]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
2011-01-05 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
38 struct static_tracepoint_marker;
39
40 struct expression;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "bfd.h"
62 #include "symtab.h"
63 #include "memattr.h"
64 #include "vec.h"
65 #include "gdb_signals.h"
66
67 enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77 enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83 /* Stuff for target_wait. */
84
85 /* Generally, what has the program done? */
86 enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. This way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY
154 };
155
156 struct target_waitstatus
157 {
158 enum target_waitkind kind;
159
160 /* Forked child pid, execd pathname, exit status, signal number or
161 syscall number. */
162 union
163 {
164 int integer;
165 enum target_signal sig;
166 ptid_t related_pid;
167 char *execd_pathname;
168 int syscall_number;
169 }
170 value;
171 };
172
173 /* Options that can be passed to target_wait. */
174
175 /* Return immediately if there's no event already queued. If this
176 options is not requested, target_wait blocks waiting for an
177 event. */
178 #define TARGET_WNOHANG 1
179
180 /* The structure below stores information about a system call.
181 It is basically used in the "catch syscall" command, and in
182 every function that gives information about a system call.
183
184 It's also good to mention that its fields represent everything
185 that we currently know about a syscall in GDB. */
186 struct syscall
187 {
188 /* The syscall number. */
189 int number;
190
191 /* The syscall name. */
192 const char *name;
193 };
194
195 /* Return a pretty printed form of target_waitstatus.
196 Space for the result is malloc'd, caller must free. */
197 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198
199 /* Possible types of events that the inferior handler will have to
200 deal with. */
201 enum inferior_event_type
202 {
203 /* There is a request to quit the inferior, abandon it. */
204 INF_QUIT_REQ,
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* Deal with an error on the inferior. */
209 INF_ERROR,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220 \f
221 /* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224 enum target_object
225 {
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* Possible future objects: TARGET_OBJECT_FILE, ... */
270 };
271
272 /* Enumeration of the kinds of traceframe searches that a target may
273 be able to perform. */
274
275 enum trace_find_type
276 {
277 tfind_number,
278 tfind_pc,
279 tfind_tp,
280 tfind_range,
281 tfind_outside,
282 };
283
284 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
285 DEF_VEC_P(static_tracepoint_marker_p);
286
287 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
288 OBJECT. The OFFSET, for a seekable object, specifies the
289 starting point. The ANNEX can be used to provide additional
290 data-specific information to the target.
291
292 Return the number of bytes actually transfered, or -1 if the
293 transfer is not supported or otherwise fails. Return of a positive
294 value less than LEN indicates that no further transfer is possible.
295 Unlike the raw to_xfer_partial interface, callers of these
296 functions do not need to retry partial transfers. */
297
298 extern LONGEST target_read (struct target_ops *ops,
299 enum target_object object,
300 const char *annex, gdb_byte *buf,
301 ULONGEST offset, LONGEST len);
302
303 struct memory_read_result
304 {
305 /* First address that was read. */
306 ULONGEST begin;
307 /* Past-the-end address. */
308 ULONGEST end;
309 /* The data. */
310 gdb_byte *data;
311 };
312 typedef struct memory_read_result memory_read_result_s;
313 DEF_VEC_O(memory_read_result_s);
314
315 extern void free_memory_read_result_vector (void *);
316
317 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
318 ULONGEST offset,
319 LONGEST len);
320
321 extern LONGEST target_write (struct target_ops *ops,
322 enum target_object object,
323 const char *annex, const gdb_byte *buf,
324 ULONGEST offset, LONGEST len);
325
326 /* Similar to target_write, except that it also calls PROGRESS with
327 the number of bytes written and the opaque BATON after every
328 successful partial write (and before the first write). This is
329 useful for progress reporting and user interaction while writing
330 data. To abort the transfer, the progress callback can throw an
331 exception. */
332
333 LONGEST target_write_with_progress (struct target_ops *ops,
334 enum target_object object,
335 const char *annex, const gdb_byte *buf,
336 ULONGEST offset, LONGEST len,
337 void (*progress) (ULONGEST, void *),
338 void *baton);
339
340 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
341 be read using OPS. The return value will be -1 if the transfer
342 fails or is not supported; 0 if the object is empty; or the length
343 of the object otherwise. If a positive value is returned, a
344 sufficiently large buffer will be allocated using xmalloc and
345 returned in *BUF_P containing the contents of the object.
346
347 This method should be used for objects sufficiently small to store
348 in a single xmalloc'd buffer, when no fixed bound on the object's
349 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
350 through this function. */
351
352 extern LONGEST target_read_alloc (struct target_ops *ops,
353 enum target_object object,
354 const char *annex, gdb_byte **buf_p);
355
356 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
357 returned as a string, allocated using xmalloc. If an error occurs
358 or the transfer is unsupported, NULL is returned. Empty objects
359 are returned as allocated but empty strings. A warning is issued
360 if the result contains any embedded NUL bytes. */
361
362 extern char *target_read_stralloc (struct target_ops *ops,
363 enum target_object object,
364 const char *annex);
365
366 /* Wrappers to target read/write that perform memory transfers. They
367 throw an error if the memory transfer fails.
368
369 NOTE: cagney/2003-10-23: The naming schema is lifted from
370 "frame.h". The parameter order is lifted from get_frame_memory,
371 which in turn lifted it from read_memory. */
372
373 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
374 gdb_byte *buf, LONGEST len);
375 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
376 CORE_ADDR addr, int len,
377 enum bfd_endian byte_order);
378 \f
379 struct thread_info; /* fwd decl for parameter list below: */
380
381 struct target_ops
382 {
383 struct target_ops *beneath; /* To the target under this one. */
384 char *to_shortname; /* Name this target type */
385 char *to_longname; /* Name for printing */
386 char *to_doc; /* Documentation. Does not include trailing
387 newline, and starts with a one-line descrip-
388 tion (probably similar to to_longname). */
389 /* Per-target scratch pad. */
390 void *to_data;
391 /* The open routine takes the rest of the parameters from the
392 command, and (if successful) pushes a new target onto the
393 stack. Targets should supply this routine, if only to provide
394 an error message. */
395 void (*to_open) (char *, int);
396 /* Old targets with a static target vector provide "to_close".
