]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/tic6x-tdep.c
2012-05-18 Sergio Durigan Junior <sergiodj@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / tic6x-tdep.c
1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2012 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "glibc-tdep.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "tramp-frame.h"
44 #include "linux-tdep.h"
45 #include "solib.h"
46 #include "objfiles.h"
47 #include "gdb_assert.h"
48 #include "osabi.h"
49 #include "tic6x-tdep.h"
50 #include "language.h"
51 #include "target-descriptions.h"
52
53 #include "features/tic6x-c64xp.c"
54 #include "features/tic6x-c64x.c"
55 #include "features/tic6x-c62x.c"
56
57 #define TIC6X_OPCODE_SIZE 4
58 #define TIC6X_FETCH_PACKET_SIZE 32
59
60 #define INST_S_BIT(INST) ((INST >> 1) & 1)
61 #define INST_X_BIT(INST) ((INST >> 12) & 1)
62
63 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
64 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
65
66 struct tic6x_unwind_cache
67 {
68 /* The frame's base, optionally used by the high-level debug info. */
69 CORE_ADDR base;
70
71 /* The previous frame's inner most stack address. Used as this
72 frame ID's stack_addr. */
73 CORE_ADDR cfa;
74
75 /* The address of the first instruction in this function */
76 CORE_ADDR pc;
77
78 /* Which register holds the return address for the frame. */
79 int return_regnum;
80
81 /* The offset of register saved on stack. If register is not saved, the
82 corresponding element is -1. */
83 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
84 };
85
86
87 /* Name of TI C6x core registers. */
88 static const char *const tic6x_register_names[] =
89 {
90 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
91 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
92 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
93 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
94 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
95 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
96 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
97 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
98 "CSR", "PC", /* 32 33 */
99 };
100
101 /* This array maps the arguments to the register number which passes argument
102 in function call according to C6000 ELF ABI. */
103 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
104
105 /* This is the implementation of gdbarch method register_name. */
106
107 static const char *
108 tic6x_register_name (struct gdbarch *gdbarch, int regno)
109 {
110 if (regno < 0)
111 return NULL;
112
113 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
114 return tdesc_register_name (gdbarch, regno);
115 else if (regno >= ARRAY_SIZE (tic6x_register_names))
116 return "";
117 else
118 return tic6x_register_names[regno];
119 }
120
121 /* This is the implementation of gdbarch method register_type. */
122
123 static struct type *
124 tic6x_register_type (struct gdbarch *gdbarch, int regno)
125 {
126
127 if (regno == TIC6X_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_func_ptr;
129 else
130 return builtin_type (gdbarch)->builtin_uint32;
131 }
132
133 static void
134 tic6x_setup_default (struct tic6x_unwind_cache *cache)
135 {
136 int i;
137
138 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
139 cache->reg_saved[i] = -1;
140 }
141
142 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
143 static int tic6x_register_number (int reg, int side, int crosspath);
144
145 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
146 Bail out early if CURRENT_PC is reached. Returns the address of the first
147 instruction after the prologue. */
148
149 static CORE_ADDR
150 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
151 const CORE_ADDR current_pc,
152 struct tic6x_unwind_cache *cache,
153 struct frame_info *this_frame)
154 {
155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
156 unsigned long inst;
157 unsigned int src_reg, base_reg, dst_reg;
158 int i;
159 CORE_ADDR pc = start_pc;
160 CORE_ADDR return_pc = start_pc;
161 int frame_base_offset_to_sp = 0;
162 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
163 int non_stw_insn_counter = 0;
164
165 if (start_pc >= current_pc)
166 return_pc = current_pc;
167
168 cache->base = 0;
169
170 /* The landmarks in prologue is one or two SUB instructions to SP.
