]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/tic6x-tdep.c
Finalized intl-update patches
[thirdparty/binutils-gdb.git] / gdb / tic6x-tdep.c
1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2023 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2/frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "glibc-tdep.h"
40 #include "infcall.h"
41 #include "regset.h"
42 #include "tramp-frame.h"
43 #include "linux-tdep.h"
44 #include "solib.h"
45 #include "objfiles.h"
46 #include "osabi.h"
47 #include "tic6x-tdep.h"
48 #include "language.h"
49 #include "target-descriptions.h"
50 #include <algorithm>
51
52 #define TIC6X_OPCODE_SIZE 4
53 #define TIC6X_FETCH_PACKET_SIZE 32
54
55 #define INST_S_BIT(INST) ((INST >> 1) & 1)
56 #define INST_X_BIT(INST) ((INST >> 12) & 1)
57
58 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
59 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
60
61 struct tic6x_unwind_cache
62 {
63 /* The frame's base, optionally used by the high-level debug info. */
64 CORE_ADDR base;
65
66 /* The previous frame's inner most stack address. Used as this
67 frame ID's stack_addr. */
68 CORE_ADDR cfa;
69
70 /* The address of the first instruction in this function */
71 CORE_ADDR pc;
72
73 /* Which register holds the return address for the frame. */
74 int return_regnum;
75
76 /* The offset of register saved on stack. If register is not saved, the
77 corresponding element is -1. */
78 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
79 };
80
81
82 /* Name of TI C6x core registers. */
83 static const char *const tic6x_register_names[] =
84 {
85 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
86 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
87 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
88 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
89 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
90 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
91 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
92 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
93 "CSR", "PC", /* 32 33 */
94 };
95
96 /* This array maps the arguments to the register number which passes argument
97 in function call according to C6000 ELF ABI. */
98 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
99
100 /* This is the implementation of gdbarch method register_name. */
101
102 static const char *
103 tic6x_register_name (struct gdbarch *gdbarch, int regno)
104 {
105 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
106 return tdesc_register_name (gdbarch, regno);
107 else if (regno >= ARRAY_SIZE (tic6x_register_names))
108 return "";
109 else
110 return tic6x_register_names[regno];
111 }
112
113 /* This is the implementation of gdbarch method register_type. */
114
115 static struct type *
116 tic6x_register_type (struct gdbarch *gdbarch, int regno)
117 {
118
119 if (regno == TIC6X_PC_REGNUM)
120 return builtin_type (gdbarch)->builtin_func_ptr;
121 else
122 return builtin_type (gdbarch)->builtin_uint32;
123 }
124
125 static void
126 tic6x_setup_default (struct tic6x_unwind_cache *cache)
127 {
128 int i;
129
130 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
131 cache->reg_saved[i] = -1;
132 }
133
134 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
135 static int tic6x_register_number (int reg, int side, int crosspath);
136
137 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
138 Bail out early if CURRENT_PC is reached. Returns the address of the first
139 instruction after the prologue. */
140
141 static CORE_ADDR
142 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
143 const CORE_ADDR current_pc,
144 struct tic6x_unwind_cache *cache,
145 frame_info_ptr this_frame)
146 {
147 unsigned int src_reg, base_reg, dst_reg;
148 int i;
149 CORE_ADDR pc = start_pc;
150 CORE_ADDR return_pc = start_pc;
151 int frame_base_offset_to_sp = 0;
152 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
153 int non_stw_insn_counter = 0;
154
155 if (start_pc >= current_pc)
156 return_pc = current_pc;
157
158 cache->base = 0;
159
160 /* The landmarks in prologue is one or two SUB instructions to SP.
