]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **);
67
68 static
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
73
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
153 if (msymbol != NULL)
154 {
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
176 }
177 }
178 }
179
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184 struct value *
185 value_allocate_space_in_inferior (int len)
186 {
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
198 else
199 error (_("No memory available to program: call to malloc failed"));
200 }
201 return val;
202 }
203
204 static CORE_ADDR
205 allocate_space_in_inferior (int len)
206 {
207 return value_as_long (value_allocate_space_in_inferior (len));
208 }
209
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
214
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
217 {
218 struct type *t1;
219 struct type *t2;
220 struct value *v;
221
222 gdb_assert (type != NULL && v2 != NULL);
223
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
226
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
234
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
239 {
240 v = search_struct_field (type_name_no_tag (t1),
241 v2, 0, t2, 1);
242 if (v)
243 return v;
244 }
245
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
254 if (v)
255 {
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = value_address (v2);
258 addr2 -= value_address (v) + value_embedded_offset (v);
259 return value_at (type, addr2);
260 }
261 }
262
263 return NULL;
264 }
265
266 /* Cast one pointer or reference type to another. Both TYPE and
267 the type of ARG2 should be pointer types, or else both should be
268 reference types. Returns the new pointer or reference. */
269
270 struct value *
271 value_cast_pointers (struct type *type, struct value *arg2)
272 {
273 struct type *type1 = check_typedef (type);
274 struct type *type2 = check_typedef (value_type (arg2));
275 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
276 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
277
278 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
279 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
280 && !value_logical_not (arg2))
281 {
282 struct value *v2;
283
284 if (TYPE_CODE (type2) == TYPE_CODE_REF)
285 v2 = coerce_ref (arg2);
286 else
287 v2 = value_ind (arg2);
288 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
289 && !!"Why did coercion fail?");
290 v2 = value_cast_structs (t1, v2);
291 /* At this point we have what we can have, un-dereference if needed. */
292 if (v2)
293 {
294 struct value *v = value_addr (v2);
295 deprecated_set_value_type (v, type);
296 return v;
297 }
298 }
299
300 /* No superclass found, just change the pointer type. */
301 arg2 = value_copy (arg2);
302 deprecated_set_value_type (arg2, type);
303 arg2 = value_change_enclosing_type (arg2, type);
304 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
305 return arg2;
306 }
307
308 /* Cast value ARG2 to type TYPE and return as a value.
309 More general than a C cast: accepts any two types of the same length,
310 and if ARG2 is an lvalue it can be cast into anything at all. */
311 /* In C++, casts may change pointer or object representations. */
312
313 struct value *
314 value_cast (struct type *type, struct value *arg2)
315 {
316 enum type_code code1;
317 enum type_code code2;
318 int scalar;
319 struct type *type2;
320
321 int convert_to_boolean = 0;
322
323 if (value_type (arg2) == type)
324 return arg2;
325
326 code1 = TYPE_CODE (check_typedef (type));
327
328 /* Check if we are casting struct reference to struct reference. */
329 if (code1 == TYPE_CODE_REF)
330 {
331 /* We dereference type; then we recurse and finally
332 we generate value of the given reference. Nothing wrong with
333 that. */
334 struct type *t1 = check_typedef (type);
335 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
336 struct value *val = value_cast (dereftype, arg2);
337 return value_ref (val);
338 }
339
340 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
341
342 if (code2 == TYPE_CODE_REF)
343 /* We deref the value and then do the cast. */
344 return value_cast (type, coerce_ref (arg2));
345
346 CHECK_TYPEDEF (type);
347 code1 = TYPE_CODE (type);
348 arg2 = coerce_ref (arg2);
349 type2 = check_typedef (value_type (arg2));
350
351 /* You can't cast to a reference type. See value_cast_pointers
352 instead. */
353 gdb_assert (code1 != TYPE_CODE_REF);
354
355 /* A cast to an undetermined-length array_type, such as
356 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
357 where N is sizeof(OBJECT)/sizeof(TYPE). */
358 if (code1 == TYPE_CODE_ARRAY)
359 {
360 struct type *element_type = TYPE_TARGET_TYPE (type);
361 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
362 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
363 {
364 struct type *range_type = TYPE_INDEX_TYPE (type);
365 int val_length = TYPE_LENGTH (type2);
366 LONGEST low_bound, high_bound, new_length;
367 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
368 low_bound = 0, high_bound = 0;
369 new_length = val_length / element_length;
370 if (val_length % element_length != 0)
371 warning (_("array element type size does not divide object size in cast"));
372 /* FIXME-type-allocation: need a way to free this type when
373 we are done with it. */
374 range_type = create_range_type ((struct type *) NULL,
375 TYPE_TARGET_TYPE (range_type),
376 low_bound,
377 new_length + low_bound - 1);
378 deprecated_set_value_type (arg2,
379 create_array_type ((struct type *) NULL,
380 element_type,
381 range_type));
382 return arg2;
383 }
384 }
385
386 if (current_language->c_style_arrays
387 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
388 arg2 = value_coerce_array (arg2);
389
390 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
