]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
* target.c (target_read): Stop if target_read_partial returns 0
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #if !defined (TARGET_H)
27 #define TARGET_H
28
29 struct objfile;
30 struct ui_file;
31 struct mem_attrib;
32 struct target_ops;
33 struct bp_target_info;
34
35 /* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54 #include "bfd.h"
55 #include "symtab.h"
56 #include "dcache.h"
57 #include "memattr.h"
58
59 enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
63 core_stratum, /* Core dump files */
64 download_stratum, /* Downloading of remote targets */
65 process_stratum, /* Executing processes */
66 thread_stratum /* Executing threads */
67 };
68
69 enum thread_control_capabilities
70 {
71 tc_none = 0, /* Default: can't control thread execution. */
72 tc_schedlock = 1, /* Can lock the thread scheduler. */
73 tc_switch = 2 /* Can switch the running thread on demand. */
74 };
75
76 /* Stuff for target_wait. */
77
78 /* Generally, what has the program done? */
79 enum target_waitkind
80 {
81 /* The program has exited. The exit status is in value.integer. */
82 TARGET_WAITKIND_EXITED,
83
84 /* The program has stopped with a signal. Which signal is in
85 value.sig. */
86 TARGET_WAITKIND_STOPPED,
87
88 /* The program has terminated with a signal. Which signal is in
89 value.sig. */
90 TARGET_WAITKIND_SIGNALLED,
91
92 /* The program is letting us know that it dynamically loaded something
93 (e.g. it called load(2) on AIX). */
94 TARGET_WAITKIND_LOADED,
95
96 /* The program has forked. A "related" process' ID is in
97 value.related_pid. I.e., if the child forks, value.related_pid
98 is the parent's ID. */
99
100 TARGET_WAITKIND_FORKED,
101
102 /* The program has vforked. A "related" process's ID is in
103 value.related_pid. */
104
105 TARGET_WAITKIND_VFORKED,
106
107 /* The program has exec'ed a new executable file. The new file's
108 pathname is pointed to by value.execd_pathname. */
109
110 TARGET_WAITKIND_EXECD,
111
112 /* The program has entered or returned from a system call. On
113 HP-UX, this is used in the hardware watchpoint implementation.
114 The syscall's unique integer ID number is in value.syscall_id */
115
116 TARGET_WAITKIND_SYSCALL_ENTRY,
117 TARGET_WAITKIND_SYSCALL_RETURN,
118
119 /* Nothing happened, but we stopped anyway. This perhaps should be handled
120 within target_wait, but I'm not sure target_wait should be resuming the
121 inferior. */
122 TARGET_WAITKIND_SPURIOUS,
123
124 /* An event has occured, but we should wait again.
125 Remote_async_wait() returns this when there is an event
126 on the inferior, but the rest of the world is not interested in
127 it. The inferior has not stopped, but has just sent some output
128 to the console, for instance. In this case, we want to go back
129 to the event loop and wait there for another event from the
130 inferior, rather than being stuck in the remote_async_wait()
131 function. This way the event loop is responsive to other events,
132 like for instance the user typing. */
133 TARGET_WAITKIND_IGNORE
134 };
135
136 struct target_waitstatus
137 {
138 enum target_waitkind kind;
139
140 /* Forked child pid, execd pathname, exit status or signal number. */
141 union
142 {
143 int integer;
144 enum target_signal sig;
145 int related_pid;
146 char *execd_pathname;
147 int syscall_id;
148 }
149 value;
150 };
151
152 /* Possible types of events that the inferior handler will have to
153 deal with. */
154 enum inferior_event_type
155 {
156 /* There is a request to quit the inferior, abandon it. */
157 INF_QUIT_REQ,
158 /* Process a normal inferior event which will result in target_wait
159 being called. */
160 INF_REG_EVENT,
161 /* Deal with an error on the inferior. */
162 INF_ERROR,
163 /* We are called because a timer went off. */
164 INF_TIMER,
165 /* We are called to do stuff after the inferior stops. */
166 INF_EXEC_COMPLETE,
167 /* We are called to do some stuff after the inferior stops, but we
168 are expected to reenter the proceed() and
169 handle_inferior_event() functions. This is used only in case of
170 'step n' like commands. */
171 INF_EXEC_CONTINUE
172 };
173
174 /* Return the string for a signal. */
175 extern char *target_signal_to_string (enum target_signal);
176
177 /* Return the name (SIGHUP, etc.) for a signal. */
178 extern char *target_signal_to_name (enum target_signal);
179
180 /* Given a name (SIGHUP, etc.), return its signal. */
181 enum target_signal target_signal_from_name (char *);
182 \f
183 /* Target objects which can be transfered using target_read,
184 target_write, et cetera. */
185
186 enum target_object
187 {
188 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
189 TARGET_OBJECT_AVR,
190 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
191 TARGET_OBJECT_MEMORY,
192 /* Kernel Unwind Table. See "ia64-tdep.c". */
193 TARGET_OBJECT_UNWIND_TABLE,
194 /* Transfer auxilliary vector. */
195 TARGET_OBJECT_AUXV,
196 /* StackGhost cookie. See "sparc-tdep.c". */
197 TARGET_OBJECT_WCOOKIE
198
199 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
200 };
201
202 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
203 OBJECT. The OFFSET, for a seekable object, specifies the
204 starting point. The ANNEX can be used to provide additional
205 data-specific information to the target.
