]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/utils.c
import gdb-2000-01-31 snapshot
[thirdparty/binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 89, 90, 91, 92, 95, 96, 1998 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_string.h"
24 #include "event-top.h"
25
26 #ifdef HAVE_CURSES_H
27 #include <curses.h>
28 #endif
29 #ifdef HAVE_TERM_H
30 #include <term.h>
31 #endif
32
33 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
34 #ifdef reg
35 #undef reg
36 #endif
37
38 #include "signals.h"
39 #include "gdbcmd.h"
40 #include "serial.h"
41 #include "bfd.h"
42 #include "target.h"
43 #include "demangle.h"
44 #include "expression.h"
45 #include "language.h"
46 #include "annotate.h"
47
48 #include <readline/readline.h>
49
50 #undef XMALLOC
51 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
52
53 /* readline defines this. */
54 #undef savestring
55
56 void (*error_begin_hook) PARAMS ((void));
57
58 /* Holds the last error message issued by gdb */
59
60 static GDB_FILE *gdb_lasterr;
61
62 /* Prototypes for local functions */
63
64 static void vfprintf_maybe_filtered PARAMS ((GDB_FILE *, const char *,
65 va_list, int));
66
67 static void fputs_maybe_filtered PARAMS ((const char *, GDB_FILE *, int));
68
69 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
70 static void malloc_botch PARAMS ((void));
71 #endif
72
73 static void
74 prompt_for_continue PARAMS ((void));
75
76 static void
77 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
78
79 static void
80 set_width PARAMS ((void));
81
82 #ifndef GDB_FILE_ISATTY
83 #define GDB_FILE_ISATTY(GDB_FILE_PTR) (gdb_file_isatty(GDB_FILE_PTR))
84 #endif
85
86 /* Chain of cleanup actions established with make_cleanup,
87 to be executed if an error happens. */
88
89 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
90 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
91 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
92 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
93 /* cleaned up on each error from within an execution command */
94 static struct cleanup *exec_error_cleanup_chain;
95
96 /* Pointer to what is left to do for an execution command after the
97 target stops. Used only in asynchronous mode, by targets that
98 support async execution. The finish and until commands use it. So
99 does the target extended-remote command. */
100 struct continuation *cmd_continuation;
101 struct continuation *intermediate_continuation;
102
103 /* Nonzero if we have job control. */
104
105 int job_control;
106
107 /* Nonzero means a quit has been requested. */
108
109 int quit_flag;
110
111 /* Nonzero means quit immediately if Control-C is typed now, rather
112 than waiting until QUIT is executed. Be careful in setting this;
113 code which executes with immediate_quit set has to be very careful
114 about being able to deal with being interrupted at any time. It is
115 almost always better to use QUIT; the only exception I can think of
116 is being able to quit out of a system call (using EINTR loses if
117 the SIGINT happens between the previous QUIT and the system call).
118 To immediately quit in the case in which a SIGINT happens between
119 the previous QUIT and setting immediate_quit (desirable anytime we
120 expect to block), call QUIT after setting immediate_quit. */
121
122 int immediate_quit;
123
124 /* Nonzero means that encoded C++ names should be printed out in their
125 C++ form rather than raw. */
126
127 int demangle = 1;
128
129 /* Nonzero means that encoded C++ names should be printed out in their
130 C++ form even in assembler language displays. If this is set, but
131 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
132
133 int asm_demangle = 0;
134
135 /* Nonzero means that strings with character values >0x7F should be printed
136 as octal escapes. Zero means just print the value (e.g. it's an
137 international character, and the terminal or window can cope.) */
138
139 int sevenbit_strings = 0;
140
141 /* String to be printed before error messages, if any. */
142
143 char *error_pre_print;
144
145 /* String to be printed before quit messages, if any. */
146
147 char *quit_pre_print;
148
149 /* String to be printed before warning messages, if any. */
150
151 char *warning_pre_print = "\nwarning: ";
152
153 int pagination_enabled = 1;
154 \f
155
156 /* Add a new cleanup to the cleanup_chain,
157 and return the previous chain pointer
158 to be passed later to do_cleanups or discard_cleanups.
159 Args are FUNCTION to clean up with, and ARG to pass to it. */
160
161 struct cleanup *
162 make_cleanup (function, arg)
163 void (*function) PARAMS ((PTR));
164 PTR arg;
165 {
166 return make_my_cleanup (&cleanup_chain, function, arg);
167 }
168
169 struct cleanup *
170 make_final_cleanup (function, arg)
171 void (*function) PARAMS ((PTR));
172 PTR arg;
173 {
174 return make_my_cleanup (&final_cleanup_chain, function, arg);
175 }
176
177 struct cleanup *
178 make_run_cleanup (function, arg)
179 void (*function) PARAMS ((PTR));
180 PTR arg;
181 {
182 return make_my_cleanup (&run_cleanup_chain, function, arg);
183 }
184
185 struct cleanup *
186 make_exec_cleanup (function, arg)
187 void (*function) PARAMS ((PTR));
188 PTR arg;
189 {
190 return make_my_cleanup (&exec_cleanup_chain, function, arg);
191 }
192
193 struct cleanup *
194 make_exec_error_cleanup (function, arg)
195 void (*function) PARAMS ((PTR));
196 PTR arg;
197 {
198 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
199 }
200
201 static void
202 do_freeargv (arg)
203 void *arg;
204 {
205 freeargv ((char **) arg);
206 }
207
208 struct cleanup *
209 make_cleanup_freeargv (arg)
210 char **arg;
211 {
212 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
213 }
214
215 static void
216 do_gdb_file_delete (void *arg)
217 {
218 gdb_file_delete (arg);
219 }
220
221 struct cleanup *
222 make_cleanup_gdb_file_delete (struct gdb_file *arg)
223 {
224 return make_my_cleanup (&cleanup_chain, do_gdb_file_delete, arg);
225 }
226
227 struct cleanup *
228 make_my_cleanup (pmy_chain, function, arg)
229 struct cleanup **pmy_chain;
230 void (*function) PARAMS ((PTR));
231 PTR arg;
232 {
233 register struct cleanup *new
234 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
235 register struct cleanup *old_chain = *pmy_chain;
236
237 new->next = *pmy_chain;
238 new->function = function;
239 new->arg = arg;
240 *pmy_chain = new;
241
242 return old_chain;
243 }
244
245 /* Discard cleanups and do the actions they describe
246 until we get back to the point OLD_CHAIN in the cleanup_chain. */
247
248 void
249 do_cleanups (old_chain)
250 register struct cleanup *old_chain;
251 {
252 do_my_cleanups (&cleanup_chain, old_chain);
253 }
254
255 void
256 do_final_cleanups (old_chain)
257 register struct cleanup *old_chain;
258 {
259 do_my_cleanups (&final_cleanup_chain, old_chain);
260 }
261
262 void
263 do_run_cleanups (old_chain)
264 register struct cleanup *old_chain;
265 {
266 do_my_cleanups (&run_cleanup_chain, old_chain);
267 }
268
269 void
270 do_exec_cleanups (old_chain)
271 register struct cleanup *old_chain;
272 {
273 do_my_cleanups (&exec_cleanup_chain, old_chain);
274 }
275
276 void
277 do_exec_error_cleanups (old_chain)
278 register struct cleanup *old_chain;
279 {
280 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
281 }
282
283 void
284 do_my_cleanups (pmy_chain, old_chain)
285 register struct cleanup **pmy_chain;
286 register struct cleanup *old_chain;
287 {
288 register struct cleanup *ptr;
289 while ((ptr = *pmy_chain) != old_chain)
290 {
291 *pmy_chain = ptr->next; /* Do this first incase recursion */
292 (*ptr->function) (ptr->arg);
293 free (ptr);
294 }
295 }
296
297 /* Discard cleanups, not doing the actions they describe,
298 until we get back to the point OLD_CHAIN in the cleanup_chain. */
299
300 void
301 discard_cleanups (old_chain)
302 register struct cleanup *old_chain;
303 {
304 discard_my_cleanups (&cleanup_chain, old_chain);
305 }
306
307 void
308 discard_final_cleanups (old_chain)
309 register struct cleanup *old_chain;
310 {
311 discard_my_cleanups (&final_cleanup_chain, old_chain);
312 }
313
314 void
315 discard_exec_error_cleanups (old_chain)
316 register struct cleanup *old_chain;
317 {
318 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
319 }
320
321 void
322 discard_my_cleanups (pmy_chain, old_chain)
323 register struct cleanup **pmy_chain;
324 register struct cleanup *old_chain;
325 {
326 register struct cleanup *ptr;
327 while ((ptr = *pmy_chain) != old_chain)
328 {
329 *pmy_chain = ptr->next;
330 free ((PTR) ptr);
331 }
332 }
333
334 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
335 struct cleanup *
336 save_cleanups ()
337 {
338 return save_my_cleanups (&cleanup_chain);
339 }
340
341 struct cleanup *
342 save_final_cleanups ()
343 {
344 return save_my_cleanups (&final_cleanup_chain);
345 }
346
347 struct cleanup *
348 save_my_cleanups (pmy_chain)
349 struct cleanup **pmy_chain;
350 {
351 struct cleanup *old_chain = *pmy_chain;
352
353 *pmy_chain = 0;
354 return old_chain;
355 }
356
357 /* Restore the cleanup chain from a previously saved chain. */
358 void
359 restore_cleanups (chain)
360 struct cleanup *chain;
361 {
362 restore_my_cleanups (&cleanup_chain, chain);
363 }
364
365 void
366 restore_final_cleanups (chain)
367 struct cleanup *chain;
368 {
369 restore_my_cleanups (&final_cleanup_chain, chain);
370 }
371
372 void
373 restore_my_cleanups (pmy_chain, chain)
374 struct cleanup **pmy_chain;
375 struct cleanup *chain;
376 {
377 *pmy_chain = chain;
378 }
379
380 /* This function is useful for cleanups.
381 Do
382
383 foo = xmalloc (...);
384 old_chain = make_cleanup (free_current_contents, &foo);
385
386 to arrange to free the object thus allocated. */
387
388 void
389 free_current_contents (location)
390 char **location;
391 {
392 free (*location);
393 }
394
395 /* Provide a known function that does nothing, to use as a base for
396 for a possibly long chain of cleanups. This is useful where we
397 use the cleanup chain for handling normal cleanups as well as dealing
398 with cleanups that need to be done as a result of a call to error().