161 Instructions on setting up dsbt are in the last part of prologue, if
162 needed. In maxim, prologue can be divided to three parts by two
163 `sub sp, xx, sp' insns. */
164
165 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
166 2nd one is optional. */
167 while (pc < current_pc)
168 {
169 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
170
171 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
172 || (inst & 0x0ffc) == 0x9c0)
173 {
174 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
175 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
176 INST_S_BIT (inst), 0);
177 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
178 INST_S_BIT (inst), 0);
179
180 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
181 {
182 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
183 offset. The constant offset is decoded in bit 13-17 in all
184 these three kinds of instructions. */
185 unsigned int ucst5 = (inst >> 13) & 0x1f;
186
187 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
188 frame_base_offset_to_sp += ucst5 << 2;
189 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
190 frame_base_offset_to_sp += ucst5 << 1;
191 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
192 frame_base_offset_to_sp += ucst5;
193 else
194 gdb_assert_not_reached ("unexpected instruction");
195
196 return_pc = pc + 4;
197 }
198 }
199 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
200 {
201 /* The y bit determines which file base is read from. */
202 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
203 (inst >> 7) & 1, 0);
204
205 if (base_reg == TIC6X_SP_REGNUM)
206 {
207 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
208 INST_S_BIT (inst), 0);
209
210 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
211
212 return_pc = pc + 4;
213 }
214 non_stw_insn_counter = 0;
215 }
216 else
217 {
218 non_stw_insn_counter++;
219 /* Following instruction sequence may be emitted in prologue:
220
221 <+0>: subah .D2 b15,28,b15
222 <+4>: or .L2X 0,a4,b0
223 <+8>: || stw .D2T2 b14,*+b15(56)
224 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
225 <+16>:|| stw .D2T1 a10,*+b15(48)
226 <+20>:stw .D2T2 b3,*+b15(52)
227 <+24>:stw .D2T1 a4,*+b15(40)
228
229 we should look forward for next instruction instead of breaking loop
230 here. So far, we allow almost two sequential non-stw instructions
231 in prologue. */
232 if (non_stw_insn_counter >= 2)
233 break;
234 }
235
236
237 pc += 4;
238 }
239 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
240 ldw .D2T2 *+b14(0),b14 */
241 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
242 /* The s bit determines which file dst will be loaded into, same effect as
243 other places. */
244 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
245 /* The y bit (bit 7), instead of s bit, determines which file base be
246 used. */
247 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
248
249 if ((inst & 0x164) == 0x64 /* ldw */
250 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
251 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
252 {
253 return_pc = pc + 4;
254 }
255
256 if (this_frame)
257 {
258 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
259
260 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
261 {
262 /* If the FP now holds an offset from the CFA then this is a frame
263 which uses the frame pointer. */
264
265 cache->cfa = get_frame_register_unsigned (this_frame,
266 TIC6X_FP_REGNUM);
267 }
268 else
269 {
270 /* FP doesn't hold an offset from the CFA. If SP still holds an
271 offset from the CFA then we might be in a function which omits
272 the frame pointer. */
273
274 cache->cfa = cache->base + frame_base_offset_to_sp;
275 }
276 }
277
278 /* Adjust all the saved registers such that they contain addresses
279 instead of offsets. */
280 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
281 if (cache->reg_saved[i] != -1)
282 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
283
284 return return_pc;
285 }
286
287 /* This is the implementation of gdbarch method skip_prologue. */
288
289 static CORE_ADDR
290 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
291 {
292 CORE_ADDR func_addr;
293 struct tic6x_unwind_cache cache;
294
295 /* See if we can determine the end of the prologue via the symbol table.
296 If so, then return either PC, or the PC after the prologue, whichever is
297 greater. */
298 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
299 {
300 CORE_ADDR post_prologue_pc
301 = skip_prologue_using_sal (gdbarch, func_addr);
302 if (post_prologue_pc != 0)
303 return std::max (start_pc, post_prologue_pc);
304 }
305
306 /* Can't determine prologue from the symbol table, need to examine
307 instructions. */
308 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
309 NULL);
310 }
311
312 /* Implement the breakpoint_kind_from_pc gdbarch method. */
313
314 static int
315 tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
316 {
317 return 4;
318 }
319
320 /* Implement the sw_breakpoint_from_kind gdbarch method. */
321
322 static const gdb_byte *
323 tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
324 {
325 tic6x_gdbarch_tdep *tdep = gdbarch_tdep<tic6x_gdbarch_tdep> (gdbarch);
326
327 *size = kind;
328
329 if (tdep == NULL || tdep->breakpoint == NULL)
