]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
Allow "unlimited" abbreviations
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum.
65
66 Note that rather than allow an empty stack, we always have the
67 dummy target at the bottom stratum, so we can call the target
68 methods without checking them. */
69
70 #include "target/target.h"
71 #include "target/resume.h"
72 #include "target/wait.h"
73 #include "target/waitstatus.h"
74 #include "bfd.h"
75 #include "symtab.h"
76 #include "memattr.h"
77 #include "common/vec.h"
78 #include "common/gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84
85 #include "common/break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (int target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* SPU target specific transfer. See "spu-tdep.c". */
141 TARGET_OBJECT_SPU,
142 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
143 TARGET_OBJECT_MEMORY,
144 /* Memory, avoiding GDB's data cache and trusting the executable.
145 Target implementations of to_xfer_partial never need to handle
146 this object, and most callers should not use it. */
147 TARGET_OBJECT_RAW_MEMORY,
148 /* Memory known to be part of the target's stack. This is cached even
149 if it is not in a region marked as such, since it is known to be
150 "normal" RAM. */
151 TARGET_OBJECT_STACK_MEMORY,
152 /* Memory known to be part of the target code. This is cached even
153 if it is not in a region marked as such. */
154 TARGET_OBJECT_CODE_MEMORY,
155 /* Kernel Unwind Table. See "ia64-tdep.c". */
156 TARGET_OBJECT_UNWIND_TABLE,
157 /* Transfer auxilliary vector. */
158 TARGET_OBJECT_AUXV,
159 /* StackGhost cookie. See "sparc-tdep.c". */
160 TARGET_OBJECT_WCOOKIE,
161 /* Target memory map in XML format. */
162 TARGET_OBJECT_MEMORY_MAP,
163 /* Flash memory. This object can be used to write contents to
164 a previously erased flash memory. Using it without erasing
165 flash can have unexpected results. Addresses are physical
166 address on target, and not relative to flash start. */
167 TARGET_OBJECT_FLASH,
168 /* Available target-specific features, e.g. registers and coprocessors.
169 See "target-descriptions.c". ANNEX should never be empty. */
170 TARGET_OBJECT_AVAILABLE_FEATURES,
171 /* Currently loaded libraries, in XML format. */
172 TARGET_OBJECT_LIBRARIES,
173 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_SVR4,
175 /* Currently loaded libraries specific to AIX systems, in XML format. */
176 TARGET_OBJECT_LIBRARIES_AIX,
177 /* Get OS specific data. The ANNEX specifies the type (running
178 processes, etc.). The data being transfered is expected to follow
179 the DTD specified in features/osdata.dtd. */
180 TARGET_OBJECT_OSDATA,
181 /* Extra signal info. Usually the contents of `siginfo_t' on unix
182 platforms. */
183 TARGET_OBJECT_SIGNAL_INFO,
184 /* The list of threads that are being debugged. */
185 TARGET_OBJECT_THREADS,
186 /* Collected static trace data. */
187 TARGET_OBJECT_STATIC_TRACE_DATA,
188 /* Traceframe info, in XML format. */
189 TARGET_OBJECT_TRACEFRAME_INFO,
190 /* Load maps for FDPIC systems. */
191 TARGET_OBJECT_FDPIC,
192 /* Darwin dynamic linker info data. */
193 TARGET_OBJECT_DARWIN_DYLD_INFO,
194 /* OpenVMS Unwind Information Block. */
195 TARGET_OBJECT_OPENVMS_UIB,
196 /* Branch trace data, in XML format. */
197 TARGET_OBJECT_BTRACE,
198 /* Branch trace configuration, in XML format. */
199 TARGET_OBJECT_BTRACE_CONF,
200 /* The pathname of the executable file that was run to create
201 a specified process. ANNEX should be a string representation
202 of the process ID of the process in question, in hexadecimal
203 format. */
204 TARGET_OBJECT_EXEC_FILE,
205 /* FreeBSD virtual memory mappings. */
206 TARGET_OBJECT_FREEBSD_VMMAP,
207 /* FreeBSD process strings. */
208 TARGET_OBJECT_FREEBSD_PS_STRINGS,
209 /* Possible future objects: TARGET_OBJECT_FILE, ... */
210 };
211
212 /* Possible values returned by target_xfer_partial, etc. */
213
214 enum target_xfer_status
215 {
216 /* Some bytes are transferred. */
217 TARGET_XFER_OK = 1,
218
219 /* No further transfer is possible. */
220 TARGET_XFER_EOF = 0,
221
222 /* The piece of the object requested is unavailable. */
223 TARGET_XFER_UNAVAILABLE = 2,
224
225 /* Generic I/O error. Note that it's important that this is '-1',
226 as we still have target_xfer-related code returning hardcoded
227 '-1' on error. */
228 TARGET_XFER_E_IO = -1,
229
230 /* Keep list in sync with target_xfer_status_to_string. */
231 };
232
233 /* Return the string form of STATUS. */
234
235 extern const char *
236 target_xfer_status_to_string (enum target_xfer_status status);
237
238 typedef enum target_xfer_status
239 target_xfer_partial_ftype (struct target_ops *ops,
240 enum target_object object,
241 const char *annex,
242 gdb_byte *readbuf,
243 const gdb_byte *writebuf,
244 ULONGEST offset,
245 ULONGEST len,
246 ULONGEST *xfered_len);
247
248 enum target_xfer_status
249 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
250 const gdb_byte *writebuf, ULONGEST memaddr,
251 LONGEST len, ULONGEST *xfered_len);
252
253 /* Request that OPS transfer up to LEN addressable units of the target's
254 OBJECT. When reading from a memory object, the size of an addressable unit
255 is architecture dependent and can be found using
256 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
257 byte long. BUF should point to a buffer large enough to hold the read data,
258 taking into account the addressable unit size. The OFFSET, for a seekable
259 object, specifies the starting point. The ANNEX can be used to provide
260 additional data-specific information to the target.
261
262 Return the number of addressable units actually transferred, or a negative
263 error code (an 'enum target_xfer_error' value) if the transfer is not
264 supported or otherwise fails. Return of a positive value less than
265 LEN indicates that no further transfer is possible. Unlike the raw
266 to_xfer_partial interface, callers of these functions do not need
267 to retry partial transfers. */
268
269 extern LONGEST target_read (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte *buf,
272 ULONGEST offset, LONGEST len);
273
274 struct memory_read_result
275 {
276 memory_read_result (ULONGEST begin_, ULONGEST end_,
277 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
278 : begin (begin_),
279 end (end_),
280 data (std::move (data_))
281 {
282 }
283
284 ~memory_read_result () = default;
285
286 memory_read_result (memory_read_result &&other) = default;
287
288 DISABLE_COPY_AND_ASSIGN (memory_read_result);
289
290 /* First address that was read. */
291 ULONGEST begin;
292 /* Past-the-end address. */
293 ULONGEST end;
294 /* The data. */
295 gdb::unique_xmalloc_ptr<gdb_byte> data;
296 };
297
298 extern std::vector<memory_read_result> read_memory_robust
299 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
300
301 /* Request that OPS transfer up to LEN addressable units from BUF to the
302 target's OBJECT. When writing to a memory object, the addressable unit
303 size is architecture dependent and can be found using
304 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
305 byte long. The OFFSET, for a seekable object, specifies the starting point.
306 The ANNEX can be used to provide additional data-specific information to
307 the target.
308
309 Return the number of addressable units actually transferred, or a negative
310 error code (an 'enum target_xfer_status' value) if the transfer is not
311 supported or otherwise fails. Return of a positive value less than
312 LEN indicates that no further transfer is possible. Unlike the raw
313 to_xfer_partial interface, callers of these functions do not need to
314 retry partial transfers. */
315
316 extern LONGEST target_write (struct target_ops *ops,
317 enum target_object object,
318 const char *annex, const gdb_byte *buf,
319 ULONGEST offset, LONGEST len);
320
321 /* Similar to target_write, except that it also calls PROGRESS with
322 the number of bytes written and the opaque BATON after every
323 successful partial write (and before the first write). This is
324 useful for progress reporting and user interaction while writing
325 data. To abort the transfer, the progress callback can throw an
326 exception. */
327
328 LONGEST target_write_with_progress (struct target_ops *ops,
329 enum target_object object,
330 const char *annex, const gdb_byte *buf,
331 ULONGEST offset, LONGEST len,
332 void (*progress) (ULONGEST, void *),
333 void *baton);
334
335 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
336 using OPS. The return value will be uninstantiated if the transfer fails or
337 is not supported.
338
339 This method should be used for objects sufficiently small to store
340 in a single xmalloc'd buffer, when no fixed bound on the object's
341 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
342 through this function. */
343
344 extern gdb::optional<gdb::byte_vector> target_read_alloc
345 (struct target_ops *ops, enum target_object object, const char *annex);
346
347 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
348 (therefore usable as a NUL-terminated string). If an error occurs or the
349 transfer is unsupported, the return value will be uninstantiated. Empty
350 objects are returned as allocated but empty strings. Therefore, on success,
351 the returned vector is guaranteed to have at least one element. A warning is
352 issued if the result contains any embedded NUL bytes. */
353
354 extern gdb::optional<gdb::char_vector> target_read_stralloc
355 (struct target_ops *ops, enum target_object object, const char *annex);
356
357 /* See target_ops->to_xfer_partial. */
358 extern target_xfer_partial_ftype target_xfer_partial;
359
360 /* Wrappers to target read/write that perform memory transfers. They
361 throw an error if the memory transfer fails.
362
363 NOTE: cagney/2003-10-23: The naming schema is lifted from
364 "frame.h". The parameter order is lifted from get_frame_memory,
365 which in turn lifted it from read_memory. */
366
367 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
368 gdb_byte *buf, LONGEST len);
369 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
370 CORE_ADDR addr, int len,
371 enum bfd_endian byte_order);
372 \f
373 struct thread_info; /* fwd decl for parameter list below: */
374
375 /* The type of the callback to the to_async method. */
376
377 typedef void async_callback_ftype (enum inferior_event_type event_type,
378 void *context);
379
380 /* Normally target debug printing is purely type-based. However,
381 sometimes it is necessary to override the debug printing on a
382 per-argument basis. This macro can be used, attribute-style, to
383 name the target debug printing function for a particular method
384 argument. FUNC is the name of the function. The macro's
385 definition is empty because it is only used by the
386 make-target-delegates script. */
387
388 #define TARGET_DEBUG_PRINTER(FUNC)
389
390 /* These defines are used to mark target_ops methods. The script
391 make-target-delegates scans these and auto-generates the base
392 method implementations. There are four macros that can be used:
393
394 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
395 does nothing. This is only valid if the method return type is
396 'void'.
397
398 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
399 'tcomplain ()'. The base method simply makes this call, which is
400 assumed not to return.
401
402 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
403 base method returns this expression's value.