171 Instructions on setting up dsbt are in the last part of prologue, if
172 needed. In maxim, prologue can be divided to three parts by two
173 `sub sp, xx, sp' insns. */
174
175 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
176 2nd one is optional. */
177 while (pc < current_pc)
178 {
179 int offset = 0;
180
181 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
182
183 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
184 || (inst & 0x0ffc) == 0x9c0)
185 {
186 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
187 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
188 INST_S_BIT (inst), 0);
189 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
190 INST_S_BIT (inst), 0);
191
192 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
193 {
194 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
195 offset. The constant offset is decoded in bit 13-17 in all
196 these three kinds of instructions. */
197 unsigned int ucst5 = (inst >> 13) & 0x1f;
198
199 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
200 frame_base_offset_to_sp += ucst5 << 2;
201 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
202 frame_base_offset_to_sp += ucst5 << 1;
203 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
204 frame_base_offset_to_sp += ucst5;
205 else
206 gdb_assert_not_reached ("unexpected instruction");
207
208 return_pc = pc + 4;
209 }
210 }
211 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
212 {
213 /* The y bit determines which file base is read from. */
214 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
215 (inst >> 7) & 1, 0);
216
217 if (base_reg == TIC6X_SP_REGNUM)
218 {
219 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
220 INST_S_BIT (inst), 0);
221
222 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
223
224 return_pc = pc + 4;
225 }
226 non_stw_insn_counter = 0;
227 }
228 else
229 {
230 non_stw_insn_counter++;
231 /* Following instruction sequence may be emitted in prologue:
232
233 <+0>: subah .D2 b15,28,b15
234 <+4>: or .L2X 0,a4,b0
235 <+8>: || stw .D2T2 b14,*+b15(56)
236 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
237 <+16>:|| stw .D2T1 a10,*+b15(48)
238 <+20>:stw .D2T2 b3,*+b15(52)
239 <+24>:stw .D2T1 a4,*+b15(40)
240
241 we should look forward for next instruction instead of breaking loop
242 here. So far, we allow almost two sequential non-stw instructions
243 in prologue. */
244 if (non_stw_insn_counter >= 2)
245 break;
246 }
247
248
249 pc += 4;
250 }
251 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
252 ldw .D2T2 *+b14(0),b14 */
253 inst = tic6x_fetch_instruction (gdbarch, pc);
254 /* The s bit determines which file dst will be loaded into, same effect as
255 other places. */
256 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
257 /* The y bit (bit 7), instead of s bit, determines which file base be
258 used. */
259 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
260
261 if ((inst & 0x164) == 0x64 /* ldw */
262 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
263 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
264 {
265 return_pc = pc + 4;
266 }
267
268 if (this_frame)
269 {
270 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
271
272 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
273 {
274 /* If the FP now holds an offset from the CFA then this is a frame
275 which uses the frame pointer. */
276
277 cache->cfa = get_frame_register_unsigned (this_frame,
278 TIC6X_FP_REGNUM);
279 }
280 else
281 {
282 /* FP doesn't hold an offset from the CFA. If SP still holds an
283 offset from the CFA then we might be in a function which omits
284 the frame pointer. */
285
286 cache->cfa = cache->base + frame_base_offset_to_sp;
287 }
288 }
289
290 /* Adjust all the saved registers such that they contain addresses
291 instead of offsets. */
292 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
293 if (cache->reg_saved[i] != -1)
294 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
295
296 return return_pc;
297 }
298
299 /* This is the implementation of gdbarch method skip_prologue. */
300
301 static CORE_ADDR
302 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
303 {
304 CORE_ADDR func_addr;
305 struct tic6x_unwind_cache cache;
306
307 /* See if we can determine the end of the prologue via the symbol table.
308 If so, then return either PC, or the PC after the prologue, whichever is
309 greater. */
310 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
311 {
312 CORE_ADDR post_prologue_pc
313 = skip_prologue_using_sal (gdbarch, func_addr);
314 if (post_prologue_pc != 0)
315 return max (start_pc, post_prologue_pc);
316 }
317
318 /* Can't determine prologue from the symbol table, need to examine
319 instructions. */
320 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
321 NULL);
322 }
323
324 /* This is the implementation of gdbarch method breakpiont_from_pc. */
325
326 static const unsigned char*
327 tic6x_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
328 int *bp_size)
329 {
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331
332 *bp_size = 4;
333
334 if (tdep == NULL || tdep->breakpoint == NULL)
335 {
336 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
337 return tic6x_bkpt_illegal_opcode_be;
338 else
339 return tic6x_bkpt_illegal_opcode_le;
340 }
341 else
342 return tdep->breakpoint;
343 }
344
345 /* This is the implementation of gdbarch method print_insn. */
346
347 static int
348 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info)
349 {
350 return print_insn_tic6x (memaddr, info);
351 }
352
353 static void