330 {
331 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
332 return tic6x_bkpt_illegal_opcode_be;
333 else
334 return tic6x_bkpt_illegal_opcode_le;
335 }
336 else
337 return tdep->breakpoint;
338 }
339
340 static void
341 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
342 struct dwarf2_frame_state_reg *reg,
343 frame_info_ptr this_frame)
344 {
345 /* Mark the PC as the destination for the return address. */
346 if (regnum == gdbarch_pc_regnum (gdbarch))
347 reg->how = DWARF2_FRAME_REG_RA;
348
349 /* Mark the stack pointer as the call frame address. */
350 else if (regnum == gdbarch_sp_regnum (gdbarch))
351 reg->how = DWARF2_FRAME_REG_CFA;
352
353 /* The above was taken from the default init_reg in dwarf2-frame.c
354 while the below is c6x specific. */
355
356 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
357 callee-save. */
358 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
359 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
360 else
361 /* All other registers are caller-save. */
362 reg->how = DWARF2_FRAME_REG_UNDEFINED;
363 }
364
365 /* This is the implementation of gdbarch method unwind_pc. */
366
367 static CORE_ADDR
368 tic6x_unwind_pc (struct gdbarch *gdbarch, frame_info_ptr next_frame)
369 {
370 gdb_byte buf[8];
371
372 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
373 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
374 }
375
376 /* Frame base handling. */
377
378 static struct tic6x_unwind_cache*
379 tic6x_frame_unwind_cache (frame_info_ptr this_frame,
380 void **this_prologue_cache)
381 {
382 struct gdbarch *gdbarch = get_frame_arch (this_frame);
383 CORE_ADDR current_pc;
384 struct tic6x_unwind_cache *cache;
385
386 if (*this_prologue_cache)
387 return (struct tic6x_unwind_cache *) *this_prologue_cache;
388
389 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
390 (*this_prologue_cache) = cache;
391
392 cache->return_regnum = TIC6X_RA_REGNUM;
393
394 tic6x_setup_default (cache);
395
396 cache->pc = get_frame_func (this_frame);
397 current_pc = get_frame_pc (this_frame);
398
399 /* Prologue analysis does the rest... */
400 if (cache->pc != 0)
401 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
402
403 return cache;
404 }
405
406 static void
407 tic6x_frame_this_id (frame_info_ptr this_frame, void **this_cache,
408 struct frame_id *this_id)
409 {
410 struct tic6x_unwind_cache *cache =
411 tic6x_frame_unwind_cache (this_frame, this_cache);
412
413 /* This marks the outermost frame. */
414 if (cache->base == 0)
415 return;
416
417 (*this_id) = frame_id_build (cache->cfa, cache->pc);
418 }
419
420 static struct value *
421 tic6x_frame_prev_register (frame_info_ptr this_frame, void **this_cache,
422 int regnum)
423 {
424 struct tic6x_unwind_cache *cache =
425 tic6x_frame_unwind_cache (this_frame, this_cache);
426
427 gdb_assert (regnum >= 0);
428
429 /* The PC of the previous frame is stored in the RA register of
430 the current frame. Frob regnum so that we pull the value from
431 the correct place. */
432 if (regnum == TIC6X_PC_REGNUM)
433 regnum = cache->return_regnum;
434
435 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
436 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
437
438 /* If we've worked out where a register is stored then load it from
439 there. */
440 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
441 return frame_unwind_got_memory (this_frame, regnum,
442 cache->reg_saved[regnum]);
443
444 return frame_unwind_got_register (this_frame, regnum, regnum);
445 }
446
447 static CORE_ADDR
448 tic6x_frame_base_address (frame_info_ptr this_frame, void **this_cache)
449 {
450 struct tic6x_unwind_cache *info
451 = tic6x_frame_unwind_cache (this_frame, this_cache);
452 return info->base;
453 }
454
455 static const struct frame_unwind tic6x_frame_unwind =
456 {
457 "tic6x prologue",
458 NORMAL_FRAME,
459 default_frame_unwind_stop_reason,
460 tic6x_frame_this_id,
461 tic6x_frame_prev_register,
462 NULL,
463 default_frame_sniffer
464 };
465
466 static const struct frame_base tic6x_frame_base =
467 {
468 &tic6x_frame_unwind,
469 tic6x_frame_base_address,
470 tic6x_frame_base_address,
471 tic6x_frame_base_address
472 };
473
474
475 static struct tic6x_unwind_cache *
476 tic6x_make_stub_cache (frame_info_ptr this_frame)
477 {
478 struct tic6x_unwind_cache *cache;
479
480 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
481
482 cache->return_regnum = TIC6X_RA_REGNUM;
483
484 tic6x_setup_default (cache);
485
486 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
487
488 return cache;
489 }
490
491 static void
492 tic6x_stub_this_id (frame_info_ptr this_frame, void **this_cache,
493 struct frame_id *this_id)
494 {
495 struct tic6x_unwind_cache *cache;
496
497 if (*this_cache == NULL)
498 *this_cache = tic6x_make_stub_cache (this_frame);
499 cache = (struct tic6x_unwind_cache *) *this_cache;
500
501 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
502 }
503
504 static int
505 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
506 frame_info_ptr this_frame,
507 void **this_prologue_cache)
508 {
509 CORE_ADDR addr_in_block;
510
511 addr_in_block = get_frame_address_in_block (this_frame);
512 if (in_plt_section (addr_in_block))
513 return 1;
514
515 return 0;
