]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/utils.c
2003-09-14 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_assert.h"
26 #include <ctype.h>
27 #include "gdb_string.h"
28 #include "event-top.h"
29
30 #ifdef __GO32__
31 #include <pc.h>
32 #endif
33
34 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
35 #ifdef reg
36 #undef reg
37 #endif
38
39 #include <signal.h>
40 #include "gdbcmd.h"
41 #include "serial.h"
42 #include "bfd.h"
43 #include "target.h"
44 #include "demangle.h"
45 #include "expression.h"
46 #include "language.h"
47 #include "charset.h"
48 #include "annotate.h"
49 #include "filenames.h"
50
51 #include "inferior.h" /* for signed_pointer_to_address */
52
53 #include <sys/param.h> /* For MAXPATHLEN */
54
55 #ifdef HAVE_CURSES_H
56 #include <curses.h>
57 #endif
58 #ifdef HAVE_TERM_H
59 #include <term.h>
60 #endif
61
62 #include <readline/readline.h>
63
64 #ifdef USE_MMALLOC
65 #include "mmalloc.h"
66 #endif
67
68 #ifdef NEED_DECLARATION_MALLOC
69 extern PTR malloc (); /* OK: PTR */
70 #endif
71 #ifdef NEED_DECLARATION_REALLOC
72 extern PTR realloc (); /* OK: PTR */
73 #endif
74 #ifdef NEED_DECLARATION_FREE
75 extern void free ();
76 #endif
77 /* Actually, we'll never have the decl, since we don't define _GNU_SOURCE. */
78 #if defined(HAVE_CANONICALIZE_FILE_NAME) \
79 && defined(NEED_DECLARATION_CANONICALIZE_FILE_NAME)
80 extern char *canonicalize_file_name (const char *);
81 #endif
82
83 /* readline defines this. */
84 #undef savestring
85
86 void (*error_begin_hook) (void);
87
88 /* Holds the last error message issued by gdb */
89
90 static struct ui_file *gdb_lasterr;
91
92 /* Prototypes for local functions */
93
94 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
95 va_list, int);
96
97 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
98
99 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
100 static void malloc_botch (void);
101 #endif
102
103 static void prompt_for_continue (void);
104
105 static void set_screen_size (void);
106 static void set_width (void);
107
108 /* Chain of cleanup actions established with make_cleanup,
109 to be executed if an error happens. */
110
111 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
112 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
113 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
114 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
115 /* cleaned up on each error from within an execution command */
116 static struct cleanup *exec_error_cleanup_chain;
117
118 /* Pointer to what is left to do for an execution command after the
119 target stops. Used only in asynchronous mode, by targets that
120 support async execution. The finish and until commands use it. So
121 does the target extended-remote command. */
122 struct continuation *cmd_continuation;
123 struct continuation *intermediate_continuation;
124
125 /* Nonzero if we have job control. */
126
127 int job_control;
128
129 /* Nonzero means a quit has been requested. */
130
131 int quit_flag;
132
133 /* Nonzero means quit immediately if Control-C is typed now, rather
134 than waiting until QUIT is executed. Be careful in setting this;
135 code which executes with immediate_quit set has to be very careful
136 about being able to deal with being interrupted at any time. It is
137 almost always better to use QUIT; the only exception I can think of
138 is being able to quit out of a system call (using EINTR loses if
139 the SIGINT happens between the previous QUIT and the system call).
140 To immediately quit in the case in which a SIGINT happens between
141 the previous QUIT and setting immediate_quit (desirable anytime we
142 expect to block), call QUIT after setting immediate_quit. */
143
144 int immediate_quit;
145
146 /* Nonzero means that encoded C++/ObjC names should be printed out in their
147 C++/ObjC form rather than raw. */
148
149 int demangle = 1;
150
151 /* Nonzero means that encoded C++/ObjC names should be printed out in their
152 C++/ObjC form even in assembler language displays. If this is set, but
153 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
154
155 int asm_demangle = 0;
156
157 /* Nonzero means that strings with character values >0x7F should be printed
158 as octal escapes. Zero means just print the value (e.g. it's an
159 international character, and the terminal or window can cope.) */
160
161 int sevenbit_strings = 0;
162
163 /* String to be printed before error messages, if any. */
164
165 char *error_pre_print;
166
167 /* String to be printed before quit messages, if any. */
168
169 char *quit_pre_print;
170
171 /* String to be printed before warning messages, if any. */
172
173 char *warning_pre_print = "\nwarning: ";
174
175 int pagination_enabled = 1;
176 \f
177
178 /* Add a new cleanup to the cleanup_chain,
179 and return the previous chain pointer
180 to be passed later to do_cleanups or discard_cleanups.
181 Args are FUNCTION to clean up with, and ARG to pass to it. */
182
183 struct cleanup *
184 make_cleanup (make_cleanup_ftype *function, void *arg)
185 {
186 return make_my_cleanup (&cleanup_chain, function, arg);
187 }
188
189 struct cleanup *
190 make_final_cleanup (make_cleanup_ftype *function, void *arg)
191 {
192 return make_my_cleanup (&final_cleanup_chain, function, arg);
193 }
194
195 struct cleanup *
196 make_run_cleanup (make_cleanup_ftype *function, void *arg)
197 {
198 return make_my_cleanup (&run_cleanup_chain, function, arg);
199 }
200
201 struct cleanup *
202 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
203 {
204 return make_my_cleanup (&exec_cleanup_chain, function, arg);
205 }
206
207 struct cleanup *
208 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
209 {
210 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
211 }
212
213 static void
214 do_freeargv (void *arg)
215 {
216 freeargv ((char **) arg);
217 }
218
219 struct cleanup *
220 make_cleanup_freeargv (char **arg)
221 {
222 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
223 }
224
225 static void
226 do_bfd_close_cleanup (void *arg)
227 {
228 bfd_close (arg);
229 }
230
231 struct cleanup *
232 make_cleanup_bfd_close (bfd *abfd)
233 {
234 return make_cleanup (do_bfd_close_cleanup, abfd);
235 }
236
237 static void
238 do_close_cleanup (void *arg)
239 {
240 int *fd = arg;
241 close (*fd);
242 xfree (fd);
243 }
244
245 struct cleanup *
246 make_cleanup_close (int fd)
247 {
248 int *saved_fd = xmalloc (sizeof (fd));
249 *saved_fd = fd;
250 return make_cleanup (do_close_cleanup, saved_fd);
251 }
252
253 static void
254 do_ui_file_delete (void *arg)
255 {
256 ui_file_delete (arg);
257 }
258
259 struct cleanup *
260 make_cleanup_ui_file_delete (struct ui_file *arg)
261 {
262 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
263 }
264
265 struct cleanup *
266 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
267 void *arg)
268 {
269 struct cleanup *new
270 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
271 struct cleanup *old_chain = *pmy_chain;
272
273 new->next = *pmy_chain;
274 new->function = function;
275 new->arg = arg;
276 *pmy_chain = new;
277
278 return old_chain;
279 }
280
281 /* Discard cleanups and do the actions they describe
282 until we get back to the point OLD_CHAIN in the cleanup_chain. */
283
284 void
285 do_cleanups (register struct cleanup *old_chain)
286 {
287 do_my_cleanups (&cleanup_chain, old_chain);
288 }
289
290 void
291 do_final_cleanups (register struct cleanup *old_chain)
292 {
293 do_my_cleanups (&final_cleanup_chain, old_chain);
294 }
295
296 void
297 do_run_cleanups (register struct cleanup *old_chain)
298 {
299 do_my_cleanups (&run_cleanup_chain, old_chain);
300 }
301
302 void
303 do_exec_cleanups (register struct cleanup *old_chain)
304 {
305 do_my_cleanups (&exec_cleanup_chain, old_chain);
306 }
307
308 void
309 do_exec_error_cleanups (register struct cleanup *old_chain)
310 {
311 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
312 }
313
314 void
315 do_my_cleanups (register struct cleanup **pmy_chain,
316 register struct cleanup *old_chain)
317 {
318 struct cleanup *ptr;
319 while ((ptr = *pmy_chain) != old_chain)
320 {
321 *pmy_chain = ptr->next; /* Do this first incase recursion */
322 (*ptr->function) (ptr->arg);
323 xfree (ptr);
324 }
325 }
326
327 /* Discard cleanups, not doing the actions they describe,
328 until we get back to the point OLD_CHAIN in the cleanup_chain. */
329
330 void
331 discard_cleanups (register struct cleanup *old_chain)
332 {
333 discard_my_cleanups (&cleanup_chain, old_chain);
334 }
335
336 void
337 discard_final_cleanups (register struct cleanup *old_chain)
338 {
339 discard_my_cleanups (&final_cleanup_chain, old_chain);
340 }
341
342 void
343 discard_exec_error_cleanups (register struct cleanup *old_chain)
344 {
345 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
346 }
347
348 void
349 discard_my_cleanups (register struct cleanup **pmy_chain,
350 register struct cleanup *old_chain)
351 {
352 struct cleanup *ptr;
353 while ((ptr = *pmy_chain) != old_chain)
354 {
355 *pmy_chain = ptr->next;
356 xfree (ptr);
357 }
358 }
359
360 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
361 struct cleanup *
362 save_cleanups (void)
363 {
364 return save_my_cleanups (&cleanup_chain);
365 }
366
367 struct cleanup *
368 save_final_cleanups (void)
369 {
370 return save_my_cleanups (&final_cleanup_chain);
371 }
372
373 struct cleanup *
374 save_my_cleanups (struct cleanup **pmy_chain)
375 {
376 struct cleanup *old_chain = *pmy_chain;
377
378 *pmy_chain = 0;
379 return old_chain;
380 }
381
382 /* Restore the cleanup chain from a previously saved chain. */
383 void
384 restore_cleanups (struct cleanup *chain)
385 {
386 restore_my_cleanups (&cleanup_chain, chain);
387 }
388
389 void
390 restore_final_cleanups (struct cleanup *chain)
391 {
392 restore_my_cleanups (&final_cleanup_chain, chain);
393 }
394
395 void
396 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
397 {
398 *pmy_chain = chain;
399 }
400
401 /* This function is useful for cleanups.
402 Do
403
404 foo = xmalloc (...);
405 old_chain = make_cleanup (free_current_contents, &foo);
406
407 to arrange to free the object thus allocated. */
408
409 void
410 free_current_contents (void *ptr)
411 {
412 void **location = ptr;
413 if (location == NULL)
414 internal_error (__FILE__, __LINE__,
415 "free_current_contents: NULL pointer");
416 if (*location != NULL)
417 {
418 xfree (*location);
419 *location = NULL;
420 }
421 }
422
423 /* Provide a known function that does nothing, to use as a base for
424 for a possibly long chain of cleanups. This is useful where we
425 use the cleanup chain for handling normal cleanups as well as dealing
426 with cleanups that need to be done as a result of a call to error().
