]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
* ada-lex.l (HIGH_BYTE_POSN, is_digit_in_base, digit_to_int)
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #if !defined (TARGET_H)
27 #define TARGET_H
28
29 struct objfile;
30 struct ui_file;
31 struct mem_attrib;
32 struct target_ops;
33 struct bp_target_info;
34
35 /* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54 #include "bfd.h"
55 #include "symtab.h"
56 #include "dcache.h"
57 #include "memattr.h"
58
59 enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
63 core_stratum, /* Core dump files */
64 download_stratum, /* Downloading of remote targets */
65 process_stratum, /* Executing processes */
66 thread_stratum /* Executing threads */
67 };
68
69 enum thread_control_capabilities
70 {
71 tc_none = 0, /* Default: can't control thread execution. */
72 tc_schedlock = 1, /* Can lock the thread scheduler. */
73 tc_switch = 2 /* Can switch the running thread on demand. */
74 };
75
76 /* Stuff for target_wait. */
77
78 /* Generally, what has the program done? */
79 enum target_waitkind
80 {
81 /* The program has exited. The exit status is in value.integer. */
82 TARGET_WAITKIND_EXITED,
83
84 /* The program has stopped with a signal. Which signal is in
85 value.sig. */
86 TARGET_WAITKIND_STOPPED,
87
88 /* The program has terminated with a signal. Which signal is in
89 value.sig. */
90 TARGET_WAITKIND_SIGNALLED,
91
92 /* The program is letting us know that it dynamically loaded something
93 (e.g. it called load(2) on AIX). */
94 TARGET_WAITKIND_LOADED,
95
96 /* The program has forked. A "related" process' ID is in
97 value.related_pid. I.e., if the child forks, value.related_pid
98 is the parent's ID. */
99
100 TARGET_WAITKIND_FORKED,
101
102 /* The program has vforked. A "related" process's ID is in
103 value.related_pid. */
104
105 TARGET_WAITKIND_VFORKED,
106
107 /* The program has exec'ed a new executable file. The new file's
108 pathname is pointed to by value.execd_pathname. */
109
110 TARGET_WAITKIND_EXECD,
111
112 /* The program has entered or returned from a system call. On
113 HP-UX, this is used in the hardware watchpoint implementation.
114 The syscall's unique integer ID number is in value.syscall_id */
115
116 TARGET_WAITKIND_SYSCALL_ENTRY,
117 TARGET_WAITKIND_SYSCALL_RETURN,
118
119 /* Nothing happened, but we stopped anyway. This perhaps should be handled
120 within target_wait, but I'm not sure target_wait should be resuming the
121 inferior. */
122 TARGET_WAITKIND_SPURIOUS,
123
124 /* An event has occured, but we should wait again.
125 Remote_async_wait() returns this when there is an event
126 on the inferior, but the rest of the world is not interested in
127 it. The inferior has not stopped, but has just sent some output
128 to the console, for instance. In this case, we want to go back
129 to the event loop and wait there for another event from the
130 inferior, rather than being stuck in the remote_async_wait()
131 function. This way the event loop is responsive to other events,
132 like for instance the user typing. */
133 TARGET_WAITKIND_IGNORE
134 };
135
136 struct target_waitstatus
137 {
138 enum target_waitkind kind;
139
140 /* Forked child pid, execd pathname, exit status or signal number. */
141 union
142 {
143 int integer;
144 enum target_signal sig;
145 int related_pid;
146 char *execd_pathname;
147 int syscall_id;
148 }
149 value;
150 };
151
152 /* Possible types of events that the inferior handler will have to
153 deal with. */
154 enum inferior_event_type
155 {
156 /* There is a request to quit the inferior, abandon it. */
157 INF_QUIT_REQ,
158 /* Process a normal inferior event which will result in target_wait
159 being called. */
160 INF_REG_EVENT,
161 /* Deal with an error on the inferior. */
162 INF_ERROR,
163 /* We are called because a timer went off. */
164 INF_TIMER,
165 /* We are called to do stuff after the inferior stops. */
166 INF_EXEC_COMPLETE,
167 /* We are called to do some stuff after the inferior stops, but we
168 are expected to reenter the proceed() and
169 handle_inferior_event() functions. This is used only in case of
170 'step n' like commands. */
171 INF_EXEC_CONTINUE
172 };
173
174 /* Return the string for a signal. */
175 extern char *target_signal_to_string (enum target_signal);
176
177 /* Return the name (SIGHUP, etc.) for a signal. */
178 extern char *target_signal_to_name (enum target_signal);
179
180 /* Given a name (SIGHUP, etc.), return its signal. */
181 enum target_signal target_signal_from_name (char *);
182 \f
183 /* Target objects which can be transfered using target_read,
184 target_write, et cetera. */
185
186 enum target_object
187 {
188 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
189 TARGET_OBJECT_AVR,
190 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
191 TARGET_OBJECT_MEMORY,
192 /* Memory, avoiding GDB's data cache and trusting the executable.
193 Target implementations of to_xfer_partial never need to handle
194 this object, and most callers should not use it. */
195 TARGET_OBJECT_RAW_MEMORY,
196 /* Kernel Unwind Table. See "ia64-tdep.c". */
197 TARGET_OBJECT_UNWIND_TABLE,
198 /* Transfer auxilliary vector. */
199 TARGET_OBJECT_AUXV,
200 /* StackGhost cookie. See "sparc-tdep.c". */
201 TARGET_OBJECT_WCOOKIE
202
203 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
204 };
205
206 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
207 OBJECT. The OFFSET, for a seekable object, specifies the
208 starting point. The ANNEX can be used to provide additional
209 data-specific information to the target.
