]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "gdbsupport/scoped_restore.h"
46 #include "gdbsupport/refcounted-object.h"
47
48 /* This include file defines the interface between the main part
49 of the debugger, and the part which is target-specific, or
50 specific to the communications interface between us and the
51 target.
52
53 A TARGET is an interface between the debugger and a particular
54 kind of file or process. Targets can be STACKED in STRATA,
55 so that more than one target can potentially respond to a request.
56 In particular, memory accesses will walk down the stack of targets
57 until they find a target that is interested in handling that particular
58 address. STRATA are artificial boundaries on the stack, within
59 which particular kinds of targets live. Strata exist so that
60 people don't get confused by pushing e.g. a process target and then
61 a file target, and wondering why they can't see the current values
62 of variables any more (the file target is handling them and they
63 never get to the process target). So when you push a file target,
64 it goes into the file stratum, which is always below the process
65 stratum.
66
67 Note that rather than allow an empty stack, we always have the
68 dummy target at the bottom stratum, so we can call the target
69 methods without checking them. */
70
71 #include "target/target.h"
72 #include "target/resume.h"
73 #include "target/wait.h"
74 #include "target/waitstatus.h"
75 #include "bfd.h"
76 #include "symtab.h"
77 #include "memattr.h"
78 #include "gdbsupport/gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84
85 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (int target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
141 TARGET_OBJECT_MEMORY,
142 /* Memory, avoiding GDB's data cache and trusting the executable.
143 Target implementations of to_xfer_partial never need to handle
144 this object, and most callers should not use it. */
145 TARGET_OBJECT_RAW_MEMORY,
146 /* Memory known to be part of the target's stack. This is cached even
147 if it is not in a region marked as such, since it is known to be
148 "normal" RAM. */
149 TARGET_OBJECT_STACK_MEMORY,
150 /* Memory known to be part of the target code. This is cached even
151 if it is not in a region marked as such. */
152 TARGET_OBJECT_CODE_MEMORY,
153 /* Kernel Unwind Table. See "ia64-tdep.c". */
154 TARGET_OBJECT_UNWIND_TABLE,
155 /* Transfer auxilliary vector. */
156 TARGET_OBJECT_AUXV,
157 /* StackGhost cookie. See "sparc-tdep.c". */
158 TARGET_OBJECT_WCOOKIE,
159 /* Target memory map in XML format. */
160 TARGET_OBJECT_MEMORY_MAP,
161 /* Flash memory. This object can be used to write contents to
162 a previously erased flash memory. Using it without erasing
163 flash can have unexpected results. Addresses are physical
164 address on target, and not relative to flash start. */
165 TARGET_OBJECT_FLASH,
166 /* Available target-specific features, e.g. registers and coprocessors.
167 See "target-descriptions.c". ANNEX should never be empty. */
168 TARGET_OBJECT_AVAILABLE_FEATURES,
169 /* Currently loaded libraries, in XML format. */
170 TARGET_OBJECT_LIBRARIES,
171 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_SVR4,
173 /* Currently loaded libraries specific to AIX systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_AIX,
175 /* Get OS specific data. The ANNEX specifies the type (running
176 processes, etc.). The data being transfered is expected to follow
177 the DTD specified in features/osdata.dtd. */
178 TARGET_OBJECT_OSDATA,
179 /* Extra signal info. Usually the contents of `siginfo_t' on unix
180 platforms. */
181 TARGET_OBJECT_SIGNAL_INFO,
182 /* The list of threads that are being debugged. */
183 TARGET_OBJECT_THREADS,
184 /* Collected static trace data. */
185 TARGET_OBJECT_STATIC_TRACE_DATA,
186 /* Traceframe info, in XML format. */
187 TARGET_OBJECT_TRACEFRAME_INFO,
188 /* Load maps for FDPIC systems. */
189 TARGET_OBJECT_FDPIC,
190 /* Darwin dynamic linker info data. */
191 TARGET_OBJECT_DARWIN_DYLD_INFO,
192 /* OpenVMS Unwind Information Block. */
193 TARGET_OBJECT_OPENVMS_UIB,
194 /* Branch trace data, in XML format. */
195 TARGET_OBJECT_BTRACE,
196 /* Branch trace configuration, in XML format. */
197 TARGET_OBJECT_BTRACE_CONF,
198 /* The pathname of the executable file that was run to create
199 a specified process. ANNEX should be a string representation
200 of the process ID of the process in question, in hexadecimal
201 format. */
202 TARGET_OBJECT_EXEC_FILE,
203 /* FreeBSD virtual memory mappings. */
204 TARGET_OBJECT_FREEBSD_VMMAP,
205 /* FreeBSD process strings. */
206 TARGET_OBJECT_FREEBSD_PS_STRINGS,
207 /* Possible future objects: TARGET_OBJECT_FILE, ... */
208 };
209
210 /* Possible values returned by target_xfer_partial, etc. */
211
212 enum target_xfer_status
213 {
214 /* Some bytes are transferred. */
215 TARGET_XFER_OK = 1,
216
217 /* No further transfer is possible. */
218 TARGET_XFER_EOF = 0,
219
220 /* The piece of the object requested is unavailable. */
221 TARGET_XFER_UNAVAILABLE = 2,
222
223 /* Generic I/O error. Note that it's important that this is '-1',
224 as we still have target_xfer-related code returning hardcoded
225 '-1' on error. */
226 TARGET_XFER_E_IO = -1,
227
228 /* Keep list in sync with target_xfer_status_to_string. */
229 };
230
231 /* Return the string form of STATUS. */
232
233 extern const char *
234 target_xfer_status_to_string (enum target_xfer_status status);
235
236 typedef enum target_xfer_status
237 target_xfer_partial_ftype (struct target_ops *ops,
238 enum target_object object,
239 const char *annex,
240 gdb_byte *readbuf,
241 const gdb_byte *writebuf,
242 ULONGEST offset,
243 ULONGEST len,
244 ULONGEST *xfered_len);
245
246 enum target_xfer_status
247 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
248 const gdb_byte *writebuf, ULONGEST memaddr,
249 LONGEST len, ULONGEST *xfered_len);
250
251 /* Request that OPS transfer up to LEN addressable units of the target's
252 OBJECT. When reading from a memory object, the size of an addressable unit
253 is architecture dependent and can be found using
254 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
255 byte long. BUF should point to a buffer large enough to hold the read data,
256 taking into account the addressable unit size. The OFFSET, for a seekable
257 object, specifies the starting point. The ANNEX can be used to provide
258 additional data-specific information to the target.
259
260 Return the number of addressable units actually transferred, or a negative
261 error code (an 'enum target_xfer_error' value) if the transfer is not
262 supported or otherwise fails. Return of a positive value less than
263 LEN indicates that no further transfer is possible. Unlike the raw
264 to_xfer_partial interface, callers of these functions do not need
265 to retry partial transfers. */
266
267 extern LONGEST target_read (struct target_ops *ops,
268 enum target_object object,
269 const char *annex, gdb_byte *buf,
270 ULONGEST offset, LONGEST len);
271
272 struct memory_read_result
273 {
274 memory_read_result (ULONGEST begin_, ULONGEST end_,
275 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
276 : begin (begin_),
277 end (end_),
278 data (std::move (data_))
279 {
280 }
281
282 ~memory_read_result () = default;
283
284 memory_read_result (memory_read_result &&other) = default;
285
286 DISABLE_COPY_AND_ASSIGN (memory_read_result);
287
288 /* First address that was read. */
289 ULONGEST begin;
290 /* Past-the-end address. */
291 ULONGEST end;
292 /* The data. */
293 gdb::unique_xmalloc_ptr<gdb_byte> data;
294 };
295
296 extern std::vector<memory_read_result> read_memory_robust
297 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
298
299 /* Request that OPS transfer up to LEN addressable units from BUF to the
300 target's OBJECT. When writing to a memory object, the addressable unit
301 size is architecture dependent and can be found using
302 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
303 byte long. The OFFSET, for a seekable object, specifies the starting point.
304 The ANNEX can be used to provide additional data-specific information to
305 the target.
306
307 Return the number of addressable units actually transferred, or a negative
308 error code (an 'enum target_xfer_status' value) if the transfer is not
309 supported or otherwise fails. Return of a positive value less than
310 LEN indicates that no further transfer is possible. Unlike the raw
311 to_xfer_partial interface, callers of these functions do not need to
312 retry partial transfers. */
313
314 extern LONGEST target_write (struct target_ops *ops,
315 enum target_object object,
316 const char *annex, const gdb_byte *buf,
317 ULONGEST offset, LONGEST len);
318
319 /* Similar to target_write, except that it also calls PROGRESS with
320 the number of bytes written and the opaque BATON after every
321 successful partial write (and before the first write). This is
322 useful for progress reporting and user interaction while writing
323 data. To abort the transfer, the progress callback can throw an
324 exception. */
325
326 LONGEST target_write_with_progress (struct target_ops *ops,
327 enum target_object object,
328 const char *annex, const gdb_byte *buf,
329 ULONGEST offset, LONGEST len,
330 void (*progress) (ULONGEST, void *),
331 void *baton);
332
333 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
334 using OPS. The return value will be uninstantiated if the transfer fails or
335 is not supported.
336
337 This method should be used for objects sufficiently small to store
338 in a single xmalloc'd buffer, when no fixed bound on the object's
339 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
340 through this function. */
341
342 extern gdb::optional<gdb::byte_vector> target_read_alloc
343 (struct target_ops *ops, enum target_object object, const char *annex);
344
345 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
346 (therefore usable as a NUL-terminated string). If an error occurs or the
347 transfer is unsupported, the return value will be uninstantiated. Empty
348 objects are returned as allocated but empty strings. Therefore, on success,
349 the returned vector is guaranteed to have at least one element. A warning is
350 issued if the result contains any embedded NUL bytes. */
351
352 extern gdb::optional<gdb::char_vector> target_read_stralloc
353 (struct target_ops *ops, enum target_object object, const char *annex);
354
355 /* See target_ops->to_xfer_partial. */
356 extern target_xfer_partial_ftype target_xfer_partial;
357
358 /* Wrappers to target read/write that perform memory transfers. They
359 throw an error if the memory transfer fails.
360
361 NOTE: cagney/2003-10-23: The naming schema is lifted from
362 "frame.h". The parameter order is lifted from get_frame_memory,
363 which in turn lifted it from read_memory. */
364
365 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
366 gdb_byte *buf, LONGEST len);
367 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
368 CORE_ADDR addr, int len,
369 enum bfd_endian byte_order);
370 \f
371 struct thread_info; /* fwd decl for parameter list below: */
372
373 /* The type of the callback to the to_async method. */
374
375 typedef void async_callback_ftype (enum inferior_event_type event_type,
376 void *context);
377
378 /* Normally target debug printing is purely type-based. However,
379 sometimes it is necessary to override the debug printing on a
380 per-argument basis. This macro can be used, attribute-style, to
381 name the target debug printing function for a particular method
382 argument. FUNC is the name of the function. The macro's
383 definition is empty because it is only used by the
384 make-target-delegates script. */
385
386 #define TARGET_DEBUG_PRINTER(FUNC)
387
388 /* These defines are used to mark target_ops methods. The script
389 make-target-delegates scans these and auto-generates the base
390 method implementations. There are four macros that can be used:
391
392 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
393 does nothing. This is only valid if the method return type is
394 'void'.
395
396 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
397 'tcomplain ()'. The base method simply makes this call, which is
398 assumed not to return.
399
400 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
401 base method returns this expression's value.