404
405 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
406 make-target-delegates does not generate a base method in this case,
407 but instead uses the argument function as the base method. */
408
409 #define TARGET_DEFAULT_IGNORE()
410 #define TARGET_DEFAULT_NORETURN(ARG)
411 #define TARGET_DEFAULT_RETURN(ARG)
412 #define TARGET_DEFAULT_FUNC(ARG)
413
414 /* Each target that can be activated with "target TARGET_NAME" passes
415 the address of one of these objects to add_target, which uses the
416 object's address as unique identifier, and registers the "target
417 TARGET_NAME" command using SHORTNAME as target name. */
418
419 struct target_info
420 {
421 /* Name of this target. */
422 const char *shortname;
423
424 /* Name for printing. */
425 const char *longname;
426
427 /* Documentation. Does not include trailing newline, and starts
428 with a one-line description (probably similar to longname). */
429 const char *doc;
430 };
431
432 struct target_ops
433 {
434 /* Return this target's stratum. */
435 virtual strata stratum () const = 0;
436
437 /* To the target under this one. */
438 target_ops *beneath () const;
439
440 /* Free resources associated with the target. Note that singleton
441 targets, like e.g., native targets, are global objects, not
442 heap allocated, and are thus only deleted on GDB exit. The
443 main teardown entry point is the "close" method, below. */
444 virtual ~target_ops () {}
445
446 /* Return a reference to this target's unique target_info
447 object. */
448 virtual const target_info &info () const = 0;
449
450 /* Name this target type. */
451 const char *shortname ()
452 { return info ().shortname; }
453
454 const char *longname ()
455 { return info ().longname; }
456
457 /* Close the target. This is where the target can handle
458 teardown. Heap-allocated targets should delete themselves
459 before returning. */
460 virtual void close ();
461
462 /* Attaches to a process on the target side. Arguments are as
463 passed to the `attach' command by the user. This routine can
464 be called when the target is not on the target-stack, if the
465 target_ops::can_run method returns 1; in that case, it must push
466 itself onto the stack. Upon exit, the target should be ready
467 for normal operations, and should be ready to deliver the
468 status of the process immediately (without waiting) to an
469 upcoming target_wait call. */
470 virtual bool can_attach ();
471 virtual void attach (const char *, int);
472 virtual void post_attach (int)
473 TARGET_DEFAULT_IGNORE ();
474 virtual void detach (inferior *, int)
475 TARGET_DEFAULT_IGNORE ();
476 virtual void disconnect (const char *, int)
477 TARGET_DEFAULT_NORETURN (tcomplain ());
478 virtual void resume (ptid_t,
479 int TARGET_DEBUG_PRINTER (target_debug_print_step),
480 enum gdb_signal)
481 TARGET_DEFAULT_NORETURN (noprocess ());
482 virtual void commit_resume ()
483 TARGET_DEFAULT_IGNORE ();
484 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
485 int TARGET_DEBUG_PRINTER (target_debug_print_options))
486 TARGET_DEFAULT_FUNC (default_target_wait);
487 virtual void fetch_registers (struct regcache *, int)
488 TARGET_DEFAULT_IGNORE ();
489 virtual void store_registers (struct regcache *, int)
490 TARGET_DEFAULT_NORETURN (noprocess ());
491 virtual void prepare_to_store (struct regcache *)
492 TARGET_DEFAULT_NORETURN (noprocess ());
493
494 virtual void files_info ()
495 TARGET_DEFAULT_IGNORE ();
496 virtual int insert_breakpoint (struct gdbarch *,
497 struct bp_target_info *)
498 TARGET_DEFAULT_NORETURN (noprocess ());
499 virtual int remove_breakpoint (struct gdbarch *,
500 struct bp_target_info *,
501 enum remove_bp_reason)
502 TARGET_DEFAULT_NORETURN (noprocess ());
503
504 /* Returns true if the target stopped because it executed a
505 software breakpoint. This is necessary for correct background
506 execution / non-stop mode operation, and for correct PC
507 adjustment on targets where the PC needs to be adjusted when a
508 software breakpoint triggers. In these modes, by the time GDB
509 processes a breakpoint event, the breakpoint may already be
510 done from the target, so GDB needs to be able to tell whether
511 it should ignore the event and whether it should adjust the PC.
512 See adjust_pc_after_break. */
513 virtual bool stopped_by_sw_breakpoint ()
514 TARGET_DEFAULT_RETURN (false);
515 /* Returns true if the above method is supported. */
516 virtual bool supports_stopped_by_sw_breakpoint ()
517 TARGET_DEFAULT_RETURN (false);
518
519 /* Returns true if the target stopped for a hardware breakpoint.
520 Likewise, if the target supports hardware breakpoints, this
521 method is necessary for correct background execution / non-stop
522 mode operation. Even though hardware breakpoints do not
523 require PC adjustment, GDB needs to be able to tell whether the
524 hardware breakpoint event is a delayed event for a breakpoint
525 that is already gone and should thus be ignored. */
526 virtual bool stopped_by_hw_breakpoint ()
527 TARGET_DEFAULT_RETURN (false);
528 /* Returns true if the above method is supported. */
529 virtual bool supports_stopped_by_hw_breakpoint ()
530 TARGET_DEFAULT_RETURN (false);
531
532 virtual int can_use_hw_breakpoint (enum bptype, int, int)
533 TARGET_DEFAULT_RETURN (0);
534 virtual int ranged_break_num_registers ()
535 TARGET_DEFAULT_RETURN (-1);
536 virtual int insert_hw_breakpoint (struct gdbarch *,
537 struct bp_target_info *)
538 TARGET_DEFAULT_RETURN (-1);
539 virtual int remove_hw_breakpoint (struct gdbarch *,
540 struct bp_target_info *)
541 TARGET_DEFAULT_RETURN (-1);
542
543 /* Documentation of what the two routines below are expected to do is
544 provided with the corresponding target_* macros. */
545 virtual int remove_watchpoint (CORE_ADDR, int,
546 enum target_hw_bp_type, struct expression *)
547 TARGET_DEFAULT_RETURN (-1);
548 virtual int insert_watchpoint (CORE_ADDR, int,
549 enum target_hw_bp_type, struct expression *)
550 TARGET_DEFAULT_RETURN (-1);
551
552 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
553 enum target_hw_bp_type)
554 TARGET_DEFAULT_RETURN (1);
555 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
556 enum target_hw_bp_type)
557 TARGET_DEFAULT_RETURN (1);
558 virtual bool stopped_by_watchpoint ()
559 TARGET_DEFAULT_RETURN (false);
560 virtual bool have_steppable_watchpoint ()
561 TARGET_DEFAULT_RETURN (false);
562 virtual bool stopped_data_address (CORE_ADDR *)
563 TARGET_DEFAULT_RETURN (false);
564 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
565 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
566
567 /* Documentation of this routine is provided with the corresponding
568 target_* macro. */
569 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
570 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
571
572 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
573 struct expression *)
574 TARGET_DEFAULT_RETURN (false);
575 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
576 TARGET_DEFAULT_RETURN (-1);
577
578 /* Return 1 for sure target can do single step. Return -1 for
579 unknown. Return 0 for target can't do. */
580 virtual int can_do_single_step ()
581 TARGET_DEFAULT_RETURN (-1);
582
583 virtual bool supports_terminal_ours ()
584 TARGET_DEFAULT_RETURN (false);
585 virtual void terminal_init ()
586 TARGET_DEFAULT_IGNORE ();
587 virtual void terminal_inferior ()
588 TARGET_DEFAULT_IGNORE ();
589 virtual void terminal_save_inferior ()
590 TARGET_DEFAULT_IGNORE ();
591 virtual void terminal_ours_for_output ()
592 TARGET_DEFAULT_IGNORE ();
593 virtual void terminal_ours ()
594 TARGET_DEFAULT_IGNORE ();
595 virtual void terminal_info (const char *, int)
596 TARGET_DEFAULT_FUNC (default_terminal_info);
597 virtual void kill ()
598 TARGET_DEFAULT_NORETURN (noprocess ());
599 virtual void load (const char *, int)
600 TARGET_DEFAULT_NORETURN (tcomplain ());
601 /* Start an inferior process and set inferior_ptid to its pid.
602 EXEC_FILE is the file to run.
603 ALLARGS is a string containing the arguments to the program.
604 ENV is the environment vector to pass. Errors reported with error().
605 On VxWorks and various standalone systems, we ignore exec_file. */
606 virtual bool can_create_inferior ();
607 virtual void create_inferior (const char *, const std::string &,
608 char **, int);
609 virtual void post_startup_inferior (ptid_t)
610 TARGET_DEFAULT_IGNORE ();
611 virtual int insert_fork_catchpoint (int)
612 TARGET_DEFAULT_RETURN (1);
613 virtual int remove_fork_catchpoint (int)
614 TARGET_DEFAULT_RETURN (1);
615 virtual int insert_vfork_catchpoint (int)
616 TARGET_DEFAULT_RETURN (1);
617 virtual int remove_vfork_catchpoint (int)
618 TARGET_DEFAULT_RETURN (1);
619 virtual int follow_fork (int, int)
620 TARGET_DEFAULT_FUNC (default_follow_fork);
621 virtual int insert_exec_catchpoint (int)
622 TARGET_DEFAULT_RETURN (1);
623 virtual int remove_exec_catchpoint (int)
624 TARGET_DEFAULT_RETURN (1);
625 virtual void follow_exec (struct inferior *, const char *)
626 TARGET_DEFAULT_IGNORE ();
627 virtual int set_syscall_catchpoint (int, bool, int,
628 gdb::array_view<const int>)
629 TARGET_DEFAULT_RETURN (1);
630 virtual void mourn_inferior ()
631 TARGET_DEFAULT_FUNC (default_mourn_inferior);
632
633 /* Note that can_run is special and can be invoked on an unpushed
634 target. Targets defining this method must also define
635 to_can_async_p and to_supports_non_stop. */
636 virtual bool can_run ();
637
638 /* Documentation of this routine is provided with the corresponding
639 target_* macro. */
640 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
641 TARGET_DEFAULT_IGNORE ();
642
643 /* Documentation of this routine is provided with the
644 corresponding target_* function. */
645 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
646 TARGET_DEFAULT_IGNORE ();
647
648 virtual bool thread_alive (ptid_t ptid)
649 TARGET_DEFAULT_RETURN (false);
650 virtual void update_thread_list ()
651 TARGET_DEFAULT_IGNORE ();
652 virtual std::string pid_to_str (ptid_t)
653 TARGET_DEFAULT_FUNC (default_pid_to_str);
654 virtual const char *extra_thread_info (thread_info *)
655 TARGET_DEFAULT_RETURN (NULL);
656 virtual const char *thread_name (thread_info *)
657 TARGET_DEFAULT_RETURN (NULL);
658 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
659 int,
660 inferior *inf)
661 TARGET_DEFAULT_RETURN (NULL);
662 /* See target_thread_info_to_thread_handle. */
663 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
664 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
665 virtual void stop (ptid_t)
666 TARGET_DEFAULT_IGNORE ();
667 virtual void interrupt ()
668 TARGET_DEFAULT_IGNORE ();
669 virtual void pass_ctrlc ()
670 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
671 virtual void rcmd (const char *command, struct ui_file *output)
672 TARGET_DEFAULT_FUNC (default_rcmd);
673 virtual char *pid_to_exec_file (int pid)
674 TARGET_DEFAULT_RETURN (NULL);
675 virtual void log_command (const char *)
676 TARGET_DEFAULT_IGNORE ();
677 virtual struct target_section_table *get_section_table ()
678 TARGET_DEFAULT_RETURN (NULL);
679
680 /* Provide default values for all "must have" methods. */
681 virtual bool has_all_memory () { return false; }
682 virtual bool has_memory () { return false; }
683 virtual bool has_stack () { return false; }
684 virtual bool has_registers () { return false; }
685 virtual bool has_execution (ptid_t) { return false; }
686
687 /* Control thread execution. */
688 virtual thread_control_capabilities get_thread_control_capabilities ()
689 TARGET_DEFAULT_RETURN (tc_none);
690 virtual bool attach_no_wait ()
691 TARGET_DEFAULT_RETURN (0);
692 /* This method must be implemented in some situations. See the
693 comment on 'can_run'. */
694 virtual bool can_async_p ()
695 TARGET_DEFAULT_RETURN (false);
696 virtual bool is_async_p ()
697 TARGET_DEFAULT_RETURN (false);
698 virtual void async (int)
699 TARGET_DEFAULT_NORETURN (tcomplain ());
700 virtual void thread_events (int)
701 TARGET_DEFAULT_IGNORE ();
702 /* This method must be implemented in some situations. See the
703 comment on 'can_run'. */
704 virtual bool supports_non_stop ()
705 TARGET_DEFAULT_RETURN (false);
706 /* Return true if the target operates in non-stop mode even with
707 "set non-stop off". */
708 virtual bool always_non_stop_p ()
709 TARGET_DEFAULT_RETURN (false);
710 /* find_memory_regions support method for gcore */
711 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
712 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
713 /* make_corefile_notes support method for gcore */
714 virtual char *make_corefile_notes (bfd *, int *)
715 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
716 /* get_bookmark support method for bookmarks */
717 virtual gdb_byte *get_bookmark (const char *, int)
718 TARGET_DEFAULT_NORETURN (tcomplain ());
719 /* goto_bookmark support method for bookmarks */
720 virtual void goto_bookmark (const gdb_byte *, int)
721 TARGET_DEFAULT_NORETURN (tcomplain ());
722 /* Return the thread-local address at OFFSET in the
723 thread-local storage for the thread PTID and the shared library
724 or executable file given by LOAD_MODULE_ADDR. If that block of
725 thread-local storage hasn't been allocated yet, this function
726 may throw an error. LOAD_MODULE_ADDR may be zero for statically
727 linked multithreaded inferiors. */
728 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
729 CORE_ADDR load_module_addr,
730 CORE_ADDR offset)
731 TARGET_DEFAULT_NORETURN (generic_tls_error ());
732
733 /* Request that OPS transfer up to LEN addressable units of the target's
734 OBJECT. When reading from a memory object, the size of an addressable
735 unit is architecture dependent and can be found using
736 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
737 1 byte long. The OFFSET, for a seekable object, specifies the
738 starting point. The ANNEX can be used to provide additional
739 data-specific information to the target.