210
211 Return the number of bytes actually transfered, or -1 if the
212 transfer is not supported or otherwise fails. Return of a positive
213 value less than LEN indicates that no further transfer is possible.
214 Unlike the raw to_xfer_partial interface, callers of these
215 functions do not need to retry partial transfers. */
216
217 extern LONGEST target_read (struct target_ops *ops,
218 enum target_object object,
219 const char *annex, gdb_byte *buf,
220 ULONGEST offset, LONGEST len);
221
222 extern LONGEST target_write (struct target_ops *ops,
223 enum target_object object,
224 const char *annex, const gdb_byte *buf,
225 ULONGEST offset, LONGEST len);
226
227 /* Similar to target_write, except that it also calls PROGRESS
228 with the number of bytes written and the opaque BATON after
229 every partial write. This is useful for progress reporting
230 and user interaction while writing data. To abort the transfer,
231 the progress callback can throw an exception. */
232 LONGEST target_write_with_progress (struct target_ops *ops,
233 enum target_object object,
234 const char *annex, const gdb_byte *buf,
235 ULONGEST offset, LONGEST len,
236 void (*progress) (ULONGEST, void *),
237 void *baton);
238
239 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
240 be read using OPS. The return value will be -1 if the transfer
241 fails or is not supported; 0 if the object is empty; or the length
242 of the object otherwise. If a positive value is returned, a
243 sufficiently large buffer will be allocated using xmalloc and
244 returned in *BUF_P containing the contents of the object.
245
246 This method should be used for objects sufficiently small to store
247 in a single xmalloc'd buffer, when no fixed bound on the object's
248 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
249 through this function. */
250
251 extern LONGEST target_read_alloc (struct target_ops *ops,
252 enum target_object object,
253 const char *annex, gdb_byte **buf_p);
254
255 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
256 returned as a string, allocated using xmalloc. If an error occurs
257 or the transfer is unsupported, NULL is returned. Empty objects
258 are returned as allocated but empty strings. A warning is issued
259 if the result contains any embedded NUL bytes. */
260
261 extern char *target_read_stralloc (struct target_ops *ops,
262 enum target_object object,
263 const char *annex);
264
265 /* Wrappers to target read/write that perform memory transfers. They
266 throw an error if the memory transfer fails.
267
268 NOTE: cagney/2003-10-23: The naming schema is lifted from
269 "frame.h". The parameter order is lifted from get_frame_memory,
270 which in turn lifted it from read_memory. */
271
272 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
273 gdb_byte *buf, LONGEST len);
274 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
275 CORE_ADDR addr, int len);
276 \f
277
278 /* If certain kinds of activity happen, target_wait should perform
279 callbacks. */
280 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
281 on TARGET_ACTIVITY_FD. */
282 extern int target_activity_fd;
283 /* Returns zero to leave the inferior alone, one to interrupt it. */
284 extern int (*target_activity_function) (void);
285 \f
286 struct thread_info; /* fwd decl for parameter list below: */
287
288 struct target_ops
289 {
290 struct target_ops *beneath; /* To the target under this one. */
291 char *to_shortname; /* Name this target type */
292 char *to_longname; /* Name for printing */
293 char *to_doc; /* Documentation. Does not include trailing
294 newline, and starts with a one-line descrip-
295 tion (probably similar to to_longname). */
296 /* Per-target scratch pad. */
297 void *to_data;
298 /* The open routine takes the rest of the parameters from the
299 command, and (if successful) pushes a new target onto the
300 stack. Targets should supply this routine, if only to provide
301 an error message. */
302 void (*to_open) (char *, int);
303 /* Old targets with a static target vector provide "to_close".
304 New re-entrant targets provide "to_xclose" and that is expected
305 to xfree everything (including the "struct target_ops"). */
306 void (*to_xclose) (struct target_ops *targ, int quitting);
307 void (*to_close) (int);
308 void (*to_attach) (char *, int);
309 void (*to_post_attach) (int);
310 void (*to_detach) (char *, int);
311 void (*to_disconnect) (struct target_ops *, char *, int);
312 void (*to_resume) (ptid_t, int, enum target_signal);
313 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
314 void (*to_fetch_registers) (int);
315 void (*to_store_registers) (int);
316 void (*to_prepare_to_store) (void);
317
318 /* Transfer LEN bytes of memory between GDB address MYADDR and
319 target address MEMADDR. If WRITE, transfer them to the target, else
320 transfer them from the target. TARGET is the target from which we
321 get this function.
322
323 Return value, N, is one of the following:
324
325 0 means that we can't handle this. If errno has been set, it is the
326 error which prevented us from doing it (FIXME: What about bfd_error?).
327
328 positive (call it N) means that we have transferred N bytes
329 starting at MEMADDR. We might be able to handle more bytes
330 beyond this length, but no promises.
331
332 negative (call its absolute value N) means that we cannot
333 transfer right at MEMADDR, but we could transfer at least
334 something at MEMADDR + N.
