]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
convert to_get_ada_task_ptid
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t);
559 void (*to_rcmd) (struct target_ops *,
560 char *command, struct ui_file *output)
561 TARGET_DEFAULT_FUNC (default_rcmd);
562 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_log_command) (struct target_ops *, const char *)
565 TARGET_DEFAULT_IGNORE ();
566 struct target_section_table *(*to_get_section_table) (struct target_ops *);
567 enum strata to_stratum;
568 int (*to_has_all_memory) (struct target_ops *);
569 int (*to_has_memory) (struct target_ops *);
570 int (*to_has_stack) (struct target_ops *);
571 int (*to_has_registers) (struct target_ops *);
572 int (*to_has_execution) (struct target_ops *, ptid_t);
573 int to_has_thread_control; /* control thread execution */
574 int to_attach_no_wait;
575 /* ASYNC target controls */
576 int (*to_can_async_p) (struct target_ops *)
577 TARGET_DEFAULT_FUNC (find_default_can_async_p);
578 int (*to_is_async_p) (struct target_ops *)
579 TARGET_DEFAULT_FUNC (find_default_is_async_p);
580 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
581 TARGET_DEFAULT_NORETURN (tcomplain ());
582 int (*to_supports_non_stop) (struct target_ops *);
583 /* find_memory_regions support method for gcore */
584 int (*to_find_memory_regions) (struct target_ops *,
585 find_memory_region_ftype func, void *data)
586 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
587 /* make_corefile_notes support method for gcore */
588 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
589 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
590 /* get_bookmark support method for bookmarks */
591 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
592 TARGET_DEFAULT_NORETURN (tcomplain ());
593 /* goto_bookmark support method for bookmarks */
594 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 /* Return the thread-local address at OFFSET in the
597 thread-local storage for the thread PTID and the shared library
598 or executable file given by OBJFILE. If that block of
599 thread-local storage hasn't been allocated yet, this function
600 may return an error. */
601 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
602 ptid_t ptid,
603 CORE_ADDR load_module_addr,
604 CORE_ADDR offset);
605
606 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
607 OBJECT. The OFFSET, for a seekable object, specifies the
608 starting point. The ANNEX can be used to provide additional
609 data-specific information to the target.
610
611 Return the transferred status, error or OK (an
612 'enum target_xfer_status' value). Save the number of bytes
613 actually transferred in *XFERED_LEN if transfer is successful
614 (TARGET_XFER_OK) or the number unavailable bytes if the requested
615 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
616 smaller than LEN does not indicate the end of the object, only
617 the end of the transfer; higher level code should continue
618 transferring if desired. This is handled in target.c.
619
620 The interface does not support a "retry" mechanism. Instead it
621 assumes that at least one byte will be transfered on each
622 successful call.
623
624 NOTE: cagney/2003-10-17: The current interface can lead to
625 fragmented transfers. Lower target levels should not implement
626 hacks, such as enlarging the transfer, in an attempt to
627 compensate for this. Instead, the target stack should be
628 extended so that it implements supply/collect methods and a
629 look-aside object cache. With that available, the lowest
630 target can safely and freely "push" data up the stack.
631
632 See target_read and target_write for more information. One,
633 and only one, of readbuf or writebuf must be non-NULL. */
634
635 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
636 enum target_object object,
637 const char *annex,
638 gdb_byte *readbuf,
639 const gdb_byte *writebuf,
640 ULONGEST offset, ULONGEST len,
641 ULONGEST *xfered_len)
642 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
643
644 /* Returns the memory map for the target. A return value of NULL
645 means that no memory map is available. If a memory address
646 does not fall within any returned regions, it's assumed to be
647 RAM. The returned memory regions should not overlap.
648
649 The order of regions does not matter; target_memory_map will
650 sort regions by starting address. For that reason, this
651 function should not be called directly except via
652 target_memory_map.
653
654 This method should not cache data; if the memory map could
655 change unexpectedly, it should be invalidated, and higher
656 layers will re-fetch it. */
657 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
658
659 /* Erases the region of flash memory starting at ADDRESS, of
660 length LENGTH.
661
662 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
663 on flash block boundaries, as reported by 'to_memory_map'. */
664 void (*to_flash_erase) (struct target_ops *,
665 ULONGEST address, LONGEST length);
666
667 /* Finishes a flash memory write sequence. After this operation
668 all flash memory should be available for writing and the result
669 of reading from areas written by 'to_flash_write' should be
670 equal to what was written. */
671 void (*to_flash_done) (struct target_ops *);
672
673 /* Describe the architecture-specific features of this target.
674 Returns the description found, or NULL if no description
675 was available. */
676 const struct target_desc *(*to_read_description) (struct target_ops *ops);
677
678 /* Build the PTID of the thread on which a given task is running,
679 based on LWP and THREAD. These values are extracted from the
680 task Private_Data section of the Ada Task Control Block, and
681 their interpretation depends on the target. */
682 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
683 long lwp, long thread)
684 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
685
686 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
687 Return 0 if *READPTR is already at the end of the buffer.
688 Return -1 if there is insufficient buffer for a whole entry.
689 Return 1 if an entry was read into *TYPEP and *VALP. */
690 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
691 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
692
693 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
694 sequence of bytes in PATTERN with length PATTERN_LEN.
695
696 The result is 1 if found, 0 if not found, and -1 if there was an error
697 requiring halting of the search (e.g. memory read error).
698 If the pattern is found the address is recorded in FOUND_ADDRP. */
699 int (*to_search_memory) (struct target_ops *ops,
700 CORE_ADDR start_addr, ULONGEST search_space_len,
701 const gdb_byte *pattern, ULONGEST pattern_len,
702 CORE_ADDR *found_addrp);
703
704 /* Can target execute in reverse? */
705 int (*to_can_execute_reverse) (struct target_ops *)
706 TARGET_DEFAULT_RETURN (0);
707
708 /* The direction the target is currently executing. Must be
709 implemented on targets that support reverse execution and async
710 mode. The default simply returns forward execution. */
711 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
712 TARGET_DEFAULT_FUNC (default_execution_direction);
713
714 /* Does this target support debugging multiple processes
715 simultaneously? */
716 int (*to_supports_multi_process) (struct target_ops *);
717
718 /* Does this target support enabling and disabling tracepoints while a trace
719 experiment is running? */
720 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
721
722 /* Does this target support disabling address space randomization? */
723 int (*to_supports_disable_randomization) (struct target_ops *);
724
725 /* Does this target support the tracenz bytecode for string collection? */
726 int (*to_supports_string_tracing) (struct target_ops *);
727
728 /* Does this target support evaluation of breakpoint conditions on its
729 end? */
730 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
731
732 /* Does this target support evaluation of breakpoint commands on its
733 end? */
734 int (*to_can_run_breakpoint_commands) (struct target_ops *);
735
736 /* Determine current architecture of thread PTID.
737
738 The target is supposed to determine the architecture of the code where
739 the target is currently stopped at (on Cell, if a target is in spu_run,
740 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
741 This is architecture used to perform decr_pc_after_break adjustment,
742 and also determines the frame architecture of the innermost frame.
743 ptrace operations need to operate according to target_gdbarch ().