397 New re-entrant targets provide "to_xclose" and that is expected
398 to xfree everything (including the "struct target_ops"). */
399 void (*to_xclose) (struct target_ops *targ, int quitting);
400 void (*to_close) (int);
401 void (*to_attach) (struct target_ops *ops, char *, int);
402 void (*to_post_attach) (int);
403 void (*to_detach) (struct target_ops *ops, char *, int);
404 void (*to_disconnect) (struct target_ops *, char *, int);
405 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
406 ptid_t (*to_wait) (struct target_ops *,
407 ptid_t, struct target_waitstatus *, int);
408 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
409 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
410 void (*to_prepare_to_store) (struct regcache *);
411
412 /* Transfer LEN bytes of memory between GDB address MYADDR and
413 target address MEMADDR. If WRITE, transfer them to the target, else
414 transfer them from the target. TARGET is the target from which we
415 get this function.
416
417 Return value, N, is one of the following:
418
419 0 means that we can't handle this. If errno has been set, it is the
420 error which prevented us from doing it (FIXME: What about bfd_error?).
421
422 positive (call it N) means that we have transferred N bytes
423 starting at MEMADDR. We might be able to handle more bytes
424 beyond this length, but no promises.
425
426 negative (call its absolute value N) means that we cannot
427 transfer right at MEMADDR, but we could transfer at least
428 something at MEMADDR + N.
429
430 NOTE: cagney/2004-10-01: This has been entirely superseeded by
431 to_xfer_partial and inferior inheritance. */
432
433 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
434 int len, int write,
435 struct mem_attrib *attrib,
436 struct target_ops *target);
437
438 void (*to_files_info) (struct target_ops *);
439 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
440 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
441 int (*to_can_use_hw_breakpoint) (int, int, int);
442 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
443 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
444
445 /* Documentation of what the two routines below are expected to do is
446 provided with the corresponding target_* macros. */
447 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
448 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
449
450 int (*to_stopped_by_watchpoint) (void);
451 int to_have_steppable_watchpoint;
452 int to_have_continuable_watchpoint;
453 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
454 int (*to_watchpoint_addr_within_range) (struct target_ops *,
455 CORE_ADDR, CORE_ADDR, int);
456 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
457 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
458 struct expression *);
459 void (*to_terminal_init) (void);
460 void (*to_terminal_inferior) (void);
461 void (*to_terminal_ours_for_output) (void);
462 void (*to_terminal_ours) (void);
463 void (*to_terminal_save_ours) (void);
464 void (*to_terminal_info) (char *, int);
465 void (*to_kill) (struct target_ops *);
466 void (*to_load) (char *, int);
467 int (*to_lookup_symbol) (char *, CORE_ADDR *);
468 void (*to_create_inferior) (struct target_ops *,
469 char *, char *, char **, int);
470 void (*to_post_startup_inferior) (ptid_t);
471 void (*to_insert_fork_catchpoint) (int);
472 int (*to_remove_fork_catchpoint) (int);
473 void (*to_insert_vfork_catchpoint) (int);
474 int (*to_remove_vfork_catchpoint) (int);
475 int (*to_follow_fork) (struct target_ops *, int);
476 void (*to_insert_exec_catchpoint) (int);
477 int (*to_remove_exec_catchpoint) (int);
478 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
479 int (*to_has_exited) (int, int, int *);
480 void (*to_mourn_inferior) (struct target_ops *);
481 int (*to_can_run) (void);
482 void (*to_notice_signals) (ptid_t ptid);
483 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
484 void (*to_find_new_threads) (struct target_ops *);
485 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
486 char *(*to_extra_thread_info) (struct thread_info *);
487 void (*to_stop) (ptid_t);
488 void (*to_rcmd) (char *command, struct ui_file *output);
489 char *(*to_pid_to_exec_file) (int pid);
490 void (*to_log_command) (const char *);
491 struct target_section_table *(*to_get_section_table) (struct target_ops *);
492 enum strata to_stratum;
493 int (*to_has_all_memory) (struct target_ops *);
494 int (*to_has_memory) (struct target_ops *);
495 int (*to_has_stack) (struct target_ops *);
496 int (*to_has_registers) (struct target_ops *);
497 int (*to_has_execution) (struct target_ops *);
498 int to_has_thread_control; /* control thread execution */
499 int to_attach_no_wait;
500 /* ASYNC target controls */
501 int (*to_can_async_p) (void);
502 int (*to_is_async_p) (void);
503 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
504 int (*to_async_mask) (int);
505 int (*to_supports_non_stop) (void);
506 /* find_memory_regions support method for gcore */
507 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
508 /* make_corefile_notes support method for gcore */
509 char * (*to_make_corefile_notes) (bfd *, int *);
510 /* get_bookmark support method for bookmarks */
511 gdb_byte * (*to_get_bookmark) (char *, int);
512 /* goto_bookmark support method for bookmarks */
513 void (*to_goto_bookmark) (gdb_byte *, int);
514 /* Return the thread-local address at OFFSET in the
515 thread-local storage for the thread PTID and the shared library
516 or executable file given by OBJFILE. If that block of
517 thread-local storage hasn't been allocated yet, this function
518 may return an error. */
519 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
520 ptid_t ptid,
521 CORE_ADDR load_module_addr,
522 CORE_ADDR offset);
523
524 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
525 OBJECT. The OFFSET, for a seekable object, specifies the
526 starting point. The ANNEX can be used to provide additional
527 data-specific information to the target.
528
529 Return the number of bytes actually transfered, zero when no
530 further transfer is possible, and -1 when the transfer is not
531 supported. Return of a positive value smaller than LEN does
532 not indicate the end of the object, only the end of the
533 transfer; higher level code should continue transferring if
534 desired. This is handled in target.c.
535
536 The interface does not support a "retry" mechanism. Instead it
537 assumes that at least one byte will be transfered on each
538 successful call.
539
540 NOTE: cagney/2003-10-17: The current interface can lead to
541 fragmented transfers. Lower target levels should not implement
542 hacks, such as enlarging the transfer, in an attempt to
543 compensate for this. Instead, the target stack should be
544 extended so that it implements supply/collect methods and a
545 look-aside object cache. With that available, the lowest
546 target can safely and freely "push" data up the stack.