391 arg2 = value_coerce_function (arg2);
392
393 type2 = check_typedef (value_type (arg2));
394 code2 = TYPE_CODE (type2);
395
396 if (code1 == TYPE_CODE_COMPLEX)
397 return cast_into_complex (type, arg2);
398 if (code1 == TYPE_CODE_BOOL)
399 {
400 code1 = TYPE_CODE_INT;
401 convert_to_boolean = 1;
402 }
403 if (code1 == TYPE_CODE_CHAR)
404 code1 = TYPE_CODE_INT;
405 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
406 code2 = TYPE_CODE_INT;
407
408 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
409 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
410 || code2 == TYPE_CODE_RANGE);
411
412 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
413 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
414 && TYPE_NAME (type) != 0)
415 {
416 struct value *v = value_cast_structs (type, arg2);
417 if (v)
418 return v;
419 }
420
421 if (code1 == TYPE_CODE_FLT && scalar)
422 return value_from_double (type, value_as_double (arg2));
423 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
424 {
425 int dec_len = TYPE_LENGTH (type);
426 gdb_byte dec[16];
427
428 if (code2 == TYPE_CODE_FLT)
429 decimal_from_floating (arg2, dec, dec_len);
430 else if (code2 == TYPE_CODE_DECFLOAT)
431 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
432 dec, dec_len);
433 else
434 /* The only option left is an integral type. */
435 decimal_from_integral (arg2, dec, dec_len);
436
437 return value_from_decfloat (type, dec);
438 }
439 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
440 || code1 == TYPE_CODE_RANGE)
441 && (scalar || code2 == TYPE_CODE_PTR
442 || code2 == TYPE_CODE_MEMBERPTR))
443 {
444 LONGEST longest;
445
446 /* When we cast pointers to integers, we mustn't use
447 gdbarch_pointer_to_address to find the address the pointer
448 represents, as value_as_long would. GDB should evaluate
449 expressions just as the compiler would --- and the compiler
450 sees a cast as a simple reinterpretation of the pointer's
451 bits. */
452 if (code2 == TYPE_CODE_PTR)
453 longest = extract_unsigned_integer (value_contents (arg2),
454 TYPE_LENGTH (type2));
455 else
456 longest = value_as_long (arg2);
457 return value_from_longest (type, convert_to_boolean ?
458 (LONGEST) (longest ? 1 : 0) : longest);
459 }
460 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
461 || code2 == TYPE_CODE_ENUM
462 || code2 == TYPE_CODE_RANGE))
463 {
464 /* TYPE_LENGTH (type) is the length of a pointer, but we really
465 want the length of an address! -- we are really dealing with
466 addresses (i.e., gdb representations) not pointers (i.e.,
467 target representations) here.
468
469 This allows things like "print *(int *)0x01000234" to work
470 without printing a misleading message -- which would
471 otherwise occur when dealing with a target having two byte
472 pointers and four byte addresses. */
473
474 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
475
476 LONGEST longest = value_as_long (arg2);
477 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
478 {
479 if (longest >= ((LONGEST) 1 << addr_bit)
480 || longest <= -((LONGEST) 1 << addr_bit))
481 warning (_("value truncated"));
482 }
483 return value_from_longest (type, longest);
484 }
485 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
486 && value_as_long (arg2) == 0)
487 {
488 struct value *result = allocate_value (type);
489 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
490 return result;
491 }
492 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
493 && value_as_long (arg2) == 0)
494 {
495 /* The Itanium C++ ABI represents NULL pointers to members as
496 minus one, instead of biasing the normal case. */
497 return value_from_longest (type, -1);
498 }
499 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
500 {
501 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
502 return value_cast_pointers (type, arg2);
503
504 arg2 = value_copy (arg2);
505 deprecated_set_value_type (arg2, type);
506 arg2 = value_change_enclosing_type (arg2, type);
507 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
508 return arg2;
509 }
510 else if (VALUE_LVAL (arg2) == lval_memory)
511 return value_at_lazy (type, value_address (arg2));
512 else if (code1 == TYPE_CODE_VOID)
513 {
514 return value_zero (type, not_lval);
515 }
516 else
517 {
518 error (_("Invalid cast."));
519 return 0;
520 }
521 }
522
523 /* Create a value of type TYPE that is zero, and return it. */
524
525 struct value *
526 value_zero (struct type *type, enum lval_type lv)
527 {
528 struct value *val = allocate_value (type);
529 VALUE_LVAL (val) = lv;
530
531 return val;
532 }
533
534 /* Create a value of numeric type TYPE that is one, and return it. */
535
536 struct value *
537 value_one (struct type *type, enum lval_type lv)
538 {
539 struct type *type1 = check_typedef (type);
540 struct value *val;
541
542 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
543 {
544 gdb_byte v[16];
545 decimal_from_string (v, TYPE_LENGTH (type), "1");
546 val = value_from_decfloat (type, v);
547 }
548 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
549 {
550 val = value_from_double (type, (DOUBLEST) 1);
551 }
552 else if (is_integral_type (type1))
553 {
554 val = value_from_longest (type, (LONGEST) 1);
555 }
556 else
557 {
558 error (_("Not a numeric type."));
559 }
560
561 VALUE_LVAL (val) = lv;
562 return val;
563 }
564
565 /* Return a value with type TYPE located at ADDR.
566
567 Call value_at only if the data needs to be fetched immediately;
568 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
569 value_at_lazy instead. value_at_lazy simply records the address of
570 the data and sets the lazy-evaluation-required flag. The lazy flag
571 is tested in the value_contents macro, which is used if and when
572 the contents are actually required.