744
745 The default implementation always returns target_gdbarch (). */
746 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
747 TARGET_DEFAULT_FUNC (default_thread_architecture);
748
749 /* Determine current address space of thread PTID.
750
751 The default implementation always returns the inferior's
752 address space. */
753 struct address_space *(*to_thread_address_space) (struct target_ops *,
754 ptid_t);
755
756 /* Target file operations. */
757
758 /* Open FILENAME on the target, using FLAGS and MODE. Return a
759 target file descriptor, or -1 if an error occurs (and set
760 *TARGET_ERRNO). */
761 int (*to_fileio_open) (struct target_ops *,
762 const char *filename, int flags, int mode,
763 int *target_errno);
764
765 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
766 Return the number of bytes written, or -1 if an error occurs
767 (and set *TARGET_ERRNO). */
768 int (*to_fileio_pwrite) (struct target_ops *,
769 int fd, const gdb_byte *write_buf, int len,
770 ULONGEST offset, int *target_errno);
771
772 /* Read up to LEN bytes FD on the target into READ_BUF.
773 Return the number of bytes read, or -1 if an error occurs
774 (and set *TARGET_ERRNO). */
775 int (*to_fileio_pread) (struct target_ops *,
776 int fd, gdb_byte *read_buf, int len,
777 ULONGEST offset, int *target_errno);
778
779 /* Close FD on the target. Return 0, or -1 if an error occurs
780 (and set *TARGET_ERRNO). */
781 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
782
783 /* Unlink FILENAME on the target. Return 0, or -1 if an error
784 occurs (and set *TARGET_ERRNO). */
785 int (*to_fileio_unlink) (struct target_ops *,
786 const char *filename, int *target_errno);
787
788 /* Read value of symbolic link FILENAME on the target. Return a
789 null-terminated string allocated via xmalloc, or NULL if an error
790 occurs (and set *TARGET_ERRNO). */
791 char *(*to_fileio_readlink) (struct target_ops *,
792 const char *filename, int *target_errno);
793
794
795 /* Implement the "info proc" command. */
796 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
797
798 /* Tracepoint-related operations. */
799
800 /* Prepare the target for a tracing run. */
801 void (*to_trace_init) (struct target_ops *);
802
803 /* Send full details of a tracepoint location to the target. */
804 void (*to_download_tracepoint) (struct target_ops *,
805 struct bp_location *location);
806
807 /* Is the target able to download tracepoint locations in current
808 state? */
809 int (*to_can_download_tracepoint) (struct target_ops *);
810
811 /* Send full details of a trace state variable to the target. */
812 void (*to_download_trace_state_variable) (struct target_ops *,
813 struct trace_state_variable *tsv);
814
815 /* Enable a tracepoint on the target. */
816 void (*to_enable_tracepoint) (struct target_ops *,
817 struct bp_location *location);
818
819 /* Disable a tracepoint on the target. */
820 void (*to_disable_tracepoint) (struct target_ops *,
821 struct bp_location *location);
822
823 /* Inform the target info of memory regions that are readonly
824 (such as text sections), and so it should return data from
825 those rather than look in the trace buffer. */
826 void (*to_trace_set_readonly_regions) (struct target_ops *);
827
828 /* Start a trace run. */
829 void (*to_trace_start) (struct target_ops *);
830
831 /* Get the current status of a tracing run. */
832 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
833
834 void (*to_get_tracepoint_status) (struct target_ops *,
835 struct breakpoint *tp,
836 struct uploaded_tp *utp);
837
838 /* Stop a trace run. */
839 void (*to_trace_stop) (struct target_ops *);
840
841 /* Ask the target to find a trace frame of the given type TYPE,
842 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
843 number of the trace frame, and also the tracepoint number at
844 TPP. If no trace frame matches, return -1. May throw if the
845 operation fails. */
846 int (*to_trace_find) (struct target_ops *,
847 enum trace_find_type type, int num,
848 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
849
850 /* Get the value of the trace state variable number TSV, returning
851 1 if the value is known and writing the value itself into the
852 location pointed to by VAL, else returning 0. */
853 int (*to_get_trace_state_variable_value) (struct target_ops *,
854 int tsv, LONGEST *val);
855
856 int (*to_save_trace_data) (struct target_ops *, const char *filename);
857
858 int (*to_upload_tracepoints) (struct target_ops *,
859 struct uploaded_tp **utpp);
860
861 int (*to_upload_trace_state_variables) (struct target_ops *,
862 struct uploaded_tsv **utsvp);
863
864 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
865 ULONGEST offset, LONGEST len);
866
867 /* Get the minimum length of instruction on which a fast tracepoint
868 may be set on the target. If this operation is unsupported,
869 return -1. If for some reason the minimum length cannot be
870 determined, return 0. */
871 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
872
873 /* Set the target's tracing behavior in response to unexpected
874 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
875 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
876 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
877 /* Set the size of trace buffer in the target. */
878 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
879
880 /* Add/change textual notes about the trace run, returning 1 if
881 successful, 0 otherwise. */
882 int (*to_set_trace_notes) (struct target_ops *,
883 const char *user, const char *notes,
884 const char *stopnotes);
885
886 /* Return the processor core that thread PTID was last seen on.
887 This information is updated only when:
888 - update_thread_list is called
889 - thread stops
890 If the core cannot be determined -- either for the specified
891 thread, or right now, or in this debug session, or for this
892 target -- return -1. */
893 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
894
895 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
896 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
897 a match, 0 if there's a mismatch, and -1 if an error is
898 encountered while reading memory. */
899 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
900 CORE_ADDR memaddr, ULONGEST size);
901
902 /* Return the address of the start of the Thread Information Block
903 a Windows OS specific feature. */
904 int (*to_get_tib_address) (struct target_ops *,
905 ptid_t ptid, CORE_ADDR *addr);
906
907 /* Send the new settings of write permission variables. */
908 void (*to_set_permissions) (struct target_ops *);
909
910 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
911 with its details. Return 1 on success, 0 on failure. */
912 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
913 struct static_tracepoint_marker *marker);
914
915 /* Return a vector of all tracepoints markers string id ID, or all
916 markers if ID is NULL. */
917 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
918 (struct target_ops *, const char *id);
919
920 /* Return a traceframe info object describing the current
921 traceframe's contents. If the target doesn't support
922 traceframe info, return NULL. If the current traceframe is not
923 selected (the current traceframe number is -1), the target can
924 choose to return either NULL or an empty traceframe info. If
925 NULL is returned, for example in remote target, GDB will read
926 from the live inferior. If an empty traceframe info is
927 returned, for example in tfile target, which means the
928 traceframe info is available, but the requested memory is not
929 available in it. GDB will try to see if the requested memory
930 is available in the read-only sections. This method should not
931 cache data; higher layers take care of caching, invalidating,
932 and re-fetching when necessary. */
933 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
934
935 /* Ask the target to use or not to use agent according to USE. Return 1
936 successful, 0 otherwise. */
937 int (*to_use_agent) (struct target_ops *, int use);
938
939 /* Is the target able to use agent in current state? */
940 int (*to_can_use_agent) (struct target_ops *);
941
942 /* Check whether the target supports branch tracing. */
943 int (*to_supports_btrace) (struct target_ops *)
944 TARGET_DEFAULT_RETURN (0);
945
946 /* Enable branch tracing for PTID and allocate a branch trace target
947 information struct for reading and for disabling branch trace. */
948 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
949 ptid_t ptid);
950
951 /* Disable branch tracing and deallocate TINFO. */
952 void (*to_disable_btrace) (struct target_ops *,
953 struct btrace_target_info *tinfo);
954
955 /* Disable branch tracing and deallocate TINFO. This function is similar
956 to to_disable_btrace, except that it is called during teardown and is
957 only allowed to perform actions that are safe. A counter-example would
958 be attempting to talk to a remote target. */
959 void (*to_teardown_btrace) (struct target_ops *,
960 struct btrace_target_info *tinfo);
961
962 /* Read branch trace data for the thread indicated by BTINFO into DATA.