206
207 Return the number of bytes actually transfered, or -1 if the
208 transfer is not supported or otherwise fails. Return of a positive
209 value less than LEN indicates that no further transfer is possible.
210 Unlike the raw to_xfer_partial interface, callers of these
211 functions do not need to retry partial transfers. */
212
213 extern LONGEST target_read (struct target_ops *ops,
214 enum target_object object,
215 const char *annex, gdb_byte *buf,
216 ULONGEST offset, LONGEST len);
217
218 extern LONGEST target_write (struct target_ops *ops,
219 enum target_object object,
220 const char *annex, const gdb_byte *buf,
221 ULONGEST offset, LONGEST len);
222
223 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
224 be read using OPS. The return value will be -1 if the transfer
225 fails or is not supported; 0 if the object is empty; or the length
226 of the object otherwise. If a positive value is returned, a
227 sufficiently large buffer will be allocated using xmalloc and
228 returned in *BUF_P containing the contents of the object.
229
230 This method should be used for objects sufficiently small to store
231 in a single xmalloc'd buffer, when no fixed bound on the object's
232 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
233 through this function. */
234
235 extern LONGEST target_read_alloc (struct target_ops *ops,
236 enum target_object object,
237 const char *annex, gdb_byte **buf_p);
238
239 /* Wrappers to target read/write that perform memory transfers. They
240 throw an error if the memory transfer fails.
241
242 NOTE: cagney/2003-10-23: The naming schema is lifted from
243 "frame.h". The parameter order is lifted from get_frame_memory,
244 which in turn lifted it from read_memory. */
245
246 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
247 gdb_byte *buf, LONGEST len);
248 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
249 CORE_ADDR addr, int len);
250 \f
251
252 /* If certain kinds of activity happen, target_wait should perform
253 callbacks. */
254 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
255 on TARGET_ACTIVITY_FD. */
256 extern int target_activity_fd;
257 /* Returns zero to leave the inferior alone, one to interrupt it. */
258 extern int (*target_activity_function) (void);
259 \f
260 struct thread_info; /* fwd decl for parameter list below: */
261
262 struct target_ops
263 {
264 struct target_ops *beneath; /* To the target under this one. */
265 char *to_shortname; /* Name this target type */
266 char *to_longname; /* Name for printing */
267 char *to_doc; /* Documentation. Does not include trailing
268 newline, and starts with a one-line descrip-
269 tion (probably similar to to_longname). */
270 /* Per-target scratch pad. */
271 void *to_data;
272 /* The open routine takes the rest of the parameters from the
273 command, and (if successful) pushes a new target onto the
274 stack. Targets should supply this routine, if only to provide
275 an error message. */
276 void (*to_open) (char *, int);
277 /* Old targets with a static target vector provide "to_close".
278 New re-entrant targets provide "to_xclose" and that is expected
279 to xfree everything (including the "struct target_ops"). */
280 void (*to_xclose) (struct target_ops *targ, int quitting);
281 void (*to_close) (int);
282 void (*to_attach) (char *, int);
283 void (*to_post_attach) (int);
284 void (*to_detach) (char *, int);
285 void (*to_disconnect) (struct target_ops *, char *, int);
286 void (*to_resume) (ptid_t, int, enum target_signal);
287 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
288 void (*to_fetch_registers) (int);
289 void (*to_store_registers) (int);
290 void (*to_prepare_to_store) (void);
291
292 /* Transfer LEN bytes of memory between GDB address MYADDR and
293 target address MEMADDR. If WRITE, transfer them to the target, else
294 transfer them from the target. TARGET is the target from which we
295 get this function.
296
297 Return value, N, is one of the following:
298
299 0 means that we can't handle this. If errno has been set, it is the
300 error which prevented us from doing it (FIXME: What about bfd_error?).
301
302 positive (call it N) means that we have transferred N bytes
303 starting at MEMADDR. We might be able to handle more bytes
304 beyond this length, but no promises.
305
306 negative (call its absolute value N) means that we cannot
307 transfer right at MEMADDR, but we could transfer at least
308 something at MEMADDR + N.