402
403 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
404 make-target-delegates does not generate a base method in this case,
405 but instead uses the argument function as the base method. */
406
407 #define TARGET_DEFAULT_IGNORE()
408 #define TARGET_DEFAULT_NORETURN(ARG)
409 #define TARGET_DEFAULT_RETURN(ARG)
410 #define TARGET_DEFAULT_FUNC(ARG)
411
412 /* Each target that can be activated with "target TARGET_NAME" passes
413 the address of one of these objects to add_target, which uses the
414 object's address as unique identifier, and registers the "target
415 TARGET_NAME" command using SHORTNAME as target name. */
416
417 struct target_info
418 {
419 /* Name of this target. */
420 const char *shortname;
421
422 /* Name for printing. */
423 const char *longname;
424
425 /* Documentation. Does not include trailing newline, and starts
426 with a one-line description (probably similar to longname). */
427 const char *doc;
428 };
429
430 struct target_ops
431 : public refcounted_object
432 {
433 /* Return this target's stratum. */
434 virtual strata stratum () const = 0;
435
436 /* To the target under this one. */
437 target_ops *beneath () const;
438
439 /* Free resources associated with the target. Note that singleton
440 targets, like e.g., native targets, are global objects, not
441 heap allocated, and are thus only deleted on GDB exit. The
442 main teardown entry point is the "close" method, below. */
443 virtual ~target_ops () {}
444
445 /* Return a reference to this target's unique target_info
446 object. */
447 virtual const target_info &info () const = 0;
448
449 /* Name this target type. */
450 const char *shortname () const
451 { return info ().shortname; }
452
453 const char *longname () const
454 { return info ().longname; }
455
456 /* Close the target. This is where the target can handle
457 teardown. Heap-allocated targets should delete themselves
458 before returning. */
459 virtual void close ();
460
461 /* Attaches to a process on the target side. Arguments are as
462 passed to the `attach' command by the user. This routine can
463 be called when the target is not on the target-stack, if the
464 target_ops::can_run method returns 1; in that case, it must push
465 itself onto the stack. Upon exit, the target should be ready
466 for normal operations, and should be ready to deliver the
467 status of the process immediately (without waiting) to an
468 upcoming target_wait call. */
469 virtual bool can_attach ();
470 virtual void attach (const char *, int);
471 virtual void post_attach (int)
472 TARGET_DEFAULT_IGNORE ();
473 virtual void detach (inferior *, int)
474 TARGET_DEFAULT_IGNORE ();
475 virtual void disconnect (const char *, int)
476 TARGET_DEFAULT_NORETURN (tcomplain ());
477 virtual void resume (ptid_t,
478 int TARGET_DEBUG_PRINTER (target_debug_print_step),
479 enum gdb_signal)
480 TARGET_DEFAULT_NORETURN (noprocess ());
481 virtual void commit_resume ()
482 TARGET_DEFAULT_IGNORE ();
483 /* See target_wait's description. Note that implementations of
484 this method must not assume that inferior_ptid on entry is
485 pointing at the thread or inferior that ends up reporting an
486 event. The reported event could be for some other thread in
487 the current inferior or even for a different process of the
488 current target. inferior_ptid may also be null_ptid on
489 entry. */
490 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
491 int TARGET_DEBUG_PRINTER (target_debug_print_options))
492 TARGET_DEFAULT_FUNC (default_target_wait);
493 virtual void fetch_registers (struct regcache *, int)
494 TARGET_DEFAULT_IGNORE ();
495 virtual void store_registers (struct regcache *, int)
496 TARGET_DEFAULT_NORETURN (noprocess ());
497 virtual void prepare_to_store (struct regcache *)
498 TARGET_DEFAULT_NORETURN (noprocess ());
499
500 virtual void files_info ()
501 TARGET_DEFAULT_IGNORE ();
502 virtual int insert_breakpoint (struct gdbarch *,
503 struct bp_target_info *)
504 TARGET_DEFAULT_NORETURN (noprocess ());
505 virtual int remove_breakpoint (struct gdbarch *,
506 struct bp_target_info *,
507 enum remove_bp_reason)
508 TARGET_DEFAULT_NORETURN (noprocess ());
509
510 /* Returns true if the target stopped because it executed a
511 software breakpoint. This is necessary for correct background
512 execution / non-stop mode operation, and for correct PC
513 adjustment on targets where the PC needs to be adjusted when a
514 software breakpoint triggers. In these modes, by the time GDB
515 processes a breakpoint event, the breakpoint may already be
516 done from the target, so GDB needs to be able to tell whether
517 it should ignore the event and whether it should adjust the PC.
518 See adjust_pc_after_break. */
519 virtual bool stopped_by_sw_breakpoint ()
520 TARGET_DEFAULT_RETURN (false);
521 /* Returns true if the above method is supported. */
522 virtual bool supports_stopped_by_sw_breakpoint ()
523 TARGET_DEFAULT_RETURN (false);
524
525 /* Returns true if the target stopped for a hardware breakpoint.
526 Likewise, if the target supports hardware breakpoints, this
527 method is necessary for correct background execution / non-stop
528 mode operation. Even though hardware breakpoints do not
529 require PC adjustment, GDB needs to be able to tell whether the
530 hardware breakpoint event is a delayed event for a breakpoint
531 that is already gone and should thus be ignored. */
532 virtual bool stopped_by_hw_breakpoint ()
533 TARGET_DEFAULT_RETURN (false);
534 /* Returns true if the above method is supported. */
535 virtual bool supports_stopped_by_hw_breakpoint ()
536 TARGET_DEFAULT_RETURN (false);
537
538 virtual int can_use_hw_breakpoint (enum bptype, int, int)
539 TARGET_DEFAULT_RETURN (0);
540 virtual int ranged_break_num_registers ()
541 TARGET_DEFAULT_RETURN (-1);
542 virtual int insert_hw_breakpoint (struct gdbarch *,
543 struct bp_target_info *)
544 TARGET_DEFAULT_RETURN (-1);
545 virtual int remove_hw_breakpoint (struct gdbarch *,
546 struct bp_target_info *)
547 TARGET_DEFAULT_RETURN (-1);
548
549 /* Documentation of what the two routines below are expected to do is
550 provided with the corresponding target_* macros. */
551 virtual int remove_watchpoint (CORE_ADDR, int,
552 enum target_hw_bp_type, struct expression *)
553 TARGET_DEFAULT_RETURN (-1);
554 virtual int insert_watchpoint (CORE_ADDR, int,
555 enum target_hw_bp_type, struct expression *)
556 TARGET_DEFAULT_RETURN (-1);
557
558 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
559 enum target_hw_bp_type)
560 TARGET_DEFAULT_RETURN (1);
561 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
562 enum target_hw_bp_type)
563 TARGET_DEFAULT_RETURN (1);
564 virtual bool stopped_by_watchpoint ()
565 TARGET_DEFAULT_RETURN (false);
566 virtual bool have_steppable_watchpoint ()
567 TARGET_DEFAULT_RETURN (false);
568 virtual bool stopped_data_address (CORE_ADDR *)
569 TARGET_DEFAULT_RETURN (false);
570 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
571 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
572
573 /* Documentation of this routine is provided with the corresponding
574 target_* macro. */
575 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
576 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
577
578 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
579 struct expression *)
580 TARGET_DEFAULT_RETURN (false);
581 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
582 TARGET_DEFAULT_RETURN (-1);
583
584 /* Return 1 for sure target can do single step. Return -1 for
585 unknown. Return 0 for target can't do. */
586 virtual int can_do_single_step ()
587 TARGET_DEFAULT_RETURN (-1);
588
589 virtual bool supports_terminal_ours ()
590 TARGET_DEFAULT_RETURN (false);
591 virtual void terminal_init ()
592 TARGET_DEFAULT_IGNORE ();
593 virtual void terminal_inferior ()
594 TARGET_DEFAULT_IGNORE ();
595 virtual void terminal_save_inferior ()
596 TARGET_DEFAULT_IGNORE ();
597 virtual void terminal_ours_for_output ()
598 TARGET_DEFAULT_IGNORE ();
599 virtual void terminal_ours ()
600 TARGET_DEFAULT_IGNORE ();
601 virtual void terminal_info (const char *, int)
602 TARGET_DEFAULT_FUNC (default_terminal_info);
603 virtual void kill ()
604 TARGET_DEFAULT_NORETURN (noprocess ());
605 virtual void load (const char *, int)
606 TARGET_DEFAULT_NORETURN (tcomplain ());
607 /* Start an inferior process and set inferior_ptid to its pid.
608 EXEC_FILE is the file to run.
609 ALLARGS is a string containing the arguments to the program.
610 ENV is the environment vector to pass. Errors reported with error().
611 On VxWorks and various standalone systems, we ignore exec_file. */
612 virtual bool can_create_inferior ();
613 virtual void create_inferior (const char *, const std::string &,
614 char **, int);
615 virtual void post_startup_inferior (ptid_t)
616 TARGET_DEFAULT_IGNORE ();
617 virtual int insert_fork_catchpoint (int)
618 TARGET_DEFAULT_RETURN (1);
619 virtual int remove_fork_catchpoint (int)
620 TARGET_DEFAULT_RETURN (1);
621 virtual int insert_vfork_catchpoint (int)
622 TARGET_DEFAULT_RETURN (1);
623 virtual int remove_vfork_catchpoint (int)
624 TARGET_DEFAULT_RETURN (1);
625 virtual bool follow_fork (bool, bool)
626 TARGET_DEFAULT_FUNC (default_follow_fork);
627 virtual int insert_exec_catchpoint (int)
628 TARGET_DEFAULT_RETURN (1);
629 virtual int remove_exec_catchpoint (int)
630 TARGET_DEFAULT_RETURN (1);
631 virtual void follow_exec (struct inferior *, const char *)
632 TARGET_DEFAULT_IGNORE ();
633 virtual int set_syscall_catchpoint (int, bool, int,
634 gdb::array_view<const int>)
635 TARGET_DEFAULT_RETURN (1);
636 virtual void mourn_inferior ()
637 TARGET_DEFAULT_FUNC (default_mourn_inferior);
638
639 /* Note that can_run is special and can be invoked on an unpushed
640 target. Targets defining this method must also define
641 to_can_async_p and to_supports_non_stop. */
642 virtual bool can_run ();
643
644 /* Documentation of this routine is provided with the corresponding
645 target_* macro. */
646 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
647 TARGET_DEFAULT_IGNORE ();
648
649 /* Documentation of this routine is provided with the
650 corresponding target_* function. */
651 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
652 TARGET_DEFAULT_IGNORE ();
653
654 virtual bool thread_alive (ptid_t ptid)
655 TARGET_DEFAULT_RETURN (false);
656 virtual void update_thread_list ()
657 TARGET_DEFAULT_IGNORE ();
658 virtual std::string pid_to_str (ptid_t)
659 TARGET_DEFAULT_FUNC (default_pid_to_str);
660 virtual const char *extra_thread_info (thread_info *)
661 TARGET_DEFAULT_RETURN (NULL);
662 virtual const char *thread_name (thread_info *)
663 TARGET_DEFAULT_RETURN (NULL);
664 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
665 int,
666 inferior *inf)
667 TARGET_DEFAULT_RETURN (NULL);
668 /* See target_thread_info_to_thread_handle. */
669 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
670 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
671 virtual void stop (ptid_t)
672 TARGET_DEFAULT_IGNORE ();
673 virtual void interrupt ()
674 TARGET_DEFAULT_IGNORE ();
675 virtual void pass_ctrlc ()
676 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
677 virtual void rcmd (const char *command, struct ui_file *output)
678 TARGET_DEFAULT_FUNC (default_rcmd);
679 virtual char *pid_to_exec_file (int pid)
680 TARGET_DEFAULT_RETURN (NULL);
681 virtual void log_command (const char *)
682 TARGET_DEFAULT_IGNORE ();
683 virtual struct target_section_table *get_section_table ()
684 TARGET_DEFAULT_RETURN (NULL);
685
686 /* Provide default values for all "must have" methods. */
687 virtual bool has_all_memory () { return false; }
688 virtual bool has_memory () { return false; }
689 virtual bool has_stack () { return false; }
690 virtual bool has_registers () { return false; }
691 virtual bool has_execution (inferior *inf) { return false; }
692
693 /* Control thread execution. */
694 virtual thread_control_capabilities get_thread_control_capabilities ()
695 TARGET_DEFAULT_RETURN (tc_none);
696 virtual bool attach_no_wait ()
697 TARGET_DEFAULT_RETURN (0);
698 /* This method must be implemented in some situations. See the
699 comment on 'can_run'. */
700 virtual bool can_async_p ()
701 TARGET_DEFAULT_RETURN (false);
702 virtual bool is_async_p ()
703 TARGET_DEFAULT_RETURN (false);
704 virtual void async (int)
705 TARGET_DEFAULT_NORETURN (tcomplain ());
706 virtual int async_wait_fd ()
707 TARGET_DEFAULT_NORETURN (noprocess ());
708 virtual void thread_events (int)
709 TARGET_DEFAULT_IGNORE ();
710 /* This method must be implemented in some situations. See the
711 comment on 'can_run'. */
712 virtual bool supports_non_stop ()
713 TARGET_DEFAULT_RETURN (false);
714 /* Return true if the target operates in non-stop mode even with
715 "set non-stop off". */
716 virtual bool always_non_stop_p ()
717 TARGET_DEFAULT_RETURN (false);
718 /* find_memory_regions support method for gcore */
719 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
720 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
721 /* make_corefile_notes support method for gcore */
722 virtual char *make_corefile_notes (bfd *, int *)
723 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
724 /* get_bookmark support method for bookmarks */
725 virtual gdb_byte *get_bookmark (const char *, int)
726 TARGET_DEFAULT_NORETURN (tcomplain ());
727 /* goto_bookmark support method for bookmarks */
728 virtual void goto_bookmark (const gdb_byte *, int)
729 TARGET_DEFAULT_NORETURN (tcomplain ());
730 /* Return the thread-local address at OFFSET in the
731 thread-local storage for the thread PTID and the shared library
732 or executable file given by LOAD_MODULE_ADDR. If that block of
733 thread-local storage hasn't been allocated yet, this function
734 may throw an error. LOAD_MODULE_ADDR may be zero for statically
735 linked multithreaded inferiors. */
736 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
737 CORE_ADDR load_module_addr,
738 CORE_ADDR offset)
739 TARGET_DEFAULT_NORETURN (generic_tls_error ());
740
741 /* Request that OPS transfer up to LEN addressable units of the target's
742 OBJECT. When reading from a memory object, the size of an addressable
743 unit is architecture dependent and can be found using
744 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
745 1 byte long. The OFFSET, for a seekable object, specifies the
746 starting point. The ANNEX can be used to provide additional
747 data-specific information to the target.
