]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
constify get_bookmark and goto_bookmark
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* The piece of the object requested is unavailable. */
217 TARGET_XFER_UNAVAILABLE = 2,
218
219 /* Generic I/O error. Note that it's important that this is '-1',
220 as we still have target_xfer-related code returning hardcoded
221 '-1' on error. */
222 TARGET_XFER_E_IO = -1,
223
224 /* Keep list in sync with target_xfer_status_to_string. */
225 };
226
227 /* Return the string form of STATUS. */
228
229 extern const char *
230 target_xfer_status_to_string (enum target_xfer_status status);
231
232 /* Enumeration of the kinds of traceframe searches that a target may
233 be able to perform. */
234
235 enum trace_find_type
236 {
237 tfind_number,
238 tfind_pc,
239 tfind_tp,
240 tfind_range,
241 tfind_outside,
242 };
243
244 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
245 DEF_VEC_P(static_tracepoint_marker_p);
246
247 typedef enum target_xfer_status
248 target_xfer_partial_ftype (struct target_ops *ops,
249 enum target_object object,
250 const char *annex,
251 gdb_byte *readbuf,
252 const gdb_byte *writebuf,
253 ULONGEST offset,
254 ULONGEST len,
255 ULONGEST *xfered_len);
256
257 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
258 OBJECT. The OFFSET, for a seekable object, specifies the
259 starting point. The ANNEX can be used to provide additional
260 data-specific information to the target.
261
262 Return the number of bytes actually transfered, or a negative error
263 code (an 'enum target_xfer_error' value) if the transfer is not
264 supported or otherwise fails. Return of a positive value less than
265 LEN indicates that no further transfer is possible. Unlike the raw
266 to_xfer_partial interface, callers of these functions do not need
267 to retry partial transfers. */
268
269 extern LONGEST target_read (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte *buf,
272 ULONGEST offset, LONGEST len);
273
274 struct memory_read_result
275 {
276 /* First address that was read. */
277 ULONGEST begin;
278 /* Past-the-end address. */
279 ULONGEST end;
280 /* The data. */
281 gdb_byte *data;
282 };
283 typedef struct memory_read_result memory_read_result_s;
284 DEF_VEC_O(memory_read_result_s);
285
286 extern void free_memory_read_result_vector (void *);
287
288 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
289 ULONGEST offset,
290 LONGEST len);
291
292 extern LONGEST target_write (struct target_ops *ops,
293 enum target_object object,
294 const char *annex, const gdb_byte *buf,
295 ULONGEST offset, LONGEST len);
296
297 /* Similar to target_write, except that it also calls PROGRESS with
298 the number of bytes written and the opaque BATON after every
299 successful partial write (and before the first write). This is
300 useful for progress reporting and user interaction while writing
301 data. To abort the transfer, the progress callback can throw an
302 exception. */
303
304 LONGEST target_write_with_progress (struct target_ops *ops,
305 enum target_object object,
306 const char *annex, const gdb_byte *buf,
307 ULONGEST offset, LONGEST len,
308 void (*progress) (ULONGEST, void *),
309 void *baton);
310
311 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
312 be read using OPS. The return value will be -1 if the transfer
313 fails or is not supported; 0 if the object is empty; or the length
314 of the object otherwise. If a positive value is returned, a
315 sufficiently large buffer will be allocated using xmalloc and
316 returned in *BUF_P containing the contents of the object.
317
318 This method should be used for objects sufficiently small to store
319 in a single xmalloc'd buffer, when no fixed bound on the object's
320 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
321 through this function. */
322
323 extern LONGEST target_read_alloc (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, gdb_byte **buf_p);
326
327 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
328 returned as a string, allocated using xmalloc. If an error occurs
329 or the transfer is unsupported, NULL is returned. Empty objects
330 are returned as allocated but empty strings. A warning is issued
331 if the result contains any embedded NUL bytes. */
332
333 extern char *target_read_stralloc (struct target_ops *ops,
334 enum target_object object,
335 const char *annex);
336
337 /* See target_ops->to_xfer_partial. */
338 extern target_xfer_partial_ftype target_xfer_partial;
339
340 /* Wrappers to target read/write that perform memory transfers. They
341 throw an error if the memory transfer fails.
342
343 NOTE: cagney/2003-10-23: The naming schema is lifted from
344 "frame.h". The parameter order is lifted from get_frame_memory,
345 which in turn lifted it from read_memory. */
346
347 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
348 gdb_byte *buf, LONGEST len);
349 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
350 CORE_ADDR addr, int len,
351 enum bfd_endian byte_order);
352 \f
353 struct thread_info; /* fwd decl for parameter list below: */
354
355 /* The type of the callback to the to_async method. */
356
357 typedef void async_callback_ftype (enum inferior_event_type event_type,
358 void *context);
359
360 /* These defines are used to mark target_ops methods. The script
361 make-target-delegates scans these and auto-generates the base
362 method implementations. There are four macros that can be used:
363
364 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
365 does nothing. This is only valid if the method return type is
366 'void'.
367
368 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
369 'tcomplain ()'. The base method simply makes this call, which is
370 assumed not to return.
371
372 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
373 base method returns this expression's value.
374
375 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
376 make-target-delegates does not generate a base method in this case,
377 but instead uses the argument function as the base method. */
378
379 #define TARGET_DEFAULT_IGNORE()
380 #define TARGET_DEFAULT_NORETURN(ARG)
381 #define TARGET_DEFAULT_RETURN(ARG)
382 #define TARGET_DEFAULT_FUNC(ARG)
383
384 struct target_ops
385 {
386 struct target_ops *beneath; /* To the target under this one. */
387 char *to_shortname; /* Name this target type */
388 char *to_longname; /* Name for printing */
389 char *to_doc; /* Documentation. Does not include trailing
390 newline, and starts with a one-line descrip-
391 tion (probably similar to to_longname). */
392 /* Per-target scratch pad. */
393 void *to_data;
394 /* The open routine takes the rest of the parameters from the
395 command, and (if successful) pushes a new target onto the
396 stack. Targets should supply this routine, if only to provide
397 an error message. */
398 void (*to_open) (char *, int);
399 /* Old targets with a static target vector provide "to_close".
400 New re-entrant targets provide "to_xclose" and that is expected
401 to xfree everything (including the "struct target_ops"). */
402 void (*to_xclose) (struct target_ops *targ);
403 void (*to_close) (struct target_ops *);
404 /* Attaches to a process on the target side. Arguments are as
405 passed to the `attach' command by the user. This routine can
406 be called when the target is not on the target-stack, if the
407 target_can_run routine returns 1; in that case, it must push
408 itself onto the stack. Upon exit, the target should be ready
409 for normal operations, and should be ready to deliver the
410 status of the process immediately (without waiting) to an
411 upcoming target_wait call. */
412 void (*to_attach) (struct target_ops *ops, const char *, int);
413 void (*to_post_attach) (struct target_ops *, int)
414 TARGET_DEFAULT_IGNORE ();
415 void (*to_detach) (struct target_ops *ops, const char *, int)
416 TARGET_DEFAULT_IGNORE ();
417 void (*to_disconnect) (struct target_ops *, const char *, int)
418 TARGET_DEFAULT_NORETURN (tcomplain ());
419 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 ptid_t (*to_wait) (struct target_ops *,
422 ptid_t, struct target_waitstatus *, int)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
425 TARGET_DEFAULT_IGNORE ();
426 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
427 TARGET_DEFAULT_NORETURN (noprocess ());
428 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
429 TARGET_DEFAULT_NORETURN (noprocess ());
430
431 void (*to_files_info) (struct target_ops *)
432 TARGET_DEFAULT_IGNORE ();
433 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
434 struct bp_target_info *)
435 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
436 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
437 struct bp_target_info *)
438 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
439 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
440 TARGET_DEFAULT_RETURN (0);
441 int (*to_ranged_break_num_registers) (struct target_ops *)
442 TARGET_DEFAULT_RETURN (-1);
443 int (*to_insert_hw_breakpoint) (struct target_ops *,
444 struct gdbarch *, struct bp_target_info *)
445 TARGET_DEFAULT_RETURN (-1);
446 int (*to_remove_hw_breakpoint) (struct target_ops *,
447 struct gdbarch *, struct bp_target_info *)
448 TARGET_DEFAULT_RETURN (-1);
449
450 /* Documentation of what the two routines below are expected to do is
451 provided with the corresponding target_* macros. */
452 int (*to_remove_watchpoint) (struct target_ops *,
453 CORE_ADDR, int, int, struct expression *)
454 TARGET_DEFAULT_RETURN (-1);
455 int (*to_insert_watchpoint) (struct target_ops *,
456 CORE_ADDR, int, int, struct expression *)
457 TARGET_DEFAULT_RETURN (-1);
458
459 int (*to_insert_mask_watchpoint) (struct target_ops *,
460 CORE_ADDR, CORE_ADDR, int)
461 TARGET_DEFAULT_RETURN (1);
462 int (*to_remove_mask_watchpoint) (struct target_ops *,
463 CORE_ADDR, CORE_ADDR, int)
464 TARGET_DEFAULT_RETURN (1);
465 int (*to_stopped_by_watchpoint) (struct target_ops *)
466 TARGET_DEFAULT_RETURN (0);
467 int to_have_steppable_watchpoint;
468 int to_have_continuable_watchpoint;
469 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
470 TARGET_DEFAULT_RETURN (0);
471 int (*to_watchpoint_addr_within_range) (struct target_ops *,
472 CORE_ADDR, CORE_ADDR, int)
473 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
474
475 /* Documentation of this routine is provided with the corresponding
476 target_* macro. */
477 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
478 CORE_ADDR, int)
479 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
480
481 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
482 CORE_ADDR, int, int,
483 struct expression *)
484 TARGET_DEFAULT_RETURN (0);
485 int (*to_masked_watch_num_registers) (struct target_ops *,
486 CORE_ADDR, CORE_ADDR)
487 TARGET_DEFAULT_RETURN (-1);
488 void (*to_terminal_init) (struct target_ops *)
489 TARGET_DEFAULT_IGNORE ();
490 void (*to_terminal_inferior) (struct target_ops *)
491 TARGET_DEFAULT_IGNORE ();
492 void (*to_terminal_ours_for_output) (struct target_ops *)
493 TARGET_DEFAULT_IGNORE ();
494 void (*to_terminal_ours) (struct target_ops *)
495 TARGET_DEFAULT_IGNORE ();
496 void (*to_terminal_save_ours) (struct target_ops *)
497 TARGET_DEFAULT_IGNORE ();
498 void (*to_terminal_info) (struct target_ops *, const char *, int)
499 TARGET_DEFAULT_FUNC (default_terminal_info);
500 void (*to_kill) (struct target_ops *)
501 TARGET_DEFAULT_NORETURN (noprocess ());
502 void (*to_load) (struct target_ops *, const char *, int)
503 TARGET_DEFAULT_NORETURN (tcomplain ());
504 /* Start an inferior process and set inferior_ptid to its pid.