573
574 Note: value_at does *NOT* handle embedded offsets; perform such
575 adjustments before or after calling it. */
576
577 struct value *
578 value_at (struct type *type, CORE_ADDR addr)
579 {
580 struct value *val;
581
582 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
583 error (_("Attempt to dereference a generic pointer."));
584
585 val = allocate_value (type);
586
587 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
588
589 VALUE_LVAL (val) = lval_memory;
590 set_value_address (val, addr);
591
592 return val;
593 }
594
595 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
596
597 struct value *
598 value_at_lazy (struct type *type, CORE_ADDR addr)
599 {
600 struct value *val;
601
602 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
603 error (_("Attempt to dereference a generic pointer."));
604
605 val = allocate_value_lazy (type);
606
607 VALUE_LVAL (val) = lval_memory;
608 set_value_address (val, addr);
609
610 return val;
611 }
612
613 /* Called only from the value_contents and value_contents_all()
614 macros, if the current data for a variable needs to be loaded into
615 value_contents(VAL). Fetches the data from the user's process, and
616 clears the lazy flag to indicate that the data in the buffer is
617 valid.
618
619 If the value is zero-length, we avoid calling read_memory, which
620 would abort. We mark the value as fetched anyway -- all 0 bytes of
621 it.
622
623 This function returns a value because it is used in the
624 value_contents macro as part of an expression, where a void would
625 not work. The value is ignored. */
626
627 int
628 value_fetch_lazy (struct value *val)
629 {
630 gdb_assert (value_lazy (val));
631 allocate_value_contents (val);
632 if (VALUE_LVAL (val) == lval_memory)
633 {
634 CORE_ADDR addr = value_address (val);
635 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
636
637 if (length)
638 read_memory (addr, value_contents_all_raw (val), length);
639 }
640 else if (VALUE_LVAL (val) == lval_register)
641 {
642 struct frame_info *frame;
643 int regnum;
644 struct type *type = check_typedef (value_type (val));
645 struct value *new_val = val, *mark = value_mark ();
646
647 /* Offsets are not supported here; lazy register values must
648 refer to the entire register. */
649 gdb_assert (value_offset (val) == 0);
650
651 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
652 {
653 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
654 regnum = VALUE_REGNUM (new_val);
655
656 gdb_assert (frame != NULL);
657
658 /* Convertible register routines are used for multi-register
659 values and for interpretation in different types
660 (e.g. float or int from a double register). Lazy
661 register values should have the register's natural type,
662 so they do not apply. */
663 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
664 regnum, type));
665
666 new_val = get_frame_register_value (frame, regnum);
667 }
668
669 /* If it's still lazy (for instance, a saved register on the
670 stack), fetch it. */
671 if (value_lazy (new_val))
672 value_fetch_lazy (new_val);
673
674 /* If the register was not saved, mark it unavailable. */
675 if (value_optimized_out (new_val))
676 set_value_optimized_out (val, 1);
677 else
678 memcpy (value_contents_raw (val), value_contents (new_val),
679 TYPE_LENGTH (type));
680
681 if (frame_debug)
682 {
683 struct gdbarch *gdbarch;
684 frame = frame_find_by_id (VALUE_FRAME_ID (val));
685 regnum = VALUE_REGNUM (val);
686 gdbarch = get_frame_arch (frame);
687
688 fprintf_unfiltered (gdb_stdlog, "\
689 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
690 frame_relative_level (frame), regnum,
691 user_reg_map_regnum_to_name (gdbarch, regnum));
692
693 fprintf_unfiltered (gdb_stdlog, "->");
694 if (value_optimized_out (new_val))
695 fprintf_unfiltered (gdb_stdlog, " optimized out");
696 else
697 {
698 int i;
699 const gdb_byte *buf = value_contents (new_val);
700
701 if (VALUE_LVAL (new_val) == lval_register)
702 fprintf_unfiltered (gdb_stdlog, " register=%d",
703 VALUE_REGNUM (new_val));
704 else if (VALUE_LVAL (new_val) == lval_memory)
705 fprintf_unfiltered (gdb_stdlog, " address=%s",
706 paddress (gdbarch,
707 value_address (new_val)));
708 else
709 fprintf_unfiltered (gdb_stdlog, " computed");
710
711 fprintf_unfiltered (gdb_stdlog, " bytes=");
712 fprintf_unfiltered (gdb_stdlog, "[");
713 for (i = 0; i < register_size (gdbarch, regnum); i++)
714 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
715 fprintf_unfiltered (gdb_stdlog, "]");
716 }
717
718 fprintf_unfiltered (gdb_stdlog, " }\n");
719 }
720
721 /* Dispose of the intermediate values. This prevents
722 watchpoints from trying to watch the saved frame pointer. */
723 value_free_to_mark (mark);
724 }
725 else if (VALUE_LVAL (val) == lval_computed)
726 value_computed_funcs (val)->read (val);
727 else
728 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
729
730 set_value_lazy (val, 0);
731 return 0;
732 }
733
734
735 /* Store the contents of FROMVAL into the location of TOVAL.