748
749 Return the transferred status, error or OK (an
750 'enum target_xfer_status' value). Save the number of addressable units
751 actually transferred in *XFERED_LEN if transfer is successful
752 (TARGET_XFER_OK) or the number unavailable units if the requested
753 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
754 smaller than LEN does not indicate the end of the object, only
755 the end of the transfer; higher level code should continue
756 transferring if desired. This is handled in target.c.
757
758 The interface does not support a "retry" mechanism. Instead it
759 assumes that at least one addressable unit will be transfered on each
760 successful call.
761
762 NOTE: cagney/2003-10-17: The current interface can lead to
763 fragmented transfers. Lower target levels should not implement
764 hacks, such as enlarging the transfer, in an attempt to
765 compensate for this. Instead, the target stack should be
766 extended so that it implements supply/collect methods and a
767 look-aside object cache. With that available, the lowest
768 target can safely and freely "push" data up the stack.
769
770 See target_read and target_write for more information. One,
771 and only one, of readbuf or writebuf must be non-NULL. */
772
773 virtual enum target_xfer_status xfer_partial (enum target_object object,
774 const char *annex,
775 gdb_byte *readbuf,
776 const gdb_byte *writebuf,
777 ULONGEST offset, ULONGEST len,
778 ULONGEST *xfered_len)
779 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
780
781 /* Return the limit on the size of any single memory transfer
782 for the target. */
783
784 virtual ULONGEST get_memory_xfer_limit ()
785 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
786
787 /* Returns the memory map for the target. A return value of NULL
788 means that no memory map is available. If a memory address
789 does not fall within any returned regions, it's assumed to be
790 RAM. The returned memory regions should not overlap.
791
792 The order of regions does not matter; target_memory_map will
793 sort regions by starting address. For that reason, this
794 function should not be called directly except via
795 target_memory_map.
796
797 This method should not cache data; if the memory map could
798 change unexpectedly, it should be invalidated, and higher
799 layers will re-fetch it. */
800 virtual std::vector<mem_region> memory_map ()
801 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
802
803 /* Erases the region of flash memory starting at ADDRESS, of
804 length LENGTH.
805
806 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
807 on flash block boundaries, as reported by 'to_memory_map'. */
808 virtual void flash_erase (ULONGEST address, LONGEST length)
809 TARGET_DEFAULT_NORETURN (tcomplain ());
810
811 /* Finishes a flash memory write sequence. After this operation
812 all flash memory should be available for writing and the result
813 of reading from areas written by 'to_flash_write' should be
814 equal to what was written. */
815 virtual void flash_done ()
816 TARGET_DEFAULT_NORETURN (tcomplain ());
817
818 /* Describe the architecture-specific features of this target. If
819 OPS doesn't have a description, this should delegate to the
820 "beneath" target. Returns the description found, or NULL if no
821 description was available. */
822 virtual const struct target_desc *read_description ()
823 TARGET_DEFAULT_RETURN (NULL);
824
825 /* Build the PTID of the thread on which a given task is running,
826 based on LWP and THREAD. These values are extracted from the
827 task Private_Data section of the Ada Task Control Block, and
828 their interpretation depends on the target. */
829 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
830 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
831
832 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
833 Return 0 if *READPTR is already at the end of the buffer.
834 Return -1 if there is insufficient buffer for a whole entry.
835 Return 1 if an entry was read into *TYPEP and *VALP. */
836 virtual int auxv_parse (gdb_byte **readptr,
837 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
838 TARGET_DEFAULT_FUNC (default_auxv_parse);
839
840 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
841 sequence of bytes in PATTERN with length PATTERN_LEN.
842
843 The result is 1 if found, 0 if not found, and -1 if there was an error
844 requiring halting of the search (e.g. memory read error).
845 If the pattern is found the address is recorded in FOUND_ADDRP. */
846 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
847 const gdb_byte *pattern, ULONGEST pattern_len,
848 CORE_ADDR *found_addrp)
849 TARGET_DEFAULT_FUNC (default_search_memory);
850
851 /* Can target execute in reverse? */
852 virtual bool can_execute_reverse ()
853 TARGET_DEFAULT_RETURN (false);
854
855 /* The direction the target is currently executing. Must be
856 implemented on targets that support reverse execution and async
857 mode. The default simply returns forward execution. */
858 virtual enum exec_direction_kind execution_direction ()
859 TARGET_DEFAULT_FUNC (default_execution_direction);
860
861 /* Does this target support debugging multiple processes
862 simultaneously? */
863 virtual bool supports_multi_process ()
864 TARGET_DEFAULT_RETURN (false);
865
866 /* Does this target support enabling and disabling tracepoints while a trace
867 experiment is running? */
868 virtual bool supports_enable_disable_tracepoint ()
869 TARGET_DEFAULT_RETURN (false);
870
871 /* Does this target support disabling address space randomization? */
872 virtual bool supports_disable_randomization ()
873 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
874
875 /* Does this target support the tracenz bytecode for string collection? */
876 virtual bool supports_string_tracing ()
877 TARGET_DEFAULT_RETURN (false);
878
879 /* Does this target support evaluation of breakpoint conditions on its
880 end? */
881 virtual bool supports_evaluation_of_breakpoint_conditions ()
882 TARGET_DEFAULT_RETURN (false);
883
884 /* Does this target support native dumpcore API? */
885 virtual bool supports_dumpcore ()
886 TARGET_DEFAULT_RETURN (false);
887
888 /* Generate the core file with native target API. */
889 virtual void dumpcore (const char *filename)
890 TARGET_DEFAULT_IGNORE ();
891
892 /* Does this target support evaluation of breakpoint commands on its
893 end? */
894 virtual bool can_run_breakpoint_commands ()
895 TARGET_DEFAULT_RETURN (false);
896
897 /* Determine current architecture of thread PTID.
898
899 The target is supposed to determine the architecture of the code where
900 the target is currently stopped at. The architecture information is
901 used to perform decr_pc_after_break adjustment, and also to determine
902 the frame architecture of the innermost frame. ptrace operations need to
903 operate according to target_gdbarch (). */
904 virtual struct gdbarch *thread_architecture (ptid_t)
905 TARGET_DEFAULT_RETURN (NULL);
906
907 /* Determine current address space of thread PTID. */
908 virtual struct address_space *thread_address_space (ptid_t)
909 TARGET_DEFAULT_RETURN (NULL);
910
911 /* Target file operations. */
912
913 /* Return nonzero if the filesystem seen by the current inferior
914 is the local filesystem, zero otherwise. */
915 virtual bool filesystem_is_local ()
916 TARGET_DEFAULT_RETURN (true);
917
918 /* Open FILENAME on the target, in the filesystem as seen by INF,
919 using FLAGS and MODE. If INF is NULL, use the filesystem seen
920 by the debugger (GDB or, for remote targets, the remote stub).
921 If WARN_IF_SLOW is nonzero, print a warning message if the file
922 is being accessed over a link that may be slow. Return a
923 target file descriptor, or -1 if an error occurs (and set
924 *TARGET_ERRNO). */
925 virtual int fileio_open (struct inferior *inf, const char *filename,
926 int flags, int mode, int warn_if_slow,
927 int *target_errno);
928
929 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
930 Return the number of bytes written, or -1 if an error occurs
931 (and set *TARGET_ERRNO). */
932 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
933 ULONGEST offset, int *target_errno);
934
935 /* Read up to LEN bytes FD on the target into READ_BUF.