427 In such cases, we may not be certain where the first cleanup is, unless
428 we have a do-nothing one to always use as the base. */
429
430 /* ARGSUSED */
431 void
432 null_cleanup (void *arg)
433 {
434 }
435
436 /* Add a continuation to the continuation list, the global list
437 cmd_continuation. The new continuation will be added at the front.*/
438 void
439 add_continuation (void (*continuation_hook) (struct continuation_arg *),
440 struct continuation_arg *arg_list)
441 {
442 struct continuation *continuation_ptr;
443
444 continuation_ptr =
445 (struct continuation *) xmalloc (sizeof (struct continuation));
446 continuation_ptr->continuation_hook = continuation_hook;
447 continuation_ptr->arg_list = arg_list;
448 continuation_ptr->next = cmd_continuation;
449 cmd_continuation = continuation_ptr;
450 }
451
452 /* Walk down the cmd_continuation list, and execute all the
453 continuations. There is a problem though. In some cases new
454 continuations may be added while we are in the middle of this
455 loop. If this happens they will be added in the front, and done
456 before we have a chance of exhausting those that were already
457 there. We need to then save the beginning of the list in a pointer
458 and do the continuations from there on, instead of using the
459 global beginning of list as our iteration pointer.*/
460 void
461 do_all_continuations (void)
462 {
463 struct continuation *continuation_ptr;
464 struct continuation *saved_continuation;
465
466 /* Copy the list header into another pointer, and set the global
467 list header to null, so that the global list can change as a side
468 effect of invoking the continuations and the processing of
469 the preexisting continuations will not be affected. */
470 continuation_ptr = cmd_continuation;
471 cmd_continuation = NULL;
472
473 /* Work now on the list we have set aside. */
474 while (continuation_ptr)
475 {
476 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
477 saved_continuation = continuation_ptr;
478 continuation_ptr = continuation_ptr->next;
479 xfree (saved_continuation);
480 }
481 }
482
483 /* Walk down the cmd_continuation list, and get rid of all the
484 continuations. */
485 void
486 discard_all_continuations (void)
487 {
488 struct continuation *continuation_ptr;
489
490 while (cmd_continuation)
491 {
492 continuation_ptr = cmd_continuation;
493 cmd_continuation = continuation_ptr->next;
494 xfree (continuation_ptr);
495 }
496 }
497
498 /* Add a continuation to the continuation list, the global list
499 intermediate_continuation. The new continuation will be added at the front.*/
500 void
501 add_intermediate_continuation (void (*continuation_hook)
502 (struct continuation_arg *),
503 struct continuation_arg *arg_list)
504 {
505 struct continuation *continuation_ptr;
506
507 continuation_ptr =
508 (struct continuation *) xmalloc (sizeof (struct continuation));
509 continuation_ptr->continuation_hook = continuation_hook;
510 continuation_ptr->arg_list = arg_list;
511 continuation_ptr->next = intermediate_continuation;
512 intermediate_continuation = continuation_ptr;
513 }
514
515 /* Walk down the cmd_continuation list, and execute all the
516 continuations. There is a problem though. In some cases new
517 continuations may be added while we are in the middle of this
518 loop. If this happens they will be added in the front, and done
519 before we have a chance of exhausting those that were already
520 there. We need to then save the beginning of the list in a pointer
521 and do the continuations from there on, instead of using the
522 global beginning of list as our iteration pointer.*/
523 void
524 do_all_intermediate_continuations (void)
525 {
526 struct continuation *continuation_ptr;
527 struct continuation *saved_continuation;
528
529 /* Copy the list header into another pointer, and set the global
530 list header to null, so that the global list can change as a side
531 effect of invoking the continuations and the processing of
532 the preexisting continuations will not be affected. */
533 continuation_ptr = intermediate_continuation;
534 intermediate_continuation = NULL;
535
536 /* Work now on the list we have set aside. */
537 while (continuation_ptr)
538 {
539 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
540 saved_continuation = continuation_ptr;
541 continuation_ptr = continuation_ptr->next;
542 xfree (saved_continuation);
543 }
544 }
545
546 /* Walk down the cmd_continuation list, and get rid of all the
547 continuations. */
548 void
549 discard_all_intermediate_continuations (void)
550 {
551 struct continuation *continuation_ptr;
552
553 while (intermediate_continuation)
554 {
555 continuation_ptr = intermediate_continuation;
556 intermediate_continuation = continuation_ptr->next;
557 xfree (continuation_ptr);
558 }
559 }
560 \f
561
562
563 /* Print a warning message. The first argument STRING is the warning
564 message, used as an fprintf format string, the second is the
565 va_list of arguments for that string. A warning is unfiltered (not
566 paginated) so that the user does not need to page through each
567 screen full of warnings when there are lots of them. */
568
569 void
570 vwarning (const char *string, va_list args)
571 {
572 if (warning_hook)
573 (*warning_hook) (string, args);
574 else
575 {
576 target_terminal_ours ();
577 wrap_here (""); /* Force out any buffered output */
578 gdb_flush (gdb_stdout);
579 if (warning_pre_print)
580 fputs_unfiltered (warning_pre_print, gdb_stderr);
581 vfprintf_unfiltered (gdb_stderr, string, args);
582 fprintf_unfiltered (gdb_stderr, "\n");
583 va_end (args);
584 }
585 }
586
587 /* Print a warning message.
588 The first argument STRING is the warning message, used as a fprintf string,
589 and the remaining args are passed as arguments to it.
590 The primary difference between warnings and errors is that a warning
591 does not force the return to command level. */
592
593 void
594 warning (const char *string, ...)
595 {
596 va_list args;
597 va_start (args, string);
598 vwarning (string, args);
599 va_end (args);
600 }
601
602 /* Print an error message and return to command level.
603 The first argument STRING is the error message, used as a fprintf string,
604 and the remaining args are passed as arguments to it. */
605
606 NORETURN void
607 verror (const char *string, va_list args)
608 {
609 struct ui_file *tmp_stream = mem_fileopen ();
610 make_cleanup_ui_file_delete (tmp_stream);
611 vfprintf_unfiltered (tmp_stream, string, args);
612 error_stream (tmp_stream);
613 }
614
615 NORETURN void
616 error (const char *string, ...)
617 {
618 va_list args;
619 va_start (args, string);
620 verror (string, args);
621 va_end (args);
622 }
623
624 static void
625 do_write (void *data, const char *buffer, long length_buffer)
626 {
627 ui_file_write (data, buffer, length_buffer);
628 }
629
630 NORETURN void
631 error_stream (struct ui_file *stream)
632 {
633 if (error_begin_hook)
634 error_begin_hook ();
635
636 /* Copy the stream into the GDB_LASTERR buffer. */
637 ui_file_rewind (gdb_lasterr);
638 ui_file_put (stream, do_write, gdb_lasterr);
639
640 /* Write the message plus any error_pre_print to gdb_stderr. */
641 target_terminal_ours ();
642 wrap_here (""); /* Force out any buffered output */
643 gdb_flush (gdb_stdout);
644 annotate_error_begin ();
645 if (error_pre_print)
646 fputs_filtered (error_pre_print, gdb_stderr);
647 ui_file_put (stream, do_write, gdb_stderr);
648 fprintf_filtered (gdb_stderr, "\n");
649
650 throw_exception (RETURN_ERROR);
651 }
652
653 /* Get the last error message issued by gdb */
654
655 char *
656 error_last_message (void)
657 {
658 long len;
659 return ui_file_xstrdup (gdb_lasterr, &len);
660 }
661
662 /* This is to be called by main() at the very beginning */
663
664 void
665 error_init (void)
666 {
667 gdb_lasterr = mem_fileopen ();
668 }
669
670 /* Print a message reporting an internal error/warning. Ask the user
671 if they want to continue, dump core, or just exit. Return
672 something to indicate a quit. */
673
674 struct internal_problem
675 {
676 const char *name;
677 /* FIXME: cagney/2002-08-15: There should be ``maint set/show''
678 commands available for controlling these variables. */
679 enum auto_boolean should_quit;
680 enum auto_boolean should_dump_core;
681 };
682
683 /* Report a problem, internal to GDB, to the user. Once the problem
684 has been reported, and assuming GDB didn't quit, the caller can
685 either allow execution to resume or throw an error. */
686
687 static void
688 internal_vproblem (struct internal_problem *problem,
689 const char *file, int line, const char *fmt, va_list ap)
690 {
691 static int dejavu;
692 int quit_p;
693 int dump_core_p;
694 char *reason;
695
696 /* Don't allow infinite error/warning recursion. */
697 {
698 static char msg[] = "Recursive internal problem.\n";
699 switch (dejavu)
700 {
701 case 0:
702 dejavu = 1;
703 break;
704 case 1:
705 dejavu = 2;
706 fputs_unfiltered (msg, gdb_stderr);
707 abort (); /* NOTE: GDB has only three calls to abort(). */
708 default:
709 dejavu = 3;
710 write (STDERR_FILENO, msg, sizeof (msg));
711 exit (1);
712 }
713 }
714
715 /* Try to get the message out and at the start of a new line. */
716 target_terminal_ours ();
717 begin_line ();
718
719 /* Create a string containing the full error/warning message. Need
720 to call query with this full string, as otherwize the reason
721 (error/warning) and question become separated. Format using a
722 style similar to a compiler error message. Include extra detail
723 so that the user knows that they are living on the edge. */
724 {
725 char *msg;
726 xvasprintf (&msg, fmt, ap);
727 xasprintf (&reason, "\
728 %s:%d: %s: %s\n\
729 A problem internal to GDB has been detected,\n\
730 further debugging may prove unreliable.", file, line, problem->name, msg);
731 xfree (msg);
732 make_cleanup (xfree, reason);
733 }
734
735 switch (problem->should_quit)
736 {
737 case AUTO_BOOLEAN_AUTO:
738 /* Default (yes/batch case) is to quit GDB. When in batch mode
739 this lessens the likelhood of GDB going into an infinate
740 loop. */
741 quit_p = query ("%s\nQuit this debugging session? ", reason);
742 break;
743 case AUTO_BOOLEAN_TRUE:
744 quit_p = 1;
745 break;
746 case AUTO_BOOLEAN_FALSE:
747 quit_p = 0;
748 break;
749 default:
750 internal_error (__FILE__, __LINE__, "bad switch");
751 }
752
753 switch (problem->should_dump_core)
754 {
755 case AUTO_BOOLEAN_AUTO:
756 /* Default (yes/batch case) is to dump core. This leaves a GDB
757 `dropping' so that it is easier to see that something went
758 wrong in GDB. */
759 dump_core_p = query ("%s\nCreate a core file of GDB? ", reason);
760 break;
761 break;
762 case AUTO_BOOLEAN_TRUE:
763 dump_core_p = 1;
764 break;
765 case AUTO_BOOLEAN_FALSE:
766 dump_core_p = 0;
767 break;
768 default:
769 internal_error (__FILE__, __LINE__, "bad switch");
770 }
771
772 if (quit_p)
773 {
774 if (dump_core_p)
775 abort (); /* NOTE: GDB has only three calls to abort(). */
776 else
777 exit (1);
778 }
779 else
780 {
781 if (dump_core_p)
782 {
783 if (fork () == 0)
784 abort (); /* NOTE: GDB has only three calls to abort(). */
785 }
786 }
787
788 dejavu = 0;
789 }
790
791 static struct internal_problem internal_error_problem = {
792 "internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
793 };
794
795 NORETURN void
796 internal_verror (const char *file, int line, const char *fmt, va_list ap)
797 {
798 internal_vproblem (&internal_error_problem, file, line, fmt, ap);
799 throw_exception (RETURN_ERROR);
800 }
801
802 NORETURN void
803 internal_error (const char *file, int line, const char *string, ...)