354 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
355 struct dwarf2_frame_state_reg *reg,
356 struct frame_info *this_frame)
357 {
358 /* Mark the PC as the destination for the return address. */
359 if (regnum == gdbarch_pc_regnum (gdbarch))
360 reg->how = DWARF2_FRAME_REG_RA;
361
362 /* Mark the stack pointer as the call frame address. */
363 else if (regnum == gdbarch_sp_regnum (gdbarch))
364 reg->how = DWARF2_FRAME_REG_CFA;
365
366 /* The above was taken from the default init_reg in dwarf2-frame.c
367 while the below is c6x specific. */
368
369 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
370 callee-save. */
371 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
372 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
373 else
374 /* All other registers are caller-save. */
375 reg->how = DWARF2_FRAME_REG_UNDEFINED;
376 }
377
378 /* This is the implementation of gdbarch method unwind_pc. */
379
380 static CORE_ADDR
381 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
382 {
383 gdb_byte buf[8];
384
385 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
386 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
387 }
388
389 /* This is the implementation of gdbarch method unwind_sp. */
390
391 static CORE_ADDR
392 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
393 {
394 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
395 }
396
397
398 /* Frame base handling. */
399
400 static struct tic6x_unwind_cache*
401 tic6x_frame_unwind_cache (struct frame_info *this_frame,
402 void **this_prologue_cache)
403 {
404 struct gdbarch *gdbarch = get_frame_arch (this_frame);
405 CORE_ADDR current_pc;
406 struct tic6x_unwind_cache *cache;
407
408 if (*this_prologue_cache)
409 return *this_prologue_cache;
410
411 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
412 (*this_prologue_cache) = cache;
413
414 cache->return_regnum = TIC6X_RA_REGNUM;
415
416 tic6x_setup_default (cache);
417
418 cache->pc = get_frame_func (this_frame);
419 current_pc = get_frame_pc (this_frame);
420
421 /* Prologue analysis does the rest... */
422 if (cache->pc != 0)
423 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
424
425 return cache;
426 }
427
428 static void
429 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
430 struct frame_id *this_id)
431 {
432 struct tic6x_unwind_cache *cache =
433 tic6x_frame_unwind_cache (this_frame, this_cache);
434
435 /* This marks the outermost frame. */
436 if (cache->base == 0)
437 return;
438
439 (*this_id) = frame_id_build (cache->cfa, cache->pc);
440 }
441
442 static struct value *
443 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
444 int regnum)
445 {
446 struct tic6x_unwind_cache *cache =
447 tic6x_frame_unwind_cache (this_frame, this_cache);
448
449 gdb_assert (regnum >= 0);
450
451 /* The PC of the previous frame is stored in the RA register of
452 the current frame. Frob regnum so that we pull the value from
453 the correct place. */
454 if (regnum == TIC6X_PC_REGNUM)
455 regnum = cache->return_regnum;
456
457 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
458 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
459
460 /* If we've worked out where a register is stored then load it from
461 there. */
462 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
463 return frame_unwind_got_memory (this_frame, regnum,
464 cache->reg_saved[regnum]);
465
466 return frame_unwind_got_register (this_frame, regnum, regnum);
467 }
468
469 static CORE_ADDR
470 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
471 {
472 struct tic6x_unwind_cache *info
473 = tic6x_frame_unwind_cache (this_frame, this_cache);
474 return info->base;
475 }
476
477 static const struct frame_unwind tic6x_frame_unwind =
478 {
479 NORMAL_FRAME,
480 default_frame_unwind_stop_reason,
481 tic6x_frame_this_id,
482 tic6x_frame_prev_register,
483 NULL,
484 default_frame_sniffer
485 };
486
487 static const struct frame_base tic6x_frame_base =
488 {
489 &tic6x_frame_unwind,
490 tic6x_frame_base_address,
491 tic6x_frame_base_address,
492 tic6x_frame_base_address
493 };
494
495
496 static struct tic6x_unwind_cache *
497 tic6x_make_stub_cache (struct frame_info *this_frame)
498 {
499 struct tic6x_unwind_cache *cache;
500
501 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
502
503 cache->return_regnum = TIC6X_RA_REGNUM;
504
505 tic6x_setup_default (cache);
506
507 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
508
509 return cache;
510 }
511
512 static void
513 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
514 struct frame_id *this_id)
515 {
516 struct tic6x_unwind_cache *cache;
517
518 if (*this_cache == NULL)
519 *this_cache = tic6x_make_stub_cache (this_frame);
520 cache = *this_cache;
521
522 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
523 }
524
525 static int
526 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
527 struct frame_info *this_frame,
528 void **this_prologue_cache)
529 {
530 CORE_ADDR addr_in_block;
531
532 addr_in_block = get_frame_address_in_block (this_frame);
533 if (in_plt_section (addr_in_block, NULL))
534 return 1;
535
536 return 0;
537 }
538
539 static const struct frame_unwind tic6x_stub_unwind =
540 {
541 NORMAL_FRAME,
542 default_frame_unwind_stop_reason,
543 tic6x_stub_this_id,
544 tic6x_frame_prev_register,
545 NULL,
546 tic6x_stub_unwind_sniffer
547 };
548
549 /* Return the instruction on address PC. */
550
551 static unsigned long
552 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
553 {
554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