963 DATA is cleared before new trace is added.
964 The branch trace will start with the most recent block and continue
965 towards older blocks. */
966 enum btrace_error (*to_read_btrace) (struct target_ops *self,
967 VEC (btrace_block_s) **data,
968 struct btrace_target_info *btinfo,
969 enum btrace_read_type type);
970
971 /* Stop trace recording. */
972 void (*to_stop_recording) (struct target_ops *);
973
974 /* Print information about the recording. */
975 void (*to_info_record) (struct target_ops *);
976
977 /* Save the recorded execution trace into a file. */
978 void (*to_save_record) (struct target_ops *, const char *filename);
979
980 /* Delete the recorded execution trace from the current position onwards. */
981 void (*to_delete_record) (struct target_ops *);
982
983 /* Query if the record target is currently replaying. */
984 int (*to_record_is_replaying) (struct target_ops *);
985
986 /* Go to the begin of the execution trace. */
987 void (*to_goto_record_begin) (struct target_ops *);
988
989 /* Go to the end of the execution trace. */
990 void (*to_goto_record_end) (struct target_ops *);
991
992 /* Go to a specific location in the recorded execution trace. */
993 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
994
995 /* Disassemble SIZE instructions in the recorded execution trace from
996 the current position.
997 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
998 disassemble SIZE succeeding instructions. */
999 void (*to_insn_history) (struct target_ops *, int size, int flags);
1000
1001 /* Disassemble SIZE instructions in the recorded execution trace around
1002 FROM.
1003 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1004 disassemble SIZE instructions after FROM. */
1005 void (*to_insn_history_from) (struct target_ops *,
1006 ULONGEST from, int size, int flags);
1007
1008 /* Disassemble a section of the recorded execution trace from instruction
1009 BEGIN (inclusive) to instruction END (inclusive). */
1010 void (*to_insn_history_range) (struct target_ops *,
1011 ULONGEST begin, ULONGEST end, int flags);
1012
1013 /* Print a function trace of the recorded execution trace.
1014 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1015 succeeding functions. */
1016 void (*to_call_history) (struct target_ops *, int size, int flags);
1017
1018 /* Print a function trace of the recorded execution trace starting
1019 at function FROM.
1020 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1021 SIZE functions after FROM. */
1022 void (*to_call_history_from) (struct target_ops *,
1023 ULONGEST begin, int size, int flags);
1024
1025 /* Print a function trace of an execution trace section from function BEGIN
1026 (inclusive) to function END (inclusive). */
1027 void (*to_call_history_range) (struct target_ops *,
1028 ULONGEST begin, ULONGEST end, int flags);
1029
1030 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1031 non-empty annex. */
1032 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1033
1034 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1035 it is not used. */
1036 const struct frame_unwind *to_get_unwinder;
1037 const struct frame_unwind *to_get_tailcall_unwinder;
1038
1039 /* Return the number of bytes by which the PC needs to be decremented
1040 after executing a breakpoint instruction.
1041 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1042 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1043 struct gdbarch *gdbarch);
1044
1045 int to_magic;
1046 /* Need sub-structure for target machine related rather than comm related?
1047 */
1048 };
1049
1050 /* Magic number for checking ops size. If a struct doesn't end with this
1051 number, somebody changed the declaration but didn't change all the
1052 places that initialize one. */
1053
1054 #define OPS_MAGIC 3840
1055
1056 /* The ops structure for our "current" target process. This should
1057 never be NULL. If there is no target, it points to the dummy_target. */
1058
1059 extern struct target_ops current_target;
1060
1061 /* Define easy words for doing these operations on our current target. */
1062
1063 #define target_shortname (current_target.to_shortname)
1064 #define target_longname (current_target.to_longname)
1065
1066 /* Does whatever cleanup is required for a target that we are no
1067 longer going to be calling. This routine is automatically always
1068 called after popping the target off the target stack - the target's
1069 own methods are no longer available through the target vector.
1070 Closing file descriptors and freeing all memory allocated memory are
1071 typical things it should do. */
1072
1073 void target_close (struct target_ops *targ);
1074
1075 /* Attaches to a process on the target side. Arguments are as passed
1076 to the `attach' command by the user. This routine can be called
1077 when the target is not on the target-stack, if the target_can_run
1078 routine returns 1; in that case, it must push itself onto the stack.
1079 Upon exit, the target should be ready for normal operations, and
1080 should be ready to deliver the status of the process immediately
1081 (without waiting) to an upcoming target_wait call. */
1082
1083 void target_attach (char *, int);
1084
1085 /* Some targets don't generate traps when attaching to the inferior,
1086 or their target_attach implementation takes care of the waiting.
1087 These targets must set to_attach_no_wait. */
1088
1089 #define target_attach_no_wait \
1090 (current_target.to_attach_no_wait)
1091
1092 /* The target_attach operation places a process under debugger control,
1093 and stops the process.
1094
1095 This operation provides a target-specific hook that allows the
1096 necessary bookkeeping to be performed after an attach completes. */
1097 #define target_post_attach(pid) \
1098 (*current_target.to_post_attach) (&current_target, pid)
1099
1100 /* Takes a program previously attached to and detaches it.
1101 The program may resume execution (some targets do, some don't) and will
1102 no longer stop on signals, etc. We better not have left any breakpoints
1103 in the program or it'll die when it hits one. ARGS is arguments
1104 typed by the user (e.g. a signal to send the process). FROM_TTY
1105 says whether to be verbose or not. */
1106
1107 extern void target_detach (const char *, int);
1108
1109 /* Disconnect from the current target without resuming it (leaving it
1110 waiting for a debugger). */
1111
1112 extern void target_disconnect (char *, int);
1113
1114 /* Resume execution of the target process PTID (or a group of
1115 threads). STEP says whether to single-step or to run free; SIGGNAL
1116 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1117 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1118 PTID means `step/resume only this process id'. A wildcard PTID
1119 (all threads, or all threads of process) means `step/resume
1120 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1121 matches) resume with their 'thread->suspend.stop_signal' signal
1122 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1123 if in "no pass" state. */
1124
1125 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1126
1127 /* Wait for process pid to do something. PTID = -1 to wait for any
1128 pid to do something. Return pid of child, or -1 in case of error;
1129 store status through argument pointer STATUS. Note that it is
1130 _NOT_ OK to throw_exception() out of target_wait() without popping
1131 the debugging target from the stack; GDB isn't prepared to get back
1132 to the prompt with a debugging target but without the frame cache,
1133 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1134 options. */
1135
1136 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1137 int options);
1138
1139 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1140
1141 extern void target_fetch_registers (struct regcache *regcache, int regno);
1142
1143 /* Store at least register REGNO, or all regs if REGNO == -1.