804 {
805 va_list ap;
806 va_start (ap, string);
807 internal_verror (file, line, string, ap);
808 va_end (ap);
809 }
810
811 static struct internal_problem internal_warning_problem = {
812 "internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
813 };
814
815 void
816 internal_vwarning (const char *file, int line, const char *fmt, va_list ap)
817 {
818 internal_vproblem (&internal_warning_problem, file, line, fmt, ap);
819 }
820
821 void
822 internal_warning (const char *file, int line, const char *string, ...)
823 {
824 va_list ap;
825 va_start (ap, string);
826 internal_vwarning (file, line, string, ap);
827 va_end (ap);
828 }
829
830 /* The strerror() function can return NULL for errno values that are
831 out of range. Provide a "safe" version that always returns a
832 printable string. */
833
834 char *
835 safe_strerror (int errnum)
836 {
837 char *msg;
838 static char buf[32];
839
840 msg = strerror (errnum);
841 if (msg == NULL)
842 {
843 sprintf (buf, "(undocumented errno %d)", errnum);
844 msg = buf;
845 }
846 return (msg);
847 }
848
849 /* Print the system error message for errno, and also mention STRING
850 as the file name for which the error was encountered.
851 Then return to command level. */
852
853 NORETURN void
854 perror_with_name (const char *string)
855 {
856 char *err;
857 char *combined;
858
859 err = safe_strerror (errno);
860 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
861 strcpy (combined, string);
862 strcat (combined, ": ");
863 strcat (combined, err);
864
865 /* I understand setting these is a matter of taste. Still, some people
866 may clear errno but not know about bfd_error. Doing this here is not
867 unreasonable. */
868 bfd_set_error (bfd_error_no_error);
869 errno = 0;
870
871 error ("%s.", combined);
872 }
873
874 /* Print the system error message for ERRCODE, and also mention STRING
875 as the file name for which the error was encountered. */
876
877 void
878 print_sys_errmsg (const char *string, int errcode)
879 {
880 char *err;
881 char *combined;
882
883 err = safe_strerror (errcode);
884 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
885 strcpy (combined, string);
886 strcat (combined, ": ");
887 strcat (combined, err);
888
889 /* We want anything which was printed on stdout to come out first, before
890 this message. */
891 gdb_flush (gdb_stdout);
892 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
893 }
894
895 /* Control C eventually causes this to be called, at a convenient time. */
896
897 void
898 quit (void)
899 {
900 struct serial *gdb_stdout_serial = serial_fdopen (1);
901
902 target_terminal_ours ();
903
904 /* We want all output to appear now, before we print "Quit". We
905 have 3 levels of buffering we have to flush (it's possible that
906 some of these should be changed to flush the lower-level ones
907 too): */
908
909 /* 1. The _filtered buffer. */
910 wrap_here ((char *) 0);
911
912 /* 2. The stdio buffer. */
913 gdb_flush (gdb_stdout);
914 gdb_flush (gdb_stderr);
915
916 /* 3. The system-level buffer. */
917 serial_drain_output (gdb_stdout_serial);
918 serial_un_fdopen (gdb_stdout_serial);
919
920 annotate_error_begin ();
921
922 /* Don't use *_filtered; we don't want to prompt the user to continue. */
923 if (quit_pre_print)
924 fputs_unfiltered (quit_pre_print, gdb_stderr);
925
926 #ifdef __MSDOS__
927 /* No steenking SIGINT will ever be coming our way when the
928 program is resumed. Don't lie. */
929 fprintf_unfiltered (gdb_stderr, "Quit\n");
930 #else
931 if (job_control
932 /* If there is no terminal switching for this target, then we can't
933 possibly get screwed by the lack of job control. */
934 || current_target.to_terminal_ours == NULL)
935 fprintf_unfiltered (gdb_stderr, "Quit\n");
936 else
937 fprintf_unfiltered (gdb_stderr,
938 "Quit (expect signal SIGINT when the program is resumed)\n");
939 #endif
940 throw_exception (RETURN_QUIT);
941 }
942
943 /* Control C comes here */
944 void
945 request_quit (int signo)
946 {
947 quit_flag = 1;
948 /* Restore the signal handler. Harmless with BSD-style signals, needed
949 for System V-style signals. So just always do it, rather than worrying
950 about USG defines and stuff like that. */
951 signal (signo, request_quit);
952
953 #ifdef REQUEST_QUIT
954 REQUEST_QUIT;
955 #else
956 if (immediate_quit)
957 quit ();
958 #endif
959 }
960 \f
961 /* Memory management stuff (malloc friends). */
962
963 #if !defined (USE_MMALLOC)
964
965 static void *
966 mmalloc (void *md, size_t size)
967 {
968 return malloc (size); /* NOTE: GDB's only call to malloc() */
969 }
970
971 static void *
972 mrealloc (void *md, void *ptr, size_t size)
973 {
974 if (ptr == 0) /* Guard against old realloc's */
975 return mmalloc (md, size);
976 else
977 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
978 }
979
980 static void *
981 mcalloc (void *md, size_t number, size_t size)
982 {
983 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
984 }
985
986 static void
987 mfree (void *md, void *ptr)
988 {
989 free (ptr); /* NOTE: GDB's only call to free() */
990 }
991
992 #endif /* USE_MMALLOC */
993
994 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
995
996 void
997 init_malloc (void *md)
998 {
999 }
1000
1001 #else /* Have mmalloc and want corruption checking */
1002
1003 static void
1004 malloc_botch (void)
1005 {
1006 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
1007 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1008 }
1009
1010 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
1011 by MD, to detect memory corruption. Note that MD may be NULL to specify
1012 the default heap that grows via sbrk.
1013
1014 Note that for freshly created regions, we must call mmcheckf prior to any
1015 mallocs in the region. Otherwise, any region which was allocated prior to
1016 installing the checking hooks, which is later reallocated or freed, will
1017 fail the checks! The mmcheck function only allows initial hooks to be
1018 installed before the first mmalloc. However, anytime after we have called
1019 mmcheck the first time to install the checking hooks, we can call it again
1020 to update the function pointer to the memory corruption handler.
1021
1022 Returns zero on failure, non-zero on success. */
1023
1024 #ifndef MMCHECK_FORCE
1025 #define MMCHECK_FORCE 0
1026 #endif
1027
1028 void
1029 init_malloc (void *md)
1030 {
1031 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1032 {
1033 /* Don't use warning(), which relies on current_target being set
1034 to something other than dummy_target, until after
1035 initialize_all_files(). */
1036
1037 fprintf_unfiltered
1038 (gdb_stderr,
1039 "warning: failed to install memory consistency checks; ");
1040 fprintf_unfiltered (gdb_stderr,
1041 "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1042 }
1043
1044 mmtrace ();
1045 }
1046
1047 #endif /* Have mmalloc and want corruption checking */
1048
1049 /* Called when a memory allocation fails, with the number of bytes of
1050 memory requested in SIZE. */
1051
1052 NORETURN void
1053 nomem (long size)
1054 {
1055 if (size > 0)
1056 {
1057 internal_error (__FILE__, __LINE__,
1058 "virtual memory exhausted: can't allocate %ld bytes.",
1059 size);
1060 }
1061 else
1062 {
1063 internal_error (__FILE__, __LINE__, "virtual memory exhausted.");
1064 }
1065 }
1066
1067 /* The xmmalloc() family of memory management routines.
1068
1069 These are are like the mmalloc() family except that they implement
1070 consistent semantics and guard against typical memory management
1071 problems: if a malloc fails, an internal error is thrown; if
1072 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1073 is returned.
1074
1075 All these routines are implemented using the mmalloc() family. */
1076
1077 void *
1078 xmmalloc (void *md, size_t size)
1079 {
1080 void *val;
1081
1082 /* See libiberty/xmalloc.c. This function need's to match that's
1083 semantics. It never returns NULL. */
1084 if (size == 0)
1085 size = 1;
1086
1087 val = mmalloc (md, size);
1088 if (val == NULL)
1089 nomem (size);
1090
1091 return (val);
1092 }
1093
1094 void *
1095 xmrealloc (void *md, void *ptr, size_t size)
1096 {
1097 void *val;
1098
1099 /* See libiberty/xmalloc.c. This function need's to match that's
1100 semantics. It never returns NULL. */
1101 if (size == 0)
1102 size = 1;
1103
1104 if (ptr != NULL)
1105 val = mrealloc (md, ptr, size);
1106 else
1107 val = mmalloc (md, size);
1108 if (val == NULL)
1109 nomem (size);
1110
1111 return (val);
1112 }
1113
1114 void *
1115 xmcalloc (void *md, size_t number, size_t size)
1116 {
1117 void *mem;
1118
1119 /* See libiberty/xmalloc.c. This function need's to match that's
1120 semantics. It never returns NULL. */
1121 if (number == 0 || size == 0)
1122 {
1123 number = 1;
1124 size = 1;
1125 }
1126
1127 mem = mcalloc (md, number, size);
1128 if (mem == NULL)
1129 nomem (number * size);
1130
1131 return mem;
1132 }
1133
1134 void
1135 xmfree (void *md, void *ptr)
1136 {
1137 if (ptr != NULL)
1138 mfree (md, ptr);
1139 }
1140
1141 /* The xmalloc() (libiberty.h) family of memory management routines.
