]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/utils.c
Snap const char * mess.
[thirdparty/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_assert.h"
26 #include <ctype.h>
27 #include "gdb_string.h"
28 #include "event-top.h"
29
30 #ifdef __GO32__
31 #include <pc.h>
32 #endif
33
34 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
35 #ifdef reg
36 #undef reg
37 #endif
38
39 #include <signal.h>
40 #include "gdbcmd.h"
41 #include "serial.h"
42 #include "bfd.h"
43 #include "target.h"
44 #include "demangle.h"
45 #include "expression.h"
46 #include "language.h"
47 #include "charset.h"
48 #include "annotate.h"
49 #include "filenames.h"
50
51 #include "inferior.h" /* for signed_pointer_to_address */
52
53 #include <sys/param.h> /* For MAXPATHLEN */
54
55 #ifdef HAVE_CURSES_H
56 #include <curses.h>
57 #endif
58 #ifdef HAVE_TERM_H
59 #include <term.h>
60 #endif
61
62 #include <readline/readline.h>
63
64 #ifdef USE_MMALLOC
65 #include "mmalloc.h"
66 #endif
67
68 #ifdef NEED_DECLARATION_MALLOC
69 extern PTR malloc (); /* OK: PTR */
70 #endif
71 #ifdef NEED_DECLARATION_REALLOC
72 extern PTR realloc (); /* OK: PTR */
73 #endif
74 #ifdef NEED_DECLARATION_FREE
75 extern void free ();
76 #endif
77 /* Actually, we'll never have the decl, since we don't define _GNU_SOURCE. */
78 #if defined(HAVE_CANONICALIZE_FILE_NAME) \
79 && defined(NEED_DECLARATION_CANONICALIZE_FILE_NAME)
80 extern char *canonicalize_file_name (const char *);
81 #endif
82
83 /* readline defines this. */
84 #undef savestring
85
86 void (*error_begin_hook) (void);
87
88 /* Holds the last error message issued by gdb */
89
90 static struct ui_file *gdb_lasterr;
91
92 /* Prototypes for local functions */
93
94 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
95 va_list, int);
96
97 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
98
99 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
100 static void malloc_botch (void);
101 #endif
102
103 static void prompt_for_continue (void);
104
105 static void set_width_command (const char *, int, struct cmd_list_element *);
106
107 static void set_width (void);
108
109 /* Chain of cleanup actions established with make_cleanup,
110 to be executed if an error happens. */
111
112 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
113 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
114 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
115 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
116 /* cleaned up on each error from within an execution command */
117 static struct cleanup *exec_error_cleanup_chain;
118
119 /* Pointer to what is left to do for an execution command after the
120 target stops. Used only in asynchronous mode, by targets that
121 support async execution. The finish and until commands use it. So
122 does the target extended-remote command. */
123 struct continuation *cmd_continuation;
124 struct continuation *intermediate_continuation;
125
126 /* Nonzero if we have job control. */
127
128 int job_control;
129
130 /* Nonzero means a quit has been requested. */
131
132 int quit_flag;
133
134 /* Nonzero means quit immediately if Control-C is typed now, rather
135 than waiting until QUIT is executed. Be careful in setting this;
136 code which executes with immediate_quit set has to be very careful
137 about being able to deal with being interrupted at any time. It is
138 almost always better to use QUIT; the only exception I can think of
139 is being able to quit out of a system call (using EINTR loses if
140 the SIGINT happens between the previous QUIT and the system call).
141 To immediately quit in the case in which a SIGINT happens between
142 the previous QUIT and setting immediate_quit (desirable anytime we
143 expect to block), call QUIT after setting immediate_quit. */
144
145 int immediate_quit;
146
147 /* Nonzero means that encoded C++/ObjC names should be printed out in their
148 C++/ObjC form rather than raw. */
149
150 int demangle = 1;
151
152 /* Nonzero means that encoded C++/ObjC names should be printed out in their
153 C++/ObjC form even in assembler language displays. If this is set, but
154 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
155
156 int asm_demangle = 0;
157
158 /* Nonzero means that strings with character values >0x7F should be printed
159 as octal escapes. Zero means just print the value (e.g. it's an
160 international character, and the terminal or window can cope.) */
161
162 int sevenbit_strings = 0;
163
164 /* String to be printed before error messages, if any. */
165
166 const char *error_pre_print;
167
168 /* String to be printed before quit messages, if any. */
169
170 const char *quit_pre_print;
171
172 /* String to be printed before warning messages, if any. */
173
174 const char *warning_pre_print = "\nwarning: ";
175
176 int pagination_enabled = 1;
177 \f
178
179 /* Add a new cleanup to the cleanup_chain,
180 and return the previous chain pointer
181 to be passed later to do_cleanups or discard_cleanups.
182 Args are FUNCTION to clean up with, and ARG to pass to it. */
183
184 struct cleanup *
185 make_cleanup (make_cleanup_ftype *function, void *arg)
186 {
187 return make_my_cleanup (&cleanup_chain, function, arg);
188 }
189
190 struct cleanup *
191 make_final_cleanup (make_cleanup_ftype *function, void *arg)
192 {
193 return make_my_cleanup (&final_cleanup_chain, function, arg);
194 }
195
196 struct cleanup *
197 make_run_cleanup (make_cleanup_ftype *function, void *arg)
198 {
199 return make_my_cleanup (&run_cleanup_chain, function, arg);
200 }
201
202 struct cleanup *
203 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
204 {
205 return make_my_cleanup (&exec_cleanup_chain, function, arg);
206 }
207
208 struct cleanup *
209 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
210 {
211 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
212 }
213
214 static void
215 do_freeargv (void *arg)
216 {
217 freeargv ((char **) arg);
218 }
219
220 struct cleanup *
221 make_cleanup_freeargv (char **arg)
222 {
223 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
224 }
225
226 static void
227 do_bfd_close_cleanup (void *arg)
228 {
229 bfd_close (arg);
230 }
231
232 struct cleanup *
233 make_cleanup_bfd_close (bfd *abfd)
234 {
235 return make_cleanup (do_bfd_close_cleanup, abfd);
236 }
237
238 static void
239 do_close_cleanup (void *arg)
240 {
241 int *fd = arg;
242 close (*fd);
243 xfree (fd);
244 }
245
246 struct cleanup *
247 make_cleanup_close (int fd)
248 {
249 int *saved_fd = xmalloc (sizeof (fd));
250 *saved_fd = fd;
251 return make_cleanup (do_close_cleanup, saved_fd);
252 }
253
254 static void
255 do_ui_file_delete (void *arg)
256 {
257 ui_file_delete (arg);
258 }
259
260 struct cleanup *
261 make_cleanup_ui_file_delete (struct ui_file *arg)
262 {
263 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
264 }
265
266 struct cleanup *
267 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
268 void *arg)
269 {
270 register struct cleanup *new
271 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
272 register struct cleanup *old_chain = *pmy_chain;
273
274 new->next = *pmy_chain;
275 new->function = function;
276 new->arg = arg;
277 *pmy_chain = new;
278
279 return old_chain;
280 }
281
282 /* Discard cleanups and do the actions they describe
283 until we get back to the point OLD_CHAIN in the cleanup_chain. */
284
285 void
286 do_cleanups (register struct cleanup *old_chain)
287 {
288 do_my_cleanups (&cleanup_chain, old_chain);
289 }
290
291 void
292 do_final_cleanups (register struct cleanup *old_chain)
293 {
294 do_my_cleanups (&final_cleanup_chain, old_chain);
295 }
296
297 void
298 do_run_cleanups (register struct cleanup *old_chain)
299 {
300 do_my_cleanups (&run_cleanup_chain, old_chain);
301 }
302
303 void
304 do_exec_cleanups (register struct cleanup *old_chain)
305 {
306 do_my_cleanups (&exec_cleanup_chain, old_chain);
307 }
308
309 void
310 do_exec_error_cleanups (register struct cleanup *old_chain)
311 {
312 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
313 }
314
315 void
316 do_my_cleanups (register struct cleanup **pmy_chain,
317 register struct cleanup *old_chain)
318 {
319 register struct cleanup *ptr;
320 while ((ptr = *pmy_chain) != old_chain)
321 {
322 *pmy_chain = ptr->next; /* Do this first incase recursion */
323 (*ptr->function) (ptr->arg);
324 xfree (ptr);
325 }
326 }
327
328 /* Discard cleanups, not doing the actions they describe,
329 until we get back to the point OLD_CHAIN in the cleanup_chain. */
330
331 void
332 discard_cleanups (register struct cleanup *old_chain)
333 {
334 discard_my_cleanups (&cleanup_chain, old_chain);
335 }
336
337 void
338 discard_final_cleanups (register struct cleanup *old_chain)
339 {
340 discard_my_cleanups (&final_cleanup_chain, old_chain);
341 }
342
343 void
344 discard_exec_error_cleanups (register struct cleanup *old_chain)
345 {
346 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
347 }
348
349 void
350 discard_my_cleanups (register struct cleanup **pmy_chain,
351 register struct cleanup *old_chain)
352 {
353 register struct cleanup *ptr;
354 while ((ptr = *pmy_chain) != old_chain)
355 {
356 *pmy_chain = ptr->next;
357 xfree (ptr);
358 }
359 }
360
361 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
362 struct cleanup *
363 save_cleanups (void)
364 {
365 return save_my_cleanups (&cleanup_chain);
366 }
367
368 struct cleanup *
369 save_final_cleanups (void)
370 {
371 return save_my_cleanups (&final_cleanup_chain);
372 }
373
374 struct cleanup *
375 save_my_cleanups (struct cleanup **pmy_chain)
376 {
377 struct cleanup *old_chain = *pmy_chain;
378
379 *pmy_chain = 0;
380 return old_chain;
381 }
382
383 /* Restore the cleanup chain from a previously saved chain. */
384 void
385 restore_cleanups (struct cleanup *chain)
386 {
387 restore_my_cleanups (&cleanup_chain, chain);
388 }
389
390 void
391 restore_final_cleanups (struct cleanup *chain)
392 {
393 restore_my_cleanups (&final_cleanup_chain, chain);
394 }
395
396 void
397 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
398 {
399 *pmy_chain = chain;
400 }
401
402 /* This function is useful for cleanups.
403 Do
404
405 foo = xmalloc (...);
406 old_chain = make_cleanup (free_current_contents, &foo);
407
408 to arrange to free the object thus allocated. */
409
410 void
411 free_current_contents (void *ptr)
412 {
413 void **location = ptr;
414 if (location == NULL)
415 internal_error (__FILE__, __LINE__,
416 "free_current_contents: NULL pointer");
417 if (*location != NULL)
418 {
419 xfree (*location);
420 *location = NULL;
421 }
422 }
423
424 /* Provide a known function that does nothing, to use as a base for
425 for a possibly long chain of cleanups. This is useful where we
426 use the cleanup chain for handling normal cleanups as well as dealing
427 with cleanups that need to be done as a result of a call to error().