516 }
517
518 static const struct frame_unwind tic6x_stub_unwind =
519 {
520 "tic6x stub",
521 NORMAL_FRAME,
522 default_frame_unwind_stop_reason,
523 tic6x_stub_this_id,
524 tic6x_frame_prev_register,
525 NULL,
526 tic6x_stub_unwind_sniffer
527 };
528
529 /* Return the instruction on address PC. */
530
531 static unsigned long
532 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
533 {
534 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
535 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
536 }
537
538 /* Compute the condition of INST if it is a conditional instruction. Always
539 return 1 if INST is not a conditional instruction. */
540
541 static int
542 tic6x_condition_true (struct regcache *regcache, unsigned long inst)
543 {
544 int register_number;
545 int register_value;
546 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
547
548 register_number = register_numbers[(inst >> 29) & 7];
549 if (register_number == -1)
550 return 1;
551
552 register_value = regcache_raw_get_signed (regcache, register_number);
553 if ((inst & 0x10000000) != 0)
554 return register_value == 0;
555 return register_value != 0;
556 }
557
558 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
559 instruction. */
560
561 static int
562 tic6x_register_number (int reg, int side, int crosspath)
563 {
564 int r = (reg & 15) | ((crosspath ^ side) << 4);
565 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
566 r += 37;
567 return r;
568 }
569
570 static int
571 tic6x_extract_signed_field (int value, int low_bit, int bits)
572 {
573 int mask = (1 << bits) - 1;
574 int r = (value >> low_bit) & mask;
575 if ((r & (1 << (bits - 1))) != 0)
576 r -= mask + 1;
577 return r;
578 }
579
580 /* Determine where to set a single step breakpoint. */
581
582 static CORE_ADDR
583 tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
584 {
585 struct gdbarch *gdbarch = regcache->arch ();
586 unsigned long inst;
587 int register_number;
588 int last = 0;
589
590 do
591 {
592 inst = tic6x_fetch_instruction (gdbarch, pc);
593
594 last = !(inst & 1);
595
596 if (inst == TIC6X_INST_SWE)
597 {
598 tic6x_gdbarch_tdep *tdep
599 = gdbarch_tdep<tic6x_gdbarch_tdep> (gdbarch);
600
601 if (tdep->syscall_next_pc != NULL)
602 return tdep->syscall_next_pc (get_current_frame ());
603 }
604
605 if (tic6x_condition_true (regcache, inst))
606 {
607 if ((inst & 0x0000007c) == 0x00000010)
608 {
609 /* B with displacement */
610 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
611 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
612 break;
613 }
614 if ((inst & 0x0f83effc) == 0x00000360)
615 {
616 /* B with register */
617
618 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
619 INST_S_BIT (inst),
620 INST_X_BIT (inst));
621 pc = regcache_raw_get_unsigned (regcache, register_number);
622 break;
623 }
624 if ((inst & 0x00001ffc) == 0x00001020)
625 {
626 /* BDEC */
627 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
628 INST_S_BIT (inst), 0);
629 if (regcache_raw_get_signed (regcache, register_number) >= 0)
630 {
631 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
632 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
633 }
634 break;
635 }
636 if ((inst & 0x00001ffc) == 0x00000120)
637 {
638 /* BNOP with displacement */
639 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
640 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
641 break;
642 }
643 if ((inst & 0x0f830ffe) == 0x00800362)
644 {
645 /* BNOP with register */
646 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
647 1, INST_X_BIT (inst));
648 pc = regcache_raw_get_unsigned (regcache, register_number);
649 break;
650 }
651 if ((inst & 0x00001ffc) == 0x00000020)
652 {
653 /* BPOS */
654 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
655 INST_S_BIT (inst), 0);
656 if (regcache_raw_get_signed (regcache, register_number) >= 0)
657 {
658 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
659 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
660 }
661 break;
662 }
663 if ((inst & 0xf000007c) == 0x10000010)
664 {
665 /* CALLP */
666 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
667 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
668 break;
669 }
670 }
671 pc += TIC6X_OPCODE_SIZE;
672 }
673 while (!last);
674 return pc;
675 }
676
677 /* This is the implementation of gdbarch method software_single_step. */
678
679 static std::vector<CORE_ADDR>
680 tic6x_software_single_step (struct regcache *regcache)
681 {
682 CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache));
683
684 return {next_pc};
685 }
686
687 /* This is the implementation of gdbarch method frame_align. */
688
689 static CORE_ADDR
690 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
691 {
692 return align_down (addr, 8);
693 }
694
695 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
696 value into VALBUF. */
697
698 static void
699 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
700 enum bfd_endian byte_order, gdb_byte *valbuf)
701 {
702 int len = valtype->length ();
703
704 /* pointer types are returned in register A4,
705 up to 32-bit types in A4
706 up to 64-bit types in A5:A4 */
707 if (len <= 4)
708 {
709 /* In big-endian,
710 - one-byte structure or union occupies the LSB of single even register.