1142
1143 These are like the ISO-C malloc() family except that they implement
1144 consistent semantics and guard against typical memory management
1145 problems. See xmmalloc() above for further information.
1146
1147 All these routines are wrappers to the xmmalloc() family. */
1148
1149 /* NOTE: These are declared using PTR to ensure consistency with
1150 "libiberty.h". xfree() is GDB local. */
1151
1152 PTR /* OK: PTR */
1153 xmalloc (size_t size)
1154 {
1155 return xmmalloc (NULL, size);
1156 }
1157
1158 PTR /* OK: PTR */
1159 xrealloc (PTR ptr, size_t size) /* OK: PTR */
1160 {
1161 return xmrealloc (NULL, ptr, size);
1162 }
1163
1164 PTR /* OK: PTR */
1165 xcalloc (size_t number, size_t size)
1166 {
1167 return xmcalloc (NULL, number, size);
1168 }
1169
1170 void
1171 xfree (void *ptr)
1172 {
1173 xmfree (NULL, ptr);
1174 }
1175 \f
1176
1177 /* Like asprintf/vasprintf but get an internal_error if the call
1178 fails. */
1179
1180 char *
1181 xstrprintf (const char *format, ...)
1182 {
1183 char *ret;
1184 va_list args;
1185 va_start (args, format);
1186 xvasprintf (&ret, format, args);
1187 va_end (args);
1188 return ret;
1189 }
1190
1191 void
1192 xasprintf (char **ret, const char *format, ...)
1193 {
1194 va_list args;
1195 va_start (args, format);
1196 xvasprintf (ret, format, args);
1197 va_end (args);
1198 }
1199
1200 void
1201 xvasprintf (char **ret, const char *format, va_list ap)
1202 {
1203 int status = vasprintf (ret, format, ap);
1204 /* NULL could be returned due to a memory allocation problem; a
1205 badly format string; or something else. */
1206 if ((*ret) == NULL)
1207 internal_error (__FILE__, __LINE__,
1208 "vasprintf returned NULL buffer (errno %d)", errno);
1209 /* A negative status with a non-NULL buffer shouldn't never
1210 happen. But to be sure. */
1211 if (status < 0)
1212 internal_error (__FILE__, __LINE__,
1213 "vasprintf call failed (errno %d)", errno);
1214 }
1215
1216
1217 /* My replacement for the read system call.
1218 Used like `read' but keeps going if `read' returns too soon. */
1219
1220 int
1221 myread (int desc, char *addr, int len)
1222 {
1223 int val;
1224 int orglen = len;
1225
1226 while (len > 0)
1227 {
1228 val = read (desc, addr, len);
1229 if (val < 0)
1230 return val;
1231 if (val == 0)
1232 return orglen - len;
1233 len -= val;
1234 addr += val;
1235 }
1236 return orglen;
1237 }
1238 \f
1239 /* Make a copy of the string at PTR with SIZE characters
1240 (and add a null character at the end in the copy).
1241 Uses malloc to get the space. Returns the address of the copy. */
1242
1243 char *
1244 savestring (const char *ptr, size_t size)
1245 {
1246 char *p = (char *) xmalloc (size + 1);
1247 memcpy (p, ptr, size);
1248 p[size] = 0;
1249 return p;
1250 }
1251
1252 char *
1253 msavestring (void *md, const char *ptr, size_t size)
1254 {
1255 char *p = (char *) xmmalloc (md, size + 1);
1256 memcpy (p, ptr, size);
1257 p[size] = 0;
1258 return p;
1259 }
1260
1261 char *
1262 mstrsave (void *md, const char *ptr)
1263 {
1264 return (msavestring (md, ptr, strlen (ptr)));
1265 }
1266
1267 void
1268 print_spaces (register int n, register struct ui_file *file)
1269 {
1270 fputs_unfiltered (n_spaces (n), file);
1271 }
1272
1273 /* Print a host address. */
1274
1275 void
1276 gdb_print_host_address (const void *addr, struct ui_file *stream)
1277 {
1278
1279 /* We could use the %p conversion specifier to fprintf if we had any
1280 way of knowing whether this host supports it. But the following
1281 should work on the Alpha and on 32 bit machines. */
1282
1283 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1284 }
1285
1286 /* Ask user a y-or-n question and return 1 iff answer is yes.
1287 Takes three args which are given to printf to print the question.
1288 The first, a control string, should end in "? ".
1289 It should not say how to answer, because we do that. */
1290
1291 /* VARARGS */
1292 int
1293 query (const char *ctlstr, ...)
1294 {
1295 va_list args;
1296 int answer;
1297 int ans2;
1298 int retval;
1299
1300 va_start (args, ctlstr);
1301
1302 if (query_hook)
1303 {
1304 return query_hook (ctlstr, args);
1305 }
1306
1307 /* Automatically answer "yes" if input is not from a terminal. */
1308 if (!input_from_terminal_p ())
1309 return 1;
1310
1311 while (1)
1312 {
1313 wrap_here (""); /* Flush any buffered output */
1314 gdb_flush (gdb_stdout);
1315
1316 if (annotation_level > 1)
1317 printf_filtered ("\n\032\032pre-query\n");
1318
1319 vfprintf_filtered (gdb_stdout, ctlstr, args);
1320 printf_filtered ("(y or n) ");
1321
1322 if (annotation_level > 1)
1323 printf_filtered ("\n\032\032query\n");
1324
1325 wrap_here ("");
1326 gdb_flush (gdb_stdout);
1327
1328 answer = fgetc (stdin);
1329 clearerr (stdin); /* in case of C-d */
1330 if (answer == EOF) /* C-d */
1331 {
1332 retval = 1;
1333 break;
1334 }
1335 /* Eat rest of input line, to EOF or newline */
1336 if (answer != '\n')
1337 do
1338 {
1339 ans2 = fgetc (stdin);
1340 clearerr (stdin);
1341 }
1342 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1343
1344 if (answer >= 'a')
1345 answer -= 040;
1346 if (answer == 'Y')
1347 {
1348 retval = 1;
1349 break;
1350 }
1351 if (answer == 'N')
1352 {
1353 retval = 0;
1354 break;
1355 }
1356 printf_filtered ("Please answer y or n.\n");
1357 }
1358
1359 if (annotation_level > 1)
1360 printf_filtered ("\n\032\032post-query\n");
1361 return retval;
1362 }
1363 \f
1364
1365 /* Print an error message saying that we couldn't make sense of a
1366 \^mumble sequence in a string or character constant. START and END
1367 indicate a substring of some larger string that contains the
1368 erroneous backslash sequence, missing the initial backslash. */
1369 static NORETURN int
1370 no_control_char_error (const char *start, const char *end)
1371 {
1372 int len = end - start;
1373 char *copy = alloca (end - start + 1);
1374
1375 memcpy (copy, start, len);
1376 copy[len] = '\0';
1377
1378 error ("There is no control character `\\%s' in the `%s' character set.",
1379 copy, target_charset ());
1380 }
1381
1382 /* Parse a C escape sequence. STRING_PTR points to a variable
1383 containing a pointer to the string to parse. That pointer
1384 should point to the character after the \. That pointer
1385 is updated past the characters we use. The value of the
1386 escape sequence is returned.
1387
1388 A negative value means the sequence \ newline was seen,
1389 which is supposed to be equivalent to nothing at all.
1390
1391 If \ is followed by a null character, we return a negative
1392 value and leave the string pointer pointing at the null character.
1393
1394 If \ is followed by 000, we return 0 and leave the string pointer
1395 after the zeros. A value of 0 does not mean end of string. */
1396
1397 int
1398 parse_escape (char **string_ptr)
1399 {
1400 int target_char;
1401 int c = *(*string_ptr)++;
1402 if (c_parse_backslash (c, &target_char))
1403 return target_char;
1404 else
1405 switch (c)
1406 {
1407 case '\n':
1408 return -2;
1409 case 0:
1410 (*string_ptr)--;
1411 return 0;
1412 case '^':
1413 {
1414 /* Remember where this escape sequence started, for reporting
1415 errors. */
1416 char *sequence_start_pos = *string_ptr - 1;
1417
1418 c = *(*string_ptr)++;
1419
1420 if (c == '?')
1421 {
1422 /* XXXCHARSET: What is `delete' in the host character set? */
1423 c = 0177;
1424
1425 if (!host_char_to_target (c, &target_char))
1426 error ("There is no character corresponding to `Delete' "
1427 "in the target character set `%s'.", host_charset ());
1428
1429 return target_char;
1430 }
1431 else if (c == '\\')
1432 target_char = parse_escape (string_ptr);
1433 else
1434 {
1435 if (!host_char_to_target (c, &target_char))
1436 no_control_char_error (sequence_start_pos, *string_ptr);
1437 }
1438
1439 /* Now target_char is something like `c', and we want to find
1440 its control-character equivalent. */
1441 if (!target_char_to_control_char (target_char, &target_char))
1442 no_control_char_error (sequence_start_pos, *string_ptr);
1443
1444 return target_char;
1445 }
1446
1447 /* XXXCHARSET: we need to use isdigit and value-of-digit
1448 methods of the host character set here. */
1449
1450 case '0':
1451 case '1':
1452 case '2':
1453 case '3':
1454 case '4':
1455 case '5':
1456 case '6':
1457 case '7':
1458 {
1459 register int i = c - '0';
1460 register int count = 0;
1461 while (++count < 3)
1462 {
1463 c = (**string_ptr);
1464 if (c >= '0' && c <= '7')
1465 {
1466 (*string_ptr)++;
1467 i *= 8;
1468 i += c - '0';
1469 }
1470 else
1471 {
1472 break;
1473 }
1474 }
1475 return i;
1476 }
1477 default:
1478 if (!host_char_to_target (c, &target_char))
1479 error
1480 ("The escape sequence `\%c' is equivalent to plain `%c', which"
1481 " has no equivalent\n" "in the `%s' character set.", c, c,
1482 target_charset ());
1483 return target_char;
1484 }
1485 }
1486 \f
1487 /* Print the character C on STREAM as part of the contents of a literal
1488 string whose delimiter is QUOTER. Note that this routine should only
1489 be call for printing things which are independent of the language
1490 of the program being debugged. */
1491
1492 static void
1493 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1494 void (*do_fprintf) (struct ui_file *, const char *, ...),
1495 struct ui_file *stream, int quoter)
1496 {
1497
1498 c &= 0xFF; /* Avoid sign bit follies */
1499
1500 if (c < 0x20 || /* Low control chars */
1501 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1502 (sevenbit_strings && c >= 0x80))
1503 { /* high order bit set */
1504 switch (c)
1505 {
1506 case '\n':
1507 do_fputs ("\\n", stream);
1508 break;
1509 case '\b':
1510 do_fputs ("\\b", stream);
1511 break;
1512 case '\t':
1513 do_fputs ("\\t", stream);
1514 break;
1515 case '\f':
1516 do_fputs ("\\f", stream);
1517 break;
1518 case '\r':
1519 do_fputs ("\\r", stream);
1520 break;
1521 case '\033':
1522 do_fputs ("\\e", stream);
1523 break;
1524 case '\007':
1525 do_fputs ("\\a", stream);
1526 break;
1527 default:
1528 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1529 break;
1530 }
1531 }
1532 else
1533 {
1534 if (c == '\\' || c == quoter)
1535 do_fputs ("\\", stream);
1536 do_fprintf (stream, "%c", c);
1537 }
1538 }
1539
1540 /* Print the character C on STREAM as part of the contents of a
1541 literal string whose delimiter is QUOTER. Note that these routines
1542 should only be call for printing things which are independent of
1543 the language of the program being debugged. */
1544
1545 void
1546 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1547 {
1548 while (*str)
1549 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1550 }
1551
1552 void
1553 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1554 {
1555 while (*str)
1556 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1557 }
1558
1559 void
1560 fputstrn_unfiltered (const char *str, int n, int quoter,
1561 struct ui_file *stream)
1562 {
1563 int i;
1564 for (i = 0; i < n; i++)
1565 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1566 }
1567 \f
1568
1569 /* Number of lines per page or UINT_MAX if paging is disabled. */
1570 static unsigned int lines_per_page;
1571
1572 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1573 static unsigned int chars_per_line;
1574
1575 /* Current count of lines printed on this page, chars on this line. */
1576 static unsigned int lines_printed, chars_printed;
1577
1578 /* Buffer and start column of buffered text, for doing smarter word-
1579 wrapping. When someone calls wrap_here(), we start buffering output
1580 that comes through fputs_filtered(). If we see a newline, we just
1581 spit it out and forget about the wrap_here(). If we see another
1582 wrap_here(), we spit it out and remember the newer one. If we see
1583 the end of the line, we spit out a newline, the indent, and then
1584 the buffered output. */
1585
1586 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1587 are waiting to be output (they have already been counted in chars_printed).