428 In such cases, we may not be certain where the first cleanup is, unless
429 we have a do-nothing one to always use as the base. */
430
431 /* ARGSUSED */
432 void
433 null_cleanup (void *arg)
434 {
435 }
436
437 /* Add a continuation to the continuation list, the global list
438 cmd_continuation. The new continuation will be added at the front.*/
439 void
440 add_continuation (void (*continuation_hook) (struct continuation_arg *),
441 struct continuation_arg *arg_list)
442 {
443 struct continuation *continuation_ptr;
444
445 continuation_ptr =
446 (struct continuation *) xmalloc (sizeof (struct continuation));
447 continuation_ptr->continuation_hook = continuation_hook;
448 continuation_ptr->arg_list = arg_list;
449 continuation_ptr->next = cmd_continuation;
450 cmd_continuation = continuation_ptr;
451 }
452
453 /* Walk down the cmd_continuation list, and execute all the
454 continuations. There is a problem though. In some cases new
455 continuations may be added while we are in the middle of this
456 loop. If this happens they will be added in the front, and done
457 before we have a chance of exhausting those that were already
458 there. We need to then save the beginning of the list in a pointer
459 and do the continuations from there on, instead of using the
460 global beginning of list as our iteration pointer.*/
461 void
462 do_all_continuations (void)
463 {
464 struct continuation *continuation_ptr;
465 struct continuation *saved_continuation;
466
467 /* Copy the list header into another pointer, and set the global
468 list header to null, so that the global list can change as a side
469 effect of invoking the continuations and the processing of
470 the preexisting continuations will not be affected. */
471 continuation_ptr = cmd_continuation;
472 cmd_continuation = NULL;
473
474 /* Work now on the list we have set aside. */
475 while (continuation_ptr)
476 {
477 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
478 saved_continuation = continuation_ptr;
479 continuation_ptr = continuation_ptr->next;
480 xfree (saved_continuation);
481 }
482 }
483
484 /* Walk down the cmd_continuation list, and get rid of all the
485 continuations. */
486 void
487 discard_all_continuations (void)
488 {
489 struct continuation *continuation_ptr;
490
491 while (cmd_continuation)
492 {
493 continuation_ptr = cmd_continuation;
494 cmd_continuation = continuation_ptr->next;
495 xfree (continuation_ptr);
496 }
497 }
498
499 /* Add a continuation to the continuation list, the global list
500 intermediate_continuation. The new continuation will be added at the front.*/
501 void
502 add_intermediate_continuation (void (*continuation_hook)
503 (struct continuation_arg *),
504 struct continuation_arg *arg_list)
505 {
506 struct continuation *continuation_ptr;
507
508 continuation_ptr =
509 (struct continuation *) xmalloc (sizeof (struct continuation));
510 continuation_ptr->continuation_hook = continuation_hook;
511 continuation_ptr->arg_list = arg_list;
512 continuation_ptr->next = intermediate_continuation;
513 intermediate_continuation = continuation_ptr;
514 }
515
516 /* Walk down the cmd_continuation list, and execute all the
517 continuations. There is a problem though. In some cases new
518 continuations may be added while we are in the middle of this
519 loop. If this happens they will be added in the front, and done
520 before we have a chance of exhausting those that were already
521 there. We need to then save the beginning of the list in a pointer
522 and do the continuations from there on, instead of using the
523 global beginning of list as our iteration pointer.*/
524 void
525 do_all_intermediate_continuations (void)
526 {
527 struct continuation *continuation_ptr;
528 struct continuation *saved_continuation;
529
530 /* Copy the list header into another pointer, and set the global
531 list header to null, so that the global list can change as a side
532 effect of invoking the continuations and the processing of
533 the preexisting continuations will not be affected. */
534 continuation_ptr = intermediate_continuation;
535 intermediate_continuation = NULL;
536
537 /* Work now on the list we have set aside. */
538 while (continuation_ptr)
539 {
540 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
541 saved_continuation = continuation_ptr;
542 continuation_ptr = continuation_ptr->next;
543 xfree (saved_continuation);
544 }
545 }
546
547 /* Walk down the cmd_continuation list, and get rid of all the
548 continuations. */
549 void
550 discard_all_intermediate_continuations (void)
551 {
552 struct continuation *continuation_ptr;
553
554 while (intermediate_continuation)
555 {
556 continuation_ptr = intermediate_continuation;
557 intermediate_continuation = continuation_ptr->next;
558 xfree (continuation_ptr);
559 }
560 }
561 \f
562
563
564 /* Print a warning message. The first argument STRING is the warning
565 message, used as an fprintf format string, the second is the
566 va_list of arguments for that string. A warning is unfiltered (not
567 paginated) so that the user does not need to page through each
568 screen full of warnings when there are lots of them. */
569
570 void
571 vwarning (const char *string, va_list args)
572 {
573 if (warning_hook)
574 (*warning_hook) (string, args);
575 else
576 {
577 target_terminal_ours ();
578 wrap_here (""); /* Force out any buffered output */
579 gdb_flush (gdb_stdout);
580 if (warning_pre_print)
581 fprintf_unfiltered (gdb_stderr, warning_pre_print);
582 vfprintf_unfiltered (gdb_stderr, string, args);
583 fprintf_unfiltered (gdb_stderr, "\n");
584 va_end (args);
585 }
586 }
587
588 /* Print a warning message.
589 The first argument STRING is the warning message, used as a fprintf string,
590 and the remaining args are passed as arguments to it.
591 The primary difference between warnings and errors is that a warning
592 does not force the return to command level. */
593
594 void
595 warning (const char *string, ...)
596 {
597 va_list args;
598 va_start (args, string);
599 vwarning (string, args);
600 va_end (args);
601 }
602
603 /* Print an error message and return to command level.
604 The first argument STRING is the error message, used as a fprintf string,
605 and the remaining args are passed as arguments to it. */
606
607 NORETURN void
608 verror (const char *string, va_list args)
609 {
610 struct ui_file *tmp_stream = mem_fileopen ();
611 make_cleanup_ui_file_delete (tmp_stream);
612 vfprintf_unfiltered (tmp_stream, string, args);
613 error_stream (tmp_stream);
614 }
615
616 NORETURN void
617 error (const char *string, ...)
618 {
619 va_list args;
620 va_start (args, string);
621 verror (string, args);
622 va_end (args);
623 }
624
625 static void
626 do_write (void *data, const char *buffer, long length_buffer)
627 {
628 ui_file_write (data, buffer, length_buffer);
629 }
630
631 NORETURN void
632 error_stream (struct ui_file *stream)
633 {
634 if (error_begin_hook)
635 error_begin_hook ();
636
637 /* Copy the stream into the GDB_LASTERR buffer. */
638 ui_file_rewind (gdb_lasterr);
639 ui_file_put (stream, do_write, gdb_lasterr);
640
641 /* Write the message plus any error_pre_print to gdb_stderr. */
642 target_terminal_ours ();
643 wrap_here (""); /* Force out any buffered output */
644 gdb_flush (gdb_stdout);
645 annotate_error_begin ();
646 if (error_pre_print)
647 fprintf_filtered (gdb_stderr, error_pre_print);
648 ui_file_put (stream, do_write, gdb_stderr);
649 fprintf_filtered (gdb_stderr, "\n");
650
651 throw_exception (RETURN_ERROR);
652 }
653
654 /* Get the last error message issued by gdb */
655
656 char *
657 error_last_message (void)
658 {
659 long len;
660 return ui_file_xstrdup (gdb_lasterr, &len);
661 }
662
663 /* This is to be called by main() at the very beginning */
664
665 void
666 error_init (void)
667 {
668 gdb_lasterr = mem_fileopen ();
669 }
670
671 /* Print a message reporting an internal error/warning. Ask the user
672 if they want to continue, dump core, or just exit. Return
673 something to indicate a quit. */
674
675 struct internal_problem
676 {
677 const char *name;
678 /* FIXME: cagney/2002-08-15: There should be ``maint set/show''
679 commands available for controlling these variables. */
680 enum auto_boolean should_quit;
681 enum auto_boolean should_dump_core;
682 };
683
684 /* Report a problem, internal to GDB, to the user. Once the problem
685 has been reported, and assuming GDB didn't quit, the caller can
686 either allow execution to resume or throw an error. */
687
688 static void
689 internal_vproblem (struct internal_problem *problem,
690 const char *file, int line, const char *fmt, va_list ap)
691 {
692 static char msg[] = "Recursive internal problem.\n";
693 static int dejavu;
694 int quit_p;
695 int dump_core_p;
696
697 /* Don't allow infinite error/warning recursion. */
698 switch (dejavu)
699 {
700 case 0:
701 dejavu = 1;
702 break;
703 case 1:
704 dejavu = 2;
705 fputs_unfiltered (msg, gdb_stderr);
706 abort (); /* NOTE: GDB has only three calls to abort(). */
707 default:
708 dejavu = 3;
709 write (STDERR_FILENO, msg, sizeof (msg));
710 exit (1);
711 }
712
713 /* Try to get the message out and at the start of a new line. */
714 target_terminal_ours ();
715 begin_line ();
716
717 /* The error/warning message. Format using a style similar to a
718 compiler error message. */
719 fprintf_unfiltered (gdb_stderr, "%s:%d: %s: ", file, line, problem->name);
720 vfprintf_unfiltered (gdb_stderr, fmt, ap);
721 fputs_unfiltered ("\n", gdb_stderr);
722
723 /* Provide more details so that the user knows that they are living
724 on the edge. */
725 fprintf_unfiltered (gdb_stderr, "\
726 A problem internal to GDB has been detected. Further\n\
727 debugging may prove unreliable.\n");
728
729 switch (problem->should_quit)
730 {
731 case AUTO_BOOLEAN_AUTO:
732 /* Default (yes/batch case) is to quit GDB. When in batch mode
733 this lessens the likelhood of GDB going into an infinate
734 loop. */
735 quit_p = query ("Quit this debugging session? ");
736 break;
737 case AUTO_BOOLEAN_TRUE:
738 quit_p = 1;
739 break;
740 case AUTO_BOOLEAN_FALSE:
741 quit_p = 0;
742 break;
743 default:
744 internal_error (__FILE__, __LINE__, "bad switch");
745 }
746
747 switch (problem->should_dump_core)
748 {
749 case AUTO_BOOLEAN_AUTO:
750 /* Default (yes/batch case) is to dump core. This leaves a GDB
751 `dropping' so that it is easier to see that something went
752 wrong in GDB. */
753 dump_core_p = query ("Create a core file of GDB? ");
754 break;
755 break;
756 case AUTO_BOOLEAN_TRUE:
757 dump_core_p = 1;
758 break;
759 case AUTO_BOOLEAN_FALSE:
760 dump_core_p = 0;
761 break;
762 default:
763 internal_error (__FILE__, __LINE__, "bad switch");
764 }
765
766 if (quit_p)
767 {
768 if (dump_core_p)
769 abort (); /* NOTE: GDB has only three calls to abort(). */
770 else
771 exit (1);
772 }
773 else
774 {
775 if (dump_core_p)
776 {
777 if (fork () == 0)
778 abort (); /* NOTE: GDB has only three calls to abort(). */
779 }
780 }
781
782 dejavu = 0;
783 }
784
785 static struct internal_problem internal_error_problem = {
786 "internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
787 };
788
789 NORETURN void
790 internal_verror (const char *file, int line, const char *fmt, va_list ap)
791 {
792 internal_vproblem (&internal_error_problem, file, line, fmt, ap);
793 throw_exception (RETURN_ERROR);
794 }
795
796 NORETURN void
797 internal_error (const char *file, int line, const char *string, ...)