547
548 See target_read and target_write for more information. One,
549 and only one, of readbuf or writebuf must be non-NULL. */
550
551 LONGEST (*to_xfer_partial) (struct target_ops *ops,
552 enum target_object object, const char *annex,
553 gdb_byte *readbuf, const gdb_byte *writebuf,
554 ULONGEST offset, LONGEST len);
555
556 /* Returns the memory map for the target. A return value of NULL
557 means that no memory map is available. If a memory address
558 does not fall within any returned regions, it's assumed to be
559 RAM. The returned memory regions should not overlap.
560
561 The order of regions does not matter; target_memory_map will
562 sort regions by starting address. For that reason, this
563 function should not be called directly except via
564 target_memory_map.
565
566 This method should not cache data; if the memory map could
567 change unexpectedly, it should be invalidated, and higher
568 layers will re-fetch it. */
569 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
570
571 /* Erases the region of flash memory starting at ADDRESS, of
572 length LENGTH.
573
574 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
575 on flash block boundaries, as reported by 'to_memory_map'. */
576 void (*to_flash_erase) (struct target_ops *,
577 ULONGEST address, LONGEST length);
578
579 /* Finishes a flash memory write sequence. After this operation
580 all flash memory should be available for writing and the result
581 of reading from areas written by 'to_flash_write' should be
582 equal to what was written. */
583 void (*to_flash_done) (struct target_ops *);
584
585 /* Describe the architecture-specific features of this target.
586 Returns the description found, or NULL if no description
587 was available. */
588 const struct target_desc *(*to_read_description) (struct target_ops *ops);
589
590 /* Build the PTID of the thread on which a given task is running,
591 based on LWP and THREAD. These values are extracted from the
592 task Private_Data section of the Ada Task Control Block, and
593 their interpretation depends on the target. */
594 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
595
596 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
597 Return 0 if *READPTR is already at the end of the buffer.
598 Return -1 if there is insufficient buffer for a whole entry.
599 Return 1 if an entry was read into *TYPEP and *VALP. */
600 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
601 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
602
603 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
604 sequence of bytes in PATTERN with length PATTERN_LEN.
605
606 The result is 1 if found, 0 if not found, and -1 if there was an error
607 requiring halting of the search (e.g. memory read error).
608 If the pattern is found the address is recorded in FOUND_ADDRP. */
609 int (*to_search_memory) (struct target_ops *ops,
610 CORE_ADDR start_addr, ULONGEST search_space_len,
611 const gdb_byte *pattern, ULONGEST pattern_len,
612 CORE_ADDR *found_addrp);
613
614 /* Can target execute in reverse? */
615 int (*to_can_execute_reverse) (void);
616
617 /* Does this target support debugging multiple processes
618 simultaneously? */
619 int (*to_supports_multi_process) (void);
620
621 /* Determine current architecture of thread PTID.
622
623 The target is supposed to determine the architecture of the code where
624 the target is currently stopped at (on Cell, if a target is in spu_run,
625 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
626 This is architecture used to perform decr_pc_after_break adjustment,
627 and also determines the frame architecture of the innermost frame.
628 ptrace operations need to operate according to target_gdbarch.
629
630 The default implementation always returns target_gdbarch. */
631 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
632
633 /* Determine current address space of thread PTID.
634
635 The default implementation always returns the inferior's
636 address space. */
637 struct address_space *(*to_thread_address_space) (struct target_ops *,
638 ptid_t);
639
640 /* Tracepoint-related operations. */
641
642 /* Prepare the target for a tracing run. */
643 void (*to_trace_init) (void);
644
645 /* Send full details of a tracepoint to the target. */
646 void (*to_download_tracepoint) (struct breakpoint *t);
647
648 /* Send full details of a trace state variable to the target. */
649 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
650
651 /* Inform the target info of memory regions that are readonly
652 (such as text sections), and so it should return data from
653 those rather than look in the trace buffer. */
654 void (*to_trace_set_readonly_regions) (void);
655
656 /* Start a trace run. */
657 void (*to_trace_start) (void);
658
659 /* Get the current status of a tracing run. */
660 int (*to_get_trace_status) (struct trace_status *ts);
661
662 /* Stop a trace run. */
663 void (*to_trace_stop) (void);
664
665 /* Ask the target to find a trace frame of the given type TYPE,
666 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
667 number of the trace frame, and also the tracepoint number at
668 TPP. If no trace frame matches, return -1. May throw if the
669 operation fails. */
670 int (*to_trace_find) (enum trace_find_type type, int num,
671 ULONGEST addr1, ULONGEST addr2, int *tpp);
672
673 /* Get the value of the trace state variable number TSV, returning
674 1 if the value is known and writing the value itself into the
675 location pointed to by VAL, else returning 0. */
676 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
677
678 int (*to_save_trace_data) (const char *filename);
679
680 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
681
682 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
683
684 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
685 ULONGEST offset, LONGEST len);
686
687 /* Set the target's tracing behavior in response to unexpected
688 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
689 void (*to_set_disconnected_tracing) (int val);
690 void (*to_set_circular_trace_buffer) (int val);
691
692 /* Return the processor core that thread PTID was last seen on.
693 This information is updated only when:
694 - update_thread_list is called
695 - thread stops
696 If the core cannot be determined -- either for the specified
697 thread, or right now, or in this debug session, or for this
698 target -- return -1. */
699 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
700
701 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
702 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
703 a match, 0 if there's a mismatch, and -1 if an error is
704 encountered while reading memory. */
705 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
706 CORE_ADDR memaddr, ULONGEST size);
707
708 /* Return the address of the start of the Thread Information Block
709 a Windows OS specific feature. */
710 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
711
712 /* Send the new settings of write permission variables. */
713 void (*to_set_permissions) (void);
714
715 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
716 with its details. Return 1 on success, 0 on failure. */
717 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
718 struct static_tracepoint_marker *marker);
719
720 /* Return a vector of all tracepoints markers string id ID, or all
721 markers if ID is NULL. */
722 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
723 (const char *id);
724
725 int to_magic;
726 /* Need sub-structure for target machine related rather than comm related?
