously
2111 found to be not readable as a whole.
2112
2113 Note loop condition -- if the range has 1 byte, we can't divide the range
2114 so there's no point trying further. */
2115 while (current_end - current_begin > 1)
2116 {
2117 ULONGEST first_half_begin, first_half_end;
2118 ULONGEST second_half_begin, second_half_end;
2119 LONGEST xfer;
2120 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2121
2122 if (forward)
2123 {
2124 first_half_begin = current_begin;
2125 first_half_end = middle;
2126 second_half_begin = middle;
2127 second_half_end = current_end;
2128 }
2129 else
2130 {
2131 first_half_begin = middle;
2132 first_half_end = current_end;
2133 second_half_begin = current_begin;
2134 second_half_end = middle;
2135 }
2136
2137 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2138 buf + (first_half_begin - begin),
2139 first_half_begin,
2140 first_half_end - first_half_begin);
2141
2142 if (xfer == first_half_end - first_half_begin)
2143 {
2144 /* This half reads up fine. So, the error must be in the
2145 other half. */
2146 current_begin = second_half_begin;
2147 current_end = second_half_end;
2148 }
2149 else
2150 {
2151 /* This half is not readable. Because we've tried one byte, we
2152 know some part of this half if actually redable. Go to the next
2153 iteration to divide again and try to read.
2154
2155 We don't handle the other half, because this function only tries
2156 to read a single readable subrange. */
2157 current_begin = first_half_begin;
2158 current_end = first_half_end;
2159 }
2160 }
2161
2162 if (forward)
2163 {
2164 /* The [begin, current_begin) range has been read. */
2165 r.begin = begin;
2166 r.end = current_begin;
2167 r.data = buf;
2168 }
2169 else
2170 {
2171 /* The [current_end, end) range has been read. */
2172 LONGEST rlen = end - current_end;
2173
2174 r.data = xmalloc (rlen);
2175 memcpy (r.data, buf + current_end - begin, rlen);
2176 r.begin = current_end;
2177 r.end = end;
2178 xfree (buf);
2179 }
2180 VEC_safe_push(memory_read_result_s, (*result), &r);
2181 }
2182
2183 void
2184 free_memory_read_result_vector (void *x)
2185 {
2186 VEC(memory_read_result_s) *v = x;
2187 memory_read_result_s *current;
2188 int ix;
2189
2190 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2191 {
2192 xfree (current->data);
2193 }
2194 VEC_free (memory_read_result_s, v);
2195 }
2196
2197 VEC(memory_read_result_s) *
2198 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2199 {
2200 VEC(memory_read_result_s) *result = 0;
2201
2202 LONGEST xfered = 0;
2203 while (xfered < len)
2204 {
2205 struct mem_region *region = lookup_mem_region (offset + xfered);
2206 LONGEST rlen;
2207
2208 /* If there is no explicit region, a fake one should be created. */
2209 gdb_assert (region);
2210
2211 if (region->hi == 0)
2212 rlen = len - xfered;
2213 else
2214 rlen = region->hi - offset;
2215
2216 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2217 {
2218 /* Cannot read this region. Note that we can end up here only
2219 if the region is explicitly marked inaccessible, or
2220 'inaccessible-by-default' is in effect. */
2221 xfered += rlen;
2222 }
2223 else
2224 {
2225 LONGEST to_read = min (len - xfered, rlen);
2226 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2227
2228 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2229 (gdb_byte *) buffer,
2230 offset + xfered, to_read);
2231 /* Call an observer, notifying them of the xfer progress? */
2232 if (xfer <= 0)
2233 {
2234 /* Got an error reading full chunk. See if maybe we can read
2235 some subrange. */
2236 xfree (buffer);
2237 read_whatever_is_readable (ops, offset + xfered,
2238 offset + xfered + to_read, &result);
2239 xfered += to_read;
2240 }
2241 else
2242 {
2243 struct memory_read_result r;
2244 r.data = buffer;
2245 r.begin = offset + xfered;
2246 r.end = r.begin + xfer;
2247 VEC_safe_push (memory_read_result_s, result, &r);
2248 xfered += xfer;
2249 }
2250 QUIT;
2251 }
2252 }
2253 return result;
2254 }
2255
2256
2257 /* An alternative to target_write with progress callbacks. */
2258
2259 LONGEST
2260 target_write_with_progress (struct target_ops *ops,
2261 enum target_object object,
2262 const char *annex, const gdb_byte *buf,
2263 ULONGEST offset, LONGEST len,
2264 void (*progress) (ULONGEST, void *), void *baton)
2265 {
2266 LONGEST xfered = 0;
2267
2268 /* Give the progress callback a chance to set up. */
2269 if (progress)
2270 (*progress) (0, baton);
2271
2272 while (xfered < len)
2273 {
2274 ULONGEST xfered_len;
2275 enum target_xfer_status status;
2276
2277 status = target_write_partial (ops, object, annex,
2278 (gdb_byte *) buf + xfered,
2279 offset + xfered, len - xfered,
2280 &xfered_len);
2281
2282 if (status == TARGET_XFER_EOF)
2283 return xfered;
2284 if (TARGET_XFER_STATUS_ERROR_P (status))
2285 return -1;
2286
2287 gdb_assert (status == TARGET_XFER_OK);
2288 if (progress)
2289 (*progress) (xfered_len, baton);
2290
2291 xfered += xfered_len;
2292 QUIT;
2293 }
2294 return len;
2295 }
2296
2297 /* For docs on target_write see target.h. */
2298
2299 LONGEST
2300 target_write (struct target_ops *ops,
2301 enum target_object object,
2302 const char *annex, const gdb_byte *buf,
2303 ULONGEST offset, LONGEST len)
2304 {
2305 return target_write_with_progress (ops, object, annex, buf, offset, len,
2306 NULL, NULL);
2307 }
2308
2309 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2310 the size of the transferred data. PADDING additional bytes are
2311 available in *BUF_P. This is a helper function for
2312 target_read_alloc; see the declaration of that function for more
2313 information. */
2314
2315 static LONGEST
2316 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2317 const char *annex, gdb_byte **buf_p, int padding)
2318 {
2319 size_t buf_alloc, buf_pos;
2320 gdb_byte *buf;
2321
2322 /* This function does not have a length parameter; it reads the
2323 entire OBJECT). Also, it doesn't support objects fetched partly
2324 from one target and partly from another (in a different stratum,
2325 e.g. a core file and an executable). Both reasons make it
2326 unsuitable for reading memory. */
2327 gdb_assert (object != TARGET_OBJECT_MEMORY);
2328
2329 /* Start by reading up to 4K at a time. The target will throttle
2330 this number down if necessary. */
2331 buf_alloc = 4096;
2332 buf = xmalloc (buf_alloc);
2333 buf_pos = 0;
2334 while (1)
2335 {
2336 ULONGEST xfered_len;
2337 enum target_xfer_status status;
2338
2339 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2340 buf_pos, buf_alloc - buf_pos - padding,
2341 &xfered_len);
2342
2343 if (status == TARGET_XFER_EOF)
2344 {
2345 /* Read all there was. */
2346 if (buf_pos == 0)
2347 xfree (buf);
2348 else
2349 *buf_p = buf;
2350 return buf_pos;
2351 }
2352 else if (status != TARGET_XFER_OK)
2353 {
2354 /* An error occurred. */
2355 xfree (buf);
2356 return TARGET_XFER_E_IO;
2357 }
2358
2359 buf_pos += xfered_len;
2360
2361 /* If the buffer is filling up, expand it. */
2362 if (buf_alloc < buf_pos * 2)
2363 {
2364 buf_alloc *= 2;
2365 buf = xrealloc (buf, buf_alloc);
2366 }
2367
2368 QUIT;
2369 }
2370 }
2371
2372 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2373 the size of the transferred data. See the declaration in "target.h"
2374 function for more information about the return value. */
2375
2376 LONGEST
2377 target_read_alloc (struct target_ops *ops, enum target_object object,
2378 const char *annex, gdb_byte **buf_p)
2379 {
2380 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2381 }
2382
2383 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2384 returned as a string, allocated using xmalloc. If an error occurs
2385 or the transfer is unsupported, NULL is returned. Empty objects
2386 are returned as allocated but empty strings. A warning is issued
2387 if the result contains any embedded NUL bytes. */
2388
2389 char *
2390 target_read_stralloc (struct target_ops *ops, enum target_object object,
2391 const char *annex)
2392 {
2393 gdb_byte *buffer;
2394 char *bufstr;
2395 LONGEST i, transferred;
2396
2397 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2398 bufstr = (char *) buffer;
2399
2400 if (transferred < 0)
2401 return NULL;
2402
2403 if (transferred == 0)
2404 return xstrdup ("");
2405
2406 bufstr[transferred] = 0;
2407
2408 /* Check for embedded NUL bytes; but allow trailing NULs. */
2409 for (i = strlen (bufstr); i < transferred; i++)
2410 if (bufstr[i] != 0)
2411 {
2412 warning (_("target object %d, annex %s, "
2413 "contained unexpected null characters"),
2414 (int) object, annex ? annex : "(none)");
2415 break;
2416 }
2417
2418 return bufstr;
2419 }
2420
2421 /* Memory transfer methods. */
2422
2423 void
2424 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2425 LONGEST len)
2426 {
2427 /* This method is used to read from an alternate, non-current
2428 target. This read must bypass the overlay support (as symbols
2429 don't match this target), and GDB's internal cache (wrong cache
2430 for this target). */
2431 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2432 != len)
2433 memory_error (TARGET_XFER_E_IO, addr);
2434 }
2435
2436 ULONGEST
2437 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2438 int len, enum bfd_endian byte_order)
2439 {
2440 gdb_byte buf[sizeof (ULONGEST)];
2441
2442 gdb_assert (len <= sizeof (buf));
2443 get_target_memory (ops, addr, buf, len);
2444 return extract_unsigned_integer (buf, len, byte_order);
2445 }
2446
2447 /* See target.h. */
2448
2449 int
2450 target_insert_breakpoint (struct gdbarch *gdbarch,
2451 struct bp_target_info *bp_tgt)
2452 {
2453 if (!may_insert_breakpoints)
2454 {
2455 warning (_("May not insert breakpoints"));
2456 return 1;
2457 }
2458
2459 return current_target.to_insert_breakpoint (&current_target,
2460 gdbarch, bp_tgt);
2461 }
2462
2463 /* See target.h. */
2464
2465 int
2466 target_remove_breakpoint (struct gdbarch *gdbarch,
2467 struct bp_target_info *bp_tgt)
2468 {
2469 /* This is kind of a weird case to handle, but the permission might
2470 have been changed after breakpoints were inserted - in which case
2471 we should just take the user literally and assume that any
2472 breakpoints should be left in place. */
2473 if (!may_insert_breakpoints)
2474 {
2475 warning (_("May not remove breakpoints"));
2476 return 1;
2477 }
2478
2479 return current_target.to_remove_breakpoint (&current_target,
2480 gdbarch, bp_tgt);
2481 }
2482
2483 static void
2484 target_info (char *args, int from_tty)
2485 {
2486 struct target_ops *t;
2487 int has_all_mem = 0;
2488
2489 if (symfile_objfile != NULL)
2490 printf_unfiltered (_("Symbols from \"%s\".\n"),
2491 objfile_name (symfile_objfile));
2492
2493 for (t = target_stack; t != NULL; t = t->beneath)
2494 {
2495 if (!(*t->to_has_memory) (t))
2496 continue;
2497
2498 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2499 continue;
2500 if (has_all_mem)
2501 printf_unfiltered (_("\tWhile running this, "
2502 "GDB does not access memory from...\n"));
2503 printf_unfiltered ("%s:\n", t->to_longname);
2504 (t->to_files_info) (t);
2505 has_all_mem = (*t->to_has_all_memory) (t);
2506 }
2507 }
2508
2509 /* This function is called before any new inferior is created, e.g.