1588 When wrap_buffer[0] is null, the buffer is empty. */
1589 static char *wrap_buffer;
1590
1591 /* Pointer in wrap_buffer to the next character to fill. */
1592 static char *wrap_pointer;
1593
1594 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1595 is non-zero. */
1596 static char *wrap_indent;
1597
1598 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1599 is not in effect. */
1600 static int wrap_column;
1601 \f
1602
1603 /* Inialize the number of lines per page and chars per line. */
1604
1605 void
1606 init_page_info (void)
1607 {
1608 #if defined(TUI)
1609 if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
1610 #endif
1611 {
1612 #if defined(__GO32__)
1613 lines_per_page = ScreenRows ();
1614 chars_per_line = ScreenCols ();
1615 #else
1616 int rows, cols;
1617
1618 /* Make sure Readline has initialized its terminal settings. */
1619 rl_reset_terminal (NULL);
1620
1621 /* Get the screen size from Readline. */
1622 rl_get_screen_size (&rows, &cols);
1623 lines_per_page = rows;
1624 chars_per_line = cols;
1625
1626 /* Readline should have fetched the termcap entry for us. */
1627 if (tgetnum ("li") < 0 || getenv ("EMACS"))
1628 {
1629 /* The number of lines per page is not mentioned in the
1630 terminal description. This probably means that paging is
1631 not useful (e.g. emacs shell window), so disable paging. */
1632 lines_per_page = UINT_MAX;
1633 }
1634
1635 /* FIXME: Get rid of this junk. */
1636 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1637 SIGWINCH_HANDLER (SIGWINCH);
1638 #endif
1639
1640 /* If the output is not a terminal, don't paginate it. */
1641 if (!ui_file_isatty (gdb_stdout))
1642 lines_per_page = UINT_MAX;
1643 }
1644 #endif
1645
1646 set_screen_size ();
1647 set_width ();
1648 }
1649
1650 /* Set the screen size based on LINES_PER_PAGE and CHARS_PER_LINE. */
1651
1652 static void
1653 set_screen_size (void)
1654 {
1655 int rows = lines_per_page;
1656 int cols = chars_per_line;
1657
1658 if (rows <= 0)
1659 rows = INT_MAX;
1660
1661 if (cols <= 0)
1662 rl_get_screen_size (NULL, &cols);
1663
1664 /* Update Readline's idea of the terminal size. */
1665 rl_set_screen_size (rows, cols);
1666 }
1667
1668 /* Reinitialize WRAP_BUFFER according to the current value of
1669 CHARS_PER_LINE. */
1670
1671 static void
1672 set_width (void)
1673 {
1674 if (chars_per_line == 0)
1675 init_page_info ();
1676
1677 if (!wrap_buffer)
1678 {
1679 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1680 wrap_buffer[0] = '\0';
1681 }
1682 else
1683 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1684 wrap_pointer = wrap_buffer; /* Start it at the beginning. */
1685 }
1686
1687 /* ARGSUSED */
1688 static void
1689 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1690 {
1691 set_screen_size ();
1692 set_width ();
1693 }
1694
1695 /* ARGSUSED */
1696 static void
1697 set_height_command (char *args, int from_tty, struct cmd_list_element *c)
1698 {
1699 set_screen_size ();
1700 }
1701
1702 /* Wait, so the user can read what's on the screen. Prompt the user
1703 to continue by pressing RETURN. */
1704
1705 static void
1706 prompt_for_continue (void)
1707 {
1708 char *ignore;
1709 char cont_prompt[120];
1710
1711 if (annotation_level > 1)
1712 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1713
1714 strcpy (cont_prompt,
1715 "---Type <return> to continue, or q <return> to quit---");
1716 if (annotation_level > 1)
1717 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1718
1719 /* We must do this *before* we call gdb_readline, else it will eventually
1720 call us -- thinking that we're trying to print beyond the end of the
1721 screen. */
1722 reinitialize_more_filter ();
1723
1724 immediate_quit++;
1725 /* On a real operating system, the user can quit with SIGINT.
1726 But not on GO32.
1727
1728 'q' is provided on all systems so users don't have to change habits
1729 from system to system, and because telling them what to do in
1730 the prompt is more user-friendly than expecting them to think of
1731 SIGINT. */
1732 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1733 whereas control-C to gdb_readline will cause the user to get dumped
1734 out to DOS. */
1735 ignore = gdb_readline_wrapper (cont_prompt);
1736
1737 if (annotation_level > 1)
1738 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1739
1740 if (ignore)
1741 {
1742 char *p = ignore;
1743 while (*p == ' ' || *p == '\t')
1744 ++p;
1745 if (p[0] == 'q')
1746 {
1747 if (!event_loop_p)
1748 request_quit (SIGINT);
1749 else
1750 async_request_quit (0);
1751 }
1752 xfree (ignore);
1753 }
1754 immediate_quit--;
1755
1756 /* Now we have to do this again, so that GDB will know that it doesn't
1757 need to save the ---Type <return>--- line at the top of the screen. */
1758 reinitialize_more_filter ();
1759
1760 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1761 }
1762
1763 /* Reinitialize filter; ie. tell it to reset to original values. */
1764
1765 void
1766 reinitialize_more_filter (void)
1767 {
1768 lines_printed = 0;
1769 chars_printed = 0;
1770 }
1771
1772 /* Indicate that if the next sequence of characters overflows the line,
1773 a newline should be inserted here rather than when it hits the end.
1774 If INDENT is non-null, it is a string to be printed to indent the
1775 wrapped part on the next line. INDENT must remain accessible until
1776 the next call to wrap_here() or until a newline is printed through
1777 fputs_filtered().
1778
1779 If the line is already overfull, we immediately print a newline and
1780 the indentation, and disable further wrapping.
1781
1782 If we don't know the width of lines, but we know the page height,
1783 we must not wrap words, but should still keep track of newlines
1784 that were explicitly printed.
1785
1786 INDENT should not contain tabs, as that will mess up the char count
1787 on the next line. FIXME.
1788
1789 This routine is guaranteed to force out any output which has been
1790 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1791 used to force out output from the wrap_buffer. */
1792
1793 void
1794 wrap_here (char *indent)
1795 {
1796 /* This should have been allocated, but be paranoid anyway. */
1797 if (!wrap_buffer)
1798 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1799
1800 if (wrap_buffer[0])
1801 {
1802 *wrap_pointer = '\0';
1803 fputs_unfiltered (wrap_buffer, gdb_stdout);
1804 }
1805 wrap_pointer = wrap_buffer;
1806 wrap_buffer[0] = '\0';
1807 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1808 {
1809 wrap_column = 0;
1810 }
1811 else if (chars_printed >= chars_per_line)
1812 {
1813 puts_filtered ("\n");
1814 if (indent != NULL)
1815 puts_filtered (indent);
1816 wrap_column = 0;
1817 }
1818 else
1819 {
1820 wrap_column = chars_printed;
1821 if (indent == NULL)
1822 wrap_indent = "";
1823 else
1824 wrap_indent = indent;
1825 }
1826 }
1827
1828 /* Print input string to gdb_stdout, filtered, with wrap,
1829 arranging strings in columns of n chars. String can be
1830 right or left justified in the column. Never prints
1831 trailing spaces. String should never be longer than
1832 width. FIXME: this could be useful for the EXAMINE
1833 command, which currently doesn't tabulate very well */
1834
1835 void
1836 puts_filtered_tabular (char *string, int width, int right)
1837 {
1838 int spaces = 0;
1839 int stringlen;
1840 char *spacebuf;
1841
1842 gdb_assert (chars_per_line > 0);
1843 if (chars_per_line == UINT_MAX)
1844 {
1845 fputs_filtered (string, gdb_stdout);
1846 fputs_filtered ("\n", gdb_stdout);
1847 return;
1848 }
1849
1850 if (((chars_printed - 1) / width + 2) * width >= chars_per_line)
1851 fputs_filtered ("\n", gdb_stdout);
1852
1853 if (width >= chars_per_line)
1854 width = chars_per_line - 1;
1855
1856 stringlen = strlen (string);
1857
1858 if (chars_printed > 0)
1859 spaces = width - (chars_printed - 1) % width - 1;
1860 if (right)
1861 spaces += width - stringlen;
1862
1863 spacebuf = alloca (spaces + 1);
1864 spacebuf[spaces] = '\0';
1865 while (spaces--)
1866 spacebuf[spaces] = ' ';
1867
1868 fputs_filtered (spacebuf, gdb_stdout);
1869 fputs_filtered (string, gdb_stdout);
1870 }
1871
1872
1873 /* Ensure that whatever gets printed next, using the filtered output
1874 commands, starts at the beginning of the line. I.E. if there is
1875 any pending output for the current line, flush it and start a new
1876 line. Otherwise do nothing. */
1877
1878 void
1879 begin_line (void)
1880 {
1881 if (chars_printed > 0)
1882 {
1883 puts_filtered ("\n");
1884 }
1885 }
1886
1887
1888 /* Like fputs but if FILTER is true, pause after every screenful.