505 EXEC_FILE is the file to run.
506 ALLARGS is a string containing the arguments to the program.
507 ENV is the environment vector to pass. Errors reported with error().
508 On VxWorks and various standalone systems, we ignore exec_file. */
509 void (*to_create_inferior) (struct target_ops *,
510 char *, char *, char **, int);
511 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
512 TARGET_DEFAULT_IGNORE ();
513 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
514 TARGET_DEFAULT_RETURN (1);
515 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
516 TARGET_DEFAULT_RETURN (1);
517 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
518 TARGET_DEFAULT_RETURN (1);
519 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
520 TARGET_DEFAULT_RETURN (1);
521 int (*to_follow_fork) (struct target_ops *, int, int)
522 TARGET_DEFAULT_FUNC (default_follow_fork);
523 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
524 TARGET_DEFAULT_RETURN (1);
525 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
526 TARGET_DEFAULT_RETURN (1);
527 int (*to_set_syscall_catchpoint) (struct target_ops *,
528 int, int, int, int, int *)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_has_exited) (struct target_ops *, int, int, int *)
531 TARGET_DEFAULT_RETURN (0);
532 void (*to_mourn_inferior) (struct target_ops *)
533 TARGET_DEFAULT_FUNC (default_mourn_inferior);
534 /* Note that to_can_run is special and can be invoked on an
535 unpushed target. Targets defining this method must also define
536 to_can_async_p and to_supports_non_stop. */
537 int (*to_can_run) (struct target_ops *)
538 TARGET_DEFAULT_RETURN (0);
539
540 /* Documentation of this routine is provided with the corresponding
541 target_* macro. */
542 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
543 TARGET_DEFAULT_IGNORE ();
544
545 /* Documentation of this routine is provided with the
546 corresponding target_* function. */
547 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
548 TARGET_DEFAULT_IGNORE ();
549
550 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
551 TARGET_DEFAULT_RETURN (0);
552 void (*to_find_new_threads) (struct target_ops *)
553 TARGET_DEFAULT_IGNORE ();
554 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
555 TARGET_DEFAULT_FUNC (default_pid_to_str);
556 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (NULL);
558 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
559 TARGET_DEFAULT_RETURN (NULL);
560 void (*to_stop) (struct target_ops *, ptid_t)
561 TARGET_DEFAULT_IGNORE ();
562 void (*to_rcmd) (struct target_ops *,
563 const char *command, struct ui_file *output)
564 TARGET_DEFAULT_FUNC (default_rcmd);
565 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
566 TARGET_DEFAULT_RETURN (NULL);
567 void (*to_log_command) (struct target_ops *, const char *)
568 TARGET_DEFAULT_IGNORE ();
569 struct target_section_table *(*to_get_section_table) (struct target_ops *)
570 TARGET_DEFAULT_RETURN (NULL);
571 enum strata to_stratum;
572 int (*to_has_all_memory) (struct target_ops *);
573 int (*to_has_memory) (struct target_ops *);
574 int (*to_has_stack) (struct target_ops *);
575 int (*to_has_registers) (struct target_ops *);
576 int (*to_has_execution) (struct target_ops *, ptid_t);
577 int to_has_thread_control; /* control thread execution */
578 int to_attach_no_wait;
579 /* This method must be implemented in some situations. See the
580 comment on 'to_can_run'. */
581 int (*to_can_async_p) (struct target_ops *)
582 TARGET_DEFAULT_RETURN (0);
583 int (*to_is_async_p) (struct target_ops *)
584 TARGET_DEFAULT_RETURN (0);
585 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
586 TARGET_DEFAULT_NORETURN (tcomplain ());
587 /* This method must be implemented in some situations. See the
588 comment on 'to_can_run'. */
589 int (*to_supports_non_stop) (struct target_ops *)
590 TARGET_DEFAULT_RETURN (0);
591 /* find_memory_regions support method for gcore */
592 int (*to_find_memory_regions) (struct target_ops *,
593 find_memory_region_ftype func, void *data)
594 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
595 /* make_corefile_notes support method for gcore */
596 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
597 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
598 /* get_bookmark support method for bookmarks */
599 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
600 TARGET_DEFAULT_NORETURN (tcomplain ());
601 /* goto_bookmark support method for bookmarks */
602 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
603 TARGET_DEFAULT_NORETURN (tcomplain ());
604 /* Return the thread-local address at OFFSET in the
605 thread-local storage for the thread PTID and the shared library
606 or executable file given by OBJFILE. If that block of
607 thread-local storage hasn't been allocated yet, this function
608 may return an error. LOAD_MODULE_ADDR may be zero for statically
609 linked multithreaded inferiors. */
610 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
611 ptid_t ptid,
612 CORE_ADDR load_module_addr,
613 CORE_ADDR offset);
614
615 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
616 OBJECT. The OFFSET, for a seekable object, specifies the
617 starting point. The ANNEX can be used to provide additional
618 data-specific information to the target.
619
620 Return the transferred status, error or OK (an
621 'enum target_xfer_status' value). Save the number of bytes
622 actually transferred in *XFERED_LEN if transfer is successful
623 (TARGET_XFER_OK) or the number unavailable bytes if the requested
624 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
625 smaller than LEN does not indicate the end of the object, only
626 the end of the transfer; higher level code should continue
627 transferring if desired. This is handled in target.c.
628
629 The interface does not support a "retry" mechanism. Instead it
630 assumes that at least one byte will be transfered on each
631 successful call.
632
633 NOTE: cagney/2003-10-17: The current interface can lead to
634 fragmented transfers. Lower target levels should not implement
635 hacks, such as enlarging the transfer, in an attempt to
636 compensate for this. Instead, the target stack should be
637 extended so that it implements supply/collect methods and a
638 look-aside object cache. With that available, the lowest
639 target can safely and freely "push" data up the stack.
640
641 See target_read and target_write for more information. One,
642 and only one, of readbuf or writebuf must be non-NULL. */
643
644 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
645 enum target_object object,
646 const char *annex,
647 gdb_byte *readbuf,
648 const gdb_byte *writebuf,
649 ULONGEST offset, ULONGEST len,
650 ULONGEST *xfered_len)
651 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
652
653 /* Returns the memory map for the target. A return value of NULL
654 means that no memory map is available. If a memory address
655 does not fall within any returned regions, it's assumed to be
656 RAM. The returned memory regions should not overlap.
657
658 The order of regions does not matter; target_memory_map will
659 sort regions by starting address. For that reason, this
660 function should not be called directly except via
661 target_memory_map.
662
663 This method should not cache data; if the memory map could
664 change unexpectedly, it should be invalidated, and higher
665 layers will re-fetch it. */
666 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
667 TARGET_DEFAULT_RETURN (NULL);
668
669 /* Erases the region of flash memory starting at ADDRESS, of
670 length LENGTH.
671
672 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
673 on flash block boundaries, as reported by 'to_memory_map'. */
674 void (*to_flash_erase) (struct target_ops *,
675 ULONGEST address, LONGEST length)
676 TARGET_DEFAULT_NORETURN (tcomplain ());
677
678 /* Finishes a flash memory write sequence. After this operation
679 all flash memory should be available for writing and the result
680 of reading from areas written by 'to_flash_write' should be
681 equal to what was written. */
682 void (*to_flash_done) (struct target_ops *)
683 TARGET_DEFAULT_NORETURN (tcomplain ());
684
685 /* Describe the architecture-specific features of this target. If
686 OPS doesn't have a description, this should delegate to the
687 "beneath" target. Returns the description found, or NULL if no
688 description was available. */
689 const struct target_desc *(*to_read_description) (struct target_ops *ops)
690 TARGET_DEFAULT_RETURN (NULL);
691
692 /* Build the PTID of the thread on which a given task is running,
693 based on LWP and THREAD. These values are extracted from the
694 task Private_Data section of the Ada Task Control Block, and
695 their interpretation depends on the target. */
696 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
697 long lwp, long thread)
698 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
699
700 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
701 Return 0 if *READPTR is already at the end of the buffer.
702 Return -1 if there is insufficient buffer for a whole entry.
703 Return 1 if an entry was read into *TYPEP and *VALP. */
704 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
705 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
706 TARGET_DEFAULT_FUNC (default_auxv_parse);
707
708 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
709 sequence of bytes in PATTERN with length PATTERN_LEN.
