]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/utils.c
2003-08-09 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_assert.h"
26 #include <ctype.h>
27 #include "gdb_string.h"
28 #include "event-top.h"
29
30 #ifdef __GO32__
31 #include <pc.h>
32 #endif
33
34 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
35 #ifdef reg
36 #undef reg
37 #endif
38
39 #include <signal.h>
40 #include "gdbcmd.h"
41 #include "serial.h"
42 #include "bfd.h"
43 #include "target.h"
44 #include "demangle.h"
45 #include "expression.h"
46 #include "language.h"
47 #include "charset.h"
48 #include "annotate.h"
49 #include "filenames.h"
50
51 #include "inferior.h" /* for signed_pointer_to_address */
52
53 #include <sys/param.h> /* For MAXPATHLEN */
54
55 #ifdef HAVE_CURSES_H
56 #include <curses.h>
57 #endif
58 #ifdef HAVE_TERM_H
59 #include <term.h>
60 #endif
61
62 #include <readline/readline.h>
63
64 #ifdef USE_MMALLOC
65 #include "mmalloc.h"
66 #endif
67
68 #ifdef NEED_DECLARATION_MALLOC
69 extern PTR malloc (); /* OK: PTR */
70 #endif
71 #ifdef NEED_DECLARATION_REALLOC
72 extern PTR realloc (); /* OK: PTR */
73 #endif
74 #ifdef NEED_DECLARATION_FREE
75 extern void free ();
76 #endif
77 /* Actually, we'll never have the decl, since we don't define _GNU_SOURCE. */
78 #if defined(HAVE_CANONICALIZE_FILE_NAME) \
79 && defined(NEED_DECLARATION_CANONICALIZE_FILE_NAME)
80 extern char *canonicalize_file_name (const char *);
81 #endif
82
83 /* readline defines this. */
84 #undef savestring
85
86 void (*error_begin_hook) (void);
87
88 /* Holds the last error message issued by gdb */
89
90 static struct ui_file *gdb_lasterr;
91
92 /* Prototypes for local functions */
93
94 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
95 va_list, int);
96
97 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
98
99 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
100 static void malloc_botch (void);
101 #endif
102
103 static void prompt_for_continue (void);
104
105 static void set_width_command (char *, int, struct cmd_list_element *);
106
107 static void set_width (void);
108
109 /* Chain of cleanup actions established with make_cleanup,
110 to be executed if an error happens. */
111
112 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
113 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
114 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
115 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
116 /* cleaned up on each error from within an execution command */
117 static struct cleanup *exec_error_cleanup_chain;
118
119 /* Pointer to what is left to do for an execution command after the
120 target stops. Used only in asynchronous mode, by targets that
121 support async execution. The finish and until commands use it. So
122 does the target extended-remote command. */
123 struct continuation *cmd_continuation;
124 struct continuation *intermediate_continuation;
125
126 /* Nonzero if we have job control. */
127
128 int job_control;
129
130 /* Nonzero means a quit has been requested. */
131
132 int quit_flag;
133
134 /* Nonzero means quit immediately if Control-C is typed now, rather
135 than waiting until QUIT is executed. Be careful in setting this;
136 code which executes with immediate_quit set has to be very careful
137 about being able to deal with being interrupted at any time. It is
138 almost always better to use QUIT; the only exception I can think of
139 is being able to quit out of a system call (using EINTR loses if
140 the SIGINT happens between the previous QUIT and the system call).
141 To immediately quit in the case in which a SIGINT happens between
142 the previous QUIT and setting immediate_quit (desirable anytime we
143 expect to block), call QUIT after setting immediate_quit. */
144
145 int immediate_quit;
146
147 /* Nonzero means that encoded C++/ObjC names should be printed out in their
148 C++/ObjC form rather than raw. */
149
150 int demangle = 1;
151
152 /* Nonzero means that encoded C++/ObjC names should be printed out in their
153 C++/ObjC form even in assembler language displays. If this is set, but
154 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
155
156 int asm_demangle = 0;
157
158 /* Nonzero means that strings with character values >0x7F should be printed
159 as octal escapes. Zero means just print the value (e.g. it's an
160 international character, and the terminal or window can cope.) */
161
162 int sevenbit_strings = 0;
163
164 /* String to be printed before error messages, if any. */
165
166 char *error_pre_print;
167
168 /* String to be printed before quit messages, if any. */
169
170 char *quit_pre_print;
171
172 /* String to be printed before warning messages, if any. */
173
174 char *warning_pre_print = "\nwarning: ";
175
176 int pagination_enabled = 1;
177 \f
178
179 /* Add a new cleanup to the cleanup_chain,
180 and return the previous chain pointer
181 to be passed later to do_cleanups or discard_cleanups.
182 Args are FUNCTION to clean up with, and ARG to pass to it. */
183
184 struct cleanup *
185 make_cleanup (make_cleanup_ftype *function, void *arg)
186 {
187 return make_my_cleanup (&cleanup_chain, function, arg);
188 }
189
190 struct cleanup *
191 make_final_cleanup (make_cleanup_ftype *function, void *arg)
192 {
193 return make_my_cleanup (&final_cleanup_chain, function, arg);
194 }
195
196 struct cleanup *
197 make_run_cleanup (make_cleanup_ftype *function, void *arg)
198 {
199 return make_my_cleanup (&run_cleanup_chain, function, arg);
200 }
201
202 struct cleanup *
203 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
204 {
205 return make_my_cleanup (&exec_cleanup_chain, function, arg);
206 }
207
208 struct cleanup *
209 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
210 {
211 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
212 }
213
214 static void
215 do_freeargv (void *arg)
216 {
217 freeargv ((char **) arg);
218 }
219
220 struct cleanup *
221 make_cleanup_freeargv (char **arg)
222 {
223 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
224 }
225
226 static void
227 do_bfd_close_cleanup (void *arg)
228 {
229 bfd_close (arg);
230 }
231
232 struct cleanup *
233 make_cleanup_bfd_close (bfd *abfd)
234 {
235 return make_cleanup (do_bfd_close_cleanup, abfd);
236 }
237
238 static void
239 do_close_cleanup (void *arg)
240 {
241 int *fd = arg;
242 close (*fd);
243 xfree (fd);
244 }
245
246 struct cleanup *
247 make_cleanup_close (int fd)
248 {
249 int *saved_fd = xmalloc (sizeof (fd));
250 *saved_fd = fd;
251 return make_cleanup (do_close_cleanup, saved_fd);
252 }
253
254 static void
255 do_ui_file_delete (void *arg)
256 {
257 ui_file_delete (arg);
258 }
259
260 struct cleanup *
261 make_cleanup_ui_file_delete (struct ui_file *arg)
262 {
263 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
264 }
265
266 struct cleanup *
267 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
268 void *arg)
269 {
270 register struct cleanup *new
271 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
272 register struct cleanup *old_chain = *pmy_chain;
273
274 new->next = *pmy_chain;
275 new->function = function;
276 new->arg = arg;
277 *pmy_chain = new;
278
279 return old_chain;
280 }
281
282 /* Discard cleanups and do the actions they describe
283 until we get back to the point OLD_CHAIN in the cleanup_chain. */
284
285 void
286 do_cleanups (register struct cleanup *old_chain)
287 {
288 do_my_cleanups (&cleanup_chain, old_chain);
289 }
290
291 void
292 do_final_cleanups (register struct cleanup *old_chain)
293 {
294 do_my_cleanups (&final_cleanup_chain, old_chain);
295 }
296
297 void
298 do_run_cleanups (register struct cleanup *old_chain)
299 {
300 do_my_cleanups (&run_cleanup_chain, old_chain);
301 }
302
303 void
304 do_exec_cleanups (register struct cleanup *old_chain)
305 {
306 do_my_cleanups (&exec_cleanup_chain, old_chain);
307 }
308
309 void
310 do_exec_error_cleanups (register struct cleanup *old_chain)
311 {
312 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
313 }
314
315 void
316 do_my_cleanups (register struct cleanup **pmy_chain,
317 register struct cleanup *old_chain)
318 {
319 register struct cleanup *ptr;
320 while ((ptr = *pmy_chain) != old_chain)
321 {
322 *pmy_chain = ptr->next; /* Do this first incase recursion */
323 (*ptr->function) (ptr->arg);
324 xfree (ptr);
325 }
326 }
327
328 /* Discard cleanups, not doing the actions they describe,
329 until we get back to the point OLD_CHAIN in the cleanup_chain. */
330
331 void
332 discard_cleanups (register struct cleanup *old_chain)
333 {
334 discard_my_cleanups (&cleanup_chain, old_chain);
335 }
336
337 void
338 discard_final_cleanups (register struct cleanup *old_chain)
339 {
340 discard_my_cleanups (&final_cleanup_chain, old_chain);
341 }
342
343 void
344 discard_exec_error_cleanups (register struct cleanup *old_chain)
345 {
346 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
347 }
348
349 void
350 discard_my_cleanups (register struct cleanup **pmy_chain,
351 register struct cleanup *old_chain)
352 {
353 register struct cleanup *ptr;
354 while ((ptr = *pmy_chain) != old_chain)
355 {
356 *pmy_chain = ptr->next;
357 xfree (ptr);
358 }
359 }
360
361 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
362 struct cleanup *
363 save_cleanups (void)
364 {
365 return save_my_cleanups (&cleanup_chain);
366 }
367
368 struct cleanup *
369 save_final_cleanups (void)
370 {
371 return save_my_cleanups (&final_cleanup_chain);
372 }
373
374 struct cleanup *
375 save_my_cleanups (struct cleanup **pmy_chain)
376 {
377 struct cleanup *old_chain = *pmy_chain;
378
379 *pmy_chain = 0;
380 return old_chain;
381 }
382
383 /* Restore the cleanup chain from a previously saved chain. */
384 void
385 restore_cleanups (struct cleanup *chain)
386 {
387 restore_my_cleanups (&cleanup_chain, chain);
388 }
389
390 void
391 restore_final_cleanups (struct cleanup *chain)
392 {
393 restore_my_cleanups (&final_cleanup_chain, chain);
394 }
395
396 void
397 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
398 {
399 *pmy_chain = chain;
400 }
401
402 /* This function is useful for cleanups.
403 Do
404
405 foo = xmalloc (...);
406 old_chain = make_cleanup (free_current_contents, &foo);
407
408 to arrange to free the object thus allocated. */
409
410 void
411 free_current_contents (void *ptr)
412 {
413 void **location = ptr;
414 if (location == NULL)
415 internal_error (__FILE__, __LINE__,
416 "free_current_contents: NULL pointer");
417 if (*location != NULL)
418 {
419 xfree (*location);
420 *location = NULL;
421 }
422 }
423
424 /* Provide a known function that does nothing, to use as a base for
425 for a possibly long chain of cleanups. This is useful where we
426 use the cleanup chain for handling normal cleanups as well as dealing
427 with cleanups that need to be done as a result of a call to error().