936 Return the number of bytes read, or -1 if an error occurs
937 (and set *TARGET_ERRNO). */
938 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
939 ULONGEST offset, int *target_errno);
940
941 /* Get information about the file opened as FD and put it in
942 SB. Return 0 on success, or -1 if an error occurs (and set
943 *TARGET_ERRNO). */
944 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
945
946 /* Close FD on the target. Return 0, or -1 if an error occurs
947 (and set *TARGET_ERRNO). */
948 virtual int fileio_close (int fd, int *target_errno);
949
950 /* Unlink FILENAME on the target, in the filesystem as seen by
951 INF. If INF is NULL, use the filesystem seen by the debugger
952 (GDB or, for remote targets, the remote stub). Return 0, or
953 -1 if an error occurs (and set *TARGET_ERRNO). */
954 virtual int fileio_unlink (struct inferior *inf,
955 const char *filename,
956 int *target_errno);
957
958 /* Read value of symbolic link FILENAME on the target, in the
959 filesystem as seen by INF. If INF is NULL, use the filesystem
960 seen by the debugger (GDB or, for remote targets, the remote
961 stub). Return a string, or an empty optional if an error
962 occurs (and set *TARGET_ERRNO). */
963 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
964 const char *filename,
965 int *target_errno);
966
967 /* Implement the "info proc" command. Returns true if the target
968 actually implemented the command, false otherwise. */
969 virtual bool info_proc (const char *, enum info_proc_what);
970
971 /* Tracepoint-related operations. */
972
973 /* Prepare the target for a tracing run. */
974 virtual void trace_init ()
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Send full details of a tracepoint location to the target. */
978 virtual void download_tracepoint (struct bp_location *location)
979 TARGET_DEFAULT_NORETURN (tcomplain ());
980
981 /* Is the target able to download tracepoint locations in current
982 state? */
983 virtual bool can_download_tracepoint ()
984 TARGET_DEFAULT_RETURN (false);
985
986 /* Send full details of a trace state variable to the target. */
987 virtual void download_trace_state_variable (const trace_state_variable &tsv)
988 TARGET_DEFAULT_NORETURN (tcomplain ());
989
990 /* Enable a tracepoint on the target. */
991 virtual void enable_tracepoint (struct bp_location *location)
992 TARGET_DEFAULT_NORETURN (tcomplain ());
993
994 /* Disable a tracepoint on the target. */
995 virtual void disable_tracepoint (struct bp_location *location)
996 TARGET_DEFAULT_NORETURN (tcomplain ());
997
998 /* Inform the target info of memory regions that are readonly
999 (such as text sections), and so it should return data from
1000 those rather than look in the trace buffer. */
1001 virtual void trace_set_readonly_regions ()
1002 TARGET_DEFAULT_NORETURN (tcomplain ());
1003
1004 /* Start a trace run. */
1005 virtual void trace_start ()
1006 TARGET_DEFAULT_NORETURN (tcomplain ());
1007
1008 /* Get the current status of a tracing run. */
1009 virtual int get_trace_status (struct trace_status *ts)
1010 TARGET_DEFAULT_RETURN (-1);
1011
1012 virtual void get_tracepoint_status (struct breakpoint *tp,
1013 struct uploaded_tp *utp)
1014 TARGET_DEFAULT_NORETURN (tcomplain ());
1015
1016 /* Stop a trace run. */
1017 virtual void trace_stop ()
1018 TARGET_DEFAULT_NORETURN (tcomplain ());
1019
1020 /* Ask the target to find a trace frame of the given type TYPE,
1021 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1022 number of the trace frame, and also the tracepoint number at
1023 TPP. If no trace frame matches, return -1. May throw if the
1024 operation fails. */
1025 virtual int trace_find (enum trace_find_type type, int num,
1026 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1027 TARGET_DEFAULT_RETURN (-1);
1028
1029 /* Get the value of the trace state variable number TSV, returning
1030 1 if the value is known and writing the value itself into the
1031 location pointed to by VAL, else returning 0. */
1032 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1033 TARGET_DEFAULT_RETURN (false);
1034
1035 virtual int save_trace_data (const char *filename)
1036 TARGET_DEFAULT_NORETURN (tcomplain ());
1037
1038 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1039 TARGET_DEFAULT_RETURN (0);
1040
1041 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1042 TARGET_DEFAULT_RETURN (0);
1043
1044 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1045 ULONGEST offset, LONGEST len)
1046 TARGET_DEFAULT_NORETURN (tcomplain ());
1047
1048 /* Get the minimum length of instruction on which a fast tracepoint
1049 may be set on the target. If this operation is unsupported,
1050 return -1. If for some reason the minimum length cannot be
1051 determined, return 0. */
1052 virtual int get_min_fast_tracepoint_insn_len ()
1053 TARGET_DEFAULT_RETURN (-1);
1054
1055 /* Set the target's tracing behavior in response to unexpected
1056 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1057 virtual void set_disconnected_tracing (int val)
1058 TARGET_DEFAULT_IGNORE ();
1059 virtual void set_circular_trace_buffer (int val)
1060 TARGET_DEFAULT_IGNORE ();
1061 /* Set the size of trace buffer in the target. */
1062 virtual void set_trace_buffer_size (LONGEST val)
1063 TARGET_DEFAULT_IGNORE ();
1064
1065 /* Add/change textual notes about the trace run, returning 1 if
1066 successful, 0 otherwise. */
1067 virtual bool set_trace_notes (const char *user, const char *notes,
1068 const char *stopnotes)
1069 TARGET_DEFAULT_RETURN (false);
1070
1071 /* Return the processor core that thread PTID was last seen on.
1072 This information is updated only when:
1073 - update_thread_list is called
1074 - thread stops
1075 If the core cannot be determined -- either for the specified
1076 thread, or right now, or in this debug session, or for this
1077 target -- return -1. */
1078 virtual int core_of_thread (ptid_t ptid)
1079 TARGET_DEFAULT_RETURN (-1);
1080
1081 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1082 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1083 a match, 0 if there's a mismatch, and -1 if an error is
1084 encountered while reading memory. */
1085 virtual int verify_memory (const gdb_byte *data,
1086 CORE_ADDR memaddr, ULONGEST size)
1087 TARGET_DEFAULT_FUNC (default_verify_memory);
1088
1089 /* Return the address of the start of the Thread Information Block
1090 a Windows OS specific feature. */
1091 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1092 TARGET_DEFAULT_NORETURN (tcomplain ());
1093
1094 /* Send the new settings of write permission variables. */
1095 virtual void set_permissions ()
1096 TARGET_DEFAULT_IGNORE ();
1097
1098 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1099 with its details. Return true on success, false on failure. */
1100 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1101 static_tracepoint_marker *marker)
1102 TARGET_DEFAULT_RETURN (false);
1103
1104 /* Return a vector of all tracepoints markers string id ID, or all
1105 markers if ID is NULL. */
1106 virtual std::vector<static_tracepoint_marker>
1107 static_tracepoint_markers_by_strid (const char *id)
1108 TARGET_DEFAULT_NORETURN (tcomplain ());
1109
1110 /* Return a traceframe info object describing the current
1111 traceframe's contents. This method should not cache data;
1112 higher layers take care of caching, invalidating, and
1113 re-fetching when necessary. */
1114 virtual traceframe_info_up traceframe_info ()
1115 TARGET_DEFAULT_NORETURN (tcomplain ());
1116
1117 /* Ask the target to use or not to use agent according to USE.
1118 Return true if successful, false otherwise. */
1119 virtual bool use_agent (bool use)
1120 TARGET_DEFAULT_NORETURN (tcomplain ());
1121
1122 /* Is the target able to use agent in current state? */
1123 virtual bool can_use_agent ()
1124 TARGET_DEFAULT_RETURN (false);
1125
1126 /* Enable branch tracing for PTID using CONF configuration.
1127 Return a branch trace target information struct for reading and for
1128 disabling branch trace. */
1129 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1130 const struct btrace_config *conf)
1131 TARGET_DEFAULT_NORETURN (tcomplain ());
1132
1133 /* Disable branch tracing and deallocate TINFO. */
1134 virtual void disable_btrace (struct btrace_target_info *tinfo)
1135 TARGET_DEFAULT_NORETURN (tcomplain ());
1136
1137 /* Disable branch tracing and deallocate TINFO. This function is similar
1138 to to_disable_btrace, except that it is called during teardown and is
1139 only allowed to perform actions that are safe. A counter-example would
1140 be attempting to talk to a remote target. */
1141 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1142 TARGET_DEFAULT_NORETURN (tcomplain ());
1143
1144 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1145 DATA is cleared before new trace is added. */
1146 virtual enum btrace_error read_btrace (struct btrace_data *data,
1147 struct btrace_target_info *btinfo,
1148 enum btrace_read_type type)
1149 TARGET_DEFAULT_NORETURN (tcomplain ());
1150
1151 /* Get the branch trace configuration. */
1152 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1153 TARGET_DEFAULT_RETURN (NULL);
1154
1155 /* Current recording method. */
1156 virtual enum record_method record_method (ptid_t ptid)
1157 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1158
1159 /* Stop trace recording. */
1160 virtual void stop_recording ()
1161 TARGET_DEFAULT_IGNORE ();
1162
1163 /* Print information about the recording. */
1164 virtual void info_record ()
1165 TARGET_DEFAULT_IGNORE ();
1166
1167 /* Save the recorded execution trace into a file. */
1168 virtual void save_record (const char *filename)
1169 TARGET_DEFAULT_NORETURN (tcomplain ());
1170
1171 /* Delete the recorded execution trace from the current position
1172 onwards. */
1173 virtual bool supports_delete_record ()
1174 TARGET_DEFAULT_RETURN (false);
1175 virtual void delete_record ()
1176 TARGET_DEFAULT_NORETURN (tcomplain ());
1177
1178 /* Query if the record target is currently replaying PTID. */
1179 virtual bool record_is_replaying (ptid_t ptid)
1180 TARGET_DEFAULT_RETURN (false);
1181
1182 /* Query if the record target will replay PTID if it were resumed in
1183 execution direction DIR. */
1184 virtual bool record_will_replay (ptid_t ptid, int dir)
1185 TARGET_DEFAULT_RETURN (false);
1186
1187 /* Stop replaying. */
1188 virtual void record_stop_replaying ()
1189 TARGET_DEFAULT_IGNORE ();
1190
1191 /* Go to the begin of the execution trace. */
1192 virtual void goto_record_begin ()
1193 TARGET_DEFAULT_NORETURN (tcomplain ());
1194
1195 /* Go to the end of the execution trace. */
1196 virtual void goto_record_end ()
1197 TARGET_DEFAULT_NORETURN (tcomplain ());
1198
1199 /* Go to a specific location in the recorded execution trace. */
1200 virtual void goto_record (ULONGEST insn)
1201 TARGET_DEFAULT_NORETURN (tcomplain ());
1202
1203 /* Disassemble SIZE instructions in the recorded execution trace from
1204 the current position.
1205 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1206 disassemble SIZE succeeding instructions. */
1207 virtual void insn_history (int size, gdb_disassembly_flags flags)
1208 TARGET_DEFAULT_NORETURN (tcomplain ());
1209
1210 /* Disassemble SIZE instructions in the recorded execution trace around
1211 FROM.
1212 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1213 disassemble SIZE instructions after FROM. */
1214 virtual void insn_history_from (ULONGEST from, int size,
1215 gdb_disassembly_flags flags)
1216 TARGET_DEFAULT_NORETURN (tcomplain ());
1217
1218 /* Disassemble a section of the recorded execution trace from instruction
1219 BEGIN (inclusive) to instruction END (inclusive). */
1220 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1221 gdb_disassembly_flags flags)
1222 TARGET_DEFAULT_NORETURN (tcomplain ());
1223
1224 /* Print a function trace of the recorded execution trace.
1225 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1226 succeeding functions. */
1227 virtual void call_history (int size, record_print_flags flags)
1228 TARGET_DEFAULT_NORETURN (tcomplain ());
1229
1230 /* Print a function trace of the recorded execution trace starting
1231 at function FROM.
1232 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1233 SIZE functions after FROM. */
1234 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1235 TARGET_DEFAULT_NORETURN (tcomplain ());
1236
1237 /* Print a function trace of an execution trace section from function BEGIN
1238 (inclusive) to function END (inclusive). */
1239 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1240 TARGET_DEFAULT_NORETURN (tcomplain ());
1241
1242 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1243 non-empty annex. */
1244 virtual bool augmented_libraries_svr4_read ()
1245 TARGET_DEFAULT_RETURN (false);
1246
1247 /* Those unwinders are tried before any other arch unwinders. If
1248 SELF doesn't have unwinders, it should delegate to the
1249 "beneath" target. */
1250 virtual const struct frame_unwind *get_unwinder ()
1251 TARGET_DEFAULT_RETURN (NULL);
1252
1253 virtual const struct frame_unwind *get_tailcall_unwinder ()
1254 TARGET_DEFAULT_RETURN (NULL);
1255
1256 /* Prepare to generate a core file. */
1257 virtual void prepare_to_generate_core ()
1258 TARGET_DEFAULT_IGNORE ();
1259
1260 /* Cleanup after generating a core file. */
1261 virtual void done_generating_core ()
1262 TARGET_DEFAULT_IGNORE ();
1263 };
1264
1265 /* Deleter for std::unique_ptr. See comments in
1266 target_ops::~target_ops and target_ops::close about heap-allocated
1267 targets. */
1268 struct target_ops_deleter
1269 {
1270 void operator() (target_ops *target)
1271 {
1272 target->close ();
1273 }
1274 };
1275
1276 /* A unique pointer for target_ops. */
1277 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1278
1279 /* Decref a target and close if, if there are no references left. */
1280 extern void decref_target (target_ops *t);
1281
1282 /* A policy class to interface gdb::ref_ptr with target_ops. */
1283
1284 struct target_ops_ref_policy
1285 {
1286 static void incref (target_ops *t)
1287 {
1288 t->incref ();
1289 }
1290
1291 static void decref (target_ops *t)
1292 {
1293 decref_target (t);
1294 }
1295 };
1296
1297 /* A gdb::ref_ptr pointer to a target_ops. */
1298 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1299
1300 /* Native target backends call this once at initialization time to
1301 inform the core about which is the target that can respond to "run"
1302 or "attach". Note: native targets are always singletons. */
1303 extern void set_native_target (target_ops *target);
1304
1305 /* Get the registered native target, if there's one. Otherwise return
1306 NULL. */
1307 extern target_ops *get_native_target ();
1308
1309 /* Type that manages a target stack. See description of target stacks
1310 and strata at the top of the file. */
1311
1312 class target_stack
1313 {
1314 public:
1315 target_stack () = default;
1316 DISABLE_COPY_AND_ASSIGN (target_stack);
1317
1318 /* Push a new target into the stack of the existing target
1319 accessors, possibly superseding some existing accessor. */
1320 void push (target_ops *t);
1321
1322 /* Remove a target from the stack, wherever it may be. Return true
1323 if it was removed, false otherwise. */
1324 bool unpush (target_ops *t);
1325
1326 /* Returns true if T is pushed on the target stack. */
1327 bool is_pushed (target_ops *t) const
1328 { return at (t->stratum ()) == t; }
1329
1330 /* Return the target at STRATUM. */
1331 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1332
1333 /* Return the target at the top of the stack. */
1334 target_ops *top () const { return at (m_top); }
1335
1336 /* Find the next target down the stack from the specified target. */
1337 target_ops *find_beneath (const target_ops *t) const;
1338
1339 private:
1340 /* The stratum of the top target. */
1341 enum strata m_top {};
1342
1343 /* The stack, represented as an array, with one slot per stratum.