798 {
799 va_list ap;
800 va_start (ap, string);
801 internal_verror (file, line, string, ap);
802 va_end (ap);
803 }
804
805 static struct internal_problem internal_warning_problem = {
806 "internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
807 };
808
809 void
810 internal_vwarning (const char *file, int line, const char *fmt, va_list ap)
811 {
812 internal_vproblem (&internal_warning_problem, file, line, fmt, ap);
813 }
814
815 void
816 internal_warning (const char *file, int line, const char *string, ...)
817 {
818 va_list ap;
819 va_start (ap, string);
820 internal_vwarning (file, line, string, ap);
821 va_end (ap);
822 }
823
824 /* The strerror() function can return NULL for errno values that are
825 out of range. Provide a "safe" version that always returns a
826 printable string. */
827
828 char *
829 safe_strerror (int errnum)
830 {
831 char *msg;
832 static char buf[32];
833
834 msg = strerror (errnum);
835 if (msg == NULL)
836 {
837 sprintf (buf, "(undocumented errno %d)", errnum);
838 msg = buf;
839 }
840 return (msg);
841 }
842
843 /* Print the system error message for errno, and also mention STRING
844 as the file name for which the error was encountered.
845 Then return to command level. */
846
847 NORETURN void
848 perror_with_name (const char *string)
849 {
850 char *err;
851 char *combined;
852
853 err = safe_strerror (errno);
854 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
855 strcpy (combined, string);
856 strcat (combined, ": ");
857 strcat (combined, err);
858
859 /* I understand setting these is a matter of taste. Still, some people
860 may clear errno but not know about bfd_error. Doing this here is not
861 unreasonable. */
862 bfd_set_error (bfd_error_no_error);
863 errno = 0;
864
865 error ("%s.", combined);
866 }
867
868 /* Print the system error message for ERRCODE, and also mention STRING
869 as the file name for which the error was encountered. */
870
871 void
872 print_sys_errmsg (const char *string, int errcode)
873 {
874 char *err;
875 char *combined;
876
877 err = safe_strerror (errcode);
878 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
879 strcpy (combined, string);
880 strcat (combined, ": ");
881 strcat (combined, err);
882
883 /* We want anything which was printed on stdout to come out first, before
884 this message. */
885 gdb_flush (gdb_stdout);
886 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
887 }
888
889 /* Control C eventually causes this to be called, at a convenient time. */
890
891 void
892 quit (void)
893 {
894 struct serial *gdb_stdout_serial = serial_fdopen (1);
895
896 target_terminal_ours ();
897
898 /* We want all output to appear now, before we print "Quit". We
899 have 3 levels of buffering we have to flush (it's possible that
900 some of these should be changed to flush the lower-level ones
901 too): */
902
903 /* 1. The _filtered buffer. */
904 wrap_here ((char *) 0);
905
906 /* 2. The stdio buffer. */
907 gdb_flush (gdb_stdout);
908 gdb_flush (gdb_stderr);
909
910 /* 3. The system-level buffer. */
911 serial_drain_output (gdb_stdout_serial);
912 serial_un_fdopen (gdb_stdout_serial);
913
914 annotate_error_begin ();
915
916 /* Don't use *_filtered; we don't want to prompt the user to continue. */
917 if (quit_pre_print)
918 fprintf_unfiltered (gdb_stderr, quit_pre_print);
919
920 #ifdef __MSDOS__
921 /* No steenking SIGINT will ever be coming our way when the
922 program is resumed. Don't lie. */
923 fprintf_unfiltered (gdb_stderr, "Quit\n");
924 #else
925 if (job_control
926 /* If there is no terminal switching for this target, then we can't
927 possibly get screwed by the lack of job control. */
928 || current_target.to_terminal_ours == NULL)
929 fprintf_unfiltered (gdb_stderr, "Quit\n");
930 else
931 fprintf_unfiltered (gdb_stderr,
932 "Quit (expect signal SIGINT when the program is resumed)\n");
933 #endif
934 throw_exception (RETURN_QUIT);
935 }
936
937 /* Control C comes here */
938 void
939 request_quit (int signo)
940 {
941 quit_flag = 1;
942 /* Restore the signal handler. Harmless with BSD-style signals, needed
943 for System V-style signals. So just always do it, rather than worrying
944 about USG defines and stuff like that. */
945 signal (signo, request_quit);
946
947 #ifdef REQUEST_QUIT
948 REQUEST_QUIT;
949 #else
950 if (immediate_quit)
951 quit ();
952 #endif
953 }
954 \f
955 /* Memory management stuff (malloc friends). */
956
957 #if !defined (USE_MMALLOC)
958
959 static void *
960 mmalloc (void *md, size_t size)
961 {
962 return malloc (size); /* NOTE: GDB's only call to malloc() */
963 }
964
965 static void *
966 mrealloc (void *md, void *ptr, size_t size)
967 {
968 if (ptr == 0) /* Guard against old realloc's */
969 return mmalloc (md, size);
970 else
971 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
972 }
973
974 static void *
975 mcalloc (void *md, size_t number, size_t size)
976 {
977 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
978 }
979
980 static void
981 mfree (void *md, void *ptr)
982 {
983 free (ptr); /* NOTE: GDB's only call to free() */
984 }
985
986 #endif /* USE_MMALLOC */
987
988 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
989
990 void
991 init_malloc (void *md)
992 {
993 }
994
995 #else /* Have mmalloc and want corruption checking */
996
997 static void
998 malloc_botch (void)
999 {
1000 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
1001 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1002 }
1003
1004 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
1005 by MD, to detect memory corruption. Note that MD may be NULL to specify
1006 the default heap that grows via sbrk.
1007
1008 Note that for freshly created regions, we must call mmcheckf prior to any
1009 mallocs in the region. Otherwise, any region which was allocated prior to
1010 installing the checking hooks, which is later reallocated or freed, will
1011 fail the checks! The mmcheck function only allows initial hooks to be
1012 installed before the first mmalloc. However, anytime after we have called
1013 mmcheck the first time to install the checking hooks, we can call it again
1014 to update the function pointer to the memory corruption handler.
1015
1016 Returns zero on failure, non-zero on success. */
1017
1018 #ifndef MMCHECK_FORCE
1019 #define MMCHECK_FORCE 0
1020 #endif
1021
1022 void
1023 init_malloc (void *md)
1024 {
1025 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1026 {
1027 /* Don't use warning(), which relies on current_target being set
1028 to something other than dummy_target, until after
1029 initialize_all_files(). */
1030
1031 fprintf_unfiltered
1032 (gdb_stderr,
1033 "warning: failed to install memory consistency checks; ");
1034 fprintf_unfiltered (gdb_stderr,
1035 "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1036 }
1037
1038 mmtrace ();
1039 }
1040
1041 #endif /* Have mmalloc and want corruption checking */
1042
1043 /* Called when a memory allocation fails, with the number of bytes of
1044 memory requested in SIZE. */
1045
1046 NORETURN void
1047 nomem (long size)
1048 {
1049 if (size > 0)
1050 {
1051 internal_error (__FILE__, __LINE__,
1052 "virtual memory exhausted: can't allocate %ld bytes.",
1053 size);
1054 }
1055 else
1056 {
1057 internal_error (__FILE__, __LINE__, "virtual memory exhausted.");
1058 }
1059 }
1060
1061 /* The xmmalloc() family of memory management routines.
1062
1063 These are are like the mmalloc() family except that they implement
1064 consistent semantics and guard against typical memory management
1065 problems: if a malloc fails, an internal error is thrown; if
1066 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1067 is returned.
1068
1069 All these routines are implemented using the mmalloc() family. */
1070
1071 void *
1072 xmmalloc (void *md, size_t size)
1073 {
1074 void *val;
1075
1076 /* See libiberty/xmalloc.c. This function need's to match that's
1077 semantics. It never returns NULL. */
1078 if (size == 0)
1079 size = 1;
1080
1081 val = mmalloc (md, size);
1082 if (val == NULL)
1083 nomem (size);
1084
1085 return (val);
1086 }
1087
1088 void *
1089 xmrealloc (void *md, void *ptr, size_t size)
1090 {
1091 void *val;
1092
1093 /* See libiberty/xmalloc.c. This function need's to match that's
1094 semantics. It never returns NULL. */
1095 if (size == 0)
1096 size = 1;
1097
1098 if (ptr != NULL)
1099 val = mrealloc (md, ptr, size);
1100 else
1101 val = mmalloc (md, size);
1102 if (val == NULL)
1103 nomem (size);
1104
1105 return (val);
1106 }
1107
1108 void *
1109 xmcalloc (void *md, size_t number, size_t size)
1110 {
1111 void *mem;
1112
1113 /* See libiberty/xmalloc.c. This function need's to match that's
1114 semantics. It never returns NULL. */
1115 if (number == 0 || size == 0)
1116 {
1117 number = 1;
1118 size = 1;
1119 }
1120
1121 mem = mcalloc (md, number, size);
1122 if (mem == NULL)
1123 nomem (number * size);
1124
1125 return mem;
1126 }
1127
1128 void
1129 xmfree (void *md, void *ptr)
1130 {
1131 if (ptr != NULL)
1132 mfree (md, ptr);
1133 }
1134
1135 /* The xmalloc() (libiberty.h) family of memory management routines.