428 In such cases, we may not be certain where the first cleanup is, unless
429 we have a do-nothing one to always use as the base. */
430
431 /* ARGSUSED */
432 void
433 null_cleanup (void *arg)
434 {
435 }
436
437 /* Add a continuation to the continuation list, the global list
438 cmd_continuation. The new continuation will be added at the front.*/
439 void
440 add_continuation (void (*continuation_hook) (struct continuation_arg *),
441 struct continuation_arg *arg_list)
442 {
443 struct continuation *continuation_ptr;
444
445 continuation_ptr =
446 (struct continuation *) xmalloc (sizeof (struct continuation));
447 continuation_ptr->continuation_hook = continuation_hook;
448 continuation_ptr->arg_list = arg_list;
449 continuation_ptr->next = cmd_continuation;
450 cmd_continuation = continuation_ptr;
451 }
452
453 /* Walk down the cmd_continuation list, and execute all the
454 continuations. There is a problem though. In some cases new
455 continuations may be added while we are in the middle of this
456 loop. If this happens they will be added in the front, and done
457 before we have a chance of exhausting those that were already
458 there. We need to then save the beginning of the list in a pointer
459 and do the continuations from there on, instead of using the
460 global beginning of list as our iteration pointer.*/
461 void
462 do_all_continuations (void)
463 {
464 struct continuation *continuation_ptr;
465 struct continuation *saved_continuation;
466
467 /* Copy the list header into another pointer, and set the global
468 list header to null, so that the global list can change as a side
469 effect of invoking the continuations and the processing of
470 the preexisting continuations will not be affected. */
471 continuation_ptr = cmd_continuation;
472 cmd_continuation = NULL;
473
474 /* Work now on the list we have set aside. */
475 while (continuation_ptr)
476 {
477 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
478 saved_continuation = continuation_ptr;
479 continuation_ptr = continuation_ptr->next;
480 xfree (saved_continuation);
481 }
482 }
483
484 /* Walk down the cmd_continuation list, and get rid of all the
485 continuations. */
486 void
487 discard_all_continuations (void)
488 {
489 struct continuation *continuation_ptr;
490
491 while (cmd_continuation)
492 {
493 continuation_ptr = cmd_continuation;
494 cmd_continuation = continuation_ptr->next;
495 xfree (continuation_ptr);
496 }
497 }
498
499 /* Add a continuation to the continuation list, the global list
500 intermediate_continuation. The new continuation will be added at the front.*/
501 void
502 add_intermediate_continuation (void (*continuation_hook)
503 (struct continuation_arg *),
504 struct continuation_arg *arg_list)
505 {
506 struct continuation *continuation_ptr;
507
508 continuation_ptr =
509 (struct continuation *) xmalloc (sizeof (struct continuation));
510 continuation_ptr->continuation_hook = continuation_hook;
511 continuation_ptr->arg_list = arg_list;
512 continuation_ptr->next = intermediate_continuation;
513 intermediate_continuation = continuation_ptr;
514 }
515
516 /* Walk down the cmd_continuation list, and execute all the
517 continuations. There is a problem though. In some cases new
518 continuations may be added while we are in the middle of this
519 loop. If this happens they will be added in the front, and done
520 before we have a chance of exhausting those that were already
521 there. We need to then save the beginning of the list in a pointer
522 and do the continuations from there on, instead of using the
523 global beginning of list as our iteration pointer.*/
524 void
525 do_all_intermediate_continuations (void)
526 {
527 struct continuation *continuation_ptr;
528 struct continuation *saved_continuation;
529
530 /* Copy the list header into another pointer, and set the global
531 list header to null, so that the global list can change as a side
532 effect of invoking the continuations and the processing of
533 the preexisting continuations will not be affected. */
534 continuation_ptr = intermediate_continuation;
535 intermediate_continuation = NULL;
536
537 /* Work now on the list we have set aside. */
538 while (continuation_ptr)
539 {
540 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
541 saved_continuation = continuation_ptr;
542 continuation_ptr = continuation_ptr->next;
543 xfree (saved_continuation);
544 }
545 }
546
547 /* Walk down the cmd_continuation list, and get rid of all the
548 continuations. */
549 void
550 discard_all_intermediate_continuations (void)
551 {
552 struct continuation *continuation_ptr;
553
554 while (intermediate_continuation)
555 {
556 continuation_ptr = intermediate_continuation;
557 intermediate_continuation = continuation_ptr->next;
558 xfree (continuation_ptr);
559 }
560 }
561 \f
562
563
564 /* Print a warning message. The first argument STRING is the warning
565 message, used as an fprintf format string, the second is the
566 va_list of arguments for that string. A warning is unfiltered (not
567 paginated) so that the user does not need to page through each
568 screen full of warnings when there are lots of them. */
569
570 void
571 vwarning (const char *string, va_list args)
572 {
573 if (warning_hook)
574 (*warning_hook) (string, args);
575 else
576 {
577 target_terminal_ours ();
578 wrap_here (""); /* Force out any buffered output */
579 gdb_flush (gdb_stdout);
580 if (warning_pre_print)
581 fputs_unfiltered (warning_pre_print, gdb_stderr);
582 vfprintf_unfiltered (gdb_stderr, string, args);
583 fprintf_unfiltered (gdb_stderr, "\n");
584 va_end (args);
585 }
586 }
587
588 /* Print a warning message.
589 The first argument STRING is the warning message, used as a fprintf string,
590 and the remaining args are passed as arguments to it.
591 The primary difference between warnings and errors is that a warning
592 does not force the return to command level. */
593
594 void
595 warning (const char *string, ...)
596 {
597 va_list args;
598 va_start (args, string);
599 vwarning (string, args);
600 va_end (args);
601 }
602
603 /* Print an error message and return to command level.
604 The first argument STRING is the error message, used as a fprintf string,
605 and the remaining args are passed as arguments to it. */
606
607 NORETURN void
608 verror (const char *string, va_list args)
609 {
610 struct ui_file *tmp_stream = mem_fileopen ();
611 make_cleanup_ui_file_delete (tmp_stream);
612 vfprintf_unfiltered (tmp_stream, string, args);
613 error_stream (tmp_stream);
614 }
615
616 NORETURN void
617 error (const char *string, ...)
618 {
619 va_list args;
620 va_start (args, string);
621 verror (string, args);
622 va_end (args);
623 }
624
625 static void
626 do_write (void *data, const char *buffer, long length_buffer)
627 {
628 ui_file_write (data, buffer, length_buffer);
629 }
630
631 NORETURN void
632 error_stream (struct ui_file *stream)
633 {
634 if (error_begin_hook)
635 error_begin_hook ();
636
637 /* Copy the stream into the GDB_LASTERR buffer. */
638 ui_file_rewind (gdb_lasterr);
639 ui_file_put (stream, do_write, gdb_lasterr);
640
641 /* Write the message plus any error_pre_print to gdb_stderr. */
642 target_terminal_ours ();
643 wrap_here (""); /* Force out any buffered output */
644 gdb_flush (gdb_stdout);
645 annotate_error_begin ();
646 if (error_pre_print)
647 fputs_filtered (error_pre_print, gdb_stderr);
648 ui_file_put (stream, do_write, gdb_stderr);
649 fprintf_filtered (gdb_stderr, "\n");
650
651 throw_exception (RETURN_ERROR);
652 }
653
654 /* Get the last error message issued by gdb */
655
656 char *
657 error_last_message (void)
658 {
659 long len;
660 return ui_file_xstrdup (gdb_lasterr, &len);
661 }
662
663 /* This is to be called by main() at the very beginning */
664
665 void
666 error_init (void)
667 {
668 gdb_lasterr = mem_fileopen ();
669 }
670
671 /* Print a message reporting an internal error/warning. Ask the user
672 if they want to continue, dump core, or just exit. Return
673 something to indicate a quit. */
674
675 struct internal_problem
676 {
677 const char *name;
678 /* FIXME: cagney/2002-08-15: There should be ``maint set/show''
679 commands available for controlling these variables. */
680 enum auto_boolean should_quit;
681 enum auto_boolean should_dump_core;
682 };
683
684 /* Report a problem, internal to GDB, to the user. Once the problem
685 has been reported, and assuming GDB didn't quit, the caller can
686 either allow execution to resume or throw an error. */
687
688 static void
689 internal_vproblem (struct internal_problem *problem,
690 const char *file, int line, const char *fmt, va_list ap)
691 {
692 static int dejavu;
693 int quit_p;
694 int dump_core_p;
695 char *reason;
696
697 /* Don't allow infinite error/warning recursion. */
698 {
699 static char msg[] = "Recursive internal problem.\n";
700 switch (dejavu)
701 {
702 case 0:
703 dejavu = 1;
704 break;
705 case 1:
706 dejavu = 2;
707 fputs_unfiltered (msg, gdb_stderr);
708 abort (); /* NOTE: GDB has only three calls to abort(). */
709 default:
710 dejavu = 3;
711 write (STDERR_FILENO, msg, sizeof (msg));
712 exit (1);
713 }
714 }
715
716 /* Try to get the message out and at the start of a new line. */
717 target_terminal_ours ();
718 begin_line ();
719
720 /* Create a string containing the full error/warning message. Need
721 to call query with this full string, as otherwize the reason
722 (error/warning) and question become separated. Format using a
723 style similar to a compiler error message. Include extra detail
724 so that the user knows that they are living on the edge. */
725 {
726 char *msg;
727 xvasprintf (&msg, fmt, ap);
728 xasprintf (&reason, "\
729 %s:%d: %s: %s\n\
730 A problem internal to GDB has been detected,\n\
731 further debugging may prove unreliable.", file, line, problem->name, msg);
732 xfree (msg);
733 make_cleanup (xfree, reason);
734 }
735
736 switch (problem->should_quit)
737 {
738 case AUTO_BOOLEAN_AUTO:
739 /* Default (yes/batch case) is to quit GDB. When in batch mode
740 this lessens the likelhood of GDB going into an infinate
741 loop. */
742 quit_p = query ("%s\nQuit this debugging session? ", reason);
743 break;
744 case AUTO_BOOLEAN_TRUE:
745 quit_p = 1;
746 break;
747 case AUTO_BOOLEAN_FALSE:
748 quit_p = 0;
749 break;
750 default:
751 internal_error (__FILE__, __LINE__, "bad switch");
752 }
753
754 switch (problem->should_dump_core)
755 {
756 case AUTO_BOOLEAN_AUTO:
757 /* Default (yes/batch case) is to dump core. This leaves a GDB
758 `dropping' so that it is easier to see that something went
759 wrong in GDB. */
760 dump_core_p = query ("%s\nCreate a core file of GDB? ", reason);
761 break;
762 break;
763 case AUTO_BOOLEAN_TRUE:
764 dump_core_p = 1;
765 break;
766 case AUTO_BOOLEAN_FALSE:
767 dump_core_p = 0;
768 break;
769 default:
770 internal_error (__FILE__, __LINE__, "bad switch");
771 }
772
773 if (quit_p)
774 {
775 if (dump_core_p)
776 abort (); /* NOTE: GDB has only three calls to abort(). */
777 else
778 exit (1);
779 }
780 else
781 {
782 if (dump_core_p)
783 {
784 if (fork () == 0)
785 abort (); /* NOTE: GDB has only three calls to abort(). */
786 }
787 }
788
789 dejavu = 0;
790 }
791
792 static struct internal_problem internal_error_problem = {
793 "internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
794 };
795
796 NORETURN void
797 internal_verror (const char *file, int line, const char *fmt, va_list ap)
798 {
799 internal_vproblem (&internal_error_problem, file, line, fmt, ap);
800 throw_exception (RETURN_ERROR);
801 }
802
803 NORETURN void
804 internal_error (const char *file, int line, const char *string, ...)