555 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
556 }
557
558 /* Compute the condition of INST if it is a conditional instruction. Always
559 return 1 if INST is not a conditional instruction. */
560
561 static int
562 tic6x_condition_true (struct frame_info *frame, unsigned long inst)
563 {
564 int register_number;
565 int register_value;
566 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
567
568 register_number = register_numbers[(inst >> 29) & 7];
569 if (register_number == -1)
570 return 1;
571
572 register_value = get_frame_register_signed (frame, register_number);
573 if ((inst & 0x10000000) != 0)
574 return register_value == 0;
575 return register_value != 0;
576 }
577
578 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
579 instruction. */
580
581 static int
582 tic6x_register_number (int reg, int side, int crosspath)
583 {
584 int r = (reg & 15) | ((crosspath ^ side) << 4);
585 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
586 r += 37;
587 return r;
588 }
589
590 static int
591 tic6x_extract_signed_field (int value, int low_bit, int bits)
592 {
593 int mask = (1 << bits) - 1;
594 int r = (value >> low_bit) & mask;
595 if ((r & (1 << (bits - 1))) != 0)
596 r -= mask + 1;
597 return r;
598 }
599
600 /* Determine where to set a single step breakpoint. */
601
602 static CORE_ADDR
603 tic6x_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
604 {
605 struct gdbarch *gdbarch = get_frame_arch (frame);
606 unsigned long inst;
607 int register_number;
608 int last = 0;
609
610 do
611 {
612 inst = tic6x_fetch_instruction (gdbarch, pc);
613
614 last = !(inst & 1);
615
616 if (inst == TIC6X_INST_SWE)
617 {
618 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
619
620 if (tdep->syscall_next_pc != NULL)
621 return tdep->syscall_next_pc (frame);
622 }
623
624 if (tic6x_condition_true (frame, inst))
625 {
626 if ((inst & 0x0000007c) == 0x00000010)
627 {
628 /* B with displacement */
629 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
630 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
631 break;
632 }
633 if ((inst & 0x0f83effc) == 0x00000360)
634 {
635 /* B with register */
636
637 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
638 INST_S_BIT (inst),
639 INST_X_BIT (inst));
640 pc = get_frame_register_unsigned (frame, register_number);
641 break;
642 }
643 if ((inst & 0x00001ffc) == 0x00001020)
644 {
645 /* BDEC */
646 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
647 INST_S_BIT (inst), 0);
648 if (get_frame_register_signed (frame, register_number) >= 0)
649 {
650 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
651 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
652 }
653 break;
654 }
655 if ((inst & 0x00001ffc) == 0x00000120)
656 {
657 /* BNOP with displacement */
658 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
659 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
660 break;
661 }
662 if ((inst & 0x0f830ffe) == 0x00800362)
663 {
664 /* BNOP with register */
665 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
666 1, INST_X_BIT (inst));
667 pc = get_frame_register_unsigned (frame, register_number);
668 break;
669 }
670 if ((inst & 0x00001ffc) == 0x00000020)
671 {
672 /* BPOS */
673 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
674 INST_S_BIT (inst), 0);
675 if (get_frame_register_signed (frame, register_number) >= 0)
676 {
677 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
678 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
679 }
680 break;
681 }
682 if ((inst & 0xf000007c) == 0x10000010)
683 {
684 /* CALLP */
685 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
686 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
687 break;
688 }
689 }
690 pc += TIC6X_OPCODE_SIZE;
691 }
692 while (!last);
693 return pc;
694 }
695
696 /* This is the implementation of gdbarch method software_single_step. */
697
698 static int
699 tic6x_software_single_step (struct frame_info *frame)
700 {
701 struct gdbarch *gdbarch = get_frame_arch (frame);
702 struct address_space *aspace = get_frame_address_space (frame);
703 CORE_ADDR next_pc = tic6x_get_next_pc (frame, get_frame_pc (frame));
704
705 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
706
707 return 1;
708 }
709
710 /* This is the implementation of gdbarch method frame_align. */
711
712 static CORE_ADDR
713 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
714 {
715 return align_down (addr, 8);
716 }
717
718 /* This is the implementation of gdbarch method register_to_value. */
719
720 static int
721 tic6x_register_to_value (struct frame_info *frame, int regnum,
722 struct type *type, gdb_byte * to,
723 int *optimizedp, int *unavailablep)
724 {
725 get_frame_register (frame, regnum, (char *) to);
726 *optimizedp = *unavailablep = 0;
727 return 1;
728 }
729
730 /* This is the implementation of gdbarch method value_to_register. */
731
732 static void
733 tic6x_value_to_register (struct frame_info *frame, int regnum,
734 struct type *type, const gdb_byte *from)
735 {
736 put_frame_register (frame, regnum, from);
737 }
738
739 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
740 value into VALBUF. */
741
742 static void
743 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
744 enum bfd_endian byte_order, gdb_byte *valbuf)
745 {
746 int len = TYPE_LENGTH (valtype);
747
748 /* pointer types are returned in register A4,
749 up to 32-bit types in A4
750 up to 64-bit types in A5:A4 */
751 if (len <= 4)
752 {
753 /* In big-endian,
754 - one-byte structure or union occupies the LSB of single even register.