2510 by running a program, attaching, or connecting to a target.
2511 It cleans up any state from previous invocations which might
2512 change between runs. This is a subset of what target_preopen
2513 resets (things which might change between targets). */
2514
2515 void
2516 target_pre_inferior (int from_tty)
2517 {
2518 /* Clear out solib state. Otherwise the solib state of the previous
2519 inferior might have survived and is entirely wrong for the new
2520 target. This has been observed on GNU/Linux using glibc 2.3. How
2521 to reproduce:
2522
2523 bash$ ./foo&
2524 [1] 4711
2525 bash$ ./foo&
2526 [1] 4712
2527 bash$ gdb ./foo
2528 [...]
2529 (gdb) attach 4711
2530 (gdb) detach
2531 (gdb) attach 4712
2532 Cannot access memory at address 0xdeadbeef
2533 */
2534
2535 /* In some OSs, the shared library list is the same/global/shared
2536 across inferiors. If code is shared between processes, so are
2537 memory regions and features. */
2538 if (!gdbarch_has_global_solist (target_gdbarch ()))
2539 {
2540 no_shared_libraries (NULL, from_tty);
2541
2542 invalidate_target_mem_regions ();
2543
2544 target_clear_description ();
2545 }
2546
2547 agent_capability_invalidate ();
2548 }
2549
2550 /* Callback for iterate_over_inferiors. Gets rid of the given
2551 inferior. */
2552
2553 static int
2554 dispose_inferior (struct inferior *inf, void *args)
2555 {
2556 struct thread_info *thread;
2557
2558 thread = any_thread_of_process (inf->pid);
2559 if (thread)
2560 {
2561 switch_to_thread (thread->ptid);
2562
2563 /* Core inferiors actually should be detached, not killed. */
2564 if (target_has_execution)
2565 target_kill ();
2566 else
2567 target_detach (NULL, 0);
2568 }
2569
2570 return 0;
2571 }
2572
2573 /* This is to be called by the open routine before it does
2574 anything. */
2575
2576 void
2577 target_preopen (int from_tty)
2578 {
2579 dont_repeat ();
2580
2581 if (have_inferiors ())
2582 {
2583 if (!from_tty
2584 || !have_live_inferiors ()
2585 || query (_("A program is being debugged already. Kill it? ")))
2586 iterate_over_inferiors (dispose_inferior, NULL);
2587 else
2588 error (_("Program not killed."));
2589 }
2590
2591 /* Calling target_kill may remove the target from the stack. But if
2592 it doesn't (which seems like a win for UDI), remove it now. */
2593 /* Leave the exec target, though. The user may be switching from a
2594 live process to a core of the same program. */
2595 pop_all_targets_above (file_stratum);
2596
2597 target_pre_inferior (from_tty);
2598 }
2599
2600 /* Detach a target after doing deferred register stores. */
2601
2602 void
2603 target_detach (const char *args, int from_tty)
2604 {
2605 struct target_ops* t;
2606
2607 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2608 /* Don't remove global breakpoints here. They're removed on
2609 disconnection from the target. */
2610 ;
2611 else
2612 /* If we're in breakpoints-always-inserted mode, have to remove
2613 them before detaching. */
2614 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2615
2616 prepare_for_detach ();
2617
2618 current_target.to_detach (&current_target, args, from_tty);
2619 if (targetdebug)
2620 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2621 args, from_tty);
2622 }
2623
2624 void
2625 target_disconnect (char *args, int from_tty)
2626 {
2627 struct target_ops *t;
2628
2629 /* If we're in breakpoints-always-inserted mode or if breakpoints
2630 are global across processes, we have to remove them before
2631 disconnecting. */
2632 remove_breakpoints ();
2633
2634 for (t = current_target.beneath; t != NULL; t = t->beneath)
2635 if (t->to_disconnect != NULL)
2636 {
2637 if (targetdebug)
2638 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2639 args, from_tty);
2640 t->to_disconnect (t, args, from_tty);
2641 return;
2642 }
2643
2644 tcomplain ();
2645 }
2646
2647 ptid_t
2648 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2649 {
2650 struct target_ops *t;
2651 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2652 status, options);
2653
2654 if (targetdebug)
2655 {
2656 char *status_string;
2657 char *options_string;
2658
2659 status_string = target_waitstatus_to_string (status);
2660 options_string = target_options_to_string (options);
2661 fprintf_unfiltered (gdb_stdlog,
2662 "target_wait (%d, status, options={%s})"
2663 " = %d, %s\n",
2664 ptid_get_pid (ptid), options_string,
2665 ptid_get_pid (retval), status_string);
2666 xfree (status_string);
2667 xfree (options_string);
2668 }
2669
2670 return retval;
2671 }
2672
2673 char *
2674 target_pid_to_str (ptid_t ptid)
2675 {
2676 struct target_ops *t;
2677
2678 for (t = current_target.beneath; t != NULL; t = t->beneath)
2679 {
2680 if (t->to_pid_to_str != NULL)
2681 return (*t->to_pid_to_str) (t, ptid);
2682 }
2683
2684 return normal_pid_to_str (ptid);
2685 }
2686
2687 char *
2688 target_thread_name (struct thread_info *info)
2689 {
2690 struct target_ops *t;
2691
2692 for (t = current_target.beneath; t != NULL; t = t->beneath)
2693 {
2694 if (t->to_thread_name != NULL)
2695 return (*t->to_thread_name) (t, info);
2696 }
2697
2698 return NULL;
2699 }
2700
2701 void
2702 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2703 {
2704 struct target_ops *t;
2705
2706 target_dcache_invalidate ();
2707
2708 current_target.to_resume (&current_target, ptid, step, signal);
2709 if (targetdebug)
2710 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2711 ptid_get_pid (ptid),
2712 step ? "step" : "continue",
2713 gdb_signal_to_name (signal));
2714
2715 registers_changed_ptid (ptid);
2716 set_executing (ptid, 1);
2717 set_running (ptid, 1);
2718 clear_inline_frame_state (ptid);
2719 }
2720
2721 void
2722 target_pass_signals (int numsigs, unsigned char *pass_signals)
2723 {
2724 struct target_ops *t;
2725
2726 for (t = current_target.beneath; t != NULL; t = t->beneath)
2727 {
2728 if (t->to_pass_signals != NULL)
2729 {
2730 if (targetdebug)
2731 {
2732 int i;
2733
2734 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2735 numsigs);
2736
2737 for (i = 0; i < numsigs; i++)
2738 if (pass_signals[i])
2739 fprintf_unfiltered (gdb_stdlog, " %s",
2740 gdb_signal_to_name (i));
2741
2742 fprintf_unfiltered (gdb_stdlog, " })\n");
2743 }
2744
2745 (*t->to_pass_signals) (t, numsigs, pass_signals);
2746 return;
2747 }
2748 }
2749 }
2750
2751 void
2752 target_program_signals (int numsigs, unsigned char *program_signals)
2753 {
2754 struct target_ops *t;
2755
2756 for (t = current_target.beneath; t != NULL; t = t->beneath)
2757 {
2758 if (t->to_program_signals != NULL)
2759 {
2760 if (targetdebug)
2761 {
2762 int i;
2763
2764 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2765 numsigs);
2766
2767 for (i = 0; i < numsigs; i++)
2768 if (program_signals[i])
2769 fprintf_unfiltered (gdb_stdlog, " %s",
2770 gdb_signal_to_name (i));
2771
2772 fprintf_unfiltered (gdb_stdlog, " })\n");
2773 }
2774
2775 (*t->to_program_signals) (t, numsigs, program_signals);
2776 return;
2777 }
2778 }
2779 }
2780
2781 /* Look through the list of possible targets for a target that can
2782 follow forks. */
2783
2784 int
2785 target_follow_fork (int follow_child, int detach_fork)
2786 {
2787 struct target_ops *t;
2788
2789 for (t = current_target.beneath; t != NULL; t = t->beneath)
2790 {
2791 if (t->to_follow_fork != NULL)
2792 {
2793 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2794
2795 if (targetdebug)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "target_follow_fork (%d, %d) = %d\n",
2798 follow_child, detach_fork, retval);
2799 return retval;
2800 }
2801 }
2802
2803 /* Some target returned a fork event, but did not know how to follow it. */
2804 internal_error (__FILE__, __LINE__,
2805 _("could not find a target to follow fork"));
2806 }
2807
2808 void
2809 target_mourn_inferior (void)
2810 {
2811 struct target_ops *t;
2812
2813 for (t = current_target.beneath; t != NULL; t = t->beneath)
2814 {
2815 if (t->to_mourn_inferior != NULL)
2816 {
2817 t->to_mourn_inferior (t);
2818 if (targetdebug)
2819 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2820
2821 /* We no longer need to keep handles on any of the object files.
2822 Make sure to release them to avoid unnecessarily locking any
2823 of them while we're not actually debugging. */
2824 bfd_cache_close_all ();
2825
2826 return;
2827 }
2828 }
2829
2830 internal_error (__FILE__, __LINE__,
2831 _("could not find a target to follow mourn inferior"));
2832 }
2833
2834 /* Look for a target which can describe architectural features, starting
2835 from TARGET. If we find one, return its description. */
2836
2837 const struct target_desc *
2838 target_read_description (struct target_ops *target)
2839 {
2840 struct target_ops *t;
2841
2842 for (t = target; t != NULL; t = t->beneath)
2843 if (t->to_read_description != NULL)
2844 {
2845 const struct target_desc *tdesc;
2846
2847 tdesc = t->to_read_description (t);
2848 if (tdesc)
2849 return tdesc;
2850 }
2851
2852 return NULL;
2853 }
2854
2855 /* The default implementation of to_search_memory.