309
310 NOTE: cagney/2004-10-01: This has been entirely superseeded by
311 to_xfer_partial and inferior inheritance. */
312
313 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
314 int len, int write,
315 struct mem_attrib *attrib,
316 struct target_ops *target);
317
318 void (*to_files_info) (struct target_ops *);
319 int (*to_insert_breakpoint) (struct bp_target_info *);
320 int (*to_remove_breakpoint) (struct bp_target_info *);
321 int (*to_can_use_hw_breakpoint) (int, int, int);
322 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
323 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
324 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
325 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
326 int (*to_stopped_by_watchpoint) (void);
327 int to_have_continuable_watchpoint;
328 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
329 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
330 void (*to_terminal_init) (void);
331 void (*to_terminal_inferior) (void);
332 void (*to_terminal_ours_for_output) (void);
333 void (*to_terminal_ours) (void);
334 void (*to_terminal_save_ours) (void);
335 void (*to_terminal_info) (char *, int);
336 void (*to_kill) (void);
337 void (*to_load) (char *, int);
338 int (*to_lookup_symbol) (char *, CORE_ADDR *);
339 void (*to_create_inferior) (char *, char *, char **, int);
340 void (*to_post_startup_inferior) (ptid_t);
341 void (*to_acknowledge_created_inferior) (int);
342 void (*to_insert_fork_catchpoint) (int);
343 int (*to_remove_fork_catchpoint) (int);
344 void (*to_insert_vfork_catchpoint) (int);
345 int (*to_remove_vfork_catchpoint) (int);
346 int (*to_follow_fork) (struct target_ops *, int);
347 void (*to_insert_exec_catchpoint) (int);
348 int (*to_remove_exec_catchpoint) (int);
349 int (*to_reported_exec_events_per_exec_call) (void);
350 int (*to_has_exited) (int, int, int *);
351 void (*to_mourn_inferior) (void);
352 int (*to_can_run) (void);
353 void (*to_notice_signals) (ptid_t ptid);
354 int (*to_thread_alive) (ptid_t ptid);
355 void (*to_find_new_threads) (void);
356 char *(*to_pid_to_str) (ptid_t);
357 char *(*to_extra_thread_info) (struct thread_info *);
358 void (*to_stop) (void);
359 void (*to_rcmd) (char *command, struct ui_file *output);
360 struct symtab_and_line *(*to_enable_exception_callback) (enum
361 exception_event_kind,
362 int);
363 struct exception_event_record *(*to_get_current_exception_event) (void);
364 char *(*to_pid_to_exec_file) (int pid);
365 enum strata to_stratum;
366 int to_has_all_memory;
367 int to_has_memory;
368 int to_has_stack;
369 int to_has_registers;
370 int to_has_execution;
371 int to_has_thread_control; /* control thread execution */
372 struct section_table
373 *to_sections;
374 struct section_table
375 *to_sections_end;
376 /* ASYNC target controls */
377 int (*to_can_async_p) (void);
378 int (*to_is_async_p) (void);
379 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
380 void *context);
381 int to_async_mask_value;
382 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
383 unsigned long,
384 int, int, int,
385 void *),
386 void *);
387 char * (*to_make_corefile_notes) (bfd *, int *);
388
389 /* Return the thread-local address at OFFSET in the
390 thread-local storage for the thread PTID and the shared library
391 or executable file given by OBJFILE. If that block of
392 thread-local storage hasn't been allocated yet, this function
393 may return an error. */
394 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
395 CORE_ADDR load_module_addr,
396 CORE_ADDR offset);
397
398 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
399 OBJECT. The OFFSET, for a seekable object, specifies the
400 starting point. The ANNEX can be used to provide additional
401 data-specific information to the target.
402
403 Return the number of bytes actually transfered, zero when no
404 further transfer is possible, and -1 when the transfer is not
405 supported. Return of a positive value smaller than LEN does
406 not indicate the end of the object, only the end of the
407 transfer; higher level code should continue transferring if
408 desired. This is handled in target.c.
409
410 The interface does not support a "retry" mechanism. Instead it
411 assumes that at least one byte will be transfered on each
412 successful call.
413
414 NOTE: cagney/2003-10-17: The current interface can lead to
415 fragmented transfers. Lower target levels should not implement
416 hacks, such as enlarging the transfer, in an attempt to
417 compensate for this. Instead, the target stack should be
418 extended so that it implements supply/collect methods and a
419 look-aside object cache. With that available, the lowest
420 target can safely and freely "push" data up the stack.
421
422 See target_read and target_write for more information. One,
423 and only one, of readbuf or writebuf must be non-NULL. */
424
425 LONGEST (*to_xfer_partial) (struct target_ops *ops,
426 enum target_object object, const char *annex,
427 gdb_byte *readbuf, const gdb_byte *writebuf,
428 ULONGEST offset, LONGEST len);
429
430 int to_magic;
431 /* Need sub-structure for target machine related rather than comm related?
432 */
433 };
434
435 /* Magic number for checking ops size. If a struct doesn't end with this
436 number, somebody changed the declaration but didn't change all the
437 places that initialize one. */
438
439 #define OPS_MAGIC 3840
440
441 /* The ops structure for our "current" target process. This should
442 never be NULL. If there is no target, it points to the dummy_target. */
443
444 extern struct target_ops current_target;
445
446 /* Define easy words for doing these operations on our current target. */
447
448 #define target_shortname (current_target.to_shortname)
449 #define target_longname (current_target.to_longname)
450
451 /* Does whatever cleanup is required for a target that we are no
452 longer going to be calling. QUITTING indicates that GDB is exiting
453 and should not get hung on an error (otherwise it is important to
454 perform clean termination, even if it takes a while). This routine
455 is automatically always called when popping the target off the
456 target stack (to_beneath is undefined). Closing file descriptors
457 and freeing all memory allocated memory are typical things it
458 should do. */
459
460 void target_close (struct target_ops *targ, int quitting);
461
462 /* Attaches to a process on the target side. Arguments are as passed
463 to the `attach' command by the user. This routine can be called
464 when the target is not on the target-stack, if the target_can_run
465 routine returns 1; in that case, it must push itself onto the stack.