1136
1137 These are like the ISO-C malloc() family except that they implement
1138 consistent semantics and guard against typical memory management
1139 problems. See xmmalloc() above for further information.
1140
1141 All these routines are wrappers to the xmmalloc() family. */
1142
1143 /* NOTE: These are declared using PTR to ensure consistency with
1144 "libiberty.h". xfree() is GDB local. */
1145
1146 PTR /* OK: PTR */
1147 xmalloc (size_t size)
1148 {
1149 return xmmalloc (NULL, size);
1150 }
1151
1152 PTR /* OK: PTR */
1153 xrealloc (PTR ptr, size_t size) /* OK: PTR */
1154 {
1155 return xmrealloc (NULL, ptr, size);
1156 }
1157
1158 PTR /* OK: PTR */
1159 xcalloc (size_t number, size_t size)
1160 {
1161 return xmcalloc (NULL, number, size);
1162 }
1163
1164 void
1165 xfree (void *ptr)
1166 {
1167 xmfree (NULL, ptr);
1168 }
1169 \f
1170
1171 /* Like asprintf/vasprintf but get an internal_error if the call
1172 fails. */
1173
1174 void
1175 xasprintf (char **ret, const char *format, ...)
1176 {
1177 va_list args;
1178 va_start (args, format);
1179 xvasprintf (ret, format, args);
1180 va_end (args);
1181 }
1182
1183 void
1184 xvasprintf (char **ret, const char *format, va_list ap)
1185 {
1186 int status = vasprintf (ret, format, ap);
1187 /* NULL could be returned due to a memory allocation problem; a
1188 badly format string; or something else. */
1189 if ((*ret) == NULL)
1190 internal_error (__FILE__, __LINE__,
1191 "vasprintf returned NULL buffer (errno %d)", errno);
1192 /* A negative status with a non-NULL buffer shouldn't never
1193 happen. But to be sure. */
1194 if (status < 0)
1195 internal_error (__FILE__, __LINE__,
1196 "vasprintf call failed (errno %d)", errno);
1197 }
1198
1199
1200 /* My replacement for the read system call.
1201 Used like `read' but keeps going if `read' returns too soon. */
1202
1203 int
1204 myread (int desc, char *addr, int len)
1205 {
1206 register int val;
1207 int orglen = len;
1208
1209 while (len > 0)
1210 {
1211 val = read (desc, addr, len);
1212 if (val < 0)
1213 return val;
1214 if (val == 0)
1215 return orglen - len;
1216 len -= val;
1217 addr += val;
1218 }
1219 return orglen;
1220 }
1221 \f
1222 /* Make a copy of the string at PTR with SIZE characters
1223 (and add a null character at the end in the copy).
1224 Uses malloc to get the space. Returns the address of the copy. */
1225
1226 char *
1227 savestring (const char *ptr, size_t size)
1228 {
1229 register char *p = (char *) xmalloc (size + 1);
1230 memcpy (p, ptr, size);
1231 p[size] = 0;
1232 return p;
1233 }
1234
1235 char *
1236 msavestring (void *md, const char *ptr, size_t size)
1237 {
1238 register char *p = (char *) xmmalloc (md, size + 1);
1239 memcpy (p, ptr, size);
1240 p[size] = 0;
1241 return p;
1242 }
1243
1244 char *
1245 mstrsave (void *md, const char *ptr)
1246 {
1247 return (msavestring (md, ptr, strlen (ptr)));
1248 }
1249
1250 void
1251 print_spaces (register int n, register struct ui_file *file)
1252 {
1253 fputs_unfiltered (n_spaces (n), file);
1254 }
1255
1256 /* Print a host address. */
1257
1258 void
1259 gdb_print_host_address (const void *addr, struct ui_file *stream)
1260 {
1261
1262 /* We could use the %p conversion specifier to fprintf if we had any
1263 way of knowing whether this host supports it. But the following
1264 should work on the Alpha and on 32 bit machines. */
1265
1266 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1267 }
1268
1269 /* Ask user a y-or-n question and return 1 iff answer is yes.
1270 Takes three args which are given to printf to print the question.
1271 The first, a control string, should end in "? ".
1272 It should not say how to answer, because we do that. */
1273
1274 /* VARARGS */
1275 int
1276 query (const char *ctlstr, ...)
1277 {
1278 va_list args;
1279 register int answer;
1280 register int ans2;
1281 int retval;
1282
1283 va_start (args, ctlstr);
1284
1285 if (query_hook)
1286 {
1287 return query_hook (ctlstr, args);
1288 }
1289
1290 /* Automatically answer "yes" if input is not from a terminal. */
1291 if (!input_from_terminal_p ())
1292 return 1;
1293
1294 while (1)
1295 {
1296 wrap_here (""); /* Flush any buffered output */
1297 gdb_flush (gdb_stdout);
1298
1299 if (annotation_level > 1)
1300 printf_filtered ("\n\032\032pre-query\n");
1301
1302 vfprintf_filtered (gdb_stdout, ctlstr, args);
1303 printf_filtered ("(y or n) ");
1304
1305 if (annotation_level > 1)
1306 printf_filtered ("\n\032\032query\n");
1307
1308 wrap_here ("");
1309 gdb_flush (gdb_stdout);
1310
1311 answer = fgetc (stdin);
1312 clearerr (stdin); /* in case of C-d */
1313 if (answer == EOF) /* C-d */
1314 {
1315 retval = 1;
1316 break;
1317 }
1318 /* Eat rest of input line, to EOF or newline */
1319 if (answer != '\n')
1320 do
1321 {
1322 ans2 = fgetc (stdin);
1323 clearerr (stdin);
1324 }
1325 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1326
1327 if (answer >= 'a')
1328 answer -= 040;
1329 if (answer == 'Y')
1330 {
1331 retval = 1;
1332 break;
1333 }
1334 if (answer == 'N')
1335 {
1336 retval = 0;
1337 break;
1338 }
1339 printf_filtered ("Please answer y or n.\n");
1340 }
1341
1342 if (annotation_level > 1)
1343 printf_filtered ("\n\032\032post-query\n");
1344 return retval;
1345 }
1346 \f
1347
1348 /* Print an error message saying that we couldn't make sense of a
1349 \^mumble sequence in a string or character constant. START and END
1350 indicate a substring of some larger string that contains the
1351 erroneous backslash sequence, missing the initial backslash. */
1352 static NORETURN int
1353 no_control_char_error (const char *start, const char *end)
1354 {
1355 int len = end - start;
1356 char *copy = alloca (end - start + 1);
1357
1358 memcpy (copy, start, len);
1359 copy[len] = '\0';
1360
1361 error ("There is no control character `\\%s' in the `%s' character set.",
1362 copy, target_charset ());
1363 }
1364
1365 /* Parse a C escape sequence. STRING_PTR points to a variable
1366 containing a pointer to the string to parse. That pointer
1367 should point to the character after the \. That pointer
1368 is updated past the characters we use. The value of the
1369 escape sequence is returned.
1370
1371 A negative value means the sequence \ newline was seen,
1372 which is supposed to be equivalent to nothing at all.
1373
1374 If \ is followed by a null character, we return a negative
1375 value and leave the string pointer pointing at the null character.
1376
1377 If \ is followed by 000, we return 0 and leave the string pointer
1378 after the zeros. A value of 0 does not mean end of string. */
1379
1380 int
1381 parse_escape (char **string_ptr)
1382 {
1383 int target_char;
1384 register int c = *(*string_ptr)++;
1385 if (c_parse_backslash (c, &target_char))
1386 return target_char;
1387 else
1388 switch (c)
1389 {
1390 case '\n':
1391 return -2;
1392 case 0:
1393 (*string_ptr)--;
1394 return 0;
1395 case '^':
1396 {
1397 /* Remember where this escape sequence started, for reporting
1398 errors. */
1399 char *sequence_start_pos = *string_ptr - 1;
1400
1401 c = *(*string_ptr)++;
1402
1403 if (c == '?')
1404 {
1405 /* XXXCHARSET: What is `delete' in the host character set? */
1406 c = 0177;
1407
1408 if (!host_char_to_target (c, &target_char))
1409 error ("There is no character corresponding to `Delete' "
1410 "in the target character set `%s'.", host_charset ());
1411
1412 return target_char;
1413 }
1414 else if (c == '\\')
1415 target_char = parse_escape (string_ptr);
1416 else
1417 {
1418 if (!host_char_to_target (c, &target_char))
1419 no_control_char_error (sequence_start_pos, *string_ptr);
1420 }
1421
1422 /* Now target_char is something like `c', and we want to find
1423 its control-character equivalent. */
1424 if (!target_char_to_control_char (target_char, &target_char))
1425 no_control_char_error (sequence_start_pos, *string_ptr);
1426
1427 return target_char;
1428 }
1429
1430 /* XXXCHARSET: we need to use isdigit and value-of-digit
1431 methods of the host character set here. */
1432
1433 case '0':
1434 case '1':
1435 case '2':
1436 case '3':
1437 case '4':
1438 case '5':
1439 case '6':
1440 case '7':
1441 {
1442 register int i = c - '0';
1443 register int count = 0;
1444 while (++count < 3)
1445 {
1446 c = (**string_ptr);
1447 if (c >= '0' && c <= '7')
1448 {
1449 (*string_ptr)++;
1450 i *= 8;
1451 i += c - '0';
1452 }
1453 else
1454 {
1455 break;
1456 }
1457 }
1458 return i;
1459 }
1460 default:
1461 if (!host_char_to_target (c, &target_char))
1462 error
1463 ("The escape sequence `\%c' is equivalent to plain `%c', which"
1464 " has no equivalent\n" "in the `%s' character set.", c, c,
1465 target_charset ());
1466 return target_char;
1467 }
1468 }
1469 \f
1470 /* Print the character C on STREAM as part of the contents of a literal
1471 string whose delimiter is QUOTER. Note that this routine should only
1472 be call for printing things which are independent of the language
1473 of the program being debugged. */
1474
1475 static void
1476 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1477 void (*do_fprintf) (struct ui_file *, const char *, ...),
1478 struct ui_file *stream, int quoter)
1479 {
1480
1481 c &= 0xFF; /* Avoid sign bit follies */
1482
1483 if (c < 0x20 || /* Low control chars */
1484 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1485 (sevenbit_strings && c >= 0x80))
1486 { /* high order bit set */
1487 switch (c)
1488 {
1489 case '\n':
1490 do_fputs ("\\n", stream);
1491 break;
1492 case '\b':
1493 do_fputs ("\\b", stream);
1494 break;
1495 case '\t':
1496 do_fputs ("\\t", stream);
1497 break;
1498 case '\f':
1499 do_fputs ("\\f", stream);
1500 break;
1501 case '\r':
1502 do_fputs ("\\r", stream);
1503 break;
1504 case '\033':
1505 do_fputs ("\\e", stream);
1506 break;
1507 case '\007':
1508 do_fputs ("\\a", stream);
1509 break;
1510 default:
1511 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1512 break;
1513 }
1514 }
1515 else
1516 {
1517 if (c == '\\' || c == quoter)
1518 do_fputs ("\\", stream);
1519 do_fprintf (stream, "%c", c);
1520 }
1521 }
1522
1523 /* Print the character C on STREAM as part of the contents of a
1524 literal string whose delimiter is QUOTER. Note that these routines
1525 should only be call for printing things which are independent of
1526 the language of the program being debugged. */
1527
1528 void
1529 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1530 {
1531 while (*str)
1532 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1533 }
1534
1535 void
1536 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1537 {
1538 while (*str)
1539 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1540 }
1541
1542 void
1543 fputstrn_unfiltered (const char *str, int n, int quoter,
1544 struct ui_file *stream)
1545 {
1546 int i;
1547 for (i = 0; i < n; i++)
1548 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1549 }
1550 \f
1551
1552
1553 /* Number of lines per page or UINT_MAX if paging is disabled. */
1554 static unsigned int lines_per_page;
1555 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1556 static unsigned int chars_per_line;
1557 /* Current count of lines printed on this page, chars on this line. */
1558 static unsigned int lines_printed, chars_printed;
1559
1560 /* Buffer and start column of buffered text, for doing smarter word-
1561 wrapping. When someone calls wrap_here(), we start buffering output
1562 that comes through fputs_filtered(). If we see a newline, we just
1563 spit it out and forget about the wrap_here(). If we see another
1564 wrap_here(), we spit it out and remember the newer one. If we see
1565 the end of the line, we spit out a newline, the indent, and then
1566 the buffered output. */
1567
1568 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1569 are waiting to be output (they have already been counted in chars_printed).