2856 This implements a basic search of memory, reading target memory and
2857 performing the search here (as opposed to performing the search in on the
2858 target side with, for example, gdbserver). */
2859
2860 int
2861 simple_search_memory (struct target_ops *ops,
2862 CORE_ADDR start_addr, ULONGEST search_space_len,
2863 const gdb_byte *pattern, ULONGEST pattern_len,
2864 CORE_ADDR *found_addrp)
2865 {
2866 /* NOTE: also defined in find.c testcase. */
2867 #define SEARCH_CHUNK_SIZE 16000
2868 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2869 /* Buffer to hold memory contents for searching. */
2870 gdb_byte *search_buf;
2871 unsigned search_buf_size;
2872 struct cleanup *old_cleanups;
2873
2874 search_buf_size = chunk_size + pattern_len - 1;
2875
2876 /* No point in trying to allocate a buffer larger than the search space. */
2877 if (search_space_len < search_buf_size)
2878 search_buf_size = search_space_len;
2879
2880 search_buf = malloc (search_buf_size);
2881 if (search_buf == NULL)
2882 error (_("Unable to allocate memory to perform the search."));
2883 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2884
2885 /* Prime the search buffer. */
2886
2887 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2888 search_buf, start_addr, search_buf_size) != search_buf_size)
2889 {
2890 warning (_("Unable to access %s bytes of target "
2891 "memory at %s, halting search."),
2892 pulongest (search_buf_size), hex_string (start_addr));
2893 do_cleanups (old_cleanups);
2894 return -1;
2895 }
2896
2897 /* Perform the search.
2898
2899 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2900 When we've scanned N bytes we copy the trailing bytes to the start and
2901 read in another N bytes. */
2902
2903 while (search_space_len >= pattern_len)
2904 {
2905 gdb_byte *found_ptr;
2906 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2907
2908 found_ptr = memmem (search_buf, nr_search_bytes,
2909 pattern, pattern_len);
2910
2911 if (found_ptr != NULL)
2912 {
2913 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2914
2915 *found_addrp = found_addr;
2916 do_cleanups (old_cleanups);
2917 return 1;
2918 }
2919
2920 /* Not found in this chunk, skip to next chunk. */
2921
2922 /* Don't let search_space_len wrap here, it's unsigned. */
2923 if (search_space_len >= chunk_size)
2924 search_space_len -= chunk_size;
2925 else
2926 search_space_len = 0;
2927
2928 if (search_space_len >= pattern_len)
2929 {
2930 unsigned keep_len = search_buf_size - chunk_size;
2931 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2932 int nr_to_read;
2933
2934 /* Copy the trailing part of the previous iteration to the front
2935 of the buffer for the next iteration. */
2936 gdb_assert (keep_len == pattern_len - 1);
2937 memcpy (search_buf, search_buf + chunk_size, keep_len);
2938
2939 nr_to_read = min (search_space_len - keep_len, chunk_size);
2940
2941 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2942 search_buf + keep_len, read_addr,
2943 nr_to_read) != nr_to_read)
2944 {
2945 warning (_("Unable to access %s bytes of target "
2946 "memory at %s, halting search."),
2947 plongest (nr_to_read),
2948 hex_string (read_addr));
2949 do_cleanups (old_cleanups);
2950 return -1;
2951 }
2952
2953 start_addr += chunk_size;
2954 }
2955 }
2956
2957 /* Not found. */
2958
2959 do_cleanups (old_cleanups);
2960 return 0;
2961 }
2962
2963 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2964 sequence of bytes in PATTERN with length PATTERN_LEN.
2965
2966 The result is 1 if found, 0 if not found, and -1 if there was an error
2967 requiring halting of the search (e.g. memory read error).
2968 If the pattern is found the address is recorded in FOUND_ADDRP. */
2969
2970 int
2971 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2972 const gdb_byte *pattern, ULONGEST pattern_len,
2973 CORE_ADDR *found_addrp)
2974 {
2975 struct target_ops *t;
2976 int found;
2977
2978 /* We don't use INHERIT to set current_target.to_search_memory,
2979 so we have to scan the target stack and handle targetdebug
2980 ourselves. */
2981
2982 if (targetdebug)
2983 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2984 hex_string (start_addr));
2985
2986 for (t = current_target.beneath; t != NULL; t = t->beneath)
2987 if (t->to_search_memory != NULL)
2988 break;
2989
2990 if (t != NULL)
2991 {
2992 found = t->to_search_memory (t, start_addr, search_space_len,
2993 pattern, pattern_len, found_addrp);
2994 }
2995 else
2996 {
2997 /* If a special version of to_search_memory isn't available, use the
2998 simple version. */
2999 found = simple_search_memory (current_target.beneath,
3000 start_addr, search_space_len,
3001 pattern, pattern_len, found_addrp);
3002 }
3003
3004 if (targetdebug)
3005 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3006
3007 return found;
3008 }
3009
3010 /* Look through the currently pushed targets. If none of them will
3011 be able to restart the currently running process, issue an error
3012 message. */
3013
3014 void
3015 target_require_runnable (void)
3016 {
3017 struct target_ops *t;
3018
3019 for (t = target_stack; t != NULL; t = t->beneath)
3020 {
3021 /* If this target knows how to create a new program, then
3022 assume we will still be able to after killing the current
3023 one. Either killing and mourning will not pop T, or else
3024 find_default_run_target will find it again. */
3025 if (t->to_create_inferior != NULL)
3026 return;
3027
3028 /* Do not worry about thread_stratum targets that can not
3029 create inferiors. Assume they will be pushed again if
3030 necessary, and continue to the process_stratum. */
3031 if (t->to_stratum == thread_stratum
3032 || t->to_stratum == arch_stratum)
3033 continue;
3034
3035 error (_("The \"%s\" target does not support \"run\". "
3036 "Try \"help target\" or \"continue\"."),
3037 t->to_shortname);
3038 }
3039
3040 /* This function is only called if the target is running. In that
3041 case there should have been a process_stratum target and it
3042 should either know how to create inferiors, or not... */
3043 internal_error (__FILE__, __LINE__, _("No targets found"));
3044 }
3045
3046 /* Look through the list of possible targets for a target that can
3047 execute a run or attach command without any other data. This is
3048 used to locate the default process stratum.
3049
3050 If DO_MESG is not NULL, the result is always valid (error() is
3051 called for errors); else, return NULL on error. */
3052
3053 static struct target_ops *
3054 find_default_run_target (char *do_mesg)
3055 {
3056 struct target_ops **t;
3057 struct target_ops *runable = NULL;
3058 int count;
3059
3060 count = 0;
3061
3062 for (t = target_structs; t < target_structs + target_struct_size;
3063 ++t)
3064 {
3065 if ((*t)->to_can_run && target_can_run (*t))
3066 {
3067 runable = *t;
3068 ++count;
3069 }
3070 }
3071
3072 if (count != 1)
3073 {
3074 if (do_mesg)
3075 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3076 else
3077 return NULL;
3078 }
3079
3080 return runable;
3081 }
3082
3083 void
3084 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3085 {
3086 struct target_ops *t;
3087
3088 t = find_default_run_target ("attach");
3089 (t->to_attach) (t, args, from_tty);
3090 return;
3091 }
3092
3093 void
3094 find_default_create_inferior (struct target_ops *ops,
3095 char *exec_file, char *allargs, char **env,
3096 int from_tty)
3097 {
3098 struct target_ops *t;
3099
3100 t = find_default_run_target ("run");
3101 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3102 return;
3103 }
3104
3105 static int
3106 find_default_can_async_p (struct target_ops *ignore)
3107 {
3108 struct target_ops *t;
3109
3110 /* This may be called before the target is pushed on the stack;
3111 look for the default process stratum. If there's none, gdb isn't
3112 configured with a native debugger, and target remote isn't
3113 connected yet. */
3114 t = find_default_run_target (NULL);
3115 if (t && t->to_can_async_p != delegate_can_async_p)
3116 return (t->to_can_async_p) (t);
3117 return 0;
3118 }
3119
3120 static int
3121 find_default_is_async_p (struct target_ops *ignore)
3122 {
3123 struct target_ops *t;
3124
3125 /* This may be called before the target is pushed on the stack;
3126 look for the default process stratum. If there's none, gdb isn't
3127 configured with a native debugger, and target remote isn't
3128 connected yet. */
3129 t = find_default_run_target (NULL);
3130 if (t && t->to_is_async_p != delegate_is_async_p)
3131 return (t->to_is_async_p) (t);
3132 return 0;
3133 }
3134
3135 static int
3136 find_default_supports_non_stop (struct target_ops *self)
3137 {
3138 struct target_ops *t;
3139
3140 t = find_default_run_target (NULL);
3141 if (t && t->to_supports_non_stop)
3142 return (t->to_supports_non_stop) (t);
3143 return 0;
3144 }
3145
3146 int
3147 target_supports_non_stop (void)
3148 {
3149 struct target_ops *t;
3150
3151 for (t = &current_target; t != NULL; t = t->beneath)
3152 if (t->to_supports_non_stop)
3153 return t->to_supports_non_stop (t);
3154
3155 return 0;
3156 }
3157
3158 /* Implement the "info proc" command. */
3159
3160 int
3161 target_info_proc (char *args, enum info_proc_what what)
3162 {
3163 struct target_ops *t;
3164
3165 /* If we're already connected to something that can get us OS
3166 related data, use it. Otherwise, try using the native
3167 target. */
3168 if (current_target.to_stratum >= process_stratum)
3169 t = current_target.beneath;
3170 else
3171 t = find_default_run_target (NULL);
3172
3173 for (; t != NULL; t = t->beneath)
3174 {
3175 if (t->to_info_proc != NULL)
3176 {
3177 t->to_info_proc (t, args, what);
3178
3179 if (targetdebug)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "target_info_proc (\"%s\", %d)\n", args, what);
3182
3183 return 1;
3184 }
3185 }
3186
3187 return 0;
3188 }
3189
3190 static int
3191 find_default_supports_disable_randomization (struct target_ops *self)
3192 {
3193 struct target_ops *t;
3194
3195 t = find_default_run_target (NULL);
3196 if (t && t->to_supports_disable_randomization)
3197 return (t->to_supports_disable_randomization) (t);
3198 return 0;
3199 }
3200
3201 int
3202 target_supports_disable_randomization (void)
3203 {
3204 struct target_ops *t;
3205
3206 for (t = &current_target; t != NULL; t = t->beneath)
3207 if (t->to_supports_disable_randomization)
3208 return t->to_supports_disable_randomization (t);
3209