1144 It can store as many registers as it wants to, so target_prepare_to_store
1145 must have been previously called. Calls error() if there are problems. */
1146
1147 extern void target_store_registers (struct regcache *regcache, int regs);
1148
1149 /* Get ready to modify the registers array. On machines which store
1150 individual registers, this doesn't need to do anything. On machines
1151 which store all the registers in one fell swoop, this makes sure
1152 that REGISTERS contains all the registers from the program being
1153 debugged. */
1154
1155 #define target_prepare_to_store(regcache) \
1156 (*current_target.to_prepare_to_store) (&current_target, regcache)
1157
1158 /* Determine current address space of thread PTID. */
1159
1160 struct address_space *target_thread_address_space (ptid_t);
1161
1162 /* Implement the "info proc" command. This returns one if the request
1163 was handled, and zero otherwise. It can also throw an exception if
1164 an error was encountered while attempting to handle the
1165 request. */
1166
1167 int target_info_proc (char *, enum info_proc_what);
1168
1169 /* Returns true if this target can debug multiple processes
1170 simultaneously. */
1171
1172 #define target_supports_multi_process() \
1173 (*current_target.to_supports_multi_process) (&current_target)
1174
1175 /* Returns true if this target can disable address space randomization. */
1176
1177 int target_supports_disable_randomization (void);
1178
1179 /* Returns true if this target can enable and disable tracepoints
1180 while a trace experiment is running. */
1181
1182 #define target_supports_enable_disable_tracepoint() \
1183 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1184
1185 #define target_supports_string_tracing() \
1186 (*current_target.to_supports_string_tracing) (&current_target)
1187
1188 /* Returns true if this target can handle breakpoint conditions
1189 on its end. */
1190
1191 #define target_supports_evaluation_of_breakpoint_conditions() \
1192 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1193
1194 /* Returns true if this target can handle breakpoint commands
1195 on its end. */
1196
1197 #define target_can_run_breakpoint_commands() \
1198 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1199
1200 extern int target_read_string (CORE_ADDR, char **, int, int *);
1201
1202 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1203 ssize_t len);
1204
1205 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1206 ssize_t len);
1207
1208 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1209
1210 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1211
1212 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1213 ssize_t len);
1214
1215 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1216 ssize_t len);
1217
1218 /* Fetches the target's memory map. If one is found it is sorted
1219 and returned, after some consistency checking. Otherwise, NULL
1220 is returned. */
1221 VEC(mem_region_s) *target_memory_map (void);
1222
1223 /* Erase the specified flash region. */
1224 void target_flash_erase (ULONGEST address, LONGEST length);
1225
1226 /* Finish a sequence of flash operations. */
1227 void target_flash_done (void);
1228
1229 /* Describes a request for a memory write operation. */
1230 struct memory_write_request
1231 {
1232 /* Begining address that must be written. */
1233 ULONGEST begin;
1234 /* Past-the-end address. */
1235 ULONGEST end;
1236 /* The data to write. */
1237 gdb_byte *data;
1238 /* A callback baton for progress reporting for this request. */
1239 void *baton;
1240 };
1241 typedef struct memory_write_request memory_write_request_s;
1242 DEF_VEC_O(memory_write_request_s);
1243
1244 /* Enumeration specifying different flash preservation behaviour. */
1245 enum flash_preserve_mode
1246 {
1247 flash_preserve,
1248 flash_discard
1249 };
1250
1251 /* Write several memory blocks at once. This version can be more
1252 efficient than making several calls to target_write_memory, in
1253 particular because it can optimize accesses to flash memory.
1254
1255 Moreover, this is currently the only memory access function in gdb
1256 that supports writing to flash memory, and it should be used for
1257 all cases where access to flash memory is desirable.
1258
1259 REQUESTS is the vector (see vec.h) of memory_write_request.
1260 PRESERVE_FLASH_P indicates what to do with blocks which must be
1261 erased, but not completely rewritten.
1262 PROGRESS_CB is a function that will be periodically called to provide
1263 feedback to user. It will be called with the baton corresponding
1264 to the request currently being written. It may also be called
1265 with a NULL baton, when preserved flash sectors are being rewritten.
1266
1267 The function returns 0 on success, and error otherwise. */
1268 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1269 enum flash_preserve_mode preserve_flash_p,
1270 void (*progress_cb) (ULONGEST, void *));
1271
1272 /* Print a line about the current target. */
1273
1274 #define target_files_info() \
1275 (*current_target.to_files_info) (&current_target)
1276
1277 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1278 the target machine. Returns 0 for success, and returns non-zero or
1279 throws an error (with a detailed failure reason error code and
1280 message) otherwise. */
1281
1282 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1283 struct bp_target_info *bp_tgt);
1284
1285 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1286 machine. Result is 0 for success, non-zero for error. */
1287
1288 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1289 struct bp_target_info *bp_tgt);
1290
1291 /* Initialize the terminal settings we record for the inferior,
1292 before we actually run the inferior. */
1293
1294 #define target_terminal_init() \
1295 (*current_target.to_terminal_init) (&current_target)
1296
1297 /* Put the inferior's terminal settings into effect.
1298 This is preparation for starting or resuming the inferior. */
1299
1300 extern void target_terminal_inferior (void);
1301
1302 /* Put some of our terminal settings into effect,
1303 enough to get proper results from our output,
1304 but do not change into or out of RAW mode
1305 so that no input is discarded.
1306
1307 After doing this, either terminal_ours or terminal_inferior
1308 should be called to get back to a normal state of affairs. */
1309
1310 #define target_terminal_ours_for_output() \
1311 (*current_target.to_terminal_ours_for_output) (&current_target)
1312
1313 /* Put our terminal settings into effect.
1314 First record the inferior's terminal settings
1315 so they can be restored properly later. */
1316
1317 #define target_terminal_ours() \
1318 (*current_target.to_terminal_ours) (&current_target)
1319
1320 /* Save our terminal settings.
1321 This is called from TUI after entering or leaving the curses
1322 mode. Since curses modifies our terminal this call is here
1323 to take this change into account. */
1324
1325 #define target_terminal_save_ours() \
1326 (*current_target.to_terminal_save_ours) (&current_target)
1327
1328 /* Print useful information about our terminal status, if such a thing
1329 exists. */
1330
1331 #define target_terminal_info(arg, from_tty) \
1332 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1333
1334 /* Kill the inferior process. Make it go away. */
1335
1336 extern void target_kill (void);
1337
1338 /* Load an executable file into the target process. This is expected
1339 to not only bring new code into the target process, but also to
1340 update GDB's symbol tables to match.
1341
1342 ARG contains command-line arguments, to be broken down with
1343 buildargv (). The first non-switch argument is the filename to
1344 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1345 0)), which is an offset to apply to the load addresses of FILE's
1346 sections. The target may define switches, or other non-switch
1347 arguments, as it pleases. */
1348
1349 extern void target_load (char *arg, int from_tty);
1350
1351 /* Start an inferior process and set inferior_ptid to its pid.