736 Return a new value with the location of TOVAL and contents of FROMVAL. */
737
738 struct value *
739 value_assign (struct value *toval, struct value *fromval)
740 {
741 struct type *type;
742 struct value *val;
743 struct frame_id old_frame;
744
745 if (!deprecated_value_modifiable (toval))
746 error (_("Left operand of assignment is not a modifiable lvalue."));
747
748 toval = coerce_ref (toval);
749
750 type = value_type (toval);
751 if (VALUE_LVAL (toval) != lval_internalvar)
752 {
753 toval = value_coerce_to_target (toval);
754 fromval = value_cast (type, fromval);
755 }
756 else
757 {
758 /* Coerce arrays and functions to pointers, except for arrays
759 which only live in GDB's storage. */
760 if (!value_must_coerce_to_target (fromval))
761 fromval = coerce_array (fromval);
762 }
763
764 CHECK_TYPEDEF (type);
765
766 /* Since modifying a register can trash the frame chain, and
767 modifying memory can trash the frame cache, we save the old frame
768 and then restore the new frame afterwards. */
769 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
770
771 switch (VALUE_LVAL (toval))
772 {
773 case lval_internalvar:
774 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
775 val = value_copy (fromval);
776 val = value_change_enclosing_type (val,
777 value_enclosing_type (fromval));
778 set_value_embedded_offset (val, value_embedded_offset (fromval));
779 set_value_pointed_to_offset (val,
780 value_pointed_to_offset (fromval));
781 return val;
782
783 case lval_internalvar_component:
784 set_internalvar_component (VALUE_INTERNALVAR (toval),
785 value_offset (toval),
786 value_bitpos (toval),
787 value_bitsize (toval),
788 fromval);
789 break;
790
791 case lval_memory:
792 {
793 const gdb_byte *dest_buffer;
794 CORE_ADDR changed_addr;
795 int changed_len;
796 gdb_byte buffer[sizeof (LONGEST)];
797
798 if (value_bitsize (toval))
799 {
800 /* We assume that the argument to read_memory is in units
801 of host chars. FIXME: Is that correct? */
802 changed_len = (value_bitpos (toval)
803 + value_bitsize (toval)
804 + HOST_CHAR_BIT - 1)
805 / HOST_CHAR_BIT;
806
807 if (changed_len > (int) sizeof (LONGEST))
808 error (_("Can't handle bitfields which don't fit in a %d bit word."),
809 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
810
811 read_memory (value_address (toval), buffer, changed_len);
812 modify_field (type, buffer, value_as_long (fromval),
813 value_bitpos (toval), value_bitsize (toval));
814 changed_addr = value_address (toval);
815 dest_buffer = buffer;
816 }
817 else
818 {
819 changed_addr = value_address (toval);
820 changed_len = TYPE_LENGTH (type);
821 dest_buffer = value_contents (fromval);
822 }
823
824 write_memory (changed_addr, dest_buffer, changed_len);
825 if (deprecated_memory_changed_hook)
826 deprecated_memory_changed_hook (changed_addr, changed_len);
827 }
828 break;
829
830 case lval_register:
831 {
832 struct frame_info *frame;
833 struct gdbarch *gdbarch;
834 int value_reg;
835
836 /* Figure out which frame this is in currently. */
837 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
838 value_reg = VALUE_REGNUM (toval);
839
840 if (!frame)
841 error (_("Value being assigned to is no longer active."));
842
843 gdbarch = get_frame_arch (frame);
844 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
845 {
846 /* If TOVAL is a special machine register requiring
847 conversion of program values to a special raw
848 format. */
849 gdbarch_value_to_register (gdbarch, frame,
850 VALUE_REGNUM (toval), type,
851 value_contents (fromval));
852 }
853 else
854 {
855 if (value_bitsize (toval))
856 {
857 int changed_len;
858 gdb_byte buffer[sizeof (LONGEST)];
859
860 changed_len = (value_bitpos (toval)
861 + value_bitsize (toval)
862 + HOST_CHAR_BIT - 1)
863 / HOST_CHAR_BIT;
864
865 if (changed_len > (int) sizeof (LONGEST))
866 error (_("Can't handle bitfields which don't fit in a %d bit word."),
867 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
868
869 get_frame_register_bytes (frame, value_reg,
870 value_offset (toval),
871 changed_len, buffer);
872
873 modify_field (type, buffer, value_as_long (fromval),
874 value_bitpos (toval), value_bitsize (toval));
875
876 put_frame_register_bytes (frame, value_reg,
877 value_offset (toval),
878 changed_len, buffer);
879 }
880 else
881 {
882 put_frame_register_bytes (frame, value_reg,
883 value_offset (toval),
884 TYPE_LENGTH (type),
885 value_contents (fromval));
886 }
887 }
888
889 if (deprecated_register_changed_hook)
890 deprecated_register_changed_hook (-1);
891 observer_notify_target_changed (&current_target);
892 break;
893 }
894
895 case lval_computed:
896 {
897 struct lval_funcs *funcs = value_computed_funcs (toval);
898
899 funcs->write (toval, fromval);
900 }
901 break;
902
903 default:
904 error (_("Left operand of assignment is not an lvalue."));
905 }
906
907 /* Assigning to the stack pointer, frame pointer, and other
908 (architecture and calling convention specific) registers may
909 cause the frame cache to be out of date. Assigning to memory
910 also can. We just do this on all assignments to registers or
911 memory, for simplicity's sake; I doubt the slowdown matters. */
912 switch (VALUE_LVAL (toval))
913 {
914 case lval_memory:
915 case lval_register:
916
917 reinit_frame_cache ();
918
919 /* Having destroyed the frame cache, restore the selected
920 frame. */
921
922 /* FIXME: cagney/2002-11-02: There has to be a better way of
923 doing this. Instead of constantly saving/restoring the
