]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
convert to_flash_erase
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int)
481 TARGET_DEFAULT_RETURN (1);
482 int (*to_remove_mask_watchpoint) (struct target_ops *,
483 CORE_ADDR, CORE_ADDR, int)
484 TARGET_DEFAULT_RETURN (1);
485 int (*to_stopped_by_watchpoint) (struct target_ops *)
486 TARGET_DEFAULT_RETURN (0);
487 int to_have_steppable_watchpoint;
488 int to_have_continuable_watchpoint;
489 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
490 TARGET_DEFAULT_RETURN (0);
491 int (*to_watchpoint_addr_within_range) (struct target_ops *,
492 CORE_ADDR, CORE_ADDR, int)
493 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
494
495 /* Documentation of this routine is provided with the corresponding
496 target_* macro. */
497 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
498 CORE_ADDR, int)
499 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
500
501 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
502 CORE_ADDR, int, int,
503 struct expression *)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_masked_watch_num_registers) (struct target_ops *,
506 CORE_ADDR, CORE_ADDR)
507 TARGET_DEFAULT_RETURN (-1);
508 void (*to_terminal_init) (struct target_ops *)
509 TARGET_DEFAULT_IGNORE ();
510 void (*to_terminal_inferior) (struct target_ops *)
511 TARGET_DEFAULT_IGNORE ();
512 void (*to_terminal_ours_for_output) (struct target_ops *)
513 TARGET_DEFAULT_IGNORE ();
514 void (*to_terminal_ours) (struct target_ops *)
515 TARGET_DEFAULT_IGNORE ();
516 void (*to_terminal_save_ours) (struct target_ops *)
517 TARGET_DEFAULT_IGNORE ();
518 void (*to_terminal_info) (struct target_ops *, const char *, int)
519 TARGET_DEFAULT_FUNC (default_terminal_info);
520 void (*to_kill) (struct target_ops *)
521 TARGET_DEFAULT_NORETURN (noprocess ());
522 void (*to_load) (struct target_ops *, char *, int)
523 TARGET_DEFAULT_NORETURN (tcomplain ());
524 void (*to_create_inferior) (struct target_ops *,
525 char *, char *, char **, int);
526 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
527 TARGET_DEFAULT_IGNORE ();
528 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
531 TARGET_DEFAULT_RETURN (1);
532 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
533 TARGET_DEFAULT_RETURN (1);
534 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_follow_fork) (struct target_ops *, int, int)
537 TARGET_DEFAULT_FUNC (default_follow_fork);
538 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
539 TARGET_DEFAULT_RETURN (1);
540 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
541 TARGET_DEFAULT_RETURN (1);
542 int (*to_set_syscall_catchpoint) (struct target_ops *,
543 int, int, int, int, int *)
544 TARGET_DEFAULT_RETURN (1);
545 int (*to_has_exited) (struct target_ops *, int, int, int *)
546 TARGET_DEFAULT_RETURN (0);
547 void (*to_mourn_inferior) (struct target_ops *)
548 TARGET_DEFAULT_FUNC (default_mourn_inferior);
549 int (*to_can_run) (struct target_ops *);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
554 TARGET_DEFAULT_IGNORE ();
555
556 /* Documentation of this routine is provided with the
557 corresponding target_* function. */
558 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
559 TARGET_DEFAULT_IGNORE ();
560
561 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
562 void (*to_find_new_threads) (struct target_ops *)
563 TARGET_DEFAULT_IGNORE ();
564 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
565 TARGET_DEFAULT_FUNC (default_pid_to_str);
566 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
567 TARGET_DEFAULT_RETURN (0);
568 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
569 TARGET_DEFAULT_RETURN (0);
570 void (*to_stop) (struct target_ops *, ptid_t)
571 TARGET_DEFAULT_IGNORE ();
572 void (*to_rcmd) (struct target_ops *,
573 char *command, struct ui_file *output)
574 TARGET_DEFAULT_FUNC (default_rcmd);
575 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
576 TARGET_DEFAULT_RETURN (0);
577 void (*to_log_command) (struct target_ops *, const char *)
578 TARGET_DEFAULT_IGNORE ();
579 struct target_section_table *(*to_get_section_table) (struct target_ops *)
580 TARGET_DEFAULT_RETURN (0);
581 enum strata to_stratum;
582 int (*to_has_all_memory) (struct target_ops *);
583 int (*to_has_memory) (struct target_ops *);
584 int (*to_has_stack) (struct target_ops *);
585 int (*to_has_registers) (struct target_ops *);
586 int (*to_has_execution) (struct target_ops *, ptid_t);
587 int to_has_thread_control; /* control thread execution */
588 int to_attach_no_wait;
589 /* ASYNC target controls */
590 int (*to_can_async_p) (struct target_ops *)
591 TARGET_DEFAULT_FUNC (find_default_can_async_p);
592 int (*to_is_async_p) (struct target_ops *)
593 TARGET_DEFAULT_FUNC (find_default_is_async_p);
594 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 int (*to_supports_non_stop) (struct target_ops *);
597 /* find_memory_regions support method for gcore */
598 int (*to_find_memory_regions) (struct target_ops *,
599 find_memory_region_ftype func, void *data)
600 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
601 /* make_corefile_notes support method for gcore */
602 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
603 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
604 /* get_bookmark support method for bookmarks */
605 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
606 TARGET_DEFAULT_NORETURN (tcomplain ());
607 /* goto_bookmark support method for bookmarks */
608 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
609 TARGET_DEFAULT_NORETURN (tcomplain ());
610 /* Return the thread-local address at OFFSET in the
611 thread-local storage for the thread PTID and the shared library
612 or executable file given by OBJFILE. If that block of
613 thread-local storage hasn't been allocated yet, this function
614 may return an error. */
615 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
616 ptid_t ptid,
617 CORE_ADDR load_module_addr,
618 CORE_ADDR offset);
619
620 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
621 OBJECT. The OFFSET, for a seekable object, specifies the
622 starting point. The ANNEX can be used to provide additional
623 data-specific information to the target.
624
625 Return the transferred status, error or OK (an
626 'enum target_xfer_status' value). Save the number of bytes
627 actually transferred in *XFERED_LEN if transfer is successful
628 (TARGET_XFER_OK) or the number unavailable bytes if the requested
629 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
630 smaller than LEN does not indicate the end of the object, only
631 the end of the transfer; higher level code should continue
632 transferring if desired. This is handled in target.c.
633
634 The interface does not support a "retry" mechanism. Instead it
635 assumes that at least one byte will be transfered on each
636 successful call.
637
638 NOTE: cagney/2003-10-17: The current interface can lead to
639 fragmented transfers. Lower target levels should not implement
640 hacks, such as enlarging the transfer, in an attempt to
641 compensate for this. Instead, the target stack should be
642 extended so that it implements supply/collect methods and a
643 look-aside object cache. With that available, the lowest
644 target can safely and freely "push" data up the stack.
645
646 See target_read and target_write for more information. One,
647 and only one, of readbuf or writebuf must be non-NULL. */
648
649 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
650 enum target_object object,
651 const char *annex,
652 gdb_byte *readbuf,
653 const gdb_byte *writebuf,
654 ULONGEST offset, ULONGEST len,
655 ULONGEST *xfered_len)
656 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
657
658 /* Returns the memory map for the target. A return value of NULL
659 means that no memory map is available. If a memory address
660 does not fall within any returned regions, it's assumed to be
661 RAM. The returned memory regions should not overlap.
662
663 The order of regions does not matter; target_memory_map will
664 sort regions by starting address. For that reason, this
665 function should not be called directly except via
666 target_memory_map.
667
668 This method should not cache data; if the memory map could
669 change unexpectedly, it should be invalidated, and higher
670 layers will re-fetch it. */
671 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
672
673 /* Erases the region of flash memory starting at ADDRESS, of
674 length LENGTH.