3210 return 0;
3211 }
3212
3213 char *
3214 target_get_osdata (const char *type)
3215 {
3216 struct target_ops *t;
3217
3218 /* If we're already connected to something that can get us OS
3219 related data, use it. Otherwise, try using the native
3220 target. */
3221 if (current_target.to_stratum >= process_stratum)
3222 t = current_target.beneath;
3223 else
3224 t = find_default_run_target ("get OS data");
3225
3226 if (!t)
3227 return NULL;
3228
3229 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3230 }
3231
3232 /* Determine the current address space of thread PTID. */
3233
3234 struct address_space *
3235 target_thread_address_space (ptid_t ptid)
3236 {
3237 struct address_space *aspace;
3238 struct inferior *inf;
3239 struct target_ops *t;
3240
3241 for (t = current_target.beneath; t != NULL; t = t->beneath)
3242 {
3243 if (t->to_thread_address_space != NULL)
3244 {
3245 aspace = t->to_thread_address_space (t, ptid);
3246 gdb_assert (aspace);
3247
3248 if (targetdebug)
3249 fprintf_unfiltered (gdb_stdlog,
3250 "target_thread_address_space (%s) = %d\n",
3251 target_pid_to_str (ptid),
3252 address_space_num (aspace));
3253 return aspace;
3254 }
3255 }
3256
3257 /* Fall-back to the "main" address space of the inferior. */
3258 inf = find_inferior_pid (ptid_get_pid (ptid));
3259
3260 if (inf == NULL || inf->aspace == NULL)
3261 internal_error (__FILE__, __LINE__,
3262 _("Can't determine the current "
3263 "address space of thread %s\n"),
3264 target_pid_to_str (ptid));
3265
3266 return inf->aspace;
3267 }
3268
3269
3270 /* Target file operations. */
3271
3272 static struct target_ops *
3273 default_fileio_target (void)
3274 {
3275 /* If we're already connected to something that can perform
3276 file I/O, use it. Otherwise, try using the native target. */
3277 if (current_target.to_stratum >= process_stratum)
3278 return current_target.beneath;
3279 else
3280 return find_default_run_target ("file I/O");
3281 }
3282
3283 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3284 target file descriptor, or -1 if an error occurs (and set
3285 *TARGET_ERRNO). */
3286 int
3287 target_fileio_open (const char *filename, int flags, int mode,
3288 int *target_errno)
3289 {
3290 struct target_ops *t;
3291
3292 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3293 {
3294 if (t->to_fileio_open != NULL)
3295 {
3296 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3297
3298 if (targetdebug)
3299 fprintf_unfiltered (gdb_stdlog,
3300 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3301 filename, flags, mode,
3302 fd, fd != -1 ? 0 : *target_errno);
3303 return fd;
3304 }
3305 }
3306
3307 *target_errno = FILEIO_ENOSYS;
3308 return -1;
3309 }
3310
3311 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3312 Return the number of bytes written, or -1 if an error occurs
3313 (and set *TARGET_ERRNO). */
3314 int
3315 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3316 ULONGEST offset, int *target_errno)
3317 {
3318 struct target_ops *t;
3319
3320 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3321 {
3322 if (t->to_fileio_pwrite != NULL)
3323 {
3324 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3325 target_errno);
3326
3327 if (targetdebug)
3328 fprintf_unfiltered (gdb_stdlog,
3329 "target_fileio_pwrite (%d,...,%d,%s) "
3330 "= %d (%d)\n",
3331 fd, len, pulongest (offset),
3332 ret, ret != -1 ? 0 : *target_errno);
3333 return ret;
3334 }
3335 }
3336
3337 *target_errno = FILEIO_ENOSYS;
3338 return -1;
3339 }
3340
3341 /* Read up to LEN bytes FD on the target into READ_BUF.
3342 Return the number of bytes read, or -1 if an error occurs
3343 (and set *TARGET_ERRNO). */
3344 int
3345 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3346 ULONGEST offset, int *target_errno)
3347 {
3348 struct target_ops *t;
3349
3350 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3351 {
3352 if (t->to_fileio_pread != NULL)
3353 {
3354 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3355 target_errno);
3356
3357 if (targetdebug)
3358 fprintf_unfiltered (gdb_stdlog,
3359 "target_fileio_pread (%d,...,%d,%s) "
3360 "= %d (%d)\n",
3361 fd, len, pulongest (offset),
3362 ret, ret != -1 ? 0 : *target_errno);
3363 return ret;
3364 }
3365 }
3366
3367 *target_errno = FILEIO_ENOSYS;
3368 return -1;
3369 }
3370
3371 /* Close FD on the target. Return 0, or -1 if an error occurs
3372 (and set *TARGET_ERRNO). */
3373 int
3374 target_fileio_close (int fd, int *target_errno)
3375 {
3376 struct target_ops *t;
3377
3378 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3379 {
3380 if (t->to_fileio_close != NULL)
3381 {
3382 int ret = t->to_fileio_close (t, fd, target_errno);
3383
3384 if (targetdebug)
3385 fprintf_unfiltered (gdb_stdlog,
3386 "target_fileio_close (%d) = %d (%d)\n",
3387 fd, ret, ret != -1 ? 0 : *target_errno);
3388 return ret;
3389 }
3390 }
3391
3392 *target_errno = FILEIO_ENOSYS;
3393 return -1;
3394 }
3395
3396 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3397 occurs (and set *TARGET_ERRNO). */
3398 int
3399 target_fileio_unlink (const char *filename, int *target_errno)
3400 {
3401 struct target_ops *t;
3402
3403 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3404 {
3405 if (t->to_fileio_unlink != NULL)
3406 {
3407 int ret = t->to_fileio_unlink (t, filename, target_errno);
3408
3409 if (targetdebug)
3410 fprintf_unfiltered (gdb_stdlog,
3411 "target_fileio_unlink (%s) = %d (%d)\n",
3412 filename, ret, ret != -1 ? 0 : *target_errno);
3413 return ret;
3414 }
3415 }
3416
3417 *target_errno = FILEIO_ENOSYS;
3418 return -1;
3419 }
3420
3421 /* Read value of symbolic link FILENAME on the target. Return a
3422 null-terminated string allocated via xmalloc, or NULL if an error
3423 occurs (and set *TARGET_ERRNO). */
3424 char *
3425 target_fileio_readlink (const char *filename, int *target_errno)
3426 {
3427 struct target_ops *t;
3428
3429 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3430 {
3431 if (t->to_fileio_readlink != NULL)
3432 {
3433 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3434
3435 if (targetdebug)
3436 fprintf_unfiltered (gdb_stdlog,
3437 "target_fileio_readlink (%s) = %s (%d)\n",
3438 filename, ret? ret : "(nil)",
3439 ret? 0 : *target_errno);
3440 return ret;
3441 }
3442 }
3443
3444 *target_errno = FILEIO_ENOSYS;
3445 return NULL;
3446 }
3447
3448 static void
3449 target_fileio_close_cleanup (void *opaque)
3450 {
3451 int fd = *(int *) opaque;
3452 int target_errno;
3453
3454 target_fileio_close (fd, &target_errno);
3455 }
3456
3457 /* Read target file FILENAME. Store the result in *BUF_P and
3458 return the size of the transferred data. PADDING additional bytes are
3459 available in *BUF_P. This is a helper function for
3460 target_fileio_read_alloc; see the declaration of that function for more
3461 information. */
3462
3463 static LONGEST
3464 target_fileio_read_alloc_1 (const char *filename,
3465 gdb_byte **buf_p, int padding)
3466 {
3467 struct cleanup *close_cleanup;
3468 size_t buf_alloc, buf_pos;
3469 gdb_byte *buf;
3470 LONGEST n;
3471 int fd;
3472 int target_errno;
3473
3474 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3475 if (fd == -1)
3476 return -1;
3477
3478 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3479
3480 /* Start by reading up to 4K at a time. The target will throttle
3481 this number down if necessary. */
3482 buf_alloc = 4096;
3483 buf = xmalloc (buf_alloc);
3484 buf_pos = 0;
3485 while (1)
3486 {
3487 n = target_fileio_pread (fd, &buf[buf_pos],
3488 buf_alloc - buf_pos - padding, buf_pos,
3489 &target_errno);
3490 if (n < 0)
3491 {
3492 /* An error occurred. */
3493 do_cleanups (close_cleanup);
3494 xfree (buf);
3495 return -1;
3496 }
3497 else if (n == 0)
3498 {
3499 /* Read all there was. */
3500 do_cleanups (close_cleanup);
3501 if (buf_pos == 0)
3502 xfree (buf);
3503 else
3504 *buf_p = buf;
3505 return buf_pos;
3506 }
3507
3508 buf_pos += n;
3509
3510 /* If the buffer is filling up, expand it. */
3511 if (buf_alloc < buf_pos * 2)
3512 {
3513 buf_alloc *= 2;
3514 buf = xrealloc (buf, buf_alloc);
3515 }
3516
3517 QUIT;
3518 }
3519 }
3520
3521 /* Read target file FILENAME. Store the result in *BUF_P and return
3522 the size of the transferred data. See the declaration in "target.h"
3523 function for more information about the return value. */
3524
3525 LONGEST
3526 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3527 {
3528 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3529 }
3530
3531 /* Read target file FILENAME. The result is NUL-terminated and
3532 returned as a string, allocated using xmalloc. If an error occurs
3533 or the transfer is unsupported, NULL is returned. Empty objects
3534 are returned as allocated but empty strings. A warning is issued
3535 if the result contains any embedded NUL bytes. */
3536
3537 char *
3538 target_fileio_read_stralloc (const char *filename)
3539 {
3540 gdb_byte *buffer;
3541 char *bufstr;
3542 LONGEST i, transferred;
3543
3544 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3545 bufstr = (char *) buffer;
3546
3547 if (transferred < 0)
3548 return NULL;
3549
3550 if (transferred == 0)
3551 return xstrdup ("");
3552
3553 bufstr[transferred] = 0;
3554
3555 /* Check for embedded NUL bytes; but allow trailing NULs. */
3556 for (i = strlen (bufstr); i < transferred; i++)
3557 if (bufstr[i] != 0)
3558 {
3559 warning (_("target file %s "
3560 "contained unexpected null characters"),
3561 filename);
3562 break;
3563 }
3564
3565 return bufstr;
3566 }
3567
3568
3569 static int
3570 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3571 CORE_ADDR addr, int len)
3572 {
3573 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3574 }
3575
3576 static int
3577 default_watchpoint_addr_within_range (struct target_ops *target,
3578 CORE_ADDR addr,
3579 CORE_ADDR start, int length)
3580 {
3581 return addr >= start && addr < start + length;
3582 }
3583
3584 static struct gdbarch *
3585 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3586 {
3587 return target_gdbarch ();
3588 }
3589
3590 static int
3591 return_zero (void)
3592 {
3593 return 0;
3594 }
3595
3596 static int
3597 return_one (void)
3598 {
3599 return 1;
3600 }
3601
3602 static int
3603 return_minus_one (void)
3604 {
3605 return -1;
3606 }
3607
3608 static void *
3609 return_null (void)
3610 {
3611 return 0;
3612 }
3613
3614 /*
3615 * Find the next target down the stack from the specified target.