1344 If no target is pushed at some stratum, the corresponding slot is
1345 null. */
1346 target_ops *m_stack[(int) debug_stratum + 1] {};
1347 };
1348
1349 /* The ops structure for our "current" target process. This should
1350 never be NULL. If there is no target, it points to the dummy_target. */
1351
1352 extern target_ops *current_top_target ();
1353
1354 /* Return the dummy target. */
1355 extern target_ops *get_dummy_target ();
1356
1357 /* Define easy words for doing these operations on our current target. */
1358
1359 #define target_shortname (current_top_target ()->shortname ())
1360 #define target_longname (current_top_target ()->longname ())
1361
1362 /* Does whatever cleanup is required for a target that we are no
1363 longer going to be calling. This routine is automatically always
1364 called after popping the target off the target stack - the target's
1365 own methods are no longer available through the target vector.
1366 Closing file descriptors and freeing all memory allocated memory are
1367 typical things it should do. */
1368
1369 void target_close (struct target_ops *targ);
1370
1371 /* Find the correct target to use for "attach". If a target on the
1372 current stack supports attaching, then it is returned. Otherwise,
1373 the default run target is returned. */
1374
1375 extern struct target_ops *find_attach_target (void);
1376
1377 /* Find the correct target to use for "run". If a target on the
1378 current stack supports creating a new inferior, then it is
1379 returned. Otherwise, the default run target is returned. */
1380
1381 extern struct target_ops *find_run_target (void);
1382
1383 /* Some targets don't generate traps when attaching to the inferior,
1384 or their target_attach implementation takes care of the waiting.
1385 These targets must set to_attach_no_wait. */
1386
1387 #define target_attach_no_wait() \
1388 (current_top_target ()->attach_no_wait ())
1389
1390 /* The target_attach operation places a process under debugger control,
1391 and stops the process.
1392
1393 This operation provides a target-specific hook that allows the
1394 necessary bookkeeping to be performed after an attach completes. */
1395 #define target_post_attach(pid) \
1396 (current_top_target ()->post_attach) (pid)
1397
1398 /* Display a message indicating we're about to detach from the current
1399 inferior process. */
1400
1401 extern void target_announce_detach (int from_tty);
1402
1403 /* Takes a program previously attached to and detaches it.
1404 The program may resume execution (some targets do, some don't) and will
1405 no longer stop on signals, etc. We better not have left any breakpoints
1406 in the program or it'll die when it hits one. FROM_TTY says whether to be
1407 verbose or not. */
1408
1409 extern void target_detach (inferior *inf, int from_tty);
1410
1411 /* Disconnect from the current target without resuming it (leaving it
1412 waiting for a debugger). */
1413
1414 extern void target_disconnect (const char *, int);
1415
1416 /* Resume execution (or prepare for execution) of a target thread,
1417 process or all processes. STEP says whether to hardware
1418 single-step or to run free; SIGGNAL is the signal to be given to
1419 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1420 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1421 process id'. A wildcard PTID (all threads, or all threads of
1422 process) means `step/resume INFERIOR_PTID, and let other threads
1423 (for which the wildcard PTID matches) resume with their
1424 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1425 is in "pass" state, or with no signal if in "no pass" state.
1426
1427 In order to efficiently handle batches of resumption requests,
1428 targets may implement this method such that it records the
1429 resumption request, but defers the actual resumption to the
1430 target_commit_resume method implementation. See
1431 target_commit_resume below. */
1432 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1433
1434 /* Commit a series of resumption requests previously prepared with
1435 target_resume calls.
1436
1437 GDB always calls target_commit_resume after calling target_resume
1438 one or more times. A target may thus use this method in
1439 coordination with the target_resume method to batch target-side
1440 resumption requests. In that case, the target doesn't actually
1441 resume in its target_resume implementation. Instead, it prepares
1442 the resumption in target_resume, and defers the actual resumption
1443 to target_commit_resume. E.g., the remote target uses this to
1444 coalesce multiple resumption requests in a single vCont packet. */
1445 extern void target_commit_resume ();
1446
1447 /* Setup to defer target_commit_resume calls, and reactivate
1448 target_commit_resume on destruction, if it was previously
1449 active. */
1450 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1451
1452 /* For target_read_memory see target/target.h. */
1453
1454 /* The default target_ops::to_wait implementation. */
1455
1456 extern ptid_t default_target_wait (struct target_ops *ops,
1457 ptid_t ptid,
1458 struct target_waitstatus *status,
1459 int options);
1460
1461 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1462
1463 extern void target_fetch_registers (struct regcache *regcache, int regno);
1464
1465 /* Store at least register REGNO, or all regs if REGNO == -1.
1466 It can store as many registers as it wants to, so target_prepare_to_store
1467 must have been previously called. Calls error() if there are problems. */
1468
1469 extern void target_store_registers (struct regcache *regcache, int regs);
1470
1471 /* Get ready to modify the registers array. On machines which store
1472 individual registers, this doesn't need to do anything. On machines
1473 which store all the registers in one fell swoop, this makes sure
1474 that REGISTERS contains all the registers from the program being
1475 debugged. */
1476
1477 #define target_prepare_to_store(regcache) \
1478 (current_top_target ()->prepare_to_store) (regcache)
1479
1480 /* Determine current address space of thread PTID. */
1481
1482 struct address_space *target_thread_address_space (ptid_t);
1483
1484 /* Implement the "info proc" command. This returns one if the request
1485 was handled, and zero otherwise. It can also throw an exception if
1486 an error was encountered while attempting to handle the
1487 request. */
1488
1489 int target_info_proc (const char *, enum info_proc_what);
1490
1491 /* Returns true if this target can disable address space randomization. */
1492
1493 int target_supports_disable_randomization (void);
1494
1495 /* Returns true if this target can enable and disable tracepoints
1496 while a trace experiment is running. */
1497
1498 #define target_supports_enable_disable_tracepoint() \
1499 (current_top_target ()->supports_enable_disable_tracepoint) ()
1500
1501 #define target_supports_string_tracing() \
1502 (current_top_target ()->supports_string_tracing) ()
1503
1504 /* Returns true if this target can handle breakpoint conditions
1505 on its end. */
1506
1507 #define target_supports_evaluation_of_breakpoint_conditions() \
1508 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1509
1510 /* Does this target support dumpcore API? */
1511
1512 #define target_supports_dumpcore() \
1513 (current_top_target ()->supports_dumpcore) ()
1514
1515 /* Generate the core file with target API. */
1516
1517 #define target_dumpcore(x) \
1518 (current_top_target ()->dumpcore (x))
1519
1520 /* Returns true if this target can handle breakpoint commands
1521 on its end. */
1522
1523 #define target_can_run_breakpoint_commands() \
1524 (current_top_target ()->can_run_breakpoint_commands) ()
1525
1526 /* Read a string from target memory at address MEMADDR. The string
1527 will be at most LEN bytes long (note that excess bytes may be read
1528 in some cases -- but these will not be returned). Returns nullptr
1529 on error. */
1530
1531 extern gdb::unique_xmalloc_ptr<char> target_read_string
1532 (CORE_ADDR memaddr, int len, int *bytes_read = nullptr);
1533
1534 /* For target_read_memory see target/target.h. */
1535
1536 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1537 ssize_t len);
1538
1539 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1540
1541 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1542
1543 /* For target_write_memory see target/target.h. */
1544
1545 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1546 ssize_t len);
1547
1548 /* Fetches the target's memory map. If one is found it is sorted
1549 and returned, after some consistency checking. Otherwise, NULL
1550 is returned. */
1551 std::vector<mem_region> target_memory_map (void);
1552
1553 /* Erases all flash memory regions on the target. */
1554 void flash_erase_command (const char *cmd, int from_tty);
1555
1556 /* Erase the specified flash region. */
1557 void target_flash_erase (ULONGEST address, LONGEST length);
1558
1559 /* Finish a sequence of flash operations. */
1560 void target_flash_done (void);
1561
1562 /* Describes a request for a memory write operation. */
1563 struct memory_write_request
1564 {
1565 memory_write_request (ULONGEST begin_, ULONGEST end_,
1566 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1567 : begin (begin_), end (end_), data (data_), baton (baton_)
1568 {}
1569
1570 /* Begining address that must be written. */
1571 ULONGEST begin;
1572 /* Past-the-end address. */
1573 ULONGEST end;
1574 /* The data to write. */
1575 gdb_byte *data;
1576 /* A callback baton for progress reporting for this request. */
1577 void *baton;
1578 };
1579
1580 /* Enumeration specifying different flash preservation behaviour. */
1581 enum flash_preserve_mode
1582 {
1583 flash_preserve,
1584 flash_discard
1585 };
1586
1587 /* Write several memory blocks at once. This version can be more
1588 efficient than making several calls to target_write_memory, in
1589 particular because it can optimize accesses to flash memory.
1590
1591 Moreover, this is currently the only memory access function in gdb
1592 that supports writing to flash memory, and it should be used for
1593 all cases where access to flash memory is desirable.
1594
1595 REQUESTS is the vector of memory_write_request.
1596 PRESERVE_FLASH_P indicates what to do with blocks which must be
1597 erased, but not completely rewritten.
1598 PROGRESS_CB is a function that will be periodically called to provide
1599 feedback to user. It will be called with the baton corresponding
1600 to the request currently being written. It may also be called
1601 with a NULL baton, when preserved flash sectors are being rewritten.
1602
1603 The function returns 0 on success, and error otherwise. */
1604 int target_write_memory_blocks
1605 (const std::vector<memory_write_request> &requests,
1606 enum flash_preserve_mode preserve_flash_p,
1607 void (*progress_cb) (ULONGEST, void *));
1608
1609 /* Print a line about the current target. */
1610
1611 #define target_files_info() \
1612 (current_top_target ()->files_info) ()
1613
1614 /* Insert a breakpoint at address BP_TGT->placed_address in
1615 the target machine. Returns 0 for success, and returns non-zero or
1616 throws an error (with a detailed failure reason error code and
1617 message) otherwise. */
1618
1619 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1620 struct bp_target_info *bp_tgt);
1621
1622 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1623 machine. Result is 0 for success, non-zero for error. */
1624
1625 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1626 struct bp_target_info *bp_tgt,
1627 enum remove_bp_reason reason);
1628
1629 /* Return true if the target stack has a non-default
1630 "terminal_ours" method. */
1631
1632 extern bool target_supports_terminal_ours (void);
1633
1634 /* Kill the inferior process. Make it go away. */
1635
1636 extern void target_kill (void);
1637
1638 /* Load an executable file into the target process. This is expected
1639 to not only bring new code into the target process, but also to
1640 update GDB's symbol tables to match.