710
711 The result is 1 if found, 0 if not found, and -1 if there was an error
712 requiring halting of the search (e.g. memory read error).
713 If the pattern is found the address is recorded in FOUND_ADDRP. */
714 int (*to_search_memory) (struct target_ops *ops,
715 CORE_ADDR start_addr, ULONGEST search_space_len,
716 const gdb_byte *pattern, ULONGEST pattern_len,
717 CORE_ADDR *found_addrp)
718 TARGET_DEFAULT_FUNC (default_search_memory);
719
720 /* Can target execute in reverse? */
721 int (*to_can_execute_reverse) (struct target_ops *)
722 TARGET_DEFAULT_RETURN (0);
723
724 /* The direction the target is currently executing. Must be
725 implemented on targets that support reverse execution and async
726 mode. The default simply returns forward execution. */
727 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
728 TARGET_DEFAULT_FUNC (default_execution_direction);
729
730 /* Does this target support debugging multiple processes
731 simultaneously? */
732 int (*to_supports_multi_process) (struct target_ops *)
733 TARGET_DEFAULT_RETURN (0);
734
735 /* Does this target support enabling and disabling tracepoints while a trace
736 experiment is running? */
737 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
738 TARGET_DEFAULT_RETURN (0);
739
740 /* Does this target support disabling address space randomization? */
741 int (*to_supports_disable_randomization) (struct target_ops *);
742
743 /* Does this target support the tracenz bytecode for string collection? */
744 int (*to_supports_string_tracing) (struct target_ops *)
745 TARGET_DEFAULT_RETURN (0);
746
747 /* Does this target support evaluation of breakpoint conditions on its
748 end? */
749 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
750 TARGET_DEFAULT_RETURN (0);
751
752 /* Does this target support evaluation of breakpoint commands on its
753 end? */
754 int (*to_can_run_breakpoint_commands) (struct target_ops *)
755 TARGET_DEFAULT_RETURN (0);
756
757 /* Determine current architecture of thread PTID.
758
759 The target is supposed to determine the architecture of the code where
760 the target is currently stopped at (on Cell, if a target is in spu_run,
761 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
762 This is architecture used to perform decr_pc_after_break adjustment,
763 and also determines the frame architecture of the innermost frame.
764 ptrace operations need to operate according to target_gdbarch ().
765
766 The default implementation always returns target_gdbarch (). */
767 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
768 TARGET_DEFAULT_FUNC (default_thread_architecture);
769
770 /* Determine current address space of thread PTID.
771
772 The default implementation always returns the inferior's
773 address space. */
774 struct address_space *(*to_thread_address_space) (struct target_ops *,
775 ptid_t)
776 TARGET_DEFAULT_FUNC (default_thread_address_space);
777
778 /* Target file operations. */
779
780 /* Open FILENAME on the target, using FLAGS and MODE. Return a
781 target file descriptor, or -1 if an error occurs (and set
782 *TARGET_ERRNO). */
783 int (*to_fileio_open) (struct target_ops *,
784 const char *filename, int flags, int mode,
785 int *target_errno);
786
787 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
788 Return the number of bytes written, or -1 if an error occurs
789 (and set *TARGET_ERRNO). */
790 int (*to_fileio_pwrite) (struct target_ops *,
791 int fd, const gdb_byte *write_buf, int len,
792 ULONGEST offset, int *target_errno);
793
794 /* Read up to LEN bytes FD on the target into READ_BUF.
795 Return the number of bytes read, or -1 if an error occurs
796 (and set *TARGET_ERRNO). */
797 int (*to_fileio_pread) (struct target_ops *,
798 int fd, gdb_byte *read_buf, int len,
799 ULONGEST offset, int *target_errno);
800
801 /* Close FD on the target. Return 0, or -1 if an error occurs
802 (and set *TARGET_ERRNO). */
803 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
804
805 /* Unlink FILENAME on the target. Return 0, or -1 if an error
806 occurs (and set *TARGET_ERRNO). */
807 int (*to_fileio_unlink) (struct target_ops *,
808 const char *filename, int *target_errno);
809
810 /* Read value of symbolic link FILENAME on the target. Return a
811 null-terminated string allocated via xmalloc, or NULL if an error
812 occurs (and set *TARGET_ERRNO). */
813 char *(*to_fileio_readlink) (struct target_ops *,
814 const char *filename, int *target_errno);
815
816
817 /* Implement the "info proc" command. */
818 void (*to_info_proc) (struct target_ops *, const char *,
819 enum info_proc_what);
820
821 /* Tracepoint-related operations. */
822
823 /* Prepare the target for a tracing run. */
824 void (*to_trace_init) (struct target_ops *)
825 TARGET_DEFAULT_NORETURN (tcomplain ());
826
827 /* Send full details of a tracepoint location to the target. */
828 void (*to_download_tracepoint) (struct target_ops *,
829 struct bp_location *location)
830 TARGET_DEFAULT_NORETURN (tcomplain ());
831
832 /* Is the target able to download tracepoint locations in current
833 state? */
834 int (*to_can_download_tracepoint) (struct target_ops *)
835 TARGET_DEFAULT_RETURN (0);
836
837 /* Send full details of a trace state variable to the target. */
838 void (*to_download_trace_state_variable) (struct target_ops *,
839 struct trace_state_variable *tsv)
840 TARGET_DEFAULT_NORETURN (tcomplain ());
841
842 /* Enable a tracepoint on the target. */
843 void (*to_enable_tracepoint) (struct target_ops *,
844 struct bp_location *location)
845 TARGET_DEFAULT_NORETURN (tcomplain ());
846
847 /* Disable a tracepoint on the target. */
848 void (*to_disable_tracepoint) (struct target_ops *,
849 struct bp_location *location)
850 TARGET_DEFAULT_NORETURN (tcomplain ());
851
852 /* Inform the target info of memory regions that are readonly
853 (such as text sections), and so it should return data from
854 those rather than look in the trace buffer. */
855 void (*to_trace_set_readonly_regions) (struct target_ops *)
856 TARGET_DEFAULT_NORETURN (tcomplain ());
857
858 /* Start a trace run. */
859 void (*to_trace_start) (struct target_ops *)
860 TARGET_DEFAULT_NORETURN (tcomplain ());
861
862 /* Get the current status of a tracing run. */
863 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
864 TARGET_DEFAULT_RETURN (-1);
865
866 void (*to_get_tracepoint_status) (struct target_ops *,
867 struct breakpoint *tp,
868 struct uploaded_tp *utp)
869 TARGET_DEFAULT_NORETURN (tcomplain ());
870
871 /* Stop a trace run. */
872 void (*to_trace_stop) (struct target_ops *)
873 TARGET_DEFAULT_NORETURN (tcomplain ());
874
875 /* Ask the target to find a trace frame of the given type TYPE,
876 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
877 number of the trace frame, and also the tracepoint number at
878 TPP. If no trace frame matches, return -1. May throw if the
879 operation fails. */
880 int (*to_trace_find) (struct target_ops *,
881 enum trace_find_type type, int num,
882 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
883 TARGET_DEFAULT_RETURN (-1);
884
885 /* Get the value of the trace state variable number TSV, returning
886 1 if the value is known and writing the value itself into the
887 location pointed to by VAL, else returning 0. */
888 int (*to_get_trace_state_variable_value) (struct target_ops *,
889 int tsv, LONGEST *val)
890 TARGET_DEFAULT_RETURN (0);
891
892 int (*to_save_trace_data) (struct target_ops *, const char *filename)
893 TARGET_DEFAULT_NORETURN (tcomplain ());
894
895 int (*to_upload_tracepoints) (struct target_ops *,
896 struct uploaded_tp **utpp)
897 TARGET_DEFAULT_RETURN (0);
898
899 int (*to_upload_trace_state_variables) (struct target_ops *,
900 struct uploaded_tsv **utsvp)
901 TARGET_DEFAULT_RETURN (0);
902
903 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
904 ULONGEST offset, LONGEST len)
905 TARGET_DEFAULT_NORETURN (tcomplain ());
906
907 /* Get the minimum length of instruction on which a fast tracepoint
908 may be set on the target. If this operation is unsupported,
909 return -1. If for some reason the minimum length cannot be
910 determined, return 0. */
911 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
912 TARGET_DEFAULT_RETURN (-1);
913
914 /* Set the target's tracing behavior in response to unexpected
915 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
916 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
917 TARGET_DEFAULT_IGNORE ();
918 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
919 TARGET_DEFAULT_IGNORE ();
920 /* Set the size of trace buffer in the target. */
921 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
922 TARGET_DEFAULT_IGNORE ();
923
924 /* Add/change textual notes about the trace run, returning 1 if
925 successful, 0 otherwise. */
926 int (*to_set_trace_notes) (struct target_ops *,
927 const char *user, const char *notes,
928 const char *stopnotes)
929 TARGET_DEFAULT_RETURN (0);
930
931 /* Return the processor core that thread PTID was last seen on.
