]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
gdb: constify auxv parse functions
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct trace_state_variable;
33 struct trace_status;
34 struct uploaded_tsv;
35 struct uploaded_tp;
36 struct static_tracepoint_marker;
37 struct traceframe_info;
38 struct expression;
39 struct dcache_struct;
40 struct inferior;
41
42 #include "infrun.h" /* For enum exec_direction_kind. */
43 #include "breakpoint.h" /* For enum bptype. */
44 #include "gdbsupport/scoped_restore.h"
45 #include "gdbsupport/refcounted-object.h"
46 #include "target-section.h"
47
48 /* This include file defines the interface between the main part
49 of the debugger, and the part which is target-specific, or
50 specific to the communications interface between us and the
51 target.
52
53 A TARGET is an interface between the debugger and a particular
54 kind of file or process. Targets can be STACKED in STRATA,
55 so that more than one target can potentially respond to a request.
56 In particular, memory accesses will walk down the stack of targets
57 until they find a target that is interested in handling that particular
58 address. STRATA are artificial boundaries on the stack, within
59 which particular kinds of targets live. Strata exist so that
60 people don't get confused by pushing e.g. a process target and then
61 a file target, and wondering why they can't see the current values
62 of variables any more (the file target is handling them and they
63 never get to the process target). So when you push a file target,
64 it goes into the file stratum, which is always below the process
65 stratum.
66
67 Note that rather than allow an empty stack, we always have the
68 dummy target at the bottom stratum, so we can call the target
69 methods without checking them. */
70
71 #include "target/target.h"
72 #include "target/resume.h"
73 #include "target/wait.h"
74 #include "target/waitstatus.h"
75 #include "bfd.h"
76 #include "symtab.h"
77 #include "memattr.h"
78 #include "gdbsupport/gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm-flags.h"
83 #include "tracepoint.h"
84 #include "gdbsupport/fileio.h"
85
86 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
87
88 enum strata
89 {
90 dummy_stratum, /* The lowest of the low */
91 file_stratum, /* Executable files, etc */
92 process_stratum, /* Executing processes or core dump files */
93 thread_stratum, /* Executing threads */
94 record_stratum, /* Support record debugging */
95 arch_stratum, /* Architecture overrides */
96 debug_stratum /* Target debug. Must be last. */
97 };
98
99 enum thread_control_capabilities
100 {
101 tc_none = 0, /* Default: can't control thread execution. */
102 tc_schedlock = 1, /* Can lock the thread scheduler. */
103 };
104
105 /* The structure below stores information about a system call.
106 It is basically used in the "catch syscall" command, and in
107 every function that gives information about a system call.
108
109 It's also good to mention that its fields represent everything
110 that we currently know about a syscall in GDB. */
111 struct syscall
112 {
113 /* The syscall number. */
114 int number;
115
116 /* The syscall name. */
117 const char *name;
118 };
119
120 /* Return a pretty printed form of TARGET_OPTIONS. */
121 extern std::string target_options_to_string (target_wait_flags target_options);
122
123 /* Possible types of events that the inferior handler will have to
124 deal with. */
125 enum inferior_event_type
126 {
127 /* Process a normal inferior event which will result in target_wait
128 being called. */
129 INF_REG_EVENT,
130 /* We are called to do stuff after the inferior stops. */
131 INF_EXEC_COMPLETE,
132 };
133 \f
134 /* Target objects which can be transfered using target_read,
135 target_write, et cetera. */
136
137 enum target_object
138 {
139 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
140 TARGET_OBJECT_AVR,
141 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
142 TARGET_OBJECT_MEMORY,
143 /* Memory, avoiding GDB's data cache and trusting the executable.
144 Target implementations of to_xfer_partial never need to handle
145 this object, and most callers should not use it. */
146 TARGET_OBJECT_RAW_MEMORY,
147 /* Memory known to be part of the target's stack. This is cached even
148 if it is not in a region marked as such, since it is known to be
149 "normal" RAM. */
150 TARGET_OBJECT_STACK_MEMORY,
151 /* Memory known to be part of the target code. This is cached even
152 if it is not in a region marked as such. */
153 TARGET_OBJECT_CODE_MEMORY,
154 /* Kernel Unwind Table. See "ia64-tdep.c". */
155 TARGET_OBJECT_UNWIND_TABLE,
156 /* Transfer auxilliary vector. */
157 TARGET_OBJECT_AUXV,
158 /* StackGhost cookie. See "sparc-tdep.c". */
159 TARGET_OBJECT_WCOOKIE,
160 /* Target memory map in XML format. */
161 TARGET_OBJECT_MEMORY_MAP,
162 /* Flash memory. This object can be used to write contents to
163 a previously erased flash memory. Using it without erasing
164 flash can have unexpected results. Addresses are physical
165 address on target, and not relative to flash start. */
166 TARGET_OBJECT_FLASH,
167 /* Available target-specific features, e.g. registers and coprocessors.
168 See "target-descriptions.c". ANNEX should never be empty. */
169 TARGET_OBJECT_AVAILABLE_FEATURES,
170 /* Currently loaded libraries, in XML format. */
171 TARGET_OBJECT_LIBRARIES,
172 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
173 TARGET_OBJECT_LIBRARIES_SVR4,
174 /* Currently loaded libraries specific to AIX systems, in XML format. */
175 TARGET_OBJECT_LIBRARIES_AIX,
176 /* Get OS specific data. The ANNEX specifies the type (running
177 processes, etc.). The data being transfered is expected to follow
178 the DTD specified in features/osdata.dtd. */
179 TARGET_OBJECT_OSDATA,
180 /* Extra signal info. Usually the contents of `siginfo_t' on unix
181 platforms. */
182 TARGET_OBJECT_SIGNAL_INFO,
183 /* The list of threads that are being debugged. */
184 TARGET_OBJECT_THREADS,
185 /* Collected static trace data. */
186 TARGET_OBJECT_STATIC_TRACE_DATA,
187 /* Traceframe info, in XML format. */
188 TARGET_OBJECT_TRACEFRAME_INFO,
189 /* Load maps for FDPIC systems. */
190 TARGET_OBJECT_FDPIC,
191 /* Darwin dynamic linker info data. */
192 TARGET_OBJECT_DARWIN_DYLD_INFO,
193 /* OpenVMS Unwind Information Block. */
194 TARGET_OBJECT_OPENVMS_UIB,
195 /* Branch trace data, in XML format. */
196 TARGET_OBJECT_BTRACE,
197 /* Branch trace configuration, in XML format. */
198 TARGET_OBJECT_BTRACE_CONF,
199 /* The pathname of the executable file that was run to create
200 a specified process. ANNEX should be a string representation
201 of the process ID of the process in question, in hexadecimal
202 format. */
203 TARGET_OBJECT_EXEC_FILE,
204 /* FreeBSD virtual memory mappings. */
205 TARGET_OBJECT_FREEBSD_VMMAP,
206 /* FreeBSD process strings. */
207 TARGET_OBJECT_FREEBSD_PS_STRINGS,
208 /* Possible future objects: TARGET_OBJECT_FILE, ... */
209 };
210
211 /* Possible values returned by target_xfer_partial, etc. */
212
213 enum target_xfer_status
214 {
215 /* Some bytes are transferred. */
216 TARGET_XFER_OK = 1,
217
218 /* No further transfer is possible. */
219 TARGET_XFER_EOF = 0,
220
221 /* The piece of the object requested is unavailable. */
222 TARGET_XFER_UNAVAILABLE = 2,
223
224 /* Generic I/O error. Note that it's important that this is '-1',
225 as we still have target_xfer-related code returning hardcoded
226 '-1' on error. */
227 TARGET_XFER_E_IO = -1,
228
229 /* Keep list in sync with target_xfer_status_to_string. */
230 };
231
232 /* Return the string form of STATUS. */
233
234 extern const char *
235 target_xfer_status_to_string (enum target_xfer_status status);
236
237 typedef enum target_xfer_status
238 target_xfer_partial_ftype (struct target_ops *ops,
239 enum target_object object,
240 const char *annex,
241 gdb_byte *readbuf,
242 const gdb_byte *writebuf,
243 ULONGEST offset,
244 ULONGEST len,
245 ULONGEST *xfered_len);
246
247 enum target_xfer_status
248 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
249 const gdb_byte *writebuf, ULONGEST memaddr,
250 LONGEST len, ULONGEST *xfered_len);
251
252 /* Request that OPS transfer up to LEN addressable units of the target's
253 OBJECT. When reading from a memory object, the size of an addressable unit
254 is architecture dependent and can be found using
255 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
256 byte long. BUF should point to a buffer large enough to hold the read data,
257 taking into account the addressable unit size. The OFFSET, for a seekable
258 object, specifies the starting point. The ANNEX can be used to provide
259 additional data-specific information to the target.
260
261 Return the number of addressable units actually transferred, or a negative
262 error code (an 'enum target_xfer_error' value) if the transfer is not
263 supported or otherwise fails. Return of a positive value less than
264 LEN indicates that no further transfer is possible. Unlike the raw
265 to_xfer_partial interface, callers of these functions do not need
266 to retry partial transfers. */
267
268 extern LONGEST target_read (struct target_ops *ops,
269 enum target_object object,
270 const char *annex, gdb_byte *buf,
271 ULONGEST offset, LONGEST len);
272
273 struct memory_read_result
274 {
275 memory_read_result (ULONGEST begin_, ULONGEST end_,
276 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
277 : begin (begin_),
278 end (end_),
279 data (std::move (data_))
280 {
281 }
282
283 ~memory_read_result () = default;
284
285 memory_read_result (memory_read_result &&other) = default;
286
287 DISABLE_COPY_AND_ASSIGN (memory_read_result);
288
289 /* First address that was read. */
290 ULONGEST begin;
291 /* Past-the-end address. */
292 ULONGEST end;
293 /* The data. */
294 gdb::unique_xmalloc_ptr<gdb_byte> data;
295 };
296
297 extern std::vector<memory_read_result> read_memory_robust
298 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
299
300 /* Request that OPS transfer up to LEN addressable units from BUF to the
301 target's OBJECT. When writing to a memory object, the addressable unit
302 size is architecture dependent and can be found using
303 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
304 byte long. The OFFSET, for a seekable object, specifies the starting point.
305 The ANNEX can be used to provide additional data-specific information to
306 the target.
307
308 Return the number of addressable units actually transferred, or a negative
309 error code (an 'enum target_xfer_status' value) if the transfer is not
310 supported or otherwise fails. Return of a positive value less than
311 LEN indicates that no further transfer is possible. Unlike the raw
312 to_xfer_partial interface, callers of these functions do not need to
313 retry partial transfers. */
314
315 extern LONGEST target_write (struct target_ops *ops,
316 enum target_object object,
317 const char *annex, const gdb_byte *buf,
318 ULONGEST offset, LONGEST len);
319
320 /* Similar to target_write, except that it also calls PROGRESS with
321 the number of bytes written and the opaque BATON after every
322 successful partial write (and before the first write). This is
323 useful for progress reporting and user interaction while writing
324 data. To abort the transfer, the progress callback can throw an
325 exception. */
326
327 LONGEST target_write_with_progress (struct target_ops *ops,
328 enum target_object object,
329 const char *annex, const gdb_byte *buf,
330 ULONGEST offset, LONGEST len,
331 void (*progress) (ULONGEST, void *),
332 void *baton);
333
334 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
335 using OPS. The return value will be uninstantiated if the transfer fails or
336 is not supported.
337
338 This method should be used for objects sufficiently small to store
339 in a single xmalloc'd buffer, when no fixed bound on the object's
340 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
341 through this function. */
342
343 extern gdb::optional<gdb::byte_vector> target_read_alloc
344 (struct target_ops *ops, enum target_object object, const char *annex);
345
346 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
347 (therefore usable as a NUL-terminated string). If an error occurs or the
348 transfer is unsupported, the return value will be uninstantiated. Empty
349 objects are returned as allocated but empty strings. Therefore, on success,
350 the returned vector is guaranteed to have at least one element. A warning is
351 issued if the result contains any embedded NUL bytes. */
352
353 extern gdb::optional<gdb::char_vector> target_read_stralloc
354 (struct target_ops *ops, enum target_object object, const char *annex);
355
356 /* See target_ops->to_xfer_partial. */
357 extern target_xfer_partial_ftype target_xfer_partial;
358
359 /* Wrappers to target read/write that perform memory transfers. They
360 throw an error if the memory transfer fails.