1641
1642 ARG contains command-line arguments, to be broken down with
1643 buildargv (). The first non-switch argument is the filename to
1644 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1645 0)), which is an offset to apply to the load addresses of FILE's
1646 sections. The target may define switches, or other non-switch
1647 arguments, as it pleases. */
1648
1649 extern void target_load (const char *arg, int from_tty);
1650
1651 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1652 notification of inferior events such as fork and vork immediately
1653 after the inferior is created. (This because of how gdb gets an
1654 inferior created via invoking a shell to do it. In such a scenario,
1655 if the shell init file has commands in it, the shell will fork and
1656 exec for each of those commands, and we will see each such fork
1657 event. Very bad.)
1658
1659 Such targets will supply an appropriate definition for this function. */
1660
1661 #define target_post_startup_inferior(ptid) \
1662 (current_top_target ()->post_startup_inferior) (ptid)
1663
1664 /* On some targets, we can catch an inferior fork or vfork event when
1665 it occurs. These functions insert/remove an already-created
1666 catchpoint for such events. They return 0 for success, 1 if the
1667 catchpoint type is not supported and -1 for failure. */
1668
1669 #define target_insert_fork_catchpoint(pid) \
1670 (current_top_target ()->insert_fork_catchpoint) (pid)
1671
1672 #define target_remove_fork_catchpoint(pid) \
1673 (current_top_target ()->remove_fork_catchpoint) (pid)
1674
1675 #define target_insert_vfork_catchpoint(pid) \
1676 (current_top_target ()->insert_vfork_catchpoint) (pid)
1677
1678 #define target_remove_vfork_catchpoint(pid) \
1679 (current_top_target ()->remove_vfork_catchpoint) (pid)
1680
1681 /* If the inferior forks or vforks, this function will be called at
1682 the next resume in order to perform any bookkeeping and fiddling
1683 necessary to continue debugging either the parent or child, as
1684 requested, and releasing the other. Information about the fork
1685 or vfork event is available via get_last_target_status ().
1686 This function returns true if the inferior should not be resumed
1687 (i.e. there is another event pending). */
1688
1689 bool target_follow_fork (bool follow_child, bool detach_fork);
1690
1691 /* Handle the target-specific bookkeeping required when the inferior
1692 makes an exec call. INF is the exec'd inferior. */
1693
1694 void target_follow_exec (struct inferior *inf, const char *execd_pathname);
1695
1696 /* On some targets, we can catch an inferior exec event when it
1697 occurs. These functions insert/remove an already-created
1698 catchpoint for such events. They return 0 for success, 1 if the
1699 catchpoint type is not supported and -1 for failure. */
1700
1701 #define target_insert_exec_catchpoint(pid) \
1702 (current_top_target ()->insert_exec_catchpoint) (pid)
1703
1704 #define target_remove_exec_catchpoint(pid) \
1705 (current_top_target ()->remove_exec_catchpoint) (pid)
1706
1707 /* Syscall catch.
1708
1709 NEEDED is true if any syscall catch (of any kind) is requested.
1710 If NEEDED is false, it means the target can disable the mechanism to
1711 catch system calls because there are no more catchpoints of this type.
1712
1713 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1714 being requested. In this case, SYSCALL_COUNTS should be ignored.
1715
1716 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1717 element in this array is nonzero if that syscall should be caught.
1718 This argument only matters if ANY_COUNT is zero.
1719
1720 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1721 for failure. */
1722
1723 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1724 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1725 syscall_counts)
1726
1727 /* The debugger has completed a blocking wait() call. There is now
1728 some process event that must be processed. This function should
1729 be defined by those targets that require the debugger to perform
1730 cleanup or internal state changes in response to the process event. */
1731
1732 /* For target_mourn_inferior see target/target.h. */
1733
1734 /* Does target have enough data to do a run or attach command? */
1735
1736 extern int target_can_run ();
1737
1738 /* Set list of signals to be handled in the target.
1739
1740 PASS_SIGNALS is an array indexed by target signal number
1741 (enum gdb_signal). For every signal whose entry in this array is
1742 non-zero, the target is allowed -but not required- to skip reporting
1743 arrival of the signal to the GDB core by returning from target_wait,
1744 and to pass the signal directly to the inferior instead.
1745
1746 However, if the target is hardware single-stepping a thread that is
1747 about to receive a signal, it needs to be reported in any case, even
1748 if mentioned in a previous target_pass_signals call. */
1749
1750 extern void target_pass_signals
1751 (gdb::array_view<const unsigned char> pass_signals);
1752
1753 /* Set list of signals the target may pass to the inferior. This
1754 directly maps to the "handle SIGNAL pass/nopass" setting.
1755
1756 PROGRAM_SIGNALS is an array indexed by target signal
1757 number (enum gdb_signal). For every signal whose entry in this
1758 array is non-zero, the target is allowed to pass the signal to the
1759 inferior. Signals not present in the array shall be silently
1760 discarded. This does not influence whether to pass signals to the
1761 inferior as a result of a target_resume call. This is useful in
1762 scenarios where the target needs to decide whether to pass or not a
1763 signal to the inferior without GDB core involvement, such as for
1764 example, when detaching (as threads may have been suspended with
1765 pending signals not reported to GDB). */
1766
1767 extern void target_program_signals
1768 (gdb::array_view<const unsigned char> program_signals);
1769
1770 /* Check to see if a thread is still alive. */
1771
1772 extern int target_thread_alive (ptid_t ptid);
1773
1774 /* Sync the target's threads with GDB's thread list. */
1775
1776 extern void target_update_thread_list (void);
1777
1778 /* Make target stop in a continuable fashion. (For instance, under
1779 Unix, this should act like SIGSTOP). Note that this function is
1780 asynchronous: it does not wait for the target to become stopped
1781 before returning. If this is the behavior you want please use
1782 target_stop_and_wait. */
1783
1784 extern void target_stop (ptid_t ptid);
1785
1786 /* Interrupt the target. Unlike target_stop, this does not specify
1787 which thread/process reports the stop. For most target this acts
1788 like raising a SIGINT, though that's not absolutely required. This
1789 function is asynchronous. */
1790
1791 extern void target_interrupt ();
1792
1793 /* Pass a ^C, as determined to have been pressed by checking the quit
1794 flag, to the target, as if the user had typed the ^C on the
1795 inferior's controlling terminal while the inferior was in the
1796 foreground. Remote targets may take the opportunity to detect the
1797 remote side is not responding and offer to disconnect. */
1798
1799 extern void target_pass_ctrlc (void);
1800
1801 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1802 target_interrupt. */
1803 extern void default_target_pass_ctrlc (struct target_ops *ops);
1804
1805 /* Send the specified COMMAND to the target's monitor
1806 (shell,interpreter) for execution. The result of the query is
1807 placed in OUTBUF. */
1808
1809 #define target_rcmd(command, outbuf) \
1810 (current_top_target ()->rcmd) (command, outbuf)
1811
1812
1813 /* Does the target include all of memory, or only part of it? This
1814 determines whether we look up the target chain for other parts of
1815 memory if this target can't satisfy a request. */
1816
1817 extern int target_has_all_memory_1 (void);
1818 #define target_has_all_memory target_has_all_memory_1 ()
1819
1820 /* Does the target include memory? (Dummy targets don't.) */
1821
1822 extern int target_has_memory_1 (void);
1823 #define target_has_memory target_has_memory_1 ()
1824
1825 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1826 we start a process.) */
1827
1828 extern int target_has_stack_1 (void);
1829 #define target_has_stack target_has_stack_1 ()
1830
1831 /* Does the target have registers? (Exec files don't.) */
1832
1833 extern int target_has_registers_1 (void);
1834 #define target_has_registers target_has_registers_1 ()
1835
1836 /* Does the target have execution? Can we make it jump (through
1837 hoops), or pop its stack a few times? This means that the current
1838 target is currently executing; for some targets, that's the same as
1839 whether or not the target is capable of execution, but there are
1840 also targets which can be current while not executing. In that
1841 case this will become true after to_create_inferior or
1842 to_attach. */
1843
1844 extern bool target_has_execution_1 (inferior *inf);
1845
1846 /* Like target_has_execution_1, but always passes
1847 current_inferior(). */
1848
1849 extern int target_has_execution_current (void);
1850
1851 #define target_has_execution target_has_execution_current ()
1852
1853 /* Can the target support the debugger control of thread execution?
1854 Can it lock the thread scheduler? */
1855
1856 #define target_can_lock_scheduler \
1857 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1858
1859 /* Controls whether async mode is permitted. */
1860 extern bool target_async_permitted;
1861
1862 /* Can the target support asynchronous execution? */
1863 #define target_can_async_p() (current_top_target ()->can_async_p ())
1864
1865 /* Is the target in asynchronous execution mode? */
1866 #define target_is_async_p() (current_top_target ()->is_async_p ())
1867
1868 /* Enables/disabled async target events. */
1869 extern void target_async (int enable);
1870
1871 /* Enables/disables thread create and exit events. */
1872 extern void target_thread_events (int enable);
1873
1874 /* Whether support for controlling the target backends always in
1875 non-stop mode is enabled. */
1876 extern enum auto_boolean target_non_stop_enabled;
1877
1878 /* Is the target in non-stop mode? Some targets control the inferior
1879 in non-stop mode even with "set non-stop off". Always true if "set
1880 non-stop" is on. */
1881 extern int target_is_non_stop_p (void);
1882
1883 /* Return true if at least one inferior has a non-stop target. */
1884 extern bool exists_non_stop_target ();
1885
1886 #define target_execution_direction() \
1887 (current_top_target ()->execution_direction ())
1888
1889 /* Converts a process id to a string. Usually, the string just contains
1890 `process xyz', but on some systems it may contain
1891 `process xyz thread abc'. */
1892
1893 extern std::string target_pid_to_str (ptid_t ptid);
1894
1895 extern std::string normal_pid_to_str (ptid_t ptid);
1896
1897 /* Return a short string describing extra information about PID,
1898 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1899 is okay. */
1900
1901 #define target_extra_thread_info(TP) \
1902 (current_top_target ()->extra_thread_info (TP))
1903
1904 /* Return the thread's name, or NULL if the target is unable to determine it.
1905 The returned value must not be freed by the caller. */
1906
1907 extern const char *target_thread_name (struct thread_info *);
1908
1909 /* Given a pointer to a thread library specific thread handle and
1910 its length, return a pointer to the corresponding thread_info struct. */
1911
1912 extern struct thread_info *target_thread_handle_to_thread_info
1913 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1914
1915 /* Given a thread, return the thread handle, a target-specific sequence of
1916 bytes which serves as a thread identifier within the program being
1917 debugged. */
1918 extern gdb::byte_vector target_thread_info_to_thread_handle
1919 (struct thread_info *);
1920
1921 /* Attempts to find the pathname of the executable file
1922 that was run to create a specified process.
1923
1924 The process PID must be stopped when this operation is used.
1925
1926 If the executable file cannot be determined, NULL is returned.
1927
1928 Else, a pointer to a character string containing the pathname
1929 is returned. This string should be copied into a buffer by
1930 the client if the string will not be immediately used, or if
1931 it must persist. */
1932
1933 #define target_pid_to_exec_file(pid) \
1934 (current_top_target ()->pid_to_exec_file) (pid)
1935
1936 /* See the to_thread_architecture description in struct target_ops. */
1937
1938 #define target_thread_architecture(ptid) \
1939 (current_top_target ()->thread_architecture (ptid))
1940
1941 /*
1942 * Iterator function for target memory regions.
1943 * Calls a callback function once for each memory region 'mapped'
1944 * in the child process. Defined as a simple macro rather than
1945 * as a function macro so that it can be tested for nullity.