1570 When wrap_buffer[0] is null, the buffer is empty. */
1571 static char *wrap_buffer;
1572
1573 /* Pointer in wrap_buffer to the next character to fill. */
1574 static char *wrap_pointer;
1575
1576 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1577 is non-zero. */
1578 static const char *wrap_indent;
1579
1580 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1581 is not in effect. */
1582 static int wrap_column;
1583 \f
1584
1585 /* Inialize the lines and chars per page */
1586 void
1587 init_page_info (void)
1588 {
1589 #if defined(TUI)
1590 if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
1591 #endif
1592 {
1593 /* These defaults will be used if we are unable to get the correct
1594 values from termcap. */
1595 #if defined(__GO32__)
1596 lines_per_page = ScreenRows ();
1597 chars_per_line = ScreenCols ();
1598 #else
1599 lines_per_page = 24;
1600 chars_per_line = 80;
1601
1602 #if !defined (_WIN32)
1603 /* Initialize the screen height and width from termcap. */
1604 {
1605 char *termtype = getenv ("TERM");
1606
1607 /* Positive means success, nonpositive means failure. */
1608 int status;
1609
1610 /* 2048 is large enough for all known terminals, according to the
1611 GNU termcap manual. */
1612 char term_buffer[2048];
1613
1614 if (termtype)
1615 {
1616 status = tgetent (term_buffer, termtype);
1617 if (status > 0)
1618 {
1619 int val;
1620 int running_in_emacs = getenv ("EMACS") != NULL;
1621
1622 val = tgetnum ("li");
1623 if (val >= 0 && !running_in_emacs)
1624 lines_per_page = val;
1625 else
1626 /* The number of lines per page is not mentioned
1627 in the terminal description. This probably means
1628 that paging is not useful (e.g. emacs shell window),
1629 so disable paging. */
1630 lines_per_page = UINT_MAX;
1631
1632 val = tgetnum ("co");
1633 if (val >= 0)
1634 chars_per_line = val;
1635 }
1636 }
1637 }
1638 #endif
1639
1640 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1641
1642 /* If there is a better way to determine the window size, use it. */
1643 SIGWINCH_HANDLER (SIGWINCH);
1644 #endif
1645 #endif
1646 /* If the output is not a terminal, don't paginate it. */
1647 if (!ui_file_isatty (gdb_stdout))
1648 lines_per_page = UINT_MAX;
1649 } /* the command_line_version */
1650 set_width ();
1651 }
1652
1653 static void
1654 set_width (void)
1655 {
1656 if (chars_per_line == 0)
1657 init_page_info ();
1658
1659 if (!wrap_buffer)
1660 {
1661 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1662 wrap_buffer[0] = '\0';
1663 }
1664 else
1665 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1666 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1667 }
1668
1669 /* ARGSUSED */
1670 static void
1671 set_width_command (const char *args, int from_tty, struct cmd_list_element *c)
1672 {
1673 set_width ();
1674 }
1675
1676 /* Wait, so the user can read what's on the screen. Prompt the user
1677 to continue by pressing RETURN. */
1678
1679 static void
1680 prompt_for_continue (void)
1681 {
1682 char *ignore;
1683 char cont_prompt[120];
1684
1685 if (annotation_level > 1)
1686 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1687
1688 strcpy (cont_prompt,
1689 "---Type <return> to continue, or q <return> to quit---");
1690 if (annotation_level > 1)
1691 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1692
1693 /* We must do this *before* we call gdb_readline, else it will eventually
1694 call us -- thinking that we're trying to print beyond the end of the
1695 screen. */
1696 reinitialize_more_filter ();
1697
1698 immediate_quit++;
1699 /* On a real operating system, the user can quit with SIGINT.
1700 But not on GO32.
1701
1702 'q' is provided on all systems so users don't have to change habits
1703 from system to system, and because telling them what to do in
1704 the prompt is more user-friendly than expecting them to think of
1705 SIGINT. */
1706 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1707 whereas control-C to gdb_readline will cause the user to get dumped
1708 out to DOS. */
1709 ignore = gdb_readline_wrapper (cont_prompt);
1710
1711 if (annotation_level > 1)
1712 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1713
1714 if (ignore)
1715 {
1716 char *p = ignore;
1717 while (*p == ' ' || *p == '\t')
1718 ++p;
1719 if (p[0] == 'q')
1720 {
1721 if (!event_loop_p)
1722 request_quit (SIGINT);
1723 else
1724 async_request_quit (0);
1725 }
1726 xfree (ignore);
1727 }
1728 immediate_quit--;
1729
1730 /* Now we have to do this again, so that GDB will know that it doesn't
1731 need to save the ---Type <return>--- line at the top of the screen. */
1732 reinitialize_more_filter ();
1733
1734 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1735 }
1736
1737 /* Reinitialize filter; ie. tell it to reset to original values. */
1738
1739 void
1740 reinitialize_more_filter (void)
1741 {
1742 lines_printed = 0;
1743 chars_printed = 0;
1744 }
1745
1746 /* Indicate that if the next sequence of characters overflows the line,
1747 a newline should be inserted here rather than when it hits the end.
1748 If INDENT is non-null, it is a string to be printed to indent the
1749 wrapped part on the next line. INDENT must remain accessible until
1750 the next call to wrap_here() or until a newline is printed through
1751 fputs_filtered().
1752
1753 If the line is already overfull, we immediately print a newline and
1754 the indentation, and disable further wrapping.
1755
1756 If we don't know the width of lines, but we know the page height,
1757 we must not wrap words, but should still keep track of newlines
1758 that were explicitly printed.
1759
1760 INDENT should not contain tabs, as that will mess up the char count
1761 on the next line. FIXME.
1762
1763 This routine is guaranteed to force out any output which has been
1764 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1765 used to force out output from the wrap_buffer. */
1766
1767 void
1768 wrap_here (const char *indent)
1769 {
1770 /* This should have been allocated, but be paranoid anyway. */
1771 if (!wrap_buffer)
1772 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1773
1774 if (wrap_buffer[0])
1775 {
1776 *wrap_pointer = '\0';
1777 fputs_unfiltered (wrap_buffer, gdb_stdout);
1778 }
1779 wrap_pointer = wrap_buffer;
1780 wrap_buffer[0] = '\0';
1781 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1782 {
1783 wrap_column = 0;
1784 }
1785 else if (chars_printed >= chars_per_line)
1786 {
1787 puts_filtered ("\n");
1788 if (indent != NULL)
1789 puts_filtered (indent);
1790 wrap_column = 0;
1791 }
1792 else
1793 {
1794 wrap_column = chars_printed;
1795 if (indent == NULL)
1796 wrap_indent = "";
1797 else
1798 wrap_indent = indent;
1799 }
1800 }
1801
1802 /* Print input string to gdb_stdout, filtered, with wrap,
1803 arranging strings in columns of n chars. String can be
1804 right or left justified in the column. Never prints
1805 trailing spaces. String should never be longer than
1806 width. FIXME: this could be useful for the EXAMINE
1807 command, which currently doesn't tabulate very well */
1808
1809 void
1810 puts_filtered_tabular (char *string, int width, int right)
1811 {
1812 int spaces = 0;
1813 int stringlen;
1814 char *spacebuf;
1815
1816 gdb_assert (chars_per_line > 0);
1817 if (chars_per_line == UINT_MAX)
1818 {
1819 fputs_filtered (string, gdb_stdout);
1820 fputs_filtered ("\n", gdb_stdout);
1821 return;
1822 }
1823
1824 if (((chars_printed - 1) / width + 2) * width >= chars_per_line)
1825 fputs_filtered ("\n", gdb_stdout);
1826
1827 if (width >= chars_per_line)
1828 width = chars_per_line - 1;
1829
1830 stringlen = strlen (string);
1831
1832 if (chars_printed > 0)
1833 spaces = width - (chars_printed - 1) % width - 1;
1834 if (right)
1835 spaces += width - stringlen;
1836
1837 spacebuf = alloca (spaces + 1);
1838 spacebuf[spaces] = '\0';
1839 while (spaces--)
1840 spacebuf[spaces] = ' ';
1841
1842 fputs_filtered (spacebuf, gdb_stdout);
1843 fputs_filtered (string, gdb_stdout);
1844 }
1845
1846
1847 /* Ensure that whatever gets printed next, using the filtered output
1848 commands, starts at the beginning of the line. I.E. if there is
1849 any pending output for the current line, flush it and start a new
1850 line. Otherwise do nothing. */
1851
1852 void
1853 begin_line (void)
1854 {
1855 if (chars_printed > 0)
1856 {
1857 puts_filtered ("\n");
1858 }
1859 }
1860
1861
1862 /* Like fputs but if FILTER is true, pause after every screenful.