361
362 NOTE: cagney/2003-10-23: The naming schema is lifted from
363 "frame.h". The parameter order is lifted from get_frame_memory,
364 which in turn lifted it from read_memory. */
365
366 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
367 gdb_byte *buf, LONGEST len);
368 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
369 CORE_ADDR addr, int len,
370 enum bfd_endian byte_order);
371 \f
372 struct thread_info; /* fwd decl for parameter list below: */
373
374 /* The type of the callback to the to_async method. */
375
376 typedef void async_callback_ftype (enum inferior_event_type event_type,
377 void *context);
378
379 /* Normally target debug printing is purely type-based. However,
380 sometimes it is necessary to override the debug printing on a
381 per-argument basis. This macro can be used, attribute-style, to
382 name the target debug printing function for a particular method
383 argument. FUNC is the name of the function. The macro's
384 definition is empty because it is only used by the
385 make-target-delegates script. */
386
387 #define TARGET_DEBUG_PRINTER(FUNC)
388
389 /* These defines are used to mark target_ops methods. The script
390 make-target-delegates scans these and auto-generates the base
391 method implementations. There are four macros that can be used:
392
393 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
394 does nothing. This is only valid if the method return type is
395 'void'.
396
397 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
398 'tcomplain ()'. The base method simply makes this call, which is
399 assumed not to return.
400
401 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
402 base method returns this expression's value.
403
404 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
405 make-target-delegates does not generate a base method in this case,
406 but instead uses the argument function as the base method. */
407
408 #define TARGET_DEFAULT_IGNORE()
409 #define TARGET_DEFAULT_NORETURN(ARG)
410 #define TARGET_DEFAULT_RETURN(ARG)
411 #define TARGET_DEFAULT_FUNC(ARG)
412
413 /* Each target that can be activated with "target TARGET_NAME" passes
414 the address of one of these objects to add_target, which uses the
415 object's address as unique identifier, and registers the "target
416 TARGET_NAME" command using SHORTNAME as target name. */
417
418 struct target_info
419 {
420 /* Name of this target. */
421 const char *shortname;
422
423 /* Name for printing. */
424 const char *longname;
425
426 /* Documentation. Does not include trailing newline, and starts
427 with a one-line description (probably similar to longname). */
428 const char *doc;
429 };
430
431 struct target_ops
432 : public refcounted_object
433 {
434 /* Return this target's stratum. */
435 virtual strata stratum () const = 0;
436
437 /* To the target under this one. */
438 target_ops *beneath () const;
439
440 /* Free resources associated with the target. Note that singleton
441 targets, like e.g., native targets, are global objects, not
442 heap allocated, and are thus only deleted on GDB exit. The
443 main teardown entry point is the "close" method, below. */
444 virtual ~target_ops () {}
445
446 /* Return a reference to this target's unique target_info
447 object. */
448 virtual const target_info &info () const = 0;
449
450 /* Name this target type. */
451 const char *shortname () const
452 { return info ().shortname; }
453
454 const char *longname () const
455 { return info ().longname; }
456
457 /* Close the target. This is where the target can handle
458 teardown. Heap-allocated targets should delete themselves
459 before returning. */
460 virtual void close ();
461
462 /* Attaches to a process on the target side. Arguments are as
463 passed to the `attach' command by the user. This routine can
464 be called when the target is not on the target-stack, if the
465 target_ops::can_run method returns 1; in that case, it must push
466 itself onto the stack. Upon exit, the target should be ready
467 for normal operations, and should be ready to deliver the
468 status of the process immediately (without waiting) to an
469 upcoming target_wait call. */
470 virtual bool can_attach ();
471 virtual void attach (const char *, int);
472 virtual void post_attach (int)
473 TARGET_DEFAULT_IGNORE ();
474
475 /* Detaches from the inferior. Note that on targets that support
476 async execution (i.e., targets where it is possible to detach
477 from programs with threads running), the target is responsible
478 for removing breakpoints from the program before the actual
479 detach, otherwise the program dies when it hits one. */
480 virtual void detach (inferior *, int)
481 TARGET_DEFAULT_IGNORE ();
482
483 virtual void disconnect (const char *, int)
484 TARGET_DEFAULT_NORETURN (tcomplain ());
485 virtual void resume (ptid_t,
486 int TARGET_DEBUG_PRINTER (target_debug_print_step),
487 enum gdb_signal)
488 TARGET_DEFAULT_NORETURN (noprocess ());
489
490 /* Ensure that all resumed threads are committed to the target.
491
492 See the description of
493 process_stratum_target::commit_resumed_state for more
494 details. */
495 virtual void commit_resumed ()
496 TARGET_DEFAULT_IGNORE ();
497
498 /* See target_wait's description. Note that implementations of
499 this method must not assume that inferior_ptid on entry is
500 pointing at the thread or inferior that ends up reporting an
501 event. The reported event could be for some other thread in
502 the current inferior or even for a different process of the
503 current target. inferior_ptid may also be null_ptid on
504 entry. */
505 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
506 target_wait_flags options)
507 TARGET_DEFAULT_FUNC (default_target_wait);
508 virtual void fetch_registers (struct regcache *, int)
509 TARGET_DEFAULT_IGNORE ();
510 virtual void store_registers (struct regcache *, int)
511 TARGET_DEFAULT_NORETURN (noprocess ());
512 virtual void prepare_to_store (struct regcache *)
513 TARGET_DEFAULT_NORETURN (noprocess ());
514
515 virtual void files_info ()
516 TARGET_DEFAULT_IGNORE ();
517 virtual int insert_breakpoint (struct gdbarch *,
518 struct bp_target_info *)
519 TARGET_DEFAULT_NORETURN (noprocess ());
520 virtual int remove_breakpoint (struct gdbarch *,
521 struct bp_target_info *,
522 enum remove_bp_reason)
523 TARGET_DEFAULT_NORETURN (noprocess ());
524
525 /* Returns true if the target stopped because it executed a
526 software breakpoint. This is necessary for correct background
527 execution / non-stop mode operation, and for correct PC
528 adjustment on targets where the PC needs to be adjusted when a
529 software breakpoint triggers. In these modes, by the time GDB
530 processes a breakpoint event, the breakpoint may already be
531 done from the target, so GDB needs to be able to tell whether
532 it should ignore the event and whether it should adjust the PC.
533 See adjust_pc_after_break. */
534 virtual bool stopped_by_sw_breakpoint ()
535 TARGET_DEFAULT_RETURN (false);
536 /* Returns true if the above method is supported. */
537 virtual bool supports_stopped_by_sw_breakpoint ()
538 TARGET_DEFAULT_RETURN (false);
539
540 /* Returns true if the target stopped for a hardware breakpoint.
541 Likewise, if the target supports hardware breakpoints, this
542 method is necessary for correct background execution / non-stop
543 mode operation. Even though hardware breakpoints do not
544 require PC adjustment, GDB needs to be able to tell whether the
545 hardware breakpoint event is a delayed event for a breakpoint
546 that is already gone and should thus be ignored. */
547 virtual bool stopped_by_hw_breakpoint ()
548 TARGET_DEFAULT_RETURN (false);
549 /* Returns true if the above method is supported. */
550 virtual bool supports_stopped_by_hw_breakpoint ()
551 TARGET_DEFAULT_RETURN (false);
552
553 virtual int can_use_hw_breakpoint (enum bptype, int, int)
554 TARGET_DEFAULT_RETURN (0);
555 virtual int ranged_break_num_registers ()
556 TARGET_DEFAULT_RETURN (-1);
557 virtual int insert_hw_breakpoint (struct gdbarch *,
558 struct bp_target_info *)
559 TARGET_DEFAULT_RETURN (-1);
560 virtual int remove_hw_breakpoint (struct gdbarch *,
561 struct bp_target_info *)
562 TARGET_DEFAULT_RETURN (-1);
563
564 /* Documentation of what the two routines below are expected to do is
565 provided with the corresponding target_* macros. */
566 virtual int remove_watchpoint (CORE_ADDR, int,
567 enum target_hw_bp_type, struct expression *)
568 TARGET_DEFAULT_RETURN (-1);
569 virtual int insert_watchpoint (CORE_ADDR, int,
570 enum target_hw_bp_type, struct expression *)
571 TARGET_DEFAULT_RETURN (-1);
572
573 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
574 enum target_hw_bp_type)
575 TARGET_DEFAULT_RETURN (1);
576 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
577 enum target_hw_bp_type)
578 TARGET_DEFAULT_RETURN (1);
579 virtual bool stopped_by_watchpoint ()
580 TARGET_DEFAULT_RETURN (false);
581 virtual bool have_steppable_watchpoint ()
582 TARGET_DEFAULT_RETURN (false);
583 virtual bool stopped_data_address (CORE_ADDR *)
584 TARGET_DEFAULT_RETURN (false);
585 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
586 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
587
588 /* Documentation of this routine is provided with the corresponding
589 target_* macro. */
590 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
591 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
592
593 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
594 struct expression *)
595 TARGET_DEFAULT_RETURN (false);
596 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
597 TARGET_DEFAULT_RETURN (-1);
598
599 /* Return 1 for sure target can do single step. Return -1 for
600 unknown. Return 0 for target can't do. */
601 virtual int can_do_single_step ()
602 TARGET_DEFAULT_RETURN (-1);
603
604 virtual bool supports_terminal_ours ()
605 TARGET_DEFAULT_RETURN (false);
606 virtual void terminal_init ()
607 TARGET_DEFAULT_IGNORE ();
608 virtual void terminal_inferior ()
609 TARGET_DEFAULT_IGNORE ();
610 virtual void terminal_save_inferior ()
611 TARGET_DEFAULT_IGNORE ();
612 virtual void terminal_ours_for_output ()
613 TARGET_DEFAULT_IGNORE ();
614 virtual void terminal_ours ()
615 TARGET_DEFAULT_IGNORE ();
616 virtual void terminal_info (const char *, int)
617 TARGET_DEFAULT_FUNC (default_terminal_info);
618 virtual void kill ()
619 TARGET_DEFAULT_NORETURN (noprocess ());
620 virtual void load (const char *, int)
621 TARGET_DEFAULT_NORETURN (tcomplain ());
622 /* Start an inferior process and set inferior_ptid to its pid.