675
676 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
677 on flash block boundaries, as reported by 'to_memory_map'. */
678 void (*to_flash_erase) (struct target_ops *,
679 ULONGEST address, LONGEST length)
680 TARGET_DEFAULT_NORETURN (tcomplain ());
681
682 /* Finishes a flash memory write sequence. After this operation
683 all flash memory should be available for writing and the result
684 of reading from areas written by 'to_flash_write' should be
685 equal to what was written. */
686 void (*to_flash_done) (struct target_ops *);
687
688 /* Describe the architecture-specific features of this target.
689 Returns the description found, or NULL if no description
690 was available. */
691 const struct target_desc *(*to_read_description) (struct target_ops *ops);
692
693 /* Build the PTID of the thread on which a given task is running,
694 based on LWP and THREAD. These values are extracted from the
695 task Private_Data section of the Ada Task Control Block, and
696 their interpretation depends on the target. */
697 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
698 long lwp, long thread)
699 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
700
701 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
702 Return 0 if *READPTR is already at the end of the buffer.
703 Return -1 if there is insufficient buffer for a whole entry.
704 Return 1 if an entry was read into *TYPEP and *VALP. */
705 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
706 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
707
708 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
709 sequence of bytes in PATTERN with length PATTERN_LEN.
710
711 The result is 1 if found, 0 if not found, and -1 if there was an error
712 requiring halting of the search (e.g. memory read error).
713 If the pattern is found the address is recorded in FOUND_ADDRP. */
714 int (*to_search_memory) (struct target_ops *ops,
715 CORE_ADDR start_addr, ULONGEST search_space_len,
716 const gdb_byte *pattern, ULONGEST pattern_len,
717 CORE_ADDR *found_addrp);
718
719 /* Can target execute in reverse? */
720 int (*to_can_execute_reverse) (struct target_ops *)
721 TARGET_DEFAULT_RETURN (0);
722
723 /* The direction the target is currently executing. Must be
724 implemented on targets that support reverse execution and async
725 mode. The default simply returns forward execution. */
726 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
727 TARGET_DEFAULT_FUNC (default_execution_direction);
728
729 /* Does this target support debugging multiple processes
730 simultaneously? */
731 int (*to_supports_multi_process) (struct target_ops *)
732 TARGET_DEFAULT_RETURN (0);
733
734 /* Does this target support enabling and disabling tracepoints while a trace
735 experiment is running? */
736 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
737 TARGET_DEFAULT_RETURN (0);
738
739 /* Does this target support disabling address space randomization? */
740 int (*to_supports_disable_randomization) (struct target_ops *);
741
742 /* Does this target support the tracenz bytecode for string collection? */
743 int (*to_supports_string_tracing) (struct target_ops *)
744 TARGET_DEFAULT_RETURN (0);
745
746 /* Does this target support evaluation of breakpoint conditions on its
747 end? */
748 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
749 TARGET_DEFAULT_RETURN (0);
750
751 /* Does this target support evaluation of breakpoint commands on its
752 end? */
753 int (*to_can_run_breakpoint_commands) (struct target_ops *)
754 TARGET_DEFAULT_RETURN (0);
755
756 /* Determine current architecture of thread PTID.
757
758 The target is supposed to determine the architecture of the code where
759 the target is currently stopped at (on Cell, if a target is in spu_run,
760 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
761 This is architecture used to perform decr_pc_after_break adjustment,
762 and also determines the frame architecture of the innermost frame.
763 ptrace operations need to operate according to target_gdbarch ().
764
765 The default implementation always returns target_gdbarch (). */
766 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
767 TARGET_DEFAULT_FUNC (default_thread_architecture);
768
769 /* Determine current address space of thread PTID.
770
771 The default implementation always returns the inferior's
772 address space. */
773 struct address_space *(*to_thread_address_space) (struct target_ops *,
774 ptid_t);
775
776 /* Target file operations. */
777
778 /* Open FILENAME on the target, using FLAGS and MODE. Return a
779 target file descriptor, or -1 if an error occurs (and set
780 *TARGET_ERRNO). */
781 int (*to_fileio_open) (struct target_ops *,
782 const char *filename, int flags, int mode,
783 int *target_errno);
784
785 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
786 Return the number of bytes written, or -1 if an error occurs
787 (and set *TARGET_ERRNO). */
788 int (*to_fileio_pwrite) (struct target_ops *,
789 int fd, const gdb_byte *write_buf, int len,
790 ULONGEST offset, int *target_errno);
791
792 /* Read up to LEN bytes FD on the target into READ_BUF.
793 Return the number of bytes read, or -1 if an error occurs
794 (and set *TARGET_ERRNO). */
795 int (*to_fileio_pread) (struct target_ops *,
796 int fd, gdb_byte *read_buf, int len,
797 ULONGEST offset, int *target_errno);
798
799 /* Close FD on the target. Return 0, or -1 if an error occurs
800 (and set *TARGET_ERRNO). */
801 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
802
803 /* Unlink FILENAME on the target. Return 0, or -1 if an error
804 occurs (and set *TARGET_ERRNO). */
805 int (*to_fileio_unlink) (struct target_ops *,
806 const char *filename, int *target_errno);
807
808 /* Read value of symbolic link FILENAME on the target. Return a
809 null-terminated string allocated via xmalloc, or NULL if an error
810 occurs (and set *TARGET_ERRNO). */
811 char *(*to_fileio_readlink) (struct target_ops *,
812 const char *filename, int *target_errno);
813
814
815 /* Implement the "info proc" command. */
816 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
817
818 /* Tracepoint-related operations. */
819
820 /* Prepare the target for a tracing run. */
821 void (*to_trace_init) (struct target_ops *)
822 TARGET_DEFAULT_NORETURN (tcomplain ());
823
824 /* Send full details of a tracepoint location to the target. */
825 void (*to_download_tracepoint) (struct target_ops *,
826 struct bp_location *location)
827 TARGET_DEFAULT_NORETURN (tcomplain ());
828
829 /* Is the target able to download tracepoint locations in current
830 state? */
831 int (*to_can_download_tracepoint) (struct target_ops *)
832 TARGET_DEFAULT_RETURN (0);
833
834 /* Send full details of a trace state variable to the target. */
835 void (*to_download_trace_state_variable) (struct target_ops *,
836 struct trace_state_variable *tsv)
837 TARGET_DEFAULT_NORETURN (tcomplain ());
838
839 /* Enable a tracepoint on the target. */
840 void (*to_enable_tracepoint) (struct target_ops *,
841 struct bp_location *location)
842 TARGET_DEFAULT_NORETURN (tcomplain ());
843
844 /* Disable a tracepoint on the target. */
845 void (*to_disable_tracepoint) (struct target_ops *,
846 struct bp_location *location)
847 TARGET_DEFAULT_NORETURN (tcomplain ());
848
849 /* Inform the target info of memory regions that are readonly
850 (such as text sections), and so it should return data from
851 those rather than look in the trace buffer. */
852 void (*to_trace_set_readonly_regions) (struct target_ops *)
853 TARGET_DEFAULT_NORETURN (tcomplain ());
854
855 /* Start a trace run. */
856 void (*to_trace_start) (struct target_ops *)
857 TARGET_DEFAULT_NORETURN (tcomplain ());
858
859 /* Get the current status of a tracing run. */
860 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
861 TARGET_DEFAULT_RETURN (-1);
862
863 void (*to_get_tracepoint_status) (struct target_ops *,
864 struct breakpoint *tp,
865 struct uploaded_tp *utp)
866 TARGET_DEFAULT_NORETURN (tcomplain ());
867
868 /* Stop a trace run. */
869 void (*to_trace_stop) (struct target_ops *)
870 TARGET_DEFAULT_NORETURN (tcomplain ());
871
872 /* Ask the target to find a trace frame of the given type TYPE,
873 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
874 number of the trace frame, and also the tracepoint number at
875 TPP. If no trace frame matches, return -1. May throw if the
876 operation fails. */
877 int (*to_trace_find) (struct target_ops *,
878 enum trace_find_type type, int num,
879 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
880 TARGET_DEFAULT_RETURN (-1);
881
882 /* Get the value of the trace state variable number TSV, returning
883 1 if the value is known and writing the value itself into the
884 location pointed to by VAL, else returning 0. */
885 int (*to_get_trace_state_variable_value) (struct target_ops *,
886 int tsv, LONGEST *val)
887 TARGET_DEFAULT_RETURN (0);
888
889 int (*to_save_trace_data) (struct target_ops *, const char *filename)
890 TARGET_DEFAULT_NORETURN (tcomplain ());
891
892 int (*to_upload_tracepoints) (struct target_ops *,
893 struct uploaded_tp **utpp)
894 TARGET_DEFAULT_RETURN (0);
895
896 int (*to_upload_trace_state_variables) (struct target_ops *,
897 struct uploaded_tsv **utsvp)
898 TARGET_DEFAULT_RETURN (0);
899
900 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
901 ULONGEST offset, LONGEST len)
902 TARGET_DEFAULT_NORETURN (tcomplain ());
903
904 /* Get the minimum length of instruction on which a fast tracepoint
905 may be set on the target. If this operation is unsupported,
906 return -1. If for some reason the minimum length cannot be
907 determined, return 0. */
908 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
909 TARGET_DEFAULT_RETURN (-1);
910
911 /* Set the target's tracing behavior in response to unexpected
912 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
913 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
914 TARGET_DEFAULT_IGNORE ();
915 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
916 TARGET_DEFAULT_IGNORE ();
917 /* Set the size of trace buffer in the target. */
918 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
919 TARGET_DEFAULT_IGNORE ();
920
921 /* Add/change textual notes about the trace run, returning 1 if
922 successful, 0 otherwise. */
923 int (*to_set_trace_notes) (struct target_ops *,
924 const char *user, const char *notes,
925 const char *stopnotes)
926 TARGET_DEFAULT_RETURN (0);
927
928 /* Return the processor core that thread PTID was last seen on.