740
741 Return the transferred status, error or OK (an
742 'enum target_xfer_status' value). Save the number of addressable units
743 actually transferred in *XFERED_LEN if transfer is successful
744 (TARGET_XFER_OK) or the number unavailable units if the requested
745 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
746 smaller than LEN does not indicate the end of the object, only
747 the end of the transfer; higher level code should continue
748 transferring if desired. This is handled in target.c.
749
750 The interface does not support a "retry" mechanism. Instead it
751 assumes that at least one addressable unit will be transfered on each
752 successful call.
753
754 NOTE: cagney/2003-10-17: The current interface can lead to
755 fragmented transfers. Lower target levels should not implement
756 hacks, such as enlarging the transfer, in an attempt to
757 compensate for this. Instead, the target stack should be
758 extended so that it implements supply/collect methods and a
759 look-aside object cache. With that available, the lowest
760 target can safely and freely "push" data up the stack.
761
762 See target_read and target_write for more information. One,
763 and only one, of readbuf or writebuf must be non-NULL. */
764
765 virtual enum target_xfer_status xfer_partial (enum target_object object,
766 const char *annex,
767 gdb_byte *readbuf,
768 const gdb_byte *writebuf,
769 ULONGEST offset, ULONGEST len,
770 ULONGEST *xfered_len)
771 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
772
773 /* Return the limit on the size of any single memory transfer
774 for the target. */
775
776 virtual ULONGEST get_memory_xfer_limit ()
777 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
778
779 /* Returns the memory map for the target. A return value of NULL
780 means that no memory map is available. If a memory address
781 does not fall within any returned regions, it's assumed to be
782 RAM. The returned memory regions should not overlap.
783
784 The order of regions does not matter; target_memory_map will
785 sort regions by starting address. For that reason, this
786 function should not be called directly except via
787 target_memory_map.
788
789 This method should not cache data; if the memory map could
790 change unexpectedly, it should be invalidated, and higher
791 layers will re-fetch it. */
792 virtual std::vector<mem_region> memory_map ()
793 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
794
795 /* Erases the region of flash memory starting at ADDRESS, of
796 length LENGTH.
797
798 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
799 on flash block boundaries, as reported by 'to_memory_map'. */
800 virtual void flash_erase (ULONGEST address, LONGEST length)
801 TARGET_DEFAULT_NORETURN (tcomplain ());
802
803 /* Finishes a flash memory write sequence. After this operation
804 all flash memory should be available for writing and the result
805 of reading from areas written by 'to_flash_write' should be
806 equal to what was written. */
807 virtual void flash_done ()
808 TARGET_DEFAULT_NORETURN (tcomplain ());
809
810 /* Describe the architecture-specific features of this target. If
811 OPS doesn't have a description, this should delegate to the
812 "beneath" target. Returns the description found, or NULL if no
813 description was available. */
814 virtual const struct target_desc *read_description ()
815 TARGET_DEFAULT_RETURN (NULL);
816
817 /* Build the PTID of the thread on which a given task is running,
818 based on LWP and THREAD. These values are extracted from the
819 task Private_Data section of the Ada Task Control Block, and
820 their interpretation depends on the target. */
821 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
822 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
823
824 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
825 Return 0 if *READPTR is already at the end of the buffer.
826 Return -1 if there is insufficient buffer for a whole entry.
827 Return 1 if an entry was read into *TYPEP and *VALP. */
828 virtual int auxv_parse (gdb_byte **readptr,
829 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
830 TARGET_DEFAULT_FUNC (default_auxv_parse);
831
832 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
833 sequence of bytes in PATTERN with length PATTERN_LEN.
834
835 The result is 1 if found, 0 if not found, and -1 if there was an error
836 requiring halting of the search (e.g. memory read error).
837 If the pattern is found the address is recorded in FOUND_ADDRP. */
838 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
839 const gdb_byte *pattern, ULONGEST pattern_len,
840 CORE_ADDR *found_addrp)
841 TARGET_DEFAULT_FUNC (default_search_memory);
842
843 /* Can target execute in reverse? */
844 virtual bool can_execute_reverse ()
845 TARGET_DEFAULT_RETURN (false);
846
847 /* The direction the target is currently executing. Must be
848 implemented on targets that support reverse execution and async
849 mode. The default simply returns forward execution. */
850 virtual enum exec_direction_kind execution_direction ()
851 TARGET_DEFAULT_FUNC (default_execution_direction);
852
853 /* Does this target support debugging multiple processes
854 simultaneously? */
855 virtual bool supports_multi_process ()
856 TARGET_DEFAULT_RETURN (false);
857
858 /* Does this target support enabling and disabling tracepoints while a trace
859 experiment is running? */
860 virtual bool supports_enable_disable_tracepoint ()
861 TARGET_DEFAULT_RETURN (false);
862
863 /* Does this target support disabling address space randomization? */
864 virtual bool supports_disable_randomization ()
865 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
866
867 /* Does this target support the tracenz bytecode for string collection? */
868 virtual bool supports_string_tracing ()
869 TARGET_DEFAULT_RETURN (false);
870
871 /* Does this target support evaluation of breakpoint conditions on its
872 end? */
873 virtual bool supports_evaluation_of_breakpoint_conditions ()
874 TARGET_DEFAULT_RETURN (false);
875
876 /* Does this target support evaluation of breakpoint commands on its
877 end? */
878 virtual bool can_run_breakpoint_commands ()
879 TARGET_DEFAULT_RETURN (false);
880
881 /* Determine current architecture of thread PTID.
882
883 The target is supposed to determine the architecture of the code where
884 the target is currently stopped at (on Cell, if a target is in spu_run,
885 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
886 This is architecture used to perform decr_pc_after_break adjustment,
887 and also determines the frame architecture of the innermost frame.
888 ptrace operations need to operate according to target_gdbarch (). */
889 virtual struct gdbarch *thread_architecture (ptid_t)
890 TARGET_DEFAULT_RETURN (NULL);
891
892 /* Determine current address space of thread PTID. */
893 virtual struct address_space *thread_address_space (ptid_t)
894 TARGET_DEFAULT_RETURN (NULL);
895
896 /* Target file operations. */
897
898 /* Return nonzero if the filesystem seen by the current inferior
899 is the local filesystem, zero otherwise. */
900 virtual bool filesystem_is_local ()
901 TARGET_DEFAULT_RETURN (true);
902
903 /* Open FILENAME on the target, in the filesystem as seen by INF,
904 using FLAGS and MODE. If INF is NULL, use the filesystem seen
905 by the debugger (GDB or, for remote targets, the remote stub).
906 If WARN_IF_SLOW is nonzero, print a warning message if the file
907 is being accessed over a link that may be slow. Return a
908 target file descriptor, or -1 if an error occurs (and set
909 *TARGET_ERRNO). */
910 virtual int fileio_open (struct inferior *inf, const char *filename,
911 int flags, int mode, int warn_if_slow,
912 int *target_errno);
913
914 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
915 Return the number of bytes written, or -1 if an error occurs
916 (and set *TARGET_ERRNO). */
917 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
918 ULONGEST offset, int *target_errno);
919
920 /* Read up to LEN bytes FD on the target into READ_BUF.