335
336 NOTE: cagney/2004-10-01: This has been entirely superseeded by
337 to_xfer_partial and inferior inheritance. */
338
339 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
340 int len, int write,
341 struct mem_attrib *attrib,
342 struct target_ops *target);
343
344 void (*to_files_info) (struct target_ops *);
345 int (*to_insert_breakpoint) (struct bp_target_info *);
346 int (*to_remove_breakpoint) (struct bp_target_info *);
347 int (*to_can_use_hw_breakpoint) (int, int, int);
348 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
349 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
350 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
351 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
352 int (*to_stopped_by_watchpoint) (void);
353 int to_have_continuable_watchpoint;
354 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
355 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
356 void (*to_terminal_init) (void);
357 void (*to_terminal_inferior) (void);
358 void (*to_terminal_ours_for_output) (void);
359 void (*to_terminal_ours) (void);
360 void (*to_terminal_save_ours) (void);
361 void (*to_terminal_info) (char *, int);
362 void (*to_kill) (void);
363 void (*to_load) (char *, int);
364 int (*to_lookup_symbol) (char *, CORE_ADDR *);
365 void (*to_create_inferior) (char *, char *, char **, int);
366 void (*to_post_startup_inferior) (ptid_t);
367 void (*to_acknowledge_created_inferior) (int);
368 void (*to_insert_fork_catchpoint) (int);
369 int (*to_remove_fork_catchpoint) (int);
370 void (*to_insert_vfork_catchpoint) (int);
371 int (*to_remove_vfork_catchpoint) (int);
372 int (*to_follow_fork) (struct target_ops *, int);
373 void (*to_insert_exec_catchpoint) (int);
374 int (*to_remove_exec_catchpoint) (int);
375 int (*to_reported_exec_events_per_exec_call) (void);
376 int (*to_has_exited) (int, int, int *);
377 void (*to_mourn_inferior) (void);
378 int (*to_can_run) (void);
379 void (*to_notice_signals) (ptid_t ptid);
380 int (*to_thread_alive) (ptid_t ptid);
381 void (*to_find_new_threads) (void);
382 char *(*to_pid_to_str) (ptid_t);
383 char *(*to_extra_thread_info) (struct thread_info *);
384 void (*to_stop) (void);
385 void (*to_rcmd) (char *command, struct ui_file *output);
386 struct symtab_and_line *(*to_enable_exception_callback) (enum
387 exception_event_kind,
388 int);
389 struct exception_event_record *(*to_get_current_exception_event) (void);
390 char *(*to_pid_to_exec_file) (int pid);
391 enum strata to_stratum;
392 int to_has_all_memory;
393 int to_has_memory;
394 int to_has_stack;
395 int to_has_registers;
396 int to_has_execution;
397 int to_has_thread_control; /* control thread execution */
398 struct section_table
399 *to_sections;
400 struct section_table
401 *to_sections_end;
402 /* ASYNC target controls */
403 int (*to_can_async_p) (void);
404 int (*to_is_async_p) (void);
405 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
406 void *context);
407 int to_async_mask_value;
408 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
409 unsigned long,
410 int, int, int,
411 void *),
412 void *);
413 char * (*to_make_corefile_notes) (bfd *, int *);
414
415 /* Return the thread-local address at OFFSET in the
416 thread-local storage for the thread PTID and the shared library
417 or executable file given by OBJFILE. If that block of
418 thread-local storage hasn't been allocated yet, this function
419 may return an error. */
420 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
421 CORE_ADDR load_module_addr,
422 CORE_ADDR offset);
423
424 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
425 OBJECT. The OFFSET, for a seekable object, specifies the
426 starting point. The ANNEX can be used to provide additional
427 data-specific information to the target.
428
429 Return the number of bytes actually transfered, zero when no
430 further transfer is possible, and -1 when the transfer is not
431 supported. Return of a positive value smaller than LEN does
432 not indicate the end of the object, only the end of the
433 transfer; higher level code should continue transferring if
434 desired. This is handled in target.c.
435
436 The interface does not support a "retry" mechanism. Instead it
437 assumes that at least one byte will be transfered on each
438 successful call.
439
440 NOTE: cagney/2003-10-17: The current interface can lead to
441 fragmented transfers. Lower target levels should not implement
442 hacks, such as enlarging the transfer, in an attempt to
443 compensate for this. Instead, the target stack should be
444 extended so that it implements supply/collect methods and a
445 look-aside object cache. With that available, the lowest
446 target can safely and freely "push" data up the stack.
447
448 See target_read and target_write for more information. One,
449 and only one, of readbuf or writebuf must be non-NULL. */
450
451 LONGEST (*to_xfer_partial) (struct target_ops *ops,
452 enum target_object object, const char *annex,
453 gdb_byte *readbuf, const gdb_byte *writebuf,
454 ULONGEST offset, LONGEST len);
455
456 int to_magic;
457 /* Need sub-structure for target machine related rather than comm related?