399 In such cases, we may not be certain where the first cleanup is, unless
400 we have a do-nothing one to always use as the base. */
401
402 /* ARGSUSED */
403 void
404 null_cleanup (arg)
405 PTR arg;
406 {
407 }
408
409 /* Add a continuation to the continuation list, the gloabl list
410 cmd_continuation. The new continuation will be added at the front.*/
411 void
412 add_continuation (continuation_hook, arg_list)
413 void (*continuation_hook) PARAMS ((struct continuation_arg *));
414 struct continuation_arg *arg_list;
415 {
416 struct continuation *continuation_ptr;
417
418 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
419 continuation_ptr->continuation_hook = continuation_hook;
420 continuation_ptr->arg_list = arg_list;
421 continuation_ptr->next = cmd_continuation;
422 cmd_continuation = continuation_ptr;
423 }
424
425 /* Walk down the cmd_continuation list, and execute all the
426 continuations. There is a problem though. In some cases new
427 continuations may be added while we are in the middle of this
428 loop. If this happens they will be added in the front, and done
429 before we have a chance of exhausting those that were already
430 there. We need to then save the beginning of the list in a pointer
431 and do the continuations from there on, instead of using the
432 global beginning of list as our iteration pointer.*/
433 void
434 do_all_continuations ()
435 {
436 struct continuation *continuation_ptr;
437 struct continuation *saved_continuation;
438
439 /* Copy the list header into another pointer, and set the global
440 list header to null, so that the global list can change as a side
441 effect of invoking the continuations and the processing of
442 the preexisting continuations will not be affected. */
443 continuation_ptr = cmd_continuation;
444 cmd_continuation = NULL;
445
446 /* Work now on the list we have set aside. */
447 while (continuation_ptr)
448 {
449 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
450 saved_continuation = continuation_ptr;
451 continuation_ptr = continuation_ptr->next;
452 free (saved_continuation);
453 }
454 }
455
456 /* Walk down the cmd_continuation list, and get rid of all the
457 continuations. */
458 void
459 discard_all_continuations ()
460 {
461 struct continuation *continuation_ptr;
462
463 while (cmd_continuation)
464 {
465 continuation_ptr = cmd_continuation;
466 cmd_continuation = continuation_ptr->next;
467 free (continuation_ptr);
468 }
469 }
470
471 /* Add a continuation to the continuation list, the gloabl list
472 intermediate_continuation. The new continuation will be added at the front.*/
473 void
474 add_intermediate_continuation (continuation_hook, arg_list)
475 void (*continuation_hook) PARAMS ((struct continuation_arg *));
476 struct continuation_arg *arg_list;
477 {
478 struct continuation *continuation_ptr;
479
480 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
481 continuation_ptr->continuation_hook = continuation_hook;
482 continuation_ptr->arg_list = arg_list;
483 continuation_ptr->next = intermediate_continuation;
484 intermediate_continuation = continuation_ptr;
485 }
486
487 /* Walk down the cmd_continuation list, and execute all the
488 continuations. There is a problem though. In some cases new
489 continuations may be added while we are in the middle of this
490 loop. If this happens they will be added in the front, and done
491 before we have a chance of exhausting those that were already
492 there. We need to then save the beginning of the list in a pointer
493 and do the continuations from there on, instead of using the
494 global beginning of list as our iteration pointer.*/
495 void
496 do_all_intermediate_continuations ()
497 {
498 struct continuation *continuation_ptr;
499 struct continuation *saved_continuation;
500
501 /* Copy the list header into another pointer, and set the global
502 list header to null, so that the global list can change as a side
503 effect of invoking the continuations and the processing of
504 the preexisting continuations will not be affected. */
505 continuation_ptr = intermediate_continuation;
506 intermediate_continuation = NULL;
507
508 /* Work now on the list we have set aside. */
509 while (continuation_ptr)
510 {
511 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
512 saved_continuation = continuation_ptr;
513 continuation_ptr = continuation_ptr->next;
514 free (saved_continuation);
515 }
516 }
517
518 /* Walk down the cmd_continuation list, and get rid of all the
519 continuations. */
520 void
521 discard_all_intermediate_continuations ()
522 {
523 struct continuation *continuation_ptr;
524
525 while (intermediate_continuation)
526 {
527 continuation_ptr = intermediate_continuation;
528 intermediate_continuation = continuation_ptr->next;
529 free (continuation_ptr);
530 }
531 }
532
533 \f
534
535 /* Print a warning message. Way to use this is to call warning_begin,
536 output the warning message (use unfiltered output to gdb_stderr),
537 ending in a newline. There is not currently a warning_end that you
538 call afterwards, but such a thing might be added if it is useful
539 for a GUI to separate warning messages from other output.
540
541 FIXME: Why do warnings use unfiltered output and errors filtered?
542 Is this anything other than a historical accident? */
543
544 void
545 warning_begin ()
546 {
547 target_terminal_ours ();
548 wrap_here (""); /* Force out any buffered output */
549 gdb_flush (gdb_stdout);
550 if (warning_pre_print)
551 fprintf_unfiltered (gdb_stderr, warning_pre_print);
552 }
553
554 /* Print a warning message.
555 The first argument STRING is the warning message, used as a fprintf string,
556 and the remaining args are passed as arguments to it.
557 The primary difference between warnings and errors is that a warning
558 does not force the return to command level. */
559
560 void
561 warning (const char *string,...)
562 {
563 va_list args;
564 va_start (args, string);
565 if (warning_hook)
566 (*warning_hook) (string, args);
567 else
568 {
569 warning_begin ();
570 vfprintf_unfiltered (gdb_stderr, string, args);
571 fprintf_unfiltered (gdb_stderr, "\n");
572 va_end (args);
573 }
574 }
575
576 /* Start the printing of an error message. Way to use this is to call
577 this, output the error message (use filtered output to gdb_stderr
578 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
579 in a newline, and then call return_to_top_level (RETURN_ERROR).
580 error() provides a convenient way to do this for the special case
581 that the error message can be formatted with a single printf call,
582 but this is more general. */
583 void
584 error_begin ()
585 {
586 if (error_begin_hook)
587 error_begin_hook ();
588
589 target_terminal_ours ();
590 wrap_here (""); /* Force out any buffered output */
591 gdb_flush (gdb_stdout);
592
593 annotate_error_begin ();
594
595 if (error_pre_print)
596 fprintf_filtered (gdb_stderr, error_pre_print);
597 }
598
599 /* Print an error message and return to command level.
600 The first argument STRING is the error message, used as a fprintf string,
601 and the remaining args are passed as arguments to it. */
602
603 NORETURN void
604 verror (const char *string, va_list args)
605 {
606 char *err_string;
607 struct cleanup *err_string_cleanup;
608 /* FIXME: cagney/1999-11-10: All error calls should come here.
609 Unfortunatly some code uses the sequence: error_begin(); print
610 error message; return_to_top_level. That code should be
611 flushed. */
612 error_begin ();
613 /* NOTE: It's tempting to just do the following...
614 vfprintf_filtered (gdb_stderr, string, args);
615 and then follow with a similar looking statement to cause the message
616 to also go to gdb_lasterr. But if we do this, we'll be traversing the
617 va_list twice which works on some platforms and fails miserably on
618 others. */
619 /* Save it as the last error */
620 gdb_file_rewind (gdb_lasterr);
621 vfprintf_filtered (gdb_lasterr, string, args);
622 /* Retrieve the last error and print it to gdb_stderr */
623 err_string = error_last_message ();
624 err_string_cleanup = make_cleanup (free, err_string);
625 fputs_filtered (err_string, gdb_stderr);
626 fprintf_filtered (gdb_stderr, "\n");
627 do_cleanups (err_string_cleanup);
628 return_to_top_level (RETURN_ERROR);
629 }
630
631 NORETURN void
632 error (const char *string,...)
633 {
634 va_list args;
635 va_start (args, string);
636 verror (string, args);
637 va_end (args);
638 }
639
640 NORETURN void
641 error_stream (GDB_FILE *stream)
642 {
643 long size;
644 char *msg = gdb_file_xstrdup (stream, &size);
645 make_cleanup (free, msg);
646 error ("%s", msg);
647 }
648
649 /* Get the last error message issued by gdb */
650
651 char *
652 error_last_message (void)
653 {
654 long len;
655 return gdb_file_xstrdup (gdb_lasterr, &len);
656 }
657
658 /* This is to be called by main() at the very beginning */
659
660 void
661 error_init (void)
662 {
663 gdb_lasterr = mem_fileopen ();
664 }
665
666 /* Print a message reporting an internal error. Ask the user if they
667 want to continue, dump core, or just exit. */
668
669 NORETURN void
670 internal_verror (const char *fmt, va_list ap)
671 {
672 static char msg[] = "Internal GDB error: recursive internal error.\n";
673 static int dejavu = 0;
674 int continue_p;
675 int dump_core_p;
676
677 /* don't allow infinite error recursion. */
678 switch (dejavu)
679 {
680 case 0:
681 dejavu = 1;
682 break;
683 case 1:
684 dejavu = 2;
685 fputs_unfiltered (msg, gdb_stderr);
686 abort ();
687 default:
688 dejavu = 3;
689 write (STDERR_FILENO, msg, sizeof (msg));
690 exit (1);
691 }
692
693 /* Try to get the message out */
694 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
695 vfprintf_unfiltered (gdb_stderr, fmt, ap);
696 fputs_unfiltered ("\n", gdb_stderr);
697
698 /* Default (no case) is to quit GDB. When in batch mode this
699 lessens the likelhood of GDB going into an infinate loop. */
700 continue_p = query ("\
701 An internal GDB error was detected. This may make make further\n\
702 debugging unreliable. Continue this debugging session? ");
703
704 /* Default (no case) is to not dump core. Lessen the chance of GDB
705 leaving random core files around. */
706 dump_core_p = query ("\
707 Create a core file containing the current state of GDB? ");
708
709 if (continue_p)
710 {
711 if (dump_core_p)
712 {
713 if (fork () == 0)
714 abort ();
715 }
716 }
717 else
718 {
719 if (dump_core_p)
720 abort ();
721 else
722 exit (1);
723 }
724
725 dejavu = 0;
726 return_to_top_level (RETURN_ERROR);
727 }
728
729 NORETURN void
730 internal_error (char *string, ...)