921 Return the number of bytes read, or -1 if an error occurs
922 (and set *TARGET_ERRNO). */
923 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
924 ULONGEST offset, int *target_errno);
925
926 /* Get information about the file opened as FD and put it in
927 SB. Return 0 on success, or -1 if an error occurs (and set
928 *TARGET_ERRNO). */
929 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
930
931 /* Close FD on the target. Return 0, or -1 if an error occurs
932 (and set *TARGET_ERRNO). */
933 virtual int fileio_close (int fd, int *target_errno);
934
935 /* Unlink FILENAME on the target, in the filesystem as seen by
936 INF. If INF is NULL, use the filesystem seen by the debugger
937 (GDB or, for remote targets, the remote stub). Return 0, or
938 -1 if an error occurs (and set *TARGET_ERRNO). */
939 virtual int fileio_unlink (struct inferior *inf,
940 const char *filename,
941 int *target_errno);
942
943 /* Read value of symbolic link FILENAME on the target, in the
944 filesystem as seen by INF. If INF is NULL, use the filesystem
945 seen by the debugger (GDB or, for remote targets, the remote
946 stub). Return a string, or an empty optional if an error
947 occurs (and set *TARGET_ERRNO). */
948 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
949 const char *filename,
950 int *target_errno);
951
952 /* Implement the "info proc" command. Returns true if the target
953 actually implemented the command, false otherwise. */
954 virtual bool info_proc (const char *, enum info_proc_what);
955
956 /* Tracepoint-related operations. */
957
958 /* Prepare the target for a tracing run. */
959 virtual void trace_init ()
960 TARGET_DEFAULT_NORETURN (tcomplain ());
961
962 /* Send full details of a tracepoint location to the target. */
963 virtual void download_tracepoint (struct bp_location *location)
964 TARGET_DEFAULT_NORETURN (tcomplain ());
965
966 /* Is the target able to download tracepoint locations in current
967 state? */
968 virtual bool can_download_tracepoint ()
969 TARGET_DEFAULT_RETURN (false);
970
971 /* Send full details of a trace state variable to the target. */
972 virtual void download_trace_state_variable (const trace_state_variable &tsv)
973 TARGET_DEFAULT_NORETURN (tcomplain ());
974
975 /* Enable a tracepoint on the target. */
976 virtual void enable_tracepoint (struct bp_location *location)
977 TARGET_DEFAULT_NORETURN (tcomplain ());
978
979 /* Disable a tracepoint on the target. */
980 virtual void disable_tracepoint (struct bp_location *location)
981 TARGET_DEFAULT_NORETURN (tcomplain ());
982
983 /* Inform the target info of memory regions that are readonly
984 (such as text sections), and so it should return data from
985 those rather than look in the trace buffer. */
986 virtual void trace_set_readonly_regions ()
987 TARGET_DEFAULT_NORETURN (tcomplain ());
988
989 /* Start a trace run. */
990 virtual void trace_start ()
991 TARGET_DEFAULT_NORETURN (tcomplain ());
992
993 /* Get the current status of a tracing run. */
994 virtual int get_trace_status (struct trace_status *ts)
995 TARGET_DEFAULT_RETURN (-1);
996
997 virtual void get_tracepoint_status (struct breakpoint *tp,
998 struct uploaded_tp *utp)
999 TARGET_DEFAULT_NORETURN (tcomplain ());
1000
1001 /* Stop a trace run. */
1002 virtual void trace_stop ()
1003 TARGET_DEFAULT_NORETURN (tcomplain ());
1004
1005 /* Ask the target to find a trace frame of the given type TYPE,
1006 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1007 number of the trace frame, and also the tracepoint number at
1008 TPP. If no trace frame matches, return -1. May throw if the
1009 operation fails. */
1010 virtual int trace_find (enum trace_find_type type, int num,
1011 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1012 TARGET_DEFAULT_RETURN (-1);
1013
1014 /* Get the value of the trace state variable number TSV, returning
1015 1 if the value is known and writing the value itself into the
1016 location pointed to by VAL, else returning 0. */
1017 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1018 TARGET_DEFAULT_RETURN (false);
1019
1020 virtual int save_trace_data (const char *filename)
1021 TARGET_DEFAULT_NORETURN (tcomplain ());
1022
1023 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1024 TARGET_DEFAULT_RETURN (0);
1025
1026 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1027 TARGET_DEFAULT_RETURN (0);
1028
1029 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1030 ULONGEST offset, LONGEST len)
1031 TARGET_DEFAULT_NORETURN (tcomplain ());
1032
1033 /* Get the minimum length of instruction on which a fast tracepoint
1034 may be set on the target. If this operation is unsupported,
1035 return -1. If for some reason the minimum length cannot be
1036 determined, return 0. */
1037 virtual int get_min_fast_tracepoint_insn_len ()
1038 TARGET_DEFAULT_RETURN (-1);
1039
1040 /* Set the target's tracing behavior in response to unexpected
1041 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1042 virtual void set_disconnected_tracing (int val)
1043 TARGET_DEFAULT_IGNORE ();
1044 virtual void set_circular_trace_buffer (int val)
1045 TARGET_DEFAULT_IGNORE ();
1046 /* Set the size of trace buffer in the target. */
1047 virtual void set_trace_buffer_size (LONGEST val)
1048 TARGET_DEFAULT_IGNORE ();
1049
1050 /* Add/change textual notes about the trace run, returning 1 if
1051 successful, 0 otherwise. */
1052 virtual bool set_trace_notes (const char *user, const char *notes,
1053 const char *stopnotes)
1054 TARGET_DEFAULT_RETURN (false);
1055
1056 /* Return the processor core that thread PTID was last seen on.
1057 This information is updated only when:
1058 - update_thread_list is called
1059 - thread stops
1060 If the core cannot be determined -- either for the specified
1061 thread, or right now, or in this debug session, or for this
1062 target -- return -1. */
1063 virtual int core_of_thread (ptid_t ptid)
1064 TARGET_DEFAULT_RETURN (-1);
1065
1066 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1067 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1068 a match, 0 if there's a mismatch, and -1 if an error is
1069 encountered while reading memory. */
1070 virtual int verify_memory (const gdb_byte *data,
1071 CORE_ADDR memaddr, ULONGEST size)
1072 TARGET_DEFAULT_FUNC (default_verify_memory);
1073
1074 /* Return the address of the start of the Thread Information Block
1075 a Windows OS specific feature. */
1076 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1077 TARGET_DEFAULT_NORETURN (tcomplain ());
1078
1079 /* Send the new settings of write permission variables. */
1080 virtual void set_permissions ()
1081 TARGET_DEFAULT_IGNORE ();
1082
1083 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1084 with its details. Return true on success, false on failure. */
1085 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1086 static_tracepoint_marker *marker)
1087 TARGET_DEFAULT_RETURN (false);
1088
1089 /* Return a vector of all tracepoints markers string id ID, or all
1090 markers if ID is NULL. */
1091 virtual std::vector<static_tracepoint_marker>
1092 static_tracepoint_markers_by_strid (const char *id)
1093 TARGET_DEFAULT_NORETURN (tcomplain ());
1094
1095 /* Return a traceframe info object describing the current
1096 traceframe's contents. This method should not cache data;
1097 higher layers take care of caching, invalidating, and
1098 re-fetching when necessary. */
1099 virtual traceframe_info_up traceframe_info ()
1100 TARGET_DEFAULT_NORETURN (tcomplain ());
1101
1102 /* Ask the target to use or not to use agent according to USE.
1103 Return true if successful, false otherwise. */
1104 virtual bool use_agent (bool use)
1105 TARGET_DEFAULT_NORETURN (tcomplain ());
1106
1107 /* Is the target able to use agent in current state? */
1108 virtual bool can_use_agent ()
1109 TARGET_DEFAULT_RETURN (false);
1110
1111 /* Enable branch tracing for PTID using CONF configuration.
1112 Return a branch trace target information struct for reading and for
1113 disabling branch trace. */
1114 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1115 const struct btrace_config *conf)
1116 TARGET_DEFAULT_NORETURN (tcomplain ());
1117
1118 /* Disable branch tracing and deallocate TINFO. */
1119 virtual void disable_btrace (struct btrace_target_info *tinfo)
1120 TARGET_DEFAULT_NORETURN (tcomplain ());
1121
1122 /* Disable branch tracing and deallocate TINFO. This function is similar
1123 to to_disable_btrace, except that it is called during teardown and is
1124 only allowed to perform actions that are safe. A counter-example would
1125 be attempting to talk to a remote target. */
1126 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1127 TARGET_DEFAULT_NORETURN (tcomplain ());
1128
1129 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1130 DATA is cleared before new trace is added. */
1131 virtual enum btrace_error read_btrace (struct btrace_data *data,
1132 struct btrace_target_info *btinfo,
1133 enum btrace_read_type type)
1134 TARGET_DEFAULT_NORETURN (tcomplain ());
1135
1136 /* Get the branch trace configuration. */
1137 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1138 TARGET_DEFAULT_RETURN (NULL);
1139
1140 /* Current recording method. */
1141 virtual enum record_method record_method (ptid_t ptid)
1142 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1143
1144 /* Stop trace recording. */
1145 virtual void stop_recording ()
1146 TARGET_DEFAULT_IGNORE ();
1147
1148 /* Print information about the recording. */
1149 virtual void info_record ()
1150 TARGET_DEFAULT_IGNORE ();
1151
1152 /* Save the recorded execution trace into a file. */
1153 virtual void save_record (const char *filename)
1154 TARGET_DEFAULT_NORETURN (tcomplain ());
1155
1156 /* Delete the recorded execution trace from the current position
1157 onwards. */
1158 virtual bool supports_delete_record ()
1159 TARGET_DEFAULT_RETURN (false);
1160 virtual void delete_record ()
1161 TARGET_DEFAULT_NORETURN (tcomplain ());
1162
1163 /* Query if the record target is currently replaying PTID. */
1164 virtual bool record_is_replaying (ptid_t ptid)
1165 TARGET_DEFAULT_RETURN (false);
1166
1167 /* Query if the record target will replay PTID if it were resumed in
1168 execution direction DIR. */
1169 virtual bool record_will_replay (ptid_t ptid, int dir)
1170 TARGET_DEFAULT_RETURN (false);
1171
1172 /* Stop replaying. */
1173 virtual void record_stop_replaying ()
1174 TARGET_DEFAULT_IGNORE ();
1175
1176 /* Go to the begin of the execution trace. */
1177 virtual void goto_record_begin ()
1178 TARGET_DEFAULT_NORETURN (tcomplain ());
1179
1180 /* Go to the end of the execution trace. */
1181 virtual void goto_record_end ()
1182 TARGET_DEFAULT_NORETURN (tcomplain ());
1183
1184 /* Go to a specific location in the recorded execution trace. */
1185 virtual void goto_record (ULONGEST insn)
1186 TARGET_DEFAULT_NORETURN (tcomplain ());
1187
1188 /* Disassemble SIZE instructions in the recorded execution trace from
1189 the current position.
1190 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1191 disassemble SIZE succeeding instructions. */
1192 virtual void insn_history (int size, gdb_disassembly_flags flags)
1193 TARGET_DEFAULT_NORETURN (tcomplain ());
1194
1195 /* Disassemble SIZE instructions in the recorded execution trace around
1196 FROM.
1197 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1198 disassemble SIZE instructions after FROM. */
1199 virtual void insn_history_from (ULONGEST from, int size,
1200 gdb_disassembly_flags flags)
1201 TARGET_DEFAULT_NORETURN (tcomplain ());
1202
1203 /* Disassemble a section of the recorded execution trace from instruction
1204 BEGIN (inclusive) to instruction END (inclusive). */
1205 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1206 gdb_disassembly_flags flags)
1207 TARGET_DEFAULT_NORETURN (tcomplain ());
1208
1209 /* Print a function trace of the recorded execution trace.
1210 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1211 succeeding functions. */
1212 virtual void call_history (int size, record_print_flags flags)
1213 TARGET_DEFAULT_NORETURN (tcomplain ());
1214
1215 /* Print a function trace of the recorded execution trace starting
1216 at function FROM.
1217 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1218 SIZE functions after FROM. */
1219 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1220 TARGET_DEFAULT_NORETURN (tcomplain ());
1221
1222 /* Print a function trace of an execution trace section from function BEGIN
1223 (inclusive) to function END (inclusive). */
1224 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1225 TARGET_DEFAULT_NORETURN (tcomplain ());
1226
1227 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1228 non-empty annex. */
1229 virtual bool augmented_libraries_svr4_read ()
1230 TARGET_DEFAULT_RETURN (false);
1231
1232 /* Those unwinders are tried before any other arch unwinders. If
1233 SELF doesn't have unwinders, it should delegate to the
1234 "beneath" target. */
1235 virtual const struct frame_unwind *get_unwinder ()
1236 TARGET_DEFAULT_RETURN (NULL);
1237
1238 virtual const struct frame_unwind *get_tailcall_unwinder ()
1239 TARGET_DEFAULT_RETURN (NULL);
1240
1241 /* Prepare to generate a core file. */
1242 virtual void prepare_to_generate_core ()
1243 TARGET_DEFAULT_IGNORE ();
1244
1245 /* Cleanup after generating a core file. */
1246 virtual void done_generating_core ()
1247 TARGET_DEFAULT_IGNORE ();
1248 };
1249
1250 /* Deleter for std::unique_ptr. See comments in
1251 target_ops::~target_ops and target_ops::close about heap-allocated
1252 targets. */
1253 struct target_ops_deleter
1254 {
1255 void operator() (target_ops *target)
1256 {
1257 target->close ();
1258 }
1259 };
1260
1261 /* A unique pointer for target_ops. */
1262 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1263
1264 /* Native target backends call this once at initialization time to
1265 inform the core about which is the target that can respond to "run"
1266 or "attach". Note: native targets are always singletons. */
1267 extern void set_native_target (target_ops *target);
1268
1269 /* Get the registered native target, if there's one. Otherwise return
1270 NULL. */
1271 extern target_ops *get_native_target ();
1272
1273 /* Type that manages a target stack. See description of target stacks
1274 and strata at the top of the file. */
1275
1276 class target_stack
1277 {
1278 public:
1279 target_stack () = default;
1280 DISABLE_COPY_AND_ASSIGN (target_stack);
1281
1282 /* Push a new target into the stack of the existing target
1283 accessors, possibly superseding some existing accessor. */
1284 void push (target_ops *t);
1285
1286 /* Remove a target from the stack, wherever it may be. Return true
1287 if it was removed, false otherwise. */
1288 bool unpush (target_ops *t);
1289
1290 /* Returns true if T is pushed on the target stack. */
1291 bool is_pushed (target_ops *t) const
1292 { return at (t->stratum ()) == t; }
1293
1294 /* Return the target at STRATUM. */
1295 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1296
1297 /* Return the target at the top of the stack. */
1298 target_ops *top () const { return at (m_top); }
1299
1300 /* Find the next target down the stack from the specified target. */
1301 target_ops *find_beneath (const target_ops *t) const;
1302
1303 private:
1304 /* The stratum of the top target. */
1305 enum strata m_top {};
1306
1307 /* The stack, represented as an array, with one slot per stratum.