1863
1864 Regardless of FILTER can wrap at points other than the final
1865 character of a line.
1866
1867 Unlike fputs, fputs_maybe_filtered does not return a value.
1868 It is OK for LINEBUFFER to be NULL, in which case just don't print
1869 anything.
1870
1871 Note that a longjmp to top level may occur in this routine (only if
1872 FILTER is true) (since prompt_for_continue may do so) so this
1873 routine should not be called when cleanups are not in place. */
1874
1875 static void
1876 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1877 int filter)
1878 {
1879 const char *lineptr;
1880
1881 if (linebuffer == 0)
1882 return;
1883
1884 /* Don't do any filtering if it is disabled. */
1885 if ((stream != gdb_stdout) || !pagination_enabled
1886 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1887 {
1888 fputs_unfiltered (linebuffer, stream);
1889 return;
1890 }
1891
1892 /* Go through and output each character. Show line extension
1893 when this is necessary; prompt user for new page when this is
1894 necessary. */
1895
1896 lineptr = linebuffer;
1897 while (*lineptr)
1898 {
1899 /* Possible new page. */
1900 if (filter && (lines_printed >= lines_per_page - 1))
1901 prompt_for_continue ();
1902
1903 while (*lineptr && *lineptr != '\n')
1904 {
1905 /* Print a single line. */
1906 if (*lineptr == '\t')
1907 {
1908 if (wrap_column)
1909 *wrap_pointer++ = '\t';
1910 else
1911 fputc_unfiltered ('\t', stream);
1912 /* Shifting right by 3 produces the number of tab stops
1913 we have already passed, and then adding one and
1914 shifting left 3 advances to the next tab stop. */
1915 chars_printed = ((chars_printed >> 3) + 1) << 3;
1916 lineptr++;
1917 }
1918 else
1919 {
1920 if (wrap_column)
1921 *wrap_pointer++ = *lineptr;
1922 else
1923 fputc_unfiltered (*lineptr, stream);
1924 chars_printed++;
1925 lineptr++;
1926 }
1927
1928 if (chars_printed >= chars_per_line)
1929 {
1930 unsigned int save_chars = chars_printed;
1931
1932 chars_printed = 0;
1933 lines_printed++;
1934 /* If we aren't actually wrapping, don't output newline --
1935 if chars_per_line is right, we probably just overflowed
1936 anyway; if it's wrong, let us keep going. */
1937 if (wrap_column)
1938 fputc_unfiltered ('\n', stream);
1939
1940 /* Possible new page. */
1941 if (lines_printed >= lines_per_page - 1)
1942 prompt_for_continue ();
1943
1944 /* Now output indentation and wrapped string */
1945 if (wrap_column)
1946 {
1947 fputs_unfiltered (wrap_indent, stream);
1948 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1949 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1950 /* FIXME, this strlen is what prevents wrap_indent from
1951 containing tabs. However, if we recurse to print it
1952 and count its chars, we risk trouble if wrap_indent is
1953 longer than (the user settable) chars_per_line.
1954 Note also that this can set chars_printed > chars_per_line
1955 if we are printing a long string. */
1956 chars_printed = strlen (wrap_indent)
1957 + (save_chars - wrap_column);
1958 wrap_pointer = wrap_buffer; /* Reset buffer */
1959 wrap_buffer[0] = '\0';
1960 wrap_column = 0; /* And disable fancy wrap */
1961 }
1962 }
1963 }
1964
1965 if (*lineptr == '\n')
1966 {
1967 chars_printed = 0;
1968 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1969 lines_printed++;
1970 fputc_unfiltered ('\n', stream);
1971 lineptr++;
1972 }
1973 }
1974 }
1975
1976 void
1977 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1978 {
1979 fputs_maybe_filtered (linebuffer, stream, 1);
1980 }
1981
1982 int
1983 putchar_unfiltered (int c)
1984 {
1985 char buf = c;
1986 ui_file_write (gdb_stdout, &buf, 1);
1987 return c;
1988 }
1989
1990 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1991 May return nonlocally. */
1992
1993 int
1994 putchar_filtered (int c)
1995 {
1996 return fputc_filtered (c, gdb_stdout);
1997 }
1998
1999 int
2000 fputc_unfiltered (int c, struct ui_file *stream)
2001 {
2002 char buf = c;
2003 ui_file_write (stream, &buf, 1);
2004 return c;
2005 }
2006
2007 int
2008 fputc_filtered (int c, struct ui_file *stream)
2009 {
2010 char buf[2];
2011
2012 buf[0] = c;
2013 buf[1] = 0;
2014 fputs_filtered (buf, stream);
2015 return c;
2016 }
2017
2018 /* puts_debug is like fputs_unfiltered, except it prints special
2019 characters in printable fashion. */
2020
2021 void
2022 puts_debug (char *prefix, char *string, char *suffix)
2023 {
2024 int ch;
2025
2026 /* Print prefix and suffix after each line. */
2027 static int new_line = 1;
2028 static int return_p = 0;
2029 static char *prev_prefix = "";
2030 static char *prev_suffix = "";
2031
2032 if (*string == '\n')
2033 return_p = 0;
2034
2035 /* If the prefix is changing, print the previous suffix, a new line,
2036 and the new prefix. */
2037 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
2038 {
2039 fputs_unfiltered (prev_suffix, gdb_stdlog);
2040 fputs_unfiltered ("\n", gdb_stdlog);
2041 fputs_unfiltered (prefix, gdb_stdlog);
2042 }
2043
2044 /* Print prefix if we printed a newline during the previous call. */
2045 if (new_line)
2046 {
2047 new_line = 0;
2048 fputs_unfiltered (prefix, gdb_stdlog);
2049 }
2050
2051 prev_prefix = prefix;
2052 prev_suffix = suffix;
2053
2054 /* Output characters in a printable format. */
2055 while ((ch = *string++) != '\0')
2056 {
2057 switch (ch)
2058 {
2059 default:
2060 if (isprint (ch))
2061 fputc_unfiltered (ch, gdb_stdlog);
2062
2063 else
2064 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
2065 break;
2066
2067 case '\\':
2068 fputs_unfiltered ("\\\\", gdb_stdlog);
2069 break;
2070 case '\b':
2071 fputs_unfiltered ("\\b", gdb_stdlog);
2072 break;
2073 case '\f':
2074 fputs_unfiltered ("\\f", gdb_stdlog);
2075 break;
2076 case '\n':
2077 new_line = 1;
2078 fputs_unfiltered ("\\n", gdb_stdlog);
2079 break;
2080 case '\r':
2081 fputs_unfiltered ("\\r", gdb_stdlog);
2082 break;
2083 case '\t':
2084 fputs_unfiltered ("\\t", gdb_stdlog);
2085 break;
2086 case '\v':
2087 fputs_unfiltered ("\\v", gdb_stdlog);
2088 break;
2089 }
2090
2091 return_p = ch == '\r';
2092 }
2093
2094 /* Print suffix if we printed a newline. */
2095 if (new_line)
2096 {
2097 fputs_unfiltered (suffix, gdb_stdlog);
2098 fputs_unfiltered ("\n", gdb_stdlog);
2099 }
2100 }
2101
2102
2103 /* Print a variable number of ARGS using format FORMAT. If this
2104 information is going to put the amount written (since the last call
2105 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2106 call prompt_for_continue to get the users permision to continue.
2107
2108 Unlike fprintf, this function does not return a value.
2109
2110 We implement three variants, vfprintf (takes a vararg list and stream),
2111 fprintf (takes a stream to write on), and printf (the usual).
2112
2113 Note also that a longjmp to top level may occur in this routine
2114 (since prompt_for_continue may do so) so this routine should not be
2115 called when cleanups are not in place. */
2116
2117 static void
2118 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2119 va_list args, int filter)
2120 {
2121 char *linebuffer;
2122 struct cleanup *old_cleanups;
2123
2124 xvasprintf (&linebuffer, format, args);
2125 old_cleanups = make_cleanup (xfree, linebuffer);
2126 fputs_maybe_filtered (linebuffer, stream, filter);
2127 do_cleanups (old_cleanups);
2128 }
2129
2130
2131 void
2132 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2133 {
2134 vfprintf_maybe_filtered (stream, format, args, 1);
2135 }
2136
2137 void
2138 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2139 {
2140 char *linebuffer;
2141 struct cleanup *old_cleanups;
2142
2143 xvasprintf (&linebuffer, format, args);
2144 old_cleanups = make_cleanup (xfree, linebuffer);
2145 fputs_unfiltered (linebuffer, stream);
2146 do_cleanups (old_cleanups);
2147 }
2148
2149 void
2150 vprintf_filtered (const char *format, va_list args)
2151 {
2152 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2153 }
2154
2155 void
2156 vprintf_unfiltered (const char *format, va_list args)
2157 {
2158 vfprintf_unfiltered (gdb_stdout, format, args);
2159 }
2160
2161 void
2162 fprintf_filtered (struct ui_file *stream, const char *format, ...)
2163 {
2164 va_list args;
2165 va_start (args, format);
2166 vfprintf_filtered (stream, format, args);
2167 va_end (args);
2168 }
2169
2170 void
2171 fprintf_unfiltered (struct ui_file *stream, const char *format, ...)
2172 {
2173 va_list args;
2174 va_start (args, format);
2175 vfprintf_unfiltered (stream, format, args);
2176 va_end (args);
2177 }
2178
2179 /* Like fprintf_filtered, but prints its result indented.
2180 Called as fprintfi_filtered (spaces, stream, format, ...); */
2181
2182 void
2183 fprintfi_filtered (int spaces, struct ui_file *stream, const char *format,
2184 ...)
2185 {
2186 va_list args;
2187 va_start (args, format);
2188 print_spaces_filtered (spaces, stream);
2189
2190 vfprintf_filtered (stream, format, args);
2191 va_end (args);
2192 }
2193
2194
2195 void
2196 printf_filtered (const char *format, ...)
2197 {
2198 va_list args;
2199 va_start (args, format);
2200 vfprintf_filtered (gdb_stdout, format, args);
2201 va_end (args);
2202 }
2203
2204
2205 void
2206 printf_unfiltered (const char *format, ...)
2207 {
2208 va_list args;
2209 va_start (args, format);
2210 vfprintf_unfiltered (gdb_stdout, format, args);
2211 va_end (args);
2212 }
2213
2214 /* Like printf_filtered, but prints it's result indented.
2215 Called as printfi_filtered (spaces, format, ...); */
2216
2217 void
2218 printfi_filtered (int spaces, const char *format, ...)