731 {
732 va_list ap;
733 va_start (ap, string);
734 internal_verror (string, ap);
735 va_end (ap);
736 }
737
738 /* The strerror() function can return NULL for errno values that are
739 out of range. Provide a "safe" version that always returns a
740 printable string. */
741
742 char *
743 safe_strerror (errnum)
744 int errnum;
745 {
746 char *msg;
747 static char buf[32];
748
749 if ((msg = strerror (errnum)) == NULL)
750 {
751 sprintf (buf, "(undocumented errno %d)", errnum);
752 msg = buf;
753 }
754 return (msg);
755 }
756
757 /* The strsignal() function can return NULL for signal values that are
758 out of range. Provide a "safe" version that always returns a
759 printable string. */
760
761 char *
762 safe_strsignal (signo)
763 int signo;
764 {
765 char *msg;
766 static char buf[32];
767
768 if ((msg = strsignal (signo)) == NULL)
769 {
770 sprintf (buf, "(undocumented signal %d)", signo);
771 msg = buf;
772 }
773 return (msg);
774 }
775
776
777 /* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781 NORETURN void
782 perror_with_name (string)
783 char *string;
784 {
785 char *err;
786 char *combined;
787
788 err = safe_strerror (errno);
789 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
790 strcpy (combined, string);
791 strcat (combined, ": ");
792 strcat (combined, err);
793
794 /* I understand setting these is a matter of taste. Still, some people
795 may clear errno but not know about bfd_error. Doing this here is not
796 unreasonable. */
797 bfd_set_error (bfd_error_no_error);
798 errno = 0;
799
800 error ("%s.", combined);
801 }
802
803 /* Print the system error message for ERRCODE, and also mention STRING
804 as the file name for which the error was encountered. */
805
806 void
807 print_sys_errmsg (string, errcode)
808 char *string;
809 int errcode;
810 {
811 char *err;
812 char *combined;
813
814 err = safe_strerror (errcode);
815 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
816 strcpy (combined, string);
817 strcat (combined, ": ");
818 strcat (combined, err);
819
820 /* We want anything which was printed on stdout to come out first, before
821 this message. */
822 gdb_flush (gdb_stdout);
823 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
824 }
825
826 /* Control C eventually causes this to be called, at a convenient time. */
827
828 void
829 quit ()
830 {
831 serial_t gdb_stdout_serial = serial_fdopen (1);
832
833 target_terminal_ours ();
834
835 /* We want all output to appear now, before we print "Quit". We
836 have 3 levels of buffering we have to flush (it's possible that
837 some of these should be changed to flush the lower-level ones
838 too): */
839
840 /* 1. The _filtered buffer. */
841 wrap_here ((char *) 0);
842
843 /* 2. The stdio buffer. */
844 gdb_flush (gdb_stdout);
845 gdb_flush (gdb_stderr);
846
847 /* 3. The system-level buffer. */
848 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
849 SERIAL_UN_FDOPEN (gdb_stdout_serial);
850
851 annotate_error_begin ();
852
853 /* Don't use *_filtered; we don't want to prompt the user to continue. */
854 if (quit_pre_print)
855 fprintf_unfiltered (gdb_stderr, quit_pre_print);
856
857 #ifdef __MSDOS__
858 /* No steenking SIGINT will ever be coming our way when the
859 program is resumed. Don't lie. */
860 fprintf_unfiltered (gdb_stderr, "Quit\n");
861 #else
862 if (job_control
863 /* If there is no terminal switching for this target, then we can't
864 possibly get screwed by the lack of job control. */
865 || current_target.to_terminal_ours == NULL)
866 fprintf_unfiltered (gdb_stderr, "Quit\n");
867 else
868 fprintf_unfiltered (gdb_stderr,
869 "Quit (expect signal SIGINT when the program is resumed)\n");
870 #endif
871 return_to_top_level (RETURN_QUIT);
872 }
873
874
875 #if defined(_MSC_VER) /* should test for wingdb instead? */
876
877 /*
878 * Windows translates all keyboard and mouse events
879 * into a message which is appended to the message
880 * queue for the process.
881 */
882
883 void
884 notice_quit ()
885 {
886 int k = win32pollquit ();
887 if (k == 1)
888 quit_flag = 1;
889 else if (k == 2)
890 immediate_quit = 1;
891 }
892
893 #else /* !defined(_MSC_VER) */
894
895 void
896 notice_quit ()
897 {
898 /* Done by signals */
899 }
900
901 #endif /* !defined(_MSC_VER) */
902
903 /* Control C comes here */
904 void
905 request_quit (signo)
906 int signo;
907 {
908 quit_flag = 1;
909 /* Restore the signal handler. Harmless with BSD-style signals, needed
910 for System V-style signals. So just always do it, rather than worrying
911 about USG defines and stuff like that. */
912 signal (signo, request_quit);
913
914 #ifdef REQUEST_QUIT
915 REQUEST_QUIT;
916 #else
917 if (immediate_quit)
918 quit ();
919 #endif
920 }
921 \f
922 /* Memory management stuff (malloc friends). */
923
924 /* Make a substitute size_t for non-ANSI compilers. */
925
926 #ifndef HAVE_STDDEF_H
927 #ifndef size_t
928 #define size_t unsigned int
929 #endif
930 #endif
931
932 #if !defined (USE_MMALLOC)
933
934 void *
935 mcalloc (void *md, size_t number, size_t size)
936 {
937 return calloc (number, size);
938 }
939
940 PTR
941 mmalloc (md, size)
942 PTR md;
943 size_t size;
944 {
945 return malloc (size);
946 }
947
948 PTR
949 mrealloc (md, ptr, size)
950 PTR md;
951 PTR ptr;
952 size_t size;
953 {
954 if (ptr == 0) /* Guard against old realloc's */
955 return malloc (size);
956 else
957 return realloc (ptr, size);
958 }
959
960 void
961 mfree (md, ptr)
962 PTR md;
963 PTR ptr;
964 {
965 free (ptr);
966 }
967
968 #endif /* USE_MMALLOC */
969
970 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
971
972 void
973 init_malloc (md)
974 PTR md;
975 {
976 }
977
978 #else /* Have mmalloc and want corruption checking */
979
980 static void
981 malloc_botch ()
982 {
983 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
984 abort ();
985 }
986
987 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
988 by MD, to detect memory corruption. Note that MD may be NULL to specify
989 the default heap that grows via sbrk.
990
991 Note that for freshly created regions, we must call mmcheckf prior to any
992 mallocs in the region. Otherwise, any region which was allocated prior to
993 installing the checking hooks, which is later reallocated or freed, will
994 fail the checks! The mmcheck function only allows initial hooks to be
995 installed before the first mmalloc. However, anytime after we have called
996 mmcheck the first time to install the checking hooks, we can call it again
997 to update the function pointer to the memory corruption handler.
998
999 Returns zero on failure, non-zero on success. */
1000
1001 #ifndef MMCHECK_FORCE
1002 #define MMCHECK_FORCE 0
1003 #endif
1004
1005 void
1006 init_malloc (md)
1007 PTR md;
1008 {
1009 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1010 {
1011 /* Don't use warning(), which relies on current_target being set
1012 to something other than dummy_target, until after
1013 initialize_all_files(). */
1014
1015 fprintf_unfiltered
1016 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1017 fprintf_unfiltered
1018 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1019 }
1020
1021 mmtrace ();
1022 }
1023
1024 #endif /* Have mmalloc and want corruption checking */
1025
1026 /* Called when a memory allocation fails, with the number of bytes of
1027 memory requested in SIZE. */
1028
1029 NORETURN void
1030 nomem (size)
1031 long size;
1032 {
1033 if (size > 0)
1034 {
1035 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
1036 }
1037 else
1038 {
1039 internal_error ("virtual memory exhausted.");
1040 }
1041 }
1042
1043 /* Like mmalloc but get error if no storage available, and protect against
1044 the caller wanting to allocate zero bytes. Whether to return NULL for
1045 a zero byte request, or translate the request into a request for one
1046 byte of zero'd storage, is a religious issue. */
1047
1048 PTR
1049 xmmalloc (md, size)
1050 PTR md;
1051 long size;
1052 {
1053 register PTR val;
1054
1055 if (size == 0)
1056 {
1057 val = NULL;
1058 }
1059 else if ((val = mmalloc (md, size)) == NULL)
1060 {
1061 nomem (size);
1062 }
1063 return (val);
1064 }
1065
1066 /* Like mrealloc but get error if no storage available. */
1067
1068 PTR
1069 xmrealloc (md, ptr, size)
1070 PTR md;
1071 PTR ptr;
1072 long size;
1073 {
1074 register PTR val;
1075
1076 if (ptr != NULL)
1077 {
1078 val = mrealloc (md, ptr, size);
1079 }
1080 else
1081 {
1082 val = mmalloc (md, size);
1083 }
1084 if (val == NULL)
1085 {
1086 nomem (size);
1087 }
1088 return (val);
1089 }
1090
1091 /* Like malloc but get error if no storage available, and protect against
1092 the caller wanting to allocate zero bytes. */
1093
1094 PTR
1095 xmalloc (size)
1096 size_t size;
1097 {
1098 return (xmmalloc ((PTR) NULL, size));
1099 }
1100
1101 /* Like calloc but get error if no storage available */
1102
1103 PTR
1104 xcalloc (size_t number, size_t size)
1105 {
1106 void *mem = mcalloc (NULL, number, size);
1107 if (mem == NULL)
1108 nomem (number * size);
1109 return mem;
1110 }
1111
1112 /* Like mrealloc but get error if no storage available. */
1113
1114 PTR
1115 xrealloc (ptr, size)
1116 PTR ptr;
1117 size_t size;
1118 {
1119 return (xmrealloc ((PTR) NULL, ptr, size));
1120 }
1121 \f
1122
1123 /* My replacement for the read system call.
1124 Used like `read' but keeps going if `read' returns too soon. */
1125
1126 int
1127 myread (desc, addr, len)
1128 int desc;
1129 char *addr;
1130 int len;
1131 {
1132 register int val;
1133 int orglen = len;
1134
1135 while (len > 0)
1136 {
1137 val = read (desc, addr, len);
1138 if (val < 0)
1139 return val;
1140 if (val == 0)
1141 return orglen - len;
1142 len -= val;
1143 addr += val;
1144 }
1145 return orglen;
1146 }
1147 \f
1148 /* Make a copy of the string at PTR with SIZE characters
1149 (and add a null character at the end in the copy).
1150 Uses malloc to get the space. Returns the address of the copy. */
1151
1152 char *
1153 savestring (ptr, size)
1154 const char *ptr;
1155 int size;
1156 {
1157 register char *p = (char *) xmalloc (size + 1);
1158 memcpy (p, ptr, size);
1159 p[size] = 0;
1160 return p;
1161 }
1162
1163 char *
1164 msavestring (md, ptr, size)
1165 PTR md;
1166 const char *ptr;
1167 int size;
1168 {
1169 register char *p = (char *) xmmalloc (md, size + 1);
1170 memcpy (p, ptr, size);
1171 p[size] = 0;
1172 return p;
1173 }
1174
1175 /* The "const" is so it compiles under DGUX (which prototypes strsave
1176 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1177 Doesn't real strsave return NULL if out of memory? */
1178 char *
1179 strsave (ptr)
1180 const char *ptr;
1181 {
1182 return savestring (ptr, strlen (ptr));
1183 }
1184
1185 char *
1186 mstrsave (md, ptr)
1187 PTR md;
1188 const char *ptr;
1189 {
1190 return (msavestring (md, ptr, strlen (ptr)));
1191 }
1192
1193 void
1194 print_spaces (n, file)
1195 register int n;
1196 register GDB_FILE *file;
1197 {
1198 fputs_unfiltered (n_spaces (n), file);
1199 }
1200
1201 /* Print a host address. */
1202
1203 void
1204 gdb_print_host_address (void *addr, struct gdb_file *stream)
1205 {
1206
1207 /* We could use the %p conversion specifier to fprintf if we had any
1208 way of knowing whether this host supports it. But the following
1209 should work on the Alpha and on 32 bit machines. */
1210
1211 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1212 }
1213
1214 /* Ask user a y-or-n question and return 1 iff answer is yes.