458 */
459 };
460
461 /* Magic number for checking ops size. If a struct doesn't end with this
462 number, somebody changed the declaration but didn't change all the
463 places that initialize one. */
464
465 #define OPS_MAGIC 3840
466
467 /* The ops structure for our "current" target process. This should
468 never be NULL. If there is no target, it points to the dummy_target. */
469
470 extern struct target_ops current_target;
471
472 /* Define easy words for doing these operations on our current target. */
473
474 #define target_shortname (current_target.to_shortname)
475 #define target_longname (current_target.to_longname)
476
477 /* Does whatever cleanup is required for a target that we are no
478 longer going to be calling. QUITTING indicates that GDB is exiting
479 and should not get hung on an error (otherwise it is important to
480 perform clean termination, even if it takes a while). This routine
481 is automatically always called when popping the target off the
482 target stack (to_beneath is undefined). Closing file descriptors
483 and freeing all memory allocated memory are typical things it
484 should do. */
485
486 void target_close (struct target_ops *targ, int quitting);
487
488 /* Attaches to a process on the target side. Arguments are as passed
489 to the `attach' command by the user. This routine can be called
490 when the target is not on the target-stack, if the target_can_run
491 routine returns 1; in that case, it must push itself onto the stack.
492 Upon exit, the target should be ready for normal operations, and
493 should be ready to deliver the status of the process immediately
494 (without waiting) to an upcoming target_wait call. */
495
496 #define target_attach(args, from_tty) \
497 (*current_target.to_attach) (args, from_tty)
498
499 /* The target_attach operation places a process under debugger control,
500 and stops the process.
501
502 This operation provides a target-specific hook that allows the
503 necessary bookkeeping to be performed after an attach completes. */
504 #define target_post_attach(pid) \
505 (*current_target.to_post_attach) (pid)
506
507 /* Takes a program previously attached to and detaches it.
508 The program may resume execution (some targets do, some don't) and will
509 no longer stop on signals, etc. We better not have left any breakpoints
510 in the program or it'll die when it hits one. ARGS is arguments
511 typed by the user (e.g. a signal to send the process). FROM_TTY
512 says whether to be verbose or not. */
513
514 extern void target_detach (char *, int);
515
516 /* Disconnect from the current target without resuming it (leaving it
517 waiting for a debugger). */
518
519 extern void target_disconnect (char *, int);
520
521 /* Resume execution of the target process PTID. STEP says whether to
522 single-step or to run free; SIGGNAL is the signal to be given to
523 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
524 pass TARGET_SIGNAL_DEFAULT. */
525
526 #define target_resume(ptid, step, siggnal) \
527 do { \
528 dcache_invalidate(target_dcache); \
529 (*current_target.to_resume) (ptid, step, siggnal); \
530 } while (0)
531
532 /* Wait for process pid to do something. PTID = -1 to wait for any
533 pid to do something. Return pid of child, or -1 in case of error;
534 store status through argument pointer STATUS. Note that it is
535 _NOT_ OK to throw_exception() out of target_wait() without popping
536 the debugging target from the stack; GDB isn't prepared to get back
537 to the prompt with a debugging target but without the frame cache,
538 stop_pc, etc., set up. */
539
540 #define target_wait(ptid, status) \
541 (*current_target.to_wait) (ptid, status)
542
543 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
544
545 #define target_fetch_registers(regno) \
546 (*current_target.to_fetch_registers) (regno)
547
548 /* Store at least register REGNO, or all regs if REGNO == -1.
549 It can store as many registers as it wants to, so target_prepare_to_store
550 must have been previously called. Calls error() if there are problems. */
551
552 #define target_store_registers(regs) \
553 (*current_target.to_store_registers) (regs)
554
555 /* Get ready to modify the registers array. On machines which store
556 individual registers, this doesn't need to do anything. On machines
557 which store all the registers in one fell swoop, this makes sure
558 that REGISTERS contains all the registers from the program being
559 debugged. */
560
561 #define target_prepare_to_store() \
562 (*current_target.to_prepare_to_store) ()
563
564 extern DCACHE *target_dcache;
565
566 extern int target_read_string (CORE_ADDR, char **, int, int *);
567
568 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
569
570 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
571 int len);
572
573 extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
574 struct mem_attrib *, struct target_ops *);
575
576 extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
577 struct mem_attrib *, struct target_ops *);
578
579 extern char *child_pid_to_exec_file (int);
580
581 extern char *child_core_file_to_sym_file (char *);
582
583 #if defined(CHILD_POST_ATTACH)
584 extern void child_post_attach (int);
585 #endif
586
587 extern void child_post_startup_inferior (ptid_t);
588
589 extern void child_acknowledge_created_inferior (int);
590
591 extern void child_insert_fork_catchpoint (int);
592
593 extern int child_remove_fork_catchpoint (int);
594
595 extern void child_insert_vfork_catchpoint (int);
596
597 extern int child_remove_vfork_catchpoint (int);
598
599 extern void child_acknowledge_created_inferior (int);
600
601 extern int child_follow_fork (struct target_ops *, int);
602
603 extern void child_insert_exec_catchpoint (int);
604
605 extern int child_remove_exec_catchpoint (int);
606
607 extern int child_reported_exec_events_per_exec_call (void);
608
609 extern int child_has_exited (int, int, int *);
610
611 extern int child_thread_alive (ptid_t);
612
613 /* From infrun.c. */
614
615 extern int inferior_has_forked (int pid, int *child_pid);
616
617 extern int inferior_has_vforked (int pid, int *child_pid);
618
619 extern int inferior_has_execd (int pid, char **execd_pathname);
620
621 /* From exec.c */
622
623 extern void print_section_info (struct target_ops *, bfd *);
624
625 /* Print a line about the current target. */
626
627 #define target_files_info() \
628 (*current_target.to_files_info) (&current_target)
629
630 /* Insert a breakpoint at address BP_TGT->placed_address in the target
631 machine. Result is 0 for success, or an errno value. */
632
633 #define target_insert_breakpoint(bp_tgt) \
634 (*current_target.to_insert_breakpoint) (bp_tgt)
635
636 /* Remove a breakpoint at address BP_TGT->placed_address in the target
637 machine. Result is 0 for success, or an errno value. */
638
639 #define target_remove_breakpoint(bp_tgt) \
640 (*current_target.to_remove_breakpoint) (bp_tgt)
641
642 /* Initialize the terminal settings we record for the inferior,
643 before we actually run the inferior. */
644
645 #define target_terminal_init() \
646 (*current_target.to_terminal_init) ()
647
648 /* Put the inferior's terminal settings into effect.