932 This information is updated only when:
933 - update_thread_list is called
934 - thread stops
935 If the core cannot be determined -- either for the specified
936 thread, or right now, or in this debug session, or for this
937 target -- return -1. */
938 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
939 TARGET_DEFAULT_RETURN (-1);
940
941 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
942 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
943 a match, 0 if there's a mismatch, and -1 if an error is
944 encountered while reading memory. */
945 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
946 CORE_ADDR memaddr, ULONGEST size)
947 TARGET_DEFAULT_FUNC (default_verify_memory);
948
949 /* Return the address of the start of the Thread Information Block
950 a Windows OS specific feature. */
951 int (*to_get_tib_address) (struct target_ops *,
952 ptid_t ptid, CORE_ADDR *addr)
953 TARGET_DEFAULT_NORETURN (tcomplain ());
954
955 /* Send the new settings of write permission variables. */
956 void (*to_set_permissions) (struct target_ops *)
957 TARGET_DEFAULT_IGNORE ();
958
959 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
960 with its details. Return 1 on success, 0 on failure. */
961 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
962 struct static_tracepoint_marker *marker)
963 TARGET_DEFAULT_RETURN (0);
964
965 /* Return a vector of all tracepoints markers string id ID, or all
966 markers if ID is NULL. */
967 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
968 TARGET_DEFAULT_NORETURN (tcomplain ());
969
970 /* Return a traceframe info object describing the current
971 traceframe's contents. This method should not cache data;
972 higher layers take care of caching, invalidating, and
973 re-fetching when necessary. */
974 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Ask the target to use or not to use agent according to USE. Return 1
978 successful, 0 otherwise. */
979 int (*to_use_agent) (struct target_ops *, int use)
980 TARGET_DEFAULT_NORETURN (tcomplain ());
981
982 /* Is the target able to use agent in current state? */
983 int (*to_can_use_agent) (struct target_ops *)
984 TARGET_DEFAULT_RETURN (0);
985
986 /* Check whether the target supports branch tracing. */
987 int (*to_supports_btrace) (struct target_ops *)
988 TARGET_DEFAULT_RETURN (0);
989
990 /* Enable branch tracing for PTID and allocate a branch trace target
991 information struct for reading and for disabling branch trace. */
992 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
993 ptid_t ptid)
994 TARGET_DEFAULT_NORETURN (tcomplain ());
995
996 /* Disable branch tracing and deallocate TINFO. */
997 void (*to_disable_btrace) (struct target_ops *,
998 struct btrace_target_info *tinfo)
999 TARGET_DEFAULT_NORETURN (tcomplain ());
1000
1001 /* Disable branch tracing and deallocate TINFO. This function is similar
1002 to to_disable_btrace, except that it is called during teardown and is
1003 only allowed to perform actions that are safe. A counter-example would
1004 be attempting to talk to a remote target. */
1005 void (*to_teardown_btrace) (struct target_ops *,
1006 struct btrace_target_info *tinfo)
1007 TARGET_DEFAULT_NORETURN (tcomplain ());
1008
1009 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1010 DATA is cleared before new trace is added.
1011 The branch trace will start with the most recent block and continue
1012 towards older blocks. */
1013 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1014 VEC (btrace_block_s) **data,
1015 struct btrace_target_info *btinfo,
1016 enum btrace_read_type type)
1017 TARGET_DEFAULT_NORETURN (tcomplain ());
1018
1019 /* Stop trace recording. */
1020 void (*to_stop_recording) (struct target_ops *)
1021 TARGET_DEFAULT_IGNORE ();
1022
1023 /* Print information about the recording. */
1024 void (*to_info_record) (struct target_ops *);
1025
1026 /* Save the recorded execution trace into a file. */
1027 void (*to_save_record) (struct target_ops *, const char *filename)
1028 TARGET_DEFAULT_NORETURN (tcomplain ());
1029
1030 /* Delete the recorded execution trace from the current position onwards. */
1031 void (*to_delete_record) (struct target_ops *)
1032 TARGET_DEFAULT_NORETURN (tcomplain ());
1033
1034 /* Query if the record target is currently replaying. */
1035 int (*to_record_is_replaying) (struct target_ops *)
1036 TARGET_DEFAULT_RETURN (0);
1037
1038 /* Go to the begin of the execution trace. */
1039 void (*to_goto_record_begin) (struct target_ops *)
1040 TARGET_DEFAULT_NORETURN (tcomplain ());
1041
1042 /* Go to the end of the execution trace. */
1043 void (*to_goto_record_end) (struct target_ops *)
1044 TARGET_DEFAULT_NORETURN (tcomplain ());
1045
1046 /* Go to a specific location in the recorded execution trace. */
1047 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1048 TARGET_DEFAULT_NORETURN (tcomplain ());
1049
1050 /* Disassemble SIZE instructions in the recorded execution trace from
1051 the current position.
1052 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1053 disassemble SIZE succeeding instructions. */
1054 void (*to_insn_history) (struct target_ops *, int size, int flags)
1055 TARGET_DEFAULT_NORETURN (tcomplain ());
1056
1057 /* Disassemble SIZE instructions in the recorded execution trace around
1058 FROM.
1059 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1060 disassemble SIZE instructions after FROM. */
1061 void (*to_insn_history_from) (struct target_ops *,
1062 ULONGEST from, int size, int flags)
1063 TARGET_DEFAULT_NORETURN (tcomplain ());
1064
1065 /* Disassemble a section of the recorded execution trace from instruction
1066 BEGIN (inclusive) to instruction END (inclusive). */
1067 void (*to_insn_history_range) (struct target_ops *,
1068 ULONGEST begin, ULONGEST end, int flags)
1069 TARGET_DEFAULT_NORETURN (tcomplain ());
1070
1071 /* Print a function trace of the recorded execution trace.
1072 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1073 succeeding functions. */
1074 void (*to_call_history) (struct target_ops *, int size, int flags)
1075 TARGET_DEFAULT_NORETURN (tcomplain ());
1076
1077 /* Print a function trace of the recorded execution trace starting
1078 at function FROM.
1079 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1080 SIZE functions after FROM. */
1081 void (*to_call_history_from) (struct target_ops *,
1082 ULONGEST begin, int size, int flags)
1083 TARGET_DEFAULT_NORETURN (tcomplain ());
1084
1085 /* Print a function trace of an execution trace section from function BEGIN
1086 (inclusive) to function END (inclusive). */
1087 void (*to_call_history_range) (struct target_ops *,
1088 ULONGEST begin, ULONGEST end, int flags)
1089 TARGET_DEFAULT_NORETURN (tcomplain ());
1090
1091 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1092 non-empty annex. */
1093 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1094 TARGET_DEFAULT_RETURN (0);
1095
1096 /* Those unwinders are tried before any other arch unwinders. If
1097 SELF doesn't have unwinders, it should delegate to the
1098 "beneath" target. */
1099 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1100 TARGET_DEFAULT_RETURN (NULL);
1101
1102 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1103 TARGET_DEFAULT_RETURN (NULL);
1104
1105 /* Return the number of bytes by which the PC needs to be decremented
1106 after executing a breakpoint instruction.
1107 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1108 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1109 struct gdbarch *gdbarch)
1110 TARGET_DEFAULT_FUNC (default_target_decr_pc_after_break);
1111
1112 /* Prepare to generate a core file. */
1113 void (*to_prepare_to_generate_core) (struct target_ops *)
1114 TARGET_DEFAULT_IGNORE ();
1115
1116 /* Cleanup after generating a core file. */
1117 void (*to_done_generating_core) (struct target_ops *)
1118 TARGET_DEFAULT_IGNORE ();
1119
1120 int to_magic;
1121 /* Need sub-structure for target machine related rather than comm related?
1122 */
1123 };
1124
1125 /* Magic number for checking ops size. If a struct doesn't end with this
1126 number, somebody changed the declaration but didn't change all the
1127 places that initialize one. */
1128
1129 #define OPS_MAGIC 3840
1130
1131 /* The ops structure for our "current" target process. This should
1132 never be NULL. If there is no target, it points to the dummy_target. */
1133
1134 extern struct target_ops current_target;
1135
1136 /* Define easy words for doing these operations on our current target. */
1137
1138 #define target_shortname (current_target.to_shortname)
1139 #define target_longname (current_target.to_longname)
1140
1141 /* Does whatever cleanup is required for a target that we are no
1142 longer going to be calling. This routine is automatically always
1143 called after popping the target off the target stack - the target's
1144 own methods are no longer available through the target vector.
1145 Closing file descriptors and freeing all memory allocated memory are
1146 typical things it should do. */
1147
1148 void target_close (struct target_ops *targ);
1149
1150 /* Find the correct target to use for "attach". If a target on the
1151 current stack supports attaching, then it is returned. Otherwise,
1152 the default run target is returned. */
1153
1154 extern struct target_ops *find_attach_target (void);
1155
1156 /* Find the correct target to use for "run". If a target on the
1157 current stack supports creating a new inferior, then it is
1158 returned. Otherwise, the default run target is returned. */
1159
1160 extern struct target_ops *find_run_target (void);
1161
1162 /* Some targets don't generate traps when attaching to the inferior,
1163 or their target_attach implementation takes care of the waiting.
1164 These targets must set to_attach_no_wait. */
1165
1166 #define target_attach_no_wait \
1167 (current_target.to_attach_no_wait)
1168
1169 /* The target_attach operation places a process under debugger control,
1170 and stops the process.