929 This information is updated only when:
930 - update_thread_list is called
931 - thread stops
932 If the core cannot be determined -- either for the specified
933 thread, or right now, or in this debug session, or for this
934 target -- return -1. */
935 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
936
937 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
938 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
939 a match, 0 if there's a mismatch, and -1 if an error is
940 encountered while reading memory. */
941 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
942 CORE_ADDR memaddr, ULONGEST size);
943
944 /* Return the address of the start of the Thread Information Block
945 a Windows OS specific feature. */
946 int (*to_get_tib_address) (struct target_ops *,
947 ptid_t ptid, CORE_ADDR *addr)
948 TARGET_DEFAULT_NORETURN (tcomplain ());
949
950 /* Send the new settings of write permission variables. */
951 void (*to_set_permissions) (struct target_ops *)
952 TARGET_DEFAULT_IGNORE ();
953
954 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
955 with its details. Return 1 on success, 0 on failure. */
956 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
957 struct static_tracepoint_marker *marker)
958 TARGET_DEFAULT_RETURN (0);
959
960 /* Return a vector of all tracepoints markers string id ID, or all
961 markers if ID is NULL. */
962 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
963 TARGET_DEFAULT_NORETURN (tcomplain ());
964
965 /* Return a traceframe info object describing the current
966 traceframe's contents. If the target doesn't support
967 traceframe info, return NULL. If the current traceframe is not
968 selected (the current traceframe number is -1), the target can
969 choose to return either NULL or an empty traceframe info. If
970 NULL is returned, for example in remote target, GDB will read
971 from the live inferior. If an empty traceframe info is
972 returned, for example in tfile target, which means the
973 traceframe info is available, but the requested memory is not
974 available in it. GDB will try to see if the requested memory
975 is available in the read-only sections. This method should not
976 cache data; higher layers take care of caching, invalidating,
977 and re-fetching when necessary. */
978 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
979 TARGET_DEFAULT_RETURN (0);
980
981 /* Ask the target to use or not to use agent according to USE. Return 1
982 successful, 0 otherwise. */
983 int (*to_use_agent) (struct target_ops *, int use)
984 TARGET_DEFAULT_NORETURN (tcomplain ());
985
986 /* Is the target able to use agent in current state? */
987 int (*to_can_use_agent) (struct target_ops *)
988 TARGET_DEFAULT_RETURN (0);
989
990 /* Check whether the target supports branch tracing. */
991 int (*to_supports_btrace) (struct target_ops *)
992 TARGET_DEFAULT_RETURN (0);
993
994 /* Enable branch tracing for PTID and allocate a branch trace target
995 information struct for reading and for disabling branch trace. */
996 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
997 ptid_t ptid);
998
999 /* Disable branch tracing and deallocate TINFO. */
1000 void (*to_disable_btrace) (struct target_ops *,
1001 struct btrace_target_info *tinfo);
1002
1003 /* Disable branch tracing and deallocate TINFO. This function is similar
1004 to to_disable_btrace, except that it is called during teardown and is
1005 only allowed to perform actions that are safe. A counter-example would
1006 be attempting to talk to a remote target. */
1007 void (*to_teardown_btrace) (struct target_ops *,
1008 struct btrace_target_info *tinfo);
1009
1010 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1011 DATA is cleared before new trace is added.
1012 The branch trace will start with the most recent block and continue
1013 towards older blocks. */
1014 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1015 VEC (btrace_block_s) **data,
1016 struct btrace_target_info *btinfo,
1017 enum btrace_read_type type);
1018
1019 /* Stop trace recording. */
1020 void (*to_stop_recording) (struct target_ops *);
1021
1022 /* Print information about the recording. */
1023 void (*to_info_record) (struct target_ops *);
1024
1025 /* Save the recorded execution trace into a file. */
1026 void (*to_save_record) (struct target_ops *, const char *filename);
1027
1028 /* Delete the recorded execution trace from the current position onwards. */
1029 void (*to_delete_record) (struct target_ops *);
1030
1031 /* Query if the record target is currently replaying. */
1032 int (*to_record_is_replaying) (struct target_ops *);
1033
1034 /* Go to the begin of the execution trace. */
1035 void (*to_goto_record_begin) (struct target_ops *);
1036
1037 /* Go to the end of the execution trace. */
1038 void (*to_goto_record_end) (struct target_ops *);
1039
1040 /* Go to a specific location in the recorded execution trace. */
1041 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1042
1043 /* Disassemble SIZE instructions in the recorded execution trace from
1044 the current position.
1045 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1046 disassemble SIZE succeeding instructions. */
1047 void (*to_insn_history) (struct target_ops *, int size, int flags);
1048
1049 /* Disassemble SIZE instructions in the recorded execution trace around
1050 FROM.
1051 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1052 disassemble SIZE instructions after FROM. */
1053 void (*to_insn_history_from) (struct target_ops *,
1054 ULONGEST from, int size, int flags);
1055
1056 /* Disassemble a section of the recorded execution trace from instruction
1057 BEGIN (inclusive) to instruction END (inclusive). */
1058 void (*to_insn_history_range) (struct target_ops *,
1059 ULONGEST begin, ULONGEST end, int flags);
1060
1061 /* Print a function trace of the recorded execution trace.
1062 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1063 succeeding functions. */
1064 void (*to_call_history) (struct target_ops *, int size, int flags);
1065
1066 /* Print a function trace of the recorded execution trace starting
1067 at function FROM.
1068 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1069 SIZE functions after FROM. */
1070 void (*to_call_history_from) (struct target_ops *,
1071 ULONGEST begin, int size, int flags);
1072
1073 /* Print a function trace of an execution trace section from function BEGIN
1074 (inclusive) to function END (inclusive). */
1075 void (*to_call_history_range) (struct target_ops *,
1076 ULONGEST begin, ULONGEST end, int flags);
1077
1078 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1079 non-empty annex. */
1080 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1081 TARGET_DEFAULT_RETURN (0);
1082
1083 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1084 it is not used. */
1085 const struct frame_unwind *to_get_unwinder;
1086 const struct frame_unwind *to_get_tailcall_unwinder;
1087
1088 /* Return the number of bytes by which the PC needs to be decremented
1089 after executing a breakpoint instruction.