649 This is preparation for starting or resuming the inferior. */
650
651 #define target_terminal_inferior() \
652 (*current_target.to_terminal_inferior) ()
653
654 /* Put some of our terminal settings into effect,
655 enough to get proper results from our output,
656 but do not change into or out of RAW mode
657 so that no input is discarded.
658
659 After doing this, either terminal_ours or terminal_inferior
660 should be called to get back to a normal state of affairs. */
661
662 #define target_terminal_ours_for_output() \
663 (*current_target.to_terminal_ours_for_output) ()
664
665 /* Put our terminal settings into effect.
666 First record the inferior's terminal settings
667 so they can be restored properly later. */
668
669 #define target_terminal_ours() \
670 (*current_target.to_terminal_ours) ()
671
672 /* Save our terminal settings.
673 This is called from TUI after entering or leaving the curses
674 mode. Since curses modifies our terminal this call is here
675 to take this change into account. */
676
677 #define target_terminal_save_ours() \
678 (*current_target.to_terminal_save_ours) ()
679
680 /* Print useful information about our terminal status, if such a thing
681 exists. */
682
683 #define target_terminal_info(arg, from_tty) \
684 (*current_target.to_terminal_info) (arg, from_tty)
685
686 /* Kill the inferior process. Make it go away. */
687
688 #define target_kill() \
689 (*current_target.to_kill) ()
690
691 /* Load an executable file into the target process. This is expected
692 to not only bring new code into the target process, but also to
693 update GDB's symbol tables to match.
694
695 ARG contains command-line arguments, to be broken down with
696 buildargv (). The first non-switch argument is the filename to
697 load, FILE; the second is a number (as parsed by strtoul (..., ...,
698 0)), which is an offset to apply to the load addresses of FILE's
699 sections. The target may define switches, or other non-switch
700 arguments, as it pleases. */
701
702 extern void target_load (char *arg, int from_tty);
703
704 /* Look up a symbol in the target's symbol table. NAME is the symbol
705 name. ADDRP is a CORE_ADDR * pointing to where the value of the
706 symbol should be returned. The result is 0 if successful, nonzero
707 if the symbol does not exist in the target environment. This
708 function should not call error() if communication with the target
709 is interrupted, since it is called from symbol reading, but should
710 return nonzero, possibly doing a complain(). */
711
712 #define target_lookup_symbol(name, addrp) \
713 (*current_target.to_lookup_symbol) (name, addrp)
714
715 /* Start an inferior process and set inferior_ptid to its pid.
716 EXEC_FILE is the file to run.
717 ALLARGS is a string containing the arguments to the program.
718 ENV is the environment vector to pass. Errors reported with error().
719 On VxWorks and various standalone systems, we ignore exec_file. */
720
721 #define target_create_inferior(exec_file, args, env, FROM_TTY) \
722 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
723
724
725 /* Some targets (such as ttrace-based HPUX) don't allow us to request
726 notification of inferior events such as fork and vork immediately
727 after the inferior is created. (This because of how gdb gets an
728 inferior created via invoking a shell to do it. In such a scenario,
729 if the shell init file has commands in it, the shell will fork and
730 exec for each of those commands, and we will see each such fork
731 event. Very bad.)
732
733 Such targets will supply an appropriate definition for this function. */
734
735 #define target_post_startup_inferior(ptid) \
736 (*current_target.to_post_startup_inferior) (ptid)
737
738 /* On some targets, the sequence of starting up an inferior requires
739 some synchronization between gdb and the new inferior process, PID. */
740
741 #define target_acknowledge_created_inferior(pid) \
742 (*current_target.to_acknowledge_created_inferior) (pid)
743
744 /* On some targets, we can catch an inferior fork or vfork event when
745 it occurs. These functions insert/remove an already-created
746 catchpoint for such events. */
747
748 #define target_insert_fork_catchpoint(pid) \
749 (*current_target.to_insert_fork_catchpoint) (pid)
750
751 #define target_remove_fork_catchpoint(pid) \
752 (*current_target.to_remove_fork_catchpoint) (pid)
753
754 #define target_insert_vfork_catchpoint(pid) \
755 (*current_target.to_insert_vfork_catchpoint) (pid)
756
757 #define target_remove_vfork_catchpoint(pid) \
758 (*current_target.to_remove_vfork_catchpoint) (pid)
759
760 /* If the inferior forks or vforks, this function will be called at
761 the next resume in order to perform any bookkeeping and fiddling
762 necessary to continue debugging either the parent or child, as
763 requested, and releasing the other. Information about the fork
764 or vfork event is available via get_last_target_status ().