805 {
806 va_list ap;
807 va_start (ap, string);
808 internal_verror (file, line, string, ap);
809 va_end (ap);
810 }
811
812 static struct internal_problem internal_warning_problem = {
813 "internal-error", AUTO_BOOLEAN_AUTO, AUTO_BOOLEAN_AUTO
814 };
815
816 void
817 internal_vwarning (const char *file, int line, const char *fmt, va_list ap)
818 {
819 internal_vproblem (&internal_warning_problem, file, line, fmt, ap);
820 }
821
822 void
823 internal_warning (const char *file, int line, const char *string, ...)
824 {
825 va_list ap;
826 va_start (ap, string);
827 internal_vwarning (file, line, string, ap);
828 va_end (ap);
829 }
830
831 /* The strerror() function can return NULL for errno values that are
832 out of range. Provide a "safe" version that always returns a
833 printable string. */
834
835 char *
836 safe_strerror (int errnum)
837 {
838 char *msg;
839 static char buf[32];
840
841 msg = strerror (errnum);
842 if (msg == NULL)
843 {
844 sprintf (buf, "(undocumented errno %d)", errnum);
845 msg = buf;
846 }
847 return (msg);
848 }
849
850 /* Print the system error message for errno, and also mention STRING
851 as the file name for which the error was encountered.
852 Then return to command level. */
853
854 NORETURN void
855 perror_with_name (const char *string)
856 {
857 char *err;
858 char *combined;
859
860 err = safe_strerror (errno);
861 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
862 strcpy (combined, string);
863 strcat (combined, ": ");
864 strcat (combined, err);
865
866 /* I understand setting these is a matter of taste. Still, some people
867 may clear errno but not know about bfd_error. Doing this here is not
868 unreasonable. */
869 bfd_set_error (bfd_error_no_error);
870 errno = 0;
871
872 error ("%s.", combined);
873 }
874
875 /* Print the system error message for ERRCODE, and also mention STRING
876 as the file name for which the error was encountered. */
877
878 void
879 print_sys_errmsg (const char *string, int errcode)
880 {
881 char *err;
882 char *combined;
883
884 err = safe_strerror (errcode);
885 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
886 strcpy (combined, string);
887 strcat (combined, ": ");
888 strcat (combined, err);
889
890 /* We want anything which was printed on stdout to come out first, before
891 this message. */
892 gdb_flush (gdb_stdout);
893 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
894 }
895
896 /* Control C eventually causes this to be called, at a convenient time. */
897
898 void
899 quit (void)
900 {
901 struct serial *gdb_stdout_serial = serial_fdopen (1);
902
903 target_terminal_ours ();
904
905 /* We want all output to appear now, before we print "Quit". We
906 have 3 levels of buffering we have to flush (it's possible that
907 some of these should be changed to flush the lower-level ones
908 too): */
909
910 /* 1. The _filtered buffer. */
911 wrap_here ((char *) 0);
912
913 /* 2. The stdio buffer. */
914 gdb_flush (gdb_stdout);
915 gdb_flush (gdb_stderr);
916
917 /* 3. The system-level buffer. */
918 serial_drain_output (gdb_stdout_serial);
919 serial_un_fdopen (gdb_stdout_serial);
920
921 annotate_error_begin ();
922
923 /* Don't use *_filtered; we don't want to prompt the user to continue. */
924 if (quit_pre_print)
925 fputs_unfiltered (quit_pre_print, gdb_stderr);
926
927 #ifdef __MSDOS__
928 /* No steenking SIGINT will ever be coming our way when the
929 program is resumed. Don't lie. */
930 fprintf_unfiltered (gdb_stderr, "Quit\n");
931 #else
932 if (job_control
933 /* If there is no terminal switching for this target, then we can't
934 possibly get screwed by the lack of job control. */
935 || current_target.to_terminal_ours == NULL)
936 fprintf_unfiltered (gdb_stderr, "Quit\n");
937 else
938 fprintf_unfiltered (gdb_stderr,
939 "Quit (expect signal SIGINT when the program is resumed)\n");
940 #endif
941 throw_exception (RETURN_QUIT);
942 }
943
944 /* Control C comes here */
945 void
946 request_quit (int signo)
947 {
948 quit_flag = 1;
949 /* Restore the signal handler. Harmless with BSD-style signals, needed
950 for System V-style signals. So just always do it, rather than worrying
951 about USG defines and stuff like that. */
952 signal (signo, request_quit);
953
954 #ifdef REQUEST_QUIT
955 REQUEST_QUIT;
956 #else
957 if (immediate_quit)
958 quit ();
959 #endif
960 }
961 \f
962 /* Memory management stuff (malloc friends). */
963
964 #if !defined (USE_MMALLOC)
965
966 static void *
967 mmalloc (void *md, size_t size)
968 {
969 return malloc (size); /* NOTE: GDB's only call to malloc() */
970 }
971
972 static void *
973 mrealloc (void *md, void *ptr, size_t size)
974 {
975 if (ptr == 0) /* Guard against old realloc's */
976 return mmalloc (md, size);
977 else
978 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
979 }
980
981 static void *
982 mcalloc (void *md, size_t number, size_t size)
983 {
984 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
985 }
986
987 static void
988 mfree (void *md, void *ptr)
989 {
990 free (ptr); /* NOTE: GDB's only call to free() */
991 }
992
993 #endif /* USE_MMALLOC */
994
995 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
996
997 void
998 init_malloc (void *md)
999 {
1000 }
1001
1002 #else /* Have mmalloc and want corruption checking */
1003
1004 static void
1005 malloc_botch (void)
1006 {
1007 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
1008 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1009 }
1010
1011 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
1012 by MD, to detect memory corruption. Note that MD may be NULL to specify
1013 the default heap that grows via sbrk.
1014
1015 Note that for freshly created regions, we must call mmcheckf prior to any
1016 mallocs in the region. Otherwise, any region which was allocated prior to
1017 installing the checking hooks, which is later reallocated or freed, will
1018 fail the checks! The mmcheck function only allows initial hooks to be
1019 installed before the first mmalloc. However, anytime after we have called
1020 mmcheck the first time to install the checking hooks, we can call it again
1021 to update the function pointer to the memory corruption handler.
1022
1023 Returns zero on failure, non-zero on success. */
1024
1025 #ifndef MMCHECK_FORCE
1026 #define MMCHECK_FORCE 0
1027 #endif
1028
1029 void
1030 init_malloc (void *md)
1031 {
1032 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1033 {
1034 /* Don't use warning(), which relies on current_target being set
1035 to something other than dummy_target, until after
1036 initialize_all_files(). */
1037
1038 fprintf_unfiltered
1039 (gdb_stderr,
1040 "warning: failed to install memory consistency checks; ");
1041 fprintf_unfiltered (gdb_stderr,
1042 "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1043 }
1044
1045 mmtrace ();
1046 }
1047
1048 #endif /* Have mmalloc and want corruption checking */
1049
1050 /* Called when a memory allocation fails, with the number of bytes of
1051 memory requested in SIZE. */
1052
1053 NORETURN void
1054 nomem (long size)
1055 {
1056 if (size > 0)
1057 {
1058 internal_error (__FILE__, __LINE__,
1059 "virtual memory exhausted: can't allocate %ld bytes.",
1060 size);
1061 }
1062 else
1063 {
1064 internal_error (__FILE__, __LINE__, "virtual memory exhausted.");
1065 }
1066 }
1067
1068 /* The xmmalloc() family of memory management routines.
1069
1070 These are are like the mmalloc() family except that they implement
1071 consistent semantics and guard against typical memory management
1072 problems: if a malloc fails, an internal error is thrown; if
1073 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1074 is returned.
1075
1076 All these routines are implemented using the mmalloc() family. */
1077
1078 void *
1079 xmmalloc (void *md, size_t size)
1080 {
1081 void *val;
1082
1083 /* See libiberty/xmalloc.c. This function need's to match that's
1084 semantics. It never returns NULL. */
1085 if (size == 0)
1086 size = 1;
1087
1088 val = mmalloc (md, size);
1089 if (val == NULL)
1090 nomem (size);
1091
1092 return (val);
1093 }
1094
1095 void *
1096 xmrealloc (void *md, void *ptr, size_t size)
1097 {
1098 void *val;
1099
1100 /* See libiberty/xmalloc.c. This function need's to match that's
1101 semantics. It never returns NULL. */
1102 if (size == 0)
1103 size = 1;
1104
1105 if (ptr != NULL)
1106 val = mrealloc (md, ptr, size);
1107 else
1108 val = mmalloc (md, size);
1109 if (val == NULL)
1110 nomem (size);
1111
1112 return (val);
1113 }
1114
1115 void *
1116 xmcalloc (void *md, size_t number, size_t size)
1117 {
1118 void *mem;
1119
1120 /* See libiberty/xmalloc.c. This function need's to match that's
1121 semantics. It never returns NULL. */
1122 if (number == 0 || size == 0)
1123 {
1124 number = 1;
1125 size = 1;
1126 }
1127
1128 mem = mcalloc (md, number, size);
1129 if (mem == NULL)
1130 nomem (number * size);
1131
1132 return mem;
1133 }
1134
1135 void
1136 xmfree (void *md, void *ptr)
1137 {
1138 if (ptr != NULL)
1139 mfree (md, ptr);
1140 }
1141
1142 /* The xmalloc() (libiberty.h) family of memory management routines.