1352 EXEC_FILE is the file to run.
1353 ALLARGS is a string containing the arguments to the program.
1354 ENV is the environment vector to pass. Errors reported with error().
1355 On VxWorks and various standalone systems, we ignore exec_file. */
1356
1357 void target_create_inferior (char *exec_file, char *args,
1358 char **env, int from_tty);
1359
1360 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1361 notification of inferior events such as fork and vork immediately
1362 after the inferior is created. (This because of how gdb gets an
1363 inferior created via invoking a shell to do it. In such a scenario,
1364 if the shell init file has commands in it, the shell will fork and
1365 exec for each of those commands, and we will see each such fork
1366 event. Very bad.)
1367
1368 Such targets will supply an appropriate definition for this function. */
1369
1370 #define target_post_startup_inferior(ptid) \
1371 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1372
1373 /* On some targets, we can catch an inferior fork or vfork event when
1374 it occurs. These functions insert/remove an already-created
1375 catchpoint for such events. They return 0 for success, 1 if the
1376 catchpoint type is not supported and -1 for failure. */
1377
1378 #define target_insert_fork_catchpoint(pid) \
1379 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1380
1381 #define target_remove_fork_catchpoint(pid) \
1382 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1383
1384 #define target_insert_vfork_catchpoint(pid) \
1385 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1386
1387 #define target_remove_vfork_catchpoint(pid) \
1388 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1389
1390 /* If the inferior forks or vforks, this function will be called at
1391 the next resume in order to perform any bookkeeping and fiddling
1392 necessary to continue debugging either the parent or child, as
1393 requested, and releasing the other. Information about the fork
1394 or vfork event is available via get_last_target_status ().
1395 This function returns 1 if the inferior should not be resumed
1396 (i.e. there is another event pending). */
1397
1398 int target_follow_fork (int follow_child, int detach_fork);
1399
1400 /* On some targets, we can catch an inferior exec event when it
1401 occurs. These functions insert/remove an already-created
1402 catchpoint for such events. They return 0 for success, 1 if the
1403 catchpoint type is not supported and -1 for failure. */
1404
1405 #define target_insert_exec_catchpoint(pid) \
1406 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1407
1408 #define target_remove_exec_catchpoint(pid) \
1409 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1410
1411 /* Syscall catch.
1412
1413 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1414 If NEEDED is zero, it means the target can disable the mechanism to
1415 catch system calls because there are no more catchpoints of this type.
1416
1417 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1418 being requested. In this case, both TABLE_SIZE and TABLE should
1419 be ignored.
1420
1421 TABLE_SIZE is the number of elements in TABLE. It only matters if
1422 ANY_COUNT is zero.
1423
1424 TABLE is an array of ints, indexed by syscall number. An element in
1425 this array is nonzero if that syscall should be caught. This argument
1426 only matters if ANY_COUNT is zero.
1427
1428 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1429 for failure. */
1430
1431 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1432 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1433 pid, needed, any_count, \
1434 table_size, table)
1435
1436 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1437 exit code of PID, if any. */
1438
1439 #define target_has_exited(pid,wait_status,exit_status) \
1440 (*current_target.to_has_exited) (&current_target, \
1441 pid,wait_status,exit_status)
1442
1443 /* The debugger has completed a blocking wait() call. There is now
1444 some process event that must be processed. This function should
1445 be defined by those targets that require the debugger to perform
1446 cleanup or internal state changes in response to the process event. */
1447
1448 /* The inferior process has died. Do what is right. */
1449
1450 void target_mourn_inferior (void);
1451
1452 /* Does target have enough data to do a run or attach command? */
1453
1454 #define target_can_run(t) \
1455 ((t)->to_can_run) (t)
1456
1457 /* Set list of signals to be handled in the target.
1458
1459 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1460 (enum gdb_signal). For every signal whose entry in this array is
1461 non-zero, the target is allowed -but not required- to skip reporting
1462 arrival of the signal to the GDB core by returning from target_wait,
1463 and to pass the signal directly to the inferior instead.
1464
1465 However, if the target is hardware single-stepping a thread that is
1466 about to receive a signal, it needs to be reported in any case, even
1467 if mentioned in a previous target_pass_signals call. */
1468
1469 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1470
1471 /* Set list of signals the target may pass to the inferior. This
1472 directly maps to the "handle SIGNAL pass/nopass" setting.
1473
1474 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1475 number (enum gdb_signal). For every signal whose entry in this
1476 array is non-zero, the target is allowed to pass the signal to the
1477 inferior. Signals not present in the array shall be silently
1478 discarded. This does not influence whether to pass signals to the
1479 inferior as a result of a target_resume call. This is useful in
1480 scenarios where the target needs to decide whether to pass or not a
1481 signal to the inferior without GDB core involvement, such as for
1482 example, when detaching (as threads may have been suspended with
1483 pending signals not reported to GDB). */
1484
1485 extern void target_program_signals (int nsig, unsigned char *program_signals);
1486
1487 /* Check to see if a thread is still alive. */
1488
1489 extern int target_thread_alive (ptid_t ptid);
1490
1491 /* Query for new threads and add them to the thread list. */
1492
1493 extern void target_find_new_threads (void);
1494
1495 /* Make target stop in a continuable fashion. (For instance, under
1496 Unix, this should act like SIGSTOP). This function is normally
1497 used by GUIs to implement a stop button. */
1498
1499 extern void target_stop (ptid_t ptid);
1500
1501 /* Send the specified COMMAND to the target's monitor
1502 (shell,interpreter) for execution. The result of the query is
1503 placed in OUTBUF. */
1504
1505 #define target_rcmd(command, outbuf) \
1506 (*current_target.to_rcmd) (&current_target, command, outbuf)
1507
1508
1509 /* Does the target include all of memory, or only part of it? This
1510 determines whether we look up the target chain for other parts of
1511 memory if this target can't satisfy a request. */
1512
1513 extern int target_has_all_memory_1 (void);
1514 #define target_has_all_memory target_has_all_memory_1 ()
1515
1516 /* Does the target include memory? (Dummy targets don't.) */
1517
1518 extern int target_has_memory_1 (void);
1519 #define target_has_memory target_has_memory_1 ()
1520
1521 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1522 we start a process.) */
1523
1524 extern int target_has_stack_1 (void);
1525 #define target_has_stack target_has_stack_1 ()
1526
1527 /* Does the target have registers? (Exec files don't.) */
1528
1529 extern int target_has_registers_1 (void);
1530 #define target_has_registers target_has_registers_1 ()
1531
1532 /* Does the target have execution? Can we make it jump (through
1533 hoops), or pop its stack a few times? This means that the current
1534 target is currently executing; for some targets, that's the same as
1535 whether or not the target is capable of execution, but there are
1536 also targets which can be current while not executing. In that
1537 case this will become true after target_create_inferior or
1538 target_attach. */
1539
1540 extern int target_has_execution_1 (ptid_t);
1541
1542 /* Like target_has_execution_1, but always passes inferior_ptid. */
1543
1544 extern int target_has_execution_current (void);
1545
1546 #define target_has_execution target_has_execution_current ()
1547
1548 /* Default implementations for process_stratum targets. Return true
1549 if there's a selected inferior, false otherwise. */
1550
1551 extern int default_child_has_all_memory (struct target_ops *ops);
1552 extern int default_child_has_memory (struct target_ops *ops);
1553 extern int default_child_has_stack (struct target_ops *ops);
1554 extern int default_child_has_registers (struct target_ops *ops);
1555 extern int default_child_has_execution (struct target_ops *ops,
1556 ptid_t the_ptid);
1557
1558 /* Can the target support the debugger control of thread execution?