623 EXEC_FILE is the file to run.
624 ALLARGS is a string containing the arguments to the program.
625 ENV is the environment vector to pass. Errors reported with error().
626 On VxWorks and various standalone systems, we ignore exec_file. */
627 virtual bool can_create_inferior ();
628 virtual void create_inferior (const char *, const std::string &,
629 char **, int);
630 virtual int insert_fork_catchpoint (int)
631 TARGET_DEFAULT_RETURN (1);
632 virtual int remove_fork_catchpoint (int)
633 TARGET_DEFAULT_RETURN (1);
634 virtual int insert_vfork_catchpoint (int)
635 TARGET_DEFAULT_RETURN (1);
636 virtual int remove_vfork_catchpoint (int)
637 TARGET_DEFAULT_RETURN (1);
638 virtual void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool)
639 TARGET_DEFAULT_FUNC (default_follow_fork);
640 virtual int insert_exec_catchpoint (int)
641 TARGET_DEFAULT_RETURN (1);
642 virtual int remove_exec_catchpoint (int)
643 TARGET_DEFAULT_RETURN (1);
644 virtual void follow_exec (inferior *, ptid_t, const char *)
645 TARGET_DEFAULT_IGNORE ();
646 virtual int set_syscall_catchpoint (int, bool, int,
647 gdb::array_view<const int>)
648 TARGET_DEFAULT_RETURN (1);
649 virtual void mourn_inferior ()
650 TARGET_DEFAULT_FUNC (default_mourn_inferior);
651
652 /* Note that can_run is special and can be invoked on an unpushed
653 target. Targets defining this method must also define
654 to_can_async_p and to_supports_non_stop. */
655 virtual bool can_run ();
656
657 /* Documentation of this routine is provided with the corresponding
658 target_* macro. */
659 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
660 TARGET_DEFAULT_IGNORE ();
661
662 /* Documentation of this routine is provided with the
663 corresponding target_* function. */
664 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
665 TARGET_DEFAULT_IGNORE ();
666
667 virtual bool thread_alive (ptid_t ptid)
668 TARGET_DEFAULT_RETURN (false);
669 virtual void update_thread_list ()
670 TARGET_DEFAULT_IGNORE ();
671 virtual std::string pid_to_str (ptid_t)
672 TARGET_DEFAULT_FUNC (default_pid_to_str);
673 virtual const char *extra_thread_info (thread_info *)
674 TARGET_DEFAULT_RETURN (NULL);
675 virtual const char *thread_name (thread_info *)
676 TARGET_DEFAULT_RETURN (NULL);
677 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
678 int,
679 inferior *inf)
680 TARGET_DEFAULT_RETURN (NULL);
681 /* See target_thread_info_to_thread_handle. */
682 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
683 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
684 virtual void stop (ptid_t)
685 TARGET_DEFAULT_IGNORE ();
686 virtual void interrupt ()
687 TARGET_DEFAULT_IGNORE ();
688 virtual void pass_ctrlc ()
689 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
690 virtual void rcmd (const char *command, struct ui_file *output)
691 TARGET_DEFAULT_FUNC (default_rcmd);
692 virtual const char *pid_to_exec_file (int pid)
693 TARGET_DEFAULT_RETURN (NULL);
694 virtual void log_command (const char *)
695 TARGET_DEFAULT_IGNORE ();
696 virtual const target_section_table *get_section_table ()
697 TARGET_DEFAULT_RETURN (default_get_section_table ());
698
699 /* Provide default values for all "must have" methods. */
700 virtual bool has_all_memory () { return false; }
701 virtual bool has_memory () { return false; }
702 virtual bool has_stack () { return false; }
703 virtual bool has_registers () { return false; }
704 virtual bool has_execution (inferior *inf) { return false; }
705
706 /* Control thread execution. */
707 virtual thread_control_capabilities get_thread_control_capabilities ()
708 TARGET_DEFAULT_RETURN (tc_none);
709 virtual bool attach_no_wait ()
710 TARGET_DEFAULT_RETURN (0);
711 /* This method must be implemented in some situations. See the
712 comment on 'can_run'. */
713 virtual bool can_async_p ()
714 TARGET_DEFAULT_RETURN (false);
715 virtual bool is_async_p ()
716 TARGET_DEFAULT_RETURN (false);
717 virtual void async (bool)
718 TARGET_DEFAULT_NORETURN (tcomplain ());
719 virtual int async_wait_fd ()
720 TARGET_DEFAULT_NORETURN (noprocess ());
721 /* Return true if the target has pending events to report to the
722 core. If true, then GDB avoids resuming the target until all
723 pending events are consumed, so that multiple resumptions can
724 be coalesced as an optimization. Most targets can't tell
725 whether they have pending events without calling target_wait,
726 so we default to returning false. The only downside is that a
727 potential optimization is missed. */
728 virtual bool has_pending_events ()
729 TARGET_DEFAULT_RETURN (false);
730 virtual void thread_events (int)
731 TARGET_DEFAULT_IGNORE ();
732 /* This method must be implemented in some situations. See the
733 comment on 'can_run'. */
734 virtual bool supports_non_stop ()
735 TARGET_DEFAULT_RETURN (false);
736 /* Return true if the target operates in non-stop mode even with
737 "set non-stop off". */
738 virtual bool always_non_stop_p ()
739 TARGET_DEFAULT_RETURN (false);
740 /* find_memory_regions support method for gcore */
741 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
742 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
743 /* make_corefile_notes support method for gcore */
744 virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
745 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
746 /* get_bookmark support method for bookmarks */
747 virtual gdb_byte *get_bookmark (const char *, int)
748 TARGET_DEFAULT_NORETURN (tcomplain ());
749 /* goto_bookmark support method for bookmarks */
750 virtual void goto_bookmark (const gdb_byte *, int)
751 TARGET_DEFAULT_NORETURN (tcomplain ());
752 /* Return the thread-local address at OFFSET in the
753 thread-local storage for the thread PTID and the shared library
754 or executable file given by LOAD_MODULE_ADDR. If that block of
755 thread-local storage hasn't been allocated yet, this function
756 may throw an error. LOAD_MODULE_ADDR may be zero for statically
757 linked multithreaded inferiors. */
758 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
759 CORE_ADDR load_module_addr,
760 CORE_ADDR offset)
761 TARGET_DEFAULT_NORETURN (generic_tls_error ());
762
763 /* Request that OPS transfer up to LEN addressable units of the target's
764 OBJECT. When reading from a memory object, the size of an addressable
765 unit is architecture dependent and can be found using
766 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
767 1 byte long. The OFFSET, for a seekable object, specifies the
768 starting point. The ANNEX can be used to provide additional
769 data-specific information to the target.
770
771 Return the transferred status, error or OK (an
772 'enum target_xfer_status' value). Save the number of addressable units
773 actually transferred in *XFERED_LEN if transfer is successful
774 (TARGET_XFER_OK) or the number unavailable units if the requested
775 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
776 smaller than LEN does not indicate the end of the object, only
777 the end of the transfer; higher level code should continue
778 transferring if desired. This is handled in target.c.
779
780 The interface does not support a "retry" mechanism. Instead it
781 assumes that at least one addressable unit will be transfered on each
782 successful call.
783
784 NOTE: cagney/2003-10-17: The current interface can lead to
785 fragmented transfers. Lower target levels should not implement
786 hacks, such as enlarging the transfer, in an attempt to
787 compensate for this. Instead, the target stack should be
788 extended so that it implements supply/collect methods and a
789 look-aside object cache. With that available, the lowest
790 target can safely and freely "push" data up the stack.
791
792 See target_read and target_write for more information. One,
793 and only one, of readbuf or writebuf must be non-NULL. */
794
795 virtual enum target_xfer_status xfer_partial (enum target_object object,
796 const char *annex,
797 gdb_byte *readbuf,
798 const gdb_byte *writebuf,
799 ULONGEST offset, ULONGEST len,
800 ULONGEST *xfered_len)
801 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
802
803 /* Return the limit on the size of any single memory transfer
804 for the target. */
805
806 virtual ULONGEST get_memory_xfer_limit ()
807 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
808
809 /* Returns the memory map for the target. A return value of NULL
810 means that no memory map is available. If a memory address
811 does not fall within any returned regions, it's assumed to be
812 RAM. The returned memory regions should not overlap.
813
814 The order of regions does not matter; target_memory_map will
815 sort regions by starting address. For that reason, this
816 function should not be called directly except via
817 target_memory_map.
818
819 This method should not cache data; if the memory map could
820 change unexpectedly, it should be invalidated, and higher
821 layers will re-fetch it. */
822 virtual std::vector<mem_region> memory_map ()
823 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
824
825 /* Erases the region of flash memory starting at ADDRESS, of
826 length LENGTH.
827
828 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
829 on flash block boundaries, as reported by 'to_memory_map'. */
830 virtual void flash_erase (ULONGEST address, LONGEST length)
831 TARGET_DEFAULT_NORETURN (tcomplain ());
832
833 /* Finishes a flash memory write sequence. After this operation
834 all flash memory should be available for writing and the result
835 of reading from areas written by 'to_flash_write' should be
836 equal to what was written. */
837 virtual void flash_done ()
838 TARGET_DEFAULT_NORETURN (tcomplain ());
839
840 /* Describe the architecture-specific features of the current
841 inferior.
842
843 Returns the description found, or nullptr if no description was
844 available.
845
846 If some target features differ between threads, the description
847 returned by read_description (and the resulting gdbarch) won't
848 accurately describe all threads. In this case, the
849 thread_architecture method can be used to obtain gdbarches that
850 accurately describe each thread. */
851 virtual const struct target_desc *read_description ()
852 TARGET_DEFAULT_RETURN (NULL);
853
854 /* Build the PTID of the thread on which a given task is running,
855 based on LWP and THREAD. These values are extracted from the
856 task Private_Data section of the Ada Task Control Block, and
857 their interpretation depends on the target. */
858 virtual ptid_t get_ada_task_ptid (long lwp, ULONGEST thread)
859 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
860
861 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
862 Return 0 if *READPTR is already at the end of the buffer.
863 Return -1 if there is insufficient buffer for a whole entry.
864 Return 1 if an entry was read into *TYPEP and *VALP. */
865 virtual int auxv_parse (const gdb_byte **readptr,
866 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
867 TARGET_DEFAULT_FUNC (default_auxv_parse);
868
869 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
870 sequence of bytes in PATTERN with length PATTERN_LEN.
871
872 The result is 1 if found, 0 if not found, and -1 if there was an error
873 requiring halting of the search (e.g. memory read error).
874 If the pattern is found the address is recorded in FOUND_ADDRP. */
875 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
876 const gdb_byte *pattern, ULONGEST pattern_len,
877 CORE_ADDR *found_addrp)
878 TARGET_DEFAULT_FUNC (default_search_memory);
879
880 /* Can target execute in reverse? */
881 virtual bool can_execute_reverse ()
882 TARGET_DEFAULT_RETURN (false);
883
884 /* The direction the target is currently executing. Must be
885 implemented on targets that support reverse execution and async
886 mode. The default simply returns forward execution. */
887 virtual enum exec_direction_kind execution_direction ()
888 TARGET_DEFAULT_FUNC (default_execution_direction);
889
890 /* Does this target support debugging multiple processes
891 simultaneously? */
892 virtual bool supports_multi_process ()
893 TARGET_DEFAULT_RETURN (false);
894
895 /* Does this target support enabling and disabling tracepoints while a trace
896 experiment is running? */
897 virtual bool supports_enable_disable_tracepoint ()
898 TARGET_DEFAULT_RETURN (false);
899
900 /* Does this target support disabling address space randomization? */
901 virtual bool supports_disable_randomization ()
902 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
903
904 /* Does this target support the tracenz bytecode for string collection? */
905 virtual bool supports_string_tracing ()
906 TARGET_DEFAULT_RETURN (false);
907
908 /* Does this target support evaluation of breakpoint conditions on its
909 end? */
910 virtual bool supports_evaluation_of_breakpoint_conditions ()
911 TARGET_DEFAULT_RETURN (false);
912
913 /* Does this target support native dumpcore API? */
914 virtual bool supports_dumpcore ()
915 TARGET_DEFAULT_RETURN (false);
916
917 /* Generate the core file with native target API. */
918 virtual void dumpcore (const char *filename)
919 TARGET_DEFAULT_IGNORE ();
920
921 /* Does this target support evaluation of breakpoint commands on its
922 end? */
923 virtual bool can_run_breakpoint_commands ()
924 TARGET_DEFAULT_RETURN (false);
925
926 /* Determine current architecture of thread PTID.
927
928 The target is supposed to determine the architecture of the code where
929 the target is currently stopped at. The architecture information is
930 used to perform decr_pc_after_break adjustment, and also to determine
931 the frame architecture of the innermost frame. ptrace operations need to
932 operate according to target_gdbarch (). */
933 virtual struct gdbarch *thread_architecture (ptid_t)
934 TARGET_DEFAULT_RETURN (NULL);
935
936 /* Determine current address space of thread PTID. */
937 virtual struct address_space *thread_address_space (ptid_t)
938 TARGET_DEFAULT_RETURN (NULL);
939
940 /* Target file operations. */
941
942 /* Return true if the filesystem seen by the current inferior
943 is the local filesystem, false otherwise. */
944 virtual bool filesystem_is_local ()
945 TARGET_DEFAULT_RETURN (true);
946
947 /* Open FILENAME on the target, in the filesystem as seen by INF,
948 using FLAGS and MODE. If INF is NULL, use the filesystem seen
949 by the debugger (GDB or, for remote targets, the remote stub).