711 - for two-byte structure or union, the first byte occupies byte 1 of
712 register and the second byte occupies byte 0.
713 so, we read the contents in VAL from the LSBs of register. */
714 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
715 regcache->cooked_read_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
716 else
717 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
718 }
719 else if (len <= 8)
720 {
721 /* For a 5-8 byte structure or union in big-endian, the first byte
722 occupies byte 3 (the MSB) of the upper (odd) register and the
723 remaining bytes fill the decreasingly significant bytes. 5-7
724 byte structures or unions have padding in the LSBs of the
725 lower (even) register. */
726 if (byte_order == BFD_ENDIAN_BIG)
727 {
728 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf + 4);
729 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf);
730 }
731 else
732 {
733 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
734 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf + 4);
735 }
736 }
737 }
738
739 /* Write into appropriate registers a function return value
740 of type TYPE, given in virtual format. */
741
742 static void
743 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
744 enum bfd_endian byte_order, const gdb_byte *valbuf)
745 {
746 int len = valtype->length ();
747
748 /* return values of up to 8 bytes are returned in A5:A4 */
749
750 if (len <= 4)
751 {
752 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
753 regcache->cooked_write_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
754 else
755 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
756 }
757 else if (len <= 8)
758 {
759 if (byte_order == BFD_ENDIAN_BIG)
760 {
761 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf + 4);
762 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf);
763 }
764 else
765 {
766 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
767 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf + 4);
768 }
769 }
770 }
771
772 /* This is the implementation of gdbarch method return_value. */
773
774 static enum return_value_convention
775 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
776 struct type *type, struct regcache *regcache,
777 gdb_byte *readbuf, const gdb_byte *writebuf)
778 {
779 /* In C++, when function returns an object, even its size is small
780 enough, it stii has to be passed via reference, pointed by register
781 A3. */
782 if (current_language->la_language == language_cplus)
783 {
784 if (type != NULL)
785 {
786 type = check_typedef (type);
787 if (!(language_pass_by_reference (type).trivially_copyable))
788 return RETURN_VALUE_STRUCT_CONVENTION;
789 }
790 }
791
792 if (type->length () > 8)
793 return RETURN_VALUE_STRUCT_CONVENTION;
794
795 if (readbuf)
796 tic6x_extract_return_value (type, regcache,
797 gdbarch_byte_order (gdbarch), readbuf);
798 if (writebuf)
799 tic6x_store_return_value (type, regcache,
800 gdbarch_byte_order (gdbarch), writebuf);
801
802 return RETURN_VALUE_REGISTER_CONVENTION;
803 }
804
805 /* Get the alignment requirement of TYPE. */
806
807 static int
808 tic6x_arg_type_alignment (struct type *type)
809 {
810 int len = check_typedef (type)->length ();
811 enum type_code typecode = check_typedef (type)->code ();
812
813 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
814 {
815 /* The stack alignment of a structure (and union) passed by value is the
816 smallest power of two greater than or equal to its size.