1090 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1091 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1092 struct gdbarch *gdbarch);
1093
1094 int to_magic;
1095 /* Need sub-structure for target machine related rather than comm related?
1096 */
1097 };
1098
1099 /* Magic number for checking ops size. If a struct doesn't end with this
1100 number, somebody changed the declaration but didn't change all the
1101 places that initialize one. */
1102
1103 #define OPS_MAGIC 3840
1104
1105 /* The ops structure for our "current" target process. This should
1106 never be NULL. If there is no target, it points to the dummy_target. */
1107
1108 extern struct target_ops current_target;
1109
1110 /* Define easy words for doing these operations on our current target. */
1111
1112 #define target_shortname (current_target.to_shortname)
1113 #define target_longname (current_target.to_longname)
1114
1115 /* Does whatever cleanup is required for a target that we are no
1116 longer going to be calling. This routine is automatically always
1117 called after popping the target off the target stack - the target's
1118 own methods are no longer available through the target vector.
1119 Closing file descriptors and freeing all memory allocated memory are
1120 typical things it should do. */
1121
1122 void target_close (struct target_ops *targ);
1123
1124 /* Attaches to a process on the target side. Arguments are as passed
1125 to the `attach' command by the user. This routine can be called
1126 when the target is not on the target-stack, if the target_can_run
1127 routine returns 1; in that case, it must push itself onto the stack.
1128 Upon exit, the target should be ready for normal operations, and
1129 should be ready to deliver the status of the process immediately
1130 (without waiting) to an upcoming target_wait call. */
1131
1132 void target_attach (char *, int);
1133
1134 /* Some targets don't generate traps when attaching to the inferior,
1135 or their target_attach implementation takes care of the waiting.
1136 These targets must set to_attach_no_wait. */
1137
1138 #define target_attach_no_wait \
1139 (current_target.to_attach_no_wait)
1140
1141 /* The target_attach operation places a process under debugger control,
1142 and stops the process.
1143
1144 This operation provides a target-specific hook that allows the
1145 necessary bookkeeping to be performed after an attach completes. */
1146 #define target_post_attach(pid) \
1147 (*current_target.to_post_attach) (&current_target, pid)
1148
1149 /* Takes a program previously attached to and detaches it.
1150 The program may resume execution (some targets do, some don't) and will
1151 no longer stop on signals, etc. We better not have left any breakpoints
1152 in the program or it'll die when it hits one. ARGS is arguments
1153 typed by the user (e.g. a signal to send the process). FROM_TTY
1154 says whether to be verbose or not. */
1155
1156 extern void target_detach (const char *, int);
1157
1158 /* Disconnect from the current target without resuming it (leaving it
1159 waiting for a debugger). */
1160
1161 extern void target_disconnect (char *, int);
1162
1163 /* Resume execution of the target process PTID (or a group of
1164 threads). STEP says whether to single-step or to run free; SIGGNAL
1165 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1166 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1167 PTID means `step/resume only this process id'. A wildcard PTID
1168 (all threads, or all threads of process) means `step/resume
1169 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1170 matches) resume with their 'thread->suspend.stop_signal' signal
1171 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1172 if in "no pass" state. */
1173
1174 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1175
1176 /* Wait for process pid to do something. PTID = -1 to wait for any
1177 pid to do something. Return pid of child, or -1 in case of error;
1178 store status through argument pointer STATUS. Note that it is
1179 _NOT_ OK to throw_exception() out of target_wait() without popping
1180 the debugging target from the stack; GDB isn't prepared to get back
1181 to the prompt with a debugging target but without the frame cache,
1182 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1183 options. */
1184
1185 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1186 int options);
1187
1188 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1189
1190 extern void target_fetch_registers (struct regcache *regcache, int regno);
1191
1192 /* Store at least register REGNO, or all regs if REGNO == -1.
1193 It can store as many registers as it wants to, so target_prepare_to_store
1194 must have been previously called. Calls error() if there are problems. */
1195
1196 extern void target_store_registers (struct regcache *regcache, int regs);
1197
1198 /* Get ready to modify the registers array. On machines which store
1199 individual registers, this doesn't need to do anything. On machines
1200 which store all the registers in one fell swoop, this makes sure
1201 that REGISTERS contains all the registers from the program being
1202 debugged. */
1203
1204 #define target_prepare_to_store(regcache) \
1205 (*current_target.to_prepare_to_store) (&current_target, regcache)
1206
1207 /* Determine current address space of thread PTID. */
1208
1209 struct address_space *target_thread_address_space (ptid_t);
1210
1211 /* Implement the "info proc" command. This returns one if the request
1212 was handled, and zero otherwise. It can also throw an exception if
1213 an error was encountered while attempting to handle the
1214 request. */
1215
1216 int target_info_proc (char *, enum info_proc_what);
1217
1218 /* Returns true if this target can debug multiple processes
1219 simultaneously. */
1220
1221 #define target_supports_multi_process() \
1222 (*current_target.to_supports_multi_process) (&current_target)
1223
1224 /* Returns true if this target can disable address space randomization. */
1225
1226 int target_supports_disable_randomization (void);
1227
1228 /* Returns true if this target can enable and disable tracepoints
1229 while a trace experiment is running. */
1230
1231 #define target_supports_enable_disable_tracepoint() \
1232 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1233
1234 #define target_supports_string_tracing() \
1235 (*current_target.to_supports_string_tracing) (&current_target)
1236
1237 /* Returns true if this target can handle breakpoint conditions
1238 on its end. */
1239
1240 #define target_supports_evaluation_of_breakpoint_conditions() \
1241 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1242
1243 /* Returns true if this target can handle breakpoint commands
1244 on its end. */
1245
1246 #define target_can_run_breakpoint_commands() \
1247 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1248
1249 extern int target_read_string (CORE_ADDR, char **, int, int *);
1250
1251 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1252 ssize_t len);
1253
1254 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1255 ssize_t len);
1256
1257 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1258
1259 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1260
1261 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1262 ssize_t len);
1263
1264 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1265 ssize_t len);
1266
1267 /* Fetches the target's memory map. If one is found it is sorted
1268 and returned, after some consistency checking. Otherwise, NULL
1269 is returned. */
1270 VEC(mem_region_s) *target_memory_map (void);
1271
1272 /* Erase the specified flash region. */
1273 void target_flash_erase (ULONGEST address, LONGEST length);
1274
1275 /* Finish a sequence of flash operations. */
1276 void target_flash_done (void);
1277
1278 /* Describes a request for a memory write operation. */
1279 struct memory_write_request
1280 {
1281 /* Begining address that must be written. */
1282 ULONGEST begin;
1283 /* Past-the-end address. */
1284 ULONGEST end;
1285 /* The data to write. */
1286 gdb_byte *data;
1287 /* A callback baton for progress reporting for this request. */
1288 void *baton;
1289 };
1290 typedef struct memory_write_request memory_write_request_s;
1291 DEF_VEC_O(memory_write_request_s);
1292
1293 /* Enumeration specifying different flash preservation behaviour. */
1294 enum flash_preserve_mode
1295 {
1296 flash_preserve,
1297 flash_discard
1298 };
1299
1300 /* Write several memory blocks at once. This version can be more
1301 efficient than making several calls to target_write_memory, in
1302 particular because it can optimize accesses to flash memory.
1303
1304 Moreover, this is currently the only memory access function in gdb
1305 that supports writing to flash memory, and it should be used for
1306 all cases where access to flash memory is desirable.
1307
1308 REQUESTS is the vector (see vec.h) of memory_write_request.
1309 PRESERVE_FLASH_P indicates what to do with blocks which must be
1310 erased, but not completely rewritten.