1143
1144 These are like the ISO-C malloc() family except that they implement
1145 consistent semantics and guard against typical memory management
1146 problems. See xmmalloc() above for further information.
1147
1148 All these routines are wrappers to the xmmalloc() family. */
1149
1150 /* NOTE: These are declared using PTR to ensure consistency with
1151 "libiberty.h". xfree() is GDB local. */
1152
1153 PTR /* OK: PTR */
1154 xmalloc (size_t size)
1155 {
1156 return xmmalloc (NULL, size);
1157 }
1158
1159 PTR /* OK: PTR */
1160 xrealloc (PTR ptr, size_t size) /* OK: PTR */
1161 {
1162 return xmrealloc (NULL, ptr, size);
1163 }
1164
1165 PTR /* OK: PTR */
1166 xcalloc (size_t number, size_t size)
1167 {
1168 return xmcalloc (NULL, number, size);
1169 }
1170
1171 void
1172 xfree (void *ptr)
1173 {
1174 xmfree (NULL, ptr);
1175 }
1176 \f
1177
1178 /* Like asprintf/vasprintf but get an internal_error if the call
1179 fails. */
1180
1181 void
1182 xasprintf (char **ret, const char *format, ...)
1183 {
1184 va_list args;
1185 va_start (args, format);
1186 xvasprintf (ret, format, args);
1187 va_end (args);
1188 }
1189
1190 void
1191 xvasprintf (char **ret, const char *format, va_list ap)
1192 {
1193 int status = vasprintf (ret, format, ap);
1194 /* NULL could be returned due to a memory allocation problem; a
1195 badly format string; or something else. */
1196 if ((*ret) == NULL)
1197 internal_error (__FILE__, __LINE__,
1198 "vasprintf returned NULL buffer (errno %d)", errno);
1199 /* A negative status with a non-NULL buffer shouldn't never
1200 happen. But to be sure. */
1201 if (status < 0)
1202 internal_error (__FILE__, __LINE__,
1203 "vasprintf call failed (errno %d)", errno);
1204 }
1205
1206
1207 /* My replacement for the read system call.
1208 Used like `read' but keeps going if `read' returns too soon. */
1209
1210 int
1211 myread (int desc, char *addr, int len)
1212 {
1213 register int val;
1214 int orglen = len;
1215
1216 while (len > 0)
1217 {
1218 val = read (desc, addr, len);
1219 if (val < 0)
1220 return val;
1221 if (val == 0)
1222 return orglen - len;
1223 len -= val;
1224 addr += val;
1225 }
1226 return orglen;
1227 }
1228 \f
1229 /* Make a copy of the string at PTR with SIZE characters
1230 (and add a null character at the end in the copy).
1231 Uses malloc to get the space. Returns the address of the copy. */
1232
1233 char *
1234 savestring (const char *ptr, size_t size)
1235 {
1236 register char *p = (char *) xmalloc (size + 1);
1237 memcpy (p, ptr, size);
1238 p[size] = 0;
1239 return p;
1240 }
1241
1242 char *
1243 msavestring (void *md, const char *ptr, size_t size)
1244 {
1245 register char *p = (char *) xmmalloc (md, size + 1);
1246 memcpy (p, ptr, size);
1247 p[size] = 0;
1248 return p;
1249 }
1250
1251 char *
1252 mstrsave (void *md, const char *ptr)
1253 {
1254 return (msavestring (md, ptr, strlen (ptr)));
1255 }
1256
1257 void
1258 print_spaces (register int n, register struct ui_file *file)
1259 {
1260 fputs_unfiltered (n_spaces (n), file);
1261 }
1262
1263 /* Print a host address. */
1264
1265 void
1266 gdb_print_host_address (const void *addr, struct ui_file *stream)
1267 {
1268
1269 /* We could use the %p conversion specifier to fprintf if we had any
1270 way of knowing whether this host supports it. But the following
1271 should work on the Alpha and on 32 bit machines. */
1272
1273 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1274 }
1275
1276 /* Ask user a y-or-n question and return 1 iff answer is yes.
1277 Takes three args which are given to printf to print the question.
1278 The first, a control string, should end in "? ".
1279 It should not say how to answer, because we do that. */
1280
1281 /* VARARGS */
1282 int
1283 query (const char *ctlstr, ...)
1284 {
1285 va_list args;
1286 register int answer;
1287 register int ans2;
1288 int retval;
1289
1290 va_start (args, ctlstr);
1291
1292 if (query_hook)
1293 {
1294 return query_hook (ctlstr, args);
1295 }
1296
1297 /* Automatically answer "yes" if input is not from a terminal. */
1298 if (!input_from_terminal_p ())
1299 return 1;
1300
1301 while (1)
1302 {
1303 wrap_here (""); /* Flush any buffered output */
1304 gdb_flush (gdb_stdout);
1305
1306 if (annotation_level > 1)
1307 printf_filtered ("\n\032\032pre-query\n");
1308
1309 vfprintf_filtered (gdb_stdout, ctlstr, args);
1310 printf_filtered ("(y or n) ");
1311
1312 if (annotation_level > 1)
1313 printf_filtered ("\n\032\032query\n");
1314
1315 wrap_here ("");
1316 gdb_flush (gdb_stdout);
1317
1318 answer = fgetc (stdin);
1319 clearerr (stdin); /* in case of C-d */
1320 if (answer == EOF) /* C-d */
1321 {
1322 retval = 1;
1323 break;
1324 }
1325 /* Eat rest of input line, to EOF or newline */
1326 if (answer != '\n')
1327 do
1328 {
1329 ans2 = fgetc (stdin);
1330 clearerr (stdin);
1331 }
1332 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1333
1334 if (answer >= 'a')
1335 answer -= 040;
1336 if (answer == 'Y')
1337 {
1338 retval = 1;
1339 break;
1340 }
1341 if (answer == 'N')
1342 {
1343 retval = 0;
1344 break;
1345 }
1346 printf_filtered ("Please answer y or n.\n");
1347 }
1348
1349 if (annotation_level > 1)
1350 printf_filtered ("\n\032\032post-query\n");
1351 return retval;
1352 }
1353 \f
1354
1355 /* Print an error message saying that we couldn't make sense of a
1356 \^mumble sequence in a string or character constant. START and END
1357 indicate a substring of some larger string that contains the
1358 erroneous backslash sequence, missing the initial backslash. */
1359 static NORETURN int
1360 no_control_char_error (const char *start, const char *end)
1361 {
1362 int len = end - start;
1363 char *copy = alloca (end - start + 1);
1364
1365 memcpy (copy, start, len);
1366 copy[len] = '\0';
1367
1368 error ("There is no control character `\\%s' in the `%s' character set.",
1369 copy, target_charset ());
1370 }
1371
1372 /* Parse a C escape sequence. STRING_PTR points to a variable
1373 containing a pointer to the string to parse. That pointer
1374 should point to the character after the \. That pointer
1375 is updated past the characters we use. The value of the
1376 escape sequence is returned.
1377
1378 A negative value means the sequence \ newline was seen,
1379 which is supposed to be equivalent to nothing at all.
1380
1381 If \ is followed by a null character, we return a negative
1382 value and leave the string pointer pointing at the null character.
1383
1384 If \ is followed by 000, we return 0 and leave the string pointer
1385 after the zeros. A value of 0 does not mean end of string. */
1386
1387 int
1388 parse_escape (char **string_ptr)
1389 {
1390 int target_char;
1391 register int c = *(*string_ptr)++;
1392 if (c_parse_backslash (c, &target_char))
1393 return target_char;
1394 else
1395 switch (c)
1396 {
1397 case '\n':
1398 return -2;
1399 case 0:
1400 (*string_ptr)--;
1401 return 0;
1402 case '^':
1403 {
1404 /* Remember where this escape sequence started, for reporting
1405 errors. */
1406 char *sequence_start_pos = *string_ptr - 1;
1407
1408 c = *(*string_ptr)++;
1409
1410 if (c == '?')
1411 {
1412 /* XXXCHARSET: What is `delete' in the host character set? */
1413 c = 0177;
1414
1415 if (!host_char_to_target (c, &target_char))
1416 error ("There is no character corresponding to `Delete' "
1417 "in the target character set `%s'.", host_charset ());
1418
1419 return target_char;
1420 }
1421 else if (c == '\\')
1422 target_char = parse_escape (string_ptr);
1423 else
1424 {
1425 if (!host_char_to_target (c, &target_char))
1426 no_control_char_error (sequence_start_pos, *string_ptr);
1427 }
1428
1429 /* Now target_char is something like `c', and we want to find
1430 its control-character equivalent. */
1431 if (!target_char_to_control_char (target_char, &target_char))
1432 no_control_char_error (sequence_start_pos, *string_ptr);
1433
1434 return target_char;
1435 }
1436
1437 /* XXXCHARSET: we need to use isdigit and value-of-digit
1438 methods of the host character set here. */
1439
1440 case '0':
1441 case '1':
1442 case '2':
1443 case '3':
1444 case '4':
1445 case '5':
1446 case '6':
1447 case '7':
1448 {
1449 register int i = c - '0';
1450 register int count = 0;
1451 while (++count < 3)
1452 {
1453 c = (**string_ptr);
1454 if (c >= '0' && c <= '7')
1455 {
1456 (*string_ptr)++;
1457 i *= 8;
1458 i += c - '0';
1459 }
1460 else
1461 {
1462 break;
1463 }
1464 }
1465 return i;
1466 }
1467 default:
1468 if (!host_char_to_target (c, &target_char))
1469 error
1470 ("The escape sequence `\%c' is equivalent to plain `%c', which"
1471 " has no equivalent\n" "in the `%s' character set.", c, c,
1472 target_charset ());
1473 return target_char;
1474 }
1475 }
1476 \f
1477 /* Print the character C on STREAM as part of the contents of a literal
1478 string whose delimiter is QUOTER. Note that this routine should only
1479 be call for printing things which are independent of the language
1480 of the program being debugged. */
1481
1482 static void
1483 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1484 void (*do_fprintf) (struct ui_file *, const char *, ...),
1485 struct ui_file *stream, int quoter)
1486 {
1487
1488 c &= 0xFF; /* Avoid sign bit follies */
1489
1490 if (c < 0x20 || /* Low control chars */
1491 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1492 (sevenbit_strings && c >= 0x80))
1493 { /* high order bit set */
1494 switch (c)
1495 {
1496 case '\n':
1497 do_fputs ("\\n", stream);
1498 break;
1499 case '\b':
1500 do_fputs ("\\b", stream);
1501 break;
1502 case '\t':
1503 do_fputs ("\\t", stream);
1504 break;
1505 case '\f':
1506 do_fputs ("\\f", stream);
1507 break;
1508 case '\r':
1509 do_fputs ("\\r", stream);
1510 break;
1511 case '\033':
1512 do_fputs ("\\e", stream);
1513 break;
1514 case '\007':
1515 do_fputs ("\\a", stream);
1516 break;
1517 default:
1518 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1519 break;
1520 }
1521 }
1522 else
1523 {
1524 if (c == '\\' || c == quoter)
1525 do_fputs ("\\", stream);
1526 do_fprintf (stream, "%c", c);
1527 }
1528 }
1529
1530 /* Print the character C on STREAM as part of the contents of a
1531 literal string whose delimiter is QUOTER. Note that these routines
1532 should only be call for printing things which are independent of
1533 the language of the program being debugged. */
1534
1535 void
1536 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1537 {
1538 while (*str)
1539 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1540 }
1541
1542 void
1543 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1544 {
1545 while (*str)
1546 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1547 }
1548
1549 void
1550 fputstrn_unfiltered (const char *str, int n, int quoter,
1551 struct ui_file *stream)
1552 {
1553 int i;
1554 for (i = 0; i < n; i++)
1555 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1556 }
1557 \f
1558
1559
1560 /* Number of lines per page or UINT_MAX if paging is disabled. */
1561 static unsigned int lines_per_page;
1562 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1563 static unsigned int chars_per_line;
1564 /* Current count of lines printed on this page, chars on this line. */
1565 static unsigned int lines_printed, chars_printed;
1566
1567 /* Buffer and start column of buffered text, for doing smarter word-
1568 wrapping. When someone calls wrap_here(), we start buffering output
1569 that comes through fputs_filtered(). If we see a newline, we just
1570 spit it out and forget about the wrap_here(). If we see another
1571 wrap_here(), we spit it out and remember the newer one. If we see
1572 the end of the line, we spit out a newline, the indent, and then
1573 the buffered output. */
1574
1575 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1576 are waiting to be output (they have already been counted in chars_printed).