950 If WARN_IF_SLOW is nonzero, print a warning message if the file
951 is being accessed over a link that may be slow. Return a
952 target file descriptor, or -1 if an error occurs (and set
953 *TARGET_ERRNO). */
954 virtual int fileio_open (struct inferior *inf, const char *filename,
955 int flags, int mode, int warn_if_slow,
956 fileio_error *target_errno);
957
958 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
959 Return the number of bytes written, or -1 if an error occurs
960 (and set *TARGET_ERRNO). */
961 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
962 ULONGEST offset, fileio_error *target_errno);
963
964 /* Read up to LEN bytes FD on the target into READ_BUF.
965 Return the number of bytes read, or -1 if an error occurs
966 (and set *TARGET_ERRNO). */
967 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
968 ULONGEST offset, fileio_error *target_errno);
969
970 /* Get information about the file opened as FD and put it in
971 SB. Return 0 on success, or -1 if an error occurs (and set
972 *TARGET_ERRNO). */
973 virtual int fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno);
974
975 /* Close FD on the target. Return 0, or -1 if an error occurs
976 (and set *TARGET_ERRNO). */
977 virtual int fileio_close (int fd, fileio_error *target_errno);
978
979 /* Unlink FILENAME on the target, in the filesystem as seen by
980 INF. If INF is NULL, use the filesystem seen by the debugger
981 (GDB or, for remote targets, the remote stub). Return 0, or
982 -1 if an error occurs (and set *TARGET_ERRNO). */
983 virtual int fileio_unlink (struct inferior *inf,
984 const char *filename,
985 fileio_error *target_errno);
986
987 /* Read value of symbolic link FILENAME on the target, in the
988 filesystem as seen by INF. If INF is NULL, use the filesystem
989 seen by the debugger (GDB or, for remote targets, the remote
990 stub). Return a string, or an empty optional if an error
991 occurs (and set *TARGET_ERRNO). */
992 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
993 const char *filename,
994 fileio_error *target_errno);
995
996 /* Implement the "info proc" command. Returns true if the target
997 actually implemented the command, false otherwise. */
998 virtual bool info_proc (const char *, enum info_proc_what);
999
1000 /* Tracepoint-related operations. */
1001
1002 /* Prepare the target for a tracing run. */
1003 virtual void trace_init ()
1004 TARGET_DEFAULT_NORETURN (tcomplain ());
1005
1006 /* Send full details of a tracepoint location to the target. */
1007 virtual void download_tracepoint (struct bp_location *location)
1008 TARGET_DEFAULT_NORETURN (tcomplain ());
1009
1010 /* Is the target able to download tracepoint locations in current
1011 state? */
1012 virtual bool can_download_tracepoint ()
1013 TARGET_DEFAULT_RETURN (false);
1014
1015 /* Send full details of a trace state variable to the target. */
1016 virtual void download_trace_state_variable (const trace_state_variable &tsv)
1017 TARGET_DEFAULT_NORETURN (tcomplain ());
1018
1019 /* Enable a tracepoint on the target. */
1020 virtual void enable_tracepoint (struct bp_location *location)
1021 TARGET_DEFAULT_NORETURN (tcomplain ());
1022
1023 /* Disable a tracepoint on the target. */
1024 virtual void disable_tracepoint (struct bp_location *location)
1025 TARGET_DEFAULT_NORETURN (tcomplain ());
1026
1027 /* Inform the target info of memory regions that are readonly
1028 (such as text sections), and so it should return data from
1029 those rather than look in the trace buffer. */
1030 virtual void trace_set_readonly_regions ()
1031 TARGET_DEFAULT_NORETURN (tcomplain ());
1032
1033 /* Start a trace run. */
1034 virtual void trace_start ()
1035 TARGET_DEFAULT_NORETURN (tcomplain ());
1036
1037 /* Get the current status of a tracing run. */
1038 virtual int get_trace_status (struct trace_status *ts)
1039 TARGET_DEFAULT_RETURN (-1);
1040
1041 virtual void get_tracepoint_status (struct breakpoint *tp,
1042 struct uploaded_tp *utp)
1043 TARGET_DEFAULT_NORETURN (tcomplain ());
1044
1045 /* Stop a trace run. */
1046 virtual void trace_stop ()
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Ask the target to find a trace frame of the given type TYPE,
1050 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1051 number of the trace frame, and also the tracepoint number at
1052 TPP. If no trace frame matches, return -1. May throw if the
1053 operation fails. */
1054 virtual int trace_find (enum trace_find_type type, int num,
1055 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1056 TARGET_DEFAULT_RETURN (-1);
1057
1058 /* Get the value of the trace state variable number TSV, returning
1059 1 if the value is known and writing the value itself into the
1060 location pointed to by VAL, else returning 0. */
1061 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1062 TARGET_DEFAULT_RETURN (false);
1063
1064 virtual int save_trace_data (const char *filename)
1065 TARGET_DEFAULT_NORETURN (tcomplain ());
1066
1067 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1068 TARGET_DEFAULT_RETURN (0);
1069
1070 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1071 TARGET_DEFAULT_RETURN (0);
1072
1073 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1074 ULONGEST offset, LONGEST len)
1075 TARGET_DEFAULT_NORETURN (tcomplain ());
1076
1077 /* Get the minimum length of instruction on which a fast tracepoint
1078 may be set on the target. If this operation is unsupported,
1079 return -1. If for some reason the minimum length cannot be
1080 determined, return 0. */
1081 virtual int get_min_fast_tracepoint_insn_len ()
1082 TARGET_DEFAULT_RETURN (-1);
1083
1084 /* Set the target's tracing behavior in response to unexpected
1085 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1086 virtual void set_disconnected_tracing (int val)
1087 TARGET_DEFAULT_IGNORE ();
1088 virtual void set_circular_trace_buffer (int val)
1089 TARGET_DEFAULT_IGNORE ();
1090 /* Set the size of trace buffer in the target. */
1091 virtual void set_trace_buffer_size (LONGEST val)
1092 TARGET_DEFAULT_IGNORE ();
1093
1094 /* Add/change textual notes about the trace run, returning true if
1095 successful, false otherwise. */
1096 virtual bool set_trace_notes (const char *user, const char *notes,
1097 const char *stopnotes)
1098 TARGET_DEFAULT_RETURN (false);
1099
1100 /* Return the processor core that thread PTID was last seen on.
1101 This information is updated only when:
1102 - update_thread_list is called
1103 - thread stops
1104 If the core cannot be determined -- either for the specified
1105 thread, or right now, or in this debug session, or for this
1106 target -- return -1. */
1107 virtual int core_of_thread (ptid_t ptid)
1108 TARGET_DEFAULT_RETURN (-1);
1109
1110 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1111 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1112 a match, 0 if there's a mismatch, and -1 if an error is
1113 encountered while reading memory. */
1114 virtual int verify_memory (const gdb_byte *data,
1115 CORE_ADDR memaddr, ULONGEST size)
1116 TARGET_DEFAULT_FUNC (default_verify_memory);
1117
1118 /* Return the address of the start of the Thread Information Block
1119 a Windows OS specific feature. */
1120 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1121 TARGET_DEFAULT_NORETURN (tcomplain ());
1122
1123 /* Send the new settings of write permission variables. */
1124 virtual void set_permissions ()
1125 TARGET_DEFAULT_IGNORE ();
1126
1127 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1128 with its details. Return true on success, false on failure. */
1129 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1130 static_tracepoint_marker *marker)
1131 TARGET_DEFAULT_RETURN (false);
1132
1133 /* Return a vector of all tracepoints markers string id ID, or all
1134 markers if ID is NULL. */
1135 virtual std::vector<static_tracepoint_marker>
1136 static_tracepoint_markers_by_strid (const char *id)
1137 TARGET_DEFAULT_NORETURN (tcomplain ());
1138
1139 /* Return a traceframe info object describing the current
1140 traceframe's contents. This method should not cache data;
1141 higher layers take care of caching, invalidating, and
1142 re-fetching when necessary. */
1143 virtual traceframe_info_up traceframe_info ()
1144 TARGET_DEFAULT_NORETURN (tcomplain ());
1145
1146 /* Ask the target to use or not to use agent according to USE.
1147 Return true if successful, false otherwise. */
1148 virtual bool use_agent (bool use)
1149 TARGET_DEFAULT_NORETURN (tcomplain ());
1150
1151 /* Is the target able to use agent in current state? */
1152 virtual bool can_use_agent ()
1153 TARGET_DEFAULT_RETURN (false);
1154
1155 /* Enable branch tracing for TP using CONF configuration.
1156 Return a branch trace target information struct for reading and for
1157 disabling branch trace. */
1158 virtual struct btrace_target_info *enable_btrace (thread_info *tp,
1159 const struct btrace_config *conf)
1160 TARGET_DEFAULT_NORETURN (tcomplain ());
1161
1162 /* Disable branch tracing and deallocate TINFO. */
1163 virtual void disable_btrace (struct btrace_target_info *tinfo)
1164 TARGET_DEFAULT_NORETURN (tcomplain ());
1165
1166 /* Disable branch tracing and deallocate TINFO. This function is similar
1167 to to_disable_btrace, except that it is called during teardown and is
1168 only allowed to perform actions that are safe. A counter-example would
1169 be attempting to talk to a remote target. */
1170 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1171 TARGET_DEFAULT_NORETURN (tcomplain ());
1172
1173 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1174 DATA is cleared before new trace is added. */
1175 virtual enum btrace_error read_btrace (struct btrace_data *data,
1176 struct btrace_target_info *btinfo,
1177 enum btrace_read_type type)
1178 TARGET_DEFAULT_NORETURN (tcomplain ());
1179
1180 /* Get the branch trace configuration. */
1181 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1182 TARGET_DEFAULT_RETURN (NULL);
1183
1184 /* Current recording method. */
1185 virtual enum record_method record_method (ptid_t ptid)
1186 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1187
1188 /* Stop trace recording. */
1189 virtual void stop_recording ()
1190 TARGET_DEFAULT_IGNORE ();
1191
1192 /* Print information about the recording. */
1193 virtual void info_record ()
1194 TARGET_DEFAULT_IGNORE ();
1195
1196 /* Save the recorded execution trace into a file. */
1197 virtual void save_record (const char *filename)
1198 TARGET_DEFAULT_NORETURN (tcomplain ());
1199
1200 /* Delete the recorded execution trace from the current position
1201 onwards. */
1202 virtual bool supports_delete_record ()
1203 TARGET_DEFAULT_RETURN (false);
1204 virtual void delete_record ()
1205 TARGET_DEFAULT_NORETURN (tcomplain ());
1206
1207 /* Query if the record target is currently replaying PTID. */
1208 virtual bool record_is_replaying (ptid_t ptid)
1209 TARGET_DEFAULT_RETURN (false);
1210
1211 /* Query if the record target will replay PTID if it were resumed in
1212 execution direction DIR. */
1213 virtual bool record_will_replay (ptid_t ptid, int dir)
1214 TARGET_DEFAULT_RETURN (false);
1215
1216 /* Stop replaying. */
1217 virtual void record_stop_replaying ()
1218 TARGET_DEFAULT_IGNORE ();
1219
1220 /* Go to the begin of the execution trace. */
1221 virtual void goto_record_begin ()
1222 TARGET_DEFAULT_NORETURN (tcomplain ());
1223
1224 /* Go to the end of the execution trace. */
1225 virtual void goto_record_end ()
1226 TARGET_DEFAULT_NORETURN (tcomplain ());
1227
1228 /* Go to a specific location in the recorded execution trace. */
1229 virtual void goto_record (ULONGEST insn)
1230 TARGET_DEFAULT_NORETURN (tcomplain ());
1231
1232 /* Disassemble SIZE instructions in the recorded execution trace from
1233 the current position.
1234 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1235 disassemble SIZE succeeding instructions. */
1236 virtual void insn_history (int size, gdb_disassembly_flags flags)
1237 TARGET_DEFAULT_NORETURN (tcomplain ());
1238
1239 /* Disassemble SIZE instructions in the recorded execution trace around
1240 FROM.
1241 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1242 disassemble SIZE instructions after FROM. */
1243 virtual void insn_history_from (ULONGEST from, int size,
1244 gdb_disassembly_flags flags)
1245 TARGET_DEFAULT_NORETURN (tcomplain ());
1246
1247 /* Disassemble a section of the recorded execution trace from instruction
1248 BEGIN (inclusive) to instruction END (inclusive). */
1249 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1250 gdb_disassembly_flags flags)
1251 TARGET_DEFAULT_NORETURN (tcomplain ());
1252
1253 /* Print a function trace of the recorded execution trace.