924 frame. Why not create a get_selected_frame() function that,
925 having saved the selected frame's ID can automatically
926 re-find the previously selected frame automatically. */
927
928 {
929 struct frame_info *fi = frame_find_by_id (old_frame);
930 if (fi != NULL)
931 select_frame (fi);
932 }
933
934 break;
935 default:
936 break;
937 }
938
939 /* If the field does not entirely fill a LONGEST, then zero the sign
940 bits. If the field is signed, and is negative, then sign
941 extend. */
942 if ((value_bitsize (toval) > 0)
943 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
944 {
945 LONGEST fieldval = value_as_long (fromval);
946 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
947
948 fieldval &= valmask;
949 if (!TYPE_UNSIGNED (type)
950 && (fieldval & (valmask ^ (valmask >> 1))))
951 fieldval |= ~valmask;
952
953 fromval = value_from_longest (type, fieldval);
954 }
955
956 val = value_copy (toval);
957 memcpy (value_contents_raw (val), value_contents (fromval),
958 TYPE_LENGTH (type));
959 deprecated_set_value_type (val, type);
960 val = value_change_enclosing_type (val,
961 value_enclosing_type (fromval));
962 set_value_embedded_offset (val, value_embedded_offset (fromval));
963 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
964
965 return val;
966 }
967
968 /* Extend a value VAL to COUNT repetitions of its type. */
969
970 struct value *
971 value_repeat (struct value *arg1, int count)
972 {
973 struct value *val;
974
975 if (VALUE_LVAL (arg1) != lval_memory)
976 error (_("Only values in memory can be extended with '@'."));
977 if (count < 1)
978 error (_("Invalid number %d of repetitions."), count);
979
980 val = allocate_repeat_value (value_enclosing_type (arg1), count);
981
982 read_memory (value_address (arg1),
983 value_contents_all_raw (val),
984 TYPE_LENGTH (value_enclosing_type (val)));
985 VALUE_LVAL (val) = lval_memory;
986 set_value_address (val, value_address (arg1));
987
988 return val;
989 }
990
991 struct value *
992 value_of_variable (struct symbol *var, struct block *b)
993 {
994 struct value *val;
995 struct frame_info *frame;
996
997 if (!symbol_read_needs_frame (var))
998 frame = NULL;
999 else if (!b)
1000 frame = get_selected_frame (_("No frame selected."));
1001 else
1002 {
1003 frame = block_innermost_frame (b);
1004 if (!frame)
1005 {
1006 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1007 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1008 error (_("No frame is currently executing in block %s."),
1009 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1010 else
1011 error (_("No frame is currently executing in specified block"));
1012 }
1013 }
1014
1015 val = read_var_value (var, frame);
1016 if (!val)
1017 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1018
1019 return val;
1020 }
1021
1022 struct value *
1023 address_of_variable (struct symbol *var, struct block *b)
1024 {
1025 struct type *type = SYMBOL_TYPE (var);
1026 struct value *val;
1027
1028 /* Evaluate it first; if the result is a memory address, we're fine.
1029 Lazy evaluation pays off here. */
1030
1031 val = value_of_variable (var, b);
1032
1033 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1034 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1035 {
1036 CORE_ADDR addr = value_address (val);
1037 return value_from_pointer (lookup_pointer_type (type), addr);
1038 }
1039
1040 /* Not a memory address; check what the problem was. */
1041 switch (VALUE_LVAL (val))
1042 {
1043 case lval_register:
1044 {
1045 struct frame_info *frame;
1046 const char *regname;
1047
1048 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1049 gdb_assert (frame);
1050
1051 regname = gdbarch_register_name (get_frame_arch (frame),
1052 VALUE_REGNUM (val));
1053 gdb_assert (regname && *regname);
1054
1055 error (_("Address requested for identifier "
1056 "\"%s\" which is in register $%s"),
1057 SYMBOL_PRINT_NAME (var), regname);
1058 break;
1059 }
1060
1061 default:
1062 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1063 SYMBOL_PRINT_NAME (var));
1064 break;
1065 }
1066
1067 return val;
1068 }
1069
1070 /* Return one if VAL does not live in target memory, but should in order
1071 to operate on it. Otherwise return zero. */
1072
1073 int
1074 value_must_coerce_to_target (struct value *val)
1075 {
1076 struct type *valtype;
1077
1078 /* The only lval kinds which do not live in target memory. */
1079 if (VALUE_LVAL (val) != not_lval
1080 && VALUE_LVAL (val) != lval_internalvar)
1081 return 0;
1082
1083 valtype = check_typedef (value_type (val));
1084
1085 switch (TYPE_CODE (valtype))
1086 {
1087 case TYPE_CODE_ARRAY:
1088 case TYPE_CODE_STRING:
1089 return 1;
1090 default:
1091 return 0;
1092 }
1093 }
1094
1095 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1096 strings are constructed as character arrays in GDB's storage, and this
1097 function copies them to the target. */
1098
1099 struct value *
1100 value_coerce_to_target (struct value *val)
1101 {
1102 LONGEST length;
1103 CORE_ADDR addr;
1104
1105 if (!value_must_coerce_to_target (val))
1106 return val;
1107
1108 length = TYPE_LENGTH (check_typedef (value_type (val)));
1109 addr = allocate_space_in_inferior (length);
1110 write_memory (addr, value_contents (val), length);
1111 return value_at_lazy (value_type (val), addr);
1112 }
1113
1114 /* Given a value which is an array, return a value which is a pointer
1115 to its first element, regardless of whether or not the array has a
1116 nonzero lower bound.