727 */
728 };
729
730 /* Magic number for checking ops size. If a struct doesn't end with this
731 number, somebody changed the declaration but didn't change all the
732 places that initialize one. */
733
734 #define OPS_MAGIC 3840
735
736 /* The ops structure for our "current" target process. This should
737 never be NULL. If there is no target, it points to the dummy_target. */
738
739 extern struct target_ops current_target;
740
741 /* Define easy words for doing these operations on our current target. */
742
743 #define target_shortname (current_target.to_shortname)
744 #define target_longname (current_target.to_longname)
745
746 /* Does whatever cleanup is required for a target that we are no
747 longer going to be calling. QUITTING indicates that GDB is exiting
748 and should not get hung on an error (otherwise it is important to
749 perform clean termination, even if it takes a while). This routine
750 is automatically always called when popping the target off the
751 target stack (to_beneath is undefined). Closing file descriptors
752 and freeing all memory allocated memory are typical things it
753 should do. */
754
755 void target_close (struct target_ops *targ, int quitting);
756
757 /* Attaches to a process on the target side. Arguments are as passed
758 to the `attach' command by the user. This routine can be called
759 when the target is not on the target-stack, if the target_can_run
760 routine returns 1; in that case, it must push itself onto the stack.
761 Upon exit, the target should be ready for normal operations, and
762 should be ready to deliver the status of the process immediately
763 (without waiting) to an upcoming target_wait call. */
764
765 void target_attach (char *, int);
766
767 /* Some targets don't generate traps when attaching to the inferior,
768 or their target_attach implementation takes care of the waiting.
769 These targets must set to_attach_no_wait. */
770
771 #define target_attach_no_wait \
772 (current_target.to_attach_no_wait)
773
774 /* The target_attach operation places a process under debugger control,
775 and stops the process.
776
777 This operation provides a target-specific hook that allows the
778 necessary bookkeeping to be performed after an attach completes. */
779 #define target_post_attach(pid) \
780 (*current_target.to_post_attach) (pid)
781
782 /* Takes a program previously attached to and detaches it.
783 The program may resume execution (some targets do, some don't) and will
784 no longer stop on signals, etc. We better not have left any breakpoints
785 in the program or it'll die when it hits one. ARGS is arguments
786 typed by the user (e.g. a signal to send the process). FROM_TTY
787 says whether to be verbose or not. */
788
789 extern void target_detach (char *, int);
790
791 /* Disconnect from the current target without resuming it (leaving it
792 waiting for a debugger). */
793
794 extern void target_disconnect (char *, int);
795
796 /* Resume execution of the target process PTID. STEP says whether to
797 single-step or to run free; SIGGNAL is the signal to be given to
798 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
799 pass TARGET_SIGNAL_DEFAULT. */
800
801 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
802
803 /* Wait for process pid to do something. PTID = -1 to wait for any
804 pid to do something. Return pid of child, or -1 in case of error;
805 store status through argument pointer STATUS. Note that it is
806 _NOT_ OK to throw_exception() out of target_wait() without popping
807 the debugging target from the stack; GDB isn't prepared to get back
808 to the prompt with a debugging target but without the frame cache,
809 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
810 options. */
811
812 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
813 int options);
814
815 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
816
817 extern void target_fetch_registers (struct regcache *regcache, int regno);
818
819 /* Store at least register REGNO, or all regs if REGNO == -1.
820 It can store as many registers as it wants to, so target_prepare_to_store
821 must have been previously called. Calls error() if there are problems. */
822
823 extern void target_store_registers (struct regcache *regcache, int regs);
824
825 /* Get ready to modify the registers array. On machines which store
826 individual registers, this doesn't need to do anything. On machines
827 which store all the registers in one fell swoop, this makes sure
828 that REGISTERS contains all the registers from the program being
829 debugged. */
830
831 #define target_prepare_to_store(regcache) \
832 (*current_target.to_prepare_to_store) (regcache)
833
834 /* Determine current address space of thread PTID. */
835
836 struct address_space *target_thread_address_space (ptid_t);
837
838 /* Returns true if this target can debug multiple processes
839 simultaneously. */
840
841 #define target_supports_multi_process() \
842 (*current_target.to_supports_multi_process) ()
843
844 /* Invalidate all target dcaches. */
845 extern void target_dcache_invalidate (void);
846
847 extern int target_read_string (CORE_ADDR, char **, int, int *);
848
849 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
850
851 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
852
853 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
854 int len);
855
856 /* Fetches the target's memory map. If one is found it is sorted
857 and returned, after some consistency checking. Otherwise, NULL
858 is returned. */
859 VEC(mem_region_s) *target_memory_map (void);
860
861 /* Erase the specified flash region. */
862 void target_flash_erase (ULONGEST address, LONGEST length);
863
864 /* Finish a sequence of flash operations. */
865 void target_flash_done (void);
866
867 /* Describes a request for a memory write operation. */
868 struct memory_write_request
869 {
870 /* Begining address that must be written. */
871 ULONGEST begin;
872 /* Past-the-end address. */
873 ULONGEST end;
874 /* The data to write. */
875 gdb_byte *data;
876 /* A callback baton for progress reporting for this request. */
877 void *baton;
878 };
879 typedef struct memory_write_request memory_write_request_s;
880 DEF_VEC_O(memory_write_request_s);
881
882 /* Enumeration specifying different flash preservation behaviour. */
883 enum flash_preserve_mode
884 {
885 flash_preserve,
886 flash_discard
887 };
888
889 /* Write several memory blocks at once. This version can be more
890 efficient than making several calls to target_write_memory, in
891 particular because it can optimize accesses to flash memory.
892
893 Moreover, this is currently the only memory access function in gdb
894 that supports writing to flash memory, and it should be used for
895 all cases where access to flash memory is desirable.
896
897 REQUESTS is the vector (see vec.h) of memory_write_request.
898 PRESERVE_FLASH_P indicates what to do with blocks which must be
899 erased, but not completely rewritten.
900 PROGRESS_CB is a function that will be periodically called to provide
901 feedback to user. It will be called with the baton corresponding
902 to the request currently being written. It may also be called
903 with a NULL baton, when preserved flash sectors are being rewritten.