1254 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1255 succeeding functions. */
1256 virtual void call_history (int size, record_print_flags flags)
1257 TARGET_DEFAULT_NORETURN (tcomplain ());
1258
1259 /* Print a function trace of the recorded execution trace starting
1260 at function FROM.
1261 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1262 SIZE functions after FROM. */
1263 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1264 TARGET_DEFAULT_NORETURN (tcomplain ());
1265
1266 /* Print a function trace of an execution trace section from function BEGIN
1267 (inclusive) to function END (inclusive). */
1268 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1269 TARGET_DEFAULT_NORETURN (tcomplain ());
1270
1271 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1272 non-empty annex. */
1273 virtual bool augmented_libraries_svr4_read ()
1274 TARGET_DEFAULT_RETURN (false);
1275
1276 /* Those unwinders are tried before any other arch unwinders. If
1277 SELF doesn't have unwinders, it should delegate to the
1278 "beneath" target. */
1279 virtual const struct frame_unwind *get_unwinder ()
1280 TARGET_DEFAULT_RETURN (NULL);
1281
1282 virtual const struct frame_unwind *get_tailcall_unwinder ()
1283 TARGET_DEFAULT_RETURN (NULL);
1284
1285 /* Prepare to generate a core file. */
1286 virtual void prepare_to_generate_core ()
1287 TARGET_DEFAULT_IGNORE ();
1288
1289 /* Cleanup after generating a core file. */
1290 virtual void done_generating_core ()
1291 TARGET_DEFAULT_IGNORE ();
1292
1293 /* Returns true if the target supports memory tagging, false otherwise. */
1294 virtual bool supports_memory_tagging ()
1295 TARGET_DEFAULT_RETURN (false);
1296
1297 /* Return the allocated memory tags of type TYPE associated with
1298 [ADDRESS, ADDRESS + LEN) in TAGS.
1299
1300 LEN is the number of bytes in the memory range. TAGS is a vector of
1301 bytes containing the tags found in the above memory range.
1302
1303 It is up to the architecture/target to interpret the bytes in the TAGS
1304 vector and read the tags appropriately.
1305
1306 Returns true if fetching the tags succeeded and false otherwise. */
1307 virtual bool fetch_memtags (CORE_ADDR address, size_t len,
1308 gdb::byte_vector &tags, int type)
1309 TARGET_DEFAULT_NORETURN (tcomplain ());
1310
1311 /* Write the allocation tags of type TYPE contained in TAGS to the memory
1312 range [ADDRESS, ADDRESS + LEN).
1313
1314 LEN is the number of bytes in the memory range. TAGS is a vector of
1315 bytes containing the tags to be stored to the memory range.
1316
1317 It is up to the architecture/target to interpret the bytes in the TAGS
1318 vector and store them appropriately.
1319
1320 Returns true if storing the tags succeeded and false otherwise. */
1321 virtual bool store_memtags (CORE_ADDR address, size_t len,
1322 const gdb::byte_vector &tags, int type)
1323 TARGET_DEFAULT_NORETURN (tcomplain ());
1324 };
1325
1326 /* Deleter for std::unique_ptr. See comments in
1327 target_ops::~target_ops and target_ops::close about heap-allocated
1328 targets. */
1329 struct target_ops_deleter
1330 {
1331 void operator() (target_ops *target)
1332 {
1333 target->close ();
1334 }
1335 };
1336
1337 /* A unique pointer for target_ops. */
1338 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1339
1340 /* Decref a target and close if, if there are no references left. */
1341 extern void decref_target (target_ops *t);
1342
1343 /* A policy class to interface gdb::ref_ptr with target_ops. */
1344
1345 struct target_ops_ref_policy
1346 {
1347 static void incref (target_ops *t)
1348 {
1349 t->incref ();
1350 }
1351
1352 static void decref (target_ops *t)
1353 {
1354 decref_target (t);
1355 }
1356 };
1357
1358 /* A gdb::ref_ptr pointer to a target_ops. */
1359 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1360
1361 /* Native target backends call this once at initialization time to
1362 inform the core about which is the target that can respond to "run"
1363 or "attach". Note: native targets are always singletons. */
1364 extern void set_native_target (target_ops *target);
1365
1366 /* Get the registered native target, if there's one. Otherwise return
1367 NULL. */
1368 extern target_ops *get_native_target ();
1369
1370 /* Type that manages a target stack. See description of target stacks
1371 and strata at the top of the file. */
1372
1373 class target_stack
1374 {
1375 public:
1376 target_stack () = default;
1377 DISABLE_COPY_AND_ASSIGN (target_stack);
1378
1379 /* Push a new target into the stack of the existing target
1380 accessors, possibly superseding some existing accessor. */
1381 void push (target_ops *t);
1382
1383 /* Remove a target from the stack, wherever it may be. Return true
1384 if it was removed, false otherwise. */
1385 bool unpush (target_ops *t);
1386
1387 /* Returns true if T is pushed on the target stack. */
1388 bool is_pushed (const target_ops *t) const
1389 { return at (t->stratum ()) == t; }
1390
1391 /* Return the target at STRATUM. */
1392 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1393
1394 /* Return the target at the top of the stack. */
1395 target_ops *top () const { return at (m_top); }
1396
1397 /* Find the next target down the stack from the specified target. */
1398 target_ops *find_beneath (const target_ops *t) const;
1399
1400 private:
1401 /* The stratum of the top target. */
1402 enum strata m_top {};
1403
1404 /* The stack, represented as an array, with one slot per stratum.
1405 If no target is pushed at some stratum, the corresponding slot is
1406 null. */
1407 target_ops *m_stack[(int) debug_stratum + 1] {};
1408 };
1409
1410 /* Return the dummy target. */
1411 extern target_ops *get_dummy_target ();
1412
1413 /* Define easy words for doing these operations on our current target. */
1414
1415 extern const char *target_shortname ();
1416
1417 /* Does whatever cleanup is required for a target that we are no
1418 longer going to be calling. This routine is automatically always
1419 called after popping the target off the target stack - the target's
1420 own methods are no longer available through the target vector.
1421 Closing file descriptors and freeing all memory allocated memory are
1422 typical things it should do. */
1423
1424 void target_close (struct target_ops *targ);
1425
1426 /* Find the correct target to use for "attach". If a target on the
1427 current stack supports attaching, then it is returned. Otherwise,
1428 the default run target is returned. */
1429
1430 extern struct target_ops *find_attach_target (void);
1431
1432 /* Find the correct target to use for "run". If a target on the
1433 current stack supports creating a new inferior, then it is
1434 returned. Otherwise, the default run target is returned. */
1435
1436 extern struct target_ops *find_run_target (void);
1437
1438 /* Some targets don't generate traps when attaching to the inferior,
1439 or their target_attach implementation takes care of the waiting.
1440 These targets must set to_attach_no_wait. */
1441
1442 extern bool target_attach_no_wait ();
1443
1444 /* The target_attach operation places a process under debugger control,
1445 and stops the process.
1446
1447 This operation provides a target-specific hook that allows the
1448 necessary bookkeeping to be performed after an attach completes. */
1449
1450 extern void target_post_attach (int pid);
1451
1452 /* Display a message indicating we're about to attach to a given
1453 process. */
1454
1455 extern void target_announce_attach (int from_tty, int pid);
1456
1457 /* Display a message indicating we're about to detach from the current
1458 inferior process. */
1459
1460 extern void target_announce_detach (int from_tty);
1461
1462 /* Takes a program previously attached to and detaches it.
1463 The program may resume execution (some targets do, some don't) and will
1464 no longer stop on signals, etc. We better not have left any breakpoints
1465 in the program or it'll die when it hits one. FROM_TTY says whether to be
1466 verbose or not. */
1467
1468 extern void target_detach (inferior *inf, int from_tty);
1469
1470 /* Disconnect from the current target without resuming it (leaving it
1471 waiting for a debugger). */
1472
1473 extern void target_disconnect (const char *, int);
1474
1475 /* Resume execution (or prepare for execution) of the current thread
1476 (INFERIOR_PTID), while optionally letting other threads of the
1477 current process or all processes run free.
1478
1479 STEP says whether to hardware single-step the current thread or to
1480 let it run free; SIGNAL is the signal to be given to the current
1481 thread, or GDB_SIGNAL_0 for no signal. The caller may not pass
1482 GDB_SIGNAL_DEFAULT.
1483
1484 SCOPE_PTID indicates the resumption scope. I.e., which threads
1485 (other than the current) run free. If resuming a single thread,
1486 SCOPE_PTID is the same thread as the current thread. A wildcard
1487 SCOPE_PTID (all threads, or all threads of process) lets threads
1488 other than the current (for which the wildcard SCOPE_PTID matches)
1489 resume with their 'thread->suspend.stop_signal' signal (usually
1490 GDB_SIGNAL_0) if it is in "pass" state, or with no signal if in "no
1491 pass" state. Note neither STEP nor SIGNAL apply to any thread
1492 other than the current.
1493
1494 In order to efficiently handle batches of resumption requests,
1495 targets may implement this method such that it records the
1496 resumption request, but defers the actual resumption to the
1497 target_commit_resume method implementation. See
1498 target_commit_resume below. */
1499 extern void target_resume (ptid_t scope_ptid,
1500 int step, enum gdb_signal signal);
1501
1502 /* Ensure that all resumed threads are committed to the target.
1503
1504 See the description of process_stratum_target::commit_resumed_state
1505 for more details. */
1506 extern void target_commit_resumed ();
1507
1508 /* For target_read_memory see target/target.h. */
1509
1510 /* The default target_ops::to_wait implementation. */
1511
1512 extern ptid_t default_target_wait (struct target_ops *ops,
1513 ptid_t ptid,
1514 struct target_waitstatus *status,
1515 target_wait_flags options);
1516
1517 /* Return true if the target has pending events to report to the core.
1518 See target_ops::has_pending_events(). */
1519
1520 extern bool target_has_pending_events ();
1521
1522 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1523
1524 extern void target_fetch_registers (struct regcache *regcache, int regno);
1525
1526 /* Store at least register REGNO, or all regs if REGNO == -1.
1527 It can store as many registers as it wants to, so target_prepare_to_store
1528 must have been previously called. Calls error() if there are problems. */
1529
1530 extern void target_store_registers (struct regcache *regcache, int regs);
1531
1532 /* Get ready to modify the registers array. On machines which store
1533 individual registers, this doesn't need to do anything. On machines
1534 which store all the registers in one fell swoop, this makes sure
1535 that REGISTERS contains all the registers from the program being
1536 debugged. */
1537
1538 extern void target_prepare_to_store (regcache *regcache);
1539
1540 /* Determine current address space of thread PTID. */
1541
1542 struct address_space *target_thread_address_space (ptid_t);
1543
1544 /* Implement the "info proc" command. This returns one if the request
1545 was handled, and zero otherwise. It can also throw an exception if
1546 an error was encountered while attempting to handle the
1547 request. */
1548
1549 int target_info_proc (const char *, enum info_proc_what);
1550
1551 /* Returns true if this target can disable address space randomization. */
1552
1553 int target_supports_disable_randomization (void);
1554
1555 /* Returns true if this target can enable and disable tracepoints
1556 while a trace experiment is running. */
1557
1558 extern bool target_supports_enable_disable_tracepoint ();
1559
1560 extern bool target_supports_string_tracing ();
1561
1562 /* Returns true if this target can handle breakpoint conditions
1563 on its end. */
1564
1565 extern bool target_supports_evaluation_of_breakpoint_conditions ();
1566
1567 /* Does this target support dumpcore API? */
1568
1569 extern bool target_supports_dumpcore ();
1570
1571 /* Generate the core file with target API. */
1572
1573 extern void target_dumpcore (const char *filename);
1574
1575 /* Returns true if this target can handle breakpoint commands
1576 on its end. */
1577
1578 extern bool target_can_run_breakpoint_commands ();
1579
1580 /* For target_read_memory see target/target.h. */
1581
1582 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1583 ssize_t len);
1584
1585 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1586
1587 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1588
1589 /* For target_write_memory see target/target.h. */
1590
1591 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1592 ssize_t len);
1593
1594 /* Fetches the target's memory map. If one is found it is sorted
1595 and returned, after some consistency checking. Otherwise, NULL
1596 is returned. */
1597 std::vector<mem_region> target_memory_map (void);
1598
1599 /* Erases all flash memory regions on the target. */
1600 void flash_erase_command (const char *cmd, int from_tty);
1601
1602 /* Erase the specified flash region. */
1603 void target_flash_erase (ULONGEST address, LONGEST length);
1604
1605 /* Finish a sequence of flash operations. */
1606 void target_flash_done (void);
1607
1608 /* Describes a request for a memory write operation. */
1609 struct memory_write_request
1610 {
1611 memory_write_request (ULONGEST begin_, ULONGEST end_,
1612 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1613 : begin (begin_), end (end_), data (data_), baton (baton_)
1614 {}
1615
1616 /* Begining address that must be written. */
1617 ULONGEST begin;
1618 /* Past-the-end address. */
1619 ULONGEST end;
1620 /* The data to write. */
1621 gdb_byte *data;
1622 /* A callback baton for progress reporting for this request. */
1623 void *baton;
1624 };
1625
1626 /* Enumeration specifying different flash preservation behaviour. */
1627 enum flash_preserve_mode
1628 {
1629 flash_preserve,
1630 flash_discard
1631 };
1632
1633 /* Write several memory blocks at once. This version can be more
1634 efficient than making several calls to target_write_memory, in
1635 particular because it can optimize accesses to flash memory.