1946 */
1947
1948 #define target_find_memory_regions(FUNC, DATA) \
1949 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1950
1951 /*
1952 * Compose corefile .note section.
1953 */
1954
1955 #define target_make_corefile_notes(BFD, SIZE_P) \
1956 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1957
1958 /* Bookmark interfaces. */
1959 #define target_get_bookmark(ARGS, FROM_TTY) \
1960 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1961
1962 #define target_goto_bookmark(ARG, FROM_TTY) \
1963 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1964
1965 /* Hardware watchpoint interfaces. */
1966
1967 /* GDB's current model is that there are three "kinds" of watchpoints,
1968 with respect to when they trigger and how you can move past them.
1969
1970 Those are: continuable, steppable, and non-steppable.
1971
1972 Continuable watchpoints are like x86's -- those trigger after the
1973 memory access's side effects are fully committed to memory. I.e.,
1974 they trap with the PC pointing at the next instruction already.
1975 Continuing past such a watchpoint is doable by just normally
1976 continuing, hence the name.
1977
1978 Both steppable and non-steppable watchpoints trap before the memory
1979 access. I.e, the PC points at the instruction that is accessing
1980 the memory. So GDB needs to single-step once past the current
1981 instruction in order to make the access effective and check whether
1982 the instruction's side effects change the watched expression.
1983
1984 Now, in order to step past that instruction, depending on
1985 architecture and target, you can have two situations:
1986
1987 - steppable watchpoints: you can single-step with the watchpoint
1988 still armed, and the watchpoint won't trigger again.
1989
1990 - non-steppable watchpoints: if you try to single-step with the
1991 watchpoint still armed, you'd trap the watchpoint again and the
1992 thread wouldn't make any progress. So GDB needs to temporarily
1993 remove the watchpoint in order to step past it.
1994
1995 If your target/architecture does not signal that it has either
1996 steppable or non-steppable watchpoints via either
1997 target_have_steppable_watchpoint or
1998 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1999 watchpoints. */
2000
2001 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
2002 write). Only the INFERIOR_PTID task is being queried. */
2003
2004 #define target_stopped_by_watchpoint() \
2005 ((current_top_target ()->stopped_by_watchpoint) ())
2006
2007 /* Returns non-zero if the target stopped because it executed a
2008 software breakpoint instruction. */
2009
2010 #define target_stopped_by_sw_breakpoint() \
2011 ((current_top_target ()->stopped_by_sw_breakpoint) ())
2012
2013 #define target_supports_stopped_by_sw_breakpoint() \
2014 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
2015
2016 #define target_stopped_by_hw_breakpoint() \
2017 ((current_top_target ()->stopped_by_hw_breakpoint) ())
2018
2019 #define target_supports_stopped_by_hw_breakpoint() \
2020 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
2021
2022 /* Non-zero if we have steppable watchpoints */
2023
2024 #define target_have_steppable_watchpoint \
2025 (current_top_target ()->have_steppable_watchpoint ())
2026
2027 /* Provide defaults for hardware watchpoint functions. */
2028
2029 /* If the *_hw_beakpoint functions have not been defined
2030 elsewhere use the definitions in the target vector. */
2031
2032 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2033 Returns negative if the target doesn't have enough hardware debug
2034 registers available. Return zero if hardware watchpoint of type
2035 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2036 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2037 CNT is the number of such watchpoints used so far, including this
2038 one. OTHERTYPE is the number of watchpoints of other types than
2039 this one used so far. */
2040
2041 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
2042 (current_top_target ()->can_use_hw_breakpoint) ( \
2043 TYPE, CNT, OTHERTYPE)
2044
2045 /* Returns the number of debug registers needed to watch the given
2046 memory region, or zero if not supported. */
2047
2048 #define target_region_ok_for_hw_watchpoint(addr, len) \
2049 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
2050
2051
2052 #define target_can_do_single_step() \
2053 (current_top_target ()->can_do_single_step) ()
2054
2055 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2056 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2057 COND is the expression for its condition, or NULL if there's none.
2058 Returns 0 for success, 1 if the watchpoint type is not supported,
2059 -1 for failure. */
2060
2061 #define target_insert_watchpoint(addr, len, type, cond) \
2062 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2063
2064 #define target_remove_watchpoint(addr, len, type, cond) \
2065 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2066
2067 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2068 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2069 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2070 masked watchpoints are not supported, -1 for failure. */
2071
2072 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2073 enum target_hw_bp_type);
2074
2075 /* Remove a masked watchpoint at ADDR with the mask MASK.
2076 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2077 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2078 for failure. */
2079
2080 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2081 enum target_hw_bp_type);
2082
2083 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2084 the target machine. Returns 0 for success, and returns non-zero or
2085 throws an error (with a detailed failure reason error code and
2086 message) otherwise. */
2087
2088 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2089 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2090
2091 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2092 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2093
2094 /* Return number of debug registers needed for a ranged breakpoint,
2095 or -1 if ranged breakpoints are not supported. */
2096
2097 extern int target_ranged_break_num_registers (void);
2098
2099 /* Return non-zero if target knows the data address which triggered this
2100 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2101 INFERIOR_PTID task is being queried. */
2102 #define target_stopped_data_address(target, addr_p) \
2103 (target)->stopped_data_address (addr_p)
2104
2105 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2106 LENGTH bytes beginning at START. */
2107 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2108 (target)->watchpoint_addr_within_range (addr, start, length)
2109
2110 /* Return non-zero if the target is capable of using hardware to evaluate
2111 the condition expression. In this case, if the condition is false when
2112 the watched memory location changes, execution may continue without the
2113 debugger being notified.
2114
2115 Due to limitations in the hardware implementation, it may be capable of
2116 avoiding triggering the watchpoint in some cases where the condition
2117 expression is false, but may report some false positives as well.
2118 For this reason, GDB will still evaluate the condition expression when
2119 the watchpoint triggers. */
2120 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2121 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2122
2123 /* Return number of debug registers needed for a masked watchpoint,
2124 -1 if masked watchpoints are not supported or -2 if the given address
2125 and mask combination cannot be used. */
2126
2127 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2128
2129 /* Target can execute in reverse? */
2130 #define target_can_execute_reverse \
2131 current_top_target ()->can_execute_reverse ()
2132
2133 extern const struct target_desc *target_read_description (struct target_ops *);
2134
2135 #define target_get_ada_task_ptid(lwp, tid) \
2136 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2137
2138 /* Utility implementation of searching memory. */
2139 extern int simple_search_memory (struct target_ops* ops,
2140 CORE_ADDR start_addr,
2141 ULONGEST search_space_len,
2142 const gdb_byte *pattern,
2143 ULONGEST pattern_len,
2144 CORE_ADDR *found_addrp);
2145
2146 /* Main entry point for searching memory. */
2147 extern int target_search_memory (CORE_ADDR start_addr,
2148 ULONGEST search_space_len,
2149 const gdb_byte *pattern,
2150 ULONGEST pattern_len,
2151 CORE_ADDR *found_addrp);
2152
2153 /* Target file operations. */
2154
2155 /* Return nonzero if the filesystem seen by the current inferior
2156 is the local filesystem, zero otherwise. */
2157 #define target_filesystem_is_local() \
2158 current_top_target ()->filesystem_is_local ()
2159
2160 /* Open FILENAME on the target, in the filesystem as seen by INF,
2161 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2162 the debugger (GDB or, for remote targets, the remote stub). Return
2163 a target file descriptor, or -1 if an error occurs (and set
2164 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2165 if the file is being accessed over a link that may be slow. */
2166 extern int target_fileio_open (struct inferior *inf,
2167 const char *filename, int flags,
2168 int mode, bool warn_if_slow,
2169 int *target_errno);
2170
2171 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2172 Return the number of bytes written, or -1 if an error occurs
2173 (and set *TARGET_ERRNO). */
2174 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2175 ULONGEST offset, int *target_errno);
2176
2177 /* Read up to LEN bytes FD on the target into READ_BUF.
2178 Return the number of bytes read, or -1 if an error occurs
2179 (and set *TARGET_ERRNO). */
2180 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2181 ULONGEST offset, int *target_errno);
2182
2183 /* Get information about the file opened as FD on the target
2184 and put it in SB. Return 0 on success, or -1 if an error
2185 occurs (and set *TARGET_ERRNO). */
2186 extern int target_fileio_fstat (int fd, struct stat *sb,
2187 int *target_errno);
2188
2189 /* Close FD on the target. Return 0, or -1 if an error occurs
2190 (and set *TARGET_ERRNO). */
2191 extern int target_fileio_close (int fd, int *target_errno);
2192
2193 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2194 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2195 for remote targets, the remote stub). Return 0, or -1 if an error
2196 occurs (and set *TARGET_ERRNO). */
2197 extern int target_fileio_unlink (struct inferior *inf,
2198 const char *filename,
2199 int *target_errno);
2200
2201 /* Read value of symbolic link FILENAME on the target, in the
2202 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2203 by the debugger (GDB or, for remote targets, the remote stub).
2204 Return a null-terminated string allocated via xmalloc, or NULL if
2205 an error occurs (and set *TARGET_ERRNO). */
2206 extern gdb::optional<std::string> target_fileio_readlink
2207 (struct inferior *inf, const char *filename, int *target_errno);
2208
2209 /* Read target file FILENAME, in the filesystem as seen by INF. If
2210 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2211 remote targets, the remote stub). The return value will be -1 if
2212 the transfer fails or is not supported; 0 if the object is empty;
2213 or the length of the object otherwise. If a positive value is
2214 returned, a sufficiently large buffer will be allocated using
2215 xmalloc and returned in *BUF_P containing the contents of the
2216 object.