904
905 The function returns 0 on success, and error otherwise. */
906 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
907 enum flash_preserve_mode preserve_flash_p,
908 void (*progress_cb) (ULONGEST, void *));
909
910 /* From infrun.c. */
911
912 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
913
914 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
915
916 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
917
918 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
919
920 /* Print a line about the current target. */
921
922 #define target_files_info() \
923 (*current_target.to_files_info) (&current_target)
924
925 /* Insert a breakpoint at address BP_TGT->placed_address in the target
926 machine. Result is 0 for success, or an errno value. */
927
928 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
929 struct bp_target_info *bp_tgt);
930
931 /* Remove a breakpoint at address BP_TGT->placed_address in the target
932 machine. Result is 0 for success, or an errno value. */
933
934 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
935 struct bp_target_info *bp_tgt);
936
937 /* Initialize the terminal settings we record for the inferior,
938 before we actually run the inferior. */
939
940 #define target_terminal_init() \
941 (*current_target.to_terminal_init) ()
942
943 /* Put the inferior's terminal settings into effect.
944 This is preparation for starting or resuming the inferior. */
945
946 extern void target_terminal_inferior (void);
947
948 /* Put some of our terminal settings into effect,
949 enough to get proper results from our output,
950 but do not change into or out of RAW mode
951 so that no input is discarded.
952
953 After doing this, either terminal_ours or terminal_inferior
954 should be called to get back to a normal state of affairs. */
955
956 #define target_terminal_ours_for_output() \
957 (*current_target.to_terminal_ours_for_output) ()
958
959 /* Put our terminal settings into effect.
960 First record the inferior's terminal settings
961 so they can be restored properly later. */
962
963 #define target_terminal_ours() \
964 (*current_target.to_terminal_ours) ()
965
966 /* Save our terminal settings.
967 This is called from TUI after entering or leaving the curses
968 mode. Since curses modifies our terminal this call is here
969 to take this change into account. */
970
971 #define target_terminal_save_ours() \
972 (*current_target.to_terminal_save_ours) ()
973
974 /* Print useful information about our terminal status, if such a thing
975 exists. */
976
977 #define target_terminal_info(arg, from_tty) \
978 (*current_target.to_terminal_info) (arg, from_tty)
979
980 /* Kill the inferior process. Make it go away. */
981
982 extern void target_kill (void);
983
984 /* Load an executable file into the target process. This is expected
985 to not only bring new code into the target process, but also to
986 update GDB's symbol tables to match.
987
988 ARG contains command-line arguments, to be broken down with
989 buildargv (). The first non-switch argument is the filename to
990 load, FILE; the second is a number (as parsed by strtoul (..., ...,
991 0)), which is an offset to apply to the load addresses of FILE's
992 sections. The target may define switches, or other non-switch
993 arguments, as it pleases. */
994
995 extern void target_load (char *arg, int from_tty);
996
997 /* Look up a symbol in the target's symbol table. NAME is the symbol
998 name. ADDRP is a CORE_ADDR * pointing to where the value of the
999 symbol should be returned. The result is 0 if successful, nonzero
1000 if the symbol does not exist in the target environment. This
1001 function should not call error() if communication with the target
1002 is interrupted, since it is called from symbol reading, but should
1003 return nonzero, possibly doing a complain(). */
1004
1005 #define target_lookup_symbol(name, addrp) \
1006 (*current_target.to_lookup_symbol) (name, addrp)
1007
1008 /* Start an inferior process and set inferior_ptid to its pid.
1009 EXEC_FILE is the file to run.
1010 ALLARGS is a string containing the arguments to the program.
1011 ENV is the environment vector to pass. Errors reported with error().
1012 On VxWorks and various standalone systems, we ignore exec_file. */
1013
1014 void target_create_inferior (char *exec_file, char *args,
1015 char **env, int from_tty);
1016
1017 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1018 notification of inferior events such as fork and vork immediately
1019 after the inferior is created. (This because of how gdb gets an
1020 inferior created via invoking a shell to do it. In such a scenario,
1021 if the shell init file has commands in it, the shell will fork and
1022 exec for each of those commands, and we will see each such fork
1023 event. Very bad.)
1024
1025 Such targets will supply an appropriate definition for this function. */
1026
1027 #define target_post_startup_inferior(ptid) \
1028 (*current_target.to_post_startup_inferior) (ptid)
1029
1030 /* On some targets, we can catch an inferior fork or vfork event when
1031 it occurs. These functions insert/remove an already-created
1032 catchpoint for such events. */
1033
1034 #define target_insert_fork_catchpoint(pid) \
1035 (*current_target.to_insert_fork_catchpoint) (pid)
1036
1037 #define target_remove_fork_catchpoint(pid) \
1038 (*current_target.to_remove_fork_catchpoint) (pid)
1039
1040 #define target_insert_vfork_catchpoint(pid) \
1041 (*current_target.to_insert_vfork_catchpoint) (pid)
1042
1043 #define target_remove_vfork_catchpoint(pid) \
1044 (*current_target.to_remove_vfork_catchpoint) (pid)
1045
1046 /* If the inferior forks or vforks, this function will be called at
1047 the next resume in order to perform any bookkeeping and fiddling
1048 necessary to continue debugging either the parent or child, as
1049 requested, and releasing the other. Information about the fork
1050 or vfork event is available via get_last_target_status ().
1051 This function returns 1 if the inferior should not be resumed
1052 (i.e. there is another event pending). */
1053
1054 int target_follow_fork (int follow_child);
1055
1056 /* On some targets, we can catch an inferior exec event when it
1057 occurs. These functions insert/remove an already-created
1058 catchpoint for such events. */
1059
1060 #define target_insert_exec_catchpoint(pid) \
1061 (*current_target.to_insert_exec_catchpoint) (pid)
1062
1063 #define target_remove_exec_catchpoint(pid) \
1064 (*current_target.to_remove_exec_catchpoint) (pid)
1065
1066 /* Syscall catch.
1067
1068 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1069 If NEEDED is zero, it means the target can disable the mechanism to
1070 catch system calls because there are no more catchpoints of this type.
1071
1072 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1073 being requested. In this case, both TABLE_SIZE and TABLE should
1074 be ignored.