1636
1637 Moreover, this is currently the only memory access function in gdb
1638 that supports writing to flash memory, and it should be used for
1639 all cases where access to flash memory is desirable.
1640
1641 REQUESTS is the vector of memory_write_request.
1642 PRESERVE_FLASH_P indicates what to do with blocks which must be
1643 erased, but not completely rewritten.
1644 PROGRESS_CB is a function that will be periodically called to provide
1645 feedback to user. It will be called with the baton corresponding
1646 to the request currently being written. It may also be called
1647 with a NULL baton, when preserved flash sectors are being rewritten.
1648
1649 The function returns 0 on success, and error otherwise. */
1650 int target_write_memory_blocks
1651 (const std::vector<memory_write_request> &requests,
1652 enum flash_preserve_mode preserve_flash_p,
1653 void (*progress_cb) (ULONGEST, void *));
1654
1655 /* Print a line about the current target. */
1656
1657 extern void target_files_info ();
1658
1659 /* Insert a breakpoint at address BP_TGT->placed_address in
1660 the target machine. Returns 0 for success, and returns non-zero or
1661 throws an error (with a detailed failure reason error code and
1662 message) otherwise. */
1663
1664 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1665 struct bp_target_info *bp_tgt);
1666
1667 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1668 machine. Result is 0 for success, non-zero for error. */
1669
1670 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1671 struct bp_target_info *bp_tgt,
1672 enum remove_bp_reason reason);
1673
1674 /* Return true if the target stack has a non-default
1675 "terminal_ours" method. */
1676
1677 extern bool target_supports_terminal_ours (void);
1678
1679 /* Kill the inferior process. Make it go away. */
1680
1681 extern void target_kill (void);
1682
1683 /* Load an executable file into the target process. This is expected
1684 to not only bring new code into the target process, but also to
1685 update GDB's symbol tables to match.
1686
1687 ARG contains command-line arguments, to be broken down with
1688 buildargv (). The first non-switch argument is the filename to
1689 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1690 0)), which is an offset to apply to the load addresses of FILE's
1691 sections. The target may define switches, or other non-switch
1692 arguments, as it pleases. */
1693
1694 extern void target_load (const char *arg, int from_tty);
1695
1696 /* On some targets, we can catch an inferior fork or vfork event when
1697 it occurs. These functions insert/remove an already-created
1698 catchpoint for such events. They return 0 for success, 1 if the
1699 catchpoint type is not supported and -1 for failure. */
1700
1701 extern int target_insert_fork_catchpoint (int pid);
1702
1703 extern int target_remove_fork_catchpoint (int pid);
1704
1705 extern int target_insert_vfork_catchpoint (int pid);
1706
1707 extern int target_remove_vfork_catchpoint (int pid);
1708
1709 /* Call the follow_fork method on the current target stack.
1710
1711 This function is called when the inferior forks or vforks, to perform any
1712 bookkeeping and fiddling necessary to continue debugging either the parent,
1713 the child or both. */
1714
1715 void target_follow_fork (inferior *inf, ptid_t child_ptid,
1716 target_waitkind fork_kind, bool follow_child,
1717 bool detach_fork);
1718
1719 /* Handle the target-specific bookkeeping required when the inferior makes an
1720 exec call.
1721
1722 The current inferior at the time of the call is the inferior that did the
1723 exec. FOLLOW_INF is the inferior in which execution continues post-exec.
1724 If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
1725 inferior, meaning that execution continues with the same inferior. If
1726 "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
1727 that execution continues in a new inferior.
1728
1729 On exit, the target must leave FOLLOW_INF as the current inferior. */
1730
1731 void target_follow_exec (inferior *follow_inf, ptid_t ptid,
1732 const char *execd_pathname);
1733
1734 /* On some targets, we can catch an inferior exec event when it
1735 occurs. These functions insert/remove an already-created
1736 catchpoint for such events. They return 0 for success, 1 if the
1737 catchpoint type is not supported and -1 for failure. */
1738
1739 extern int target_insert_exec_catchpoint (int pid);
1740
1741 extern int target_remove_exec_catchpoint (int pid);
1742
1743 /* Syscall catch.
1744
1745 NEEDED is true if any syscall catch (of any kind) is requested.
1746 If NEEDED is false, it means the target can disable the mechanism to
1747 catch system calls because there are no more catchpoints of this type.
1748
1749 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1750 being requested. In this case, SYSCALL_COUNTS should be ignored.
1751
1752 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1753 element in this array is nonzero if that syscall should be caught.
1754 This argument only matters if ANY_COUNT is zero.
1755
1756 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1757 for failure. */
1758
1759 extern int target_set_syscall_catchpoint
1760 (int pid, bool needed, int any_count,
1761 gdb::array_view<const int> syscall_counts);
1762
1763 /* The debugger has completed a blocking wait() call. There is now
1764 some process event that must be processed. This function should
1765 be defined by those targets that require the debugger to perform
1766 cleanup or internal state changes in response to the process event. */
1767
1768 /* For target_mourn_inferior see target/target.h. */
1769
1770 /* Does target have enough data to do a run or attach command? */
1771
1772 extern int target_can_run ();
1773
1774 /* Set list of signals to be handled in the target.
1775
1776 PASS_SIGNALS is an array indexed by target signal number
1777 (enum gdb_signal). For every signal whose entry in this array is
1778 non-zero, the target is allowed -but not required- to skip reporting
1779 arrival of the signal to the GDB core by returning from target_wait,
1780 and to pass the signal directly to the inferior instead.
1781
1782 However, if the target is hardware single-stepping a thread that is
1783 about to receive a signal, it needs to be reported in any case, even
1784 if mentioned in a previous target_pass_signals call. */
1785
1786 extern void target_pass_signals
1787 (gdb::array_view<const unsigned char> pass_signals);
1788
1789 /* Set list of signals the target may pass to the inferior. This
1790 directly maps to the "handle SIGNAL pass/nopass" setting.
1791
1792 PROGRAM_SIGNALS is an array indexed by target signal
1793 number (enum gdb_signal). For every signal whose entry in this
1794 array is non-zero, the target is allowed to pass the signal to the
1795 inferior. Signals not present in the array shall be silently
1796 discarded. This does not influence whether to pass signals to the
1797 inferior as a result of a target_resume call. This is useful in
1798 scenarios where the target needs to decide whether to pass or not a
1799 signal to the inferior without GDB core involvement, such as for
1800 example, when detaching (as threads may have been suspended with
1801 pending signals not reported to GDB). */
1802
1803 extern void target_program_signals
1804 (gdb::array_view<const unsigned char> program_signals);
1805
1806 /* Check to see if a thread is still alive. */
1807
1808 extern int target_thread_alive (ptid_t ptid);
1809
1810 /* Sync the target's threads with GDB's thread list. */
1811
1812 extern void target_update_thread_list (void);
1813
1814 /* Make target stop in a continuable fashion. (For instance, under
1815 Unix, this should act like SIGSTOP). Note that this function is
1816 asynchronous: it does not wait for the target to become stopped
1817 before returning. If this is the behavior you want please use
1818 target_stop_and_wait. */
1819
1820 extern void target_stop (ptid_t ptid);
1821
1822 /* Interrupt the target. Unlike target_stop, this does not specify
1823 which thread/process reports the stop. For most target this acts
1824 like raising a SIGINT, though that's not absolutely required. This
1825 function is asynchronous. */
1826
1827 extern void target_interrupt ();
1828
1829 /* Pass a ^C, as determined to have been pressed by checking the quit
1830 flag, to the target, as if the user had typed the ^C on the
1831 inferior's controlling terminal while the inferior was in the
1832 foreground. Remote targets may take the opportunity to detect the
1833 remote side is not responding and offer to disconnect. */
1834
1835 extern void target_pass_ctrlc (void);
1836
1837 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1838 target_interrupt. */
1839 extern void default_target_pass_ctrlc (struct target_ops *ops);
1840
1841 /* Send the specified COMMAND to the target's monitor
1842 (shell,interpreter) for execution. The result of the query is
1843 placed in OUTBUF. */
1844
1845 extern void target_rcmd (const char *command, struct ui_file *outbuf);
1846
1847 /* Does the target include memory? (Dummy targets don't.) */
1848
1849 extern int target_has_memory ();
1850
1851 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1852 we start a process.) */
1853
1854 extern int target_has_stack ();
1855
1856 /* Does the target have registers? (Exec files don't.) */
1857
1858 extern int target_has_registers ();
1859
1860 /* Does the target have execution? Can we make it jump (through
1861 hoops), or pop its stack a few times? This means that the current
1862 target is currently executing; for some targets, that's the same as
1863 whether or not the target is capable of execution, but there are
1864 also targets which can be current while not executing. In that
1865 case this will become true after to_create_inferior or
1866 to_attach. INF is the inferior to use; nullptr means to use the
1867 current inferior. */
1868
1869 extern bool target_has_execution (inferior *inf = nullptr);
1870
1871 /* Can the target support the debugger control of thread execution?
1872 Can it lock the thread scheduler? */
1873
1874 extern bool target_can_lock_scheduler ();
1875
1876 /* Controls whether async mode is permitted. */
1877 extern bool target_async_permitted;
1878
1879 /* Can the target support asynchronous execution? */
1880 extern bool target_can_async_p ();
1881
1882 /* An overload of the above that can be called when the target is not yet
1883 pushed, this calls TARGET::can_async_p directly. */
1884 extern bool target_can_async_p (struct target_ops *target);
1885
1886 /* Is the target in asynchronous execution mode? */
1887 extern bool target_is_async_p ();
1888
1889 /* Enables/disabled async target events. */
1890 extern void target_async (bool enable);
1891
1892 /* Enables/disables thread create and exit events. */
1893 extern void target_thread_events (int enable);
1894
1895 /* Whether support for controlling the target backends always in
1896 non-stop mode is enabled. */
1897 extern enum auto_boolean target_non_stop_enabled;
1898
1899 /* Is the target in non-stop mode? Some targets control the inferior
1900 in non-stop mode even with "set non-stop off". Always true if "set
1901 non-stop" is on. */
1902 extern bool target_is_non_stop_p ();
1903
1904 /* Return true if at least one inferior has a non-stop target. */
1905 extern bool exists_non_stop_target ();
1906
1907 extern exec_direction_kind target_execution_direction ();
1908
1909 /* Converts a process id to a string. Usually, the string just contains
1910 `process xyz', but on some systems it may contain
1911 `process xyz thread abc'. */
1912
1913 extern std::string target_pid_to_str (ptid_t ptid);
1914
1915 extern std::string normal_pid_to_str (ptid_t ptid);
1916
1917 /* Return a short string describing extra information about PID,
1918 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1919 is okay. */
1920
1921 extern const char *target_extra_thread_info (thread_info *tp);
1922
1923 /* Return the thread's name, or NULL if the target is unable to determine it.