1889
1890 Regardless of FILTER can wrap at points other than the final
1891 character of a line.
1892
1893 Unlike fputs, fputs_maybe_filtered does not return a value.
1894 It is OK for LINEBUFFER to be NULL, in which case just don't print
1895 anything.
1896
1897 Note that a longjmp to top level may occur in this routine (only if
1898 FILTER is true) (since prompt_for_continue may do so) so this
1899 routine should not be called when cleanups are not in place. */
1900
1901 static void
1902 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1903 int filter)
1904 {
1905 const char *lineptr;
1906
1907 if (linebuffer == 0)
1908 return;
1909
1910 /* Don't do any filtering if it is disabled. */
1911 if ((stream != gdb_stdout) || !pagination_enabled
1912 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1913 {
1914 fputs_unfiltered (linebuffer, stream);
1915 return;
1916 }
1917
1918 /* Go through and output each character. Show line extension
1919 when this is necessary; prompt user for new page when this is
1920 necessary. */
1921
1922 lineptr = linebuffer;
1923 while (*lineptr)
1924 {
1925 /* Possible new page. */
1926 if (filter && (lines_printed >= lines_per_page - 1))
1927 prompt_for_continue ();
1928
1929 while (*lineptr && *lineptr != '\n')
1930 {
1931 /* Print a single line. */
1932 if (*lineptr == '\t')
1933 {
1934 if (wrap_column)
1935 *wrap_pointer++ = '\t';
1936 else
1937 fputc_unfiltered ('\t', stream);
1938 /* Shifting right by 3 produces the number of tab stops
1939 we have already passed, and then adding one and
1940 shifting left 3 advances to the next tab stop. */
1941 chars_printed = ((chars_printed >> 3) + 1) << 3;
1942 lineptr++;
1943 }
1944 else
1945 {
1946 if (wrap_column)
1947 *wrap_pointer++ = *lineptr;
1948 else
1949 fputc_unfiltered (*lineptr, stream);
1950 chars_printed++;
1951 lineptr++;
1952 }
1953
1954 if (chars_printed >= chars_per_line)
1955 {
1956 unsigned int save_chars = chars_printed;
1957
1958 chars_printed = 0;
1959 lines_printed++;
1960 /* If we aren't actually wrapping, don't output newline --
1961 if chars_per_line is right, we probably just overflowed
1962 anyway; if it's wrong, let us keep going. */
1963 if (wrap_column)
1964 fputc_unfiltered ('\n', stream);
1965
1966 /* Possible new page. */
1967 if (lines_printed >= lines_per_page - 1)
1968 prompt_for_continue ();
1969
1970 /* Now output indentation and wrapped string */
1971 if (wrap_column)
1972 {
1973 fputs_unfiltered (wrap_indent, stream);
1974 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1975 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1976 /* FIXME, this strlen is what prevents wrap_indent from
1977 containing tabs. However, if we recurse to print it
1978 and count its chars, we risk trouble if wrap_indent is
1979 longer than (the user settable) chars_per_line.
1980 Note also that this can set chars_printed > chars_per_line
1981 if we are printing a long string. */
1982 chars_printed = strlen (wrap_indent)
1983 + (save_chars - wrap_column);
1984 wrap_pointer = wrap_buffer; /* Reset buffer */
1985 wrap_buffer[0] = '\0';
1986 wrap_column = 0; /* And disable fancy wrap */
1987 }
1988 }
1989 }
1990
1991 if (*lineptr == '\n')
1992 {
1993 chars_printed = 0;
1994 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1995 lines_printed++;
1996 fputc_unfiltered ('\n', stream);
1997 lineptr++;
1998 }
1999 }
2000 }
2001
2002 void
2003 fputs_filtered (const char *linebuffer, struct ui_file *stream)
2004 {
2005 fputs_maybe_filtered (linebuffer, stream, 1);
2006 }
2007
2008 int
2009 putchar_unfiltered (int c)
2010 {
2011 char buf = c;
2012 ui_file_write (gdb_stdout, &buf, 1);
2013 return c;
2014 }
2015
2016 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
2017 May return nonlocally. */
2018
2019 int
2020 putchar_filtered (int c)
2021 {
2022 return fputc_filtered (c, gdb_stdout);
2023 }
2024
2025 int
2026 fputc_unfiltered (int c, struct ui_file *stream)
2027 {
2028 char buf = c;
2029 ui_file_write (stream, &buf, 1);
2030 return c;
2031 }
2032
2033 int
2034 fputc_filtered (int c, struct ui_file *stream)
2035 {
2036 char buf[2];
2037
2038 buf[0] = c;
2039 buf[1] = 0;
2040 fputs_filtered (buf, stream);
2041 return c;
2042 }
2043
2044 /* puts_debug is like fputs_unfiltered, except it prints special
2045 characters in printable fashion. */
2046
2047 void
2048 puts_debug (char *prefix, char *string, char *suffix)
2049 {
2050 int ch;
2051
2052 /* Print prefix and suffix after each line. */
2053 static int new_line = 1;
2054 static int return_p = 0;
2055 static char *prev_prefix = "";
2056 static char *prev_suffix = "";
2057
2058 if (*string == '\n')
2059 return_p = 0;
2060
2061 /* If the prefix is changing, print the previous suffix, a new line,
2062 and the new prefix. */
2063 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
2064 {
2065 fputs_unfiltered (prev_suffix, gdb_stdlog);
2066 fputs_unfiltered ("\n", gdb_stdlog);
2067 fputs_unfiltered (prefix, gdb_stdlog);
2068 }
2069
2070 /* Print prefix if we printed a newline during the previous call. */
2071 if (new_line)
2072 {
2073 new_line = 0;
2074 fputs_unfiltered (prefix, gdb_stdlog);
2075 }
2076
2077 prev_prefix = prefix;
2078 prev_suffix = suffix;
2079
2080 /* Output characters in a printable format. */
2081 while ((ch = *string++) != '\0')
2082 {
2083 switch (ch)
2084 {
2085 default:
2086 if (isprint (ch))
2087 fputc_unfiltered (ch, gdb_stdlog);
2088
2089 else
2090 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
2091 break;
2092
2093 case '\\':
2094 fputs_unfiltered ("\\\\", gdb_stdlog);
2095 break;
2096 case '\b':
2097 fputs_unfiltered ("\\b", gdb_stdlog);
2098 break;
2099 case '\f':
2100 fputs_unfiltered ("\\f", gdb_stdlog);
2101 break;
2102 case '\n':
2103 new_line = 1;
2104 fputs_unfiltered ("\\n", gdb_stdlog);
2105 break;
2106 case '\r':
2107 fputs_unfiltered ("\\r", gdb_stdlog);
2108 break;
2109 case '\t':
2110 fputs_unfiltered ("\\t", gdb_stdlog);
2111 break;
2112 case '\v':
2113 fputs_unfiltered ("\\v", gdb_stdlog);
2114 break;
2115 }
2116
2117 return_p = ch == '\r';
2118 }
2119
2120 /* Print suffix if we printed a newline. */
2121 if (new_line)
2122 {
2123 fputs_unfiltered (suffix, gdb_stdlog);
2124 fputs_unfiltered ("\n", gdb_stdlog);
2125 }
2126 }
2127
2128
2129 /* Print a variable number of ARGS using format FORMAT. If this
2130 information is going to put the amount written (since the last call
2131 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2132 call prompt_for_continue to get the users permision to continue.
2133
2134 Unlike fprintf, this function does not return a value.
2135
2136 We implement three variants, vfprintf (takes a vararg list and stream),
2137 fprintf (takes a stream to write on), and printf (the usual).
2138
2139 Note also that a longjmp to top level may occur in this routine
2140 (since prompt_for_continue may do so) so this routine should not be
2141 called when cleanups are not in place. */
2142
2143 static void
2144 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2145 va_list args, int filter)
2146 {
2147 char *linebuffer;
2148 struct cleanup *old_cleanups;
2149
2150 xvasprintf (&linebuffer, format, args);
2151 old_cleanups = make_cleanup (xfree, linebuffer);
2152 fputs_maybe_filtered (linebuffer, stream, filter);
2153 do_cleanups (old_cleanups);
2154 }
2155
2156
2157 void
2158 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2159 {
2160 vfprintf_maybe_filtered (stream, format, args, 1);
2161 }
2162
2163 void
2164 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2165 {
2166 char *linebuffer;
2167 struct cleanup *old_cleanups;
2168
2169 xvasprintf (&linebuffer, format, args);
2170 old_cleanups = make_cleanup (xfree, linebuffer);
2171 fputs_unfiltered (linebuffer, stream);
2172 do_cleanups (old_cleanups);
2173 }
2174
2175 void
2176 vprintf_filtered (const char *format, va_list args)
2177 {
2178 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2179 }
2180
2181 void
2182 vprintf_unfiltered (const char *format, va_list args)
2183 {
2184 vfprintf_unfiltered (gdb_stdout, format, args);
2185 }
2186
2187 void
2188 fprintf_filtered (struct ui_file *stream, const char *format, ...)
2189 {
2190 va_list args;
2191 va_start (args, format);
2192 vfprintf_filtered (stream, format, args);
2193 va_end (args);
2194 }
2195
2196 void
2197 fprintf_unfiltered (struct ui_file *stream, const char *format, ...)
2198 {
2199 va_list args;
2200 va_start (args, format);
2201 vfprintf_unfiltered (stream, format, args);
2202 va_end (args);
2203 }
2204
2205 /* Like fprintf_filtered, but prints its result indented.
2206 Called as fprintfi_filtered (spaces, stream, format, ...); */
2207
2208 void
2209 fprintfi_filtered (int spaces, struct ui_file *stream, const char *format,
2210 ...)
2211 {
2212 va_list args;
2213 va_start (args, format);
2214 print_spaces_filtered (spaces, stream);
2215
2216 vfprintf_filtered (stream, format, args);
2217 va_end (args);
2218 }
2219
2220
2221 void
2222 printf_filtered (const char *format, ...)
2223 {
2224 va_list args;
2225 va_start (args, format);
2226 vfprintf_filtered (gdb_stdout, format, args);
2227 va_end (args);
2228 }
2229
2230
2231 void
2232 printf_unfiltered (const char *format, ...)