1075
1076 TABLE_SIZE is the number of elements in TABLE. It only matters if
1077 ANY_COUNT is zero.
1078
1079 TABLE is an array of ints, indexed by syscall number. An element in
1080 this array is nonzero if that syscall should be caught. This argument
1081 only matters if ANY_COUNT is zero. */
1082
1083 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1084 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1085 table_size, table)
1086
1087 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1088 exit code of PID, if any. */
1089
1090 #define target_has_exited(pid,wait_status,exit_status) \
1091 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1092
1093 /* The debugger has completed a blocking wait() call. There is now
1094 some process event that must be processed. This function should
1095 be defined by those targets that require the debugger to perform
1096 cleanup or internal state changes in response to the process event. */
1097
1098 /* The inferior process has died. Do what is right. */
1099
1100 void target_mourn_inferior (void);
1101
1102 /* Does target have enough data to do a run or attach command? */
1103
1104 #define target_can_run(t) \
1105 ((t)->to_can_run) ()
1106
1107 /* post process changes to signal handling in the inferior. */
1108
1109 #define target_notice_signals(ptid) \
1110 (*current_target.to_notice_signals) (ptid)
1111
1112 /* Check to see if a thread is still alive. */
1113
1114 extern int target_thread_alive (ptid_t ptid);
1115
1116 /* Query for new threads and add them to the thread list. */
1117
1118 extern void target_find_new_threads (void);
1119
1120 /* Make target stop in a continuable fashion. (For instance, under
1121 Unix, this should act like SIGSTOP). This function is normally
1122 used by GUIs to implement a stop button. */
1123
1124 extern void target_stop (ptid_t ptid);
1125
1126 /* Send the specified COMMAND to the target's monitor
1127 (shell,interpreter) for execution. The result of the query is
1128 placed in OUTBUF. */
1129
1130 #define target_rcmd(command, outbuf) \
1131 (*current_target.to_rcmd) (command, outbuf)
1132
1133
1134 /* Does the target include all of memory, or only part of it? This
1135 determines whether we look up the target chain for other parts of
1136 memory if this target can't satisfy a request. */
1137
1138 extern int target_has_all_memory_1 (void);
1139 #define target_has_all_memory target_has_all_memory_1 ()
1140
1141 /* Does the target include memory? (Dummy targets don't.) */
1142
1143 extern int target_has_memory_1 (void);
1144 #define target_has_memory target_has_memory_1 ()
1145
1146 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1147 we start a process.) */
1148
1149 extern int target_has_stack_1 (void);
1150 #define target_has_stack target_has_stack_1 ()
1151
1152 /* Does the target have registers? (Exec files don't.) */
1153
1154 extern int target_has_registers_1 (void);
1155 #define target_has_registers target_has_registers_1 ()
1156
1157 /* Does the target have execution? Can we make it jump (through
1158 hoops), or pop its stack a few times? This means that the current
1159 target is currently executing; for some targets, that's the same as
1160 whether or not the target is capable of execution, but there are
1161 also targets which can be current while not executing. In that
1162 case this will become true after target_create_inferior or
1163 target_attach. */
1164
1165 extern int target_has_execution_1 (void);
1166 #define target_has_execution target_has_execution_1 ()
1167
1168 /* Default implementations for process_stratum targets. Return true
1169 if there's a selected inferior, false otherwise. */
1170
1171 extern int default_child_has_all_memory (struct target_ops *ops);
1172 extern int default_child_has_memory (struct target_ops *ops);
1173 extern int default_child_has_stack (struct target_ops *ops);
1174 extern int default_child_has_registers (struct target_ops *ops);
1175 extern int default_child_has_execution (struct target_ops *ops);
1176
1177 /* Can the target support the debugger control of thread execution?
1178 Can it lock the thread scheduler? */
1179
1180 #define target_can_lock_scheduler \
1181 (current_target.to_has_thread_control & tc_schedlock)
1182
1183 /* Should the target enable async mode if it is supported? Temporary
1184 cludge until async mode is a strict superset of sync mode. */
1185 extern int target_async_permitted;
1186
1187 /* Can the target support asynchronous execution? */
1188 #define target_can_async_p() (current_target.to_can_async_p ())
1189
1190 /* Is the target in asynchronous execution mode? */
1191 #define target_is_async_p() (current_target.to_is_async_p ())
1192
1193 int target_supports_non_stop (void);
1194
1195 /* Put the target in async mode with the specified callback function. */
1196 #define target_async(CALLBACK,CONTEXT) \
1197 (current_target.to_async ((CALLBACK), (CONTEXT)))
1198
1199 /* This is to be used ONLY within call_function_by_hand(). It provides
1200 a workaround, to have inferior function calls done in sychronous
1201 mode, even though the target is asynchronous. After
1202 target_async_mask(0) is called, calls to target_can_async_p() will
1203 return FALSE , so that target_resume() will not try to start the
1204 target asynchronously. After the inferior stops, we IMMEDIATELY
1205 restore the previous nature of the target, by calling
1206 target_async_mask(1). After that, target_can_async_p() will return
1207 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1208
1209 FIXME ezannoni 1999-12-13: we won't need this once we move
1210 the turning async on and off to the single execution commands,
1211 from where it is done currently, in remote_resume(). */
1212
1213 #define target_async_mask(MASK) \
1214 (current_target.to_async_mask (MASK))
1215
1216 /* Converts a process id to a string. Usually, the string just contains
1217 `process xyz', but on some systems it may contain
1218 `process xyz thread abc'. */
1219
1220 extern char *target_pid_to_str (ptid_t ptid);
1221
1222 extern char *normal_pid_to_str (ptid_t ptid);
1223
1224 /* Return a short string describing extra information about PID,
1225 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1226 is okay. */
1227
1228 #define target_extra_thread_info(TP) \
1229 (current_target.to_extra_thread_info (TP))
1230
1231 /* Attempts to find the pathname of the executable file
1232 that was run to create a specified process.
1233
1234 The process PID must be stopped when this operation is used.
1235
1236 If the executable file cannot be determined, NULL is returned.
1237
1238 Else, a pointer to a character string containing the pathname
1239 is returned. This string should be copied into a buffer by
1240 the client if the string will not be immediately used, or if
1241 it must persist. */
1242
1243 #define target_pid_to_exec_file(pid) \
1244 (current_target.to_pid_to_exec_file) (pid)
1245
1246 /* See the to_thread_architecture description in struct target_ops. */
1247
1248 #define target_thread_architecture(ptid) \
1249 (current_target.to_thread_architecture (&current_target, ptid))
1250
1251 /*
1252 * Iterator function for target memory regions.