1311 PROGRESS_CB is a function that will be periodically called to provide
1312 feedback to user. It will be called with the baton corresponding
1313 to the request currently being written. It may also be called
1314 with a NULL baton, when preserved flash sectors are being rewritten.
1315
1316 The function returns 0 on success, and error otherwise. */
1317 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1318 enum flash_preserve_mode preserve_flash_p,
1319 void (*progress_cb) (ULONGEST, void *));
1320
1321 /* Print a line about the current target. */
1322
1323 #define target_files_info() \
1324 (*current_target.to_files_info) (&current_target)
1325
1326 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1327 the target machine. Returns 0 for success, and returns non-zero or
1328 throws an error (with a detailed failure reason error code and
1329 message) otherwise. */
1330
1331 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1332 struct bp_target_info *bp_tgt);
1333
1334 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1335 machine. Result is 0 for success, non-zero for error. */
1336
1337 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1338 struct bp_target_info *bp_tgt);
1339
1340 /* Initialize the terminal settings we record for the inferior,
1341 before we actually run the inferior. */
1342
1343 #define target_terminal_init() \
1344 (*current_target.to_terminal_init) (&current_target)
1345
1346 /* Put the inferior's terminal settings into effect.
1347 This is preparation for starting or resuming the inferior. */
1348
1349 extern void target_terminal_inferior (void);
1350
1351 /* Put some of our terminal settings into effect,
1352 enough to get proper results from our output,
1353 but do not change into or out of RAW mode
1354 so that no input is discarded.
1355
1356 After doing this, either terminal_ours or terminal_inferior
1357 should be called to get back to a normal state of affairs. */
1358
1359 #define target_terminal_ours_for_output() \
1360 (*current_target.to_terminal_ours_for_output) (&current_target)
1361
1362 /* Put our terminal settings into effect.
1363 First record the inferior's terminal settings
1364 so they can be restored properly later. */
1365
1366 #define target_terminal_ours() \
1367 (*current_target.to_terminal_ours) (&current_target)
1368
1369 /* Save our terminal settings.
1370 This is called from TUI after entering or leaving the curses
1371 mode. Since curses modifies our terminal this call is here
1372 to take this change into account. */
1373
1374 #define target_terminal_save_ours() \
1375 (*current_target.to_terminal_save_ours) (&current_target)
1376
1377 /* Print useful information about our terminal status, if such a thing
1378 exists. */
1379
1380 #define target_terminal_info(arg, from_tty) \
1381 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1382
1383 /* Kill the inferior process. Make it go away. */
1384
1385 extern void target_kill (void);
1386
1387 /* Load an executable file into the target process. This is expected
1388 to not only bring new code into the target process, but also to
1389 update GDB's symbol tables to match.
1390
1391 ARG contains command-line arguments, to be broken down with
1392 buildargv (). The first non-switch argument is the filename to
1393 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1394 0)), which is an offset to apply to the load addresses of FILE's
1395 sections. The target may define switches, or other non-switch
1396 arguments, as it pleases. */
1397
1398 extern void target_load (char *arg, int from_tty);
1399
1400 /* Start an inferior process and set inferior_ptid to its pid.
1401 EXEC_FILE is the file to run.
1402 ALLARGS is a string containing the arguments to the program.
1403 ENV is the environment vector to pass. Errors reported with error().
1404 On VxWorks and various standalone systems, we ignore exec_file. */
1405
1406 void target_create_inferior (char *exec_file, char *args,
1407 char **env, int from_tty);
1408
1409 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1410 notification of inferior events such as fork and vork immediately
1411 after the inferior is created. (This because of how gdb gets an
1412 inferior created via invoking a shell to do it. In such a scenario,
1413 if the shell init file has commands in it, the shell will fork and
1414 exec for each of those commands, and we will see each such fork
1415 event. Very bad.)
1416
1417 Such targets will supply an appropriate definition for this function. */
1418
1419 #define target_post_startup_inferior(ptid) \
1420 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1421
1422 /* On some targets, we can catch an inferior fork or vfork event when
1423 it occurs. These functions insert/remove an already-created
1424 catchpoint for such events. They return 0 for success, 1 if the
1425 catchpoint type is not supported and -1 for failure. */
1426
1427 #define target_insert_fork_catchpoint(pid) \
1428 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1429
1430 #define target_remove_fork_catchpoint(pid) \
1431 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1432
1433 #define target_insert_vfork_catchpoint(pid) \
1434 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1435
1436 #define target_remove_vfork_catchpoint(pid) \
1437 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1438
1439 /* If the inferior forks or vforks, this function will be called at
1440 the next resume in order to perform any bookkeeping and fiddling
1441 necessary to continue debugging either the parent or child, as
1442 requested, and releasing the other. Information about the fork
1443 or vfork event is available via get_last_target_status ().
1444 This function returns 1 if the inferior should not be resumed
1445 (i.e. there is another event pending). */
1446
1447 int target_follow_fork (int follow_child, int detach_fork);
1448
1449 /* On some targets, we can catch an inferior exec event when it
1450 occurs. These functions insert/remove an already-created
1451 catchpoint for such events. They return 0 for success, 1 if the
1452 catchpoint type is not supported and -1 for failure. */
1453
1454 #define target_insert_exec_catchpoint(pid) \
1455 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1456
1457 #define target_remove_exec_catchpoint(pid) \
1458 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1459
1460 /* Syscall catch.
1461
1462 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1463 If NEEDED is zero, it means the target can disable the mechanism to
1464 catch system calls because there are no more catchpoints of this type.
1465
1466 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1467 being requested. In this case, both TABLE_SIZE and TABLE should
1468 be ignored.
1469
1470 TABLE_SIZE is the number of elements in TABLE. It only matters if
1471 ANY_COUNT is zero.
1472
1473 TABLE is an array of ints, indexed by syscall number. An element in
1474 this array is nonzero if that syscall should be caught. This argument
1475 only matters if ANY_COUNT is zero.
1476
1477 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1478 for failure. */
1479
1480 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1481 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1482 pid, needed, any_count, \
1483 table_size, table)
1484
1485 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1486 exit code of PID, if any. */
1487
1488 #define target_has_exited(pid,wait_status,exit_status) \
1489 (*current_target.to_has_exited) (&current_target, \
1490 pid,wait_status,exit_status)
1491
1492 /* The debugger has completed a blocking wait() call. There is now
1493 some process event that must be processed. This function should
1494 be defined by those targets that require the debugger to perform
1495 cleanup or internal state changes in response to the process event. */
1496
1497 /* The inferior process has died. Do what is right. */
1498
1499 void target_mourn_inferior (void);
1500
1501 /* Does target have enough data to do a run or attach command? */
1502
1503 #define target_can_run(t) \
1504 ((t)->to_can_run) (t)
1505
1506 /* Set list of signals to be handled in the target.
1507
1508 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1509 (enum gdb_signal). For every signal whose entry in this array is
1510 non-zero, the target is allowed -but not required- to skip reporting
1511 arrival of the signal to the GDB core by returning from target_wait,
1512 and to pass the signal directly to the inferior instead.
1513
1514 However, if the target is hardware single-stepping a thread that is
1515 about to receive a signal, it needs to be reported in any case, even
1516 if mentioned in a previous target_pass_signals call. */
1517
1518 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1519
1520 /* Set list of signals the target may pass to the inferior. This
1521 directly maps to the "handle SIGNAL pass/nopass" setting.