1559 Can it lock the thread scheduler? */
1560
1561 #define target_can_lock_scheduler \
1562 (current_target.to_has_thread_control & tc_schedlock)
1563
1564 /* Should the target enable async mode if it is supported? Temporary
1565 cludge until async mode is a strict superset of sync mode. */
1566 extern int target_async_permitted;
1567
1568 /* Can the target support asynchronous execution? */
1569 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1570
1571 /* Is the target in asynchronous execution mode? */
1572 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1573
1574 int target_supports_non_stop (void);
1575
1576 /* Put the target in async mode with the specified callback function. */
1577 #define target_async(CALLBACK,CONTEXT) \
1578 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1579
1580 #define target_execution_direction() \
1581 (current_target.to_execution_direction (&current_target))
1582
1583 /* Converts a process id to a string. Usually, the string just contains
1584 `process xyz', but on some systems it may contain
1585 `process xyz thread abc'. */
1586
1587 extern char *target_pid_to_str (ptid_t ptid);
1588
1589 extern char *normal_pid_to_str (ptid_t ptid);
1590
1591 /* Return a short string describing extra information about PID,
1592 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1593 is okay. */
1594
1595 #define target_extra_thread_info(TP) \
1596 (current_target.to_extra_thread_info (&current_target, TP))
1597
1598 /* Return the thread's name. A NULL result means that the target
1599 could not determine this thread's name. */
1600
1601 extern char *target_thread_name (struct thread_info *);
1602
1603 /* Attempts to find the pathname of the executable file
1604 that was run to create a specified process.
1605
1606 The process PID must be stopped when this operation is used.
1607
1608 If the executable file cannot be determined, NULL is returned.
1609
1610 Else, a pointer to a character string containing the pathname
1611 is returned. This string should be copied into a buffer by
1612 the client if the string will not be immediately used, or if
1613 it must persist. */
1614
1615 #define target_pid_to_exec_file(pid) \
1616 (current_target.to_pid_to_exec_file) (&current_target, pid)
1617
1618 /* See the to_thread_architecture description in struct target_ops. */
1619
1620 #define target_thread_architecture(ptid) \
1621 (current_target.to_thread_architecture (&current_target, ptid))
1622
1623 /*
1624 * Iterator function for target memory regions.
1625 * Calls a callback function once for each memory region 'mapped'
1626 * in the child process. Defined as a simple macro rather than
1627 * as a function macro so that it can be tested for nullity.
1628 */
1629
1630 #define target_find_memory_regions(FUNC, DATA) \
1631 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1632
1633 /*
1634 * Compose corefile .note section.
1635 */
1636
1637 #define target_make_corefile_notes(BFD, SIZE_P) \
1638 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1639
1640 /* Bookmark interfaces. */
1641 #define target_get_bookmark(ARGS, FROM_TTY) \
1642 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1643
1644 #define target_goto_bookmark(ARG, FROM_TTY) \
1645 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1646
1647 /* Hardware watchpoint interfaces. */
1648
1649 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1650 write). Only the INFERIOR_PTID task is being queried. */
1651
1652 #define target_stopped_by_watchpoint() \
1653 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1654
1655 /* Non-zero if we have steppable watchpoints */
1656
1657 #define target_have_steppable_watchpoint \
1658 (current_target.to_have_steppable_watchpoint)
1659
1660 /* Non-zero if we have continuable watchpoints */
1661
1662 #define target_have_continuable_watchpoint \
1663 (current_target.to_have_continuable_watchpoint)
1664
1665 /* Provide defaults for hardware watchpoint functions. */
1666
1667 /* If the *_hw_beakpoint functions have not been defined
1668 elsewhere use the definitions in the target vector. */
1669
1670 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1671 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1672 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1673 (including this one?). OTHERTYPE is who knows what... */
1674
1675 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1676 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1677 TYPE, CNT, OTHERTYPE);
1678
1679 /* Returns the number of debug registers needed to watch the given
1680 memory region, or zero if not supported. */
1681
1682 #define target_region_ok_for_hw_watchpoint(addr, len) \
1683 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1684 addr, len)
1685
1686
1687 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1688 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1689 COND is the expression for its condition, or NULL if there's none.
1690 Returns 0 for success, 1 if the watchpoint type is not supported,
1691 -1 for failure. */
1692
1693 #define target_insert_watchpoint(addr, len, type, cond) \
1694 (*current_target.to_insert_watchpoint) (&current_target, \
1695 addr, len, type, cond)
1696
1697 #define target_remove_watchpoint(addr, len, type, cond) \
1698 (*current_target.to_remove_watchpoint) (&current_target, \
1699 addr, len, type, cond)
1700
1701 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1702 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1703 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1704 masked watchpoints are not supported, -1 for failure. */
1705
1706 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1707
1708 /* Remove a masked watchpoint at ADDR with the mask MASK.
1709 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1710 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1711 for failure. */
1712
1713 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1714
1715 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1716 the target machine. Returns 0 for success, and returns non-zero or
1717 throws an error (with a detailed failure reason error code and
1718 message) otherwise. */
1719
1720 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1721 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1722 gdbarch, bp_tgt)
1723
1724 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1725 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1726 gdbarch, bp_tgt)
1727
1728 /* Return number of debug registers needed for a ranged breakpoint,
1729 or -1 if ranged breakpoints are not supported. */
1730
1731 extern int target_ranged_break_num_registers (void);
1732
1733 /* Return non-zero if target knows the data address which triggered this
1734 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1735 INFERIOR_PTID task is being queried. */
1736 #define target_stopped_data_address(target, addr_p) \
1737 (*target.to_stopped_data_address) (target, addr_p)
1738
1739 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1740 LENGTH bytes beginning at START. */
1741 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1742 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1743
1744 /* Return non-zero if the target is capable of using hardware to evaluate
1745 the condition expression. In this case, if the condition is false when
1746 the watched memory location changes, execution may continue without the
1747 debugger being notified.
1748
1749 Due to limitations in the hardware implementation, it may be capable of
1750 avoiding triggering the watchpoint in some cases where the condition
1751 expression is false, but may report some false positives as well.