1215 Takes three args which are given to printf to print the question.
1216 The first, a control string, should end in "? ".
1217 It should not say how to answer, because we do that. */
1218
1219 /* VARARGS */
1220 int
1221 query (char *ctlstr,...)
1222 {
1223 va_list args;
1224 register int answer;
1225 register int ans2;
1226 int retval;
1227
1228 va_start (args, ctlstr);
1229
1230 if (query_hook)
1231 {
1232 return query_hook (ctlstr, args);
1233 }
1234
1235 /* Automatically answer "yes" if input is not from a terminal. */
1236 if (!input_from_terminal_p ())
1237 return 1;
1238 #ifdef MPW
1239 /* FIXME Automatically answer "yes" if called from MacGDB. */
1240 if (mac_app)
1241 return 1;
1242 #endif /* MPW */
1243
1244 while (1)
1245 {
1246 wrap_here (""); /* Flush any buffered output */
1247 gdb_flush (gdb_stdout);
1248
1249 if (annotation_level > 1)
1250 printf_filtered ("\n\032\032pre-query\n");
1251
1252 vfprintf_filtered (gdb_stdout, ctlstr, args);
1253 printf_filtered ("(y or n) ");
1254
1255 if (annotation_level > 1)
1256 printf_filtered ("\n\032\032query\n");
1257
1258 #ifdef MPW
1259 /* If not in MacGDB, move to a new line so the entered line doesn't
1260 have a prompt on the front of it. */
1261 if (!mac_app)
1262 fputs_unfiltered ("\n", gdb_stdout);
1263 #endif /* MPW */
1264
1265 wrap_here ("");
1266 gdb_flush (gdb_stdout);
1267
1268 #if defined(TUI)
1269 if (!tui_version || cmdWin == tuiWinWithFocus ())
1270 #endif
1271 answer = fgetc (stdin);
1272 #if defined(TUI)
1273 else
1274 answer = (unsigned char) tuiBufferGetc ();
1275
1276 #endif
1277 clearerr (stdin); /* in case of C-d */
1278 if (answer == EOF) /* C-d */
1279 {
1280 retval = 1;
1281 break;
1282 }
1283 /* Eat rest of input line, to EOF or newline */
1284 if ((answer != '\n') || (tui_version && answer != '\r'))
1285 do
1286 {
1287 #if defined(TUI)
1288 if (!tui_version || cmdWin == tuiWinWithFocus ())
1289 #endif
1290 ans2 = fgetc (stdin);
1291 #if defined(TUI)
1292 else
1293 ans2 = (unsigned char) tuiBufferGetc ();
1294 #endif
1295 clearerr (stdin);
1296 }
1297 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1298 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1299
1300 if (answer >= 'a')
1301 answer -= 040;
1302 if (answer == 'Y')
1303 {
1304 retval = 1;
1305 break;
1306 }
1307 if (answer == 'N')
1308 {
1309 retval = 0;
1310 break;
1311 }
1312 printf_filtered ("Please answer y or n.\n");
1313 }
1314
1315 if (annotation_level > 1)
1316 printf_filtered ("\n\032\032post-query\n");
1317 return retval;
1318 }
1319 \f
1320
1321 /* Parse a C escape sequence. STRING_PTR points to a variable
1322 containing a pointer to the string to parse. That pointer
1323 should point to the character after the \. That pointer
1324 is updated past the characters we use. The value of the
1325 escape sequence is returned.
1326
1327 A negative value means the sequence \ newline was seen,
1328 which is supposed to be equivalent to nothing at all.
1329
1330 If \ is followed by a null character, we return a negative
1331 value and leave the string pointer pointing at the null character.
1332
1333 If \ is followed by 000, we return 0 and leave the string pointer
1334 after the zeros. A value of 0 does not mean end of string. */
1335
1336 int
1337 parse_escape (string_ptr)
1338 char **string_ptr;
1339 {
1340 register int c = *(*string_ptr)++;
1341 switch (c)
1342 {
1343 case 'a':
1344 return 007; /* Bell (alert) char */
1345 case 'b':
1346 return '\b';
1347 case 'e': /* Escape character */
1348 return 033;
1349 case 'f':
1350 return '\f';
1351 case 'n':
1352 return '\n';
1353 case 'r':
1354 return '\r';
1355 case 't':
1356 return '\t';
1357 case 'v':
1358 return '\v';
1359 case '\n':
1360 return -2;
1361 case 0:
1362 (*string_ptr)--;
1363 return 0;
1364 case '^':
1365 c = *(*string_ptr)++;
1366 if (c == '\\')
1367 c = parse_escape (string_ptr);
1368 if (c == '?')
1369 return 0177;
1370 return (c & 0200) | (c & 037);
1371
1372 case '0':
1373 case '1':
1374 case '2':
1375 case '3':
1376 case '4':
1377 case '5':
1378 case '6':
1379 case '7':
1380 {
1381 register int i = c - '0';
1382 register int count = 0;
1383 while (++count < 3)
1384 {
1385 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1386 {
1387 i *= 8;
1388 i += c - '0';
1389 }
1390 else
1391 {
1392 (*string_ptr)--;
1393 break;
1394 }
1395 }
1396 return i;
1397 }
1398 default:
1399 return c;
1400 }
1401 }
1402 \f
1403 /* Print the character C on STREAM as part of the contents of a literal
1404 string whose delimiter is QUOTER. Note that this routine should only
1405 be call for printing things which are independent of the language
1406 of the program being debugged. */
1407
1408 static void printchar PARAMS ((int c, void (*do_fputs) (const char *, GDB_FILE*), void (*do_fprintf) (GDB_FILE*, const char *, ...), GDB_FILE *stream, int quoter));
1409
1410 static void
1411 printchar (c, do_fputs, do_fprintf, stream, quoter)
1412 int c;
1413 void (*do_fputs) PARAMS ((const char *, GDB_FILE*));
1414 void (*do_fprintf) PARAMS ((GDB_FILE*, const char *, ...));
1415 GDB_FILE *stream;
1416 int quoter;
1417 {
1418
1419 c &= 0xFF; /* Avoid sign bit follies */
1420
1421 if (c < 0x20 || /* Low control chars */
1422 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1423 (sevenbit_strings && c >= 0x80))
1424 { /* high order bit set */
1425 switch (c)
1426 {
1427 case '\n':
1428 do_fputs ("\\n", stream);
1429 break;
1430 case '\b':
1431 do_fputs ("\\b", stream);
1432 break;
1433 case '\t':
1434 do_fputs ("\\t", stream);
1435 break;
1436 case '\f':
1437 do_fputs ("\\f", stream);
1438 break;
1439 case '\r':
1440 do_fputs ("\\r", stream);
1441 break;
1442 case '\033':
1443 do_fputs ("\\e", stream);
1444 break;
1445 case '\007':
1446 do_fputs ("\\a", stream);
1447 break;
1448 default:
1449 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1450 break;
1451 }
1452 }
1453 else
1454 {
1455 if (c == '\\' || c == quoter)
1456 do_fputs ("\\", stream);
1457 do_fprintf (stream, "%c", c);
1458 }
1459 }
1460
1461 /* Print the character C on STREAM as part of the contents of a
1462 literal string whose delimiter is QUOTER. Note that these routines
1463 should only be call for printing things which are independent of
1464 the language of the program being debugged. */
1465
1466 void
1467 fputstr_filtered (str, quoter, stream)
1468 const char *str;
1469 int quoter;
1470 GDB_FILE *stream;
1471 {
1472 while (*str)
1473 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1474 }
1475
1476 void
1477 fputstr_unfiltered (str, quoter, stream)
1478 const char *str;
1479 int quoter;
1480 GDB_FILE *stream;
1481 {
1482 while (*str)
1483 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1484 }
1485
1486 void
1487 fputstrn_unfiltered (str, n, quoter, stream)
1488 const char *str;
1489 int n;
1490 int quoter;
1491 GDB_FILE *stream;
1492 {
1493 int i;
1494 for (i = 0; i < n; i++)
1495 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1496 }
1497
1498 \f
1499
1500 /* Number of lines per page or UINT_MAX if paging is disabled. */
1501 static unsigned int lines_per_page;
1502 /* Number of chars per line or UNIT_MAX if line folding is disabled. */
1503 static unsigned int chars_per_line;
1504 /* Current count of lines printed on this page, chars on this line. */
1505 static unsigned int lines_printed, chars_printed;
1506
1507 /* Buffer and start column of buffered text, for doing smarter word-
1508 wrapping. When someone calls wrap_here(), we start buffering output
1509 that comes through fputs_filtered(). If we see a newline, we just
1510 spit it out and forget about the wrap_here(). If we see another
1511 wrap_here(), we spit it out and remember the newer one. If we see
1512 the end of the line, we spit out a newline, the indent, and then
1513 the buffered output. */
1514
1515 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1516 are waiting to be output (they have already been counted in chars_printed).