466 Upon exit, the target should be ready for normal operations, and
467 should be ready to deliver the status of the process immediately
468 (without waiting) to an upcoming target_wait call. */
469
470 #define target_attach(args, from_tty) \
471 (*current_target.to_attach) (args, from_tty)
472
473 /* The target_attach operation places a process under debugger control,
474 and stops the process.
475
476 This operation provides a target-specific hook that allows the
477 necessary bookkeeping to be performed after an attach completes. */
478 #define target_post_attach(pid) \
479 (*current_target.to_post_attach) (pid)
480
481 /* Takes a program previously attached to and detaches it.
482 The program may resume execution (some targets do, some don't) and will
483 no longer stop on signals, etc. We better not have left any breakpoints
484 in the program or it'll die when it hits one. ARGS is arguments
485 typed by the user (e.g. a signal to send the process). FROM_TTY
486 says whether to be verbose or not. */
487
488 extern void target_detach (char *, int);
489
490 /* Disconnect from the current target without resuming it (leaving it
491 waiting for a debugger). */
492
493 extern void target_disconnect (char *, int);
494
495 /* Resume execution of the target process PTID. STEP says whether to
496 single-step or to run free; SIGGNAL is the signal to be given to
497 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
498 pass TARGET_SIGNAL_DEFAULT. */
499
500 #define target_resume(ptid, step, siggnal) \
501 do { \
502 dcache_invalidate(target_dcache); \
503 (*current_target.to_resume) (ptid, step, siggnal); \
504 } while (0)
505
506 /* Wait for process pid to do something. PTID = -1 to wait for any
507 pid to do something. Return pid of child, or -1 in case of error;
508 store status through argument pointer STATUS. Note that it is
509 _NOT_ OK to throw_exception() out of target_wait() without popping
510 the debugging target from the stack; GDB isn't prepared to get back
511 to the prompt with a debugging target but without the frame cache,
512 stop_pc, etc., set up. */
513
514 #define target_wait(ptid, status) \
515 (*current_target.to_wait) (ptid, status)
516
517 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
518
519 #define target_fetch_registers(regno) \
520 (*current_target.to_fetch_registers) (regno)
521
522 /* Store at least register REGNO, or all regs if REGNO == -1.
523 It can store as many registers as it wants to, so target_prepare_to_store
524 must have been previously called. Calls error() if there are problems. */
525
526 #define target_store_registers(regs) \
527 (*current_target.to_store_registers) (regs)
528
529 /* Get ready to modify the registers array. On machines which store
530 individual registers, this doesn't need to do anything. On machines
531 which store all the registers in one fell swoop, this makes sure
532 that REGISTERS contains all the registers from the program being
533 debugged. */
534
535 #define target_prepare_to_store() \
536 (*current_target.to_prepare_to_store) ()
537
538 extern DCACHE *target_dcache;
539
540 extern int do_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
541 int write, struct mem_attrib *attrib);
542
543 extern int target_read_string (CORE_ADDR, char **, int, int *);
544
545 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
546
547 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
548 int len);
549
550 extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
551 struct mem_attrib *, struct target_ops *);
552
553 extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
554 struct mem_attrib *, struct target_ops *);
555
556 /* Make a single attempt at transfering LEN bytes. On a successful
557 transfer, the number of bytes actually transfered is returned and
558 ERR is set to 0. When a transfer fails, -1 is returned (the number
559 of bytes actually transfered is not defined) and ERR is set to a
560 non-zero error indication. */
561
562 extern int target_read_memory_partial (CORE_ADDR addr, gdb_byte *buf,
563 int len, int *err);
564
565 extern int target_write_memory_partial (CORE_ADDR addr, gdb_byte *buf,
566 int len, int *err);
567
568 extern char *child_pid_to_exec_file (int);
569
570 extern char *child_core_file_to_sym_file (char *);
571
572 #if defined(CHILD_POST_ATTACH)
573 extern void child_post_attach (int);
574 #endif
575
576 extern void child_post_startup_inferior (ptid_t);
577
578 extern void child_acknowledge_created_inferior (int);
579
580 extern void child_insert_fork_catchpoint (int);
581
582 extern int child_remove_fork_catchpoint (int);
583
584 extern void child_insert_vfork_catchpoint (int);
585
586 extern int child_remove_vfork_catchpoint (int);
587
588 extern void child_acknowledge_created_inferior (int);
589
590 extern int child_follow_fork (struct target_ops *, int);
591
592 extern void child_insert_exec_catchpoint (int);
593
594 extern int child_remove_exec_catchpoint (int);
595
596 extern int child_reported_exec_events_per_exec_call (void);
597
598 extern int child_has_exited (int, int, int *);
599
600 extern int child_thread_alive (ptid_t);
601
602 /* From infrun.c. */
603
604 extern int inferior_has_forked (int pid, int *child_pid);
605
606 extern int inferior_has_vforked (int pid, int *child_pid);
607
608 extern int inferior_has_execd (int pid, char **execd_pathname);
609
610 /* From exec.c */
611
612 extern void print_section_info (struct target_ops *, bfd *);
613
614 /* Print a line about the current target. */
615
616 #define target_files_info() \
617 (*current_target.to_files_info) (&current_target)
618
619 /* Insert a breakpoint at address BP_TGT->placed_address in the target
620 machine. Result is 0 for success, or an errno value. */
621
622 #define target_insert_breakpoint(bp_tgt) \
623 (*current_target.to_insert_breakpoint) (bp_tgt)
624
625 /* Remove a breakpoint at address BP_TGT->placed_address in the target
626 machine. Result is 0 for success, or an errno value. */
627
628 #define target_remove_breakpoint(bp_tgt) \
629 (*current_target.to_remove_breakpoint) (bp_tgt)
630
631 /* Initialize the terminal settings we record for the inferior,
632 before we actually run the inferior. */
633
634 #define target_terminal_init() \
635 (*current_target.to_terminal_init) ()
636
637 /* Put the inferior's terminal settings into effect.