2217
2218 This method should be used for objects sufficiently small to store
2219 in a single xmalloc'd buffer, when no fixed bound on the object's
2220 size is known in advance. */
2221 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2222 const char *filename,
2223 gdb_byte **buf_p);
2224
2225 /* Read target file FILENAME, in the filesystem as seen by INF. If
2226 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2227 remote targets, the remote stub). The result is NUL-terminated and
2228 returned as a string, allocated using xmalloc. If an error occurs
2229 or the transfer is unsupported, NULL is returned. Empty objects
2230 are returned as allocated but empty strings. A warning is issued
2231 if the result contains any embedded NUL bytes. */
2232 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2233 (struct inferior *inf, const char *filename);
2234
2235
2236 /* Tracepoint-related operations. */
2237
2238 #define target_trace_init() \
2239 (current_top_target ()->trace_init) ()
2240
2241 #define target_download_tracepoint(t) \
2242 (current_top_target ()->download_tracepoint) (t)
2243
2244 #define target_can_download_tracepoint() \
2245 (current_top_target ()->can_download_tracepoint) ()
2246
2247 #define target_download_trace_state_variable(tsv) \
2248 (current_top_target ()->download_trace_state_variable) (tsv)
2249
2250 #define target_enable_tracepoint(loc) \
2251 (current_top_target ()->enable_tracepoint) (loc)
2252
2253 #define target_disable_tracepoint(loc) \
2254 (current_top_target ()->disable_tracepoint) (loc)
2255
2256 #define target_trace_start() \
2257 (current_top_target ()->trace_start) ()
2258
2259 #define target_trace_set_readonly_regions() \
2260 (current_top_target ()->trace_set_readonly_regions) ()
2261
2262 #define target_get_trace_status(ts) \
2263 (current_top_target ()->get_trace_status) (ts)
2264
2265 #define target_get_tracepoint_status(tp,utp) \
2266 (current_top_target ()->get_tracepoint_status) (tp, utp)
2267
2268 #define target_trace_stop() \
2269 (current_top_target ()->trace_stop) ()
2270
2271 #define target_trace_find(type,num,addr1,addr2,tpp) \
2272 (current_top_target ()->trace_find) (\
2273 (type), (num), (addr1), (addr2), (tpp))
2274
2275 #define target_get_trace_state_variable_value(tsv,val) \
2276 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2277
2278 #define target_save_trace_data(filename) \
2279 (current_top_target ()->save_trace_data) (filename)
2280
2281 #define target_upload_tracepoints(utpp) \
2282 (current_top_target ()->upload_tracepoints) (utpp)
2283
2284 #define target_upload_trace_state_variables(utsvp) \
2285 (current_top_target ()->upload_trace_state_variables) (utsvp)
2286
2287 #define target_get_raw_trace_data(buf,offset,len) \
2288 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2289
2290 #define target_get_min_fast_tracepoint_insn_len() \
2291 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2292
2293 #define target_set_disconnected_tracing(val) \
2294 (current_top_target ()->set_disconnected_tracing) (val)
2295
2296 #define target_set_circular_trace_buffer(val) \
2297 (current_top_target ()->set_circular_trace_buffer) (val)
2298
2299 #define target_set_trace_buffer_size(val) \
2300 (current_top_target ()->set_trace_buffer_size) (val)
2301
2302 #define target_set_trace_notes(user,notes,stopnotes) \
2303 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2304
2305 #define target_get_tib_address(ptid, addr) \
2306 (current_top_target ()->get_tib_address) ((ptid), (addr))
2307
2308 #define target_set_permissions() \
2309 (current_top_target ()->set_permissions) ()
2310
2311 #define target_static_tracepoint_marker_at(addr, marker) \
2312 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2313
2314 #define target_static_tracepoint_markers_by_strid(marker_id) \
2315 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2316
2317 #define target_traceframe_info() \
2318 (current_top_target ()->traceframe_info) ()
2319
2320 #define target_use_agent(use) \
2321 (current_top_target ()->use_agent) (use)
2322
2323 #define target_can_use_agent() \
2324 (current_top_target ()->can_use_agent) ()
2325
2326 #define target_augmented_libraries_svr4_read() \
2327 (current_top_target ()->augmented_libraries_svr4_read) ()
2328
2329 /* Command logging facility. */
2330
2331 #define target_log_command(p) \
2332 (current_top_target ()->log_command) (p)
2333
2334
2335 extern int target_core_of_thread (ptid_t ptid);
2336
2337 /* See to_get_unwinder in struct target_ops. */
2338 extern const struct frame_unwind *target_get_unwinder (void);
2339
2340 /* See to_get_tailcall_unwinder in struct target_ops. */
2341 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2342
2343 /* This implements basic memory verification, reading target memory
2344 and performing the comparison here (as opposed to accelerated
2345 verification making use of the qCRC packet, for example). */
2346
2347 extern int simple_verify_memory (struct target_ops* ops,
2348 const gdb_byte *data,
2349 CORE_ADDR memaddr, ULONGEST size);
2350
2351 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2352 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2353 if there's a mismatch, and -1 if an error is encountered while
2354 reading memory. Throws an error if the functionality is found not
2355 to be supported by the current target. */
2356 int target_verify_memory (const gdb_byte *data,
2357 CORE_ADDR memaddr, ULONGEST size);
2358
2359 /* Routines for maintenance of the target structures...
2360
2361 add_target: Add a target to the list of all possible targets.
2362 This only makes sense for targets that should be activated using
2363 the "target TARGET_NAME ..." command.
2364
2365 push_target: Make this target the top of the stack of currently used
2366 targets, within its particular stratum of the stack. Result
2367 is 0 if now atop the stack, nonzero if not on top (maybe
2368 should warn user).
2369
2370 unpush_target: Remove this from the stack of currently used targets,
2371 no matter where it is on the list. Returns 0 if no
2372 change, 1 if removed from stack. */
2373
2374 /* Type of callback called when the user activates a target with
2375 "target TARGET_NAME". The callback routine takes the rest of the
2376 parameters from the command, and (if successful) pushes a new
2377 target onto the stack. */
2378 typedef void target_open_ftype (const char *args, int from_tty);
2379
2380 /* Add the target described by INFO to the list of possible targets
2381 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2382 as the command's completer if not NULL. */
2383
2384 extern void add_target (const target_info &info,
2385 target_open_ftype *func,
2386 completer_ftype *completer = NULL);
2387
2388 /* Adds a command ALIAS for the target described by INFO and marks it
2389 deprecated. This is useful for maintaining backwards compatibility
2390 when renaming targets. */
2391
2392 extern void add_deprecated_target_alias (const target_info &info,
2393 const char *alias);
2394
2395 extern void push_target (struct target_ops *);
2396
2397 /* An overload that deletes the target on failure. */
2398 extern void push_target (target_ops_up &&);
2399
2400 extern int unpush_target (struct target_ops *);
2401
2402 extern void target_pre_inferior (int);
2403
2404 extern void target_preopen (int);
2405
2406 /* Does whatever cleanup is required to get rid of all pushed targets. */
2407 extern void pop_all_targets (void);
2408
2409 /* Like pop_all_targets, but pops only targets whose stratum is at or
2410 above STRATUM. */
2411 extern void pop_all_targets_at_and_above (enum strata stratum);
2412
2413 /* Like pop_all_targets, but pops only targets whose stratum is
2414 strictly above ABOVE_STRATUM. */
2415 extern void pop_all_targets_above (enum strata above_stratum);
2416
2417 extern bool target_is_pushed (target_ops *t);
2418
2419 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2420 CORE_ADDR offset);
2421
2422 /* Struct target_section maps address ranges to file sections. It is
2423 mostly used with BFD files, but can be used without (e.g. for handling
2424 raw disks, or files not in formats handled by BFD). */
2425
2426 struct target_section
2427 {
2428 CORE_ADDR addr; /* Lowest address in section */
2429 CORE_ADDR endaddr; /* 1+highest address in section */
2430
2431 struct bfd_section *the_bfd_section;
2432
2433 /* The "owner" of the section.
2434 It can be any unique value. It is set by add_target_sections
2435 and used by remove_target_sections.
2436 For example, for executables it is a pointer to exec_bfd and
2437 for shlibs it is the so_list pointer. */
2438 void *owner;
2439 };
2440
2441 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2442
2443 struct target_section_table
2444 {
2445 struct target_section *sections;
2446 struct target_section *sections_end;
2447 };
2448
2449 /* Return the "section" containing the specified address. */
2450 struct target_section *target_section_by_addr (struct target_ops *target,
2451 CORE_ADDR addr);
2452
2453 /* Return the target section table this target (or the targets
2454 beneath) currently manipulate. */
2455
2456 extern struct target_section_table *target_get_section_table
2457 (struct target_ops *target);
2458
2459 /* From mem-break.c */
2460
2461 extern int memory_remove_breakpoint (struct target_ops *,
2462 struct gdbarch *, struct bp_target_info *,
2463 enum remove_bp_reason);
2464
2465 extern int memory_insert_breakpoint (struct target_ops *,
2466 struct gdbarch *, struct bp_target_info *);
2467
2468 /* Convenience template use to add memory breakpoints support to a
2469 target. */
2470
2471 template <typename BaseTarget>
2472 struct memory_breakpoint_target : public BaseTarget
2473 {
2474 int insert_breakpoint (struct gdbarch *gdbarch,
2475 struct bp_target_info *bp_tgt) override
2476 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2477
2478 int remove_breakpoint (struct gdbarch *gdbarch,
2479 struct bp_target_info *bp_tgt,
2480 enum remove_bp_reason reason) override
2481 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2482 };
2483
2484 /* Check whether the memory at the breakpoint's placed address still
2485 contains the expected breakpoint instruction. */
2486
2487 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2488 struct bp_target_info *bp_tgt);
2489
2490 extern int default_memory_remove_breakpoint (struct gdbarch *,
2491 struct bp_target_info *);
2492
2493 extern int default_memory_insert_breakpoint (struct gdbarch *,
2494 struct bp_target_info *);
2495
2496
2497 /* From target.c */
2498
2499 extern void initialize_targets (void);
2500
2501 extern void noprocess (void) ATTRIBUTE_NORETURN;
2502
2503 extern void target_require_runnable (void);
2504
2505 /* Find the target at STRATUM. If no target is at that stratum,
2506 return NULL. */
2507
2508 struct target_ops *find_target_at (enum strata stratum);
2509
2510 /* Read OS data object of type TYPE from the target, and return it in XML
2511 format. The return value follows the same rules as target_read_stralloc. */
2512
2513 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2514
2515 /* Stuff that should be shared among the various remote targets. */
2516
2517 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2518 information (higher values, more information). */
2519 extern int remote_debug;
2520
2521 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2522 extern int baud_rate;
2523
2524 /* Parity for serial port */
2525 extern int serial_parity;
2526
2527 /* Timeout limit for response from target. */
2528 extern int remote_timeout;
2529
2530 \f
2531
2532 /* Set the show memory breakpoints mode to show, and return a
2533 scoped_restore to restore it back to the current value. */
2534 extern scoped_restore_tmpl<int>
2535 make_scoped_restore_show_memory_breakpoints (int show);
2536
2537 extern bool may_write_registers;
2538 extern bool may_write_memory;
2539 extern bool may_insert_breakpoints;
2540 extern bool may_insert_tracepoints;
2541 extern bool may_insert_fast_tracepoints;
2542 extern bool may_stop;
2543
2544 extern void update_target_permissions (void);
2545
2546 \f
2547 /* Imported from machine dependent code. */
2548
2549 /* See to_enable_btrace in struct target_ops. */
2550 extern struct btrace_target_info *
2551 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2552
2553 /* See to_disable_btrace in struct target_ops. */
2554 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2555
2556 /* See to_teardown_btrace in struct target_ops. */
2557 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2558
2559 /* See to_read_btrace in struct target_ops. */
2560 extern enum btrace_error target_read_btrace (struct btrace_data *,
2561 struct btrace_target_info *,
2562 enum btrace_read_type);
2563
2564 /* See to_btrace_conf in struct target_ops. */
2565 extern const struct btrace_config *
2566 target_btrace_conf (const struct btrace_target_info *);
2567
2568 /* See to_stop_recording in struct target_ops. */
2569 extern void target_stop_recording (void);
2570
2571 /* See to_save_record in struct target_ops. */
2572 extern void target_save_record (const char *filename);
2573
2574 /* Query if the target supports deleting the execution log. */
2575 extern int target_supports_delete_record (void);
2576
2577 /* See to_delete_record in struct target_ops. */
2578 extern void target_delete_record (void);
2579
2580 /* See to_record_method. */
2581 extern enum record_method target_record_method (ptid_t ptid);
2582
2583 /* See to_record_is_replaying in struct target_ops. */
2584 extern int target_record_is_replaying (ptid_t ptid);
2585
2586 /* See to_record_will_replay in struct target_ops. */
2587 extern int target_record_will_replay (ptid_t ptid, int dir);
2588
2589 /* See to_record_stop_replaying in struct target_ops. */
2590 extern void target_record_stop_replaying (void);
2591
2592 /* See to_goto_record_begin in struct target_ops. */
2593 extern void target_goto_record_begin (void);
2594
2595 /* See to_goto_record_end in struct target_ops. */
2596 extern void target_goto_record_end (void);
2597
2598 /* See to_goto_record in struct target_ops. */
2599 extern void target_goto_record (ULONGEST insn);
2600
2601 /* See to_insn_history. */
2602 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2603
2604 /* See to_insn_history_from. */
2605 extern void target_insn_history_from (ULONGEST from, int size,
2606 gdb_disassembly_flags flags);
2607
2608 /* See to_insn_history_range. */
2609 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2610 gdb_disassembly_flags flags);
2611
2612 /* See to_call_history. */
2613 extern void target_call_history (int size, record_print_flags flags);
2614
2615 /* See to_call_history_from. */
2616 extern void target_call_history_from (ULONGEST begin, int size,
2617 record_print_flags flags);
2618
2619 /* See to_call_history_range. */
2620 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2621 record_print_flags flags);
2622
2623 /* See to_prepare_to_generate_core. */
2624 extern void target_prepare_to_generate_core (void);
2625
2626 /* See to_done_generating_core. */
2627 extern void target_done_generating_core (void);
2628
2629 #endif /* !defined (TARGET_H) */