2233 {
2234 va_list args;
2235 va_start (args, format);
2236 vfprintf_unfiltered (gdb_stdout, format, args);
2237 va_end (args);
2238 }
2239
2240 /* Like printf_filtered, but prints it's result indented.
2241 Called as printfi_filtered (spaces, format, ...); */
2242
2243 void
2244 printfi_filtered (int spaces, const char *format, ...)
2245 {
2246 va_list args;
2247 va_start (args, format);
2248 print_spaces_filtered (spaces, gdb_stdout);
2249 vfprintf_filtered (gdb_stdout, format, args);
2250 va_end (args);
2251 }
2252
2253 /* Easy -- but watch out!
2254
2255 This routine is *not* a replacement for puts()! puts() appends a newline.
2256 This one doesn't, and had better not! */
2257
2258 void
2259 puts_filtered (const char *string)
2260 {
2261 fputs_filtered (string, gdb_stdout);
2262 }
2263
2264 void
2265 puts_unfiltered (const char *string)
2266 {
2267 fputs_unfiltered (string, gdb_stdout);
2268 }
2269
2270 /* Return a pointer to N spaces and a null. The pointer is good
2271 until the next call to here. */
2272 char *
2273 n_spaces (int n)
2274 {
2275 char *t;
2276 static char *spaces = 0;
2277 static int max_spaces = -1;
2278
2279 if (n > max_spaces)
2280 {
2281 if (spaces)
2282 xfree (spaces);
2283 spaces = (char *) xmalloc (n + 1);
2284 for (t = spaces + n; t != spaces;)
2285 *--t = ' ';
2286 spaces[n] = '\0';
2287 max_spaces = n;
2288 }
2289
2290 return spaces + max_spaces - n;
2291 }
2292
2293 /* Print N spaces. */
2294 void
2295 print_spaces_filtered (int n, struct ui_file *stream)
2296 {
2297 fputs_filtered (n_spaces (n), stream);
2298 }
2299 \f
2300 /* C++/ObjC demangler stuff. */
2301
2302 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2303 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2304 If the name is not mangled, or the language for the name is unknown, or
2305 demangling is off, the name is printed in its "raw" form. */
2306
2307 void
2308 fprintf_symbol_filtered (struct ui_file *stream, char *name,
2309 enum language lang, int arg_mode)
2310 {
2311 char *demangled;
2312
2313 if (name != NULL)
2314 {
2315 /* If user wants to see raw output, no problem. */
2316 if (!demangle)
2317 {
2318 fputs_filtered (name, stream);
2319 }
2320 else
2321 {
2322 demangled = language_demangle (language_def (lang), name, arg_mode);
2323 fputs_filtered (demangled ? demangled : name, stream);
2324 if (demangled != NULL)
2325 {
2326 xfree (demangled);
2327 }
2328 }
2329 }
2330 }
2331
2332 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2333 differences in whitespace. Returns 0 if they match, non-zero if they
2334 don't (slightly different than strcmp()'s range of return values).
2335
2336 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2337 This "feature" is useful when searching for matching C++ function names
2338 (such as if the user types 'break FOO', where FOO is a mangled C++
2339 function). */
2340
2341 int
2342 strcmp_iw (const char *string1, const char *string2)
2343 {
2344 while ((*string1 != '\0') && (*string2 != '\0'))
2345 {
2346 while (isspace (*string1))
2347 {
2348 string1++;
2349 }
2350 while (isspace (*string2))
2351 {
2352 string2++;
2353 }
2354 if (*string1 != *string2)
2355 {
2356 break;
2357 }
2358 if (*string1 != '\0')
2359 {
2360 string1++;
2361 string2++;
2362 }
2363 }
2364 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2365 }
2366
2367 /* This is like strcmp except that it ignores whitespace and treats
2368 '(' as the first non-NULL character in terms of ordering. Like
2369 strcmp (and unlike strcmp_iw), it returns negative if STRING1 <
2370 STRING2, 0 if STRING2 = STRING2, and positive if STRING1 > STRING2
2371 according to that ordering.
2372
2373 If a list is sorted according to this function and if you want to
2374 find names in the list that match some fixed NAME according to
2375 strcmp_iw(LIST_ELT, NAME), then the place to start looking is right
2376 where this function would put NAME.
2377
2378 Here are some examples of why using strcmp to sort is a bad idea:
2379
2380 Whitespace example:
2381
2382 Say your partial symtab contains: "foo<char *>", "goo". Then, if
2383 we try to do a search for "foo<char*>", strcmp will locate this
2384 after "foo<char *>" and before "goo". Then lookup_partial_symbol
2385 will start looking at strings beginning with "goo", and will never
2386 see the correct match of "foo<char *>".
2387
2388 Parenthesis example:
2389
2390 In practice, this is less like to be an issue, but I'll give it a
2391 shot. Let's assume that '$' is a legitimate character to occur in
2392 symbols. (Which may well even be the case on some systems.) Then
2393 say that the partial symbol table contains "foo$" and "foo(int)".
2394 strcmp will put them in this order, since '$' < '('. Now, if the
2395 user searches for "foo", then strcmp will sort "foo" before "foo$".
2396 Then lookup_partial_symbol will notice that strcmp_iw("foo$",
2397 "foo") is false, so it won't proceed to the actual match of
2398 "foo(int)" with "foo". */
2399
2400 int
2401 strcmp_iw_ordered (const char *string1, const char *string2)
2402 {
2403 while ((*string1 != '\0') && (*string2 != '\0'))
2404 {
2405 while (isspace (*string1))
2406 {
2407 string1++;
2408 }
2409 while (isspace (*string2))
2410 {
2411 string2++;
2412 }
2413 if (*string1 != *string2)
2414 {
2415 break;
2416 }
2417 if (*string1 != '\0')
2418 {
2419 string1++;
2420 string2++;
2421 }
2422 }
2423
2424 switch (*string1)
2425 {
2426 /* Characters are non-equal unless they're both '\0'; we want to
2427 make sure we get the comparison right according to our
2428 comparison in the cases where one of them is '\0' or '('. */
2429 case '\0':
2430 if (*string2 == '\0')
2431 return 0;
2432 else
2433 return -1;
2434 case '(':
2435 if (*string2 == '\0')
2436 return 1;
2437 else
2438 return -1;
2439 default:
2440 if (*string2 == '(')
2441 return 1;
2442 else
2443 return *string1 - *string2;
2444 }
2445 }
2446
2447 /* A simple comparison function with opposite semantics to strcmp. */
2448
2449 int
2450 streq (const char *lhs, const char *rhs)
2451 {
2452 return !strcmp (lhs, rhs);
2453 }
2454 \f
2455
2456 /*
2457 ** subset_compare()
2458 ** Answer whether string_to_compare is a full or partial match to
2459 ** template_string. The partial match must be in sequence starting
2460 ** at index 0.
2461 */
2462 int
2463 subset_compare (char *string_to_compare, char *template_string)
2464 {
2465 int match;
2466 if (template_string != (char *) NULL && string_to_compare != (char *) NULL
2467 && strlen (string_to_compare) <= strlen (template_string))
2468 match =
2469 (strncmp
2470 (template_string, string_to_compare, strlen (string_to_compare)) == 0);
2471 else
2472 match = 0;
2473 return match;
2474 }
2475
2476
2477 static void pagination_on_command (char *arg, int from_tty);
2478 static void
2479 pagination_on_command (char *arg, int from_tty)
2480 {
2481 pagination_enabled = 1;
2482 }
2483
2484 static void pagination_on_command (char *arg, int from_tty);
2485 static void
2486 pagination_off_command (char *arg, int from_tty)
2487 {
2488 pagination_enabled = 0;
2489 }
2490 \f
2491
2492 void
2493 initialize_utils (void)
2494 {
2495 struct cmd_list_element *c;
2496
2497 c = add_set_cmd ("width", class_support, var_uinteger, &chars_per_line,
2498 "Set number of characters gdb thinks are in a line.",
2499 &setlist);
2500 add_show_from_set (c, &showlist);
2501 set_cmd_sfunc (c, set_width_command);
2502
2503 c = add_set_cmd ("height", class_support, var_uinteger, &lines_per_page,
2504 "Set number of lines gdb thinks are in a page.", &setlist);
2505 add_show_from_set (c, &showlist);
2506 set_cmd_sfunc (c, set_height_command);
2507
2508 init_page_info ();
2509
2510 add_show_from_set
2511 (add_set_cmd ("demangle", class_support, var_boolean,
2512 (char *) &demangle,
2513 "Set demangling of encoded C++/ObjC names when displaying symbols.",
2514 &setprintlist), &showprintlist);
2515
2516 add_show_from_set
2517 (add_set_cmd ("pagination", class_support,
2518 var_boolean, (char *) &pagination_enabled,
2519 "Set state of pagination.", &setlist), &showlist);
2520
2521 if (xdb_commands)
2522 {
2523 add_com ("am", class_support, pagination_on_command,
2524 "Enable pagination");
2525 add_com ("sm", class_support, pagination_off_command,
2526 "Disable pagination");
2527 }
2528
2529 add_show_from_set
2530 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2531 (char *) &sevenbit_strings,
2532 "Set printing of 8-bit characters in strings as \\nnn.",
2533 &setprintlist), &showprintlist);
2534
2535 add_show_from_set
2536 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2537 (char *) &asm_demangle,
2538 "Set demangling of C++/ObjC names in disassembly listings.",
2539 &setprintlist), &showprintlist);
2540 }
2541
2542 /* Machine specific function to handle SIGWINCH signal. */
2543
2544 #ifdef SIGWINCH_HANDLER_BODY
2545 SIGWINCH_HANDLER_BODY
2546 #endif
2547 /* print routines to handle variable size regs, etc. */
2548 /* temporary storage using circular buffer */
2549 #define NUMCELLS 16
2550 #define CELLSIZE 32
2551 static char *
2552 get_cell (void)
2553 {
2554 static char buf[NUMCELLS][CELLSIZE];
2555 static int cell = 0;
2556 if (++cell >= NUMCELLS)
2557 cell = 0;
2558 return buf[cell];
2559 }
2560
2561 int
2562 strlen_paddr (void)
2563 {
2564 return (TARGET_ADDR_BIT / 8 * 2);
2565 }
2566
2567 char *
2568 paddr (CORE_ADDR addr)
2569 {
2570 return phex (addr, TARGET_ADDR_BIT / 8);
2571 }
2572
2573 char *
2574 paddr_nz (CORE_ADDR addr)
2575 {
2576 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2577 }
2578
2579 static void
2580 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2581 {
2582 /* steal code from valprint.c:print_decimal(). Should this worry
2583 about the real size of addr as the above does? */
2584 unsigned long temp[3];
2585 int i = 0;
2586 do
2587 {
2588 temp[i] = addr % (1000 * 1000 * 1000);
2589 addr /= (1000 * 1000 * 1000);
2590 i++;
2591 }
2592 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2593 switch (i)
2594 {
2595 case 1:
2596 sprintf (paddr_str, "%s%lu", sign, temp[0]);
2597 break;
2598 case 2:
2599 sprintf (paddr_str, "%s%lu%09lu", sign, temp[1], temp[0]);
2600 break;
2601 case 3:
2602 sprintf (paddr_str, "%s%lu%09lu%09lu", sign, temp[2], temp[1], temp[0]);
2603 break;
2604 default:
2605 internal_error (__FILE__, __LINE__,
2606 "failed internal consistency check");
2607 }
2608 }
2609
2610 char *
2611 paddr_u (CORE_ADDR addr)
2612 {
2613 char *paddr_str = get_cell ();
2614 decimal2str (paddr_str, "", addr);
2615 return paddr_str;
2616 }
2617
2618 char *
2619 paddr_d (LONGEST addr)
2620 {
2621 char *paddr_str = get_cell ();
2622 if (addr < 0)
2623 decimal2str (paddr_str, "-", -addr);