1171
1172 This operation provides a target-specific hook that allows the
1173 necessary bookkeeping to be performed after an attach completes. */
1174 #define target_post_attach(pid) \
1175 (*current_target.to_post_attach) (&current_target, pid)
1176
1177 /* Takes a program previously attached to and detaches it.
1178 The program may resume execution (some targets do, some don't) and will
1179 no longer stop on signals, etc. We better not have left any breakpoints
1180 in the program or it'll die when it hits one. ARGS is arguments
1181 typed by the user (e.g. a signal to send the process). FROM_TTY
1182 says whether to be verbose or not. */
1183
1184 extern void target_detach (const char *, int);
1185
1186 /* Disconnect from the current target without resuming it (leaving it
1187 waiting for a debugger). */
1188
1189 extern void target_disconnect (const char *, int);
1190
1191 /* Resume execution of the target process PTID (or a group of
1192 threads). STEP says whether to single-step or to run free; SIGGNAL
1193 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1194 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1195 PTID means `step/resume only this process id'. A wildcard PTID
1196 (all threads, or all threads of process) means `step/resume
1197 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1198 matches) resume with their 'thread->suspend.stop_signal' signal
1199 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1200 if in "no pass" state. */
1201
1202 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1203
1204 /* Wait for process pid to do something. PTID = -1 to wait for any
1205 pid to do something. Return pid of child, or -1 in case of error;
1206 store status through argument pointer STATUS. Note that it is
1207 _NOT_ OK to throw_exception() out of target_wait() without popping
1208 the debugging target from the stack; GDB isn't prepared to get back
1209 to the prompt with a debugging target but without the frame cache,
1210 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1211 options. */
1212
1213 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1214 int options);
1215
1216 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1217
1218 extern void target_fetch_registers (struct regcache *regcache, int regno);
1219
1220 /* Store at least register REGNO, or all regs if REGNO == -1.
1221 It can store as many registers as it wants to, so target_prepare_to_store
1222 must have been previously called. Calls error() if there are problems. */
1223
1224 extern void target_store_registers (struct regcache *regcache, int regs);
1225
1226 /* Get ready to modify the registers array. On machines which store
1227 individual registers, this doesn't need to do anything. On machines
1228 which store all the registers in one fell swoop, this makes sure
1229 that REGISTERS contains all the registers from the program being
1230 debugged. */
1231
1232 #define target_prepare_to_store(regcache) \
1233 (*current_target.to_prepare_to_store) (&current_target, regcache)
1234
1235 /* Determine current address space of thread PTID. */
1236
1237 struct address_space *target_thread_address_space (ptid_t);
1238
1239 /* Implement the "info proc" command. This returns one if the request
1240 was handled, and zero otherwise. It can also throw an exception if
1241 an error was encountered while attempting to handle the
1242 request. */
1243
1244 int target_info_proc (const char *, enum info_proc_what);
1245
1246 /* Returns true if this target can debug multiple processes
1247 simultaneously. */
1248
1249 #define target_supports_multi_process() \
1250 (*current_target.to_supports_multi_process) (&current_target)
1251
1252 /* Returns true if this target can disable address space randomization. */
1253
1254 int target_supports_disable_randomization (void);
1255
1256 /* Returns true if this target can enable and disable tracepoints
1257 while a trace experiment is running. */
1258
1259 #define target_supports_enable_disable_tracepoint() \
1260 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1261
1262 #define target_supports_string_tracing() \
1263 (*current_target.to_supports_string_tracing) (&current_target)
1264
1265 /* Returns true if this target can handle breakpoint conditions
1266 on its end. */
1267
1268 #define target_supports_evaluation_of_breakpoint_conditions() \
1269 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1270
1271 /* Returns true if this target can handle breakpoint commands
1272 on its end. */
1273
1274 #define target_can_run_breakpoint_commands() \
1275 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1276
1277 extern int target_read_string (CORE_ADDR, char **, int, int *);
1278
1279 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1280 ssize_t len);
1281
1282 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1283 ssize_t len);
1284
1285 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1286
1287 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1288
1289 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1290 ssize_t len);
1291
1292 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1293 ssize_t len);
1294
1295 /* Fetches the target's memory map. If one is found it is sorted
1296 and returned, after some consistency checking. Otherwise, NULL
1297 is returned. */
1298 VEC(mem_region_s) *target_memory_map (void);
1299
1300 /* Erase the specified flash region. */
1301 void target_flash_erase (ULONGEST address, LONGEST length);
1302
1303 /* Finish a sequence of flash operations. */
1304 void target_flash_done (void);
1305
1306 /* Describes a request for a memory write operation. */
1307 struct memory_write_request
1308 {
1309 /* Begining address that must be written. */
1310 ULONGEST begin;
1311 /* Past-the-end address. */
1312 ULONGEST end;
1313 /* The data to write. */
1314 gdb_byte *data;
1315 /* A callback baton for progress reporting for this request. */
1316 void *baton;
1317 };
1318 typedef struct memory_write_request memory_write_request_s;
1319 DEF_VEC_O(memory_write_request_s);
1320
1321 /* Enumeration specifying different flash preservation behaviour. */
1322 enum flash_preserve_mode
1323 {
1324 flash_preserve,
1325 flash_discard
1326 };
1327
1328 /* Write several memory blocks at once. This version can be more
1329 efficient than making several calls to target_write_memory, in
1330 particular because it can optimize accesses to flash memory.
1331
1332 Moreover, this is currently the only memory access function in gdb
1333 that supports writing to flash memory, and it should be used for
1334 all cases where access to flash memory is desirable.
1335
1336 REQUESTS is the vector (see vec.h) of memory_write_request.
1337 PRESERVE_FLASH_P indicates what to do with blocks which must be
1338 erased, but not completely rewritten.
1339 PROGRESS_CB is a function that will be periodically called to provide
1340 feedback to user. It will be called with the baton corresponding
1341 to the request currently being written. It may also be called
1342 with a NULL baton, when preserved flash sectors are being rewritten.
1343
1344 The function returns 0 on success, and error otherwise. */
1345 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1346 enum flash_preserve_mode preserve_flash_p,
1347 void (*progress_cb) (ULONGEST, void *));
1348
1349 /* Print a line about the current target. */
1350
1351 #define target_files_info() \
1352 (*current_target.to_files_info) (&current_target)
1353
1354 /* Insert a breakpoint at address BP_TGT->placed_address in
1355 the target machine. Returns 0 for success, and returns non-zero or
1356 throws an error (with a detailed failure reason error code and
1357 message) otherwise. */
1358
1359 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1360 struct bp_target_info *bp_tgt);
1361
1362 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1363 machine. Result is 0 for success, non-zero for error. */
1364
1365 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1366 struct bp_target_info *bp_tgt);
1367
1368 /* Initialize the terminal settings we record for the inferior,
1369 before we actually run the inferior. */
1370
1371 #define target_terminal_init() \
1372 (*current_target.to_terminal_init) (&current_target)
1373
1374 /* Put the inferior's terminal settings into effect.
1375 This is preparation for starting or resuming the inferior. */
1376
1377 extern void target_terminal_inferior (void);
1378
1379 /* Put some of our terminal settings into effect,
1380 enough to get proper results from our output,
1381 but do not change into or out of RAW mode
1382 so that no input is discarded.
1383
1384 After doing this, either terminal_ours or terminal_inferior
1385 should be called to get back to a normal state of affairs. */
1386
1387 #define target_terminal_ours_for_output() \
1388 (*current_target.to_terminal_ours_for_output) (&current_target)
1389
1390 /* Put our terminal settings into effect.
1391 First record the inferior's terminal settings
1392 so they can be restored properly later. */
1393
1394 #define target_terminal_ours() \
1395 (*current_target.to_terminal_ours) (&current_target)
1396
1397 /* Save our terminal settings.
1398 This is called from TUI after entering or leaving the curses
1399 mode. Since curses modifies our terminal this call is here
1400 to take this change into account. */
1401
1402 #define target_terminal_save_ours() \
1403 (*current_target.to_terminal_save_ours) (&current_target)
1404
1405 /* Print useful information about our terminal status, if such a thing
1406 exists. */
1407
1408 #define target_terminal_info(arg, from_tty) \
1409 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1410
1411 /* Kill the inferior process. Make it go away. */
1412
1413 extern void target_kill (void);
1414
1415 /* Load an executable file into the target process. This is expected
1416 to not only bring new code into the target process, but also to
1417 update GDB's symbol tables to match.
1418
1419 ARG contains command-line arguments, to be broken down with
1420 buildargv (). The first non-switch argument is the filename to
1421 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1422 0)), which is an offset to apply to the load addresses of FILE's
1423 sections. The target may define switches, or other non-switch
1424 arguments, as it pleases. */
1425
1426 extern void target_load (const char *arg, int from_tty);
1427
1428 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1429 notification of inferior events such as fork and vork immediately
1430 after the inferior is created. (This because of how gdb gets an
1431 inferior created via invoking a shell to do it. In such a scenario,
1432 if the shell init file has commands in it, the shell will fork and
1433 exec for each of those commands, and we will see each such fork
1434 event. Very bad.)