1253 * Calls a callback function once for each memory region 'mapped'
1254 * in the child process. Defined as a simple macro rather than
1255 * as a function macro so that it can be tested for nullity.
1256 */
1257
1258 #define target_find_memory_regions(FUNC, DATA) \
1259 (current_target.to_find_memory_regions) (FUNC, DATA)
1260
1261 /*
1262 * Compose corefile .note section.
1263 */
1264
1265 #define target_make_corefile_notes(BFD, SIZE_P) \
1266 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1267
1268 /* Bookmark interfaces. */
1269 #define target_get_bookmark(ARGS, FROM_TTY) \
1270 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1271
1272 #define target_goto_bookmark(ARG, FROM_TTY) \
1273 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1274
1275 /* Hardware watchpoint interfaces. */
1276
1277 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1278 write). Only the INFERIOR_PTID task is being queried. */
1279
1280 #define target_stopped_by_watchpoint \
1281 (*current_target.to_stopped_by_watchpoint)
1282
1283 /* Non-zero if we have steppable watchpoints */
1284
1285 #define target_have_steppable_watchpoint \
1286 (current_target.to_have_steppable_watchpoint)
1287
1288 /* Non-zero if we have continuable watchpoints */
1289
1290 #define target_have_continuable_watchpoint \
1291 (current_target.to_have_continuable_watchpoint)
1292
1293 /* Provide defaults for hardware watchpoint functions. */
1294
1295 /* If the *_hw_beakpoint functions have not been defined
1296 elsewhere use the definitions in the target vector. */
1297
1298 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1299 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1300 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1301 (including this one?). OTHERTYPE is who knows what... */
1302
1303 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1304 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1305
1306 #define target_region_ok_for_hw_watchpoint(addr, len) \
1307 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1308
1309
1310 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1311 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1312 COND is the expression for its condition, or NULL if there's none.
1313 Returns 0 for success, 1 if the watchpoint type is not supported,
1314 -1 for failure. */
1315
1316 #define target_insert_watchpoint(addr, len, type, cond) \
1317 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1318
1319 #define target_remove_watchpoint(addr, len, type, cond) \
1320 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1321
1322 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1323 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1324
1325 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1326 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1327
1328 /* Return non-zero if target knows the data address which triggered this
1329 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1330 INFERIOR_PTID task is being queried. */
1331 #define target_stopped_data_address(target, addr_p) \
1332 (*target.to_stopped_data_address) (target, addr_p)
1333
1334 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1335 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1336
1337 /* Return non-zero if the target is capable of using hardware to evaluate
1338 the condition expression. In this case, if the condition is false when
1339 the watched memory location changes, execution may continue without the
1340 debugger being notified.
1341
1342 Due to limitations in the hardware implementation, it may be capable of
1343 avoiding triggering the watchpoint in some cases where the condition
1344 expression is false, but may report some false positives as well.
1345 For this reason, GDB will still evaluate the condition expression when
1346 the watchpoint triggers. */
1347 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1348 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1349
1350 /* Target can execute in reverse? */
1351 #define target_can_execute_reverse \
1352 (current_target.to_can_execute_reverse ? \
1353 current_target.to_can_execute_reverse () : 0)
1354
1355 extern const struct target_desc *target_read_description (struct target_ops *);
1356
1357 #define target_get_ada_task_ptid(lwp, tid) \
1358 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1359
1360 /* Utility implementation of searching memory. */
1361 extern int simple_search_memory (struct target_ops* ops,
1362 CORE_ADDR start_addr,
1363 ULONGEST search_space_len,
1364 const gdb_byte *pattern,
1365 ULONGEST pattern_len,
1366 CORE_ADDR *found_addrp);
1367
1368 /* Main entry point for searching memory. */
1369 extern int target_search_memory (CORE_ADDR start_addr,
1370 ULONGEST search_space_len,
1371 const gdb_byte *pattern,
1372 ULONGEST pattern_len,
1373 CORE_ADDR *found_addrp);
1374
1375 /* Tracepoint-related operations. */
1376
1377 #define target_trace_init() \
1378 (*current_target.to_trace_init) ()
1379
1380 #define target_download_tracepoint(t) \
1381 (*current_target.to_download_tracepoint) (t)
1382
1383 #define target_download_trace_state_variable(tsv) \
1384 (*current_target.to_download_trace_state_variable) (tsv)
1385
1386 #define target_trace_start() \
1387 (*current_target.to_trace_start) ()
1388
1389 #define target_trace_set_readonly_regions() \
1390 (*current_target.to_trace_set_readonly_regions) ()
1391
1392 #define target_get_trace_status(ts) \
1393 (*current_target.to_get_trace_status) (ts)
1394
1395 #define target_trace_stop() \
1396 (*current_target.to_trace_stop) ()
1397
1398 #define target_trace_find(type,num,addr1,addr2,tpp) \
1399 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1400
1401 #define target_get_trace_state_variable_value(tsv,val) \
1402 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1403
1404 #define target_save_trace_data(filename) \
1405 (*current_target.to_save_trace_data) (filename)
1406
1407 #define target_upload_tracepoints(utpp) \
1408 (*current_target.to_upload_tracepoints) (utpp)
1409
1410 #define target_upload_trace_state_variables(utsvp) \
1411 (*current_target.to_upload_trace_state_variables) (utsvp)
1412
1413 #define target_get_raw_trace_data(buf,offset,len) \
1414 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1415
1416 #define target_set_disconnected_tracing(val) \
1417 (*current_target.to_set_disconnected_tracing) (val)
1418
1419 #define target_set_circular_trace_buffer(val) \
1420 (*current_target.to_set_circular_trace_buffer) (val)
1421
1422 #define target_get_tib_address(ptid, addr) \
1423 (*current_target.to_get_tib_address) ((ptid), (addr))
1424
1425 #define target_set_permissions() \
1426 (*current_target.to_set_permissions) ()
1427
1428 #define target_static_tracepoint_marker_at(addr, marker) \
1429 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1430
1431 #define target_static_tracepoint_markers_by_strid(marker_id) \
1432 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1433
1434 /* Command logging facility. */
1435
1436 #define target_log_command(p) \
1437 do \
1438 if (current_target.to_log_command) \
1439 (*current_target.to_log_command) (p); \
1440 while (0)
1441
1442
1443 extern int target_core_of_thread (ptid_t ptid);
1444
1445 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1446 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1447 if there's a mismatch, and -1 if an error is encountered while
1448 reading memory. Throws an error if the functionality is found not
1449 to be supported by the current target. */
1450 int target_verify_memory (const gdb_byte *data,
1451 CORE_ADDR memaddr, ULONGEST size);
1452
1453 /* Routines for maintenance of the target structures...