3616 */
3617
3618 struct target_ops *
3619 find_target_beneath (struct target_ops *t)
3620 {
3621 return t->beneath;
3622 }
3623
3624 /* See target.h. */
3625
3626 struct target_ops *
3627 find_target_at (enum strata stratum)
3628 {
3629 struct target_ops *t;
3630
3631 for (t = current_target.beneath; t != NULL; t = t->beneath)
3632 if (t->to_stratum == stratum)
3633 return t;
3634
3635 return NULL;
3636 }
3637
3638 \f
3639 /* The inferior process has died. Long live the inferior! */
3640
3641 void
3642 generic_mourn_inferior (void)
3643 {
3644 ptid_t ptid;
3645
3646 ptid = inferior_ptid;
3647 inferior_ptid = null_ptid;
3648
3649 /* Mark breakpoints uninserted in case something tries to delete a
3650 breakpoint while we delete the inferior's threads (which would
3651 fail, since the inferior is long gone). */
3652 mark_breakpoints_out ();
3653
3654 if (!ptid_equal (ptid, null_ptid))
3655 {
3656 int pid = ptid_get_pid (ptid);
3657 exit_inferior (pid);
3658 }
3659
3660 /* Note this wipes step-resume breakpoints, so needs to be done
3661 after exit_inferior, which ends up referencing the step-resume
3662 breakpoints through clear_thread_inferior_resources. */
3663 breakpoint_init_inferior (inf_exited);
3664
3665 registers_changed ();
3666
3667 reopen_exec_file ();
3668 reinit_frame_cache ();
3669
3670 if (deprecated_detach_hook)
3671 deprecated_detach_hook ();
3672 }
3673 \f
3674 /* Convert a normal process ID to a string. Returns the string in a
3675 static buffer. */
3676
3677 char *
3678 normal_pid_to_str (ptid_t ptid)
3679 {
3680 static char buf[32];
3681
3682 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3683 return buf;
3684 }
3685
3686 static char *
3687 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3688 {
3689 return normal_pid_to_str (ptid);
3690 }
3691
3692 /* Error-catcher for target_find_memory_regions. */
3693 static int
3694 dummy_find_memory_regions (struct target_ops *self,
3695 find_memory_region_ftype ignore1, void *ignore2)
3696 {
3697 error (_("Command not implemented for this target."));
3698 return 0;
3699 }
3700
3701 /* Error-catcher for target_make_corefile_notes. */
3702 static char *
3703 dummy_make_corefile_notes (struct target_ops *self,
3704 bfd *ignore1, int *ignore2)
3705 {
3706 error (_("Command not implemented for this target."));
3707 return NULL;
3708 }
3709
3710 /* Error-catcher for target_get_bookmark. */
3711 static gdb_byte *
3712 dummy_get_bookmark (struct target_ops *self, char *ignore1, int ignore2)
3713 {
3714 tcomplain ();
3715 return NULL;
3716 }
3717
3718 /* Error-catcher for target_goto_bookmark. */
3719 static void
3720 dummy_goto_bookmark (struct target_ops *self, gdb_byte *ignore, int from_tty)
3721 {
3722 tcomplain ();
3723 }
3724
3725 /* Set up the handful of non-empty slots needed by the dummy target
3726 vector. */
3727
3728 static void
3729 init_dummy_target (void)
3730 {
3731 dummy_target.to_shortname = "None";
3732 dummy_target.to_longname = "None";
3733 dummy_target.to_doc = "";
3734 dummy_target.to_create_inferior = find_default_create_inferior;
3735 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3736 dummy_target.to_supports_disable_randomization
3737 = find_default_supports_disable_randomization;
3738 dummy_target.to_pid_to_str = dummy_pid_to_str;
3739 dummy_target.to_stratum = dummy_stratum;
3740 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3741 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3742 dummy_target.to_get_bookmark = dummy_get_bookmark;
3743 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3744 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3745 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3746 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3747 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3748 dummy_target.to_has_execution
3749 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3750 dummy_target.to_magic = OPS_MAGIC;
3751
3752 install_dummy_methods (&dummy_target);
3753 }
3754 \f
3755 static void
3756 debug_to_open (char *args, int from_tty)
3757 {
3758 debug_target.to_open (args, from_tty);
3759
3760 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3761 }
3762
3763 void
3764 target_close (struct target_ops *targ)
3765 {
3766 gdb_assert (!target_is_pushed (targ));
3767
3768 if (targ->to_xclose != NULL)
3769 targ->to_xclose (targ);
3770 else if (targ->to_close != NULL)
3771 targ->to_close (targ);
3772
3773 if (targetdebug)
3774 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3775 }
3776
3777 void
3778 target_attach (char *args, int from_tty)
3779 {
3780 current_target.to_attach (&current_target, args, from_tty);
3781 if (targetdebug)
3782 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3783 args, from_tty);
3784 }
3785
3786 int
3787 target_thread_alive (ptid_t ptid)
3788 {
3789 struct target_ops *t;
3790
3791 for (t = current_target.beneath; t != NULL; t = t->beneath)
3792 {
3793 if (t->to_thread_alive != NULL)
3794 {
3795 int retval;
3796
3797 retval = t->to_thread_alive (t, ptid);
3798 if (targetdebug)
3799 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3800 ptid_get_pid (ptid), retval);
3801
3802 return retval;
3803 }
3804 }
3805
3806 return 0;
3807 }
3808
3809 void
3810 target_find_new_threads (void)
3811 {
3812 struct target_ops *t;
3813
3814 for (t = current_target.beneath; t != NULL; t = t->beneath)
3815 {
3816 if (t->to_find_new_threads != NULL)
3817 {
3818 t->to_find_new_threads (t);
3819 if (targetdebug)
3820 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3821
3822 return;
3823 }
3824 }
3825 }
3826
3827 void
3828 target_stop (ptid_t ptid)
3829 {
3830 if (!may_stop)
3831 {
3832 warning (_("May not interrupt or stop the target, ignoring attempt"));
3833 return;
3834 }
3835
3836 (*current_target.to_stop) (&current_target, ptid);
3837 }
3838
3839 static void
3840 debug_to_post_attach (struct target_ops *self, int pid)
3841 {
3842 debug_target.to_post_attach (&debug_target, pid);
3843
3844 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3845 }
3846
3847 /* Concatenate ELEM to LIST, a comma separate list, and return the
3848 result. The LIST incoming argument is released. */
3849
3850 static char *
3851 str_comma_list_concat_elem (char *list, const char *elem)
3852 {
3853 if (list == NULL)
3854 return xstrdup (elem);
3855 else
3856 return reconcat (list, list, ", ", elem, (char *) NULL);
3857 }
3858
3859 /* Helper for target_options_to_string. If OPT is present in
3860 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3861 Returns the new resulting string. OPT is removed from
3862 TARGET_OPTIONS. */
3863
3864 static char *
3865 do_option (int *target_options, char *ret,
3866 int opt, char *opt_str)
3867 {
3868 if ((*target_options & opt) != 0)
3869 {
3870 ret = str_comma_list_concat_elem (ret, opt_str);
3871 *target_options &= ~opt;
3872 }
3873
3874 return ret;
3875 }
3876
3877 char *
3878 target_options_to_string (int target_options)
3879 {
3880 char *ret = NULL;
3881
3882 #define DO_TARG_OPTION(OPT) \
3883 ret = do_option (&target_options, ret, OPT, #OPT)
3884
3885 DO_TARG_OPTION (TARGET_WNOHANG);
3886
3887 if (target_options != 0)
3888 ret = str_comma_list_concat_elem (ret, "unknown???");
3889
3890 if (ret == NULL)
3891 ret = xstrdup ("");
3892 return ret;
3893 }
3894
3895 static void
3896 debug_print_register (const char * func,
3897 struct regcache *regcache, int regno)
3898 {
3899 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3900
3901 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3902 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3903 && gdbarch_register_name (gdbarch, regno) != NULL
3904 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3905 fprintf_unfiltered (gdb_stdlog, "(%s)",
3906 gdbarch_register_name (gdbarch, regno));
3907 else
3908 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3909 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3910 {
3911 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3912 int i, size = register_size (gdbarch, regno);
3913 gdb_byte buf[MAX_REGISTER_SIZE];
3914
3915 regcache_raw_collect (regcache, regno, buf);
3916 fprintf_unfiltered (gdb_stdlog, " = ");
3917 for (i = 0; i < size; i++)
3918 {
3919 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3920 }
3921 if (size <= sizeof (LONGEST))
3922 {
3923 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3924
3925 fprintf_unfiltered (gdb_stdlog, " %s %s",
3926 core_addr_to_string_nz (val), plongest (val));
3927 }
3928 }
3929 fprintf_unfiltered (gdb_stdlog, "\n");
3930 }
3931
3932 void
3933 target_fetch_registers (struct regcache *regcache, int regno)
3934 {
3935 struct target_ops *t;
3936
3937 for (t = current_target.beneath; t != NULL; t = t->beneath)
3938 {
3939 if (t->to_fetch_registers != NULL)
3940 {
3941 t->to_fetch_registers (t, regcache, regno);
3942 if (targetdebug)
3943 debug_print_register ("target_fetch_registers", regcache, regno);
3944 return;
3945 }
3946 }
3947 }
3948
3949 void
3950 target_store_registers (struct regcache *regcache, int regno)
3951 {
3952 struct target_ops *t;
3953
3954 if (!may_write_registers)
3955 error (_("Writing to registers is not allowed (regno %d)"), regno);
3956
3957 current_target.to_store_registers (&current_target, regcache, regno);
3958 if (targetdebug)
3959 {
3960 debug_print_register ("target_store_registers", regcache, regno);
3961 }
3962 }
3963
3964 int
3965 target_core_of_thread (ptid_t ptid)
3966 {
3967 struct target_ops *t;
3968
3969 for (t = current_target.beneath; t != NULL; t = t->beneath)
3970 {
3971 if (t->to_core_of_thread != NULL)
3972 {
3973 int retval = t->to_core_of_thread (t, ptid);
3974
3975 if (targetdebug)
3976 fprintf_unfiltered (gdb_stdlog,
3977 "target_core_of_thread (%d) = %d\n",
3978 ptid_get_pid (ptid), retval);
3979 return retval;
3980 }
3981 }
3982
3983 return -1;
3984 }
3985
3986 int
3987 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3988 {
3989 struct target_ops *t;
3990
3991 for (t = current_target.beneath; t != NULL; t = t->beneath)
3992 {
3993 if (t->to_verify_memory != NULL)
3994 {
3995 int retval = t->to_verify_memory (t, data, memaddr, size);
3996
3997 if (targetdebug)
3998 fprintf_unfiltered (gdb_stdlog,
3999 "target_verify_memory (%s, %s) = %d\n",
4000 paddress (target_gdbarch (), memaddr),
4001 pulongest (size),
4002 retval);
4003 return retval;
4004 }
4005 }
4006
4007 tcomplain ();
4008 }
4009
4010 /* The documentation for this function is in its prototype declaration in
4011 target.h. */
4012
4013 int
4014 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4015 {
4016 struct target_ops *t;
4017
4018 for (t = current_target.beneath; t != NULL; t = t->beneath)