817 This cannot exceed 8 bytes, which is the largest allowable size for
818 a structure passed by value. */
819
820 if (len <= 2)
821 return len;
822 else if (len <= 4)
823 return 4;
824 else if (len <= 8)
825 return 8;
826 else
827 gdb_assert_not_reached ("unexpected length of data");
828 }
829 else
830 {
831 if (len <= 4)
832 return 4;
833 else if (len == 8)
834 {
835 if (typecode == TYPE_CODE_COMPLEX)
836 return 4;
837 else
838 return 8;
839 }
840 else if (len == 16)
841 {
842 if (typecode == TYPE_CODE_COMPLEX)
843 return 8;
844 else
845 return 16;
846 }
847 else
848 internal_error (_("unexpected length %d of type"),
849 len);
850 }
851 }
852
853 /* This is the implementation of gdbarch method push_dummy_call. */
854
855 static CORE_ADDR
856 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
857 struct regcache *regcache, CORE_ADDR bp_addr,
858 int nargs, struct value **args, CORE_ADDR sp,
859 function_call_return_method return_method,
860 CORE_ADDR struct_addr)
861 {
862 int argreg = 0;
863 int argnum;
864 int stack_offset = 4;
865 int references_offset = 4;
866 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
867 struct type *func_type = function->type ();
868 /* The first arg passed on stack. Mostly the first 10 args are passed by
869 registers. */
870 int first_arg_on_stack = 10;
871
872 /* Set the return address register to point to the entry point of
873 the program, where a breakpoint lies in wait. */
874 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
875
876 /* The caller must pass an argument in A3 containing a destination address
877 for the returned value. The callee returns the object by copying it to
878 the address in A3. */
879 if (return_method == return_method_struct)
880 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
881
882 /* Determine the type of this function. */
883 func_type = check_typedef (func_type);
884 if (func_type->code () == TYPE_CODE_PTR)
885 func_type = check_typedef (func_type->target_type ());
886
887 gdb_assert (func_type->code () == TYPE_CODE_FUNC
888 || func_type->code () == TYPE_CODE_METHOD);
889
890 /* For a variadic C function, the last explicitly declared argument and all
891 remaining arguments are passed on the stack. */
892 if (func_type->has_varargs ())
893 first_arg_on_stack = func_type->num_fields () - 1;
894
895 /* Now make space on the stack for the args. */
896 for (argnum = 0; argnum < nargs; argnum++)
897 {
898 int len = align_up (args[argnum]->type ()->length (), 4);
899 if (argnum >= 10 - argreg)
900 references_offset += len;
901 stack_offset += len;
902 }
903 sp -= stack_offset;
904 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
905 Stack Alignment. */
906 sp = align_down (sp, 8);
907 stack_offset = 4;
908
909 /* Now load as many as possible of the first arguments into
910 registers, and push the rest onto the stack. Loop through args
911 from first to last. */
912 for (argnum = 0; argnum < nargs; argnum++)
913 {
914 const gdb_byte *val;
915 struct value *arg = args[argnum];
916 struct type *arg_type = check_typedef (arg->type ());
917 int len = arg_type->length ();
918 enum type_code typecode = arg_type->code ();
919
920 val = arg->contents ().data ();
921
922 /* Copy the argument to general registers or the stack in
923 register-sized pieces. */
924 if (argreg < first_arg_on_stack)
925 {
926 if (len <= 4)
927 {
928 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
929 {
930 /* In big-endian,
931 - one-byte structure or union occupies the LSB of single
932 even register.
933 - for two-byte structure or union, the first byte
934 occupies byte 1 of register and the second byte occupies
935 byte 0.
936 so, we write the contents in VAL to the lsp of
937 register. */
938 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
939 regcache->cooked_write_part (arg_regs[argreg], 4 - len, len,
940 val);
941 else
942 regcache->cooked_write (arg_regs[argreg], val);
943 }
944 else
945 {
946 /* The argument is being passed by value in a single
947 register. */
948 CORE_ADDR regval = extract_unsigned_integer (val, len,
949 byte_order);
950
951 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
952 regval);
953 }
954 }
955 else
956 {
957 if (len <= 8)
958 {
959 if (typecode == TYPE_CODE_STRUCT
960 || typecode == TYPE_CODE_UNION)
961 {
962 /* For a 5-8 byte structure or union in big-endian, the
963 first byte occupies byte 3 (the MSB) of the upper (odd)
964 register and the remaining bytes fill the decreasingly
965 significant bytes. 5-7 byte structures or unions have
966 padding in the LSBs of the lower (even) register. */
967 if (byte_order == BFD_ENDIAN_BIG)
968 {
969 regcache->cooked_write (arg_regs[argreg] + 1, val);
970 regcache->cooked_write_part (arg_regs[argreg], 0,
971 len - 4, val + 4);
972 }
973 else
974 {
975 regcache->cooked_write (arg_regs[argreg], val);
976 regcache->cooked_write_part (arg_regs[argreg] + 1, 0,