1435
1436 Such targets will supply an appropriate definition for this function. */
1437
1438 #define target_post_startup_inferior(ptid) \
1439 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1440
1441 /* On some targets, we can catch an inferior fork or vfork event when
1442 it occurs. These functions insert/remove an already-created
1443 catchpoint for such events. They return 0 for success, 1 if the
1444 catchpoint type is not supported and -1 for failure. */
1445
1446 #define target_insert_fork_catchpoint(pid) \
1447 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1448
1449 #define target_remove_fork_catchpoint(pid) \
1450 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1451
1452 #define target_insert_vfork_catchpoint(pid) \
1453 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1454
1455 #define target_remove_vfork_catchpoint(pid) \
1456 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1457
1458 /* If the inferior forks or vforks, this function will be called at
1459 the next resume in order to perform any bookkeeping and fiddling
1460 necessary to continue debugging either the parent or child, as
1461 requested, and releasing the other. Information about the fork
1462 or vfork event is available via get_last_target_status ().
1463 This function returns 1 if the inferior should not be resumed
1464 (i.e. there is another event pending). */
1465
1466 int target_follow_fork (int follow_child, int detach_fork);
1467
1468 /* On some targets, we can catch an inferior exec event when it
1469 occurs. These functions insert/remove an already-created
1470 catchpoint for such events. They return 0 for success, 1 if the
1471 catchpoint type is not supported and -1 for failure. */
1472
1473 #define target_insert_exec_catchpoint(pid) \
1474 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1475
1476 #define target_remove_exec_catchpoint(pid) \
1477 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1478
1479 /* Syscall catch.
1480
1481 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1482 If NEEDED is zero, it means the target can disable the mechanism to
1483 catch system calls because there are no more catchpoints of this type.
1484
1485 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1486 being requested. In this case, both TABLE_SIZE and TABLE should
1487 be ignored.
1488
1489 TABLE_SIZE is the number of elements in TABLE. It only matters if
1490 ANY_COUNT is zero.
1491
1492 TABLE is an array of ints, indexed by syscall number. An element in
1493 this array is nonzero if that syscall should be caught. This argument
1494 only matters if ANY_COUNT is zero.
1495
1496 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1497 for failure. */
1498
1499 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1500 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1501 pid, needed, any_count, \
1502 table_size, table)
1503
1504 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1505 exit code of PID, if any. */
1506
1507 #define target_has_exited(pid,wait_status,exit_status) \
1508 (*current_target.to_has_exited) (&current_target, \
1509 pid,wait_status,exit_status)
1510
1511 /* The debugger has completed a blocking wait() call. There is now
1512 some process event that must be processed. This function should
1513 be defined by those targets that require the debugger to perform
1514 cleanup or internal state changes in response to the process event. */
1515
1516 /* The inferior process has died. Do what is right. */
1517
1518 void target_mourn_inferior (void);
1519
1520 /* Does target have enough data to do a run or attach command? */
1521
1522 #define target_can_run(t) \
1523 ((t)->to_can_run) (t)
1524
1525 /* Set list of signals to be handled in the target.
1526
1527 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1528 (enum gdb_signal). For every signal whose entry in this array is
1529 non-zero, the target is allowed -but not required- to skip reporting
1530 arrival of the signal to the GDB core by returning from target_wait,
1531 and to pass the signal directly to the inferior instead.
1532
1533 However, if the target is hardware single-stepping a thread that is
1534 about to receive a signal, it needs to be reported in any case, even
1535 if mentioned in a previous target_pass_signals call. */
1536
1537 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1538
1539 /* Set list of signals the target may pass to the inferior. This
1540 directly maps to the "handle SIGNAL pass/nopass" setting.
1541
1542 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1543 number (enum gdb_signal). For every signal whose entry in this
1544 array is non-zero, the target is allowed to pass the signal to the
1545 inferior. Signals not present in the array shall be silently
1546 discarded. This does not influence whether to pass signals to the
1547 inferior as a result of a target_resume call. This is useful in
1548 scenarios where the target needs to decide whether to pass or not a
1549 signal to the inferior without GDB core involvement, such as for
1550 example, when detaching (as threads may have been suspended with
1551 pending signals not reported to GDB). */
1552
1553 extern void target_program_signals (int nsig, unsigned char *program_signals);
1554
1555 /* Check to see if a thread is still alive. */
1556
1557 extern int target_thread_alive (ptid_t ptid);
1558
1559 /* Query for new threads and add them to the thread list. */
1560
1561 extern void target_find_new_threads (void);
1562
1563 /* Make target stop in a continuable fashion. (For instance, under
1564 Unix, this should act like SIGSTOP). This function is normally
1565 used by GUIs to implement a stop button. */
1566
1567 extern void target_stop (ptid_t ptid);
1568
1569 /* Send the specified COMMAND to the target's monitor
1570 (shell,interpreter) for execution. The result of the query is
1571 placed in OUTBUF. */
1572
1573 #define target_rcmd(command, outbuf) \
1574 (*current_target.to_rcmd) (&current_target, command, outbuf)
1575
1576
1577 /* Does the target include all of memory, or only part of it? This
1578 determines whether we look up the target chain for other parts of
1579 memory if this target can't satisfy a request. */
1580
1581 extern int target_has_all_memory_1 (void);
1582 #define target_has_all_memory target_has_all_memory_1 ()
1583
1584 /* Does the target include memory? (Dummy targets don't.) */
1585
1586 extern int target_has_memory_1 (void);
1587 #define target_has_memory target_has_memory_1 ()
1588
1589 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1590 we start a process.) */
1591
1592 extern int target_has_stack_1 (void);
1593 #define target_has_stack target_has_stack_1 ()
1594
1595 /* Does the target have registers? (Exec files don't.) */
1596
1597 extern int target_has_registers_1 (void);
1598 #define target_has_registers target_has_registers_1 ()
1599
1600 /* Does the target have execution? Can we make it jump (through
1601 hoops), or pop its stack a few times? This means that the current
1602 target is currently executing; for some targets, that's the same as
1603 whether or not the target is capable of execution, but there are
1604 also targets which can be current while not executing. In that
1605 case this will become true after to_create_inferior or
1606 to_attach. */
1607
1608 extern int target_has_execution_1 (ptid_t);
1609
1610 /* Like target_has_execution_1, but always passes inferior_ptid. */
1611
1612 extern int target_has_execution_current (void);
1613
1614 #define target_has_execution target_has_execution_current ()
1615
1616 /* Default implementations for process_stratum targets. Return true
1617 if there's a selected inferior, false otherwise. */
1618
1619 extern int default_child_has_all_memory (struct target_ops *ops);
1620 extern int default_child_has_memory (struct target_ops *ops);
1621 extern int default_child_has_stack (struct target_ops *ops);
1622 extern int default_child_has_registers (struct target_ops *ops);
1623 extern int default_child_has_execution (struct target_ops *ops,
1624 ptid_t the_ptid);
1625
1626 /* Can the target support the debugger control of thread execution?
1627 Can it lock the thread scheduler? */
1628
1629 #define target_can_lock_scheduler \
1630 (current_target.to_has_thread_control & tc_schedlock)
1631
1632 /* Controls whether async mode is permitted. */
1633 extern int target_async_permitted;
1634
1635 /* Can the target support asynchronous execution? */
1636 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1637
1638 /* Is the target in asynchronous execution mode? */
1639 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1640
1641 /* Put the target in async mode with the specified callback function. */
1642 #define target_async(CALLBACK,CONTEXT) \
1643 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1644
1645 #define target_execution_direction() \
1646 (current_target.to_execution_direction (&current_target))
1647
1648 /* Converts a process id to a string. Usually, the string just contains
1649 `process xyz', but on some systems it may contain
1650 `process xyz thread abc'. */
1651
1652 extern char *target_pid_to_str (ptid_t ptid);
1653
1654 extern char *normal_pid_to_str (ptid_t ptid);
1655
1656 /* Return a short string describing extra information about PID,
1657 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1658 is okay. */
1659
1660 #define target_extra_thread_info(TP) \
1661 (current_target.to_extra_thread_info (&current_target, TP))
1662
1663 /* Return the thread's name. A NULL result means that the target
1664 could not determine this thread's name. */
1665
1666 extern char *target_thread_name (struct thread_info *);
1667
1668 /* Attempts to find the pathname of the executable file
1669 that was run to create a specified process.
1670
1671 The process PID must be stopped when this operation is used.
1672
1673 If the executable file cannot be determined, NULL is returned.
1674
1675 Else, a pointer to a character string containing the pathname
1676 is returned. This string should be copied into a buffer by
1677 the client if the string will not be immediately used, or if
1678 it must persist. */
1679
1680 #define target_pid_to_exec_file(pid) \
1681 (current_target.to_pid_to_exec_file) (&current_target, pid)
1682
1683 /* See the to_thread_architecture description in struct target_ops. */
1684
1685 #define target_thread_architecture(ptid) \
1686 (current_target.to_thread_architecture (&current_target, ptid))
1687
1688 /*
1689 * Iterator function for target memory regions.
1690 * Calls a callback function once for each memory region 'mapped'
1691 * in the child process. Defined as a simple macro rather than
1692 * as a function macro so that it can be tested for nullity.
1693 */
1694
1695 #define target_find_memory_regions(FUNC, DATA) \
1696 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1697
1698 /*
1699 * Compose corefile .note section.