755 - for two-byte structure or union, the first byte occupies byte 1 of
756 register and the second byte occupies byte 0.
757 so, we read the contents in VAL from the LSBs of register. */
758 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
759 regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
760 valbuf);
761 else
762 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
763 }
764 else if (len <= 8)
765 {
766 /* For a 5-8 byte structure or union in big-endian, the first byte
767 occupies byte 3 (the MSB) of the upper (odd) register and the
768 remaining bytes fill the decreasingly significant bytes. 5-7
769 byte structures or unions have padding in the LSBs of the
770 lower (even) register. */
771 if (byte_order == BFD_ENDIAN_BIG)
772 {
773 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4);
774 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf);
775 }
776 else
777 {
778 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
779 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4);
780 }
781 }
782 }
783
784 /* Write into appropriate registers a function return value
785 of type TYPE, given in virtual format. */
786
787 static void
788 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
789 enum bfd_endian byte_order, const gdb_byte *valbuf)
790 {
791 int len = TYPE_LENGTH (valtype);
792
793 /* return values of up to 8 bytes are returned in A5:A4 */
794
795 if (len <= 4)
796 {
797 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
798 regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
799 valbuf);
800 else
801 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
802 }
803 else if (len <= 8)
804 {
805 if (byte_order == BFD_ENDIAN_BIG)
806 {
807 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4);
808 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf);
809 }
810 else
811 {
812 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
813 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4);
814 }
815 }
816 }
817
818 /* This is the implementation of gdbarch method return_value. */
819
820 static enum return_value_convention
821 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
822 struct type *type, struct regcache *regcache,
823 gdb_byte *readbuf, const gdb_byte *writebuf)
824 {
825 if (TYPE_LENGTH (type) > 8)
826 return RETURN_VALUE_STRUCT_CONVENTION;
827
828 if (readbuf)
829 tic6x_extract_return_value (type, regcache,
830 gdbarch_byte_order (gdbarch), readbuf);
831 if (writebuf)
832 tic6x_store_return_value (type, regcache,
833 gdbarch_byte_order (gdbarch), writebuf);
834
835 return RETURN_VALUE_REGISTER_CONVENTION;
836 }
837
838 /* This is the implementation of gdbarch method dummy_id. */
839
840 static struct frame_id
841 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
842 {
843 return frame_id_build
844 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
845 get_frame_pc (this_frame));
846 }
847
848 /* Get the alignment requirement of TYPE. */
849
850 static int
851 tic6x_arg_type_alignment (struct type *type)
852 {
853 int len = TYPE_LENGTH (check_typedef (type));
854 enum type_code typecode = TYPE_CODE (check_typedef (type));
855
856 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
857 {
858 /* The stack alignment of a structure (and union) passed by value is the
859 smallest power of two greater than or equal to its size.
860 This cannot exceed 8 bytes, which is the largest allowable size for
861 a structure passed by value. */
862
863 if (len <= 2)
864 return len;
865 else if (len <= 4)
866 return 4;
867 else if (len <= 8)
868 return 8;
869 else
870 gdb_assert_not_reached ("unexpected length of data");
871 }
872 else
873 {
874 if (len <= 4)
875 return 4;
876 else if (len == 8)
877 {
878 if (typecode == TYPE_CODE_COMPLEX)
879 return 4;
880 else
881 return 8;
882 }
883 else if (len == 16)
884 {
885 if (typecode == TYPE_CODE_COMPLEX)
886 return 8;
887 else
888 return 16;
889 }
890 else
891 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
892 len);
893 }
894 }
895
896 /* This is the implementation of gdbarch method push_dummy_call. */
897
898 static CORE_ADDR
899 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
900 struct regcache *regcache, CORE_ADDR bp_addr,
901 int nargs, struct value **args, CORE_ADDR sp,
902 int struct_return, CORE_ADDR struct_addr)
903 {
904 int argreg = 0;
905 int argnum;
906 int len = 0;
907 int stack_offset = 4;
908 int references_offset = 4;
909 CORE_ADDR func_addr = find_function_addr (function, NULL);
910 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
911 struct type *func_type = value_type (function);
912 /* The first arg passed on stack. Mostly the first 10 args are passed by
913 registers. */
914 int first_arg_on_stack = 10;
915 /* If this inf-call is a cpp method call, and return value is passed by
916 reference, this flag is set to 1, otherwise set to 0. We need this flag
917 because computation of the return location in
918 infcall.c:call_function_by_hand is wrong for C6000 ELF ABI. In