1924 The returned value must not be freed by the caller.
1925
1926 You likely don't want to call this function, but use the thread_name
1927 function instead, which prefers the user-given thread name, if set. */
1928
1929 extern const char *target_thread_name (struct thread_info *);
1930
1931 /* Given a pointer to a thread library specific thread handle and
1932 its length, return a pointer to the corresponding thread_info struct. */
1933
1934 extern struct thread_info *target_thread_handle_to_thread_info
1935 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1936
1937 /* Given a thread, return the thread handle, a target-specific sequence of
1938 bytes which serves as a thread identifier within the program being
1939 debugged. */
1940 extern gdb::byte_vector target_thread_info_to_thread_handle
1941 (struct thread_info *);
1942
1943 /* Attempts to find the pathname of the executable file
1944 that was run to create a specified process.
1945
1946 The process PID must be stopped when this operation is used.
1947
1948 If the executable file cannot be determined, NULL is returned.
1949
1950 Else, a pointer to a character string containing the pathname
1951 is returned. This string should be copied into a buffer by
1952 the client if the string will not be immediately used, or if
1953 it must persist. */
1954
1955 extern const char *target_pid_to_exec_file (int pid);
1956
1957 /* See the to_thread_architecture description in struct target_ops. */
1958
1959 extern gdbarch *target_thread_architecture (ptid_t ptid);
1960
1961 /*
1962 * Iterator function for target memory regions.
1963 * Calls a callback function once for each memory region 'mapped'
1964 * in the child process. Defined as a simple macro rather than
1965 * as a function macro so that it can be tested for nullity.
1966 */
1967
1968 extern int target_find_memory_regions (find_memory_region_ftype func,
1969 void *data);
1970
1971 /*
1972 * Compose corefile .note section.
1973 */
1974
1975 extern gdb::unique_xmalloc_ptr<char> target_make_corefile_notes (bfd *bfd,
1976 int *size_p);
1977
1978 /* Bookmark interfaces. */
1979 extern gdb_byte *target_get_bookmark (const char *args, int from_tty);
1980
1981 extern void target_goto_bookmark (const gdb_byte *arg, int from_tty);
1982
1983 /* Hardware watchpoint interfaces. */
1984
1985 /* GDB's current model is that there are three "kinds" of watchpoints,
1986 with respect to when they trigger and how you can move past them.
1987
1988 Those are: continuable, steppable, and non-steppable.
1989
1990 Continuable watchpoints are like x86's -- those trigger after the
1991 memory access's side effects are fully committed to memory. I.e.,
1992 they trap with the PC pointing at the next instruction already.
1993 Continuing past such a watchpoint is doable by just normally
1994 continuing, hence the name.
1995
1996 Both steppable and non-steppable watchpoints trap before the memory
1997 access. I.e, the PC points at the instruction that is accessing
1998 the memory. So GDB needs to single-step once past the current
1999 instruction in order to make the access effective and check whether
2000 the instruction's side effects change the watched expression.
2001
2002 Now, in order to step past that instruction, depending on
2003 architecture and target, you can have two situations:
2004
2005 - steppable watchpoints: you can single-step with the watchpoint
2006 still armed, and the watchpoint won't trigger again.
2007
2008 - non-steppable watchpoints: if you try to single-step with the
2009 watchpoint still armed, you'd trap the watchpoint again and the
2010 thread wouldn't make any progress. So GDB needs to temporarily
2011 remove the watchpoint in order to step past it.
2012
2013 If your target/architecture does not signal that it has either
2014 steppable or non-steppable watchpoints via either
2015 target_have_steppable_watchpoint or
2016 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
2017 watchpoints. */
2018
2019 /* Returns true if we were stopped by a hardware watchpoint (memory read or
2020 write). Only the INFERIOR_PTID task is being queried. */
2021
2022 extern bool target_stopped_by_watchpoint ();
2023
2024 /* Returns true if the target stopped because it executed a
2025 software breakpoint instruction. */
2026
2027 extern bool target_stopped_by_sw_breakpoint ();
2028
2029 extern bool target_supports_stopped_by_sw_breakpoint ();
2030
2031 extern bool target_stopped_by_hw_breakpoint ();
2032
2033 extern bool target_supports_stopped_by_hw_breakpoint ();
2034
2035 /* True if we have steppable watchpoints */
2036
2037 extern bool target_have_steppable_watchpoint ();
2038
2039 /* Provide defaults for hardware watchpoint functions. */
2040
2041 /* If the *_hw_beakpoint functions have not been defined
2042 elsewhere use the definitions in the target vector. */
2043
2044 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2045 Returns negative if the target doesn't have enough hardware debug
2046 registers available. Return zero if hardware watchpoint of type
2047 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2048 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2049 CNT is the number of such watchpoints used so far, including this
2050 one. OTHERTYPE is the number of watchpoints of other types than
2051 this one used so far. */
2052
2053 extern int target_can_use_hardware_watchpoint (bptype type, int cnt,
2054 int othertype);
2055
2056 /* Returns the number of debug registers needed to watch the given
2057 memory region, or zero if not supported. */
2058
2059 extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len);
2060
2061 extern int target_can_do_single_step ();
2062
2063 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2064 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2065 COND is the expression for its condition, or NULL if there's none.
2066 Returns 0 for success, 1 if the watchpoint type is not supported,
2067 -1 for failure. */
2068
2069 extern int target_insert_watchpoint (CORE_ADDR addr, int len,
2070 target_hw_bp_type type, expression *cond);
2071
2072 extern int target_remove_watchpoint (CORE_ADDR addr, int len,
2073 target_hw_bp_type type, expression *cond);
2074
2075 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2076 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2077 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2078 masked watchpoints are not supported, -1 for failure. */
2079
2080 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2081 enum target_hw_bp_type);
2082
2083 /* Remove a masked watchpoint at ADDR with the mask MASK.
2084 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2085 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2086 for failure. */
2087
2088 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2089 enum target_hw_bp_type);
2090
2091 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2092 the target machine. Returns 0 for success, and returns non-zero or
2093 throws an error (with a detailed failure reason error code and
2094 message) otherwise. */
2095
2096 extern int target_insert_hw_breakpoint (gdbarch *gdbarch,
2097 bp_target_info *bp_tgt);
2098
2099 extern int target_remove_hw_breakpoint (gdbarch *gdbarch,
2100 bp_target_info *bp_tgt);
2101
2102 /* Return number of debug registers needed for a ranged breakpoint,
2103 or -1 if ranged breakpoints are not supported. */
2104
2105 extern int target_ranged_break_num_registers (void);
2106
2107 /* Return non-zero if target knows the data address which triggered this
2108 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2109 INFERIOR_PTID task is being queried. */
2110 #define target_stopped_data_address(target, addr_p) \
2111 (target)->stopped_data_address (addr_p)
2112
2113 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2114 LENGTH bytes beginning at START. */
2115 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2116 (target)->watchpoint_addr_within_range (addr, start, length)
2117
2118 /* Return non-zero if the target is capable of using hardware to evaluate
2119 the condition expression. In this case, if the condition is false when
2120 the watched memory location changes, execution may continue without the
2121 debugger being notified.
2122
2123 Due to limitations in the hardware implementation, it may be capable of
2124 avoiding triggering the watchpoint in some cases where the condition
2125 expression is false, but may report some false positives as well.
2126 For this reason, GDB will still evaluate the condition expression when
2127 the watchpoint triggers. */
2128
2129 extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr, int len,
2130 int type, expression *cond);
2131
2132 /* Return number of debug registers needed for a masked watchpoint,
2133 -1 if masked watchpoints are not supported or -2 if the given address
2134 and mask combination cannot be used. */
2135
2136 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2137
2138 /* Target can execute in reverse? */
2139
2140 extern bool target_can_execute_reverse ();
2141
2142 extern const struct target_desc *target_read_description (struct target_ops *);
2143
2144 extern ptid_t target_get_ada_task_ptid (long lwp, ULONGEST tid);
2145
2146 /* Main entry point for searching memory. */
2147 extern int target_search_memory (CORE_ADDR start_addr,
2148 ULONGEST search_space_len,
2149 const gdb_byte *pattern,
2150 ULONGEST pattern_len,
2151 CORE_ADDR *found_addrp);
2152
2153 /* Target file operations. */
2154
2155 /* Return true if the filesystem seen by the current inferior
2156 is the local filesystem, zero otherwise. */
2157
2158 extern bool target_filesystem_is_local ();
2159
2160 /* Open FILENAME on the target, in the filesystem as seen by INF,
2161 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2162 the debugger (GDB or, for remote targets, the remote stub). Return
2163 a target file descriptor, or -1 if an error occurs (and set
2164 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2165 if the file is being accessed over a link that may be slow. */
2166 extern int target_fileio_open (struct inferior *inf,
2167 const char *filename, int flags,
2168 int mode, bool warn_if_slow,
2169 fileio_error *target_errno);
2170
2171 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2172 Return the number of bytes written, or -1 if an error occurs
2173 (and set *TARGET_ERRNO). */
2174 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2175 ULONGEST offset, fileio_error *target_errno);
2176
2177 /* Read up to LEN bytes FD on the target into READ_BUF.
2178 Return the number of bytes read, or -1 if an error occurs
2179 (and set *TARGET_ERRNO). */
2180 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2181 ULONGEST offset, fileio_error *target_errno);
2182
2183 /* Get information about the file opened as FD on the target
2184 and put it in SB. Return 0 on success, or -1 if an error
2185 occurs (and set *TARGET_ERRNO). */
2186 extern int target_fileio_fstat (int fd, struct stat *sb,
2187 fileio_error *target_errno);
2188
2189 /* Close FD on the target. Return 0, or -1 if an error occurs
2190 (and set *TARGET_ERRNO). */
2191 extern int target_fileio_close (int fd, fileio_error *target_errno);
2192
2193 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2194 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2195 for remote targets, the remote stub). Return 0, or -1 if an error
2196 occurs (and set *TARGET_ERRNO). */
2197 extern int target_fileio_unlink (struct inferior *inf,
2198 const char *filename,
2199 fileio_error *target_errno);
2200
2201 /* Read value of symbolic link FILENAME on the target, in the
2202 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2203 by the debugger (GDB or, for remote targets, the remote stub).
2204 Return a null-terminated string allocated via xmalloc, or NULL if
2205 an error occurs (and set *TARGET_ERRNO). */
2206 extern gdb::optional<std::string> target_fileio_readlink
2207 (struct inferior *inf, const char *filename, fileio_error *target_errno);
2208
2209 /* Read target file FILENAME, in the filesystem as seen by INF. If
2210 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2211 remote targets, the remote stub). The return value will be -1 if
2212 the transfer fails or is not supported; 0 if the object is empty;
2213 or the length of the object otherwise. If a positive value is
2214 returned, a sufficiently large buffer will be allocated using
2215 xmalloc and returned in *BUF_P containing the contents of the
2216 object.