1752 For this reason, GDB will still evaluate the condition expression when
1753 the watchpoint triggers. */
1754 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1755 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1756 addr, len, type, cond)
1757
1758 /* Return number of debug registers needed for a masked watchpoint,
1759 -1 if masked watchpoints are not supported or -2 if the given address
1760 and mask combination cannot be used. */
1761
1762 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1763
1764 /* Target can execute in reverse? */
1765 #define target_can_execute_reverse \
1766 current_target.to_can_execute_reverse (&current_target)
1767
1768 extern const struct target_desc *target_read_description (struct target_ops *);
1769
1770 #define target_get_ada_task_ptid(lwp, tid) \
1771 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1772
1773 /* Utility implementation of searching memory. */
1774 extern int simple_search_memory (struct target_ops* ops,
1775 CORE_ADDR start_addr,
1776 ULONGEST search_space_len,
1777 const gdb_byte *pattern,
1778 ULONGEST pattern_len,
1779 CORE_ADDR *found_addrp);
1780
1781 /* Main entry point for searching memory. */
1782 extern int target_search_memory (CORE_ADDR start_addr,
1783 ULONGEST search_space_len,
1784 const gdb_byte *pattern,
1785 ULONGEST pattern_len,
1786 CORE_ADDR *found_addrp);
1787
1788 /* Target file operations. */
1789
1790 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1791 target file descriptor, or -1 if an error occurs (and set
1792 *TARGET_ERRNO). */
1793 extern int target_fileio_open (const char *filename, int flags, int mode,
1794 int *target_errno);
1795
1796 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1797 Return the number of bytes written, or -1 if an error occurs
1798 (and set *TARGET_ERRNO). */
1799 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1800 ULONGEST offset, int *target_errno);
1801
1802 /* Read up to LEN bytes FD on the target into READ_BUF.
1803 Return the number of bytes read, or -1 if an error occurs
1804 (and set *TARGET_ERRNO). */
1805 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1806 ULONGEST offset, int *target_errno);
1807
1808 /* Close FD on the target. Return 0, or -1 if an error occurs
1809 (and set *TARGET_ERRNO). */
1810 extern int target_fileio_close (int fd, int *target_errno);
1811
1812 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1813 occurs (and set *TARGET_ERRNO). */
1814 extern int target_fileio_unlink (const char *filename, int *target_errno);
1815
1816 /* Read value of symbolic link FILENAME on the target. Return a
1817 null-terminated string allocated via xmalloc, or NULL if an error
1818 occurs (and set *TARGET_ERRNO). */
1819 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1820
1821 /* Read target file FILENAME. The return value will be -1 if the transfer
1822 fails or is not supported; 0 if the object is empty; or the length
1823 of the object otherwise. If a positive value is returned, a
1824 sufficiently large buffer will be allocated using xmalloc and
1825 returned in *BUF_P containing the contents of the object.
1826
1827 This method should be used for objects sufficiently small to store
1828 in a single xmalloc'd buffer, when no fixed bound on the object's
1829 size is known in advance. */
1830 extern LONGEST target_fileio_read_alloc (const char *filename,
1831 gdb_byte **buf_p);
1832
1833 /* Read target file FILENAME. The result is NUL-terminated and
1834 returned as a string, allocated using xmalloc. If an error occurs
1835 or the transfer is unsupported, NULL is returned. Empty objects
1836 are returned as allocated but empty strings. A warning is issued
1837 if the result contains any embedded NUL bytes. */
1838 extern char *target_fileio_read_stralloc (const char *filename);
1839
1840
1841 /* Tracepoint-related operations. */
1842
1843 #define target_trace_init() \
1844 (*current_target.to_trace_init) (&current_target)
1845
1846 #define target_download_tracepoint(t) \
1847 (*current_target.to_download_tracepoint) (&current_target, t)
1848
1849 #define target_can_download_tracepoint() \
1850 (*current_target.to_can_download_tracepoint) (&current_target)
1851
1852 #define target_download_trace_state_variable(tsv) \
1853 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1854
1855 #define target_enable_tracepoint(loc) \
1856 (*current_target.to_enable_tracepoint) (&current_target, loc)
1857
1858 #define target_disable_tracepoint(loc) \
1859 (*current_target.to_disable_tracepoint) (&current_target, loc)
1860
1861 #define target_trace_start() \
1862 (*current_target.to_trace_start) (&current_target)
1863
1864 #define target_trace_set_readonly_regions() \
1865 (*current_target.to_trace_set_readonly_regions) (&current_target)
1866
1867 #define target_get_trace_status(ts) \
1868 (*current_target.to_get_trace_status) (&current_target, ts)
1869
1870 #define target_get_tracepoint_status(tp,utp) \
1871 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1872
1873 #define target_trace_stop() \
1874 (*current_target.to_trace_stop) (&current_target)
1875
1876 #define target_trace_find(type,num,addr1,addr2,tpp) \
1877 (*current_target.to_trace_find) (&current_target, \
1878 (type), (num), (addr1), (addr2), (tpp))
1879
1880 #define target_get_trace_state_variable_value(tsv,val) \
1881 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1882 (tsv), (val))
1883
1884 #define target_save_trace_data(filename) \
1885 (*current_target.to_save_trace_data) (&current_target, filename)
1886
1887 #define target_upload_tracepoints(utpp) \
1888 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1889
1890 #define target_upload_trace_state_variables(utsvp) \
1891 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1892
1893 #define target_get_raw_trace_data(buf,offset,len) \
1894 (*current_target.to_get_raw_trace_data) (&current_target, \
1895 (buf), (offset), (len))
1896
1897 #define target_get_min_fast_tracepoint_insn_len() \
1898 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1899
1900 #define target_set_disconnected_tracing(val) \
1901 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1902
1903 #define target_set_circular_trace_buffer(val) \
1904 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1905
1906 #define target_set_trace_buffer_size(val) \
1907 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1908
1909 #define target_set_trace_notes(user,notes,stopnotes) \
1910 (*current_target.to_set_trace_notes) (&current_target, \
1911 (user), (notes), (stopnotes))
1912
1913 #define target_get_tib_address(ptid, addr) \
1914 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1915
1916 #define target_set_permissions() \
1917 (*current_target.to_set_permissions) (&current_target)
1918
1919 #define target_static_tracepoint_marker_at(addr, marker) \
1920 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1921 addr, marker)
1922
1923 #define target_static_tracepoint_markers_by_strid(marker_id) \
1924 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1925 marker_id)
1926
1927 #define target_traceframe_info() \
1928 (*current_target.to_traceframe_info) (&current_target)
1929
1930 #define target_use_agent(use) \
1931 (*current_target.to_use_agent) (&current_target, use)
1932
1933 #define target_can_use_agent() \
1934 (*current_target.to_can_use_agent) (&current_target)
1935
1936 #define target_augmented_libraries_svr4_read() \
1937 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1938
1939 /* Command logging facility. */
1940
1941 #define target_log_command(p) \
1942 (*current_target.to_log_command) (&current_target, p)
1943
1944
1945 extern int target_core_of_thread (ptid_t ptid);
1946
1947 /* See to_get_unwinder in struct target_ops. */
1948 extern const struct frame_unwind *target_get_unwinder (void);
1949
1950 /* See to_get_tailcall_unwinder in struct target_ops. */
1951 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1952
1953 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1954 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1955 if there's a mismatch, and -1 if an error is encountered while
1956 reading memory. Throws an error if the functionality is found not
1957 to be supported by the current target. */
1958 int target_verify_memory (const gdb_byte *data,
1959 CORE_ADDR memaddr, ULONGEST size);
1960
1961 /* Routines for maintenance of the target structures...