1117
1118 FIXME: A previous comment here indicated that this routine should
1119 be substracting the array's lower bound. It's not clear to me that
1120 this is correct. Given an array subscripting operation, it would
1121 certainly work to do the adjustment here, essentially computing:
1122
1123 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1124
1125 However I believe a more appropriate and logical place to account
1126 for the lower bound is to do so in value_subscript, essentially
1127 computing:
1128
1129 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1130
1131 As further evidence consider what would happen with operations
1132 other than array subscripting, where the caller would get back a
1133 value that had an address somewhere before the actual first element
1134 of the array, and the information about the lower bound would be
1135 lost because of the coercion to pointer type.
1136 */
1137
1138 struct value *
1139 value_coerce_array (struct value *arg1)
1140 {
1141 struct type *type = check_typedef (value_type (arg1));
1142
1143 /* If the user tries to do something requiring a pointer with an
1144 array that has not yet been pushed to the target, then this would
1145 be a good time to do so. */
1146 arg1 = value_coerce_to_target (arg1);
1147
1148 if (VALUE_LVAL (arg1) != lval_memory)
1149 error (_("Attempt to take address of value not located in memory."));
1150
1151 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1152 value_address (arg1));
1153 }
1154
1155 /* Given a value which is a function, return a value which is a pointer
1156 to it. */
1157
1158 struct value *
1159 value_coerce_function (struct value *arg1)
1160 {
1161 struct value *retval;
1162
1163 if (VALUE_LVAL (arg1) != lval_memory)
1164 error (_("Attempt to take address of value not located in memory."));
1165
1166 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1167 value_address (arg1));
1168 return retval;
1169 }
1170
1171 /* Return a pointer value for the object for which ARG1 is the
1172 contents. */
1173
1174 struct value *
1175 value_addr (struct value *arg1)
1176 {
1177 struct value *arg2;
1178
1179 struct type *type = check_typedef (value_type (arg1));
1180 if (TYPE_CODE (type) == TYPE_CODE_REF)
1181 {
1182 /* Copy the value, but change the type from (T&) to (T*). We
1183 keep the same location information, which is efficient, and
1184 allows &(&X) to get the location containing the reference. */
1185 arg2 = value_copy (arg1);
1186 deprecated_set_value_type (arg2,
1187 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1188 return arg2;
1189 }
1190 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1191 return value_coerce_function (arg1);
1192
1193 /* If this is an array that has not yet been pushed to the target,
1194 then this would be a good time to force it to memory. */
1195 arg1 = value_coerce_to_target (arg1);
1196
1197 if (VALUE_LVAL (arg1) != lval_memory)
1198 error (_("Attempt to take address of value not located in memory."));
1199
1200 /* Get target memory address */
1201 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1202 (value_address (arg1)
1203 + value_embedded_offset (arg1)));
1204
1205 /* This may be a pointer to a base subobject; so remember the
1206 full derived object's type ... */
1207 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1208 /* ... and also the relative position of the subobject in the full
1209 object. */
1210 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1211 return arg2;
1212 }
1213
1214 /* Return a reference value for the object for which ARG1 is the
1215 contents. */
1216
1217 struct value *
1218 value_ref (struct value *arg1)
1219 {
1220 struct value *arg2;
1221
1222 struct type *type = check_typedef (value_type (arg1));
1223 if (TYPE_CODE (type) == TYPE_CODE_REF)
1224 return arg1;
1225
1226 arg2 = value_addr (arg1);
1227 deprecated_set_value_type (arg2, lookup_reference_type (type));
1228 return arg2;
1229 }
1230
1231 /* Given a value of a pointer type, apply the C unary * operator to
1232 it. */
1233
1234 struct value *
1235 value_ind (struct value *arg1)
1236 {
1237 struct type *base_type;
1238 struct value *arg2;
1239
1240 arg1 = coerce_array (arg1);
1241
1242 base_type = check_typedef (value_type (arg1));
1243
1244 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1245 {
1246 struct type *enc_type;
1247 /* We may be pointing to something embedded in a larger object.
1248 Get the real type of the enclosing object. */
1249 enc_type = check_typedef (value_enclosing_type (arg1));
1250 enc_type = TYPE_TARGET_TYPE (enc_type);
1251
1252 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1253 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1254 /* For functions, go through find_function_addr, which knows
1255 how to handle function descriptors. */
1256 arg2 = value_at_lazy (enc_type,
1257 find_function_addr (arg1, NULL));
1258 else
1259 /* Retrieve the enclosing object pointed to */
1260 arg2 = value_at_lazy (enc_type,
1261 (value_as_address (arg1)
1262 - value_pointed_to_offset (arg1)));
1263
1264 /* Re-adjust type. */
1265 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1266 /* Add embedding info. */
1267 arg2 = value_change_enclosing_type (arg2, enc_type);
1268 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1269
1270 /* We may be pointing to an object of some derived type. */
1271 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1272 return arg2;
1273 }
1274
1275 error (_("Attempt to take contents of a non-pointer value."));
1276 return 0; /* For lint -- never reached. */
1277 }
1278 \f
1279 /* Create a value for an array by allocating space in GDB, copying
1280 copying the data into that space, and then setting up an array
1281 value.
1282
1283 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1284 is populated from the values passed in ELEMVEC.