1517 When wrap_buffer[0] is null, the buffer is empty. */
1518 static char *wrap_buffer;
1519
1520 /* Pointer in wrap_buffer to the next character to fill. */
1521 static char *wrap_pointer;
1522
1523 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1524 is non-zero. */
1525 static char *wrap_indent;
1526
1527 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1528 is not in effect. */
1529 static int wrap_column;
1530 \f
1531
1532 /* Inialize the lines and chars per page */
1533 void
1534 init_page_info ()
1535 {
1536 #if defined(TUI)
1537 if (tui_version && m_winPtrNotNull (cmdWin))
1538 {
1539 lines_per_page = cmdWin->generic.height;
1540 chars_per_line = cmdWin->generic.width;
1541 }
1542 else
1543 #endif
1544 {
1545 /* These defaults will be used if we are unable to get the correct
1546 values from termcap. */
1547 #if defined(__GO32__)
1548 lines_per_page = ScreenRows ();
1549 chars_per_line = ScreenCols ();
1550 #else
1551 lines_per_page = 24;
1552 chars_per_line = 80;
1553
1554 #if !defined (MPW) && !defined (_WIN32)
1555 /* No termcap under MPW, although might be cool to do something
1556 by looking at worksheet or console window sizes. */
1557 /* Initialize the screen height and width from termcap. */
1558 {
1559 char *termtype = getenv ("TERM");
1560
1561 /* Positive means success, nonpositive means failure. */
1562 int status;
1563
1564 /* 2048 is large enough for all known terminals, according to the
1565 GNU termcap manual. */
1566 char term_buffer[2048];
1567
1568 if (termtype)
1569 {
1570 status = tgetent (term_buffer, termtype);
1571 if (status > 0)
1572 {
1573 int val;
1574 int running_in_emacs = getenv ("EMACS") != NULL;
1575
1576 val = tgetnum ("li");
1577 if (val >= 0 && !running_in_emacs)
1578 lines_per_page = val;
1579 else
1580 /* The number of lines per page is not mentioned
1581 in the terminal description. This probably means
1582 that paging is not useful (e.g. emacs shell window),
1583 so disable paging. */
1584 lines_per_page = UINT_MAX;
1585
1586 val = tgetnum ("co");
1587 if (val >= 0)
1588 chars_per_line = val;
1589 }
1590 }
1591 }
1592 #endif /* MPW */
1593
1594 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1595
1596 /* If there is a better way to determine the window size, use it. */
1597 SIGWINCH_HANDLER (SIGWINCH);
1598 #endif
1599 #endif
1600 /* If the output is not a terminal, don't paginate it. */
1601 if (!GDB_FILE_ISATTY (gdb_stdout))
1602 lines_per_page = UINT_MAX;
1603 } /* the command_line_version */
1604 set_width ();
1605 }
1606
1607 static void
1608 set_width ()
1609 {
1610 if (chars_per_line == 0)
1611 init_page_info ();
1612
1613 if (!wrap_buffer)
1614 {
1615 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1616 wrap_buffer[0] = '\0';
1617 }
1618 else
1619 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1620 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1621 }
1622
1623 /* ARGSUSED */
1624 static void
1625 set_width_command (args, from_tty, c)
1626 char *args;
1627 int from_tty;
1628 struct cmd_list_element *c;
1629 {
1630 set_width ();
1631 }
1632
1633 /* Wait, so the user can read what's on the screen. Prompt the user
1634 to continue by pressing RETURN. */
1635
1636 static void
1637 prompt_for_continue ()
1638 {
1639 char *ignore;
1640 char cont_prompt[120];
1641
1642 if (annotation_level > 1)
1643 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1644
1645 strcpy (cont_prompt,
1646 "---Type <return> to continue, or q <return> to quit---");
1647 if (annotation_level > 1)
1648 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1649
1650 /* We must do this *before* we call gdb_readline, else it will eventually
1651 call us -- thinking that we're trying to print beyond the end of the
1652 screen. */
1653 reinitialize_more_filter ();
1654
1655 immediate_quit++;
1656 /* On a real operating system, the user can quit with SIGINT.
1657 But not on GO32.
1658
1659 'q' is provided on all systems so users don't have to change habits
1660 from system to system, and because telling them what to do in
1661 the prompt is more user-friendly than expecting them to think of
1662 SIGINT. */
1663 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1664 whereas control-C to gdb_readline will cause the user to get dumped
1665 out to DOS. */
1666 ignore = readline (cont_prompt);
1667
1668 if (annotation_level > 1)
1669 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1670
1671 if (ignore)
1672 {
1673 char *p = ignore;
1674 while (*p == ' ' || *p == '\t')
1675 ++p;
1676 if (p[0] == 'q')
1677 {
1678 if (!event_loop_p)
1679 request_quit (SIGINT);
1680 else
1681 async_request_quit (0);
1682 }
1683 free (ignore);
1684 }
1685 immediate_quit--;
1686
1687 /* Now we have to do this again, so that GDB will know that it doesn't
1688 need to save the ---Type <return>--- line at the top of the screen. */
1689 reinitialize_more_filter ();
1690
1691 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1692 }
1693
1694 /* Reinitialize filter; ie. tell it to reset to original values. */
1695
1696 void
1697 reinitialize_more_filter ()
1698 {
1699 lines_printed = 0;
1700 chars_printed = 0;
1701 }
1702
1703 /* Indicate that if the next sequence of characters overflows the line,
1704 a newline should be inserted here rather than when it hits the end.
1705 If INDENT is non-null, it is a string to be printed to indent the
1706 wrapped part on the next line. INDENT must remain accessible until
1707 the next call to wrap_here() or until a newline is printed through
1708 fputs_filtered().
1709
1710 If the line is already overfull, we immediately print a newline and
1711 the indentation, and disable further wrapping.
1712
1713 If we don't know the width of lines, but we know the page height,
1714 we must not wrap words, but should still keep track of newlines
1715 that were explicitly printed.
1716
1717 INDENT should not contain tabs, as that will mess up the char count
1718 on the next line. FIXME.
1719
1720 This routine is guaranteed to force out any output which has been
1721 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1722 used to force out output from the wrap_buffer. */
1723
1724 void
1725 wrap_here (indent)
1726 char *indent;
1727 {
1728 /* This should have been allocated, but be paranoid anyway. */
1729 if (!wrap_buffer)
1730 abort ();
1731
1732 if (wrap_buffer[0])
1733 {
1734 *wrap_pointer = '\0';
1735 fputs_unfiltered (wrap_buffer, gdb_stdout);
1736 }
1737 wrap_pointer = wrap_buffer;
1738 wrap_buffer[0] = '\0';
1739 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1740 {
1741 wrap_column = 0;
1742 }
1743 else if (chars_printed >= chars_per_line)
1744 {
1745 puts_filtered ("\n");
1746 if (indent != NULL)
1747 puts_filtered (indent);
1748 wrap_column = 0;
1749 }
1750 else
1751 {
1752 wrap_column = chars_printed;
1753 if (indent == NULL)
1754 wrap_indent = "";
1755 else
1756 wrap_indent = indent;
1757 }
1758 }
1759
1760 /* Ensure that whatever gets printed next, using the filtered output
1761 commands, starts at the beginning of the line. I.E. if there is
1762 any pending output for the current line, flush it and start a new
1763 line. Otherwise do nothing. */
1764
1765 void
1766 begin_line ()
1767 {
1768 if (chars_printed > 0)
1769 {
1770 puts_filtered ("\n");
1771 }
1772 }
1773
1774
1775 /* Like fputs but if FILTER is true, pause after every screenful.
1776
1777 Regardless of FILTER can wrap at points other than the final
1778 character of a line.
1779
1780 Unlike fputs, fputs_maybe_filtered does not return a value.
1781 It is OK for LINEBUFFER to be NULL, in which case just don't print
1782 anything.
1783
1784 Note that a longjmp to top level may occur in this routine (only if
1785 FILTER is true) (since prompt_for_continue may do so) so this
1786 routine should not be called when cleanups are not in place. */
1787
1788 static void
1789 fputs_maybe_filtered (linebuffer, stream, filter)
1790 const char *linebuffer;
1791 GDB_FILE *stream;
1792 int filter;
1793 {
1794 const char *lineptr;
1795
1796 if (linebuffer == 0)
1797 return;
1798
1799 /* Don't do any filtering if it is disabled. */
1800 if ((stream != gdb_stdout) || !pagination_enabled
1801 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1802 {
1803 fputs_unfiltered (linebuffer, stream);
1804 return;
1805 }
1806
1807 /* Go through and output each character. Show line extension
1808 when this is necessary; prompt user for new page when this is
1809 necessary. */
1810
1811 lineptr = linebuffer;
1812 while (*lineptr)
1813 {
1814 /* Possible new page. */
1815 if (filter &&
1816 (lines_printed >= lines_per_page - 1))
1817 prompt_for_continue ();
1818
1819 while (*lineptr && *lineptr != '\n')
1820 {
1821 /* Print a single line. */
1822 if (*lineptr == '\t')
1823 {
1824 if (wrap_column)
1825 *wrap_pointer++ = '\t';
1826 else
1827 fputc_unfiltered ('\t', stream);
1828 /* Shifting right by 3 produces the number of tab stops
1829 we have already passed, and then adding one and
1830 shifting left 3 advances to the next tab stop. */
1831 chars_printed = ((chars_printed >> 3) + 1) << 3;
1832 lineptr++;
1833 }
1834 else
1835 {
1836 if (wrap_column)
1837 *wrap_pointer++ = *lineptr;
1838 else
1839 fputc_unfiltered (*lineptr, stream);
1840 chars_printed++;
1841 lineptr++;
1842 }
1843
1844 if (chars_printed >= chars_per_line)
1845 {
1846 unsigned int save_chars = chars_printed;
1847
1848 chars_printed = 0;
1849 lines_printed++;
1850 /* If we aren't actually wrapping, don't output newline --
1851 if chars_per_line is right, we probably just overflowed
1852 anyway; if it's wrong, let us keep going. */
1853 if (wrap_column)
1854 fputc_unfiltered ('\n', stream);
1855
1856 /* Possible new page. */
1857 if (lines_printed >= lines_per_page - 1)
1858 prompt_for_continue ();
1859
1860 /* Now output indentation and wrapped string */
1861 if (wrap_column)
1862 {
1863 fputs_unfiltered (wrap_indent, stream);
1864 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1865 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1866 /* FIXME, this strlen is what prevents wrap_indent from
1867 containing tabs. However, if we recurse to print it
1868 and count its chars, we risk trouble if wrap_indent is
1869 longer than (the user settable) chars_per_line.