1577 When wrap_buffer[0] is null, the buffer is empty. */
1578 static char *wrap_buffer;
1579
1580 /* Pointer in wrap_buffer to the next character to fill. */
1581 static char *wrap_pointer;
1582
1583 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1584 is non-zero. */
1585 static char *wrap_indent;
1586
1587 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1588 is not in effect. */
1589 static int wrap_column;
1590 \f
1591
1592 /* Inialize the lines and chars per page */
1593 void
1594 init_page_info (void)
1595 {
1596 #if defined(TUI)
1597 if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
1598 #endif
1599 {
1600 /* These defaults will be used if we are unable to get the correct
1601 values from termcap. */
1602 #if defined(__GO32__)
1603 lines_per_page = ScreenRows ();
1604 chars_per_line = ScreenCols ();
1605 #else
1606 lines_per_page = 24;
1607 chars_per_line = 80;
1608
1609 #if !defined (_WIN32)
1610 /* Initialize the screen height and width from termcap. */
1611 {
1612 char *termtype = getenv ("TERM");
1613
1614 /* Positive means success, nonpositive means failure. */
1615 int status;
1616
1617 /* 2048 is large enough for all known terminals, according to the
1618 GNU termcap manual. */
1619 char term_buffer[2048];
1620
1621 if (termtype)
1622 {
1623 status = tgetent (term_buffer, termtype);
1624 if (status > 0)
1625 {
1626 int val;
1627 int running_in_emacs = getenv ("EMACS") != NULL;
1628
1629 val = tgetnum ("li");
1630 if (val >= 0 && !running_in_emacs)
1631 lines_per_page = val;
1632 else
1633 /* The number of lines per page is not mentioned
1634 in the terminal description. This probably means
1635 that paging is not useful (e.g. emacs shell window),
1636 so disable paging. */
1637 lines_per_page = UINT_MAX;
1638
1639 val = tgetnum ("co");
1640 if (val >= 0)
1641 chars_per_line = val;
1642 }
1643 }
1644 }
1645 #endif
1646
1647 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1648
1649 /* If there is a better way to determine the window size, use it. */
1650 SIGWINCH_HANDLER (SIGWINCH);
1651 #endif
1652 #endif
1653 /* If the output is not a terminal, don't paginate it. */
1654 if (!ui_file_isatty (gdb_stdout))
1655 lines_per_page = UINT_MAX;
1656 } /* the command_line_version */
1657 set_width ();
1658 }
1659
1660 static void
1661 set_width (void)
1662 {
1663 if (chars_per_line == 0)
1664 init_page_info ();
1665
1666 if (!wrap_buffer)
1667 {
1668 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1669 wrap_buffer[0] = '\0';
1670 }
1671 else
1672 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1673 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1674 }
1675
1676 /* ARGSUSED */
1677 static void
1678 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1679 {
1680 set_width ();
1681 }
1682
1683 /* Wait, so the user can read what's on the screen. Prompt the user
1684 to continue by pressing RETURN. */
1685
1686 static void
1687 prompt_for_continue (void)
1688 {
1689 char *ignore;
1690 char cont_prompt[120];
1691
1692 if (annotation_level > 1)
1693 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1694
1695 strcpy (cont_prompt,
1696 "---Type <return> to continue, or q <return> to quit---");
1697 if (annotation_level > 1)
1698 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1699
1700 /* We must do this *before* we call gdb_readline, else it will eventually
1701 call us -- thinking that we're trying to print beyond the end of the
1702 screen. */
1703 reinitialize_more_filter ();
1704
1705 immediate_quit++;
1706 /* On a real operating system, the user can quit with SIGINT.
1707 But not on GO32.
1708
1709 'q' is provided on all systems so users don't have to change habits
1710 from system to system, and because telling them what to do in
1711 the prompt is more user-friendly than expecting them to think of
1712 SIGINT. */
1713 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1714 whereas control-C to gdb_readline will cause the user to get dumped
1715 out to DOS. */
1716 ignore = gdb_readline_wrapper (cont_prompt);
1717
1718 if (annotation_level > 1)
1719 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1720
1721 if (ignore)
1722 {
1723 char *p = ignore;
1724 while (*p == ' ' || *p == '\t')
1725 ++p;
1726 if (p[0] == 'q')
1727 {
1728 if (!event_loop_p)
1729 request_quit (SIGINT);
1730 else
1731 async_request_quit (0);
1732 }
1733 xfree (ignore);
1734 }
1735 immediate_quit--;
1736
1737 /* Now we have to do this again, so that GDB will know that it doesn't
1738 need to save the ---Type <return>--- line at the top of the screen. */
1739 reinitialize_more_filter ();
1740
1741 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1742 }
1743
1744 /* Reinitialize filter; ie. tell it to reset to original values. */
1745
1746 void
1747 reinitialize_more_filter (void)
1748 {
1749 lines_printed = 0;
1750 chars_printed = 0;
1751 }
1752
1753 /* Indicate that if the next sequence of characters overflows the line,
1754 a newline should be inserted here rather than when it hits the end.
1755 If INDENT is non-null, it is a string to be printed to indent the
1756 wrapped part on the next line. INDENT must remain accessible until
1757 the next call to wrap_here() or until a newline is printed through
1758 fputs_filtered().
1759
1760 If the line is already overfull, we immediately print a newline and
1761 the indentation, and disable further wrapping.
1762
1763 If we don't know the width of lines, but we know the page height,
1764 we must not wrap words, but should still keep track of newlines
1765 that were explicitly printed.
1766
1767 INDENT should not contain tabs, as that will mess up the char count
1768 on the next line. FIXME.
1769
1770 This routine is guaranteed to force out any output which has been
1771 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1772 used to force out output from the wrap_buffer. */
1773
1774 void
1775 wrap_here (char *indent)
1776 {
1777 /* This should have been allocated, but be paranoid anyway. */
1778 if (!wrap_buffer)
1779 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1780
1781 if (wrap_buffer[0])
1782 {
1783 *wrap_pointer = '\0';
1784 fputs_unfiltered (wrap_buffer, gdb_stdout);
1785 }
1786 wrap_pointer = wrap_buffer;
1787 wrap_buffer[0] = '\0';
1788 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1789 {
1790 wrap_column = 0;
1791 }
1792 else if (chars_printed >= chars_per_line)
1793 {
1794 puts_filtered ("\n");
1795 if (indent != NULL)
1796 puts_filtered (indent);
1797 wrap_column = 0;
1798 }
1799 else
1800 {
1801 wrap_column = chars_printed;
1802 if (indent == NULL)
1803 wrap_indent = "";
1804 else
1805 wrap_indent = indent;
1806 }
1807 }
1808
1809 /* Print input string to gdb_stdout, filtered, with wrap,
1810 arranging strings in columns of n chars. String can be
1811 right or left justified in the column. Never prints
1812 trailing spaces. String should never be longer than
1813 width. FIXME: this could be useful for the EXAMINE
1814 command, which currently doesn't tabulate very well */
1815
1816 void
1817 puts_filtered_tabular (char *string, int width, int right)
1818 {
1819 int spaces = 0;
1820 int stringlen;
1821 char *spacebuf;
1822
1823 gdb_assert (chars_per_line > 0);
1824 if (chars_per_line == UINT_MAX)
1825 {
1826 fputs_filtered (string, gdb_stdout);
1827 fputs_filtered ("\n", gdb_stdout);
1828 return;
1829 }
1830
1831 if (((chars_printed - 1) / width + 2) * width >= chars_per_line)
1832 fputs_filtered ("\n", gdb_stdout);
1833
1834 if (width >= chars_per_line)
1835 width = chars_per_line - 1;
1836
1837 stringlen = strlen (string);
1838
1839 if (chars_printed > 0)
1840 spaces = width - (chars_printed - 1) % width - 1;
1841 if (right)
1842 spaces += width - stringlen;
1843
1844 spacebuf = alloca (spaces + 1);
1845 spacebuf[spaces] = '\0';
1846 while (spaces--)
1847 spacebuf[spaces] = ' ';
1848
1849 fputs_filtered (spacebuf, gdb_stdout);
1850 fputs_filtered (string, gdb_stdout);
1851 }
1852
1853
1854 /* Ensure that whatever gets printed next, using the filtered output
1855 commands, starts at the beginning of the line. I.E. if there is
1856 any pending output for the current line, flush it and start a new
1857 line. Otherwise do nothing. */
1858
1859 void
1860 begin_line (void)
1861 {
1862 if (chars_printed > 0)
1863 {
1864 puts_filtered ("\n");
1865 }
1866 }
1867
1868
1869 /* Like fputs but if FILTER is true, pause after every screenful.