2217
2218 This method should be used for objects sufficiently small to store
2219 in a single xmalloc'd buffer, when no fixed bound on the object's
2220 size is known in advance. */
2221 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2222 const char *filename,
2223 gdb_byte **buf_p);
2224
2225 /* Read target file FILENAME, in the filesystem as seen by INF. If
2226 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2227 remote targets, the remote stub). The result is NUL-terminated and
2228 returned as a string, allocated using xmalloc. If an error occurs
2229 or the transfer is unsupported, NULL is returned. Empty objects
2230 are returned as allocated but empty strings. A warning is issued
2231 if the result contains any embedded NUL bytes. */
2232 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2233 (struct inferior *inf, const char *filename);
2234
2235 /* Invalidate the target associated with open handles that were open
2236 on target TARG, since we're about to close (and maybe destroy) the
2237 target. The handles remain open from the client's perspective, but
2238 trying to do anything with them other than closing them will fail
2239 with EIO. */
2240 extern void fileio_handles_invalidate_target (target_ops *targ);
2241
2242 /* Tracepoint-related operations. */
2243
2244 extern void target_trace_init ();
2245
2246 extern void target_download_tracepoint (bp_location *location);
2247
2248 extern bool target_can_download_tracepoint ();
2249
2250 extern void target_download_trace_state_variable (const trace_state_variable &tsv);
2251
2252 extern void target_enable_tracepoint (bp_location *loc);
2253
2254 extern void target_disable_tracepoint (bp_location *loc);
2255
2256 extern void target_trace_start ();
2257
2258 extern void target_trace_set_readonly_regions ();
2259
2260 extern int target_get_trace_status (trace_status *ts);
2261
2262 extern void target_get_tracepoint_status (breakpoint *tp, uploaded_tp *utp);
2263
2264 extern void target_trace_stop ();
2265
2266 extern int target_trace_find (trace_find_type type, int num, CORE_ADDR addr1,
2267 CORE_ADDR addr2, int *tpp);
2268
2269 extern bool target_get_trace_state_variable_value (int tsv, LONGEST *val);
2270
2271 extern int target_save_trace_data (const char *filename);
2272
2273 extern int target_upload_tracepoints (uploaded_tp **utpp);
2274
2275 extern int target_upload_trace_state_variables (uploaded_tsv **utsvp);
2276
2277 extern LONGEST target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset,
2278 LONGEST len);
2279
2280 extern int target_get_min_fast_tracepoint_insn_len ();
2281
2282 extern void target_set_disconnected_tracing (int val);
2283
2284 extern void target_set_circular_trace_buffer (int val);
2285
2286 extern void target_set_trace_buffer_size (LONGEST val);
2287
2288 extern bool target_set_trace_notes (const char *user, const char *notes,
2289 const char *stopnotes);
2290
2291 extern bool target_get_tib_address (ptid_t ptid, CORE_ADDR *addr);
2292
2293 extern void target_set_permissions ();
2294
2295 extern bool target_static_tracepoint_marker_at
2296 (CORE_ADDR addr, static_tracepoint_marker *marker);
2297
2298 extern std::vector<static_tracepoint_marker>
2299 target_static_tracepoint_markers_by_strid (const char *marker_id);
2300
2301 extern traceframe_info_up target_traceframe_info ();
2302
2303 extern bool target_use_agent (bool use);
2304
2305 extern bool target_can_use_agent ();
2306
2307 extern bool target_augmented_libraries_svr4_read ();
2308
2309 extern bool target_supports_memory_tagging ();
2310
2311 extern bool target_fetch_memtags (CORE_ADDR address, size_t len,
2312 gdb::byte_vector &tags, int type);
2313
2314 extern bool target_store_memtags (CORE_ADDR address, size_t len,
2315 const gdb::byte_vector &tags, int type);
2316
2317 /* Command logging facility. */
2318
2319 extern void target_log_command (const char *p);
2320
2321 extern int target_core_of_thread (ptid_t ptid);
2322
2323 /* See to_get_unwinder in struct target_ops. */
2324 extern const struct frame_unwind *target_get_unwinder (void);
2325
2326 /* See to_get_tailcall_unwinder in struct target_ops. */
2327 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2328
2329 /* This implements basic memory verification, reading target memory
2330 and performing the comparison here (as opposed to accelerated
2331 verification making use of the qCRC packet, for example). */
2332
2333 extern int simple_verify_memory (struct target_ops* ops,
2334 const gdb_byte *data,
2335 CORE_ADDR memaddr, ULONGEST size);
2336
2337 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2338 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2339 if there's a mismatch, and -1 if an error is encountered while
2340 reading memory. Throws an error if the functionality is found not
2341 to be supported by the current target. */
2342 int target_verify_memory (const gdb_byte *data,
2343 CORE_ADDR memaddr, ULONGEST size);
2344
2345 /* Routines for maintenance of the target structures...
2346
2347 add_target: Add a target to the list of all possible targets.
2348 This only makes sense for targets that should be activated using
2349 the "target TARGET_NAME ..." command.
2350
2351 push_target: Make this target the top of the stack of currently used
2352 targets, within its particular stratum of the stack. Result
2353 is 0 if now atop the stack, nonzero if not on top (maybe
2354 should warn user).
2355
2356 unpush_target: Remove this from the stack of currently used targets,
2357 no matter where it is on the list. Returns 0 if no
2358 change, 1 if removed from stack. */
2359
2360 /* Type of callback called when the user activates a target with
2361 "target TARGET_NAME". The callback routine takes the rest of the
2362 parameters from the command, and (if successful) pushes a new
2363 target onto the stack. */
2364 typedef void target_open_ftype (const char *args, int from_tty);
2365
2366 /* Add the target described by INFO to the list of possible targets
2367 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2368 as the command's completer if not NULL. */
2369
2370 extern void add_target (const target_info &info,
2371 target_open_ftype *func,
2372 completer_ftype *completer = NULL);
2373
2374 /* Adds a command ALIAS for the target described by INFO and marks it
2375 deprecated. This is useful for maintaining backwards compatibility
2376 when renaming targets. */
2377
2378 extern void add_deprecated_target_alias (const target_info &info,
2379 const char *alias);
2380
2381 /* A unique_ptr helper to unpush a target. */
2382
2383 struct target_unpusher
2384 {
2385 void operator() (struct target_ops *ops) const;
2386 };
2387
2388 /* A unique_ptr that unpushes a target on destruction. */
2389
2390 typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;
2391
2392 extern void target_pre_inferior (int);
2393
2394 extern void target_preopen (int);
2395
2396 /* Does whatever cleanup is required to get rid of all pushed targets. */
2397 extern void pop_all_targets (void);
2398
2399 /* Like pop_all_targets, but pops only targets whose stratum is at or
2400 above STRATUM. */
2401 extern void pop_all_targets_at_and_above (enum strata stratum);
2402
2403 /* Like pop_all_targets, but pops only targets whose stratum is
2404 strictly above ABOVE_STRATUM. */
2405 extern void pop_all_targets_above (enum strata above_stratum);
2406
2407 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2408 CORE_ADDR offset);
2409
2410 /* Return the "section" containing the specified address. */
2411 const struct target_section *target_section_by_addr (struct target_ops *target,
2412 CORE_ADDR addr);
2413
2414 /* Return the target section table this target (or the targets
2415 beneath) currently manipulate. */
2416
2417 extern const target_section_table *target_get_section_table
2418 (struct target_ops *target);
2419
2420 /* Default implementation of get_section_table for dummy_target. */
2421
2422 extern const target_section_table *default_get_section_table ();
2423
2424 /* From mem-break.c */
2425
2426 extern int memory_remove_breakpoint (struct target_ops *,
2427 struct gdbarch *, struct bp_target_info *,
2428 enum remove_bp_reason);
2429
2430 extern int memory_insert_breakpoint (struct target_ops *,
2431 struct gdbarch *, struct bp_target_info *);
2432
2433 /* Convenience template use to add memory breakpoints support to a
2434 target. */
2435
2436 template <typename BaseTarget>
2437 struct memory_breakpoint_target : public BaseTarget
2438 {
2439 int insert_breakpoint (struct gdbarch *gdbarch,
2440 struct bp_target_info *bp_tgt) override
2441 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2442
2443 int remove_breakpoint (struct gdbarch *gdbarch,
2444 struct bp_target_info *bp_tgt,
2445 enum remove_bp_reason reason) override
2446 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2447 };
2448
2449 /* Check whether the memory at the breakpoint's placed address still
2450 contains the expected breakpoint instruction. */
2451
2452 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2453 struct bp_target_info *bp_tgt);
2454
2455 extern int default_memory_remove_breakpoint (struct gdbarch *,
2456 struct bp_target_info *);
2457
2458 extern int default_memory_insert_breakpoint (struct gdbarch *,
2459 struct bp_target_info *);
2460
2461
2462 /* From target.c */
2463
2464 extern void initialize_targets (void);
2465
2466 extern void noprocess (void) ATTRIBUTE_NORETURN;
2467
2468 extern void target_require_runnable (void);
2469
2470 /* Find the target at STRATUM. If no target is at that stratum,
2471 return NULL. */
2472
2473 struct target_ops *find_target_at (enum strata stratum);
2474
2475 /* Read OS data object of type TYPE from the target, and return it in XML
2476 format. The return value follows the same rules as target_read_stralloc. */
2477
2478 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2479
2480 /* Stuff that should be shared among the various remote targets. */
2481
2482
2483 /* Timeout limit for response from target. */
2484 extern int remote_timeout;
2485
2486 \f
2487
2488 /* Set the show memory breakpoints mode to show, and return a
2489 scoped_restore to restore it back to the current value. */
2490 extern scoped_restore_tmpl<int>
2491 make_scoped_restore_show_memory_breakpoints (int show);
2492
2493 extern bool may_write_registers;
2494 extern bool may_write_memory;
2495 extern bool may_insert_breakpoints;
2496 extern bool may_insert_tracepoints;
2497 extern bool may_insert_fast_tracepoints;
2498 extern bool may_stop;
2499
2500 extern void update_target_permissions (void);
2501
2502 \f
2503 /* Imported from machine dependent code. */
2504
2505 /* See to_enable_btrace in struct target_ops. */
2506 extern struct btrace_target_info *
2507 target_enable_btrace (thread_info *tp, const struct btrace_config *);
2508
2509 /* See to_disable_btrace in struct target_ops. */
2510 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2511
2512 /* See to_teardown_btrace in struct target_ops. */
2513 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2514
2515 /* See to_read_btrace in struct target_ops. */
2516 extern enum btrace_error target_read_btrace (struct btrace_data *,
2517 struct btrace_target_info *,
2518 enum btrace_read_type);
2519
2520 /* See to_btrace_conf in struct target_ops. */
2521 extern const struct btrace_config *
2522 target_btrace_conf (const struct btrace_target_info *);
2523
2524 /* See to_stop_recording in struct target_ops. */
2525 extern void target_stop_recording (void);
2526
2527 /* See to_save_record in struct target_ops. */
2528 extern void target_save_record (const char *filename);
2529
2530 /* Query if the target supports deleting the execution log. */
2531 extern int target_supports_delete_record (void);
2532
2533 /* See to_delete_record in struct target_ops. */
2534 extern void target_delete_record (void);
2535
2536 /* See to_record_method. */
2537 extern enum record_method target_record_method (ptid_t ptid);
2538
2539 /* See to_record_is_replaying in struct target_ops. */
2540 extern int target_record_is_replaying (ptid_t ptid);
2541
2542 /* See to_record_will_replay in struct target_ops. */
2543 extern int target_record_will_replay (ptid_t ptid, int dir);
2544
2545 /* See to_record_stop_replaying in struct target_ops. */
2546 extern void target_record_stop_replaying (void);
2547
2548 /* See to_goto_record_begin in struct target_ops. */
2549 extern void target_goto_record_begin (void);
2550
2551 /* See to_goto_record_end in struct target_ops. */
2552 extern void target_goto_record_end (void);
2553
2554 /* See to_goto_record in struct target_ops. */
2555 extern void target_goto_record (ULONGEST insn);
2556
2557 /* See to_insn_history. */
2558 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2559
2560 /* See to_insn_history_from. */
2561 extern void target_insn_history_from (ULONGEST from, int size,
2562 gdb_disassembly_flags flags);
2563
2564 /* See to_insn_history_range. */
2565 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2566 gdb_disassembly_flags flags);
2567
2568 /* See to_call_history. */
2569 extern void target_call_history (int size, record_print_flags flags);
2570
2571 /* See to_call_history_from. */
2572 extern void target_call_history_from (ULONGEST begin, int size,
2573 record_print_flags flags);
2574
2575 /* See to_call_history_range. */
2576 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2577 record_print_flags flags);
2578
2579 /* See to_prepare_to_generate_core. */
2580 extern void target_prepare_to_generate_core (void);
2581
2582 /* See to_done_generating_core. */
2583 extern void target_done_generating_core (void);
2584
2585 #endif /* !defined (TARGET_H) */