4019 if (t->to_insert_mask_watchpoint != NULL)
4020 {
4021 int ret;
4022
4023 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4024
4025 if (targetdebug)
4026 fprintf_unfiltered (gdb_stdlog, "\
4027 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4028 core_addr_to_string (addr),
4029 core_addr_to_string (mask), rw, ret);
4030
4031 return ret;
4032 }
4033
4034 return 1;
4035 }
4036
4037 /* The documentation for this function is in its prototype declaration in
4038 target.h. */
4039
4040 int
4041 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4042 {
4043 struct target_ops *t;
4044
4045 for (t = current_target.beneath; t != NULL; t = t->beneath)
4046 if (t->to_remove_mask_watchpoint != NULL)
4047 {
4048 int ret;
4049
4050 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4051
4052 if (targetdebug)
4053 fprintf_unfiltered (gdb_stdlog, "\
4054 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4055 core_addr_to_string (addr),
4056 core_addr_to_string (mask), rw, ret);
4057
4058 return ret;
4059 }
4060
4061 return 1;
4062 }
4063
4064 /* The documentation for this function is in its prototype declaration
4065 in target.h. */
4066
4067 int
4068 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4069 {
4070 struct target_ops *t;
4071
4072 for (t = current_target.beneath; t != NULL; t = t->beneath)
4073 if (t->to_masked_watch_num_registers != NULL)
4074 return t->to_masked_watch_num_registers (t, addr, mask);
4075
4076 return -1;
4077 }
4078
4079 /* The documentation for this function is in its prototype declaration
4080 in target.h. */
4081
4082 int
4083 target_ranged_break_num_registers (void)
4084 {
4085 struct target_ops *t;
4086
4087 for (t = current_target.beneath; t != NULL; t = t->beneath)
4088 if (t->to_ranged_break_num_registers != NULL)
4089 return t->to_ranged_break_num_registers (t);
4090
4091 return -1;
4092 }
4093
4094 /* See target.h. */
4095
4096 struct btrace_target_info *
4097 target_enable_btrace (ptid_t ptid)
4098 {
4099 struct target_ops *t;
4100
4101 for (t = current_target.beneath; t != NULL; t = t->beneath)
4102 if (t->to_enable_btrace != NULL)
4103 return t->to_enable_btrace (t, ptid);
4104
4105 tcomplain ();
4106 return NULL;
4107 }
4108
4109 /* See target.h. */
4110
4111 void
4112 target_disable_btrace (struct btrace_target_info *btinfo)
4113 {
4114 struct target_ops *t;
4115
4116 for (t = current_target.beneath; t != NULL; t = t->beneath)
4117 if (t->to_disable_btrace != NULL)
4118 {
4119 t->to_disable_btrace (t, btinfo);
4120 return;
4121 }
4122
4123 tcomplain ();
4124 }
4125
4126 /* See target.h. */
4127
4128 void
4129 target_teardown_btrace (struct btrace_target_info *btinfo)
4130 {
4131 struct target_ops *t;
4132
4133 for (t = current_target.beneath; t != NULL; t = t->beneath)
4134 if (t->to_teardown_btrace != NULL)
4135 {
4136 t->to_teardown_btrace (t, btinfo);
4137 return;
4138 }
4139
4140 tcomplain ();
4141 }
4142
4143 /* See target.h. */
4144
4145 enum btrace_error
4146 target_read_btrace (VEC (btrace_block_s) **btrace,
4147 struct btrace_target_info *btinfo,
4148 enum btrace_read_type type)
4149 {
4150 struct target_ops *t;
4151
4152 for (t = current_target.beneath; t != NULL; t = t->beneath)
4153 if (t->to_read_btrace != NULL)
4154 return t->to_read_btrace (t, btrace, btinfo, type);
4155
4156 tcomplain ();
4157 return BTRACE_ERR_NOT_SUPPORTED;
4158 }
4159
4160 /* See target.h. */
4161
4162 void
4163 target_stop_recording (void)
4164 {
4165 struct target_ops *t;
4166
4167 for (t = current_target.beneath; t != NULL; t = t->beneath)
4168 if (t->to_stop_recording != NULL)
4169 {
4170 t->to_stop_recording (t);
4171 return;
4172 }
4173
4174 /* This is optional. */
4175 }
4176
4177 /* See target.h. */
4178
4179 void
4180 target_info_record (void)
4181 {
4182 struct target_ops *t;
4183
4184 for (t = current_target.beneath; t != NULL; t = t->beneath)
4185 if (t->to_info_record != NULL)
4186 {
4187 t->to_info_record (t);
4188 return;
4189 }
4190
4191 tcomplain ();
4192 }
4193
4194 /* See target.h. */
4195
4196 void
4197 target_save_record (const char *filename)
4198 {
4199 struct target_ops *t;
4200
4201 for (t = current_target.beneath; t != NULL; t = t->beneath)
4202 if (t->to_save_record != NULL)
4203 {
4204 t->to_save_record (t, filename);
4205 return;
4206 }
4207
4208 tcomplain ();
4209 }
4210
4211 /* See target.h. */
4212
4213 int
4214 target_supports_delete_record (void)
4215 {
4216 struct target_ops *t;
4217
4218 for (t = current_target.beneath; t != NULL; t = t->beneath)
4219 if (t->to_delete_record != NULL)
4220 return 1;
4221
4222 return 0;
4223 }
4224
4225 /* See target.h. */
4226
4227 void
4228 target_delete_record (void)
4229 {
4230 struct target_ops *t;
4231
4232 for (t = current_target.beneath; t != NULL; t = t->beneath)
4233 if (t->to_delete_record != NULL)
4234 {
4235 t->to_delete_record (t);
4236 return;
4237 }
4238
4239 tcomplain ();
4240 }
4241
4242 /* See target.h. */
4243
4244 int
4245 target_record_is_replaying (void)
4246 {
4247 struct target_ops *t;
4248
4249 for (t = current_target.beneath; t != NULL; t = t->beneath)
4250 if (t->to_record_is_replaying != NULL)
4251 return t->to_record_is_replaying (t);
4252
4253 return 0;
4254 }
4255
4256 /* See target.h. */
4257
4258 void
4259 target_goto_record_begin (void)
4260 {
4261 struct target_ops *t;
4262
4263 for (t = current_target.beneath; t != NULL; t = t->beneath)
4264 if (t->to_goto_record_begin != NULL)
4265 {
4266 t->to_goto_record_begin (t);
4267 return;
4268 }
4269
4270 tcomplain ();
4271 }
4272
4273 /* See target.h. */
4274
4275 void
4276 target_goto_record_end (void)
4277 {
4278 struct target_ops *t;
4279
4280 for (t = current_target.beneath; t != NULL; t = t->beneath)
4281 if (t->to_goto_record_end != NULL)
4282 {
4283 t->to_goto_record_end (t);
4284 return;
4285 }
4286
4287 tcomplain ();
4288 }
4289
4290 /* See target.h. */
4291
4292 void
4293 target_goto_record (ULONGEST insn)
4294 {
4295 struct target_ops *t;
4296
4297 for (t = current_target.beneath; t != NULL; t = t->beneath)
4298 if (t->to_goto_record != NULL)
4299 {
4300 t->to_goto_record (t, insn);
4301 return;
4302 }
4303
4304 tcomplain ();
4305 }
4306
4307 /* See target.h. */
4308
4309 void
4310 target_insn_history (int size, int flags)
4311 {
4312 struct target_ops *t;
4313
4314 for (t = current_target.beneath; t != NULL; t = t->beneath)
4315 if (t->to_insn_history != NULL)
4316 {
4317 t->to_insn_history (t, size, flags);
4318 return;
4319 }
4320
4321 tcomplain ();
4322 }
4323
4324 /* See target.h. */
4325
4326 void
4327 target_insn_history_from (ULONGEST from, int size, int flags)
4328 {
4329 struct target_ops *t;
4330
4331 for (t = current_target.beneath; t != NULL; t = t->beneath)
4332 if (t->to_insn_history_from != NULL)
4333 {
4334 t->to_insn_history_from (t, from, size, flags);
4335 return;
4336 }
4337
4338 tcomplain ();
4339 }
4340
4341 /* See target.h. */
4342
4343 void
4344 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4345 {
4346 struct target_ops *t;
4347
4348 for (t = current_target.beneath; t != NULL; t = t->beneath)
4349 if (t->to_insn_history_range != NULL)
4350 {
4351 t->to_insn_history_range (t, begin, end, flags);
4352 return;
4353 }
4354
4355 tcomplain ();
4356 }
4357
4358 /* See target.h. */
4359
4360 void
4361 target_call_history (int size, int flags)
4362 {
4363 struct target_ops *t;
4364
4365 for (t = current_target.beneath; t != NULL; t = t->beneath)
4366 if (t->to_call_history != NULL)
4367 {
4368 t->to_call_history (t, size, flags);
4369 return;
4370 }
4371
4372 tcomplain ();
4373 }
4374
4375 /* See target.h. */
4376
4377 void
4378 target_call_history_from (ULONGEST begin, int size, int flags)
4379 {
4380 struct target_ops *t;
4381
4382 for (t = current_target.beneath; t != NULL; t = t->beneath)
4383 if (t->to_call_history_from != NULL)
4384 {
4385 t->to_call_history_from (t, begin, size, flags);
4386 return;
4387 }
4388
4389 tcomplain ();
4390 }
4391
4392 /* See target.h. */
4393
4394 void
4395 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4396 {
4397 struct target_ops *t;
4398
4399 for (t = current_target.beneath; t != NULL; t = t->beneath)
4400 if (t->to_call_history_range != NULL)
4401 {
4402 t->to_call_history_range (t, begin, end, flags);
4403 return;
4404 }
4405
4406 tcomplain ();
4407 }
4408
4409 static void
4410 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4411 {
4412 debug_target.to_prepare_to_store (&debug_target, regcache);
4413
4414 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4415 }
4416
4417 /* See target.h. */
4418
4419 const struct frame_unwind *
4420 target_get_unwinder (void)
4421 {
4422 struct target_ops *t;
4423
4424 for (t = current_target.beneath; t != NULL; t = t->beneath)
4425 if (t->to_get_unwinder != NULL)
4426 return t->to_get_unwinder;
4427
4428 return NULL;
4429 }
4430
4431 /* See target.h. */
4432
4433 const struct frame_unwind *
4434 target_get_tailcall_unwinder (void)
4435 {
4436 struct target_ops *t;
4437
4438 for (t = current_target.beneath; t != NULL; t = t->beneath)
4439 if (t->to_get_tailcall_unwinder != NULL)
4440 return t->to_get_tailcall_unwinder;
4441
4442 return NULL;
4443 }
4444
4445 /* See target.h. */
4446
4447 CORE_ADDR
4448 forward_target_decr_pc_after_break (struct target_ops *ops,
4449 struct gdbarch *gdbarch)
4450 {
4451 for (; ops != NULL; ops = ops->beneath)
4452 if (ops->to_decr_pc_after_break != NULL)
4453 return ops->to_decr_pc_after_break (ops, gdbarch);
4454
4455 return gdbarch_decr_pc_after_break (gdbarch);
4456 }
4457
4458 /* See target.h. */
4459
4460 CORE_ADDR
4461 target_decr_pc_after_break (struct gdbarch *gdbarch)
4462 {
4463 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4464 }
4465
4466 static int
4467 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4468 int write, struct mem_attrib *attrib,
4469 struct target_ops *target)
4470 {
4471 int retval;
4472
4473 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4474 attrib, target);
4475
4476 fprintf_unfiltered (gdb_stdlog,
4477 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4478 paddress (target_gdbarch (), memaddr), len,
4479 write ? "write" : "read", retval);
4480
4481 if (retval > 0)
4482 {
4483 int i;
4484
4485 fputs_unfiltered (", bytes =", gdb_stdlog);
4486 for (i = 0; i < retval; i++)
4487 {
4488 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4489 {
4490 if (targetdebug < 2 && i > 0)
4491 {
4492 fprintf_unfiltered (gdb_stdlog, " ...");
4493 break;
4494 }
4495 fprintf_unfiltered (gdb_stdlog, "\n");
4496 }
4497
4498 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4499 }
4500 }
4501
4502 fputc_unfiltered ('\n', gdb_stdlog);
4503
4504 return retval;
4505 }
4506