1700 */
1701
1702 #define target_make_corefile_notes(BFD, SIZE_P) \
1703 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1704
1705 /* Bookmark interfaces. */
1706 #define target_get_bookmark(ARGS, FROM_TTY) \
1707 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1708
1709 #define target_goto_bookmark(ARG, FROM_TTY) \
1710 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1711
1712 /* Hardware watchpoint interfaces. */
1713
1714 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1715 write). Only the INFERIOR_PTID task is being queried. */
1716
1717 #define target_stopped_by_watchpoint() \
1718 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1719
1720 /* Non-zero if we have steppable watchpoints */
1721
1722 #define target_have_steppable_watchpoint \
1723 (current_target.to_have_steppable_watchpoint)
1724
1725 /* Non-zero if we have continuable watchpoints */
1726
1727 #define target_have_continuable_watchpoint \
1728 (current_target.to_have_continuable_watchpoint)
1729
1730 /* Provide defaults for hardware watchpoint functions. */
1731
1732 /* If the *_hw_beakpoint functions have not been defined
1733 elsewhere use the definitions in the target vector. */
1734
1735 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1736 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1737 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1738 (including this one?). OTHERTYPE is who knows what... */
1739
1740 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1741 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1742 TYPE, CNT, OTHERTYPE);
1743
1744 /* Returns the number of debug registers needed to watch the given
1745 memory region, or zero if not supported. */
1746
1747 #define target_region_ok_for_hw_watchpoint(addr, len) \
1748 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1749 addr, len)
1750
1751
1752 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1753 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1754 COND is the expression for its condition, or NULL if there's none.
1755 Returns 0 for success, 1 if the watchpoint type is not supported,
1756 -1 for failure. */
1757
1758 #define target_insert_watchpoint(addr, len, type, cond) \
1759 (*current_target.to_insert_watchpoint) (&current_target, \
1760 addr, len, type, cond)
1761
1762 #define target_remove_watchpoint(addr, len, type, cond) \
1763 (*current_target.to_remove_watchpoint) (&current_target, \
1764 addr, len, type, cond)
1765
1766 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1767 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1768 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1769 masked watchpoints are not supported, -1 for failure. */
1770
1771 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1772
1773 /* Remove a masked watchpoint at ADDR with the mask MASK.
1774 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1775 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1776 for failure. */
1777
1778 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1779
1780 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1781 the target machine. Returns 0 for success, and returns non-zero or
1782 throws an error (with a detailed failure reason error code and
1783 message) otherwise. */
1784
1785 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1786 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1787 gdbarch, bp_tgt)
1788
1789 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1790 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1791 gdbarch, bp_tgt)
1792
1793 /* Return number of debug registers needed for a ranged breakpoint,
1794 or -1 if ranged breakpoints are not supported. */
1795
1796 extern int target_ranged_break_num_registers (void);
1797
1798 /* Return non-zero if target knows the data address which triggered this
1799 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1800 INFERIOR_PTID task is being queried. */
1801 #define target_stopped_data_address(target, addr_p) \
1802 (*target.to_stopped_data_address) (target, addr_p)
1803
1804 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1805 LENGTH bytes beginning at START. */
1806 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1807 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1808
1809 /* Return non-zero if the target is capable of using hardware to evaluate
1810 the condition expression. In this case, if the condition is false when
1811 the watched memory location changes, execution may continue without the
1812 debugger being notified.
1813
1814 Due to limitations in the hardware implementation, it may be capable of
1815 avoiding triggering the watchpoint in some cases where the condition
1816 expression is false, but may report some false positives as well.
1817 For this reason, GDB will still evaluate the condition expression when
1818 the watchpoint triggers. */
1819 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1820 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1821 addr, len, type, cond)
1822
1823 /* Return number of debug registers needed for a masked watchpoint,
1824 -1 if masked watchpoints are not supported or -2 if the given address
1825 and mask combination cannot be used. */
1826
1827 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1828
1829 /* Target can execute in reverse? */
1830 #define target_can_execute_reverse \
1831 current_target.to_can_execute_reverse (&current_target)
1832
1833 extern const struct target_desc *target_read_description (struct target_ops *);
1834
1835 #define target_get_ada_task_ptid(lwp, tid) \
1836 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1837
1838 /* Utility implementation of searching memory. */
1839 extern int simple_search_memory (struct target_ops* ops,
1840 CORE_ADDR start_addr,
1841 ULONGEST search_space_len,
1842 const gdb_byte *pattern,
1843 ULONGEST pattern_len,
1844 CORE_ADDR *found_addrp);
1845
1846 /* Main entry point for searching memory. */
1847 extern int target_search_memory (CORE_ADDR start_addr,
1848 ULONGEST search_space_len,
1849 const gdb_byte *pattern,
1850 ULONGEST pattern_len,
1851 CORE_ADDR *found_addrp);
1852
1853 /* Target file operations. */
1854
1855 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1856 target file descriptor, or -1 if an error occurs (and set
1857 *TARGET_ERRNO). */
1858 extern int target_fileio_open (const char *filename, int flags, int mode,
1859 int *target_errno);
1860
1861 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1862 Return the number of bytes written, or -1 if an error occurs
1863 (and set *TARGET_ERRNO). */
1864 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1865 ULONGEST offset, int *target_errno);
1866
1867 /* Read up to LEN bytes FD on the target into READ_BUF.
1868 Return the number of bytes read, or -1 if an error occurs
1869 (and set *TARGET_ERRNO). */
1870 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1871 ULONGEST offset, int *target_errno);
1872
1873 /* Close FD on the target. Return 0, or -1 if an error occurs
1874 (and set *TARGET_ERRNO). */
1875 extern int target_fileio_close (int fd, int *target_errno);
1876
1877 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1878 occurs (and set *TARGET_ERRNO). */
1879 extern int target_fileio_unlink (const char *filename, int *target_errno);
1880
1881 /* Read value of symbolic link FILENAME on the target. Return a
1882 null-terminated string allocated via xmalloc, or NULL if an error
1883 occurs (and set *TARGET_ERRNO). */
1884 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1885
1886 /* Read target file FILENAME. The return value will be -1 if the transfer
1887 fails or is not supported; 0 if the object is empty; or the length
1888 of the object otherwise. If a positive value is returned, a
1889 sufficiently large buffer will be allocated using xmalloc and
1890 returned in *BUF_P containing the contents of the object.
1891
1892 This method should be used for objects sufficiently small to store
1893 in a single xmalloc'd buffer, when no fixed bound on the object's
1894 size is known in advance. */
1895 extern LONGEST target_fileio_read_alloc (const char *filename,
1896 gdb_byte **buf_p);
1897
1898 /* Read target file FILENAME. The result is NUL-terminated and
1899 returned as a string, allocated using xmalloc. If an error occurs
1900 or the transfer is unsupported, NULL is returned. Empty objects
1901 are returned as allocated but empty strings. A warning is issued
1902 if the result contains any embedded NUL bytes. */
1903 extern char *target_fileio_read_stralloc (const char *filename);
1904
1905
1906 /* Tracepoint-related operations. */
1907
1908 #define target_trace_init() \
1909 (*current_target.to_trace_init) (&current_target)
1910
1911 #define target_download_tracepoint(t) \
1912 (*current_target.to_download_tracepoint) (&current_target, t)
1913
1914 #define target_can_download_tracepoint() \
1915 (*current_target.to_can_download_tracepoint) (&current_target)
1916
1917 #define target_download_trace_state_variable(tsv) \
1918 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1919
1920 #define target_enable_tracepoint(loc) \
1921 (*current_target.to_enable_tracepoint) (&current_target, loc)
1922
1923 #define target_disable_tracepoint(loc) \
1924 (*current_target.to_disable_tracepoint) (&current_target, loc)
1925
1926 #define target_trace_start() \
1927 (*current_target.to_trace_start) (&current_target)
1928
1929 #define target_trace_set_readonly_regions() \
1930 (*current_target.to_trace_set_readonly_regions) (&current_target)
1931
1932 #define target_get_trace_status(ts) \
1933 (*current_target.to_get_trace_status) (&current_target, ts)
1934
1935 #define target_get_tracepoint_status(tp,utp) \
1936 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1937
1938 #define target_trace_stop() \
1939 (*current_target.to_trace_stop) (&current_target)
1940
1941 #define target_trace_find(type,num,addr1,addr2,tpp) \
1942 (*current_target.to_trace_find) (&current_target, \
1943 (type), (num), (addr1), (addr2), (tpp))
1944
1945 #define target_get_trace_state_variable_value(tsv,val) \
1946 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1947 (tsv), (val))
1948
1949 #define target_save_trace_data(filename) \
1950 (*current_target.to_save_trace_data) (&current_target, filename)
1951
1952 #define target_upload_tracepoints(utpp) \
1953 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1954
1955 #define target_upload_trace_state_variables(utsvp) \
1956 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1957
1958 #define target_get_raw_trace_data(buf,offset,len) \
1959 (*current_target.to_get_raw_trace_data) (&current_target, \
1960 (buf), (offset), (len))
1961
1962 #define target_get_min_fast_tracepoint_insn_len() \
1963 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1964
1965 #define target_set_disconnected_tracing(val) \
1966 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1967
1968 #define target_set_circular_trace_buffer(val) \
1969 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1970
1971 #define target_set_trace_buffer_size(val) \
1972 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1973
1974 #define target_set_trace_notes(user,notes,stopnotes) \
1975 (*current_target.to_set_trace_notes) (&current_target, \
1976 (user), (notes), (stopnotes))
1977
1978 #define target_get_tib_address(ptid, addr) \
1979 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1980
1981 #define target_set_permissions() \
1982 (*current_target.to_set_permissions) (&current_target)
1983
1984 #define target_static_tracepoint_marker_at(addr, marker) \
1985 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1986 addr, marker)
1987
1988 #define target_static_tracepoint_markers_by_strid(marker_id) \
1989 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1990 marker_id)
1991
1992 #define target_traceframe_info() \
1993 (*current_target.to_traceframe_info) (&current_target)
1994
1995 #define target_use_agent(use) \
1996 (*current_target.to_use_agent) (&current_target, use)
1997
1998 #define target_can_use_agent() \
1999 (*current_target.to_can_use_agent) (&current_target)
2000
2001 #define target_augmented_libraries_svr4_read() \
2002 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2003
2004 /* Command logging facility. */
2005
2006 #define target_log_command(p) \
2007 (*current_target.to_log_command) (&current_target, p)
2008
2009
2010 extern int target_core_of_thread (ptid_t ptid);
2011
2012 /* See to_get_unwinder in struct target_ops. */
2013 extern const struct frame_unwind *target_get_unwinder (void);
2014
2015 /* See to_get_tailcall_unwinder in struct target_ops. */
2016 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2017
2018 /* This implements basic memory verification, reading target memory
2019 and performing the comparison here (as opposed to accelerated
2020 verification making use of the qCRC packet, for example). */
2021
2022 extern int simple_verify_memory (struct target_ops* ops,
2023 const gdb_byte *data,
2024 CORE_ADDR memaddr, ULONGEST size);
2025
2026 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2027 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2028 if there's a mismatch, and -1 if an error is encountered while
2029 reading memory. Throws an error if the functionality is found not
2030 to be supported by the current target. */
2031 int target_verify_memory (const gdb_byte *data,
2032 CORE_ADDR memaddr, ULONGEST size);
2033
2034 /* Routines for maintenance of the target structures...