1285
1286 The element type of the array is inherited from the type of the
1287 first element, and all elements must have the same size (though we
1288 don't currently enforce any restriction on their types). */
1289
1290 struct value *
1291 value_array (int lowbound, int highbound, struct value **elemvec)
1292 {
1293 int nelem;
1294 int idx;
1295 unsigned int typelength;
1296 struct value *val;
1297 struct type *arraytype;
1298 CORE_ADDR addr;
1299
1300 /* Validate that the bounds are reasonable and that each of the
1301 elements have the same size. */
1302
1303 nelem = highbound - lowbound + 1;
1304 if (nelem <= 0)
1305 {
1306 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1307 }
1308 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1309 for (idx = 1; idx < nelem; idx++)
1310 {
1311 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1312 {
1313 error (_("array elements must all be the same size"));
1314 }
1315 }
1316
1317 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1318 lowbound, highbound);
1319
1320 if (!current_language->c_style_arrays)
1321 {
1322 val = allocate_value (arraytype);
1323 for (idx = 0; idx < nelem; idx++)
1324 {
1325 memcpy (value_contents_all_raw (val) + (idx * typelength),
1326 value_contents_all (elemvec[idx]),
1327 typelength);
1328 }
1329 return val;
1330 }
1331
1332 /* Allocate space to store the array, and then initialize it by
1333 copying in each element. */
1334
1335 val = allocate_value (arraytype);
1336 for (idx = 0; idx < nelem; idx++)
1337 memcpy (value_contents_writeable (val) + (idx * typelength),
1338 value_contents_all (elemvec[idx]),
1339 typelength);
1340 return val;
1341 }
1342
1343 struct value *
1344 value_cstring (char *ptr, int len, struct type *char_type)
1345 {
1346 struct value *val;
1347 int lowbound = current_language->string_lower_bound;
1348 int highbound = len / TYPE_LENGTH (char_type);
1349 struct type *stringtype
1350 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1351
1352 val = allocate_value (stringtype);
1353 memcpy (value_contents_raw (val), ptr, len);
1354 return val;
1355 }
1356
1357 /* Create a value for a string constant by allocating space in the
1358 inferior, copying the data into that space, and returning the
1359 address with type TYPE_CODE_STRING. PTR points to the string
1360 constant data; LEN is number of characters.
1361
1362 Note that string types are like array of char types with a lower
1363 bound of zero and an upper bound of LEN - 1. Also note that the
1364 string may contain embedded null bytes. */
1365
1366 struct value *
1367 value_string (char *ptr, int len, struct type *char_type)
1368 {
1369 struct value *val;
1370 int lowbound = current_language->string_lower_bound;
1371 int highbound = len / TYPE_LENGTH (char_type);
1372 struct type *stringtype
1373 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1374
1375 val = allocate_value (stringtype);
1376 memcpy (value_contents_raw (val), ptr, len);
1377 return val;
1378 }
1379
1380 struct value *
1381 value_bitstring (char *ptr, int len, struct type *index_type)
1382 {
1383 struct value *val;
1384 struct type *domain_type
1385 = create_range_type (NULL, index_type, 0, len - 1);
1386 struct type *type = create_set_type (NULL, domain_type);
1387 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1388 val = allocate_value (type);
1389 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1390 return val;
1391 }
1392 \f
1393 /* See if we can pass arguments in T2 to a function which takes
1394 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1395 a NULL-terminated vector. If some arguments need coercion of some
1396 sort, then the coerced values are written into T2. Return value is
1397 0 if the arguments could be matched, or the position at which they
1398 differ if not.
1399
1400 STATICP is nonzero if the T1 argument list came from a static
1401 member function. T2 will still include the ``this'' pointer, but
1402 it will be skipped.
1403
1404 For non-static member functions, we ignore the first argument,
1405 which is the type of the instance variable. This is because we
1406 want to handle calls with objects from derived classes. This is
1407 not entirely correct: we should actually check to make sure that a
1408 requested operation is type secure, shouldn't we? FIXME. */
1409
1410 static int
1411 typecmp (int staticp, int varargs, int nargs,
1412 struct field t1[], struct value *t2[])
1413 {
1414 int i;
1415
1416 if (t2 == 0)
1417 internal_error (__FILE__, __LINE__,
1418 _("typecmp: no argument list"));
1419
1420 /* Skip ``this'' argument if applicable. T2 will always include
1421 THIS. */
1422 if (staticp)
1423 t2 ++;
1424
1425 for (i = 0;
1426 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1427 i++)
1428 {
1429 struct type *tt1, *tt2;
1430
1431 if (!t2[i])
1432 return i + 1;
1433
1434 tt1 = check_typedef (t1[i].type);
1435 tt2 = check_typedef (value_type (t2[i]));
1436
1437 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1438 /* We should be doing hairy argument matching, as below. */
1439 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1440 {
1441 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1442 t2[i] = value_coerce_array (t2[i]);
1443 else
1444 t2[i] = value_ref (t2[i]);
1445 continue;
1446 }
1447
1448 /* djb - 20000715 - Until the new type structure is in the
1449 place, and we can attempt things like implicit conversions,
1450 we need to do this so you can take something like a map<const
1451 char *>, and properly access map["hello"], because the
1452 argument to [] will be a reference to a pointer to a char,
1453 and the argument will be a pointer to a char. */
1454 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1455 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1456 {
1457 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1458 }
1459 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1460 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1461 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1462 {
1463 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1464 }
1465 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1466 continue;
1467 /* Array to pointer is a `trivial conversion' according to the
1468 ARM. */
1469
1470 /* We should be doing much hairier argument matching (see
1471 section 13.2 of the ARM), but as a quick kludge, just check
1472 for the same type code. */
1473 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1474 return i + 1;
1475 }
1476 if (varargs || t2[i] == NULL)
1477 return 0;
1478 return i + 1;
1479 }
1480
1481 /* Helper function used by value_struct_elt to recurse through
1482 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1483 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1484 TYPE. If found, return value, else return NULL.