1522
1523 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1524 number (enum gdb_signal). For every signal whose entry in this
1525 array is non-zero, the target is allowed to pass the signal to the
1526 inferior. Signals not present in the array shall be silently
1527 discarded. This does not influence whether to pass signals to the
1528 inferior as a result of a target_resume call. This is useful in
1529 scenarios where the target needs to decide whether to pass or not a
1530 signal to the inferior without GDB core involvement, such as for
1531 example, when detaching (as threads may have been suspended with
1532 pending signals not reported to GDB). */
1533
1534 extern void target_program_signals (int nsig, unsigned char *program_signals);
1535
1536 /* Check to see if a thread is still alive. */
1537
1538 extern int target_thread_alive (ptid_t ptid);
1539
1540 /* Query for new threads and add them to the thread list. */
1541
1542 extern void target_find_new_threads (void);
1543
1544 /* Make target stop in a continuable fashion. (For instance, under
1545 Unix, this should act like SIGSTOP). This function is normally
1546 used by GUIs to implement a stop button. */
1547
1548 extern void target_stop (ptid_t ptid);
1549
1550 /* Send the specified COMMAND to the target's monitor
1551 (shell,interpreter) for execution. The result of the query is
1552 placed in OUTBUF. */
1553
1554 #define target_rcmd(command, outbuf) \
1555 (*current_target.to_rcmd) (&current_target, command, outbuf)
1556
1557
1558 /* Does the target include all of memory, or only part of it? This
1559 determines whether we look up the target chain for other parts of
1560 memory if this target can't satisfy a request. */
1561
1562 extern int target_has_all_memory_1 (void);
1563 #define target_has_all_memory target_has_all_memory_1 ()
1564
1565 /* Does the target include memory? (Dummy targets don't.) */
1566
1567 extern int target_has_memory_1 (void);
1568 #define target_has_memory target_has_memory_1 ()
1569
1570 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1571 we start a process.) */
1572
1573 extern int target_has_stack_1 (void);
1574 #define target_has_stack target_has_stack_1 ()
1575
1576 /* Does the target have registers? (Exec files don't.) */
1577
1578 extern int target_has_registers_1 (void);
1579 #define target_has_registers target_has_registers_1 ()
1580
1581 /* Does the target have execution? Can we make it jump (through
1582 hoops), or pop its stack a few times? This means that the current
1583 target is currently executing; for some targets, that's the same as
1584 whether or not the target is capable of execution, but there are
1585 also targets which can be current while not executing. In that
1586 case this will become true after target_create_inferior or
1587 target_attach. */
1588
1589 extern int target_has_execution_1 (ptid_t);
1590
1591 /* Like target_has_execution_1, but always passes inferior_ptid. */
1592
1593 extern int target_has_execution_current (void);
1594
1595 #define target_has_execution target_has_execution_current ()
1596
1597 /* Default implementations for process_stratum targets. Return true
1598 if there's a selected inferior, false otherwise. */
1599
1600 extern int default_child_has_all_memory (struct target_ops *ops);
1601 extern int default_child_has_memory (struct target_ops *ops);
1602 extern int default_child_has_stack (struct target_ops *ops);
1603 extern int default_child_has_registers (struct target_ops *ops);
1604 extern int default_child_has_execution (struct target_ops *ops,
1605 ptid_t the_ptid);
1606
1607 /* Can the target support the debugger control of thread execution?
1608 Can it lock the thread scheduler? */
1609
1610 #define target_can_lock_scheduler \
1611 (current_target.to_has_thread_control & tc_schedlock)
1612
1613 /* Should the target enable async mode if it is supported? Temporary
1614 cludge until async mode is a strict superset of sync mode. */
1615 extern int target_async_permitted;
1616
1617 /* Can the target support asynchronous execution? */
1618 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1619
1620 /* Is the target in asynchronous execution mode? */
1621 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1622
1623 int target_supports_non_stop (void);
1624
1625 /* Put the target in async mode with the specified callback function. */
1626 #define target_async(CALLBACK,CONTEXT) \
1627 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1628
1629 #define target_execution_direction() \
1630 (current_target.to_execution_direction (&current_target))
1631
1632 /* Converts a process id to a string. Usually, the string just contains
1633 `process xyz', but on some systems it may contain
1634 `process xyz thread abc'. */
1635
1636 extern char *target_pid_to_str (ptid_t ptid);
1637
1638 extern char *normal_pid_to_str (ptid_t ptid);
1639
1640 /* Return a short string describing extra information about PID,
1641 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1642 is okay. */
1643
1644 #define target_extra_thread_info(TP) \
1645 (current_target.to_extra_thread_info (&current_target, TP))
1646
1647 /* Return the thread's name. A NULL result means that the target
1648 could not determine this thread's name. */
1649
1650 extern char *target_thread_name (struct thread_info *);
1651
1652 /* Attempts to find the pathname of the executable file
1653 that was run to create a specified process.
1654
1655 The process PID must be stopped when this operation is used.
1656
1657 If the executable file cannot be determined, NULL is returned.
1658
1659 Else, a pointer to a character string containing the pathname
1660 is returned. This string should be copied into a buffer by
1661 the client if the string will not be immediately used, or if
1662 it must persist. */
1663
1664 #define target_pid_to_exec_file(pid) \
1665 (current_target.to_pid_to_exec_file) (&current_target, pid)
1666
1667 /* See the to_thread_architecture description in struct target_ops. */
1668
1669 #define target_thread_architecture(ptid) \
1670 (current_target.to_thread_architecture (&current_target, ptid))
1671
1672 /*
1673 * Iterator function for target memory regions.
1674 * Calls a callback function once for each memory region 'mapped'
1675 * in the child process. Defined as a simple macro rather than
1676 * as a function macro so that it can be tested for nullity.
1677 */
1678
1679 #define target_find_memory_regions(FUNC, DATA) \
1680 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1681
1682 /*
1683 * Compose corefile .note section.
1684 */
1685
1686 #define target_make_corefile_notes(BFD, SIZE_P) \
1687 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1688
1689 /* Bookmark interfaces. */
1690 #define target_get_bookmark(ARGS, FROM_TTY) \
1691 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1692
1693 #define target_goto_bookmark(ARG, FROM_TTY) \
1694 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1695
1696 /* Hardware watchpoint interfaces. */
1697
1698 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1699 write). Only the INFERIOR_PTID task is being queried. */
1700
1701 #define target_stopped_by_watchpoint() \
1702 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1703
1704 /* Non-zero if we have steppable watchpoints */
1705
1706 #define target_have_steppable_watchpoint \
1707 (current_target.to_have_steppable_watchpoint)
1708
1709 /* Non-zero if we have continuable watchpoints */
1710
1711 #define target_have_continuable_watchpoint \
1712 (current_target.to_have_continuable_watchpoint)
1713
1714 /* Provide defaults for hardware watchpoint functions. */
1715
1716 /* If the *_hw_beakpoint functions have not been defined
1717 elsewhere use the definitions in the target vector. */
1718
1719 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1720 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1721 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1722 (including this one?). OTHERTYPE is who knows what... */
1723
1724 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1725 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1726 TYPE, CNT, OTHERTYPE);
1727
1728 /* Returns the number of debug registers needed to watch the given
1729 memory region, or zero if not supported. */
1730
1731 #define target_region_ok_for_hw_watchpoint(addr, len) \
1732 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1733 addr, len)
1734
1735
1736 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1737 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1738 COND is the expression for its condition, or NULL if there's none.
1739 Returns 0 for success, 1 if the watchpoint type is not supported,
1740 -1 for failure. */
1741
1742 #define target_insert_watchpoint(addr, len, type, cond) \
1743 (*current_target.to_insert_watchpoint) (&current_target, \
1744 addr, len, type, cond)
1745
1746 #define target_remove_watchpoint(addr, len, type, cond) \
1747 (*current_target.to_remove_watchpoint) (&current_target, \
1748 addr, len, type, cond)
1749
1750 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1751 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1752 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1753 masked watchpoints are not supported, -1 for failure. */
1754
1755 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1756
1757 /* Remove a masked watchpoint at ADDR with the mask MASK.