977 len - 4, val + 4);
978 }
979 }
980 else
981 {
982 /* The argument is being passed by value in a pair of
983 registers. */
984 ULONGEST regval = extract_unsigned_integer (val, len,
985 byte_order);
986
987 regcache_cooked_write_unsigned (regcache,
988 arg_regs[argreg],
989 regval);
990 regcache_cooked_write_unsigned (regcache,
991 arg_regs[argreg] + 1,
992 regval >> 32);
993 }
994 }
995 else
996 {
997 /* The argument is being passed by reference in a single
998 register. */
999 CORE_ADDR addr;
1000
1001 /* It is not necessary to adjust REFERENCES_OFFSET to
1002 8-byte aligned in some cases, in which 4-byte alignment
1003 is sufficient. For simplicity, we adjust
1004 REFERENCES_OFFSET to 8-byte aligned. */
1005 references_offset = align_up (references_offset, 8);
1006
1007 addr = sp + references_offset;
1008 write_memory (addr, val, len);
1009 references_offset += align_up (len, 4);
1010 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1011 addr);
1012 }
1013 }
1014 argreg++;
1015 }
1016 else
1017 {
1018 /* The argument is being passed on the stack. */
1019 CORE_ADDR addr;
1020
1021 /* There are six different cases of alignment, and these rules can
1022 be found in tic6x_arg_type_alignment:
1023
1024 1) 4-byte aligned if size is less than or equal to 4 byte, such
1025 as short, int, struct, union etc.
1026 2) 8-byte aligned if size is less than or equal to 8-byte, such
1027 as double, long long,
1028 3) 4-byte aligned if it is of type _Complex float, even its size
1029 is 8-byte.
1030 4) 8-byte aligned if it is of type _Complex double or _Complex
1031 long double, even its size is 16-byte. Because, the address of
1032 variable is passed as reference.
1033 5) struct and union larger than 8-byte are passed by reference, so
1034 it is 4-byte aligned.
1035 6) struct and union of size between 4 byte and 8 byte varies.
1036 alignment of struct variable is the alignment of its first field,
1037 while alignment of union variable is the max of all its fields'
1038 alignment. */
1039
1040 if (len <= 4)
1041 ; /* Default is 4-byte aligned. Nothing to be done. */
1042 else if (len <= 8)
1043 stack_offset = align_up (stack_offset,
1044 tic6x_arg_type_alignment (arg_type));
1045 else if (len == 16)
1046 {
1047 /* _Complex double or _Complex long double */
1048 if (typecode == TYPE_CODE_COMPLEX)
1049 {
1050 /* The argument is being passed by reference on stack. */
1051 references_offset = align_up (references_offset, 8);
1052
1053 addr = sp + references_offset;
1054 /* Store variable on stack. */
1055 write_memory (addr, val, len);
1056
1057 references_offset += align_up (len, 4);
1058
1059 /* Pass the address of variable on stack as reference. */
1060 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1061 addr);
1062 len = 4;
1063
1064 }
1065 else
1066 internal_error (_("unexpected type %d of arg %d"),
1067 typecode, argnum);
1068 }
1069 else
1070 internal_error (_("unexpected length %d of arg %d"), len, argnum);
1071
1072 addr = sp + stack_offset;
1073 write_memory (addr, val, len);
1074 stack_offset += align_up (len, 4);
1075 }
1076 }
1077
1078 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1079
1080 /* Return adjusted stack pointer. */
1081 return sp;
1082 }
1083
1084 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */
1085
1086 static int
1087 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1088 {
1089 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1090 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1091 if ((inst & 0x0f83effc) == 0x360)
1092 {
1093 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1094 INST_S_BIT (inst),
1095 INST_X_BIT (inst));
1096 if (src2 == TIC6X_RA_REGNUM)
1097 return 1;
1098 }
1099
1100 return 0;
1101 }
1102
1103 /* This is the implementation of gdbarch method get_longjmp_target. */
1104
1105 static int
1106 tic6x_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc)
1107 {
1108 struct gdbarch *gdbarch = get_frame_arch (frame);
1109 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1110 CORE_ADDR jb_addr;
1111 gdb_byte buf[4];
1112
1113 /* JMP_BUF is passed by reference in A4. */
1114 jb_addr = get_frame_register_unsigned (frame, 4);
1115
1116 /* JMP_BUF contains 13 elements of type int, and return address is stored
1117 in the last slot. */
1118 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1119 return 0;
1120
1121 *pc = extract_unsigned_integer (buf, 4, byte_order);
1122
1123 return 1;
1124 }
1125
1126 /* This is the implementation of gdbarch method
1127 return_in_first_hidden_param_p. */
1128
1129 static int
1130 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1131 struct type *type)
1132 {
1133 return 0;
1134 }
1135
1136 static struct gdbarch *
1137 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1138 {
1139 tdesc_arch_data_up tdesc_data;
1140 const struct target_desc *tdesc = info.target_desc;
1141 int has_gp = 0;