1308 If no target is pushed at some stratum, the corresponding slot is
1309 null. */
1310 target_ops *m_stack[(int) debug_stratum + 1] {};
1311 };
1312
1313 /* The ops structure for our "current" target process. This should
1314 never be NULL. If there is no target, it points to the dummy_target. */
1315
1316 extern target_ops *current_top_target ();
1317
1318 /* Define easy words for doing these operations on our current target. */
1319
1320 #define target_shortname (current_top_target ()->shortname ())
1321 #define target_longname (current_top_target ()->longname ())
1322
1323 /* Does whatever cleanup is required for a target that we are no
1324 longer going to be calling. This routine is automatically always
1325 called after popping the target off the target stack - the target's
1326 own methods are no longer available through the target vector.
1327 Closing file descriptors and freeing all memory allocated memory are
1328 typical things it should do. */
1329
1330 void target_close (struct target_ops *targ);
1331
1332 /* Find the correct target to use for "attach". If a target on the
1333 current stack supports attaching, then it is returned. Otherwise,
1334 the default run target is returned. */
1335
1336 extern struct target_ops *find_attach_target (void);
1337
1338 /* Find the correct target to use for "run". If a target on the
1339 current stack supports creating a new inferior, then it is
1340 returned. Otherwise, the default run target is returned. */
1341
1342 extern struct target_ops *find_run_target (void);
1343
1344 /* Some targets don't generate traps when attaching to the inferior,
1345 or their target_attach implementation takes care of the waiting.
1346 These targets must set to_attach_no_wait. */
1347
1348 #define target_attach_no_wait() \
1349 (current_top_target ()->attach_no_wait ())
1350
1351 /* The target_attach operation places a process under debugger control,
1352 and stops the process.
1353
1354 This operation provides a target-specific hook that allows the
1355 necessary bookkeeping to be performed after an attach completes. */
1356 #define target_post_attach(pid) \
1357 (current_top_target ()->post_attach) (pid)
1358
1359 /* Display a message indicating we're about to detach from the current
1360 inferior process. */
1361
1362 extern void target_announce_detach (int from_tty);
1363
1364 /* Takes a program previously attached to and detaches it.
1365 The program may resume execution (some targets do, some don't) and will
1366 no longer stop on signals, etc. We better not have left any breakpoints
1367 in the program or it'll die when it hits one. FROM_TTY says whether to be
1368 verbose or not. */
1369
1370 extern void target_detach (inferior *inf, int from_tty);
1371
1372 /* Disconnect from the current target without resuming it (leaving it
1373 waiting for a debugger). */
1374
1375 extern void target_disconnect (const char *, int);
1376
1377 /* Resume execution (or prepare for execution) of a target thread,
1378 process or all processes. STEP says whether to hardware
1379 single-step or to run free; SIGGNAL is the signal to be given to
1380 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1381 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1382 process id'. A wildcard PTID (all threads, or all threads of
1383 process) means `step/resume INFERIOR_PTID, and let other threads
1384 (for which the wildcard PTID matches) resume with their
1385 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1386 is in "pass" state, or with no signal if in "no pass" state.
1387
1388 In order to efficiently handle batches of resumption requests,
1389 targets may implement this method such that it records the
1390 resumption request, but defers the actual resumption to the
1391 target_commit_resume method implementation. See
1392 target_commit_resume below. */
1393 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1394
1395 /* Commit a series of resumption requests previously prepared with
1396 target_resume calls.
1397
1398 GDB always calls target_commit_resume after calling target_resume
1399 one or more times. A target may thus use this method in
1400 coordination with the target_resume method to batch target-side
1401 resumption requests. In that case, the target doesn't actually
1402 resume in its target_resume implementation. Instead, it prepares
1403 the resumption in target_resume, and defers the actual resumption
1404 to target_commit_resume. E.g., the remote target uses this to
1405 coalesce multiple resumption requests in a single vCont packet. */
1406 extern void target_commit_resume ();
1407
1408 /* Setup to defer target_commit_resume calls, and reactivate
1409 target_commit_resume on destruction, if it was previously
1410 active. */
1411 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1412
1413 /* For target_read_memory see target/target.h. */
1414
1415 /* The default target_ops::to_wait implementation. */
1416
1417 extern ptid_t default_target_wait (struct target_ops *ops,
1418 ptid_t ptid,
1419 struct target_waitstatus *status,
1420 int options);
1421
1422 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1423
1424 extern void target_fetch_registers (struct regcache *regcache, int regno);
1425
1426 /* Store at least register REGNO, or all regs if REGNO == -1.
1427 It can store as many registers as it wants to, so target_prepare_to_store
1428 must have been previously called. Calls error() if there are problems. */
1429
1430 extern void target_store_registers (struct regcache *regcache, int regs);
1431
1432 /* Get ready to modify the registers array. On machines which store
1433 individual registers, this doesn't need to do anything. On machines
1434 which store all the registers in one fell swoop, this makes sure
1435 that REGISTERS contains all the registers from the program being
1436 debugged. */
1437
1438 #define target_prepare_to_store(regcache) \
1439 (current_top_target ()->prepare_to_store) (regcache)
1440
1441 /* Determine current address space of thread PTID. */
1442
1443 struct address_space *target_thread_address_space (ptid_t);
1444
1445 /* Implement the "info proc" command. This returns one if the request
1446 was handled, and zero otherwise. It can also throw an exception if
1447 an error was encountered while attempting to handle the
1448 request. */
1449
1450 int target_info_proc (const char *, enum info_proc_what);
1451
1452 /* Returns true if this target can disable address space randomization. */
1453
1454 int target_supports_disable_randomization (void);
1455
1456 /* Returns true if this target can enable and disable tracepoints
1457 while a trace experiment is running. */
1458
1459 #define target_supports_enable_disable_tracepoint() \
1460 (current_top_target ()->supports_enable_disable_tracepoint) ()
1461
1462 #define target_supports_string_tracing() \
1463 (current_top_target ()->supports_string_tracing) ()
1464
1465 /* Returns true if this target can handle breakpoint conditions
1466 on its end. */
1467
1468 #define target_supports_evaluation_of_breakpoint_conditions() \
1469 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1470
1471 /* Returns true if this target can handle breakpoint commands
1472 on its end. */
1473
1474 #define target_can_run_breakpoint_commands() \
1475 (current_top_target ()->can_run_breakpoint_commands) ()
1476
1477 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1478 int, int *);
1479
1480 /* For target_read_memory see target/target.h. */
1481
1482 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1483 ssize_t len);
1484
1485 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1486
1487 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1488
1489 /* For target_write_memory see target/target.h. */
1490
1491 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1492 ssize_t len);
1493
1494 /* Fetches the target's memory map. If one is found it is sorted
1495 and returned, after some consistency checking. Otherwise, NULL
1496 is returned. */
1497 std::vector<mem_region> target_memory_map (void);
1498
1499 /* Erases all flash memory regions on the target. */
1500 void flash_erase_command (const char *cmd, int from_tty);
1501
1502 /* Erase the specified flash region. */
1503 void target_flash_erase (ULONGEST address, LONGEST length);
1504
1505 /* Finish a sequence of flash operations. */
1506 void target_flash_done (void);
1507
1508 /* Describes a request for a memory write operation. */
1509 struct memory_write_request
1510 {
1511 memory_write_request (ULONGEST begin_, ULONGEST end_,
1512 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1513 : begin (begin_), end (end_), data (data_), baton (baton_)
1514 {}
1515
1516 /* Begining address that must be written. */
1517 ULONGEST begin;
1518 /* Past-the-end address. */
1519 ULONGEST end;
1520 /* The data to write. */
1521 gdb_byte *data;
1522 /* A callback baton for progress reporting for this request. */
1523 void *baton;
1524 };
1525
1526 /* Enumeration specifying different flash preservation behaviour. */
1527 enum flash_preserve_mode
1528 {
1529 flash_preserve,
1530 flash_discard
1531 };
1532
1533 /* Write several memory blocks at once. This version can be more
1534 efficient than making several calls to target_write_memory, in
1535 particular because it can optimize accesses to flash memory.
1536
1537 Moreover, this is currently the only memory access function in gdb
1538 that supports writing to flash memory, and it should be used for
1539 all cases where access to flash memory is desirable.
1540
1541 REQUESTS is the vector (see vec.h) of memory_write_request.
1542 PRESERVE_FLASH_P indicates what to do with blocks which must be
1543 erased, but not completely rewritten.
1544 PROGRESS_CB is a function that will be periodically called to provide
1545 feedback to user. It will be called with the baton corresponding
1546 to the request currently being written. It may also be called
1547 with a NULL baton, when preserved flash sectors are being rewritten.
1548
1549 The function returns 0 on success, and error otherwise. */
1550 int target_write_memory_blocks
1551 (const std::vector<memory_write_request> &requests,
1552 enum flash_preserve_mode preserve_flash_p,
1553 void (*progress_cb) (ULONGEST, void *));
1554
1555 /* Print a line about the current target. */
1556
1557 #define target_files_info() \
1558 (current_top_target ()->files_info) ()
1559
1560 /* Insert a breakpoint at address BP_TGT->placed_address in
1561 the target machine. Returns 0 for success, and returns non-zero or
1562 throws an error (with a detailed failure reason error code and
1563 message) otherwise. */
1564
1565 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1566 struct bp_target_info *bp_tgt);
1567
1568 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1569 machine. Result is 0 for success, non-zero for error. */
1570
1571 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1572 struct bp_target_info *bp_tgt,
1573 enum remove_bp_reason reason);
1574
1575 /* Return true if the target stack has a non-default
1576 "terminal_ours" method. */
1577
1578 extern bool target_supports_terminal_ours (void);
1579
1580 /* Kill the inferior process. Make it go away. */
1581
1582 extern void target_kill (void);
1583
1584 /* Load an executable file into the target process. This is expected
1585 to not only bring new code into the target process, but also to
1586 update GDB's symbol tables to match.
1587
1588 ARG contains command-line arguments, to be broken down with
1589 buildargv (). The first non-switch argument is the filename to
1590 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1591 0)), which is an offset to apply to the load addresses of FILE's
1592 sections. The target may define switches, or other non-switch
1593 arguments, as it pleases. */
1594
1595 extern void target_load (const char *arg, int from_tty);
1596
1597 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1598 notification of inferior events such as fork and vork immediately
1599 after the inferior is created. (This because of how gdb gets an
1600 inferior created via invoking a shell to do it. In such a scenario,
1601 if the shell init file has commands in it, the shell will fork and
1602 exec for each of those commands, and we will see each such fork
1603 event. Very bad.)