1870 Note also that this can set chars_printed > chars_per_line
1871 if we are printing a long string. */
1872 chars_printed = strlen (wrap_indent)
1873 + (save_chars - wrap_column);
1874 wrap_pointer = wrap_buffer; /* Reset buffer */
1875 wrap_buffer[0] = '\0';
1876 wrap_column = 0; /* And disable fancy wrap */
1877 }
1878 }
1879 }
1880
1881 if (*lineptr == '\n')
1882 {
1883 chars_printed = 0;
1884 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1885 lines_printed++;
1886 fputc_unfiltered ('\n', stream);
1887 lineptr++;
1888 }
1889 }
1890 }
1891
1892 void
1893 fputs_filtered (linebuffer, stream)
1894 const char *linebuffer;
1895 GDB_FILE *stream;
1896 {
1897 fputs_maybe_filtered (linebuffer, stream, 1);
1898 }
1899
1900 int
1901 putchar_unfiltered (c)
1902 int c;
1903 {
1904 char buf = c;
1905 gdb_file_write (gdb_stdout, &buf, 1);
1906 return c;
1907 }
1908
1909 int
1910 fputc_unfiltered (c, stream)
1911 int c;
1912 GDB_FILE *stream;
1913 {
1914 char buf = c;
1915 gdb_file_write (stream, &buf, 1);
1916 return c;
1917 }
1918
1919 int
1920 fputc_filtered (c, stream)
1921 int c;
1922 GDB_FILE *stream;
1923 {
1924 char buf[2];
1925
1926 buf[0] = c;
1927 buf[1] = 0;
1928 fputs_filtered (buf, stream);
1929 return c;
1930 }
1931
1932 /* puts_debug is like fputs_unfiltered, except it prints special
1933 characters in printable fashion. */
1934
1935 void
1936 puts_debug (prefix, string, suffix)
1937 char *prefix;
1938 char *string;
1939 char *suffix;
1940 {
1941 int ch;
1942
1943 /* Print prefix and suffix after each line. */
1944 static int new_line = 1;
1945 static int return_p = 0;
1946 static char *prev_prefix = "";
1947 static char *prev_suffix = "";
1948
1949 if (*string == '\n')
1950 return_p = 0;
1951
1952 /* If the prefix is changing, print the previous suffix, a new line,
1953 and the new prefix. */
1954 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1955 {
1956 fputs_unfiltered (prev_suffix, gdb_stdlog);
1957 fputs_unfiltered ("\n", gdb_stdlog);
1958 fputs_unfiltered (prefix, gdb_stdlog);
1959 }
1960
1961 /* Print prefix if we printed a newline during the previous call. */
1962 if (new_line)
1963 {
1964 new_line = 0;
1965 fputs_unfiltered (prefix, gdb_stdlog);
1966 }
1967
1968 prev_prefix = prefix;
1969 prev_suffix = suffix;
1970
1971 /* Output characters in a printable format. */
1972 while ((ch = *string++) != '\0')
1973 {
1974 switch (ch)
1975 {
1976 default:
1977 if (isprint (ch))
1978 fputc_unfiltered (ch, gdb_stdlog);
1979
1980 else
1981 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1982 break;
1983
1984 case '\\':
1985 fputs_unfiltered ("\\\\", gdb_stdlog);
1986 break;
1987 case '\b':
1988 fputs_unfiltered ("\\b", gdb_stdlog);
1989 break;
1990 case '\f':
1991 fputs_unfiltered ("\\f", gdb_stdlog);
1992 break;
1993 case '\n':
1994 new_line = 1;
1995 fputs_unfiltered ("\\n", gdb_stdlog);
1996 break;
1997 case '\r':
1998 fputs_unfiltered ("\\r", gdb_stdlog);
1999 break;
2000 case '\t':
2001 fputs_unfiltered ("\\t", gdb_stdlog);
2002 break;
2003 case '\v':
2004 fputs_unfiltered ("\\v", gdb_stdlog);
2005 break;
2006 }
2007
2008 return_p = ch == '\r';
2009 }
2010
2011 /* Print suffix if we printed a newline. */
2012 if (new_line)
2013 {
2014 fputs_unfiltered (suffix, gdb_stdlog);
2015 fputs_unfiltered ("\n", gdb_stdlog);
2016 }
2017 }
2018
2019
2020 /* Print a variable number of ARGS using format FORMAT. If this
2021 information is going to put the amount written (since the last call
2022 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2023 call prompt_for_continue to get the users permision to continue.
2024
2025 Unlike fprintf, this function does not return a value.
2026
2027 We implement three variants, vfprintf (takes a vararg list and stream),
2028 fprintf (takes a stream to write on), and printf (the usual).
2029
2030 Note also that a longjmp to top level may occur in this routine
2031 (since prompt_for_continue may do so) so this routine should not be
2032 called when cleanups are not in place. */
2033
2034 static void
2035 vfprintf_maybe_filtered (stream, format, args, filter)
2036 GDB_FILE *stream;
2037 const char *format;
2038 va_list args;
2039 int filter;
2040 {
2041 char *linebuffer;
2042 struct cleanup *old_cleanups;
2043
2044 vasprintf (&linebuffer, format, args);
2045 if (linebuffer == NULL)
2046 {
2047 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2048 exit (1);
2049 }
2050 old_cleanups = make_cleanup (free, linebuffer);
2051 fputs_maybe_filtered (linebuffer, stream, filter);
2052 do_cleanups (old_cleanups);
2053 }
2054
2055
2056 void
2057 vfprintf_filtered (stream, format, args)
2058 GDB_FILE *stream;
2059 const char *format;
2060 va_list args;
2061 {
2062 vfprintf_maybe_filtered (stream, format, args, 1);
2063 }
2064
2065 void
2066 vfprintf_unfiltered (stream, format, args)
2067 GDB_FILE *stream;
2068 const char *format;
2069 va_list args;
2070 {
2071 char *linebuffer;
2072 struct cleanup *old_cleanups;
2073
2074 vasprintf (&linebuffer, format, args);
2075 if (linebuffer == NULL)
2076 {
2077 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2078 exit (1);
2079 }
2080 old_cleanups = make_cleanup (free, linebuffer);
2081 fputs_unfiltered (linebuffer, stream);
2082 do_cleanups (old_cleanups);
2083 }
2084
2085 void
2086 vprintf_filtered (format, args)
2087 const char *format;
2088 va_list args;
2089 {
2090 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2091 }
2092
2093 void
2094 vprintf_unfiltered (format, args)
2095 const char *format;
2096 va_list args;
2097 {
2098 vfprintf_unfiltered (gdb_stdout, format, args);
2099 }
2100
2101 void
2102 fprintf_filtered (GDB_FILE * stream, const char *format,...)
2103 {
2104 va_list args;
2105 va_start (args, format);
2106 vfprintf_filtered (stream, format, args);
2107 va_end (args);
2108 }
2109
2110 void
2111 fprintf_unfiltered (GDB_FILE * stream, const char *format,...)
2112 {
2113 va_list args;
2114 va_start (args, format);
2115 vfprintf_unfiltered (stream, format, args);
2116 va_end (args);
2117 }
2118
2119 /* Like fprintf_filtered, but prints its result indented.
2120 Called as fprintfi_filtered (spaces, stream, format, ...); */
2121
2122 void
2123 fprintfi_filtered (int spaces, GDB_FILE * stream, const char *format,...)
2124 {
2125 va_list args;
2126 va_start (args, format);
2127 print_spaces_filtered (spaces, stream);
2128
2129 vfprintf_filtered (stream, format, args);
2130 va_end (args);
2131 }
2132
2133
2134 void
2135 printf_filtered (const char *format,...)
2136 {
2137 va_list args;
2138 va_start (args, format);
2139 vfprintf_filtered (gdb_stdout, format, args);
2140 va_end (args);
2141 }
2142
2143
2144 void
2145 printf_unfiltered (const char *format,...)
2146 {
2147 va_list args;
2148 va_start (args, format);
2149 vfprintf_unfiltered (gdb_stdout, format, args);
2150 va_end (args);
2151 }
2152
2153 /* Like printf_filtered, but prints it's result indented.
2154 Called as printfi_filtered (spaces, format, ...); */
2155
2156 void
2157 printfi_filtered (int spaces, const char *format,...)
2158 {
2159 va_list args;
2160 va_start (args, format);
2161 print_spaces_filtered (spaces, gdb_stdout);
2162 vfprintf_filtered (gdb_stdout, format, args);
2163 va_end (args);
2164 }
2165
2166 /* Easy -- but watch out!
2167
2168 This routine is *not* a replacement for puts()! puts() appends a newline.
2169 This one doesn't, and had better not! */
2170
2171 void
2172 puts_filtered (string)
2173 const char *string;
2174 {
2175 fputs_filtered (string, gdb_stdout);
2176 }
2177
2178 void
2179 puts_unfiltered (string)
2180 const char *string;
2181 {
2182 fputs_unfiltered (string, gdb_stdout);
2183 }
2184
2185 /* Return a pointer to N spaces and a null. The pointer is good
2186 until the next call to here. */
2187 char *
2188 n_spaces (n)
2189 int n;
2190 {
2191 char *t;
2192 static char *spaces = 0;
2193 static int max_spaces = -1;
2194
2195 if (n > max_spaces)
2196 {
2197 if (spaces)
2198 free (spaces);
2199 spaces = (char *) xmalloc (n + 1);
2200 for (t = spaces + n; t != spaces;)
2201 *--t = ' ';
2202 spaces[n] = '\0';
2203 max_spaces = n;
2204 }
2205
2206 return spaces + max_spaces - n;
2207 }
2208
2209 /* Print N spaces. */
2210 void
2211 print_spaces_filtered (n, stream)
2212 int n;
2213 GDB_FILE *stream;
2214 {
2215 fputs_filtered (n_spaces (n), stream);
2216 }
2217 \f
2218 /* C++ demangler stuff. */
2219
2220 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2221 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2222 If the name is not mangled, or the language for the name is unknown, or
2223 demangling is off, the name is printed in its "raw" form. */
2224
2225 void
2226 fprintf_symbol_filtered (stream, name, lang, arg_mode)
2227 GDB_FILE *stream;
2228 char *name;
2229 enum language lang;
2230 int arg_mode;
2231 {
2232 char *demangled;
2233
2234 if (name != NULL)
2235 {
2236 /* If user wants to see raw output, no problem. */
2237 if (!demangle)
2238 {
2239 fputs_filtered (name, stream);
2240 }
2241 else
2242 {
2243 switch (lang)
2244 {
2245 case language_cplus:
2246 demangled = cplus_demangle (name, arg_mode);
2247 break;
2248 case language_java:
2249 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2250 break;
2251 case language_chill:
2252 demangled = chill_demangle (name);
2253 break;
2254 default:
2255 demangled = NULL;
2256 break;
2257 }
2258 fputs_filtered (demangled ? demangled : name, stream);
2259 if (demangled != NULL)
2260 {
2261 free (demangled);
2262 }
2263 }
2264 }
2265 }
2266
2267 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2268 differences in whitespace. Returns 0 if they match, non-zero if they
2269 don't (slightly different than strcmp()'s range of return values).
2270
2271 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2272 This "feature" is useful when searching for matching C++ function names
2273 (such as if the user types 'break FOO', where FOO is a mangled C++
2274 function). */
2275
2276 int
2277 strcmp_iw (string1, string2)
2278 const char *string1;
2279 const char *string2;
2280 {
2281 while ((*string1 != '\0') && (*string2 != '\0'))
2282 {
2283 while (isspace (*string1))
2284 {
2285 string1++;
2286 }
2287 while (isspace (*string2))
2288 {
2289 string2++;
2290 }
2291 if (*string1 != *string2)
2292 {
2293 break;
2294 }
2295 if (*string1 != '\0')
2296 {
2297 string1++;
2298 string2++;
2299 }
2300 }
2301 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2302 }
2303 \f
2304
2305 /*
2306 ** subset_compare()
2307 ** Answer whether string_to_compare is a full or partial match to
2308 ** template_string. The partial match must be in sequence starting
2309 ** at index 0.