2035
2036 complete_target_initialization: Finalize a target_ops by filling in
2037 any fields needed by the target implementation. Unnecessary for
2038 targets which are registered via add_target, as this part gets
2039 taken care of then.
2040
2041 add_target: Add a target to the list of all possible targets.
2042 This only makes sense for targets that should be activated using
2043 the "target TARGET_NAME ..." command.
2044
2045 push_target: Make this target the top of the stack of currently used
2046 targets, within its particular stratum of the stack. Result
2047 is 0 if now atop the stack, nonzero if not on top (maybe
2048 should warn user).
2049
2050 unpush_target: Remove this from the stack of currently used targets,
2051 no matter where it is on the list. Returns 0 if no
2052 change, 1 if removed from stack. */
2053
2054 extern void add_target (struct target_ops *);
2055
2056 extern void add_target_with_completer (struct target_ops *t,
2057 completer_ftype *completer);
2058
2059 extern void complete_target_initialization (struct target_ops *t);
2060
2061 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2062 for maintaining backwards compatibility when renaming targets. */
2063
2064 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2065
2066 extern void push_target (struct target_ops *);
2067
2068 extern int unpush_target (struct target_ops *);
2069
2070 extern void target_pre_inferior (int);
2071
2072 extern void target_preopen (int);
2073
2074 /* Does whatever cleanup is required to get rid of all pushed targets. */
2075 extern void pop_all_targets (void);
2076
2077 /* Like pop_all_targets, but pops only targets whose stratum is
2078 strictly above ABOVE_STRATUM. */
2079 extern void pop_all_targets_above (enum strata above_stratum);
2080
2081 extern int target_is_pushed (struct target_ops *t);
2082
2083 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2084 CORE_ADDR offset);
2085
2086 /* Struct target_section maps address ranges to file sections. It is
2087 mostly used with BFD files, but can be used without (e.g. for handling
2088 raw disks, or files not in formats handled by BFD). */
2089
2090 struct target_section
2091 {
2092 CORE_ADDR addr; /* Lowest address in section */
2093 CORE_ADDR endaddr; /* 1+highest address in section */
2094
2095 struct bfd_section *the_bfd_section;
2096
2097 /* The "owner" of the section.
2098 It can be any unique value. It is set by add_target_sections
2099 and used by remove_target_sections.
2100 For example, for executables it is a pointer to exec_bfd and
2101 for shlibs it is the so_list pointer. */
2102 void *owner;
2103 };
2104
2105 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2106
2107 struct target_section_table
2108 {
2109 struct target_section *sections;
2110 struct target_section *sections_end;
2111 };
2112
2113 /* Return the "section" containing the specified address. */
2114 struct target_section *target_section_by_addr (struct target_ops *target,
2115 CORE_ADDR addr);
2116
2117 /* Return the target section table this target (or the targets
2118 beneath) currently manipulate. */
2119
2120 extern struct target_section_table *target_get_section_table
2121 (struct target_ops *target);
2122
2123 /* From mem-break.c */
2124
2125 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2126 struct bp_target_info *);
2127
2128 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2129 struct bp_target_info *);
2130
2131 /* Check whether the memory at the breakpoint's placed address still
2132 contains the expected breakpoint instruction. */
2133
2134 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2135 struct bp_target_info *bp_tgt);
2136
2137 extern int default_memory_remove_breakpoint (struct gdbarch *,
2138 struct bp_target_info *);
2139
2140 extern int default_memory_insert_breakpoint (struct gdbarch *,
2141 struct bp_target_info *);
2142
2143
2144 /* From target.c */
2145
2146 extern void initialize_targets (void);
2147
2148 extern void noprocess (void) ATTRIBUTE_NORETURN;
2149
2150 extern void target_require_runnable (void);
2151
2152 extern void find_default_attach (struct target_ops *, const char *, int);
2153
2154 extern void find_default_create_inferior (struct target_ops *,
2155 char *, char *, char **, int);
2156
2157 extern struct target_ops *find_target_beneath (struct target_ops *);
2158
2159 /* Find the target at STRATUM. If no target is at that stratum,
2160 return NULL. */
2161
2162 struct target_ops *find_target_at (enum strata stratum);
2163
2164 /* Read OS data object of type TYPE from the target, and return it in
2165 XML format. The result is NUL-terminated and returned as a string,
2166 allocated using xmalloc. If an error occurs or the transfer is
2167 unsupported, NULL is returned. Empty objects are returned as
2168 allocated but empty strings. */
2169
2170 extern char *target_get_osdata (const char *type);
2171
2172 \f
2173 /* Stuff that should be shared among the various remote targets. */
2174
2175 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2176 information (higher values, more information). */
2177 extern int remote_debug;
2178
2179 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2180 extern int baud_rate;
2181 /* Timeout limit for response from target. */
2182 extern int remote_timeout;
2183
2184 \f
2185
2186 /* Set the show memory breakpoints mode to show, and installs a cleanup
2187 to restore it back to the current value. */
2188 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2189
2190 extern int may_write_registers;
2191 extern int may_write_memory;
2192 extern int may_insert_breakpoints;
2193 extern int may_insert_tracepoints;
2194 extern int may_insert_fast_tracepoints;
2195 extern int may_stop;
2196
2197 extern void update_target_permissions (void);
2198
2199 \f
2200 /* Imported from machine dependent code. */
2201
2202 /* See to_supports_btrace in struct target_ops. */
2203 #define target_supports_btrace() \
2204 (current_target.to_supports_btrace (&current_target))
2205
2206 /* See to_enable_btrace in struct target_ops. */
2207 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2208
2209 /* See to_disable_btrace in struct target_ops. */
2210 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2211
2212 /* See to_teardown_btrace in struct target_ops. */
2213 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2214
2215 /* See to_read_btrace in struct target_ops. */
2216 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2217 struct btrace_target_info *,
2218 enum btrace_read_type);
2219
2220 /* See to_stop_recording in struct target_ops. */
2221 extern void target_stop_recording (void);
2222
2223 /* See to_info_record in struct target_ops. */
2224 extern void target_info_record (void);
2225
2226 /* See to_save_record in struct target_ops. */
2227 extern void target_save_record (const char *filename);
2228
2229 /* Query if the target supports deleting the execution log. */
2230 extern int target_supports_delete_record (void);
2231
2232 /* See to_delete_record in struct target_ops. */
2233 extern void target_delete_record (void);
2234
2235 /* See to_record_is_replaying in struct target_ops. */
2236 extern int target_record_is_replaying (void);
2237
2238 /* See to_goto_record_begin in struct target_ops. */
2239 extern void target_goto_record_begin (void);
2240
2241 /* See to_goto_record_end in struct target_ops. */
2242 extern void target_goto_record_end (void);
2243
2244 /* See to_goto_record in struct target_ops. */
2245 extern void target_goto_record (ULONGEST insn);
2246
2247 /* See to_insn_history. */
2248 extern void target_insn_history (int size, int flags);
2249
2250 /* See to_insn_history_from. */
2251 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2252
2253 /* See to_insn_history_range. */
2254 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2255
2256 /* See to_call_history. */
2257 extern void target_call_history (int size, int flags);
2258
2259 /* See to_call_history_from. */
2260 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2261
2262 /* See to_call_history_range. */
2263 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2264
2265 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2266 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2267 struct gdbarch *gdbarch);
2268
2269 /* See to_decr_pc_after_break. */
2270 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2271
2272 /* See to_prepare_to_generate_core. */
2273 extern void target_prepare_to_generate_core (void);
2274
2275 /* See to_done_generating_core. */
2276 extern void target_done_generating_core (void);
2277
2278 #endif /* !defined (TARGET_H) */