1604
1605 Such targets will supply an appropriate definition for this function. */
1606
1607 #define target_post_startup_inferior(ptid) \
1608 (current_top_target ()->post_startup_inferior) (ptid)
1609
1610 /* On some targets, we can catch an inferior fork or vfork event when
1611 it occurs. These functions insert/remove an already-created
1612 catchpoint for such events. They return 0 for success, 1 if the
1613 catchpoint type is not supported and -1 for failure. */
1614
1615 #define target_insert_fork_catchpoint(pid) \
1616 (current_top_target ()->insert_fork_catchpoint) (pid)
1617
1618 #define target_remove_fork_catchpoint(pid) \
1619 (current_top_target ()->remove_fork_catchpoint) (pid)
1620
1621 #define target_insert_vfork_catchpoint(pid) \
1622 (current_top_target ()->insert_vfork_catchpoint) (pid)
1623
1624 #define target_remove_vfork_catchpoint(pid) \
1625 (current_top_target ()->remove_vfork_catchpoint) (pid)
1626
1627 /* If the inferior forks or vforks, this function will be called at
1628 the next resume in order to perform any bookkeeping and fiddling
1629 necessary to continue debugging either the parent or child, as
1630 requested, and releasing the other. Information about the fork
1631 or vfork event is available via get_last_target_status ().
1632 This function returns 1 if the inferior should not be resumed
1633 (i.e. there is another event pending). */
1634
1635 int target_follow_fork (int follow_child, int detach_fork);
1636
1637 /* Handle the target-specific bookkeeping required when the inferior
1638 makes an exec call. INF is the exec'd inferior. */
1639
1640 void target_follow_exec (struct inferior *inf, const char *execd_pathname);
1641
1642 /* On some targets, we can catch an inferior exec event when it
1643 occurs. These functions insert/remove an already-created
1644 catchpoint for such events. They return 0 for success, 1 if the
1645 catchpoint type is not supported and -1 for failure. */
1646
1647 #define target_insert_exec_catchpoint(pid) \
1648 (current_top_target ()->insert_exec_catchpoint) (pid)
1649
1650 #define target_remove_exec_catchpoint(pid) \
1651 (current_top_target ()->remove_exec_catchpoint) (pid)
1652
1653 /* Syscall catch.
1654
1655 NEEDED is true if any syscall catch (of any kind) is requested.
1656 If NEEDED is false, it means the target can disable the mechanism to
1657 catch system calls because there are no more catchpoints of this type.
1658
1659 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1660 being requested. In this case, SYSCALL_COUNTS should be ignored.
1661
1662 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1663 element in this array is nonzero if that syscall should be caught.
1664 This argument only matters if ANY_COUNT is zero.
1665
1666 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1667 for failure. */
1668
1669 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1670 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1671 syscall_counts)
1672
1673 /* The debugger has completed a blocking wait() call. There is now
1674 some process event that must be processed. This function should
1675 be defined by those targets that require the debugger to perform
1676 cleanup or internal state changes in response to the process event. */
1677
1678 /* For target_mourn_inferior see target/target.h. */
1679
1680 /* Does target have enough data to do a run or attach command? */
1681
1682 extern int target_can_run ();
1683
1684 /* Set list of signals to be handled in the target.
1685
1686 PASS_SIGNALS is an array indexed by target signal number
1687 (enum gdb_signal). For every signal whose entry in this array is
1688 non-zero, the target is allowed -but not required- to skip reporting
1689 arrival of the signal to the GDB core by returning from target_wait,
1690 and to pass the signal directly to the inferior instead.
1691
1692 However, if the target is hardware single-stepping a thread that is
1693 about to receive a signal, it needs to be reported in any case, even
1694 if mentioned in a previous target_pass_signals call. */
1695
1696 extern void target_pass_signals
1697 (gdb::array_view<const unsigned char> pass_signals);
1698
1699 /* Set list of signals the target may pass to the inferior. This
1700 directly maps to the "handle SIGNAL pass/nopass" setting.
1701
1702 PROGRAM_SIGNALS is an array indexed by target signal
1703 number (enum gdb_signal). For every signal whose entry in this
1704 array is non-zero, the target is allowed to pass the signal to the
1705 inferior. Signals not present in the array shall be silently
1706 discarded. This does not influence whether to pass signals to the
1707 inferior as a result of a target_resume call. This is useful in
1708 scenarios where the target needs to decide whether to pass or not a
1709 signal to the inferior without GDB core involvement, such as for
1710 example, when detaching (as threads may have been suspended with
1711 pending signals not reported to GDB). */
1712
1713 extern void target_program_signals
1714 (gdb::array_view<const unsigned char> program_signals);
1715
1716 /* Check to see if a thread is still alive. */
1717
1718 extern int target_thread_alive (ptid_t ptid);
1719
1720 /* Sync the target's threads with GDB's thread list. */
1721
1722 extern void target_update_thread_list (void);
1723
1724 /* Make target stop in a continuable fashion. (For instance, under
1725 Unix, this should act like SIGSTOP). Note that this function is
1726 asynchronous: it does not wait for the target to become stopped
1727 before returning. If this is the behavior you want please use
1728 target_stop_and_wait. */
1729
1730 extern void target_stop (ptid_t ptid);
1731
1732 /* Interrupt the target. Unlike target_stop, this does not specify
1733 which thread/process reports the stop. For most target this acts
1734 like raising a SIGINT, though that's not absolutely required. This
1735 function is asynchronous. */
1736
1737 extern void target_interrupt ();
1738
1739 /* Pass a ^C, as determined to have been pressed by checking the quit
1740 flag, to the target, as if the user had typed the ^C on the
1741 inferior's controlling terminal while the inferior was in the
1742 foreground. Remote targets may take the opportunity to detect the
1743 remote side is not responding and offer to disconnect. */
1744
1745 extern void target_pass_ctrlc (void);
1746
1747 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1748 target_interrupt. */
1749 extern void default_target_pass_ctrlc (struct target_ops *ops);
1750
1751 /* Send the specified COMMAND to the target's monitor
1752 (shell,interpreter) for execution. The result of the query is
1753 placed in OUTBUF. */
1754
1755 #define target_rcmd(command, outbuf) \
1756 (current_top_target ()->rcmd) (command, outbuf)
1757
1758
1759 /* Does the target include all of memory, or only part of it? This
1760 determines whether we look up the target chain for other parts of
1761 memory if this target can't satisfy a request. */
1762
1763 extern int target_has_all_memory_1 (void);
1764 #define target_has_all_memory target_has_all_memory_1 ()
1765
1766 /* Does the target include memory? (Dummy targets don't.) */
1767
1768 extern int target_has_memory_1 (void);
1769 #define target_has_memory target_has_memory_1 ()
1770
1771 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1772 we start a process.) */
1773
1774 extern int target_has_stack_1 (void);
1775 #define target_has_stack target_has_stack_1 ()
1776
1777 /* Does the target have registers? (Exec files don't.) */
1778
1779 extern int target_has_registers_1 (void);
1780 #define target_has_registers target_has_registers_1 ()
1781
1782 /* Does the target have execution? Can we make it jump (through
1783 hoops), or pop its stack a few times? This means that the current
1784 target is currently executing; for some targets, that's the same as
1785 whether or not the target is capable of execution, but there are
1786 also targets which can be current while not executing. In that
1787 case this will become true after to_create_inferior or
1788 to_attach. */
1789
1790 extern int target_has_execution_1 (ptid_t);
1791
1792 /* Like target_has_execution_1, but always passes inferior_ptid. */
1793
1794 extern int target_has_execution_current (void);
1795
1796 #define target_has_execution target_has_execution_current ()
1797
1798 /* Can the target support the debugger control of thread execution?
1799 Can it lock the thread scheduler? */
1800
1801 #define target_can_lock_scheduler \
1802 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1803
1804 /* Controls whether async mode is permitted. */
1805 extern int target_async_permitted;
1806
1807 /* Can the target support asynchronous execution? */
1808 #define target_can_async_p() (current_top_target ()->can_async_p ())
1809
1810 /* Is the target in asynchronous execution mode? */
1811 #define target_is_async_p() (current_top_target ()->is_async_p ())
1812
1813 /* Enables/disabled async target events. */
1814 extern void target_async (int enable);
1815
1816 /* Enables/disables thread create and exit events. */
1817 extern void target_thread_events (int enable);
1818
1819 /* Whether support for controlling the target backends always in
1820 non-stop mode is enabled. */
1821 extern enum auto_boolean target_non_stop_enabled;
1822
1823 /* Is the target in non-stop mode? Some targets control the inferior
1824 in non-stop mode even with "set non-stop off". Always true if "set
1825 non-stop" is on. */
1826 extern int target_is_non_stop_p (void);
1827
1828 #define target_execution_direction() \
1829 (current_top_target ()->execution_direction ())
1830
1831 /* Converts a process id to a string. Usually, the string just contains
1832 `process xyz', but on some systems it may contain
1833 `process xyz thread abc'. */
1834
1835 extern std::string target_pid_to_str (ptid_t ptid);
1836
1837 extern std::string normal_pid_to_str (ptid_t ptid);
1838
1839 /* Return a short string describing extra information about PID,
1840 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1841 is okay. */
1842
1843 #define target_extra_thread_info(TP) \
1844 (current_top_target ()->extra_thread_info (TP))
1845
1846 /* Return the thread's name, or NULL if the target is unable to determine it.
1847 The returned value must not be freed by the caller. */
1848
1849 extern const char *target_thread_name (struct thread_info *);
1850
1851 /* Given a pointer to a thread library specific thread handle and
1852 its length, return a pointer to the corresponding thread_info struct. */
1853
1854 extern struct thread_info *target_thread_handle_to_thread_info
1855 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1856
1857 /* Given a thread, return the thread handle, a target-specific sequence of
1858 bytes which serves as a thread identifier within the program being
1859 debugged. */
1860 extern gdb::byte_vector target_thread_info_to_thread_handle
1861 (struct thread_info *);
1862
1863 /* Attempts to find the pathname of the executable file
1864 that was run to create a specified process.
1865
1866 The process PID must be stopped when this operation is used.
1867
1868 If the executable file cannot be determined, NULL is returned.
1869
1870 Else, a pointer to a character string containing the pathname
1871 is returned. This string should be copied into a buffer by
1872 the client if the string will not be immediately used, or if
1873 it must persist. */
1874
1875 #define target_pid_to_exec_file(pid) \
1876 (current_top_target ()->pid_to_exec_file) (pid)
1877
1878 /* See the to_thread_architecture description in struct target_ops. */
1879
1880 #define target_thread_architecture(ptid) \
1881 (current_top_target ()->thread_architecture (ptid))
1882
1883 /*
1884 * Iterator function for target memory regions.
1885 * Calls a callback function once for each memory region 'mapped'
1886 * in the child process. Defined as a simple macro rather than
1887 * as a function macro so that it can be tested for nullity.
1888 */
1889
1890 #define target_find_memory_regions(FUNC, DATA) \
1891 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1892
1893 /*
1894 * Compose corefile .note section.
1895 */
1896
1897 #define target_make_corefile_notes(BFD, SIZE_P) \
1898 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1899
1900 /* Bookmark interfaces. */
1901 #define target_get_bookmark(ARGS, FROM_TTY) \
1902 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1903
1904 #define target_goto_bookmark(ARG, FROM_TTY) \
1905 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1906
1907 /* Hardware watchpoint interfaces. */
1908
1909 /* GDB's current model is that there are three "kinds" of watchpoints,
1910 with respect to when they trigger and how you can move past them.