1142
1143 /* Check any target description for validity. */
1144 if (tdesc_has_registers (tdesc))
1145 {
1146 const struct tdesc_feature *feature;
1147 int valid_p, i;
1148
1149 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1150
1151 if (feature == NULL)
1152 return NULL;
1153
1154 tdesc_data = tdesc_data_alloc ();
1155
1156 valid_p = 1;
1157 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1158 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
1159 tic6x_register_names[i]);
1160
1161 /* CSR */
1162 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i++,
1163 tic6x_register_names[TIC6X_CSR_REGNUM]);
1164 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i++,
1165 tic6x_register_names[TIC6X_PC_REGNUM]);
1166
1167 if (!valid_p)
1168 return NULL;
1169
1170 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1171 if (feature)
1172 {
1173 int j = 0;
1174 static const char *const gp[] =
1175 {
1176 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1177 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1178 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1179 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1180 };
1181
1182 has_gp = 1;
1183 valid_p = 1;
1184 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1185 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1186 i++, gp[j]);
1187
1188 if (!valid_p)
1189 return NULL;
1190 }
1191
1192 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1193 if (feature)
1194 {
1195 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1196 i++, "TSR");
1197 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1198 i++, "ILC");
1199 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1200 i++, "RILC");
1201
1202 if (!valid_p)
1203 return NULL;
1204 }
1205
1206 }
1207
1208 /* Find a candidate among extant architectures. */
1209 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1210 arches != NULL;
1211 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1212 {
1213 tic6x_gdbarch_tdep *tdep
1214 = gdbarch_tdep<tic6x_gdbarch_tdep> (arches->gdbarch);
1215
1216 if (has_gp != tdep->has_gp)
1217 continue;
1218
1219 if (tdep && tdep->breakpoint)
1220 return arches->gdbarch;
1221 }
1222
1223 gdbarch *gdbarch
1224 = gdbarch_alloc (&info, gdbarch_tdep_up (new tic6x_gdbarch_tdep));
1225 tic6x_gdbarch_tdep *tdep = gdbarch_tdep<tic6x_gdbarch_tdep> (gdbarch);
1226
1227 tdep->has_gp = has_gp;
1228
1229 /* Data type sizes. */
1230 set_gdbarch_ptr_bit (gdbarch, 32);
1231 set_gdbarch_addr_bit (gdbarch, 32);
1232 set_gdbarch_short_bit (gdbarch, 16);
1233 set_gdbarch_int_bit (gdbarch, 32);
1234 set_gdbarch_long_bit (gdbarch, 32);
1235 set_gdbarch_long_long_bit (gdbarch, 64);
1236 set_gdbarch_float_bit (gdbarch, 32);
1237 set_gdbarch_double_bit (gdbarch, 64);
1238
1239 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1240 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1241
1242 /* The register set. */
1243 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1244 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1245 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1246
1247 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1248 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1249
1250 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1251
1252 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1253 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1254 tic6x_breakpoint_kind_from_pc);
1255 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1256 tic6x_sw_breakpoint_from_kind);
1257
1258 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1259
1260 /* Unwinding. */
1261 dwarf2_append_unwinders (gdbarch);
1262
1263 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1264 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1265 frame_base_set_default (gdbarch, &tic6x_frame_base);
1266
1267 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1268
1269 /* Single stepping. */
1270 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1271
1272 /* Call dummy code. */
1273 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1274
1275 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1276
1277 /* Enable inferior call support. */
1278 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1279
1280 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1281
1282 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
1283
1284 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1285 tic6x_return_in_first_hidden_param_p);
1286
1287 /* Hook in ABI-specific overrides, if they have been registered. */
1288 gdbarch_init_osabi (info, gdbarch);
1289
1290 if (tdesc_data != nullptr)
1291 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
1292
1293 return gdbarch;
1294 }
1295
1296 void _initialize_tic6x_tdep ();
1297 void
1298 _initialize_tic6x_tdep ()
1299 {
1300 gdbarch_register (bfd_arch_tic6x, tic6x_gdbarch_init);
1301 }