765 This function returns 1 if the inferior should not be resumed
766 (i.e. there is another event pending). */
767
768 int target_follow_fork (int follow_child);
769
770 /* On some targets, we can catch an inferior exec event when it
771 occurs. These functions insert/remove an already-created
772 catchpoint for such events. */
773
774 #define target_insert_exec_catchpoint(pid) \
775 (*current_target.to_insert_exec_catchpoint) (pid)
776
777 #define target_remove_exec_catchpoint(pid) \
778 (*current_target.to_remove_exec_catchpoint) (pid)
779
780 /* Returns the number of exec events that are reported when a process
781 invokes a flavor of the exec() system call on this target, if exec
782 events are being reported. */
783
784 #define target_reported_exec_events_per_exec_call() \
785 (*current_target.to_reported_exec_events_per_exec_call) ()
786
787 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
788 exit code of PID, if any. */
789
790 #define target_has_exited(pid,wait_status,exit_status) \
791 (*current_target.to_has_exited) (pid,wait_status,exit_status)
792
793 /* The debugger has completed a blocking wait() call. There is now
794 some process event that must be processed. This function should
795 be defined by those targets that require the debugger to perform
796 cleanup or internal state changes in response to the process event. */
797
798 /* The inferior process has died. Do what is right. */
799
800 #define target_mourn_inferior() \
801 (*current_target.to_mourn_inferior) ()
802
803 /* Does target have enough data to do a run or attach command? */
804
805 #define target_can_run(t) \
806 ((t)->to_can_run) ()
807
808 /* post process changes to signal handling in the inferior. */
809
810 #define target_notice_signals(ptid) \
811 (*current_target.to_notice_signals) (ptid)
812
813 /* Check to see if a thread is still alive. */
814
815 #define target_thread_alive(ptid) \
816 (*current_target.to_thread_alive) (ptid)
817
818 /* Query for new threads and add them to the thread list. */
819
820 #define target_find_new_threads() \
821 (*current_target.to_find_new_threads) (); \
822
823 /* Make target stop in a continuable fashion. (For instance, under
824 Unix, this should act like SIGSTOP). This function is normally
825 used by GUIs to implement a stop button. */
826
827 #define target_stop current_target.to_stop
828
829 /* Send the specified COMMAND to the target's monitor
830 (shell,interpreter) for execution. The result of the query is
831 placed in OUTBUF. */
832
833 #define target_rcmd(command, outbuf) \
834 (*current_target.to_rcmd) (command, outbuf)
835
836
837 /* Get the symbol information for a breakpointable routine called when
838 an exception event occurs.
839 Intended mainly for C++, and for those
840 platforms/implementations where such a callback mechanism is available,
841 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
842 different mechanisms for debugging exceptions. */
843
844 #define target_enable_exception_callback(kind, enable) \
845 (*current_target.to_enable_exception_callback) (kind, enable)
846
847 /* Get the current exception event kind -- throw or catch, etc. */
848
849 #define target_get_current_exception_event() \
850 (*current_target.to_get_current_exception_event) ()
851
852 /* Does the target include all of memory, or only part of it? This
853 determines whether we look up the target chain for other parts of
854 memory if this target can't satisfy a request. */
855
856 #define target_has_all_memory \
857 (current_target.to_has_all_memory)
858
859 /* Does the target include memory? (Dummy targets don't.) */
860
861 #define target_has_memory \
862 (current_target.to_has_memory)
863
864 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
865 we start a process.) */
866
867 #define target_has_stack \
868 (current_target.to_has_stack)
869
870 /* Does the target have registers? (Exec files don't.) */
871
872 #define target_has_registers \
873 (current_target.to_has_registers)
874
875 /* Does the target have execution? Can we make it jump (through
876 hoops), or pop its stack a few times? FIXME: If this is to work that
877 way, it needs to check whether an inferior actually exists.
878 remote-udi.c and probably other targets can be the current target
879 when the inferior doesn't actually exist at the moment. Right now
880 this just tells us whether this target is *capable* of execution. */
881
882 #define target_has_execution \
883 (current_target.to_has_execution)
884
885 /* Can the target support the debugger control of thread execution?
886 a) Can it lock the thread scheduler?