638 This is preparation for starting or resuming the inferior. */
639
640 #define target_terminal_inferior() \
641 (*current_target.to_terminal_inferior) ()
642
643 /* Put some of our terminal settings into effect,
644 enough to get proper results from our output,
645 but do not change into or out of RAW mode
646 so that no input is discarded.
647
648 After doing this, either terminal_ours or terminal_inferior
649 should be called to get back to a normal state of affairs. */
650
651 #define target_terminal_ours_for_output() \
652 (*current_target.to_terminal_ours_for_output) ()
653
654 /* Put our terminal settings into effect.
655 First record the inferior's terminal settings
656 so they can be restored properly later. */
657
658 #define target_terminal_ours() \
659 (*current_target.to_terminal_ours) ()
660
661 /* Save our terminal settings.
662 This is called from TUI after entering or leaving the curses
663 mode. Since curses modifies our terminal this call is here
664 to take this change into account. */
665
666 #define target_terminal_save_ours() \
667 (*current_target.to_terminal_save_ours) ()
668
669 /* Print useful information about our terminal status, if such a thing
670 exists. */
671
672 #define target_terminal_info(arg, from_tty) \
673 (*current_target.to_terminal_info) (arg, from_tty)
674
675 /* Kill the inferior process. Make it go away. */
676
677 #define target_kill() \
678 (*current_target.to_kill) ()
679
680 /* Load an executable file into the target process. This is expected
681 to not only bring new code into the target process, but also to
682 update GDB's symbol tables to match.
683
684 ARG contains command-line arguments, to be broken down with
685 buildargv (). The first non-switch argument is the filename to
686 load, FILE; the second is a number (as parsed by strtoul (..., ...,
687 0)), which is an offset to apply to the load addresses of FILE's
688 sections. The target may define switches, or other non-switch
689 arguments, as it pleases. */
690
691 extern void target_load (char *arg, int from_tty);
692
693 /* Look up a symbol in the target's symbol table. NAME is the symbol
694 name. ADDRP is a CORE_ADDR * pointing to where the value of the
695 symbol should be returned. The result is 0 if successful, nonzero
696 if the symbol does not exist in the target environment. This
697 function should not call error() if communication with the target
698 is interrupted, since it is called from symbol reading, but should
699 return nonzero, possibly doing a complain(). */
700
701 #define target_lookup_symbol(name, addrp) \
702 (*current_target.to_lookup_symbol) (name, addrp)
703
704 /* Start an inferior process and set inferior_ptid to its pid.
705 EXEC_FILE is the file to run.
706 ALLARGS is a string containing the arguments to the program.
707 ENV is the environment vector to pass. Errors reported with error().
708 On VxWorks and various standalone systems, we ignore exec_file. */
709
710 #define target_create_inferior(exec_file, args, env, FROM_TTY) \
711 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
712
713
714 /* Some targets (such as ttrace-based HPUX) don't allow us to request
715 notification of inferior events such as fork and vork immediately
716 after the inferior is created. (This because of how gdb gets an
717 inferior created via invoking a shell to do it. In such a scenario,
718 if the shell init file has commands in it, the shell will fork and
719 exec for each of those commands, and we will see each such fork
720 event. Very bad.)
721
722 Such targets will supply an appropriate definition for this function. */
723
724 #define target_post_startup_inferior(ptid) \
725 (*current_target.to_post_startup_inferior) (ptid)
726
727 /* On some targets, the sequence of starting up an inferior requires
728 some synchronization between gdb and the new inferior process, PID. */
729
730 #define target_acknowledge_created_inferior(pid) \
731 (*current_target.to_acknowledge_created_inferior) (pid)
732
733 /* On some targets, we can catch an inferior fork or vfork event when
734 it occurs. These functions insert/remove an already-created
735 catchpoint for such events. */
736
737 #define target_insert_fork_catchpoint(pid) \
738 (*current_target.to_insert_fork_catchpoint) (pid)
739
740 #define target_remove_fork_catchpoint(pid) \
741 (*current_target.to_remove_fork_catchpoint) (pid)
742
743 #define target_insert_vfork_catchpoint(pid) \
744 (*current_target.to_insert_vfork_catchpoint) (pid)
745
746 #define target_remove_vfork_catchpoint(pid) \
747 (*current_target.to_remove_vfork_catchpoint) (pid)
748
749 /* If the inferior forks or vforks, this function will be called at
750 the next resume in order to perform any bookkeeping and fiddling
751 necessary to continue debugging either the parent or child, as
752 requested, and releasing the other. Information about the fork
753 or vfork event is available via get_last_target_status ().