2219 {
2220 va_list args;
2221 va_start (args, format);
2222 print_spaces_filtered (spaces, gdb_stdout);
2223 vfprintf_filtered (gdb_stdout, format, args);
2224 va_end (args);
2225 }
2226
2227 /* Easy -- but watch out!
2228
2229 This routine is *not* a replacement for puts()! puts() appends a newline.
2230 This one doesn't, and had better not! */
2231
2232 void
2233 puts_filtered (const char *string)
2234 {
2235 fputs_filtered (string, gdb_stdout);
2236 }
2237
2238 void
2239 puts_unfiltered (const char *string)
2240 {
2241 fputs_unfiltered (string, gdb_stdout);
2242 }
2243
2244 /* Return a pointer to N spaces and a null. The pointer is good
2245 until the next call to here. */
2246 char *
2247 n_spaces (int n)
2248 {
2249 char *t;
2250 static char *spaces = 0;
2251 static int max_spaces = -1;
2252
2253 if (n > max_spaces)
2254 {
2255 if (spaces)
2256 xfree (spaces);
2257 spaces = (char *) xmalloc (n + 1);
2258 for (t = spaces + n; t != spaces;)
2259 *--t = ' ';
2260 spaces[n] = '\0';
2261 max_spaces = n;
2262 }
2263
2264 return spaces + max_spaces - n;
2265 }
2266
2267 /* Print N spaces. */
2268 void
2269 print_spaces_filtered (int n, struct ui_file *stream)
2270 {
2271 fputs_filtered (n_spaces (n), stream);
2272 }
2273 \f
2274 /* C++/ObjC demangler stuff. */
2275
2276 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2277 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2278 If the name is not mangled, or the language for the name is unknown, or
2279 demangling is off, the name is printed in its "raw" form. */
2280
2281 void
2282 fprintf_symbol_filtered (struct ui_file *stream, const char *name,
2283 enum language lang, int arg_mode)
2284 {
2285 char *demangled;
2286
2287 if (name != NULL)
2288 {
2289 /* If user wants to see raw output, no problem. */
2290 if (!demangle)
2291 {
2292 fputs_filtered (name, stream);
2293 }
2294 else
2295 {
2296 demangled = language_demangle (language_def (lang), name, arg_mode);
2297 fputs_filtered (demangled ? demangled : name, stream);
2298 if (demangled != NULL)
2299 {
2300 xfree (demangled);
2301 }
2302 }
2303 }
2304 }
2305
2306 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2307 differences in whitespace. Returns 0 if they match, non-zero if they
2308 don't (slightly different than strcmp()'s range of return values).
2309
2310 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2311 This "feature" is useful when searching for matching C++ function names
2312 (such as if the user types 'break FOO', where FOO is a mangled C++
2313 function). */
2314
2315 int
2316 strcmp_iw (const char *string1, const char *string2)
2317 {
2318 while ((*string1 != '\0') && (*string2 != '\0'))
2319 {
2320 while (isspace (*string1))
2321 {
2322 string1++;
2323 }
2324 while (isspace (*string2))
2325 {
2326 string2++;
2327 }
2328 if (*string1 != *string2)
2329 {
2330 break;
2331 }
2332 if (*string1 != '\0')
2333 {
2334 string1++;
2335 string2++;
2336 }
2337 }
2338 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2339 }
2340
2341 /* This is like strcmp except that it ignores whitespace and treats
2342 '(' as the first non-NULL character in terms of ordering. Like
2343 strcmp (and unlike strcmp_iw), it returns negative if STRING1 <
2344 STRING2, 0 if STRING2 = STRING2, and positive if STRING1 > STRING2
2345 according to that ordering.
2346
2347 If a list is sorted according to this function and if you want to
2348 find names in the list that match some fixed NAME according to
2349 strcmp_iw(LIST_ELT, NAME), then the place to start looking is right
2350 where this function would put NAME.
2351
2352 Here are some examples of why using strcmp to sort is a bad idea:
2353
2354 Whitespace example:
2355
2356 Say your partial symtab contains: "foo<char *>", "goo". Then, if
2357 we try to do a search for "foo<char*>", strcmp will locate this
2358 after "foo<char *>" and before "goo". Then lookup_partial_symbol
2359 will start looking at strings beginning with "goo", and will never
2360 see the correct match of "foo<char *>".
2361
2362 Parenthesis example:
2363
2364 In practice, this is less like to be an issue, but I'll give it a
2365 shot. Let's assume that '$' is a legitimate character to occur in
2366 symbols. (Which may well even be the case on some systems.) Then
2367 say that the partial symbol table contains "foo$" and "foo(int)".
2368 strcmp will put them in this order, since '$' < '('. Now, if the
2369 user searches for "foo", then strcmp will sort "foo" before "foo$".
2370 Then lookup_partial_symbol will notice that strcmp_iw("foo$",
2371 "foo") is false, so it won't proceed to the actual match of
2372 "foo(int)" with "foo". */
2373
2374 int
2375 strcmp_iw_ordered (const char *string1, const char *string2)
2376 {
2377 while ((*string1 != '\0') && (*string2 != '\0'))
2378 {
2379 while (isspace (*string1))
2380 {
2381 string1++;
2382 }
2383 while (isspace (*string2))
2384 {
2385 string2++;
2386 }
2387 if (*string1 != *string2)
2388 {
2389 break;
2390 }
2391 if (*string1 != '\0')
2392 {
2393 string1++;
2394 string2++;
2395 }
2396 }
2397
2398 switch (*string1)
2399 {
2400 /* Characters are non-equal unless they're both '\0'; we want to
2401 make sure we get the comparison right according to our
2402 comparison in the cases where one of them is '\0' or '('. */
2403 case '\0':
2404 if (*string2 == '\0')
2405 return 0;
2406 else
2407 return -1;
2408 case '(':
2409 if (*string2 == '\0')
2410 return 1;
2411 else
2412 return -1;
2413 default:
2414 if (*string2 == '(')
2415 return 1;
2416 else
2417 return *string1 - *string2;
2418 }
2419 }
2420
2421 /* A simple comparison function with opposite semantics to strcmp. */
2422
2423 int
2424 streq (const char *lhs, const char *rhs)
2425 {
2426 return !strcmp (lhs, rhs);
2427 }
2428 \f
2429
2430 /*
2431 ** subset_compare()
2432 ** Answer whether string_to_compare is a full or partial match to
2433 ** template_string. The partial match must be in sequence starting
2434 ** at index 0.
2435 */
2436 int
2437 subset_compare (char *string_to_compare, char *template_string)
2438 {
2439 int match;
2440 if (template_string != (char *) NULL && string_to_compare != (char *) NULL
2441 && strlen (string_to_compare) <= strlen (template_string))
2442 match =
2443 (strncmp
2444 (template_string, string_to_compare, strlen (string_to_compare)) == 0);
2445 else
2446 match = 0;
2447 return match;
2448 }
2449
2450
2451 static void pagination_on_command (const char *arg, int from_tty);
2452 static void
2453 pagination_on_command (const char *arg, int from_tty)
2454 {
2455 pagination_enabled = 1;
2456 }
2457
2458 static void pagination_on_command (const char *arg, int from_tty);
2459 static void
2460 pagination_off_command (const char *arg, int from_tty)
2461 {
2462 pagination_enabled = 0;
2463 }
2464 \f
2465
2466 void
2467 initialize_utils (void)
2468 {
2469 struct cmd_list_element *c;
2470
2471 c = add_set_cmd ("width", class_support, var_uinteger,
2472 (char *) &chars_per_line,
2473 "Set number of characters gdb thinks are in a line.",
2474 &setlist);
2475 add_show_from_set (c, &showlist);
2476 set_cmd_sfunc (c, set_width_command);
2477
2478 add_show_from_set
2479 (add_set_cmd ("height", class_support,
2480 var_uinteger, (char *) &lines_per_page,
2481 "Set number of lines gdb thinks are in a page.", &setlist),
2482 &showlist);
2483
2484 init_page_info ();
2485
2486 /* If the output is not a terminal, don't paginate it. */
2487 if (!ui_file_isatty (gdb_stdout))
2488 lines_per_page = UINT_MAX;
2489
2490 set_width_command ((char *) NULL, 0, c);
2491
2492 add_show_from_set
2493 (add_set_cmd ("demangle", class_support, var_boolean,
2494 (char *) &demangle,
2495 "Set demangling of encoded C++/ObjC names when displaying symbols.",
2496 &setprintlist), &showprintlist);
2497
2498 add_show_from_set
2499 (add_set_cmd ("pagination", class_support,
2500 var_boolean, (char *) &pagination_enabled,
2501 "Set state of pagination.", &setlist), &showlist);
2502
2503 if (xdb_commands)
2504 {
2505 add_com ("am", class_support, pagination_on_command,
2506 "Enable pagination");
2507 add_com ("sm", class_support, pagination_off_command,
2508 "Disable pagination");
2509 }
2510
2511 add_show_from_set
2512 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2513 (char *) &sevenbit_strings,
2514 "Set printing of 8-bit characters in strings as \\nnn.",
2515 &setprintlist), &showprintlist);
2516
2517 add_show_from_set
2518 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2519 (char *) &asm_demangle,
2520 "Set demangling of C++/ObjC names in disassembly listings.",
2521 &setprintlist), &showprintlist);
2522 }
2523
2524 /* Machine specific function to handle SIGWINCH signal. */
2525
2526 #ifdef SIGWINCH_HANDLER_BODY
2527 SIGWINCH_HANDLER_BODY
2528 #endif
2529 /* print routines to handle variable size regs, etc. */
2530 /* temporary storage using circular buffer */
2531 #define NUMCELLS 16
2532 #define CELLSIZE 32
2533 static char *
2534 get_cell (void)
2535 {
2536 static char buf[NUMCELLS][CELLSIZE];
2537 static int cell = 0;
2538 if (++cell >= NUMCELLS)
2539 cell = 0;
2540 return buf[cell];
2541 }
2542
2543 int
2544 strlen_paddr (void)
2545 {
2546 return (TARGET_ADDR_BIT / 8 * 2);
2547 }
2548
2549 char *
2550 paddr (CORE_ADDR addr)
2551 {
2552 return phex (addr, TARGET_ADDR_BIT / 8);
2553 }
2554
2555 char *
2556 paddr_nz (CORE_ADDR addr)
2557 {
2558 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2559 }
2560
2561 static void
2562 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2563 {
2564 /* steal code from valprint.c:print_decimal(). Should this worry
2565 about the real size of addr as the above does? */
2566 unsigned long temp[3];
2567 int i = 0;
2568 do
2569 {
2570 temp[i] = addr % (1000 * 1000 * 1000);
2571 addr /= (1000 * 1000 * 1000);
2572 i++;
2573 }
2574 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2575 switch (i)
2576 {
2577 case 1:
2578 sprintf (paddr_str, "%s%lu", sign, temp[0]);
2579 break;
2580 case 2:
2581 sprintf (paddr_str, "%s%lu%09lu", sign, temp[1], temp[0]);
2582 break;
2583 case 3:
2584 sprintf (paddr_str, "%s%lu%09lu%09lu", sign, temp[2], temp[1], temp[0]);
2585 break;
2586 default:
2587 internal_error (__FILE__, __LINE__,
2588 "failed internal consistency check");
2589 }
2590 }
2591
2592 char *
2593 paddr_u (CORE_ADDR addr)
2594 {
2595 char *paddr_str = get_cell ();
2596 decimal2str (paddr_str, "", addr);
2597 return paddr_str;
2598 }
2599
2600 char *
2601 paddr_d (LONGEST addr)
2602 {
2603 char *paddr_str = get_cell ();
2604 if (addr < 0)
2605 decimal2str (paddr_str, "-", -addr);
2606 else
2607 decimal2str (paddr_str, "", addr);