1758 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1759 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1760 for failure. */
1761
1762 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1763
1764 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1765 the target machine. Returns 0 for success, and returns non-zero or
1766 throws an error (with a detailed failure reason error code and
1767 message) otherwise. */
1768
1769 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1770 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1771 gdbarch, bp_tgt)
1772
1773 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1774 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1775 gdbarch, bp_tgt)
1776
1777 /* Return number of debug registers needed for a ranged breakpoint,
1778 or -1 if ranged breakpoints are not supported. */
1779
1780 extern int target_ranged_break_num_registers (void);
1781
1782 /* Return non-zero if target knows the data address which triggered this
1783 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1784 INFERIOR_PTID task is being queried. */
1785 #define target_stopped_data_address(target, addr_p) \
1786 (*target.to_stopped_data_address) (target, addr_p)
1787
1788 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1789 LENGTH bytes beginning at START. */
1790 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1791 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1792
1793 /* Return non-zero if the target is capable of using hardware to evaluate
1794 the condition expression. In this case, if the condition is false when
1795 the watched memory location changes, execution may continue without the
1796 debugger being notified.
1797
1798 Due to limitations in the hardware implementation, it may be capable of
1799 avoiding triggering the watchpoint in some cases where the condition
1800 expression is false, but may report some false positives as well.
1801 For this reason, GDB will still evaluate the condition expression when
1802 the watchpoint triggers. */
1803 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1804 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1805 addr, len, type, cond)
1806
1807 /* Return number of debug registers needed for a masked watchpoint,
1808 -1 if masked watchpoints are not supported or -2 if the given address
1809 and mask combination cannot be used. */
1810
1811 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1812
1813 /* Target can execute in reverse? */
1814 #define target_can_execute_reverse \
1815 current_target.to_can_execute_reverse (&current_target)
1816
1817 extern const struct target_desc *target_read_description (struct target_ops *);
1818
1819 #define target_get_ada_task_ptid(lwp, tid) \
1820 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1821
1822 /* Utility implementation of searching memory. */
1823 extern int simple_search_memory (struct target_ops* ops,
1824 CORE_ADDR start_addr,
1825 ULONGEST search_space_len,
1826 const gdb_byte *pattern,
1827 ULONGEST pattern_len,
1828 CORE_ADDR *found_addrp);
1829
1830 /* Main entry point for searching memory. */
1831 extern int target_search_memory (CORE_ADDR start_addr,
1832 ULONGEST search_space_len,
1833 const gdb_byte *pattern,
1834 ULONGEST pattern_len,
1835 CORE_ADDR *found_addrp);
1836
1837 /* Target file operations. */
1838
1839 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1840 target file descriptor, or -1 if an error occurs (and set
1841 *TARGET_ERRNO). */
1842 extern int target_fileio_open (const char *filename, int flags, int mode,
1843 int *target_errno);
1844
1845 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1846 Return the number of bytes written, or -1 if an error occurs
1847 (and set *TARGET_ERRNO). */
1848 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1849 ULONGEST offset, int *target_errno);
1850
1851 /* Read up to LEN bytes FD on the target into READ_BUF.
1852 Return the number of bytes read, or -1 if an error occurs
1853 (and set *TARGET_ERRNO). */
1854 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1855 ULONGEST offset, int *target_errno);
1856
1857 /* Close FD on the target. Return 0, or -1 if an error occurs
1858 (and set *TARGET_ERRNO). */
1859 extern int target_fileio_close (int fd, int *target_errno);
1860
1861 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1862 occurs (and set *TARGET_ERRNO). */
1863 extern int target_fileio_unlink (const char *filename, int *target_errno);
1864
1865 /* Read value of symbolic link FILENAME on the target. Return a
1866 null-terminated string allocated via xmalloc, or NULL if an error
1867 occurs (and set *TARGET_ERRNO). */
1868 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1869
1870 /* Read target file FILENAME. The return value will be -1 if the transfer
1871 fails or is not supported; 0 if the object is empty; or the length
1872 of the object otherwise. If a positive value is returned, a
1873 sufficiently large buffer will be allocated using xmalloc and
1874 returned in *BUF_P containing the contents of the object.
1875
1876 This method should be used for objects sufficiently small to store
1877 in a single xmalloc'd buffer, when no fixed bound on the object's
1878 size is known in advance. */
1879 extern LONGEST target_fileio_read_alloc (const char *filename,
1880 gdb_byte **buf_p);
1881
1882 /* Read target file FILENAME. The result is NUL-terminated and
1883 returned as a string, allocated using xmalloc. If an error occurs
1884 or the transfer is unsupported, NULL is returned. Empty objects
1885 are returned as allocated but empty strings. A warning is issued
1886 if the result contains any embedded NUL bytes. */
1887 extern char *target_fileio_read_stralloc (const char *filename);
1888
1889
1890 /* Tracepoint-related operations. */
1891
1892 #define target_trace_init() \
1893 (*current_target.to_trace_init) (&current_target)
1894
1895 #define target_download_tracepoint(t) \
1896 (*current_target.to_download_tracepoint) (&current_target, t)
1897
1898 #define target_can_download_tracepoint() \
1899 (*current_target.to_can_download_tracepoint) (&current_target)
1900
1901 #define target_download_trace_state_variable(tsv) \
1902 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1903
1904 #define target_enable_tracepoint(loc) \
1905 (*current_target.to_enable_tracepoint) (&current_target, loc)
1906
1907 #define target_disable_tracepoint(loc) \
1908 (*current_target.to_disable_tracepoint) (&current_target, loc)
1909
1910 #define target_trace_start() \
1911 (*current_target.to_trace_start) (&current_target)
1912
1913 #define target_trace_set_readonly_regions() \
1914 (*current_target.to_trace_set_readonly_regions) (&current_target)
1915
1916 #define target_get_trace_status(ts) \
1917 (*current_target.to_get_trace_status) (&current_target, ts)
1918
1919 #define target_get_tracepoint_status(tp,utp) \
1920 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1921
1922 #define target_trace_stop() \
1923 (*current_target.to_trace_stop) (&current_target)
1924
1925 #define target_trace_find(type,num,addr1,addr2,tpp) \
1926 (*current_target.to_trace_find) (&current_target, \
1927 (type), (num), (addr1), (addr2), (tpp))
1928
1929 #define target_get_trace_state_variable_value(tsv,val) \
1930 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1931 (tsv), (val))
1932
1933 #define target_save_trace_data(filename) \
1934 (*current_target.to_save_trace_data) (&current_target, filename)
1935
1936 #define target_upload_tracepoints(utpp) \
1937 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1938
1939 #define target_upload_trace_state_variables(utsvp) \
1940 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1941
1942 #define target_get_raw_trace_data(buf,offset,len) \
1943 (*current_target.to_get_raw_trace_data) (&current_target, \
1944 (buf), (offset), (len))
1945
1946 #define target_get_min_fast_tracepoint_insn_len() \
1947 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1948
1949 #define target_set_disconnected_tracing(val) \
1950 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1951
1952 #define target_set_circular_trace_buffer(val) \
1953 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1954
1955 #define target_set_trace_buffer_size(val) \
1956 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1957
1958 #define target_set_trace_notes(user,notes,stopnotes) \
1959 (*current_target.to_set_trace_notes) (&current_target, \
1960 (user), (notes), (stopnotes))
1961
1962 #define target_get_tib_address(ptid, addr) \
1963 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1964
1965 #define target_set_permissions() \
1966 (*current_target.to_set_permissions) (&current_target)
1967
1968 #define target_static_tracepoint_marker_at(addr, marker) \
1969 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1970 addr, marker)
1971
1972 #define target_static_tracepoint_markers_by_strid(marker_id) \
1973 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1974 marker_id)
1975
1976 #define target_traceframe_info() \
1977 (*current_target.to_traceframe_info) (&current_target)
1978
1979 #define target_use_agent(use) \
1980 (*current_target.to_use_agent) (&current_target, use)
1981
1982 #define target_can_use_agent() \
1983 (*current_target.to_can_use_agent) (&current_target)
1984
1985 #define target_augmented_libraries_svr4_read() \
1986 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1987
1988 /* Command logging facility. */
1989
1990 #define target_log_command(p) \
1991 (*current_target.to_log_command) (&current_target, p)
1992
1993
1994 extern int target_core_of_thread (ptid_t ptid);
1995
1996 /* See to_get_unwinder in struct target_ops. */
1997 extern const struct frame_unwind *target_get_unwinder (void);
1998
1999 /* See to_get_tailcall_unwinder in struct target_ops. */
2000 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2001
2002 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2003 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2004 if there's a mismatch, and -1 if an error is encountered while
2005 reading memory. Throws an error if the functionality is found not
2006 to be supported by the current target. */
2007 int target_verify_memory (const gdb_byte *data,
2008 CORE_ADDR memaddr, ULONGEST size);
2009
2010 /* Routines for maintenance of the target structures...