1962
1963 complete_target_initialization: Finalize a target_ops by filling in
1964 any fields needed by the target implementation.
1965
1966 add_target: Add a target to the list of all possible targets.
1967
1968 push_target: Make this target the top of the stack of currently used
1969 targets, within its particular stratum of the stack. Result
1970 is 0 if now atop the stack, nonzero if not on top (maybe
1971 should warn user).
1972
1973 unpush_target: Remove this from the stack of currently used targets,
1974 no matter where it is on the list. Returns 0 if no
1975 change, 1 if removed from stack. */
1976
1977 extern void add_target (struct target_ops *);
1978
1979 extern void add_target_with_completer (struct target_ops *t,
1980 completer_ftype *completer);
1981
1982 extern void complete_target_initialization (struct target_ops *t);
1983
1984 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1985 for maintaining backwards compatibility when renaming targets. */
1986
1987 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1988
1989 extern void push_target (struct target_ops *);
1990
1991 extern int unpush_target (struct target_ops *);
1992
1993 extern void target_pre_inferior (int);
1994
1995 extern void target_preopen (int);
1996
1997 /* Does whatever cleanup is required to get rid of all pushed targets. */
1998 extern void pop_all_targets (void);
1999
2000 /* Like pop_all_targets, but pops only targets whose stratum is
2001 strictly above ABOVE_STRATUM. */
2002 extern void pop_all_targets_above (enum strata above_stratum);
2003
2004 extern int target_is_pushed (struct target_ops *t);
2005
2006 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2007 CORE_ADDR offset);
2008
2009 /* Struct target_section maps address ranges to file sections. It is
2010 mostly used with BFD files, but can be used without (e.g. for handling
2011 raw disks, or files not in formats handled by BFD). */
2012
2013 struct target_section
2014 {
2015 CORE_ADDR addr; /* Lowest address in section */
2016 CORE_ADDR endaddr; /* 1+highest address in section */
2017
2018 struct bfd_section *the_bfd_section;
2019
2020 /* The "owner" of the section.
2021 It can be any unique value. It is set by add_target_sections
2022 and used by remove_target_sections.
2023 For example, for executables it is a pointer to exec_bfd and
2024 for shlibs it is the so_list pointer. */
2025 void *owner;
2026 };
2027
2028 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2029
2030 struct target_section_table
2031 {
2032 struct target_section *sections;
2033 struct target_section *sections_end;
2034 };
2035
2036 /* Return the "section" containing the specified address. */
2037 struct target_section *target_section_by_addr (struct target_ops *target,
2038 CORE_ADDR addr);
2039
2040 /* Return the target section table this target (or the targets
2041 beneath) currently manipulate. */
2042
2043 extern struct target_section_table *target_get_section_table
2044 (struct target_ops *target);
2045
2046 /* From mem-break.c */
2047
2048 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2049 struct bp_target_info *);
2050
2051 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2052 struct bp_target_info *);
2053
2054 extern int default_memory_remove_breakpoint (struct gdbarch *,
2055 struct bp_target_info *);
2056
2057 extern int default_memory_insert_breakpoint (struct gdbarch *,
2058 struct bp_target_info *);
2059
2060
2061 /* From target.c */
2062
2063 extern void initialize_targets (void);
2064
2065 extern void noprocess (void) ATTRIBUTE_NORETURN;
2066
2067 extern void target_require_runnable (void);
2068
2069 extern void find_default_attach (struct target_ops *, char *, int);
2070
2071 extern void find_default_create_inferior (struct target_ops *,
2072 char *, char *, char **, int);
2073
2074 extern struct target_ops *find_target_beneath (struct target_ops *);
2075
2076 /* Find the target at STRATUM. If no target is at that stratum,
2077 return NULL. */
2078
2079 struct target_ops *find_target_at (enum strata stratum);
2080
2081 /* Read OS data object of type TYPE from the target, and return it in
2082 XML format. The result is NUL-terminated and returned as a string,
2083 allocated using xmalloc. If an error occurs or the transfer is
2084 unsupported, NULL is returned. Empty objects are returned as
2085 allocated but empty strings. */
2086
2087 extern char *target_get_osdata (const char *type);
2088
2089 \f
2090 /* Stuff that should be shared among the various remote targets. */
2091
2092 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2093 information (higher values, more information). */
2094 extern int remote_debug;
2095
2096 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2097 extern int baud_rate;
2098 /* Timeout limit for response from target. */
2099 extern int remote_timeout;
2100
2101 \f
2102
2103 /* Set the show memory breakpoints mode to show, and installs a cleanup
2104 to restore it back to the current value. */
2105 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2106
2107 extern int may_write_registers;
2108 extern int may_write_memory;
2109 extern int may_insert_breakpoints;
2110 extern int may_insert_tracepoints;
2111 extern int may_insert_fast_tracepoints;
2112 extern int may_stop;
2113
2114 extern void update_target_permissions (void);
2115
2116 \f
2117 /* Imported from machine dependent code. */
2118
2119 /* Blank target vector entries are initialized to target_ignore. */
2120 void target_ignore (void);
2121
2122 /* See to_supports_btrace in struct target_ops. */
2123 #define target_supports_btrace() \
2124 (current_target.to_supports_btrace (&current_target))
2125
2126 /* See to_enable_btrace in struct target_ops. */
2127 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2128
2129 /* See to_disable_btrace in struct target_ops. */
2130 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2131
2132 /* See to_teardown_btrace in struct target_ops. */
2133 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2134
2135 /* See to_read_btrace in struct target_ops. */
2136 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2137 struct btrace_target_info *,
2138 enum btrace_read_type);
2139
2140 /* See to_stop_recording in struct target_ops. */
2141 extern void target_stop_recording (void);
2142
2143 /* See to_info_record in struct target_ops. */
2144 extern void target_info_record (void);
2145
2146 /* See to_save_record in struct target_ops. */
2147 extern void target_save_record (const char *filename);
2148
2149 /* Query if the target supports deleting the execution log. */
2150 extern int target_supports_delete_record (void);
2151
2152 /* See to_delete_record in struct target_ops. */
2153 extern void target_delete_record (void);
2154
2155 /* See to_record_is_replaying in struct target_ops. */
2156 extern int target_record_is_replaying (void);
2157
2158 /* See to_goto_record_begin in struct target_ops. */
2159 extern void target_goto_record_begin (void);
2160
2161 /* See to_goto_record_end in struct target_ops. */
2162 extern void target_goto_record_end (void);
2163
2164 /* See to_goto_record in struct target_ops. */
2165 extern void target_goto_record (ULONGEST insn);
2166
2167 /* See to_insn_history. */
2168 extern void target_insn_history (int size, int flags);
2169
2170 /* See to_insn_history_from. */
2171 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2172
2173 /* See to_insn_history_range. */
2174 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2175
2176 /* See to_call_history. */
2177 extern void target_call_history (int size, int flags);
2178
2179 /* See to_call_history_from. */
2180 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2181
2182 /* See to_call_history_range. */
2183 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2184
2185 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2186 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2187 struct gdbarch *gdbarch);
2188
2189 /* See to_decr_pc_after_break. */
2190 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2191
2192 #endif /* !defined (TARGET_H) */