887 b) Can it switch the currently running thread? */
888
889 #define target_can_lock_scheduler \
890 (current_target.to_has_thread_control & tc_schedlock)
891
892 #define target_can_switch_threads \
893 (current_target.to_has_thread_control & tc_switch)
894
895 /* Can the target support asynchronous execution? */
896 #define target_can_async_p() (current_target.to_can_async_p ())
897
898 /* Is the target in asynchronous execution mode? */
899 #define target_is_async_p() (current_target.to_is_async_p())
900
901 /* Put the target in async mode with the specified callback function. */
902 #define target_async(CALLBACK,CONTEXT) \
903 (current_target.to_async((CALLBACK), (CONTEXT)))
904
905 /* This is to be used ONLY within call_function_by_hand(). It provides
906 a workaround, to have inferior function calls done in sychronous
907 mode, even though the target is asynchronous. After
908 target_async_mask(0) is called, calls to target_can_async_p() will
909 return FALSE , so that target_resume() will not try to start the
910 target asynchronously. After the inferior stops, we IMMEDIATELY
911 restore the previous nature of the target, by calling
912 target_async_mask(1). After that, target_can_async_p() will return
913 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
914
915 FIXME ezannoni 1999-12-13: we won't need this once we move
916 the turning async on and off to the single execution commands,
917 from where it is done currently, in remote_resume(). */
918
919 #define target_async_mask_value \
920 (current_target.to_async_mask_value)
921
922 extern int target_async_mask (int mask);
923
924 /* Converts a process id to a string. Usually, the string just contains
925 `process xyz', but on some systems it may contain
926 `process xyz thread abc'. */
927
928 #undef target_pid_to_str
929 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
930
931 #ifndef target_tid_to_str
932 #define target_tid_to_str(PID) \
933 target_pid_to_str (PID)
934 extern char *normal_pid_to_str (ptid_t ptid);
935 #endif
936
937 /* Return a short string describing extra information about PID,
938 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
939 is okay. */
940
941 #define target_extra_thread_info(TP) \
942 (current_target.to_extra_thread_info (TP))
943
944 /*
945 * New Objfile Event Hook:
946 *
947 * Sometimes a GDB component wants to get notified whenever a new
948 * objfile is loaded. Mainly this is used by thread-debugging
949 * implementations that need to know when symbols for the target
950 * thread implemenation are available.
951 *
952 * The old way of doing this is to define a macro 'target_new_objfile'
953 * that points to the function that you want to be called on every
954 * objfile/shlib load.
955
956 The new way is to grab the function pointer,
957 'deprecated_target_new_objfile_hook', and point it to the function
958 that you want to be called on every objfile/shlib load.
959
960 If multiple clients are willing to be cooperative, they can each
961 save a pointer to the previous value of
962 deprecated_target_new_objfile_hook before modifying it, and arrange
963 for their function to call the previous function in the chain. In
964 that way, multiple clients can receive this notification (something
965 like with signal handlers). */
966
967 extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
968
969 #ifndef target_pid_or_tid_to_str
970 #define target_pid_or_tid_to_str(ID) \
971 target_pid_to_str (ID)
972 #endif
973
974 /* Attempts to find the pathname of the executable file
975 that was run to create a specified process.
976
977 The process PID must be stopped when this operation is used.
978
979 If the executable file cannot be determined, NULL is returned.
980
981 Else, a pointer to a character string containing the pathname
982 is returned. This string should be copied into a buffer by
983 the client if the string will not be immediately used, or if
984 it must persist. */
985
986 #define target_pid_to_exec_file(pid) \
987 (current_target.to_pid_to_exec_file) (pid)
988
989 /*
990 * Iterator function for target memory regions.
991 * Calls a callback function once for each memory region 'mapped'
992 * in the child process. Defined as a simple macro rather than
993 * as a function macro so that it can be tested for nullity.
994 */
995
996 #define target_find_memory_regions(FUNC, DATA) \
997 (current_target.to_find_memory_regions) (FUNC, DATA)
998
999 /*
1000 * Compose corefile .note section.
1001 */
1002
1003 #define target_make_corefile_notes(BFD, SIZE_P) \
1004 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1005
1006 /* Thread-local values. */
1007 #define target_get_thread_local_address \
1008 (current_target.to_get_thread_local_address)
1009 #define target_get_thread_local_address_p() \
1010 (target_get_thread_local_address != NULL)
1011
1012 /* Hook to call target dependent code just after inferior target process has
1013 started. */
1014
1015 #ifndef TARGET_CREATE_INFERIOR_HOOK
1016 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1017 #endif
1018
1019 /* Hardware watchpoint interfaces. */
1020
1021 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1022 write). */
1023
1024 #ifndef STOPPED_BY_WATCHPOINT
1025 #define STOPPED_BY_WATCHPOINT(w) \
1026 (*current_target.to_stopped_by_watchpoint) ()
1027 #endif
1028
1029 /* Non-zero if we have continuable watchpoints */
1030
1031 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1032 #define HAVE_CONTINUABLE_WATCHPOINT \
1033 (current_target.to_have_continuable_watchpoint)
1034 #endif
1035
1036 /* Provide defaults for hardware watchpoint functions. */
1037
1038 /* If the *_hw_beakpoint functions have not been defined
1039 elsewhere use the definitions in the target vector. */
1040
1041 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1042 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1043 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1044 (including this one?). OTHERTYPE is who knows what... */
1045
1046 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1047 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1048 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1049 #endif
1050
1051 #ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1052 #define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1053 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1054 #endif
1055
1056
1057 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1058 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1059 success, non-zero for failure. */
1060
1061 #ifndef target_insert_watchpoint
1062 #define target_insert_watchpoint(addr, len, type) \
1063 (*current_target.to_insert_watchpoint) (addr, len, type)
1064
1065 #define target_remove_watchpoint(addr, len, type) \
1066 (*current_target.to_remove_watchpoint) (addr, len, type)
1067 #endif
1068
1069 #ifndef target_insert_hw_breakpoint
1070 #define target_insert_hw_breakpoint(bp_tgt) \
1071 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
1072
1073 #define target_remove_hw_breakpoint(bp_tgt) \
1074 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
1075 #endif
1076
1077 extern int target_stopped_data_address_p (struct target_ops *);
1078
1079 #ifndef target_stopped_data_address
1080 #define target_stopped_data_address(target, x) \
1081 (*target.to_stopped_data_address) (target, x)
1082 #else
1083 /* Horrible hack to get around existing macros :-(. */
1084 #define target_stopped_data_address_p(CURRENT_TARGET) (1)
1085 #endif
1086
1087 /* This will only be defined by a target that supports catching vfork events,
1088 such as HP-UX.