2624 else
2625 decimal2str (paddr_str, "", addr);
2626 return paddr_str;
2627 }
2628
2629 /* eliminate warning from compiler on 32-bit systems */
2630 static int thirty_two = 32;
2631
2632 char *
2633 phex (ULONGEST l, int sizeof_l)
2634 {
2635 char *str;
2636 switch (sizeof_l)
2637 {
2638 case 8:
2639 str = get_cell ();
2640 sprintf (str, "%08lx%08lx",
2641 (unsigned long) (l >> thirty_two),
2642 (unsigned long) (l & 0xffffffff));
2643 break;
2644 case 4:
2645 str = get_cell ();
2646 sprintf (str, "%08lx", (unsigned long) l);
2647 break;
2648 case 2:
2649 str = get_cell ();
2650 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2651 break;
2652 default:
2653 str = phex (l, sizeof (l));
2654 break;
2655 }
2656 return str;
2657 }
2658
2659 char *
2660 phex_nz (ULONGEST l, int sizeof_l)
2661 {
2662 char *str;
2663 switch (sizeof_l)
2664 {
2665 case 8:
2666 {
2667 unsigned long high = (unsigned long) (l >> thirty_two);
2668 str = get_cell ();
2669 if (high == 0)
2670 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2671 else
2672 sprintf (str, "%lx%08lx", high, (unsigned long) (l & 0xffffffff));
2673 break;
2674 }
2675 case 4:
2676 str = get_cell ();
2677 sprintf (str, "%lx", (unsigned long) l);
2678 break;
2679 case 2:
2680 str = get_cell ();
2681 sprintf (str, "%x", (unsigned short) (l & 0xffff));
2682 break;
2683 default:
2684 str = phex_nz (l, sizeof (l));
2685 break;
2686 }
2687 return str;
2688 }
2689
2690
2691 /* Convert a CORE_ADDR into a string. */
2692 const char *
2693 core_addr_to_string (const CORE_ADDR addr)
2694 {
2695 char *str = get_cell ();
2696 strcpy (str, "0x");
2697 strcat (str, phex (addr, sizeof (addr)));
2698 return str;
2699 }
2700
2701 const char *
2702 core_addr_to_string_nz (const CORE_ADDR addr)
2703 {
2704 char *str = get_cell ();
2705 strcpy (str, "0x");
2706 strcat (str, phex_nz (addr, sizeof (addr)));
2707 return str;
2708 }
2709
2710 /* Convert a string back into a CORE_ADDR. */
2711 CORE_ADDR
2712 string_to_core_addr (const char *my_string)
2713 {
2714 CORE_ADDR addr = 0;
2715 if (my_string[0] == '0' && tolower (my_string[1]) == 'x')
2716 {
2717 /* Assume that it is in decimal. */
2718 int i;
2719 for (i = 2; my_string[i] != '\0'; i++)
2720 {
2721 if (isdigit (my_string[i]))
2722 addr = (my_string[i] - '0') + (addr * 16);
2723 else if (isxdigit (my_string[i]))
2724 addr = (tolower (my_string[i]) - 'a' + 0xa) + (addr * 16);
2725 else
2726 internal_error (__FILE__, __LINE__, "invalid hex");
2727 }
2728 }
2729 else
2730 {
2731 /* Assume that it is in decimal. */
2732 int i;
2733 for (i = 0; my_string[i] != '\0'; i++)
2734 {
2735 if (isdigit (my_string[i]))
2736 addr = (my_string[i] - '0') + (addr * 10);
2737 else
2738 internal_error (__FILE__, __LINE__, "invalid decimal");
2739 }
2740 }
2741 return addr;
2742 }
2743
2744 char *
2745 gdb_realpath (const char *filename)
2746 {
2747 /* Method 1: The system has a compile time upper bound on a filename
2748 path. Use that and realpath() to canonicalize the name. This is
2749 the most common case. Note that, if there isn't a compile time
2750 upper bound, you want to avoid realpath() at all costs. */
2751 #if defined(HAVE_REALPATH)
2752 {
2753 # if defined (PATH_MAX)
2754 char buf[PATH_MAX];
2755 # define USE_REALPATH
2756 # elif defined (MAXPATHLEN)
2757 char buf[MAXPATHLEN];
2758 # define USE_REALPATH
2759 # endif
2760 # if defined (USE_REALPATH)
2761 const char *rp = realpath (filename, buf);
2762 if (rp == NULL)
2763 rp = filename;
2764 return xstrdup (rp);
2765 # endif
2766 }
2767 #endif /* HAVE_REALPATH */
2768
2769 /* Method 2: The host system (i.e., GNU) has the function
2770 canonicalize_file_name() which malloc's a chunk of memory and
2771 returns that, use that. */
2772 #if defined(HAVE_CANONICALIZE_FILE_NAME)
2773 {
2774 char *rp = canonicalize_file_name (filename);
2775 if (rp == NULL)
2776 return xstrdup (filename);
2777 else
2778 return rp;
2779 }
2780 #endif
2781
2782 /* FIXME: cagney/2002-11-13:
2783
2784 Method 2a: Use realpath() with a NULL buffer. Some systems, due
2785 to the problems described in in method 3, have modified their
2786 realpath() implementation so that it will allocate a buffer when
2787 NULL is passed in. Before this can be used, though, some sort of
2788 configure time test would need to be added. Otherwize the code
2789 will likely core dump. */
2790
2791 /* Method 3: Now we're getting desperate! The system doesn't have a
2792 compile time buffer size and no alternative function. Query the
2793 OS, using pathconf(), for the buffer limit. Care is needed
2794 though, some systems do not limit PATH_MAX (return -1 for
2795 pathconf()) making it impossible to pass a correctly sized buffer
2796 to realpath() (it could always overflow). On those systems, we
2797 skip this. */
2798 #if defined (HAVE_REALPATH) && defined (HAVE_UNISTD_H) && defined(HAVE_ALLOCA)
2799 {
2800 /* Find out the max path size. */
2801 long path_max = pathconf ("/", _PC_PATH_MAX);
2802 if (path_max > 0)
2803 {
2804 /* PATH_MAX is bounded. */
2805 char *buf = alloca (path_max);
2806 char *rp = realpath (filename, buf);
2807 return xstrdup (rp ? rp : filename);
2808 }
2809 }
2810 #endif
2811
2812 /* This system is a lost cause, just dup the buffer. */
2813 return xstrdup (filename);
2814 }
2815
2816 /* Return a copy of FILENAME, with its directory prefix canonicalized
2817 by gdb_realpath. */
2818
2819 char *
2820 xfullpath (const char *filename)
2821 {
2822 const char *base_name = lbasename (filename);
2823 char *dir_name;
2824 char *real_path;
2825 char *result;
2826
2827 /* Extract the basename of filename, and return immediately
2828 a copy of filename if it does not contain any directory prefix. */
2829 if (base_name == filename)
2830 return xstrdup (filename);
2831
2832 dir_name = alloca ((size_t) (base_name - filename + 2));
2833 /* Allocate enough space to store the dir_name + plus one extra
2834 character sometimes needed under Windows (see below), and
2835 then the closing \000 character */
2836 strncpy (dir_name, filename, base_name - filename);
2837 dir_name[base_name - filename] = '\000';
2838
2839 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
2840 /* We need to be careful when filename is of the form 'd:foo', which
2841 is equivalent of d:./foo, which is totally different from d:/foo. */
2842 if (strlen (dir_name) == 2 && isalpha (dir_name[0]) && dir_name[1] == ':')
2843 {
2844 dir_name[2] = '.';
2845 dir_name[3] = '\000';
2846 }
2847 #endif
2848
2849 /* Canonicalize the directory prefix, and build the resulting
2850 filename. If the dirname realpath already contains an ending
2851 directory separator, avoid doubling it. */
2852 real_path = gdb_realpath (dir_name);
2853 if (IS_DIR_SEPARATOR (real_path[strlen (real_path) - 1]))
2854 result = concat (real_path, base_name, NULL);
2855 else
2856 result = concat (real_path, SLASH_STRING, base_name, NULL);
2857
2858 xfree (real_path);
2859 return result;
2860 }
2861
2862
2863 /* This is the 32-bit CRC function used by the GNU separate debug
2864 facility. An executable may contain a section named
2865 .gnu_debuglink, which holds the name of a separate executable file
2866 containing its debug info, and a checksum of that file's contents,
2867 computed using this function. */
2868 unsigned long
2869 gnu_debuglink_crc32 (unsigned long crc, unsigned char *buf, size_t len)
2870 {
2871 static const unsigned long crc32_table[256] = {
2872 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
2873 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
2874 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
2875 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
2876 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
2877 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
2878 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
2879 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
2880 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
2881 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
2882 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
2883 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
2884 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
2885 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
2886 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
2887 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
2888 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
2889 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
2890 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
2891 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
2892 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
2893 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
2894 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
2895 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
2896 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
2897 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
2898 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
2899 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
2900 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
2901 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
2902 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
2903 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
2904 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
2905 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
2906 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
2907 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
2908 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
2909 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
2910 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
2911 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
2912 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
2913 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
2914 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
2915 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
2916 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
2917 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
2918 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
2919 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
2920 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
2921 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
2922 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
2923 0x2d02ef8d
2924 };
2925 unsigned char *end;
2926
2927 crc = ~crc & 0xffffffff;
2928 for (end = buf + len; buf < end; ++buf)
2929 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
2930 return ~crc & 0xffffffff;;
2931 }