919 call_function_by_hand, the language is considered first, and then
920 target ABI is considered. If language_pass_by_reference returns true,
921 the return location is passed as the first parameter to the function,
922 which is conflict with C6000 ELF ABI. If this flag is true, we should
923 adjust args and return locations accordingly to comply with C6000 ELF
924 ABI. */
925 int cplus_return_struct_by_reference = 0;
926
927 if (current_language->la_language == language_cplus)
928 {
929 struct type *values_type;
930
931 find_function_addr (function, &values_type);
932
933 if (values_type)
934 {
935 CHECK_TYPEDEF (values_type);
936 if (language_pass_by_reference (values_type))
937 cplus_return_struct_by_reference = 1;
938 }
939
940 }
941 /* Set the return address register to point to the entry point of
942 the program, where a breakpoint lies in wait. */
943 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
944
945 /* The caller must pass an argument in A3 containing a destination address
946 for the returned value. The callee returns the object by copying it to
947 the address in A3. */
948 if (struct_return)
949 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
950 else if (cplus_return_struct_by_reference)
951 /* When cplus_return_struct_by_reference is 1, means local variable
952 lang_struct_return in call_function_by_hand is 1, so struct is
953 returned by reference, even STRUCT_RETURN is 0. Note that STRUCT_ADDR
954 is still valid in this case. */
955 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
956
957 /* Determine the type of this function. */
958 func_type = check_typedef (func_type);
959 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
960 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
961
962 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
963 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
964
965 /* For a variadic C function, the last explicitly declared argument and all
966 remaining arguments are passed on the stack. */
967 if (TYPE_VARARGS (func_type))
968 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
969
970 /* Now make space on the stack for the args. If
971 cplus_return_struct_by_reference is 1, means GDB pass an extra parameter
972 in ARGS, which is useless here, skip it. */
973 for (argnum = cplus_return_struct_by_reference; argnum < nargs; argnum++)
974 {
975 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
976 if (argnum >= 10 - argreg)
977 references_offset += len;
978 stack_offset += len;
979 }
980 sp -= stack_offset;
981 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
982 Stack Alignment. */
983 sp = align_down (sp, 8);
984 stack_offset = 4;
985
986 /* Now load as many as possible of the first arguments into
987 registers, and push the rest onto the stack. Loop through args
988 from first to last. */
989 for (argnum = cplus_return_struct_by_reference; argnum < nargs; argnum++)
990 {
991 const gdb_byte *val;
992 struct value *arg = args[argnum];
993 struct type *arg_type = check_typedef (value_type (arg));
994 int len = TYPE_LENGTH (arg_type);
995 enum type_code typecode = TYPE_CODE (arg_type);
996
997 val = value_contents (arg);
998
999 /* Copy the argument to general registers or the stack in
1000 register-sized pieces. */
1001 if (argreg < first_arg_on_stack)
1002 {
1003 if (len <= 4)
1004 {
1005 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1006 {
1007 /* In big-endian,
1008 - one-byte structure or union occupies the LSB of single
1009 even register.
1010 - for two-byte structure or union, the first byte
1011 occupies byte 1 of register and the second byte occupies
1012 byte 0.
1013 so, we write the contents in VAL to the lsp of
1014 register. */
1015 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
1016 regcache_cooked_write_part (regcache, arg_regs[argreg],
1017 4 - len, len, val);
1018 else
1019 regcache_cooked_write (regcache, arg_regs[argreg], val);
1020 }
1021 else
1022 {
1023 /* The argument is being passed by value in a single
1024 register. */
1025 CORE_ADDR regval = extract_unsigned_integer (val, len,
1026 byte_order);
1027
1028 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1029 regval);
1030 }
1031 }
1032 else
1033 {
1034 if (len <= 8)
1035 {
1036 if (typecode == TYPE_CODE_STRUCT
1037 || typecode == TYPE_CODE_UNION)
1038 {
1039 /* For a 5-8 byte structure or union in big-endian, the
1040 first byte occupies byte 3 (the MSB) of the upper (odd)
1041 register and the remaining bytes fill the decreasingly
1042 significant bytes. 5-7 byte structures or unions have
1043 padding in the LSBs of the lower (even) register. */
1044 if (byte_order == BFD_ENDIAN_BIG)
1045 {
1046 regcache_cooked_write (regcache,
1047 arg_regs[argreg] + 1, val);
1048 regcache_cooked_write_part (regcache,
1049 arg_regs[argreg], 0,
1050 len - 4, val + 4);
1051 }
1052 else
1053 {
1054 regcache_cooked_write (regcache, arg_regs[argreg],
1055 val);
1056 regcache_cooked_write_part (regcache,