1870
1871 Regardless of FILTER can wrap at points other than the final
1872 character of a line.
1873
1874 Unlike fputs, fputs_maybe_filtered does not return a value.
1875 It is OK for LINEBUFFER to be NULL, in which case just don't print
1876 anything.
1877
1878 Note that a longjmp to top level may occur in this routine (only if
1879 FILTER is true) (since prompt_for_continue may do so) so this
1880 routine should not be called when cleanups are not in place. */
1881
1882 static void
1883 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1884 int filter)
1885 {
1886 const char *lineptr;
1887
1888 if (linebuffer == 0)
1889 return;
1890
1891 /* Don't do any filtering if it is disabled. */
1892 if ((stream != gdb_stdout) || !pagination_enabled
1893 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1894 {
1895 fputs_unfiltered (linebuffer, stream);
1896 return;
1897 }
1898
1899 /* Go through and output each character. Show line extension
1900 when this is necessary; prompt user for new page when this is
1901 necessary. */
1902
1903 lineptr = linebuffer;
1904 while (*lineptr)
1905 {
1906 /* Possible new page. */
1907 if (filter && (lines_printed >= lines_per_page - 1))
1908 prompt_for_continue ();
1909
1910 while (*lineptr && *lineptr != '\n')
1911 {
1912 /* Print a single line. */
1913 if (*lineptr == '\t')
1914 {
1915 if (wrap_column)
1916 *wrap_pointer++ = '\t';
1917 else
1918 fputc_unfiltered ('\t', stream);
1919 /* Shifting right by 3 produces the number of tab stops
1920 we have already passed, and then adding one and
1921 shifting left 3 advances to the next tab stop. */
1922 chars_printed = ((chars_printed >> 3) + 1) << 3;
1923 lineptr++;
1924 }
1925 else
1926 {
1927 if (wrap_column)
1928 *wrap_pointer++ = *lineptr;
1929 else
1930 fputc_unfiltered (*lineptr, stream);
1931 chars_printed++;
1932 lineptr++;
1933 }
1934
1935 if (chars_printed >= chars_per_line)
1936 {
1937 unsigned int save_chars = chars_printed;
1938
1939 chars_printed = 0;
1940 lines_printed++;
1941 /* If we aren't actually wrapping, don't output newline --
1942 if chars_per_line is right, we probably just overflowed
1943 anyway; if it's wrong, let us keep going. */
1944 if (wrap_column)
1945 fputc_unfiltered ('\n', stream);
1946
1947 /* Possible new page. */
1948 if (lines_printed >= lines_per_page - 1)
1949 prompt_for_continue ();
1950
1951 /* Now output indentation and wrapped string */
1952 if (wrap_column)
1953 {
1954 fputs_unfiltered (wrap_indent, stream);
1955 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1956 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1957 /* FIXME, this strlen is what prevents wrap_indent from
1958 containing tabs. However, if we recurse to print it
1959 and count its chars, we risk trouble if wrap_indent is
1960 longer than (the user settable) chars_per_line.
1961 Note also that this can set chars_printed > chars_per_line
1962 if we are printing a long string. */
1963 chars_printed = strlen (wrap_indent)
1964 + (save_chars - wrap_column);
1965 wrap_pointer = wrap_buffer; /* Reset buffer */
1966 wrap_buffer[0] = '\0';
1967 wrap_column = 0; /* And disable fancy wrap */
1968 }
1969 }
1970 }
1971
1972 if (*lineptr == '\n')
1973 {
1974 chars_printed = 0;
1975 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1976 lines_printed++;
1977 fputc_unfiltered ('\n', stream);
1978 lineptr++;
1979 }
1980 }
1981 }
1982
1983 void
1984 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1985 {
1986 fputs_maybe_filtered (linebuffer, stream, 1);
1987 }
1988
1989 int
1990 putchar_unfiltered (int c)
1991 {
1992 char buf = c;
1993 ui_file_write (gdb_stdout, &buf, 1);
1994 return c;
1995 }
1996
1997 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1998 May return nonlocally. */
1999
2000 int
2001 putchar_filtered (int c)
2002 {
2003 return fputc_filtered (c, gdb_stdout);
2004 }
2005
2006 int
2007 fputc_unfiltered (int c, struct ui_file *stream)
2008 {
2009 char buf = c;
2010 ui_file_write (stream, &buf, 1);
2011 return c;
2012 }
2013
2014 int
2015 fputc_filtered (int c, struct ui_file *stream)
2016 {
2017 char buf[2];
2018
2019 buf[0] = c;
2020 buf[1] = 0;
2021 fputs_filtered (buf, stream);
2022 return c;
2023 }
2024
2025 /* puts_debug is like fputs_unfiltered, except it prints special
2026 characters in printable fashion. */
2027
2028 void
2029 puts_debug (char *prefix, char *string, char *suffix)
2030 {
2031 int ch;
2032
2033 /* Print prefix and suffix after each line. */
2034 static int new_line = 1;
2035 static int return_p = 0;
2036 static char *prev_prefix = "";
2037 static char *prev_suffix = "";
2038
2039 if (*string == '\n')
2040 return_p = 0;
2041
2042 /* If the prefix is changing, print the previous suffix, a new line,
2043 and the new prefix. */
2044 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
2045 {
2046 fputs_unfiltered (prev_suffix, gdb_stdlog);
2047 fputs_unfiltered ("\n", gdb_stdlog);
2048 fputs_unfiltered (prefix, gdb_stdlog);
2049 }
2050
2051 /* Print prefix if we printed a newline during the previous call. */
2052 if (new_line)
2053 {
2054 new_line = 0;
2055 fputs_unfiltered (prefix, gdb_stdlog);
2056 }
2057
2058 prev_prefix = prefix;
2059 prev_suffix = suffix;
2060
2061 /* Output characters in a printable format. */
2062 while ((ch = *string++) != '\0')
2063 {
2064 switch (ch)
2065 {
2066 default:
2067 if (isprint (ch))
2068 fputc_unfiltered (ch, gdb_stdlog);
2069
2070 else
2071 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
2072 break;
2073
2074 case '\\':
2075 fputs_unfiltered ("\\\\", gdb_stdlog);
2076 break;
2077 case '\b':
2078 fputs_unfiltered ("\\b", gdb_stdlog);
2079 break;
2080 case '\f':
2081 fputs_unfiltered ("\\f", gdb_stdlog);
2082 break;
2083 case '\n':
2084 new_line = 1;
2085 fputs_unfiltered ("\\n", gdb_stdlog);
2086 break;
2087 case '\r':
2088 fputs_unfiltered ("\\r", gdb_stdlog);
2089 break;
2090 case '\t':
2091 fputs_unfiltered ("\\t", gdb_stdlog);
2092 break;
2093 case '\v':
2094 fputs_unfiltered ("\\v", gdb_stdlog);
2095 break;
2096 }
2097
2098 return_p = ch == '\r';
2099 }
2100
2101 /* Print suffix if we printed a newline. */
2102 if (new_line)
2103 {
2104 fputs_unfiltered (suffix, gdb_stdlog);
2105 fputs_unfiltered ("\n", gdb_stdlog);
2106 }
2107 }
2108
2109
2110 /* Print a variable number of ARGS using format FORMAT. If this
2111 information is going to put the amount written (since the last call
2112 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2113 call prompt_for_continue to get the users permision to continue.
2114
2115 Unlike fprintf, this function does not return a value.
2116
2117 We implement three variants, vfprintf (takes a vararg list and stream),
2118 fprintf (takes a stream to write on), and printf (the usual).
2119
2120 Note also that a longjmp to top level may occur in this routine
2121 (since prompt_for_continue may do so) so this routine should not be
2122 called when cleanups are not in place. */
2123
2124 static void
2125 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2126 va_list args, int filter)
2127 {
2128 char *linebuffer;
2129 struct cleanup *old_cleanups;
2130
2131 xvasprintf (&linebuffer, format, args);
2132 old_cleanups = make_cleanup (xfree, linebuffer);
2133 fputs_maybe_filtered (linebuffer, stream, filter);
2134 do_cleanups (old_cleanups);
2135 }
2136
2137
2138 void
2139 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2140 {
2141 vfprintf_maybe_filtered (stream, format, args, 1);
2142 }
2143
2144 void
2145 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2146 {
2147 char *linebuffer;
2148 struct cleanup *old_cleanups;
2149
2150 xvasprintf (&linebuffer, format, args);
2151 old_cleanups = make_cleanup (xfree, linebuffer);
2152 fputs_unfiltered (linebuffer, stream);
2153 do_cleanups (old_cleanups);
2154 }
2155
2156 void
2157 vprintf_filtered (const char *format, va_list args)
2158 {
2159 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2160 }
2161
2162 void
2163 vprintf_unfiltered (const char *format, va_list args)
2164 {
2165 vfprintf_unfiltered (gdb_stdout, format, args);
2166 }
2167
2168 void
2169 fprintf_filtered (struct ui_file *stream, const char *format, ...)
2170 {
2171 va_list args;
2172 va_start (args, format);
2173 vfprintf_filtered (stream, format, args);
2174 va_end (args);
2175 }
2176
2177 void
2178 fprintf_unfiltered (struct ui_file *stream, const char *format, ...)
2179 {
2180 va_list args;
2181 va_start (args, format);
2182 vfprintf_unfiltered (stream, format, args);
2183 va_end (args);
2184 }
2185
2186 /* Like fprintf_filtered, but prints its result indented.
2187 Called as fprintfi_filtered (spaces, stream, format, ...); */
2188
2189 void
2190 fprintfi_filtered (int spaces, struct ui_file *stream, const char *format,
2191 ...)
2192 {
2193 va_list args;
2194 va_start (args, format);
2195 print_spaces_filtered (spaces, stream);
2196
2197 vfprintf_filtered (stream, format, args);
2198 va_end (args);
2199 }
2200
2201
2202 void
2203 printf_filtered (const char *format, ...)
2204 {
2205 va_list args;
2206 va_start (args, format);
2207 vfprintf_filtered (gdb_stdout, format, args);
2208 va_end (args);
2209 }
2210
2211
2212 void
2213 printf_unfiltered (const char *format, ...)
2214 {
2215 va_list args;
2216 va_start (args, format);
2217 vfprintf_unfiltered (gdb_stdout, format, args);
2218 va_end (args);
2219 }
2220
2221 /* Like printf_filtered, but prints it's result indented.
2222 Called as printfi_filtered (spaces, format, ...); */
2223
2224 void
2225 printfi_filtered (int spaces, const char *format, ...)