1911
1912 Those are: continuable, steppable, and non-steppable.
1913
1914 Continuable watchpoints are like x86's -- those trigger after the
1915 memory access's side effects are fully committed to memory. I.e.,
1916 they trap with the PC pointing at the next instruction already.
1917 Continuing past such a watchpoint is doable by just normally
1918 continuing, hence the name.
1919
1920 Both steppable and non-steppable watchpoints trap before the memory
1921 access. I.e, the PC points at the instruction that is accessing
1922 the memory. So GDB needs to single-step once past the current
1923 instruction in order to make the access effective and check whether
1924 the instruction's side effects change the watched expression.
1925
1926 Now, in order to step past that instruction, depending on
1927 architecture and target, you can have two situations:
1928
1929 - steppable watchpoints: you can single-step with the watchpoint
1930 still armed, and the watchpoint won't trigger again.
1931
1932 - non-steppable watchpoints: if you try to single-step with the
1933 watchpoint still armed, you'd trap the watchpoint again and the
1934 thread wouldn't make any progress. So GDB needs to temporarily
1935 remove the watchpoint in order to step past it.
1936
1937 If your target/architecture does not signal that it has either
1938 steppable or non-steppable watchpoints via either
1939 target_have_steppable_watchpoint or
1940 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1941 watchpoints. */
1942
1943 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1944 write). Only the INFERIOR_PTID task is being queried. */
1945
1946 #define target_stopped_by_watchpoint() \
1947 ((current_top_target ()->stopped_by_watchpoint) ())
1948
1949 /* Returns non-zero if the target stopped because it executed a
1950 software breakpoint instruction. */
1951
1952 #define target_stopped_by_sw_breakpoint() \
1953 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1954
1955 #define target_supports_stopped_by_sw_breakpoint() \
1956 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1957
1958 #define target_stopped_by_hw_breakpoint() \
1959 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1960
1961 #define target_supports_stopped_by_hw_breakpoint() \
1962 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1963
1964 /* Non-zero if we have steppable watchpoints */
1965
1966 #define target_have_steppable_watchpoint \
1967 (current_top_target ()->have_steppable_watchpoint ())
1968
1969 /* Provide defaults for hardware watchpoint functions. */
1970
1971 /* If the *_hw_beakpoint functions have not been defined
1972 elsewhere use the definitions in the target vector. */
1973
1974 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1975 Returns negative if the target doesn't have enough hardware debug
1976 registers available. Return zero if hardware watchpoint of type
1977 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1978 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1979 CNT is the number of such watchpoints used so far, including this
1980 one. OTHERTYPE is the number of watchpoints of other types than
1981 this one used so far. */
1982
1983 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1984 (current_top_target ()->can_use_hw_breakpoint) ( \
1985 TYPE, CNT, OTHERTYPE)
1986
1987 /* Returns the number of debug registers needed to watch the given
1988 memory region, or zero if not supported. */
1989
1990 #define target_region_ok_for_hw_watchpoint(addr, len) \
1991 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
1992
1993
1994 #define target_can_do_single_step() \
1995 (current_top_target ()->can_do_single_step) ()
1996
1997 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1998 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1999 COND is the expression for its condition, or NULL if there's none.
2000 Returns 0 for success, 1 if the watchpoint type is not supported,
2001 -1 for failure. */
2002
2003 #define target_insert_watchpoint(addr, len, type, cond) \
2004 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2005
2006 #define target_remove_watchpoint(addr, len, type, cond) \
2007 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2008
2009 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2010 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2011 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2012 masked watchpoints are not supported, -1 for failure. */
2013
2014 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2015 enum target_hw_bp_type);
2016
2017 /* Remove a masked watchpoint at ADDR with the mask MASK.
2018 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2019 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2020 for failure. */
2021
2022 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2023 enum target_hw_bp_type);
2024
2025 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2026 the target machine. Returns 0 for success, and returns non-zero or
2027 throws an error (with a detailed failure reason error code and
2028 message) otherwise. */
2029
2030 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2031 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2032
2033 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2034 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2035
2036 /* Return number of debug registers needed for a ranged breakpoint,
2037 or -1 if ranged breakpoints are not supported. */
2038
2039 extern int target_ranged_break_num_registers (void);
2040
2041 /* Return non-zero if target knows the data address which triggered this
2042 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2043 INFERIOR_PTID task is being queried. */
2044 #define target_stopped_data_address(target, addr_p) \
2045 (target)->stopped_data_address (addr_p)
2046
2047 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2048 LENGTH bytes beginning at START. */
2049 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2050 (target)->watchpoint_addr_within_range (addr, start, length)
2051
2052 /* Return non-zero if the target is capable of using hardware to evaluate
2053 the condition expression. In this case, if the condition is false when
2054 the watched memory location changes, execution may continue without the
2055 debugger being notified.
2056
2057 Due to limitations in the hardware implementation, it may be capable of
2058 avoiding triggering the watchpoint in some cases where the condition
2059 expression is false, but may report some false positives as well.
2060 For this reason, GDB will still evaluate the condition expression when
2061 the watchpoint triggers. */
2062 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2063 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2064
2065 /* Return number of debug registers needed for a masked watchpoint,
2066 -1 if masked watchpoints are not supported or -2 if the given address
2067 and mask combination cannot be used. */
2068
2069 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2070
2071 /* Target can execute in reverse? */
2072 #define target_can_execute_reverse \
2073 current_top_target ()->can_execute_reverse ()
2074
2075 extern const struct target_desc *target_read_description (struct target_ops *);
2076
2077 #define target_get_ada_task_ptid(lwp, tid) \
2078 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2079
2080 /* Utility implementation of searching memory. */
2081 extern int simple_search_memory (struct target_ops* ops,
2082 CORE_ADDR start_addr,
2083 ULONGEST search_space_len,
2084 const gdb_byte *pattern,
2085 ULONGEST pattern_len,
2086 CORE_ADDR *found_addrp);
2087
2088 /* Main entry point for searching memory. */
2089 extern int target_search_memory (CORE_ADDR start_addr,
2090 ULONGEST search_space_len,
2091 const gdb_byte *pattern,
2092 ULONGEST pattern_len,
2093 CORE_ADDR *found_addrp);
2094
2095 /* Target file operations. */
2096
2097 /* Return nonzero if the filesystem seen by the current inferior
2098 is the local filesystem, zero otherwise. */
2099 #define target_filesystem_is_local() \
2100 current_top_target ()->filesystem_is_local ()
2101
2102 /* Open FILENAME on the target, in the filesystem as seen by INF,
2103 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2104 by the debugger (GDB or, for remote targets, the remote stub).
2105 Return a target file descriptor, or -1 if an error occurs (and
2106 set *TARGET_ERRNO). */
2107 extern int target_fileio_open (struct inferior *inf,
2108 const char *filename, int flags,
2109 int mode, int *target_errno);
2110
2111 /* Like target_fileio_open, but print a warning message if the
2112 file is being accessed over a link that may be slow. */
2113 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2114 const char *filename,
2115 int flags,
2116 int mode,
2117 int *target_errno);
2118
2119 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2120 Return the number of bytes written, or -1 if an error occurs
2121 (and set *TARGET_ERRNO). */
2122 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2123 ULONGEST offset, int *target_errno);
2124
2125 /* Read up to LEN bytes FD on the target into READ_BUF.
2126 Return the number of bytes read, or -1 if an error occurs
2127 (and set *TARGET_ERRNO). */
2128 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2129 ULONGEST offset, int *target_errno);
2130
2131 /* Get information about the file opened as FD on the target
2132 and put it in SB. Return 0 on success, or -1 if an error
2133 occurs (and set *TARGET_ERRNO). */
2134 extern int target_fileio_fstat (int fd, struct stat *sb,
2135 int *target_errno);
2136
2137 /* Close FD on the target. Return 0, or -1 if an error occurs
2138 (and set *TARGET_ERRNO). */
2139 extern int target_fileio_close (int fd, int *target_errno);
2140
2141 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2142 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2143 for remote targets, the remote stub). Return 0, or -1 if an error
2144 occurs (and set *TARGET_ERRNO). */
2145 extern int target_fileio_unlink (struct inferior *inf,
2146 const char *filename,
2147 int *target_errno);
2148
2149 /* Read value of symbolic link FILENAME on the target, in the
2150 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2151 by the debugger (GDB or, for remote targets, the remote stub).
2152 Return a null-terminated string allocated via xmalloc, or NULL if
2153 an error occurs (and set *TARGET_ERRNO). */
2154 extern gdb::optional<std::string> target_fileio_readlink
2155 (struct inferior *inf, const char *filename, int *target_errno);
2156
2157 /* Read target file FILENAME, in the filesystem as seen by INF. If
2158 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2159 remote targets, the remote stub). The return value will be -1 if
2160 the transfer fails or is not supported; 0 if the object is empty;
2161 or the length of the object otherwise. If a positive value is
2162 returned, a sufficiently large buffer will be allocated using
2163 xmalloc and returned in *BUF_P containing the contents of the
2164 object.
2165
2166 This method should be used for objects sufficiently small to store
2167 in a single xmalloc'd buffer, when no fixed bound on the object's
2168 size is known in advance. */
2169 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2170 const char *filename,
2171 gdb_byte **buf_p);
2172
2173 /* Read target file FILENAME, in the filesystem as seen by INF. If
2174 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2175 remote targets, the remote stub). The result is NUL-terminated and
2176 returned as a string, allocated using xmalloc. If an error occurs
2177 or the transfer is unsupported, NULL is returned. Empty objects
2178 are returned as allocated but empty strings. A warning is issued
2179 if the result contains any embedded NUL bytes. */
2180 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2181 (struct inferior *inf, const char *filename);
2182
2183
2184 /* Tracepoint-related operations. */
2185
2186 #define target_trace_init() \
2187 (current_top_target ()->trace_init) ()
2188
2189 #define target_download_tracepoint(t) \
2190 (current_top_target ()->download_tracepoint) (t)
2191
2192 #define target_can_download_tracepoint() \
2193 (current_top_target ()->can_download_tracepoint) ()
2194
2195 #define target_download_trace_state_variable(tsv) \
2196 (current_top_target ()->download_trace_state_variable) (tsv)
2197
2198 #define target_enable_tracepoint(loc) \
2199 (current_top_target ()->enable_tracepoint) (loc)
2200
2201 #define target_disable_tracepoint(loc) \
2202 (current_top_target ()->disable_tracepoint) (loc)
2203
2204 #define target_trace_start() \
2205 (current_top_target ()->trace_start) ()
2206
2207 #define target_trace_set_readonly_regions() \
2208 (current_top_target ()->trace_set_readonly_regions) ()
2209
2210 #define target_get_trace_status(ts) \
2211 (current_top_target ()->get_trace_status) (ts)
2212
2213 #define target_get_tracepoint_status(tp,utp) \
2214 (current_top_target ()->get_tracepoint_status) (tp, utp)
2215
2216 #define target_trace_stop() \
2217 (current_top_target ()->trace_stop) ()
2218
2219 #define target_trace_find(type,num,addr1,addr2,tpp) \
2220 (current_top_target ()->trace_find) (\
2221 (type), (num), (addr1), (addr2), (tpp))
2222
2223 #define target_get_trace_state_variable_value(tsv,val) \
2224 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2225
2226 #define target_save_trace_data(filename) \
2227 (current_top_target ()->save_trace_data) (filename)
2228
2229 #define target_upload_tracepoints(utpp) \
2230 (current_top_target ()->upload_tracepoints) (utpp)
2231
2232 #define target_upload_trace_state_variables(utsvp) \
2233 (current_top_target ()->upload_trace_state_variables) (utsvp)
2234
2235 #define target_get_raw_trace_data(buf,offset,len) \
2236 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2237
2238 #define target_get_min_fast_tracepoint_insn_len() \
2239 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2240
2241 #define target_set_disconnected_tracing(val) \
2242 (current_top_target ()->set_disconnected_tracing) (val)
2243
2244 #define target_set_circular_trace_buffer(val) \
2245 (current_top_target ()->set_circular_trace_buffer) (val)
2246
2247 #define target_set_trace_buffer_size(val) \
2248 (current_top_target ()->set_trace_buffer_size) (val)
2249
2250 #define target_set_trace_notes(user,notes,stopnotes) \
2251 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2252
2253 #define target_get_tib_address(ptid, addr) \
2254 (current_top_target ()->get_tib_address) ((ptid), (addr))
2255
2256 #define target_set_permissions() \
2257 (current_top_target ()->set_permissions) ()
2258
2259 #define target_static_tracepoint_marker_at(addr, marker) \
2260 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2261
2262 #define target_static_tracepoint_markers_by_strid(marker_id) \
2263 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2264
2265 #define target_traceframe_info() \
2266 (current_top_target ()->traceframe_info) ()
2267
2268 #define target_use_agent(use) \
2269 (current_top_target ()->use_agent) (use)
2270
2271 #define target_can_use_agent() \
2272 (current_top_target ()->can_use_agent) ()
2273
2274 #define target_augmented_libraries_svr4_read() \
2275 (current_top_target ()->augmented_libraries_svr4_read) ()
2276
2277 /* Command logging facility. */
2278
2279 #define target_log_command(p) \
2280 (current_top_target ()->log_command) (p)
2281
2282
2283 extern int target_core_of_thread (ptid_t ptid);
2284
2285 /* See to_get_unwinder in struct target_ops. */
2286 extern const struct frame_unwind *target_get_unwinder (void);
2287
2288 /* See to_get_tailcall_unwinder in struct target_ops. */
2289 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2290
2291 /* This implements basic memory verification, reading target memory
2292 and performing the comparison here (as opposed to accelerated
2293 verification making use of the qCRC packet, for example). */
2294
2295 extern int simple_verify_memory (struct target_ops* ops,
2296 const gdb_byte *data,
2297 CORE_ADDR memaddr, ULONGEST size);
2298
2299 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2300 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2301 if there's a mismatch, and -1 if an error is encountered while
2302 reading memory. Throws an error if the functionality is found not
2303 to be supported by the current target. */
2304 int target_verify_memory (const gdb_byte *data,
2305 CORE_ADDR memaddr, ULONGEST size);
2306
2307 /* Routines for maintenance of the target structures...