1057 arg_regs[argreg] + 1, 0,
1058 len - 4, val + 4);
1059 }
1060 }
1061 else
1062 {
1063 /* The argument is being passed by value in a pair of
1064 registers. */
1065 ULONGEST regval = extract_unsigned_integer (val, len,
1066 byte_order);
1067
1068 regcache_cooked_write_unsigned (regcache,
1069 arg_regs[argreg],
1070 regval);
1071 regcache_cooked_write_unsigned (regcache,
1072 arg_regs[argreg] + 1,
1073 regval >> 32);
1074 }
1075 }
1076 else
1077 {
1078 /* The argument is being passed by reference in a single
1079 register. */
1080 CORE_ADDR addr;
1081
1082 /* It is not necessary to adjust REFERENCES_OFFSET to
1083 8-byte aligned in some cases, in which 4-byte alignment
1084 is sufficient. For simplicity, we adjust
1085 REFERENCES_OFFSET to 8-byte aligned. */
1086 references_offset = align_up (references_offset, 8);
1087
1088 addr = sp + references_offset;
1089 write_memory (addr, val, len);
1090 references_offset += align_up (len, 4);
1091 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1092 addr);
1093 }
1094 }
1095 argreg++;
1096 }
1097 else
1098 {
1099 /* The argument is being passed on the stack. */
1100 CORE_ADDR addr;
1101
1102 /* There are six different cases of alignment, and these rules can
1103 be found in tic6x_arg_type_alignment:
1104
1105 1) 4-byte aligned if size is less than or equal to 4 byte, such
1106 as short, int, struct, union etc.
1107 2) 8-byte aligned if size is less than or equal to 8-byte, such
1108 as double, long long,
1109 3) 4-byte aligned if it is of type _Complex float, even its size
1110 is 8-byte.
1111 4) 8-byte aligned if it is of type _Complex double or _Complex
1112 long double, even its size is 16-byte. Because, the address of
1113 variable is passed as reference.
1114 5) struct and union larger than 8-byte are passed by reference, so
1115 it is 4-byte aligned.
1116 6) struct and union of size between 4 byte and 8 byte varies.
1117 alignment of struct variable is the alignment of its first field,
1118 while alignment of union variable is the max of all its fields'
1119 alignment. */
1120
1121 if (len <= 4)
1122 ; /* Default is 4-byte aligned. Nothing to be done. */
1123 else if (len <= 8)
1124 stack_offset = align_up (stack_offset,
1125 tic6x_arg_type_alignment (arg_type));
1126 else if (len == 16)
1127 {
1128 /* _Complex double or _Complex long double */
1129 if (typecode == TYPE_CODE_COMPLEX)
1130 {
1131 /* The argument is being passed by reference on stack. */
1132 CORE_ADDR addr;
1133 references_offset = align_up (references_offset, 8);
1134
1135 addr = sp + references_offset;
1136 /* Store variable on stack. */
1137 write_memory (addr, val, len);
1138
1139 references_offset += align_up (len, 4);
1140
1141 /* Pass the address of variable on stack as reference. */
1142 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1143 addr);
1144 len = 4;
1145
1146 }
1147 else
1148 internal_error (__FILE__, __LINE__,
1149 _("unexpected type %d of arg %d"),
1150 typecode, argnum);
1151 }
1152 else
1153 internal_error (__FILE__, __LINE__,
1154 _("unexpected length %d of arg %d"), len, argnum);
1155
1156 addr = sp + stack_offset;
1157 write_memory (addr, val, len);
1158 stack_offset += align_up (len, 4);
1159 }
1160 }
1161
1162 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1163
1164 /* Return adjusted stack pointer. */
1165 return sp;
1166 }
1167
1168 /* This is the implementation of gdbarch method in_function_epilogue_p. */
1169
1170 static int
1171 tic6x_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1172 {
1173 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1174 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1175 if ((inst & 0x0f83effc) == 0x360)
1176 {
1177 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1178 INST_S_BIT (inst),
1179 INST_X_BIT (inst));
1180 if (src2 == TIC6X_RA_REGNUM)
1181 return 1;
1182 }
1183
1184 return 0;
1185 }
1186
1187 /* This is the implementation of gdbarch method get_longjmp_target. */
1188
1189 static int
1190 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1191 {
1192 struct gdbarch *gdbarch = get_frame_arch (frame);
1193 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1194 CORE_ADDR jb_addr;
1195 char buf[4];
1196
1197 /* JMP_BUF is passed by reference in A4. */
1198 jb_addr = get_frame_register_unsigned (frame, 4);
1199
1200 /* JMP_BUF contains 13 elements of type int, and return address is stored
1201 in the last slot. */
1202 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1203 return 0;
1204
1205 *pc = extract_unsigned_integer (buf, 4, byte_order);
1206
1207 return 1;
1208 }
1209
1210 static struct gdbarch *
1211 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1212 {
1213 struct gdbarch *gdbarch;
1214 struct gdbarch_tdep *tdep;
1215 struct tdesc_arch_data *tdesc_data = NULL;
1216 const struct target_desc *tdesc = info.target_desc;
1217 int has_gp = 0;
1218
1219 /* Check any target description for validity. */
1220 if (tdesc_has_registers (tdesc))
1221 {