754 This function returns 1 if the inferior should not be resumed
755 (i.e. there is another event pending). */
756
757 int target_follow_fork (int follow_child);
758
759 /* On some targets, we can catch an inferior exec event when it
760 occurs. These functions insert/remove an already-created
761 catchpoint for such events. */
762
763 #define target_insert_exec_catchpoint(pid) \
764 (*current_target.to_insert_exec_catchpoint) (pid)
765
766 #define target_remove_exec_catchpoint(pid) \
767 (*current_target.to_remove_exec_catchpoint) (pid)
768
769 /* Returns the number of exec events that are reported when a process
770 invokes a flavor of the exec() system call on this target, if exec
771 events are being reported. */
772
773 #define target_reported_exec_events_per_exec_call() \
774 (*current_target.to_reported_exec_events_per_exec_call) ()
775
776 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
777 exit code of PID, if any. */
778
779 #define target_has_exited(pid,wait_status,exit_status) \
780 (*current_target.to_has_exited) (pid,wait_status,exit_status)
781
782 /* The debugger has completed a blocking wait() call. There is now
783 some process event that must be processed. This function should
784 be defined by those targets that require the debugger to perform
785 cleanup or internal state changes in response to the process event. */
786
787 /* The inferior process has died. Do what is right. */
788
789 #define target_mourn_inferior() \
790 (*current_target.to_mourn_inferior) ()
791
792 /* Does target have enough data to do a run or attach command? */
793
794 #define target_can_run(t) \
795 ((t)->to_can_run) ()
796
797 /* post process changes to signal handling in the inferior. */
798
799 #define target_notice_signals(ptid) \
800 (*current_target.to_notice_signals) (ptid)
801
802 /* Check to see if a thread is still alive. */
803
804 #define target_thread_alive(ptid) \
805 (*current_target.to_thread_alive) (ptid)
806
807 /* Query for new threads and add them to the thread list. */
808
809 #define target_find_new_threads() \
810 (*current_target.to_find_new_threads) (); \
811
812 /* Make target stop in a continuable fashion. (For instance, under
813 Unix, this should act like SIGSTOP). This function is normally
814 used by GUIs to implement a stop button. */
815
816 #define target_stop current_target.to_stop
817
818 /* Send the specified COMMAND to the target's monitor
819 (shell,interpreter) for execution. The result of the query is
820 placed in OUTBUF. */
821
822 #define target_rcmd(command, outbuf) \
823 (*current_target.to_rcmd) (command, outbuf)
824
825
826 /* Get the symbol information for a breakpointable routine called when
827 an exception event occurs.
828 Intended mainly for C++, and for those
829 platforms/implementations where such a callback mechanism is available,
830 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
831 different mechanisms for debugging exceptions. */
832
833 #define target_enable_exception_callback(kind, enable) \
834 (*current_target.to_enable_exception_callback) (kind, enable)
835
836 /* Get the current exception event kind -- throw or catch, etc. */
837
838 #define target_get_current_exception_event() \
839 (*current_target.to_get_current_exception_event) ()
840
841 /* Does the target include all of memory, or only part of it? This
842 determines whether we look up the target chain for other parts of
843 memory if this target can't satisfy a request. */
844
845 #define target_has_all_memory \
846 (current_target.to_has_all_memory)
847
848 /* Does the target include memory? (Dummy targets don't.) */
849
850 #define target_has_memory \
851 (current_target.to_has_memory)
852
853 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
854 we start a process.) */
855
856 #define target_has_stack \
857 (current_target.to_has_stack)
858
859 /* Does the target have registers? (Exec files don't.) */
860
861 #define target_has_registers \
862 (current_target.to_has_registers)
863
864 /* Does the target have execution? Can we make it jump (through
865 hoops), or pop its stack a few times? FIXME: If this is to work that
866 way, it needs to check whether an inferior actually exists.
867 remote-udi.c and probably other targets can be the current target
868 when the inferior doesn't actually exist at the moment. Right now
869 this just tells us whether this target is *capable* of execution. */
870
871 #define target_has_execution \
872 (current_target.to_has_execution)
873
874 /* Can the target support the debugger control of thread execution?
875 a) Can it lock the thread scheduler?