2308
2309 add_target: Add a target to the list of all possible targets.
2310 This only makes sense for targets that should be activated using
2311 the "target TARGET_NAME ..." command.
2312
2313 push_target: Make this target the top of the stack of currently used
2314 targets, within its particular stratum of the stack. Result
2315 is 0 if now atop the stack, nonzero if not on top (maybe
2316 should warn user).
2317
2318 unpush_target: Remove this from the stack of currently used targets,
2319 no matter where it is on the list. Returns 0 if no
2320 change, 1 if removed from stack. */
2321
2322 /* Type of callback called when the user activates a target with
2323 "target TARGET_NAME". The callback routine takes the rest of the
2324 parameters from the command, and (if successful) pushes a new
2325 target onto the stack. */
2326 typedef void target_open_ftype (const char *args, int from_tty);
2327
2328 /* Add the target described by INFO to the list of possible targets
2329 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2330 as the command's completer if not NULL. */
2331
2332 extern void add_target (const target_info &info,
2333 target_open_ftype *func,
2334 completer_ftype *completer = NULL);
2335
2336 /* Adds a command ALIAS for the target described by INFO and marks it
2337 deprecated. This is useful for maintaining backwards compatibility
2338 when renaming targets. */
2339
2340 extern void add_deprecated_target_alias (const target_info &info,
2341 const char *alias);
2342
2343 extern void push_target (struct target_ops *);
2344
2345 /* An overload that deletes the target on failure. */
2346 extern void push_target (target_ops_up &&);
2347
2348 extern int unpush_target (struct target_ops *);
2349
2350 extern void target_pre_inferior (int);
2351
2352 extern void target_preopen (int);
2353
2354 /* Does whatever cleanup is required to get rid of all pushed targets. */
2355 extern void pop_all_targets (void);
2356
2357 /* Like pop_all_targets, but pops only targets whose stratum is at or
2358 above STRATUM. */
2359 extern void pop_all_targets_at_and_above (enum strata stratum);
2360
2361 /* Like pop_all_targets, but pops only targets whose stratum is
2362 strictly above ABOVE_STRATUM. */
2363 extern void pop_all_targets_above (enum strata above_stratum);
2364
2365 extern int target_is_pushed (struct target_ops *t);
2366
2367 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2368 CORE_ADDR offset);
2369
2370 /* Struct target_section maps address ranges to file sections. It is
2371 mostly used with BFD files, but can be used without (e.g. for handling
2372 raw disks, or files not in formats handled by BFD). */
2373
2374 struct target_section
2375 {
2376 CORE_ADDR addr; /* Lowest address in section */
2377 CORE_ADDR endaddr; /* 1+highest address in section */
2378
2379 struct bfd_section *the_bfd_section;
2380
2381 /* The "owner" of the section.
2382 It can be any unique value. It is set by add_target_sections
2383 and used by remove_target_sections.
2384 For example, for executables it is a pointer to exec_bfd and
2385 for shlibs it is the so_list pointer. */
2386 void *owner;
2387 };
2388
2389 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2390
2391 struct target_section_table
2392 {
2393 struct target_section *sections;
2394 struct target_section *sections_end;
2395 };
2396
2397 /* Return the "section" containing the specified address. */
2398 struct target_section *target_section_by_addr (struct target_ops *target,
2399 CORE_ADDR addr);
2400
2401 /* Return the target section table this target (or the targets
2402 beneath) currently manipulate. */
2403
2404 extern struct target_section_table *target_get_section_table
2405 (struct target_ops *target);
2406
2407 /* From mem-break.c */
2408
2409 extern int memory_remove_breakpoint (struct target_ops *,
2410 struct gdbarch *, struct bp_target_info *,
2411 enum remove_bp_reason);
2412
2413 extern int memory_insert_breakpoint (struct target_ops *,
2414 struct gdbarch *, struct bp_target_info *);
2415
2416 /* Convenience template use to add memory breakpoints support to a
2417 target. */
2418
2419 template <typename BaseTarget>
2420 struct memory_breakpoint_target : public BaseTarget
2421 {
2422 int insert_breakpoint (struct gdbarch *gdbarch,
2423 struct bp_target_info *bp_tgt) override
2424 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2425
2426 int remove_breakpoint (struct gdbarch *gdbarch,
2427 struct bp_target_info *bp_tgt,
2428 enum remove_bp_reason reason) override
2429 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2430 };
2431
2432 /* Check whether the memory at the breakpoint's placed address still
2433 contains the expected breakpoint instruction. */
2434
2435 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2436 struct bp_target_info *bp_tgt);
2437
2438 extern int default_memory_remove_breakpoint (struct gdbarch *,
2439 struct bp_target_info *);
2440
2441 extern int default_memory_insert_breakpoint (struct gdbarch *,
2442 struct bp_target_info *);
2443
2444
2445 /* From target.c */
2446
2447 extern void initialize_targets (void);
2448
2449 extern void noprocess (void) ATTRIBUTE_NORETURN;
2450
2451 extern void target_require_runnable (void);
2452
2453 /* Find the target at STRATUM. If no target is at that stratum,
2454 return NULL. */
2455
2456 struct target_ops *find_target_at (enum strata stratum);
2457
2458 /* Read OS data object of type TYPE from the target, and return it in XML
2459 format. The return value follows the same rules as target_read_stralloc. */
2460
2461 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2462
2463 /* Stuff that should be shared among the various remote targets. */
2464
2465 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2466 information (higher values, more information). */
2467 extern int remote_debug;
2468
2469 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2470 extern int baud_rate;
2471
2472 /* Parity for serial port */
2473 extern int serial_parity;
2474
2475 /* Timeout limit for response from target. */
2476 extern int remote_timeout;
2477
2478 \f
2479
2480 /* Set the show memory breakpoints mode to show, and return a
2481 scoped_restore to restore it back to the current value. */
2482 extern scoped_restore_tmpl<int>
2483 make_scoped_restore_show_memory_breakpoints (int show);
2484
2485 extern int may_write_registers;
2486 extern int may_write_memory;
2487 extern int may_insert_breakpoints;
2488 extern int may_insert_tracepoints;
2489 extern int may_insert_fast_tracepoints;
2490 extern int may_stop;
2491
2492 extern void update_target_permissions (void);
2493
2494 \f
2495 /* Imported from machine dependent code. */
2496
2497 /* See to_enable_btrace in struct target_ops. */
2498 extern struct btrace_target_info *
2499 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2500
2501 /* See to_disable_btrace in struct target_ops. */
2502 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2503
2504 /* See to_teardown_btrace in struct target_ops. */
2505 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2506
2507 /* See to_read_btrace in struct target_ops. */
2508 extern enum btrace_error target_read_btrace (struct btrace_data *,
2509 struct btrace_target_info *,
2510 enum btrace_read_type);
2511
2512 /* See to_btrace_conf in struct target_ops. */
2513 extern const struct btrace_config *
2514 target_btrace_conf (const struct btrace_target_info *);
2515
2516 /* See to_stop_recording in struct target_ops. */
2517 extern void target_stop_recording (void);
2518
2519 /* See to_save_record in struct target_ops. */
2520 extern void target_save_record (const char *filename);
2521
2522 /* Query if the target supports deleting the execution log. */
2523 extern int target_supports_delete_record (void);
2524
2525 /* See to_delete_record in struct target_ops. */
2526 extern void target_delete_record (void);
2527
2528 /* See to_record_method. */
2529 extern enum record_method target_record_method (ptid_t ptid);
2530
2531 /* See to_record_is_replaying in struct target_ops. */
2532 extern int target_record_is_replaying (ptid_t ptid);
2533
2534 /* See to_record_will_replay in struct target_ops. */
2535 extern int target_record_will_replay (ptid_t ptid, int dir);
2536
2537 /* See to_record_stop_replaying in struct target_ops. */
2538 extern void target_record_stop_replaying (void);
2539
2540 /* See to_goto_record_begin in struct target_ops. */
2541 extern void target_goto_record_begin (void);
2542
2543 /* See to_goto_record_end in struct target_ops. */
2544 extern void target_goto_record_end (void);
2545
2546 /* See to_goto_record in struct target_ops. */
2547 extern void target_goto_record (ULONGEST insn);
2548
2549 /* See to_insn_history. */
2550 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2551
2552 /* See to_insn_history_from. */
2553 extern void target_insn_history_from (ULONGEST from, int size,
2554 gdb_disassembly_flags flags);
2555
2556 /* See to_insn_history_range. */
2557 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2558 gdb_disassembly_flags flags);
2559
2560 /* See to_call_history. */
2561 extern void target_call_history (int size, record_print_flags flags);
2562
2563 /* See to_call_history_from. */
2564 extern void target_call_history_from (ULONGEST begin, int size,
2565 record_print_flags flags);
2566
2567 /* See to_call_history_range. */
2568 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2569 record_print_flags flags);
2570
2571 /* See to_prepare_to_generate_core. */
2572 extern void target_prepare_to_generate_core (void);
2573
2574 /* See to_done_generating_core. */
2575 extern void target_done_generating_core (void);
2576
2577 #endif /* !defined (TARGET_H) */