4507 static void
4508 debug_to_files_info (struct target_ops *target)
4509 {
4510 debug_target.to_files_info (target);
4511
4512 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4513 }
4514
4515 static int
4516 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4517 struct bp_target_info *bp_tgt)
4518 {
4519 int retval;
4520
4521 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4522
4523 fprintf_unfiltered (gdb_stdlog,
4524 "target_insert_breakpoint (%s, xxx) = %ld\n",
4525 core_addr_to_string (bp_tgt->placed_address),
4526 (unsigned long) retval);
4527 return retval;
4528 }
4529
4530 static int
4531 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4532 struct bp_target_info *bp_tgt)
4533 {
4534 int retval;
4535
4536 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4537
4538 fprintf_unfiltered (gdb_stdlog,
4539 "target_remove_breakpoint (%s, xxx) = %ld\n",
4540 core_addr_to_string (bp_tgt->placed_address),
4541 (unsigned long) retval);
4542 return retval;
4543 }
4544
4545 static int
4546 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4547 int type, int cnt, int from_tty)
4548 {
4549 int retval;
4550
4551 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4552 type, cnt, from_tty);
4553
4554 fprintf_unfiltered (gdb_stdlog,
4555 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4556 (unsigned long) type,
4557 (unsigned long) cnt,
4558 (unsigned long) from_tty,
4559 (unsigned long) retval);
4560 return retval;
4561 }
4562
4563 static int
4564 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4565 CORE_ADDR addr, int len)
4566 {
4567 CORE_ADDR retval;
4568
4569 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4570 addr, len);
4571
4572 fprintf_unfiltered (gdb_stdlog,
4573 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4574 core_addr_to_string (addr), (unsigned long) len,
4575 core_addr_to_string (retval));
4576 return retval;
4577 }
4578
4579 static int
4580 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4581 CORE_ADDR addr, int len, int rw,
4582 struct expression *cond)
4583 {
4584 int retval;
4585
4586 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4587 addr, len,
4588 rw, cond);
4589
4590 fprintf_unfiltered (gdb_stdlog,
4591 "target_can_accel_watchpoint_condition "
4592 "(%s, %d, %d, %s) = %ld\n",
4593 core_addr_to_string (addr), len, rw,
4594 host_address_to_string (cond), (unsigned long) retval);
4595 return retval;
4596 }
4597
4598 static int
4599 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4600 {
4601 int retval;
4602
4603 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4604
4605 fprintf_unfiltered (gdb_stdlog,
4606 "target_stopped_by_watchpoint () = %ld\n",
4607 (unsigned long) retval);
4608 return retval;
4609 }
4610
4611 static int
4612 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4613 {
4614 int retval;
4615
4616 retval = debug_target.to_stopped_data_address (target, addr);
4617
4618 fprintf_unfiltered (gdb_stdlog,
4619 "target_stopped_data_address ([%s]) = %ld\n",
4620 core_addr_to_string (*addr),
4621 (unsigned long)retval);
4622 return retval;
4623 }
4624
4625 static int
4626 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4627 CORE_ADDR addr,
4628 CORE_ADDR start, int length)
4629 {
4630 int retval;
4631
4632 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4633 start, length);
4634
4635 fprintf_filtered (gdb_stdlog,
4636 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4637 core_addr_to_string (addr), core_addr_to_string (start),
4638 length, retval);
4639 return retval;
4640 }
4641
4642 static int
4643 debug_to_insert_hw_breakpoint (struct target_ops *self,
4644 struct gdbarch *gdbarch,
4645 struct bp_target_info *bp_tgt)
4646 {
4647 int retval;
4648
4649 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4650 gdbarch, bp_tgt);
4651
4652 fprintf_unfiltered (gdb_stdlog,
4653 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4654 core_addr_to_string (bp_tgt->placed_address),
4655 (unsigned long) retval);
4656 return retval;
4657 }
4658
4659 static int
4660 debug_to_remove_hw_breakpoint (struct target_ops *self,
4661 struct gdbarch *gdbarch,
4662 struct bp_target_info *bp_tgt)
4663 {
4664 int retval;
4665
4666 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4667 gdbarch, bp_tgt);
4668
4669 fprintf_unfiltered (gdb_stdlog,
4670 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4671 core_addr_to_string (bp_tgt->placed_address),
4672 (unsigned long) retval);
4673 return retval;
4674 }
4675
4676 static int
4677 debug_to_insert_watchpoint (struct target_ops *self,
4678 CORE_ADDR addr, int len, int type,
4679 struct expression *cond)
4680 {
4681 int retval;
4682
4683 retval = debug_target.to_insert_watchpoint (&debug_target,
4684 addr, len, type, cond);
4685
4686 fprintf_unfiltered (gdb_stdlog,
4687 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4688 core_addr_to_string (addr), len, type,
4689 host_address_to_string (cond), (unsigned long) retval);
4690 return retval;
4691 }
4692
4693 static int
4694 debug_to_remove_watchpoint (struct target_ops *self,
4695 CORE_ADDR addr, int len, int type,
4696 struct expression *cond)
4697 {
4698 int retval;
4699
4700 retval = debug_target.to_remove_watchpoint (&debug_target,
4701 addr, len, type, cond);
4702
4703 fprintf_unfiltered (gdb_stdlog,
4704 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4705 core_addr_to_string (addr), len, type,
4706 host_address_to_string (cond), (unsigned long) retval);
4707 return retval;
4708 }
4709
4710 static void
4711 debug_to_terminal_init (struct target_ops *self)
4712 {
4713 debug_target.to_terminal_init (&debug_target);
4714
4715 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4716 }
4717
4718 static void
4719 debug_to_terminal_inferior (struct target_ops *self)
4720 {
4721 debug_target.to_terminal_inferior (&debug_target);
4722
4723 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4724 }
4725
4726 static void
4727 debug_to_terminal_ours_for_output (struct target_ops *self)
4728 {
4729 debug_target.to_terminal_ours_for_output (&debug_target);
4730
4731 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4732 }
4733
4734 static void
4735 debug_to_terminal_ours (struct target_ops *self)
4736 {
4737 debug_target.to_terminal_ours (&debug_target);
4738
4739 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4740 }
4741
4742 static void
4743 debug_to_terminal_save_ours (struct target_ops *self)
4744 {
4745 debug_target.to_terminal_save_ours (&debug_target);
4746
4747 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4748 }
4749
4750 static void
4751 debug_to_terminal_info (struct target_ops *self,
4752 const char *arg, int from_tty)
4753 {
4754 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4755
4756 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4757 from_tty);
4758 }
4759
4760 static void
4761 debug_to_load (struct target_ops *self, char *args, int from_tty)
4762 {
4763 debug_target.to_load (&debug_target, args, from_tty);
4764
4765 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4766 }
4767
4768 static void
4769 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4770 {
4771 debug_target.to_post_startup_inferior (&debug_target, ptid);
4772
4773 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4774 ptid_get_pid (ptid));
4775 }
4776
4777 static int
4778 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4779 {
4780 int retval;
4781
4782 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4783
4784 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4785 pid, retval);
4786
4787 return retval;
4788 }
4789
4790 static int
4791 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4792 {
4793 int retval;
4794
4795 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4796
4797 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4798 pid, retval);
4799
4800 return retval;
4801 }
4802
4803 static int
4804 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4805 {
4806 int retval;
4807
4808 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4809
4810 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4811 pid, retval);
4812
4813 return retval;
4814 }
4815
4816 static int
4817 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4818 {
4819 int retval;
4820
4821 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4822
4823 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4824 pid, retval);
4825
4826 return retval;
4827 }
4828
4829 static int
4830 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4831 {
4832 int retval;
4833
4834 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4835
4836 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4837 pid, retval);
4838
4839 return retval;
4840 }
4841
4842 static int
4843 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4844 {
4845 int retval;
4846
4847 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4848
4849 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4850 pid, retval);
4851
4852 return retval;
4853 }
4854
4855 static int
4856 debug_to_has_exited (struct target_ops *self,
4857 int pid, int wait_status, int *exit_status)
4858 {
4859 int has_exited;
4860
4861 has_exited = debug_target.to_has_exited (&debug_target,
4862 pid, wait_status, exit_status);
4863
4864 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4865 pid, wait_status, *exit_status, has_exited);
4866
4867 return has_exited;
4868 }
4869
4870 static int
4871 debug_to_can_run (struct target_ops *self)
4872 {
4873 int retval;
4874
4875 retval = debug_target.to_can_run (&debug_target);
4876
4877 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4878
4879 return retval;
4880 }
4881
4882 static struct gdbarch *
4883 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4884 {
4885 struct gdbarch *retval;
4886
4887 retval = debug_target.to_thread_architecture (ops, ptid);
4888
4889 fprintf_unfiltered (gdb_stdlog,
4890 "target_thread_architecture (%s) = %s [%s]\n",
4891 target_pid_to_str (ptid),
4892 host_address_to_string (retval),
4893 gdbarch_bfd_arch_info (retval)->printable_name);
4894 return retval;
4895 }
4896
4897 static void
4898 debug_to_stop (struct target_ops *self, ptid_t ptid)
4899 {
4900 debug_target.to_stop (&debug_target, ptid);
4901
4902 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4903 target_pid_to_str (ptid));
4904 }
4905
4906 static void
4907 debug_to_rcmd (struct target_ops *self, char *command,
4908 struct ui_file *outbuf)
4909 {
4910 debug_target.to_rcmd (&debug_target, command, outbuf);
4911 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4912 }
4913
4914 static char *
4915 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4916 {
4917 char *exec_file;
4918