1222 const struct tdesc_feature *feature;
1223 int valid_p, i;
1224
1225 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1226
1227 if (feature == NULL)
1228 return NULL;
1229
1230 tdesc_data = tdesc_data_alloc ();
1231
1232 valid_p = 1;
1233 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1234 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1235 tic6x_register_names[i]);
1236
1237 /* CSR */
1238 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1239 tic6x_register_names[TIC6X_CSR_REGNUM]);
1240 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1241 tic6x_register_names[TIC6X_PC_REGNUM]);
1242
1243 if (!valid_p)
1244 {
1245 tdesc_data_cleanup (tdesc_data);
1246 return NULL;
1247 }
1248
1249 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1250 if (feature)
1251 {
1252 int j = 0;
1253 static const char *const gp[] =
1254 {
1255 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1256 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1257 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1258 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1259 };
1260
1261 has_gp = 1;
1262 valid_p = 1;
1263 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1264 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1265 gp[j]);
1266
1267 if (!valid_p)
1268 {
1269 tdesc_data_cleanup (tdesc_data);
1270 return NULL;
1271 }
1272 }
1273
1274 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1275 if (feature)
1276 {
1277 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1278 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1279 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1280
1281 if (!valid_p)
1282 {
1283 tdesc_data_cleanup (tdesc_data);
1284 return NULL;
1285 }
1286 }
1287
1288 }
1289
1290 /* Find a candidate among extant architectures. */
1291 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1292 arches != NULL;
1293 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1294 {
1295 tdep = gdbarch_tdep (arches->gdbarch);
1296
1297 if (has_gp != tdep->has_gp)
1298 continue;
1299
1300 if (tdep && tdep->breakpoint)
1301 return arches->gdbarch;
1302 }
1303
1304 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
1305
1306 tdep->has_gp = has_gp;
1307 gdbarch = gdbarch_alloc (&info, tdep);
1308
1309 /* Data type sizes. */
1310 set_gdbarch_ptr_bit (gdbarch, 32);
1311 set_gdbarch_addr_bit (gdbarch, 32);
1312 set_gdbarch_short_bit (gdbarch, 16);
1313 set_gdbarch_int_bit (gdbarch, 32);
1314 set_gdbarch_long_bit (gdbarch, 32);
1315 set_gdbarch_long_long_bit (gdbarch, 64);
1316 set_gdbarch_float_bit (gdbarch, 32);
1317 set_gdbarch_double_bit (gdbarch, 64);
1318
1319 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1320 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1321
1322 /* The register set. */
1323 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1324 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1325 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1326
1327 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1328 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1329
1330 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1331
1332 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1333 set_gdbarch_breakpoint_from_pc (gdbarch, tic6x_breakpoint_from_pc);
1334
1335 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1336 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1337
1338 /* Unwinding. */
1339 dwarf2_append_unwinders (gdbarch);
1340
1341 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1342 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1343
1344 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1345
1346 /* Single stepping. */
1347 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1348
1349 set_gdbarch_print_insn (gdbarch, tic6x_print_insn);
1350
1351 /* Call dummy code. */
1352 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1353
1354 set_gdbarch_register_to_value (gdbarch, tic6x_register_to_value);
1355 set_gdbarch_value_to_register (gdbarch, tic6x_value_to_register);
1356
1357 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1358
1359 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1360
1361 /* Enable inferior call support. */
1362 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1363
1364 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1365
1366 set_gdbarch_in_function_epilogue_p (gdbarch, tic6x_in_function_epilogue_p);
1367
1368 /* Hook in ABI-specific overrides, if they have been registered. */
1369 gdbarch_init_osabi (info, gdbarch);
1370
1371 if (tdesc_data)
1372 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1373
1374 return gdbarch;
1375 }
1376
1377 /* -Wmissing-prototypes */
1378 extern initialize_file_ftype _initialize_tic6x_tdep;
1379
1380 void
1381 _initialize_tic6x_tdep (void)
1382 {
1383 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1384
1385 initialize_tdesc_tic6x_c64xp ();
1386 initialize_tdesc_tic6x_c64x ();
1387 initialize_tdesc_tic6x_c62x ();
1388 }