876 b) Can it switch the currently running thread? */
877
878 #define target_can_lock_scheduler \
879 (current_target.to_has_thread_control & tc_schedlock)
880
881 #define target_can_switch_threads \
882 (current_target.to_has_thread_control & tc_switch)
883
884 /* Can the target support asynchronous execution? */
885 #define target_can_async_p() (current_target.to_can_async_p ())
886
887 /* Is the target in asynchronous execution mode? */
888 #define target_is_async_p() (current_target.to_is_async_p())
889
890 /* Put the target in async mode with the specified callback function. */
891 #define target_async(CALLBACK,CONTEXT) \
892 (current_target.to_async((CALLBACK), (CONTEXT)))
893
894 /* This is to be used ONLY within call_function_by_hand(). It provides
895 a workaround, to have inferior function calls done in sychronous
896 mode, even though the target is asynchronous. After
897 target_async_mask(0) is called, calls to target_can_async_p() will
898 return FALSE , so that target_resume() will not try to start the
899 target asynchronously. After the inferior stops, we IMMEDIATELY
900 restore the previous nature of the target, by calling
901 target_async_mask(1). After that, target_can_async_p() will return
902 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
903
904 FIXME ezannoni 1999-12-13: we won't need this once we move
905 the turning async on and off to the single execution commands,
906 from where it is done currently, in remote_resume(). */
907
908 #define target_async_mask_value \
909 (current_target.to_async_mask_value)
910
911 extern int target_async_mask (int mask);
912
913 /* Converts a process id to a string. Usually, the string just contains
914 `process xyz', but on some systems it may contain
915 `process xyz thread abc'. */
916
917 #undef target_pid_to_str
918 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
919
920 #ifndef target_tid_to_str
921 #define target_tid_to_str(PID) \
922 target_pid_to_str (PID)
923 extern char *normal_pid_to_str (ptid_t ptid);
924 #endif
925
926 /* Return a short string describing extra information about PID,
927 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
928 is okay. */
929
930 #define target_extra_thread_info(TP) \
931 (current_target.to_extra_thread_info (TP))
932
933 /*
934 * New Objfile Event Hook:
935 *
936 * Sometimes a GDB component wants to get notified whenever a new
937 * objfile is loaded. Mainly this is used by thread-debugging
938 * implementations that need to know when symbols for the target
939 * thread implemenation are available.
940 *
941 * The old way of doing this is to define a macro 'target_new_objfile'
942 * that points to the function that you want to be called on every
943 * objfile/shlib load.
944
945 The new way is to grab the function pointer,
946 'deprecated_target_new_objfile_hook', and point it to the function
947 that you want to be called on every objfile/shlib load.
948
949 If multiple clients are willing to be cooperative, they can each
950 save a pointer to the previous value of
951 deprecated_target_new_objfile_hook before modifying it, and arrange
952 for their function to call the previous function in the chain. In
953 that way, multiple clients can receive this notification (something
954 like with signal handlers). */
955
956 extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
957
958 #ifndef target_pid_or_tid_to_str
959 #define target_pid_or_tid_to_str(ID) \
960 target_pid_to_str (ID)
961 #endif
962
963 /* Attempts to find the pathname of the executable file
964 that was run to create a specified process.
965
966 The process PID must be stopped when this operation is used.
967
968 If the executable file cannot be determined, NULL is returned.
969
970 Else, a pointer to a character string containing the pathname
971 is returned. This string should be copied into a buffer by
972 the client if the string will not be immediately used, or if
973 it must persist. */
974
975 #define target_pid_to_exec_file(pid) \
976 (current_target.to_pid_to_exec_file) (pid)
977
978 /*
979 * Iterator function for target memory regions.
980 * Calls a callback function once for each memory region 'mapped'
981 * in the child process. Defined as a simple macro rather than
982 * as a function macro so that it can be tested for nullity.
983 */
984
985 #define target_find_memory_regions(FUNC, DATA) \
986 (current_target.to_find_memory_regions) (FUNC, DATA)
987
988 /*
989 * Compose corefile .note section.
990 */
991
992 #define target_make_corefile_notes(BFD, SIZE_P) \
993 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
994
995 /* Thread-local values. */
996 #define target_get_thread_local_address \
997 (current_target.to_get_thread_local_address)
998 #define target_get_thread_local_address_p() \
999 (target_get_thread_local_address != NULL)
1000
1001 /* Hook to call target dependent code just after inferior target process has
1002 started. */
1003
1004 #ifndef TARGET_CREATE_INFERIOR_HOOK
1005 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1006 #endif
1007
1008 /* Hardware watchpoint interfaces. */
1009
1010 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1011 write). */
1012
1013 #ifndef STOPPED_BY_WATCHPOINT
1014 #define STOPPED_BY_WATCHPOINT(w) \
1015 (*current_target.to_stopped_by_watchpoint) ()
1016 #endif
1017
1018 /* Non-zero if we have continuable watchpoints */
1019
1020 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1021 #define HAVE_CONTINUABLE_WATCHPOINT \
1022 (current_target.to_have_continuable_watchpoint)
1023 #endif
1024
1025 /* Provide defaults for hardware watchpoint functions. */
1026
1027 /* If the *_hw_beakpoint functions have not been defined
1028 elsewhere use the definitions in the target vector. */
1029
1030 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1031 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1032 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1033 (including this one?). OTHERTYPE is who knows what... */
1034
1035 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1036 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1037 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1038 #endif
1039
1040 #ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1041 #define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1042 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1043 #endif
1044
1045
1046 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1047 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1048 success, non-zero for failure. */
1049
1050 #ifndef target_insert_watchpoint
1051 #define target_insert_watchpoint(addr, len, type) \
1052 (*current_target.to_insert_watchpoint) (addr, len, type)
1053
1054 #define target_remove_watchpoint(addr, len, type) \
1055 (*current_target.to_remove_watchpoint) (addr, len, type)
1056 #endif
1057
1058 #ifndef target_insert_hw_breakpoint
1059 #define target_insert_hw_breakpoint(bp_tgt) \
1060 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
1061
1062 #define target_remove_hw_breakpoint(bp_tgt) \
1063 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
1064 #endif
1065
1066 extern int target_stopped_data_address_p (struct target_ops *);
1067
1068 #ifndef target_stopped_data_address
1069 #define target_stopped_data_address(target, x) \
1070 (*target.to_stopped_data_address) (target, x)
1071 #else
1072 /* Horrible hack to get around existing macros :-(. */
1073 #define target_stopped_data_address_p(CURRENT_TARGET) (1)
1074 #endif
1075
1076 /* This will only be defined by a target that supports catching vfork events,
1077 such as HP-UX.