4919 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4920
4921 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4922 pid, exec_file);
4923
4924 return exec_file;
4925 }
4926
4927 static void
4928 setup_target_debug (void)
4929 {
4930 memcpy (&debug_target, &current_target, sizeof debug_target);
4931
4932 current_target.to_open = debug_to_open;
4933 current_target.to_post_attach = debug_to_post_attach;
4934 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4935 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4936 current_target.to_files_info = debug_to_files_info;
4937 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4938 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4939 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4940 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4941 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4942 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4943 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4944 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4945 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4946 current_target.to_watchpoint_addr_within_range
4947 = debug_to_watchpoint_addr_within_range;
4948 current_target.to_region_ok_for_hw_watchpoint
4949 = debug_to_region_ok_for_hw_watchpoint;
4950 current_target.to_can_accel_watchpoint_condition
4951 = debug_to_can_accel_watchpoint_condition;
4952 current_target.to_terminal_init = debug_to_terminal_init;
4953 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4954 current_target.to_terminal_ours_for_output
4955 = debug_to_terminal_ours_for_output;
4956 current_target.to_terminal_ours = debug_to_terminal_ours;
4957 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4958 current_target.to_terminal_info = debug_to_terminal_info;
4959 current_target.to_load = debug_to_load;
4960 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4961 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4962 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4963 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4964 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4965 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4966 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4967 current_target.to_has_exited = debug_to_has_exited;
4968 current_target.to_can_run = debug_to_can_run;
4969 current_target.to_stop = debug_to_stop;
4970 current_target.to_rcmd = debug_to_rcmd;
4971 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4972 current_target.to_thread_architecture = debug_to_thread_architecture;
4973 }
4974 \f
4975
4976 static char targ_desc[] =
4977 "Names of targets and files being debugged.\nShows the entire \
4978 stack of targets currently in use (including the exec-file,\n\
4979 core-file, and process, if any), as well as the symbol file name.";
4980
4981 static void
4982 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4983 {
4984 error (_("\"monitor\" command not supported by this target."));
4985 }
4986
4987 static void
4988 do_monitor_command (char *cmd,
4989 int from_tty)
4990 {
4991 target_rcmd (cmd, gdb_stdtarg);
4992 }
4993
4994 /* Print the name of each layers of our target stack. */
4995
4996 static void
4997 maintenance_print_target_stack (char *cmd, int from_tty)
4998 {
4999 struct target_ops *t;
5000
5001 printf_filtered (_("The current target stack is:\n"));
5002
5003 for (t = target_stack; t != NULL; t = t->beneath)
5004 {
5005 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
5006 }
5007 }
5008
5009 /* Controls if async mode is permitted. */
5010 int target_async_permitted = 0;
5011
5012 /* The set command writes to this variable. If the inferior is
5013 executing, target_async_permitted is *not* updated. */
5014 static int target_async_permitted_1 = 0;
5015
5016 static void
5017 set_target_async_command (char *args, int from_tty,
5018 struct cmd_list_element *c)
5019 {
5020 if (have_live_inferiors ())
5021 {
5022 target_async_permitted_1 = target_async_permitted;
5023 error (_("Cannot change this setting while the inferior is running."));
5024 }
5025
5026 target_async_permitted = target_async_permitted_1;
5027 }
5028
5029 static void
5030 show_target_async_command (struct ui_file *file, int from_tty,
5031 struct cmd_list_element *c,
5032 const char *value)
5033 {
5034 fprintf_filtered (file,
5035 _("Controlling the inferior in "
5036 "asynchronous mode is %s.\n"), value);
5037 }
5038
5039 /* Temporary copies of permission settings. */
5040
5041 static int may_write_registers_1 = 1;
5042 static int may_write_memory_1 = 1;
5043 static int may_insert_breakpoints_1 = 1;
5044 static int may_insert_tracepoints_1 = 1;
5045 static int may_insert_fast_tracepoints_1 = 1;
5046 static int may_stop_1 = 1;
5047
5048 /* Make the user-set values match the real values again. */
5049
5050 void
5051 update_target_permissions (void)
5052 {
5053 may_write_registers_1 = may_write_registers;
5054 may_write_memory_1 = may_write_memory;
5055 may_insert_breakpoints_1 = may_insert_breakpoints;
5056 may_insert_tracepoints_1 = may_insert_tracepoints;
5057 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5058 may_stop_1 = may_stop;
5059 }
5060
5061 /* The one function handles (most of) the permission flags in the same
5062 way. */
5063
5064 static void
5065 set_target_permissions (char *args, int from_tty,
5066 struct cmd_list_element *c)
5067 {
5068 if (target_has_execution)
5069 {
5070 update_target_permissions ();
5071 error (_("Cannot change this setting while the inferior is running."));
5072 }
5073
5074 /* Make the real values match the user-changed values. */
5075 may_write_registers = may_write_registers_1;
5076 may_insert_breakpoints = may_insert_breakpoints_1;
5077 may_insert_tracepoints = may_insert_tracepoints_1;
5078 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5079 may_stop = may_stop_1;
5080 update_observer_mode ();
5081 }
5082
5083 /* Set memory write permission independently of observer mode. */
5084
5085 static void
5086 set_write_memory_permission (char *args, int from_tty,
5087 struct cmd_list_element *c)
5088 {
5089 /* Make the real values match the user-changed values. */
5090 may_write_memory = may_write_memory_1;
5091 update_observer_mode ();
5092 }
5093
5094
5095 void
5096 initialize_targets (void)
5097 {
5098 init_dummy_target ();
5099 push_target (&dummy_target);
5100
5101 add_info ("target", target_info, targ_desc);
5102 add_info ("files", target_info, targ_desc);
5103
5104 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5105 Set target debugging."), _("\
5106 Show target debugging."), _("\
5107 When non-zero, target debugging is enabled. Higher numbers are more\n\
5108 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5109 command."),
5110 NULL,
5111 show_targetdebug,
5112 &setdebuglist, &showdebuglist);
5113
5114 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5115 &trust_readonly, _("\
5116 Set mode for reading from readonly sections."), _("\
5117 Show mode for reading from readonly sections."), _("\
5118 When this mode is on, memory reads from readonly sections (such as .text)\n\
5119 will be read from the object file instead of from the target. This will\n\
5120 result in significant performance improvement for remote targets."),
5121 NULL,
5122 show_trust_readonly,
5123 &setlist, &showlist);
5124
5125 add_com ("monitor", class_obscure, do_monitor_command,
5126 _("Send a command to the remote monitor (remote targets only)."));
5127
5128 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5129 _("Print the name of each layer of the internal target stack."),
5130 &maintenanceprintlist);
5131
5132 add_setshow_boolean_cmd ("target-async", no_class,
5133 &target_async_permitted_1, _("\
5134 Set whether gdb controls the inferior in asynchronous mode."), _("\
5135 Show whether gdb controls the inferior in asynchronous mode."), _("\
5136 Tells gdb whether to control the inferior in asynchronous mode."),
5137 set_target_async_command,
5138 show_target_async_command,
5139 &setlist,
5140 &showlist);
5141
5142 add_setshow_boolean_cmd ("may-write-registers", class_support,
5143 &may_write_registers_1, _("\
5144 Set permission to write into registers."), _("\
5145 Show permission to write into registers."), _("\
5146 When this permission is on, GDB may write into the target's registers.\n\
5147 Otherwise, any sort of write attempt will result in an error."),
5148 set_target_permissions, NULL,
5149 &setlist, &showlist);
5150
5151 add_setshow_boolean_cmd ("may-write-memory", class_support,
5152 &may_write_memory_1, _("\
5153 Set permission to write into target memory."), _("\
5154 Show permission to write into target memory."), _("\
5155 When this permission is on, GDB may write into the target's memory.\n\
5156 Otherwise, any sort of write attempt will result in an error."),
5157 set_write_memory_permission, NULL,
5158 &setlist, &showlist);
5159
5160 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5161 &may_insert_breakpoints_1, _("\
5162 Set permission to insert breakpoints in the target."), _("\
5163 Show permission to insert breakpoints in the target."), _("\
5164 When this permission is on, GDB may insert breakpoints in the program.\n\
5165 Otherwise, any sort of insertion attempt will result in an error."),
5166 set_target_permissions, NULL,
5167 &setlist, &showlist);
5168
5169 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5170 &may_insert_tracepoints_1, _("\
5171 Set permission to insert tracepoints in the target."), _("\
5172 Show permission to insert tracepoints in the target."), _("\
5173 When this permission is on, GDB may insert tracepoints in the program.\n\
5174 Otherwise, any sort of insertion attempt will result in an error."),
5175 set_target_permissions, NULL,
5176 &setlist, &showlist);
5177
5178 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5179 &may_insert_fast_tracepoints_1, _("\
5180 Set permission to insert fast tracepoints in the target."), _("\
5181 Show permission to insert fast tracepoints in the target."), _("\
5182 When this permission is on, GDB may insert fast tracepoints.\n\
5183 Otherwise, any sort of insertion attempt will result in an error."),
5184 set_target_permissions, NULL,
5185 &setlist, &showlist);
5186
5187 add_setshow_boolean_cmd ("may-interrupt", class_support,
5188 &may_stop_1, _("\
5189 Set permission to interrupt or signal the target."), _("\
5190 Show permission to interrupt or signal the target."), _("\
5191 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5192 Otherwise, any attempt to interrupt or stop will be ignored."),
5193 set_target_permissions, NULL,
5194 &setlist, &showlist);
5195 }