1454
1455 add_target: Add a target to the list of all possible targets.
1456
1457 push_target: Make this target the top of the stack of currently used
1458 targets, within its particular stratum of the stack. Result
1459 is 0 if now atop the stack, nonzero if not on top (maybe
1460 should warn user).
1461
1462 unpush_target: Remove this from the stack of currently used targets,
1463 no matter where it is on the list. Returns 0 if no
1464 change, 1 if removed from stack.
1465
1466 pop_target: Remove the top thing on the stack of current targets. */
1467
1468 extern void add_target (struct target_ops *);
1469
1470 extern void push_target (struct target_ops *);
1471
1472 extern int unpush_target (struct target_ops *);
1473
1474 extern void target_pre_inferior (int);
1475
1476 extern void target_preopen (int);
1477
1478 extern void pop_target (void);
1479
1480 /* Does whatever cleanup is required to get rid of all pushed targets.
1481 QUITTING is propagated to target_close; it indicates that GDB is
1482 exiting and should not get hung on an error (otherwise it is
1483 important to perform clean termination, even if it takes a
1484 while). */
1485 extern void pop_all_targets (int quitting);
1486
1487 /* Like pop_all_targets, but pops only targets whose stratum is
1488 strictly above ABOVE_STRATUM. */
1489 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1490
1491 extern int target_is_pushed (struct target_ops *t);
1492
1493 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1494 CORE_ADDR offset);
1495
1496 /* Struct target_section maps address ranges to file sections. It is
1497 mostly used with BFD files, but can be used without (e.g. for handling
1498 raw disks, or files not in formats handled by BFD). */
1499
1500 struct target_section
1501 {
1502 CORE_ADDR addr; /* Lowest address in section */
1503 CORE_ADDR endaddr; /* 1+highest address in section */
1504
1505 struct bfd_section *the_bfd_section;
1506
1507 bfd *bfd; /* BFD file pointer */
1508 };
1509
1510 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1511
1512 struct target_section_table
1513 {
1514 struct target_section *sections;
1515 struct target_section *sections_end;
1516 };
1517
1518 /* Return the "section" containing the specified address. */
1519 struct target_section *target_section_by_addr (struct target_ops *target,
1520 CORE_ADDR addr);
1521
1522 /* Return the target section table this target (or the targets
1523 beneath) currently manipulate. */
1524
1525 extern struct target_section_table *target_get_section_table
1526 (struct target_ops *target);
1527
1528 /* From mem-break.c */
1529
1530 extern int memory_remove_breakpoint (struct gdbarch *,
1531 struct bp_target_info *);
1532
1533 extern int memory_insert_breakpoint (struct gdbarch *,
1534 struct bp_target_info *);
1535
1536 extern int default_memory_remove_breakpoint (struct gdbarch *,
1537 struct bp_target_info *);
1538
1539 extern int default_memory_insert_breakpoint (struct gdbarch *,
1540 struct bp_target_info *);
1541
1542
1543 /* From target.c */
1544
1545 extern void initialize_targets (void);
1546
1547 extern void noprocess (void) ATTRIBUTE_NORETURN;
1548
1549 extern void target_require_runnable (void);
1550
1551 extern void find_default_attach (struct target_ops *, char *, int);
1552
1553 extern void find_default_create_inferior (struct target_ops *,
1554 char *, char *, char **, int);
1555
1556 extern struct target_ops *find_run_target (void);
1557
1558 extern struct target_ops *find_target_beneath (struct target_ops *);
1559
1560 /* Read OS data object of type TYPE from the target, and return it in
1561 XML format. The result is NUL-terminated and returned as a string,
1562 allocated using xmalloc. If an error occurs or the transfer is
1563 unsupported, NULL is returned. Empty objects are returned as
1564 allocated but empty strings. */
1565
1566 extern char *target_get_osdata (const char *type);
1567
1568 \f
1569 /* Stuff that should be shared among the various remote targets. */
1570
1571 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1572 information (higher values, more information). */
1573 extern int remote_debug;
1574
1575 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1576 extern int baud_rate;
1577 /* Timeout limit for response from target. */
1578 extern int remote_timeout;
1579
1580 \f
1581 /* Functions for helping to write a native target. */
1582
1583 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1584 extern void store_waitstatus (struct target_waitstatus *, int);
1585
1586 /* These are in common/signals.c, but they're only used by gdb. */
1587 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1588 int);
1589 extern int default_target_signal_to_host (struct gdbarch *,
1590 enum target_signal);
1591
1592 /* Convert from a number used in a GDB command to an enum target_signal. */
1593 extern enum target_signal target_signal_from_command (int);
1594 /* End of files in common/signals.c. */
1595
1596 /* Set the show memory breakpoints mode to show, and installs a cleanup
1597 to restore it back to the current value. */
1598 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1599
1600 extern int may_write_registers;
1601 extern int may_write_memory;
1602 extern int may_insert_breakpoints;
1603 extern int may_insert_tracepoints;
1604 extern int may_insert_fast_tracepoints;
1605 extern int may_stop;
1606
1607 extern void update_target_permissions (void);
1608
1609 \f
1610 /* Imported from machine dependent code */
1611
1612 /* Blank target vector entries are initialized to target_ignore. */
1613 void target_ignore (void);
1614
1615 extern struct target_ops deprecated_child_ops;
1616
1617 #endif /* !defined (TARGET_H) */