1089
1090 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1091 child process after it has exec'd, causes the parent process to resume as
1092 well. To prevent the parent from running spontaneously, such targets should
1093 define this to a function that prevents that from happening. */
1094 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1095 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1096 #endif
1097
1098 /* This will only be defined by a target that supports catching vfork events,
1099 such as HP-UX.
1100
1101 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1102 process must be resumed when it delivers its exec event, before the parent
1103 vfork event will be delivered to us. */
1104
1105 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1106 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1107 #endif
1108
1109 /* Routines for maintenance of the target structures...
1110
1111 add_target: Add a target to the list of all possible targets.
1112
1113 push_target: Make this target the top of the stack of currently used
1114 targets, within its particular stratum of the stack. Result
1115 is 0 if now atop the stack, nonzero if not on top (maybe
1116 should warn user).
1117
1118 unpush_target: Remove this from the stack of currently used targets,
1119 no matter where it is on the list. Returns 0 if no
1120 change, 1 if removed from stack.
1121
1122 pop_target: Remove the top thing on the stack of current targets. */
1123
1124 extern void add_target (struct target_ops *);
1125
1126 extern int push_target (struct target_ops *);
1127
1128 extern int unpush_target (struct target_ops *);
1129
1130 extern void target_preopen (int);
1131
1132 extern void pop_target (void);
1133
1134 /* Struct section_table maps address ranges to file sections. It is
1135 mostly used with BFD files, but can be used without (e.g. for handling
1136 raw disks, or files not in formats handled by BFD). */
1137
1138 struct section_table
1139 {
1140 CORE_ADDR addr; /* Lowest address in section */
1141 CORE_ADDR endaddr; /* 1+highest address in section */
1142
1143 struct bfd_section *the_bfd_section;
1144
1145 bfd *bfd; /* BFD file pointer */
1146 };
1147
1148 /* Return the "section" containing the specified address. */
1149 struct section_table *target_section_by_addr (struct target_ops *target,
1150 CORE_ADDR addr);
1151
1152
1153 /* From mem-break.c */
1154
1155 extern int memory_remove_breakpoint (struct bp_target_info *);
1156
1157 extern int memory_insert_breakpoint (struct bp_target_info *);
1158
1159 extern int default_memory_remove_breakpoint (struct bp_target_info *);
1160
1161 extern int default_memory_insert_breakpoint (struct bp_target_info *);
1162
1163
1164 /* From target.c */
1165
1166 extern void initialize_targets (void);
1167
1168 extern void noprocess (void);
1169
1170 extern void find_default_attach (char *, int);
1171
1172 extern void find_default_create_inferior (char *, char *, char **, int);
1173
1174 extern struct target_ops *find_run_target (void);
1175
1176 extern struct target_ops *find_core_target (void);
1177
1178 extern struct target_ops *find_target_beneath (struct target_ops *);
1179
1180 extern int target_resize_to_sections (struct target_ops *target,
1181 int num_added);
1182
1183 extern void remove_target_sections (bfd *abfd);
1184
1185 \f
1186 /* Stuff that should be shared among the various remote targets. */
1187
1188 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1189 information (higher values, more information). */
1190 extern int remote_debug;
1191
1192 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1193 extern int baud_rate;
1194 /* Timeout limit for response from target. */
1195 extern int remote_timeout;
1196
1197 \f
1198 /* Functions for helping to write a native target. */
1199
1200 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1201 extern void store_waitstatus (struct target_waitstatus *, int);
1202
1203 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1204 targ_signal SIGNO has an equivalent ``host'' representation. */
1205 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1206 to the shorter target_signal_p() because it is far less ambigious.
1207 In this context ``target_signal'' refers to GDB's internal
1208 representation of the target's set of signals while ``host signal''
1209 refers to the target operating system's signal. Confused? */
1210
1211 extern int target_signal_to_host_p (enum target_signal signo);
1212
1213 /* Convert between host signal numbers and enum target_signal's.
1214 target_signal_to_host() returns 0 and prints a warning() on GDB's
1215 console if SIGNO has no equivalent host representation. */
1216 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1217 refering to the target operating system's signal numbering.
1218 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1219 gdb_signal'' would probably be better as it is refering to GDB's
1220 internal representation of a target operating system's signal. */
1221
1222 extern enum target_signal target_signal_from_host (int);
1223 extern int target_signal_to_host (enum target_signal);
1224
1225 /* Convert from a number used in a GDB command to an enum target_signal. */
1226 extern enum target_signal target_signal_from_command (int);
1227
1228 /* Any target can call this to switch to remote protocol (in remote.c). */
1229 extern void push_remote_target (char *name, int from_tty);
1230 \f
1231 /* Imported from machine dependent code */
1232
1233 /* Blank target vector entries are initialized to target_ignore. */
1234 void target_ignore (void);
1235
1236 extern struct target_ops deprecated_child_ops;
1237
1238 #endif /* !defined (TARGET_H) */