1078
1079 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1080 child process after it has exec'd, causes the parent process to resume as
1081 well. To prevent the parent from running spontaneously, such targets should
1082 define this to a function that prevents that from happening. */
1083 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1084 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1085 #endif
1086
1087 /* This will only be defined by a target that supports catching vfork events,
1088 such as HP-UX.
1089
1090 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1091 process must be resumed when it delivers its exec event, before the parent
1092 vfork event will be delivered to us. */
1093
1094 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1095 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1096 #endif
1097
1098 /* Routines for maintenance of the target structures...
1099
1100 add_target: Add a target to the list of all possible targets.
1101
1102 push_target: Make this target the top of the stack of currently used
1103 targets, within its particular stratum of the stack. Result
1104 is 0 if now atop the stack, nonzero if not on top (maybe
1105 should warn user).
1106
1107 unpush_target: Remove this from the stack of currently used targets,
1108 no matter where it is on the list. Returns 0 if no
1109 change, 1 if removed from stack.
1110
1111 pop_target: Remove the top thing on the stack of current targets. */
1112
1113 extern void add_target (struct target_ops *);
1114
1115 extern int push_target (struct target_ops *);
1116
1117 extern int unpush_target (struct target_ops *);
1118
1119 extern void target_preopen (int);
1120
1121 extern void pop_target (void);
1122
1123 /* Struct section_table maps address ranges to file sections. It is
1124 mostly used with BFD files, but can be used without (e.g. for handling
1125 raw disks, or files not in formats handled by BFD). */
1126
1127 struct section_table
1128 {
1129 CORE_ADDR addr; /* Lowest address in section */
1130 CORE_ADDR endaddr; /* 1+highest address in section */
1131
1132 struct bfd_section *the_bfd_section;
1133
1134 bfd *bfd; /* BFD file pointer */
1135 };
1136
1137 /* Return the "section" containing the specified address. */
1138 struct section_table *target_section_by_addr (struct target_ops *target,
1139 CORE_ADDR addr);
1140
1141
1142 /* From mem-break.c */
1143
1144 extern int memory_remove_breakpoint (struct bp_target_info *);
1145
1146 extern int memory_insert_breakpoint (struct bp_target_info *);
1147
1148 extern int default_memory_remove_breakpoint (struct bp_target_info *);
1149
1150 extern int default_memory_insert_breakpoint (struct bp_target_info *);
1151
1152
1153 /* From target.c */
1154
1155 extern void initialize_targets (void);
1156
1157 extern void noprocess (void);
1158
1159 extern void find_default_attach (char *, int);
1160
1161 extern void find_default_create_inferior (char *, char *, char **, int);
1162
1163 extern struct target_ops *find_run_target (void);
1164
1165 extern struct target_ops *find_core_target (void);
1166
1167 extern struct target_ops *find_target_beneath (struct target_ops *);
1168
1169 extern int target_resize_to_sections (struct target_ops *target,
1170 int num_added);
1171
1172 extern void remove_target_sections (bfd *abfd);
1173
1174 \f
1175 /* Stuff that should be shared among the various remote targets. */
1176
1177 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1178 information (higher values, more information). */
1179 extern int remote_debug;
1180
1181 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1182 extern int baud_rate;
1183 /* Timeout limit for response from target. */
1184 extern int remote_timeout;
1185
1186 \f
1187 /* Functions for helping to write a native target. */
1188
1189 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1190 extern void store_waitstatus (struct target_waitstatus *, int);
1191
1192 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1193 targ_signal SIGNO has an equivalent ``host'' representation. */
1194 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1195 to the shorter target_signal_p() because it is far less ambigious.
1196 In this context ``target_signal'' refers to GDB's internal
1197 representation of the target's set of signals while ``host signal''
1198 refers to the target operating system's signal. Confused? */
1199
1200 extern int target_signal_to_host_p (enum target_signal signo);
1201
1202 /* Convert between host signal numbers and enum target_signal's.
1203 target_signal_to_host() returns 0 and prints a warning() on GDB's
1204 console if SIGNO has no equivalent host representation. */
1205 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1206 refering to the target operating system's signal numbering.
1207 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1208 gdb_signal'' would probably be better as it is refering to GDB's
1209 internal representation of a target operating system's signal. */
1210
1211 extern enum target_signal target_signal_from_host (int);
1212 extern int target_signal_to_host (enum target_signal);
1213
1214 /* Convert from a number used in a GDB command to an enum target_signal. */
1215 extern enum target_signal target_signal_from_command (int);
1216
1217 /* Any target can call this to switch to remote protocol (in remote.c). */
1218 extern void push_remote_target (char *name, int from_tty);
1219 \f
1220 /* Imported from machine dependent code */
1221
1222 /* Blank target vector entries are initialized to target_ignore. */
1223 void target_ignore (void);
1224
1225 extern struct target_ops deprecated_child_ops;
1226
1227 #endif /* !defined (TARGET_H) */