2226 {
2227 va_list args;
2228 va_start (args, format);
2229 print_spaces_filtered (spaces, gdb_stdout);
2230 vfprintf_filtered (gdb_stdout, format, args);
2231 va_end (args);
2232 }
2233
2234 /* Easy -- but watch out!
2235
2236 This routine is *not* a replacement for puts()! puts() appends a newline.
2237 This one doesn't, and had better not! */
2238
2239 void
2240 puts_filtered (const char *string)
2241 {
2242 fputs_filtered (string, gdb_stdout);
2243 }
2244
2245 void
2246 puts_unfiltered (const char *string)
2247 {
2248 fputs_unfiltered (string, gdb_stdout);
2249 }
2250
2251 /* Return a pointer to N spaces and a null. The pointer is good
2252 until the next call to here. */
2253 char *
2254 n_spaces (int n)
2255 {
2256 char *t;
2257 static char *spaces = 0;
2258 static int max_spaces = -1;
2259
2260 if (n > max_spaces)
2261 {
2262 if (spaces)
2263 xfree (spaces);
2264 spaces = (char *) xmalloc (n + 1);
2265 for (t = spaces + n; t != spaces;)
2266 *--t = ' ';
2267 spaces[n] = '\0';
2268 max_spaces = n;
2269 }
2270
2271 return spaces + max_spaces - n;
2272 }
2273
2274 /* Print N spaces. */
2275 void
2276 print_spaces_filtered (int n, struct ui_file *stream)
2277 {
2278 fputs_filtered (n_spaces (n), stream);
2279 }
2280 \f
2281 /* C++/ObjC demangler stuff. */
2282
2283 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2284 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2285 If the name is not mangled, or the language for the name is unknown, or
2286 demangling is off, the name is printed in its "raw" form. */
2287
2288 void
2289 fprintf_symbol_filtered (struct ui_file *stream, char *name,
2290 enum language lang, int arg_mode)
2291 {
2292 char *demangled;
2293
2294 if (name != NULL)
2295 {
2296 /* If user wants to see raw output, no problem. */
2297 if (!demangle)
2298 {
2299 fputs_filtered (name, stream);
2300 }
2301 else
2302 {
2303 demangled = language_demangle (language_def (lang), name, arg_mode);
2304 fputs_filtered (demangled ? demangled : name, stream);
2305 if (demangled != NULL)
2306 {
2307 xfree (demangled);
2308 }
2309 }
2310 }
2311 }
2312
2313 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2314 differences in whitespace. Returns 0 if they match, non-zero if they
2315 don't (slightly different than strcmp()'s range of return values).
2316
2317 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2318 This "feature" is useful when searching for matching C++ function names
2319 (such as if the user types 'break FOO', where FOO is a mangled C++
2320 function). */
2321
2322 int
2323 strcmp_iw (const char *string1, const char *string2)
2324 {
2325 while ((*string1 != '\0') && (*string2 != '\0'))
2326 {
2327 while (isspace (*string1))
2328 {
2329 string1++;
2330 }
2331 while (isspace (*string2))
2332 {
2333 string2++;
2334 }
2335 if (*string1 != *string2)
2336 {
2337 break;
2338 }
2339 if (*string1 != '\0')
2340 {
2341 string1++;
2342 string2++;
2343 }
2344 }
2345 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2346 }
2347
2348 /* This is like strcmp except that it ignores whitespace and treats
2349 '(' as the first non-NULL character in terms of ordering. Like
2350 strcmp (and unlike strcmp_iw), it returns negative if STRING1 <
2351 STRING2, 0 if STRING2 = STRING2, and positive if STRING1 > STRING2
2352 according to that ordering.
2353
2354 If a list is sorted according to this function and if you want to
2355 find names in the list that match some fixed NAME according to
2356 strcmp_iw(LIST_ELT, NAME), then the place to start looking is right
2357 where this function would put NAME.
2358
2359 Here are some examples of why using strcmp to sort is a bad idea:
2360
2361 Whitespace example:
2362
2363 Say your partial symtab contains: "foo<char *>", "goo". Then, if
2364 we try to do a search for "foo<char*>", strcmp will locate this
2365 after "foo<char *>" and before "goo". Then lookup_partial_symbol
2366 will start looking at strings beginning with "goo", and will never
2367 see the correct match of "foo<char *>".
2368
2369 Parenthesis example:
2370
2371 In practice, this is less like to be an issue, but I'll give it a
2372 shot. Let's assume that '$' is a legitimate character to occur in
2373 symbols. (Which may well even be the case on some systems.) Then
2374 say that the partial symbol table contains "foo$" and "foo(int)".
2375 strcmp will put them in this order, since '$' < '('. Now, if the
2376 user searches for "foo", then strcmp will sort "foo" before "foo$".
2377 Then lookup_partial_symbol will notice that strcmp_iw("foo$",
2378 "foo") is false, so it won't proceed to the actual match of
2379 "foo(int)" with "foo". */
2380
2381 int
2382 strcmp_iw_ordered (const char *string1, const char *string2)
2383 {
2384 while ((*string1 != '\0') && (*string2 != '\0'))
2385 {
2386 while (isspace (*string1))
2387 {
2388 string1++;
2389 }
2390 while (isspace (*string2))
2391 {
2392 string2++;
2393 }
2394 if (*string1 != *string2)
2395 {
2396 break;
2397 }
2398 if (*string1 != '\0')
2399 {
2400 string1++;
2401 string2++;
2402 }
2403 }
2404
2405 switch (*string1)
2406 {
2407 /* Characters are non-equal unless they're both '\0'; we want to
2408 make sure we get the comparison right according to our
2409 comparison in the cases where one of them is '\0' or '('. */
2410 case '\0':
2411 if (*string2 == '\0')
2412 return 0;
2413 else
2414 return -1;
2415 case '(':
2416 if (*string2 == '\0')
2417 return 1;
2418 else
2419 return -1;
2420 default:
2421 if (*string2 == '(')
2422 return 1;
2423 else
2424 return *string1 - *string2;
2425 }
2426 }
2427
2428 /* A simple comparison function with opposite semantics to strcmp. */
2429
2430 int
2431 streq (const char *lhs, const char *rhs)
2432 {
2433 return !strcmp (lhs, rhs);
2434 }
2435 \f
2436
2437 /*
2438 ** subset_compare()
2439 ** Answer whether string_to_compare is a full or partial match to
2440 ** template_string. The partial match must be in sequence starting
2441 ** at index 0.
2442 */
2443 int
2444 subset_compare (char *string_to_compare, char *template_string)
2445 {
2446 int match;
2447 if (template_string != (char *) NULL && string_to_compare != (char *) NULL
2448 && strlen (string_to_compare) <= strlen (template_string))
2449 match =
2450 (strncmp
2451 (template_string, string_to_compare, strlen (string_to_compare)) == 0);
2452 else
2453 match = 0;
2454 return match;
2455 }
2456
2457
2458 static void pagination_on_command (char *arg, int from_tty);
2459 static void
2460 pagination_on_command (char *arg, int from_tty)
2461 {
2462 pagination_enabled = 1;
2463 }
2464
2465 static void pagination_on_command (char *arg, int from_tty);
2466 static void
2467 pagination_off_command (char *arg, int from_tty)
2468 {
2469 pagination_enabled = 0;
2470 }
2471 \f
2472
2473 void
2474 initialize_utils (void)
2475 {
2476 struct cmd_list_element *c;
2477
2478 c = add_set_cmd ("width", class_support, var_uinteger,
2479 (char *) &chars_per_line,
2480 "Set number of characters gdb thinks are in a line.",
2481 &setlist);
2482 add_show_from_set (c, &showlist);
2483 set_cmd_sfunc (c, set_width_command);
2484
2485 add_show_from_set
2486 (add_set_cmd ("height", class_support,
2487 var_uinteger, (char *) &lines_per_page,
2488 "Set number of lines gdb thinks are in a page.", &setlist),
2489 &showlist);
2490
2491 init_page_info ();
2492
2493 /* If the output is not a terminal, don't paginate it. */
2494 if (!ui_file_isatty (gdb_stdout))
2495 lines_per_page = UINT_MAX;
2496
2497 set_width_command ((char *) NULL, 0, c);
2498
2499 add_show_from_set
2500 (add_set_cmd ("demangle", class_support, var_boolean,
2501 (char *) &demangle,
2502 "Set demangling of encoded C++/ObjC names when displaying symbols.",
2503 &setprintlist), &showprintlist);
2504
2505 add_show_from_set
2506 (add_set_cmd ("pagination", class_support,
2507 var_boolean, (char *) &pagination_enabled,
2508 "Set state of pagination.", &setlist), &showlist);
2509
2510 if (xdb_commands)
2511 {
2512 add_com ("am", class_support, pagination_on_command,
2513 "Enable pagination");
2514 add_com ("sm", class_support, pagination_off_command,
2515 "Disable pagination");
2516 }
2517
2518 add_show_from_set
2519 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2520 (char *) &sevenbit_strings,
2521 "Set printing of 8-bit characters in strings as \\nnn.",
2522 &setprintlist), &showprintlist);
2523
2524 add_show_from_set
2525 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2526 (char *) &asm_demangle,
2527 "Set demangling of C++/ObjC names in disassembly listings.",
2528 &setprintlist), &showprintlist);
2529 }
2530
2531 /* Machine specific function to handle SIGWINCH signal. */
2532
2533 #ifdef SIGWINCH_HANDLER_BODY
2534 SIGWINCH_HANDLER_BODY
2535 #endif
2536 /* print routines to handle variable size regs, etc. */
2537 /* temporary storage using circular buffer */
2538 #define NUMCELLS 16
2539 #define CELLSIZE 32
2540 static char *
2541 get_cell (void)
2542 {
2543 static char buf[NUMCELLS][CELLSIZE];
2544 static int cell = 0;
2545 if (++cell >= NUMCELLS)
2546 cell = 0;
2547 return buf[cell];
2548 }
2549
2550 int
2551 strlen_paddr (void)
2552 {
2553 return (TARGET_ADDR_BIT / 8 * 2);
2554 }
2555
2556 char *
2557 paddr (CORE_ADDR addr)
2558 {
2559 return phex (addr, TARGET_ADDR_BIT / 8);
2560 }
2561
2562 char *
2563 paddr_nz (CORE_ADDR addr)
2564 {
2565 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2566 }
2567
2568 static void
2569 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2570 {
2571 /* steal code from valprint.c:print_decimal(). Should this worry
2572 about the real size of addr as the above does? */
2573 unsigned long temp[3];
2574 int i = 0;
2575 do
2576 {
2577 temp[i] = addr % (1000 * 1000 * 1000);
2578 addr /= (1000 * 1000 * 1000);
2579 i++;
2580 }
2581 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2582 switch (i)
2583 {
2584 case 1:
2585 sprintf (paddr_str, "%s%lu", sign, temp[0]);
2586 break;
2587 case 2:
2588 sprintf (paddr_str, "%s%lu%09lu", sign, temp[1], temp[0]);
2589 break;
2590 case 3:
2591 sprintf (paddr_str, "%s%lu%09lu%09lu", sign, temp[2], temp[1], temp[0]);
2592 break;
2593 default:
2594 internal_error (__FILE__, __LINE__,
2595 "failed internal consistency check");
2596 }
2597 }
2598
2599 char *
2600 paddr_u (CORE_ADDR addr)
2601 {
2602 char *paddr_str = get_cell ();
2603 decimal2str (paddr_str, "", addr);
2604 return paddr_str;
2605 }
2606
2607 char *
2608 paddr_d (LONGEST addr)
2609 {
2610 char *paddr_str = get_cell ();
2611 if (addr < 0)
2612 decimal2str (paddr_str, "-", -addr);
2613 else
2614 decimal2str (paddr_str, "", addr);
2615 return paddr_str;