2310 */
2311 int
2312 subset_compare (string_to_compare, template_string)
2313 char *string_to_compare;
2314 char *template_string;
2315 {
2316 int match;
2317 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2318 strlen (string_to_compare) <= strlen (template_string))
2319 match = (strncmp (template_string,
2320 string_to_compare,
2321 strlen (string_to_compare)) == 0);
2322 else
2323 match = 0;
2324 return match;
2325 }
2326
2327
2328 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2329 static void
2330 pagination_on_command (arg, from_tty)
2331 char *arg;
2332 int from_tty;
2333 {
2334 pagination_enabled = 1;
2335 }
2336
2337 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2338 static void
2339 pagination_off_command (arg, from_tty)
2340 char *arg;
2341 int from_tty;
2342 {
2343 pagination_enabled = 0;
2344 }
2345 \f
2346
2347 void
2348 initialize_utils ()
2349 {
2350 struct cmd_list_element *c;
2351
2352 c = add_set_cmd ("width", class_support, var_uinteger,
2353 (char *) &chars_per_line,
2354 "Set number of characters gdb thinks are in a line.",
2355 &setlist);
2356 add_show_from_set (c, &showlist);
2357 c->function.sfunc = set_width_command;
2358
2359 add_show_from_set
2360 (add_set_cmd ("height", class_support,
2361 var_uinteger, (char *) &lines_per_page,
2362 "Set number of lines gdb thinks are in a page.", &setlist),
2363 &showlist);
2364
2365 init_page_info ();
2366
2367 /* If the output is not a terminal, don't paginate it. */
2368 if (!GDB_FILE_ISATTY (gdb_stdout))
2369 lines_per_page = UINT_MAX;
2370
2371 set_width_command ((char *) NULL, 0, c);
2372
2373 add_show_from_set
2374 (add_set_cmd ("demangle", class_support, var_boolean,
2375 (char *) &demangle,
2376 "Set demangling of encoded C++ names when displaying symbols.",
2377 &setprintlist),
2378 &showprintlist);
2379
2380 add_show_from_set
2381 (add_set_cmd ("pagination", class_support,
2382 var_boolean, (char *) &pagination_enabled,
2383 "Set state of pagination.", &setlist),
2384 &showlist);
2385 if (xdb_commands)
2386 {
2387 add_com ("am", class_support, pagination_on_command,
2388 "Enable pagination");
2389 add_com ("sm", class_support, pagination_off_command,
2390 "Disable pagination");
2391 }
2392
2393 add_show_from_set
2394 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2395 (char *) &sevenbit_strings,
2396 "Set printing of 8-bit characters in strings as \\nnn.",
2397 &setprintlist),
2398 &showprintlist);
2399
2400 add_show_from_set
2401 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2402 (char *) &asm_demangle,
2403 "Set demangling of C++ names in disassembly listings.",
2404 &setprintlist),
2405 &showprintlist);
2406 }
2407
2408 /* Machine specific function to handle SIGWINCH signal. */
2409
2410 #ifdef SIGWINCH_HANDLER_BODY
2411 SIGWINCH_HANDLER_BODY
2412 #endif
2413 \f
2414 /* Support for converting target fp numbers into host DOUBLEST format. */
2415
2416 /* XXX - This code should really be in libiberty/floatformat.c, however
2417 configuration issues with libiberty made this very difficult to do in the
2418 available time. */
2419
2420 #include "floatformat.h"
2421 #include <math.h> /* ldexp */
2422
2423 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2424 going to bother with trying to muck around with whether it is defined in
2425 a system header, what we do if not, etc. */
2426 #define FLOATFORMAT_CHAR_BIT 8
2427
2428 static unsigned long get_field PARAMS ((unsigned char *,
2429 enum floatformat_byteorders,
2430 unsigned int,
2431 unsigned int,
2432 unsigned int));
2433
2434 /* Extract a field which starts at START and is LEN bytes long. DATA and
2435 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2436 static unsigned long
2437 get_field (data, order, total_len, start, len)
2438 unsigned char *data;
2439 enum floatformat_byteorders order;
2440 unsigned int total_len;
2441 unsigned int start;
2442 unsigned int len;
2443 {
2444 unsigned long result;
2445 unsigned int cur_byte;
2446 int cur_bitshift;
2447
2448 /* Start at the least significant part of the field. */
2449 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2450 {
2451 /* We start counting from the other end (i.e, from the high bytes
2452 rather than the low bytes). As such, we need to be concerned
2453 with what happens if bit 0 doesn't start on a byte boundary.
2454 I.e, we need to properly handle the case where total_len is
2455 not evenly divisible by 8. So we compute ``excess'' which
2456 represents the number of bits from the end of our starting
2457 byte needed to get to bit 0. */
2458 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2459 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2460 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2461 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2462 - FLOATFORMAT_CHAR_BIT;
2463 }
2464 else
2465 {
2466 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2467 cur_bitshift =
2468 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2469 }
2470 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2471 result = *(data + cur_byte) >> (-cur_bitshift);
2472 else
2473 result = 0;
2474 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2475 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2476 ++cur_byte;
2477 else
2478 --cur_byte;
2479
2480 /* Move towards the most significant part of the field. */
2481 while (cur_bitshift < len)
2482 {
2483 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2484 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2485 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2486 ++cur_byte;
2487 else
2488 --cur_byte;
2489 }
2490 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2491 /* Mask out bits which are not part of the field */
2492 result &= ((1UL << len) - 1);
2493 return result;
2494 }
2495
2496 /* Convert from FMT to a DOUBLEST.
2497 FROM is the address of the extended float.
2498 Store the DOUBLEST in *TO. */
2499
2500 void
2501 floatformat_to_doublest (fmt, from, to)
2502 const struct floatformat *fmt;
2503 char *from;
2504 DOUBLEST *to;
2505 {
2506 unsigned char *ufrom = (unsigned char *) from;
2507 DOUBLEST dto;
2508 long exponent;
2509 unsigned long mant;
2510 unsigned int mant_bits, mant_off;
2511 int mant_bits_left;
2512 int special_exponent; /* It's a NaN, denorm or zero */
2513
2514 /* If the mantissa bits are not contiguous from one end of the
2515 mantissa to the other, we need to make a private copy of the
2516 source bytes that is in the right order since the unpacking
2517 algorithm assumes that the bits are contiguous.
2518
2519 Swap the bytes individually rather than accessing them through
2520 "long *" since we have no guarantee that they start on a long
2521 alignment, and also sizeof(long) for the host could be different
2522 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2523 for the target is 4. */
2524
2525 if (fmt->byteorder == floatformat_littlebyte_bigword)
2526 {
2527 static unsigned char *newfrom;
2528 unsigned char *swapin, *swapout;
2529 int longswaps;
2530
2531 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2532 longswaps >>= 3;
2533
2534 if (newfrom == NULL)
2535 {
2536 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2537 }
2538 swapout = newfrom;
2539 swapin = ufrom;
2540 ufrom = newfrom;
2541 while (longswaps-- > 0)
2542 {
2543 /* This is ugly, but efficient */
2544 *swapout++ = swapin[4];
2545 *swapout++ = swapin[5];
2546 *swapout++ = swapin[6];
2547 *swapout++ = swapin[7];
2548 *swapout++ = swapin[0];
2549 *swapout++ = swapin[1];
2550 *swapout++ = swapin[2];
2551 *swapout++ = swapin[3];
2552 swapin += 8;
2553 }
2554 }
2555
2556 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2557 fmt->exp_start, fmt->exp_len);
2558 /* Note that if exponent indicates a NaN, we can't really do anything useful
2559 (not knowing if the host has NaN's, or how to build one). So it will
2560 end up as an infinity or something close; that is OK. */
2561
2562 mant_bits_left = fmt->man_len;
2563 mant_off = fmt->man_start;
2564 dto = 0.0;
2565
2566 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2567
2568 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2569 we don't check for zero as the exponent doesn't matter. */
2570 if (!special_exponent)
2571 exponent -= fmt->exp_bias;
2572 else if (exponent == 0)
2573 exponent = 1 - fmt->exp_bias;
2574
2575 /* Build the result algebraically. Might go infinite, underflow, etc;
2576 who cares. */
2577
2578 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2579 increment the exponent by one to account for the integer bit. */
2580
2581 if (!special_exponent)
2582 {
2583 if (fmt->intbit == floatformat_intbit_no)
2584 dto = ldexp (1.0, exponent);
2585 else
2586 exponent++;
2587 }
2588
2589 while (mant_bits_left > 0)
2590 {
2591 mant_bits = min (mant_bits_left, 32);
2592
2593 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2594 mant_off, mant_bits);
2595
2596 dto += ldexp ((double) mant, exponent - mant_bits);
2597 exponent -= mant_bits;
2598 mant_off += mant_bits;
2599 mant_bits_left -= mant_bits;
2600 }
2601
2602 /* Negate it if negative. */
2603 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2604 dto = -dto;
2605 *to = dto;
2606 }
2607 \f
2608 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2609 unsigned int,
2610 unsigned int,
2611 unsigned int,
2612 unsigned long));
2613
2614 /* Set a field which starts at START and is LEN bytes long. DATA and
2615 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2616 static void
2617 put_field (data, order, total_len, start, len, stuff_to_put)
2618 unsigned char *data;
2619 enum floatformat_byteorders order;
2620 unsigned int total_len;
2621 unsigned int start;
2622 unsigned int len;
2623 unsigned long stuff_to_put;
2624 {
2625 unsigned int cur_byte;
2626 int cur_bitshift;
2627
2628 /* Start at the least significant part of the field. */
2629 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2630 {
2631 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2632 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2633 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2634 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2635 - FLOATFORMAT_CHAR_BIT;
2636 }
2637 else
2638 {
2639 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2640 cur_bitshift =
2641 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2642 }