2608 return paddr_str;
2609 }
2610
2611 /* eliminate warning from compiler on 32-bit systems */
2612 static int thirty_two = 32;
2613
2614 char *
2615 phex (ULONGEST l, int sizeof_l)
2616 {
2617 char *str;
2618 switch (sizeof_l)
2619 {
2620 case 8:
2621 str = get_cell ();
2622 sprintf (str, "%08lx%08lx",
2623 (unsigned long) (l >> thirty_two),
2624 (unsigned long) (l & 0xffffffff));
2625 break;
2626 case 4:
2627 str = get_cell ();
2628 sprintf (str, "%08lx", (unsigned long) l);
2629 break;
2630 case 2:
2631 str = get_cell ();
2632 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2633 break;
2634 default:
2635 str = phex (l, sizeof (l));
2636 break;
2637 }
2638 return str;
2639 }
2640
2641 char *
2642 phex_nz (ULONGEST l, int sizeof_l)
2643 {
2644 char *str;
2645 switch (sizeof_l)
2646 {
2647 case 8:
2648 {
2649 unsigned long high = (unsigned long) (l >> thirty_two);
2650 str = get_cell ();
2651 if (high == 0)
2652 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2653 else
2654 sprintf (str, "%lx%08lx", high, (unsigned long) (l & 0xffffffff));
2655 break;
2656 }
2657 case 4:
2658 str = get_cell ();
2659 sprintf (str, "%lx", (unsigned long) l);
2660 break;
2661 case 2:
2662 str = get_cell ();
2663 sprintf (str, "%x", (unsigned short) (l & 0xffff));
2664 break;
2665 default:
2666 str = phex_nz (l, sizeof (l));
2667 break;
2668 }
2669 return str;
2670 }
2671
2672
2673 /* Convert a CORE_ADDR into a string. */
2674 const char *
2675 core_addr_to_string (const CORE_ADDR addr)
2676 {
2677 char *str = get_cell ();
2678 strcpy (str, "0x");
2679 strcat (str, phex (addr, sizeof (addr)));
2680 return str;
2681 }
2682
2683 const char *
2684 core_addr_to_string_nz (const CORE_ADDR addr)
2685 {
2686 char *str = get_cell ();
2687 strcpy (str, "0x");
2688 strcat (str, phex_nz (addr, sizeof (addr)));
2689 return str;
2690 }
2691
2692 /* Convert a string back into a CORE_ADDR. */
2693 CORE_ADDR
2694 string_to_core_addr (const char *my_string)
2695 {
2696 CORE_ADDR addr = 0;
2697 if (my_string[0] == '0' && tolower (my_string[1]) == 'x')
2698 {
2699 /* Assume that it is in decimal. */
2700 int i;
2701 for (i = 2; my_string[i] != '\0'; i++)
2702 {
2703 if (isdigit (my_string[i]))
2704 addr = (my_string[i] - '0') + (addr * 16);
2705 else if (isxdigit (my_string[i]))
2706 addr = (tolower (my_string[i]) - 'a' + 0xa) + (addr * 16);
2707 else
2708 internal_error (__FILE__, __LINE__, "invalid hex");
2709 }
2710 }
2711 else
2712 {
2713 /* Assume that it is in decimal. */
2714 int i;
2715 for (i = 0; my_string[i] != '\0'; i++)
2716 {
2717 if (isdigit (my_string[i]))
2718 addr = (my_string[i] - '0') + (addr * 10);
2719 else
2720 internal_error (__FILE__, __LINE__, "invalid decimal");
2721 }
2722 }
2723 return addr;
2724 }
2725
2726 char *
2727 gdb_realpath (const char *filename)
2728 {
2729 /* Method 1: The system has a compile time upper bound on a filename
2730 path. Use that and realpath() to canonicalize the name. This is
2731 the most common case. Note that, if there isn't a compile time
2732 upper bound, you want to avoid realpath() at all costs. */
2733 #if defined(HAVE_REALPATH)
2734 {
2735 # if defined (PATH_MAX)
2736 char buf[PATH_MAX];
2737 # define USE_REALPATH
2738 # elif defined (MAXPATHLEN)
2739 char buf[MAXPATHLEN];
2740 # define USE_REALPATH
2741 # endif
2742 # if defined (USE_REALPATH)
2743 const char *rp = realpath (filename, buf);
2744 if (rp == NULL)
2745 rp = filename;
2746 return xstrdup (rp);
2747 # endif
2748 }
2749 #endif /* HAVE_REALPATH */
2750
2751 /* Method 2: The host system (i.e., GNU) has the function
2752 canonicalize_file_name() which malloc's a chunk of memory and
2753 returns that, use that. */
2754 #if defined(HAVE_CANONICALIZE_FILE_NAME)
2755 {
2756 char *rp = canonicalize_file_name (filename);
2757 if (rp == NULL)
2758 return xstrdup (filename);
2759 else
2760 return rp;
2761 }
2762 #endif
2763
2764 /* FIXME: cagney/2002-11-13:
2765
2766 Method 2a: Use realpath() with a NULL buffer. Some systems, due
2767 to the problems described in in method 3, have modified their
2768 realpath() implementation so that it will allocate a buffer when
2769 NULL is passed in. Before this can be used, though, some sort of
2770 configure time test would need to be added. Otherwize the code
2771 will likely core dump. */
2772
2773 /* Method 3: Now we're getting desperate! The system doesn't have a
2774 compile time buffer size and no alternative function. Query the
2775 OS, using pathconf(), for the buffer limit. Care is needed
2776 though, some systems do not limit PATH_MAX (return -1 for
2777 pathconf()) making it impossible to pass a correctly sized buffer
2778 to realpath() (it could always overflow). On those systems, we
2779 skip this. */
2780 #if defined (HAVE_REALPATH) && defined (HAVE_UNISTD_H) && defined(HAVE_ALLOCA)
2781 {
2782 /* Find out the max path size. */
2783 long path_max = pathconf ("/", _PC_PATH_MAX);
2784 if (path_max > 0)
2785 {
2786 /* PATH_MAX is bounded. */
2787 char *buf = alloca (path_max);
2788 char *rp = realpath (filename, buf);
2789 return xstrdup (rp ? rp : filename);
2790 }
2791 }
2792 #endif
2793
2794 /* This system is a lost cause, just dup the buffer. */
2795 return xstrdup (filename);
2796 }
2797
2798 /* Return a copy of FILENAME, with its directory prefix canonicalized
2799 by gdb_realpath. */
2800
2801 char *
2802 xfullpath (const char *filename)
2803 {
2804 const char *base_name = lbasename (filename);
2805 char *dir_name;
2806 char *real_path;
2807 char *result;
2808
2809 /* Extract the basename of filename, and return immediately
2810 a copy of filename if it does not contain any directory prefix. */
2811 if (base_name == filename)
2812 return xstrdup (filename);
2813
2814 dir_name = alloca ((size_t) (base_name - filename + 2));
2815 /* Allocate enough space to store the dir_name + plus one extra
2816 character sometimes needed under Windows (see below), and
2817 then the closing \000 character */
2818 strncpy (dir_name, filename, base_name - filename);
2819 dir_name[base_name - filename] = '\000';
2820
2821 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
2822 /* We need to be careful when filename is of the form 'd:foo', which
2823 is equivalent of d:./foo, which is totally different from d:/foo. */
2824 if (strlen (dir_name) == 2 && isalpha (dir_name[0]) && dir_name[1] == ':')
2825 {
2826 dir_name[2] = '.';
2827 dir_name[3] = '\000';
2828 }
2829 #endif
2830
2831 /* Canonicalize the directory prefix, and build the resulting
2832 filename. If the dirname realpath already contains an ending
2833 directory separator, avoid doubling it. */
2834 real_path = gdb_realpath (dir_name);
2835 if (IS_DIR_SEPARATOR (real_path[strlen (real_path) - 1]))
2836 result = concat (real_path, base_name, NULL);
2837 else
2838 result = concat (real_path, SLASH_STRING, base_name, NULL);
2839
2840 xfree (real_path);
2841 return result;
2842 }
2843
2844
2845 /* This is the 32-bit CRC function used by the GNU separate debug
2846 facility. An executable may contain a section named
2847 .gnu_debuglink, which holds the name of a separate executable file
2848 containing its debug info, and a checksum of that file's contents,
2849 computed using this function. */
2850 unsigned long
2851 gnu_debuglink_crc32 (unsigned long crc, unsigned char *buf, size_t len)
2852 {
2853 static const unsigned long crc32_table[256] = {
2854 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
2855 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
2856 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
2857 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
2858 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
2859 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
2860 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
2861 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
2862 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
2863 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
2864 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
2865 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
2866 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
2867 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
2868 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
2869 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
2870 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
2871 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
2872 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
2873 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
2874 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
2875 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
2876 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
2877 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
2878 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
2879 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
2880 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
2881 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
2882 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
2883 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
2884 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
2885 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
2886 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
2887 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
2888 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
2889 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
2890 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
2891 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
2892 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
2893 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
2894 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
2895 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
2896 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
2897 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
2898 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
2899 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
2900 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
2901 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
2902 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
2903 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
2904 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
2905 0x2d02ef8d
2906 };
2907 unsigned char *end;
2908
2909 crc = ~crc & 0xffffffff;
2910 for (end = buf + len; buf < end; ++buf)
2911 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
2912 return ~crc & 0xffffffff;;
2913 }