2616 }
2617
2618 /* eliminate warning from compiler on 32-bit systems */
2619 static int thirty_two = 32;
2620
2621 char *
2622 phex (ULONGEST l, int sizeof_l)
2623 {
2624 char *str;
2625 switch (sizeof_l)
2626 {
2627 case 8:
2628 str = get_cell ();
2629 sprintf (str, "%08lx%08lx",
2630 (unsigned long) (l >> thirty_two),
2631 (unsigned long) (l & 0xffffffff));
2632 break;
2633 case 4:
2634 str = get_cell ();
2635 sprintf (str, "%08lx", (unsigned long) l);
2636 break;
2637 case 2:
2638 str = get_cell ();
2639 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2640 break;
2641 default:
2642 str = phex (l, sizeof (l));
2643 break;
2644 }
2645 return str;
2646 }
2647
2648 char *
2649 phex_nz (ULONGEST l, int sizeof_l)
2650 {
2651 char *str;
2652 switch (sizeof_l)
2653 {
2654 case 8:
2655 {
2656 unsigned long high = (unsigned long) (l >> thirty_two);
2657 str = get_cell ();
2658 if (high == 0)
2659 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2660 else
2661 sprintf (str, "%lx%08lx", high, (unsigned long) (l & 0xffffffff));
2662 break;
2663 }
2664 case 4:
2665 str = get_cell ();
2666 sprintf (str, "%lx", (unsigned long) l);
2667 break;
2668 case 2:
2669 str = get_cell ();
2670 sprintf (str, "%x", (unsigned short) (l & 0xffff));
2671 break;
2672 default:
2673 str = phex_nz (l, sizeof (l));
2674 break;
2675 }
2676 return str;
2677 }
2678
2679
2680 /* Convert a CORE_ADDR into a string. */
2681 const char *
2682 core_addr_to_string (const CORE_ADDR addr)
2683 {
2684 char *str = get_cell ();
2685 strcpy (str, "0x");
2686 strcat (str, phex (addr, sizeof (addr)));
2687 return str;
2688 }
2689
2690 const char *
2691 core_addr_to_string_nz (const CORE_ADDR addr)
2692 {
2693 char *str = get_cell ();
2694 strcpy (str, "0x");
2695 strcat (str, phex_nz (addr, sizeof (addr)));
2696 return str;
2697 }
2698
2699 /* Convert a string back into a CORE_ADDR. */
2700 CORE_ADDR
2701 string_to_core_addr (const char *my_string)
2702 {
2703 CORE_ADDR addr = 0;
2704 if (my_string[0] == '0' && tolower (my_string[1]) == 'x')
2705 {
2706 /* Assume that it is in decimal. */
2707 int i;
2708 for (i = 2; my_string[i] != '\0'; i++)
2709 {
2710 if (isdigit (my_string[i]))
2711 addr = (my_string[i] - '0') + (addr * 16);
2712 else if (isxdigit (my_string[i]))
2713 addr = (tolower (my_string[i]) - 'a' + 0xa) + (addr * 16);
2714 else
2715 internal_error (__FILE__, __LINE__, "invalid hex");
2716 }
2717 }
2718 else
2719 {
2720 /* Assume that it is in decimal. */
2721 int i;
2722 for (i = 0; my_string[i] != '\0'; i++)
2723 {
2724 if (isdigit (my_string[i]))
2725 addr = (my_string[i] - '0') + (addr * 10);
2726 else
2727 internal_error (__FILE__, __LINE__, "invalid decimal");
2728 }
2729 }
2730 return addr;
2731 }
2732
2733 char *
2734 gdb_realpath (const char *filename)
2735 {
2736 /* Method 1: The system has a compile time upper bound on a filename
2737 path. Use that and realpath() to canonicalize the name. This is
2738 the most common case. Note that, if there isn't a compile time
2739 upper bound, you want to avoid realpath() at all costs. */
2740 #if defined(HAVE_REALPATH)
2741 {
2742 # if defined (PATH_MAX)
2743 char buf[PATH_MAX];
2744 # define USE_REALPATH
2745 # elif defined (MAXPATHLEN)
2746 char buf[MAXPATHLEN];
2747 # define USE_REALPATH
2748 # endif
2749 # if defined (USE_REALPATH)
2750 const char *rp = realpath (filename, buf);
2751 if (rp == NULL)
2752 rp = filename;
2753 return xstrdup (rp);
2754 # endif
2755 }
2756 #endif /* HAVE_REALPATH */
2757
2758 /* Method 2: The host system (i.e., GNU) has the function
2759 canonicalize_file_name() which malloc's a chunk of memory and
2760 returns that, use that. */
2761 #if defined(HAVE_CANONICALIZE_FILE_NAME)
2762 {
2763 char *rp = canonicalize_file_name (filename);
2764 if (rp == NULL)
2765 return xstrdup (filename);
2766 else
2767 return rp;
2768 }
2769 #endif
2770
2771 /* FIXME: cagney/2002-11-13:
2772
2773 Method 2a: Use realpath() with a NULL buffer. Some systems, due
2774 to the problems described in in method 3, have modified their
2775 realpath() implementation so that it will allocate a buffer when
2776 NULL is passed in. Before this can be used, though, some sort of
2777 configure time test would need to be added. Otherwize the code
2778 will likely core dump. */
2779
2780 /* Method 3: Now we're getting desperate! The system doesn't have a
2781 compile time buffer size and no alternative function. Query the
2782 OS, using pathconf(), for the buffer limit. Care is needed
2783 though, some systems do not limit PATH_MAX (return -1 for
2784 pathconf()) making it impossible to pass a correctly sized buffer
2785 to realpath() (it could always overflow). On those systems, we
2786 skip this. */
2787 #if defined (HAVE_REALPATH) && defined (HAVE_UNISTD_H) && defined(HAVE_ALLOCA)
2788 {
2789 /* Find out the max path size. */
2790 long path_max = pathconf ("/", _PC_PATH_MAX);
2791 if (path_max > 0)
2792 {
2793 /* PATH_MAX is bounded. */
2794 char *buf = alloca (path_max);
2795 char *rp = realpath (filename, buf);
2796 return xstrdup (rp ? rp : filename);
2797 }
2798 }
2799 #endif
2800
2801 /* This system is a lost cause, just dup the buffer. */
2802 return xstrdup (filename);
2803 }
2804
2805 /* Return a copy of FILENAME, with its directory prefix canonicalized
2806 by gdb_realpath. */
2807
2808 char *
2809 xfullpath (const char *filename)
2810 {
2811 const char *base_name = lbasename (filename);
2812 char *dir_name;
2813 char *real_path;
2814 char *result;
2815
2816 /* Extract the basename of filename, and return immediately
2817 a copy of filename if it does not contain any directory prefix. */
2818 if (base_name == filename)
2819 return xstrdup (filename);
2820
2821 dir_name = alloca ((size_t) (base_name - filename + 2));
2822 /* Allocate enough space to store the dir_name + plus one extra
2823 character sometimes needed under Windows (see below), and
2824 then the closing \000 character */
2825 strncpy (dir_name, filename, base_name - filename);
2826 dir_name[base_name - filename] = '\000';
2827
2828 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
2829 /* We need to be careful when filename is of the form 'd:foo', which
2830 is equivalent of d:./foo, which is totally different from d:/foo. */
2831 if (strlen (dir_name) == 2 && isalpha (dir_name[0]) && dir_name[1] == ':')
2832 {
2833 dir_name[2] = '.';
2834 dir_name[3] = '\000';
2835 }
2836 #endif
2837
2838 /* Canonicalize the directory prefix, and build the resulting
2839 filename. If the dirname realpath already contains an ending
2840 directory separator, avoid doubling it. */
2841 real_path = gdb_realpath (dir_name);
2842 if (IS_DIR_SEPARATOR (real_path[strlen (real_path) - 1]))
2843 result = concat (real_path, base_name, NULL);
2844 else
2845 result = concat (real_path, SLASH_STRING, base_name, NULL);
2846
2847 xfree (real_path);
2848 return result;
2849 }
2850
2851
2852 /* This is the 32-bit CRC function used by the GNU separate debug
2853 facility. An executable may contain a section named
2854 .gnu_debuglink, which holds the name of a separate executable file
2855 containing its debug info, and a checksum of that file's contents,
2856 computed using this function. */
2857 unsigned long
2858 gnu_debuglink_crc32 (unsigned long crc, unsigned char *buf, size_t len)
2859 {
2860 static const unsigned long crc32_table[256] = {
2861 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
2862 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
2863 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
2864 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
2865 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
2866 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
2867 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
2868 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
2869 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
2870 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
2871 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
2872 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
2873 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
2874 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
2875 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
2876 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
2877 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
2878 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
2879 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
2880 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
2881 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
2882 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
2883 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
2884 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
2885 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
2886 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
2887 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
2888 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
2889 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
2890 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
2891 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
2892 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
2893 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
2894 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
2895 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
2896 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
2897 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
2898 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
2899 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
2900 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
2901 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
2902 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
2903 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
2904 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
2905 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
2906 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
2907 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
2908 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
2909 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
2910 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
2911 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
2912 0x2d02ef8d
2913 };
2914 unsigned char *end;
2915
2916 crc = ~crc & 0xffffffff;
2917 for (end = buf + len; buf < end; ++buf)
2918 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
2919 return ~crc & 0xffffffff;;
2920 }