2011
2012 complete_target_initialization: Finalize a target_ops by filling in
2013 any fields needed by the target implementation.
2014
2015 add_target: Add a target to the list of all possible targets.
2016
2017 push_target: Make this target the top of the stack of currently used
2018 targets, within its particular stratum of the stack. Result
2019 is 0 if now atop the stack, nonzero if not on top (maybe
2020 should warn user).
2021
2022 unpush_target: Remove this from the stack of currently used targets,
2023 no matter where it is on the list. Returns 0 if no
2024 change, 1 if removed from stack. */
2025
2026 extern void add_target (struct target_ops *);
2027
2028 extern void add_target_with_completer (struct target_ops *t,
2029 completer_ftype *completer);
2030
2031 extern void complete_target_initialization (struct target_ops *t);
2032
2033 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2034 for maintaining backwards compatibility when renaming targets. */
2035
2036 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2037
2038 extern void push_target (struct target_ops *);
2039
2040 extern int unpush_target (struct target_ops *);
2041
2042 extern void target_pre_inferior (int);
2043
2044 extern void target_preopen (int);
2045
2046 /* Does whatever cleanup is required to get rid of all pushed targets. */
2047 extern void pop_all_targets (void);
2048
2049 /* Like pop_all_targets, but pops only targets whose stratum is
2050 strictly above ABOVE_STRATUM. */
2051 extern void pop_all_targets_above (enum strata above_stratum);
2052
2053 extern int target_is_pushed (struct target_ops *t);
2054
2055 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2056 CORE_ADDR offset);
2057
2058 /* Struct target_section maps address ranges to file sections. It is
2059 mostly used with BFD files, but can be used without (e.g. for handling
2060 raw disks, or files not in formats handled by BFD). */
2061
2062 struct target_section
2063 {
2064 CORE_ADDR addr; /* Lowest address in section */
2065 CORE_ADDR endaddr; /* 1+highest address in section */
2066
2067 struct bfd_section *the_bfd_section;
2068
2069 /* The "owner" of the section.
2070 It can be any unique value. It is set by add_target_sections
2071 and used by remove_target_sections.
2072 For example, for executables it is a pointer to exec_bfd and
2073 for shlibs it is the so_list pointer. */
2074 void *owner;
2075 };
2076
2077 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2078
2079 struct target_section_table
2080 {
2081 struct target_section *sections;
2082 struct target_section *sections_end;
2083 };
2084
2085 /* Return the "section" containing the specified address. */
2086 struct target_section *target_section_by_addr (struct target_ops *target,
2087 CORE_ADDR addr);
2088
2089 /* Return the target section table this target (or the targets
2090 beneath) currently manipulate. */
2091
2092 extern struct target_section_table *target_get_section_table
2093 (struct target_ops *target);
2094
2095 /* From mem-break.c */
2096
2097 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2098 struct bp_target_info *);
2099
2100 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2101 struct bp_target_info *);
2102
2103 extern int default_memory_remove_breakpoint (struct gdbarch *,
2104 struct bp_target_info *);
2105
2106 extern int default_memory_insert_breakpoint (struct gdbarch *,
2107 struct bp_target_info *);
2108
2109
2110 /* From target.c */
2111
2112 extern void initialize_targets (void);
2113
2114 extern void noprocess (void) ATTRIBUTE_NORETURN;
2115
2116 extern void target_require_runnable (void);
2117
2118 extern void find_default_attach (struct target_ops *, char *, int);
2119
2120 extern void find_default_create_inferior (struct target_ops *,
2121 char *, char *, char **, int);
2122
2123 extern struct target_ops *find_target_beneath (struct target_ops *);
2124
2125 /* Find the target at STRATUM. If no target is at that stratum,
2126 return NULL. */
2127
2128 struct target_ops *find_target_at (enum strata stratum);
2129
2130 /* Read OS data object of type TYPE from the target, and return it in
2131 XML format. The result is NUL-terminated and returned as a string,
2132 allocated using xmalloc. If an error occurs or the transfer is
2133 unsupported, NULL is returned. Empty objects are returned as
2134 allocated but empty strings. */
2135
2136 extern char *target_get_osdata (const char *type);
2137
2138 \f
2139 /* Stuff that should be shared among the various remote targets. */
2140
2141 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2142 information (higher values, more information). */
2143 extern int remote_debug;
2144
2145 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2146 extern int baud_rate;
2147 /* Timeout limit for response from target. */
2148 extern int remote_timeout;
2149
2150 \f
2151
2152 /* Set the show memory breakpoints mode to show, and installs a cleanup
2153 to restore it back to the current value. */
2154 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2155
2156 extern int may_write_registers;
2157 extern int may_write_memory;
2158 extern int may_insert_breakpoints;
2159 extern int may_insert_tracepoints;
2160 extern int may_insert_fast_tracepoints;
2161 extern int may_stop;
2162
2163 extern void update_target_permissions (void);
2164
2165 \f
2166 /* Imported from machine dependent code. */
2167
2168 /* Blank target vector entries are initialized to target_ignore. */
2169 void target_ignore (void);
2170
2171 /* See to_supports_btrace in struct target_ops. */
2172 #define target_supports_btrace() \
2173 (current_target.to_supports_btrace (&current_target))
2174
2175 /* See to_enable_btrace in struct target_ops. */
2176 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2177
2178 /* See to_disable_btrace in struct target_ops. */
2179 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2180
2181 /* See to_teardown_btrace in struct target_ops. */
2182 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2183
2184 /* See to_read_btrace in struct target_ops. */
2185 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2186 struct btrace_target_info *,
2187 enum btrace_read_type);
2188
2189 /* See to_stop_recording in struct target_ops. */
2190 extern void target_stop_recording (void);
2191
2192 /* See to_info_record in struct target_ops. */
2193 extern void target_info_record (void);
2194
2195 /* See to_save_record in struct target_ops. */
2196 extern void target_save_record (const char *filename);
2197
2198 /* Query if the target supports deleting the execution log. */
2199 extern int target_supports_delete_record (void);
2200
2201 /* See to_delete_record in struct target_ops. */
2202 extern void target_delete_record (void);
2203
2204 /* See to_record_is_replaying in struct target_ops. */
2205 extern int target_record_is_replaying (void);
2206
2207 /* See to_goto_record_begin in struct target_ops. */
2208 extern void target_goto_record_begin (void);
2209
2210 /* See to_goto_record_end in struct target_ops. */
2211 extern void target_goto_record_end (void);
2212
2213 /* See to_goto_record in struct target_ops. */
2214 extern void target_goto_record (ULONGEST insn);
2215
2216 /* See to_insn_history. */
2217 extern void target_insn_history (int size, int flags);
2218
2219 /* See to_insn_history_from. */
2220 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2221
2222 /* See to_insn_history_range. */
2223 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2224
2225 /* See to_call_history. */
2226 extern void target_call_history (int size, int flags);
2227
2228 /* See to_call_history_from. */
2229 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2230
2231 /* See to_call_history_range. */
2232 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2233
2234 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2235 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2236 struct gdbarch *gdbarch);
2237
2238 /* See to_decr_pc_after_break. */
2239 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2240
2241 #endif /* !defined (TARGET_H) */