2643 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2644 {
2645 *(data + cur_byte) &=
2646 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2647 << (-cur_bitshift));
2648 *(data + cur_byte) |=
2649 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2650 }
2651 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2652 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2653 ++cur_byte;
2654 else
2655 --cur_byte;
2656
2657 /* Move towards the most significant part of the field. */
2658 while (cur_bitshift < len)
2659 {
2660 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2661 {
2662 /* This is the last byte. */
2663 *(data + cur_byte) &=
2664 ~((1 << (len - cur_bitshift)) - 1);
2665 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2666 }
2667 else
2668 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2669 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2670 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2671 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2672 ++cur_byte;
2673 else
2674 --cur_byte;
2675 }
2676 }
2677
2678 #ifdef HAVE_LONG_DOUBLE
2679 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2680 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2681 frexp, but operates on the long double data type. */
2682
2683 static long double ldfrexp PARAMS ((long double value, int *eptr));
2684
2685 static long double
2686 ldfrexp (value, eptr)
2687 long double value;
2688 int *eptr;
2689 {
2690 long double tmp;
2691 int exp;
2692
2693 /* Unfortunately, there are no portable functions for extracting the exponent
2694 of a long double, so we have to do it iteratively by multiplying or dividing
2695 by two until the fraction is between 0.5 and 1.0. */
2696
2697 if (value < 0.0l)
2698 value = -value;
2699
2700 tmp = 1.0l;
2701 exp = 0;
2702
2703 if (value >= tmp) /* Value >= 1.0 */
2704 while (value >= tmp)
2705 {
2706 tmp *= 2.0l;
2707 exp++;
2708 }
2709 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2710 {
2711 while (value < tmp)
2712 {
2713 tmp /= 2.0l;
2714 exp--;
2715 }
2716 tmp *= 2.0l;
2717 exp++;
2718 }
2719
2720 *eptr = exp;
2721 return value / tmp;
2722 }
2723 #endif /* HAVE_LONG_DOUBLE */
2724
2725
2726 /* The converse: convert the DOUBLEST *FROM to an extended float
2727 and store where TO points. Neither FROM nor TO have any alignment
2728 restrictions. */
2729
2730 void
2731 floatformat_from_doublest (fmt, from, to)
2732 CONST struct floatformat *fmt;
2733 DOUBLEST *from;
2734 char *to;
2735 {
2736 DOUBLEST dfrom;
2737 int exponent;
2738 DOUBLEST mant;
2739 unsigned int mant_bits, mant_off;
2740 int mant_bits_left;
2741 unsigned char *uto = (unsigned char *) to;
2742
2743 memcpy (&dfrom, from, sizeof (dfrom));
2744 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
2745 if (dfrom == 0)
2746 return; /* Result is zero */
2747 if (dfrom != dfrom) /* Result is NaN */
2748 {
2749 /* From is NaN */
2750 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2751 fmt->exp_len, fmt->exp_nan);
2752 /* Be sure it's not infinity, but NaN value is irrel */
2753 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2754 32, 1);
2755 return;
2756 }
2757
2758 /* If negative, set the sign bit. */
2759 if (dfrom < 0)
2760 {
2761 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2762 dfrom = -dfrom;
2763 }
2764
2765 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2766 {
2767 /* Infinity exponent is same as NaN's. */
2768 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2769 fmt->exp_len, fmt->exp_nan);
2770 /* Infinity mantissa is all zeroes. */
2771 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2772 fmt->man_len, 0);
2773 return;
2774 }
2775
2776 #ifdef HAVE_LONG_DOUBLE
2777 mant = ldfrexp (dfrom, &exponent);
2778 #else
2779 mant = frexp (dfrom, &exponent);
2780 #endif
2781
2782 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2783 exponent + fmt->exp_bias - 1);
2784
2785 mant_bits_left = fmt->man_len;
2786 mant_off = fmt->man_start;
2787 while (mant_bits_left > 0)
2788 {
2789 unsigned long mant_long;
2790 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2791
2792 mant *= 4294967296.0;
2793 mant_long = (unsigned long) mant;
2794 mant -= mant_long;
2795
2796 /* If the integer bit is implicit, then we need to discard it.
2797 If we are discarding a zero, we should be (but are not) creating
2798 a denormalized number which means adjusting the exponent
2799 (I think). */
2800 if (mant_bits_left == fmt->man_len
2801 && fmt->intbit == floatformat_intbit_no)
2802 {
2803 mant_long <<= 1;
2804 mant_bits -= 1;
2805 }
2806
2807 if (mant_bits < 32)
2808 {
2809 /* The bits we want are in the most significant MANT_BITS bits of
2810 mant_long. Move them to the least significant. */
2811 mant_long >>= 32 - mant_bits;
2812 }
2813
2814 put_field (uto, fmt->byteorder, fmt->totalsize,
2815 mant_off, mant_bits, mant_long);
2816 mant_off += mant_bits;
2817 mant_bits_left -= mant_bits;
2818 }
2819 if (fmt->byteorder == floatformat_littlebyte_bigword)
2820 {
2821 int count;
2822 unsigned char *swaplow = uto;
2823 unsigned char *swaphigh = uto + 4;
2824 unsigned char tmp;
2825
2826 for (count = 0; count < 4; count++)
2827 {
2828 tmp = *swaplow;
2829 *swaplow++ = *swaphigh;
2830 *swaphigh++ = tmp;
2831 }
2832 }
2833 }
2834
2835 /* temporary storage using circular buffer */
2836 #define NUMCELLS 16
2837 #define CELLSIZE 32
2838 static char *
2839 get_cell ()
2840 {
2841 static char buf[NUMCELLS][CELLSIZE];
2842 static int cell = 0;
2843 if (++cell >= NUMCELLS)
2844 cell = 0;
2845 return buf[cell];
2846 }
2847
2848 /* print routines to handle variable size regs, etc.
2849
2850 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2851 unsigned long or unsigned long long, determined at configure time.
2852 If t_addr is an unsigned long long and sizeof (unsigned long long)
2853 is greater than sizeof (unsigned long), then I believe this code will
2854 probably lose, at least for little endian machines. I believe that
2855 it would also be better to eliminate the switch on the absolute size
2856 of t_addr and replace it with a sequence of if statements that compare
2857 sizeof t_addr with sizeof the various types and do the right thing,
2858 which includes knowing whether or not the host supports long long.
2859 -fnf
2860
2861 */
2862
2863 int
2864 strlen_paddr (void)
2865 {
2866 return (TARGET_PTR_BIT / 8 * 2);
2867 }
2868
2869
2870 /* eliminate warning from compiler on 32-bit systems */
2871 static int thirty_two = 32;
2872
2873 char *
2874 paddr (CORE_ADDR addr)
2875 {
2876 char *paddr_str = get_cell ();
2877 switch (TARGET_PTR_BIT / 8)
2878 {
2879 case 8:
2880 sprintf (paddr_str, "%08lx%08lx",
2881 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2882 break;
2883 case 4:
2884 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2885 break;
2886 case 2:
2887 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2888 break;
2889 default:
2890 sprintf (paddr_str, "%lx", (unsigned long) addr);
2891 }
2892 return paddr_str;
2893 }
2894
2895 char *
2896 paddr_nz (CORE_ADDR addr)
2897 {
2898 char *paddr_str = get_cell ();
2899 switch (TARGET_PTR_BIT / 8)
2900 {
2901 case 8:
2902 {
2903 unsigned long high = (unsigned long) (addr >> thirty_two);
2904 if (high == 0)
2905 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2906 else
2907 sprintf (paddr_str, "%lx%08lx",
2908 high, (unsigned long) (addr & 0xffffffff));
2909 break;
2910 }
2911 case 4:
2912 sprintf (paddr_str, "%lx", (unsigned long) addr);
2913 break;
2914 case 2:
2915 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2916 break;
2917 default:
2918 sprintf (paddr_str, "%lx", (unsigned long) addr);
2919 }
2920 return paddr_str;
2921 }
2922
2923 static void
2924 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2925 {
2926 /* steal code from valprint.c:print_decimal(). Should this worry
2927 about the real size of addr as the above does? */
2928 unsigned long temp[3];
2929 int i = 0;
2930 do
2931 {
2932 temp[i] = addr % (1000 * 1000 * 1000);
2933 addr /= (1000 * 1000 * 1000);
2934 i++;
2935 }
2936 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2937 switch (i)
2938 {
2939 case 1:
2940 sprintf (paddr_str, "%s%lu",
2941 sign, temp[0]);
2942 break;
2943 case 2:
2944 sprintf (paddr_str, "%s%lu%09lu",
2945 sign, temp[1], temp[0]);
2946 break;
2947 case 3:
2948 sprintf (paddr_str, "%s%lu%09lu%09lu",
2949 sign, temp[2], temp[1], temp[0]);
2950 break;
2951 default:
2952 abort ();
2953 }
2954 }
2955
2956 char *
2957 paddr_u (CORE_ADDR addr)
2958 {
2959 char *paddr_str = get_cell ();
2960 decimal2str (paddr_str, "", addr);
2961 return paddr_str;
2962 }
2963
2964 char *
2965 paddr_d (LONGEST addr)
2966 {
2967 char *paddr_str = get_cell ();
2968 if (addr < 0)
2969 decimal2str (paddr_str, "-", -addr);
2970 else
2971 decimal2str (paddr_str, "", addr);
2972 return paddr_str;
2973 }
2974
2975 char *
2976 preg (reg)
2977 t_reg reg;
2978 {
2979 char *preg_str = get_cell ();
2980 switch (sizeof (t_reg))
2981 {
2982 case 8:
2983 sprintf (preg_str, "%08lx%08lx",
2984 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2985 break;
2986 case 4:
2987 sprintf (preg_str, "%08lx", (unsigned long) reg);
2988 break;
2989 case 2:
2990 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2991 break;
2992 default:
2993 sprintf (preg_str, "%lx", (unsigned long) reg);
2994 }
2995 return preg_str;
2996 }
2997
2998 char *
2999 preg_nz (reg)
3000 t_reg reg;
3001 {
3002 char *preg_str = get_cell ();
3003 switch (sizeof (t_reg))
3004 {
3005 case 8:
3006 {
3007 unsigned long high = (unsigned long) (reg >> thirty_two);
3008 if (high == 0)
3009 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
3010 else
3011 sprintf (preg_str, "%lx%08lx",
3012 high, (unsigned long) (reg & 0xffffffff));
3013 break;
3014 }
3015 case 4:
3016 sprintf (preg_str, "%lx", (unsigned long) reg);
3017 break;
3018 case 2:
3019 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3020 break;
3021 default:
3022 sprintf (preg_str, "%lx", (unsigned long) reg);
3023 }
3024 return preg_str;
3025 }
3026
3027 /* Helper functions for INNER_THAN */
3028 int
3029 core_addr_lessthan (lhs, rhs)
3030 CORE_ADDR lhs;
3031 CORE_ADDR rhs;
3032 {
3033 return (lhs < rhs);
3034 }
3035
3036 int
3037 core_addr_greaterthan (lhs, rhs)
3038 CORE_ADDR lhs;
3039 CORE_ADDR rhs;
3040 {
3041 return (lhs > rhs);
3042 }