1485
1486 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1487 fields, look for a baseclass named NAME. */
1488
1489 static struct value *
1490 search_struct_field (char *name, struct value *arg1, int offset,
1491 struct type *type, int looking_for_baseclass)
1492 {
1493 int i;
1494 int nbases = TYPE_N_BASECLASSES (type);
1495
1496 CHECK_TYPEDEF (type);
1497
1498 if (!looking_for_baseclass)
1499 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1500 {
1501 char *t_field_name = TYPE_FIELD_NAME (type, i);
1502
1503 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1504 {
1505 struct value *v;
1506 if (field_is_static (&TYPE_FIELD (type, i)))
1507 {
1508 v = value_static_field (type, i);
1509 if (v == 0)
1510 error (_("field %s is nonexistent or has been optimised out"),
1511 name);
1512 }
1513 else
1514 {
1515 v = value_primitive_field (arg1, offset, i, type);
1516 if (v == 0)
1517 error (_("there is no field named %s"), name);
1518 }
1519 return v;
1520 }
1521
1522 if (t_field_name
1523 && (t_field_name[0] == '\0'
1524 || (TYPE_CODE (type) == TYPE_CODE_UNION
1525 && (strcmp_iw (t_field_name, "else") == 0))))
1526 {
1527 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1528 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1529 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1530 {
1531 /* Look for a match through the fields of an anonymous
1532 union, or anonymous struct. C++ provides anonymous
1533 unions.
1534
1535 In the GNU Chill (now deleted from GDB)
1536 implementation of variant record types, each
1537 <alternative field> has an (anonymous) union type,
1538 each member of the union represents a <variant
1539 alternative>. Each <variant alternative> is
1540 represented as a struct, with a member for each
1541 <variant field>. */
1542
1543 struct value *v;
1544 int new_offset = offset;
1545
1546 /* This is pretty gross. In G++, the offset in an
1547 anonymous union is relative to the beginning of the
1548 enclosing struct. In the GNU Chill (now deleted
1549 from GDB) implementation of variant records, the
1550 bitpos is zero in an anonymous union field, so we
1551 have to add the offset of the union here. */
1552 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1553 || (TYPE_NFIELDS (field_type) > 0
1554 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1555 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1556
1557 v = search_struct_field (name, arg1, new_offset,
1558 field_type,
1559 looking_for_baseclass);
1560 if (v)
1561 return v;
1562 }
1563 }
1564 }
1565
1566 for (i = 0; i < nbases; i++)
1567 {
1568 struct value *v;
1569 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1570 /* If we are looking for baseclasses, this is what we get when
1571 we hit them. But it could happen that the base part's member
1572 name is not yet filled in. */
1573 int found_baseclass = (looking_for_baseclass
1574 && TYPE_BASECLASS_NAME (type, i) != NULL
1575 && (strcmp_iw (name,
1576 TYPE_BASECLASS_NAME (type,
1577 i)) == 0));
1578
1579 if (BASETYPE_VIA_VIRTUAL (type, i))
1580 {
1581 int boffset;
1582 struct value *v2;
1583
1584 boffset = baseclass_offset (type, i,
1585 value_contents (arg1) + offset,
1586 value_address (arg1) + offset);
1587 if (boffset == -1)
1588 error (_("virtual baseclass botch"));
1589
1590 /* The virtual base class pointer might have been clobbered
1591 by the user program. Make sure that it still points to a
1592 valid memory location. */
1593
1594 boffset += offset;
1595 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1596 {
1597 CORE_ADDR base_addr;
1598
1599 v2 = allocate_value (basetype);
1600 base_addr = value_address (arg1) + boffset;
1601 if (target_read_memory (base_addr,
1602 value_contents_raw (v2),
1603 TYPE_LENGTH (basetype)) != 0)
1604 error (_("virtual baseclass botch"));
1605 VALUE_LVAL (v2) = lval_memory;
1606 set_value_address (v2, base_addr);
1607 }
1608 else
1609 {
1610 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1611 v2 = allocate_value_lazy (basetype);
1612 else
1613 {
1614 v2 = allocate_value (basetype);
1615 memcpy (value_contents_raw (v2),
1616 value_contents_raw (arg1) + boffset,
1617 TYPE_LENGTH (basetype));
1618 }
1619 set_value_component_location (v2, arg1);
1620 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1621 set_value_offset (v2, value_offset (arg1) + boffset);
1622 }
1623
1624 if (found_baseclass)
1625 return v2;
1626 v = search_struct_field (name, v2, 0,
1627 TYPE_BASECLASS (type, i),
1628 looking_for_baseclass);
1629 }
1630 else if (found_baseclass)
1631 v = value_primitive_field (arg1, offset, i, type);
1632 else
1633 v = search_struct_field (name, arg1,
1634 offset + TYPE_BASECLASS_BITPOS (type,
1635 i) / 8,
1636 basetype, looking_for_baseclass);
1637 if (v)
1638 return v;
1639 }
1640 return NULL;
1641 }
1642
1643 /* Helper function used by value_struct_elt to recurse through
1644 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1645 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1646 TYPE.
1647
1648 If found, return value, else if name matched and args not return
1649 (value) -1, else return NULL. */
1650
1651 static struct value *
1652 search_struct_method (char *name, struct value **arg1p,
1653 struct value **args, int offset,
1654 int *static_memfuncp, struct type *type)
1655 {
1656 int i;
1657 struct value *v;
1658 int name_matched = 0;
1659 char dem_opname[64];
1660
1661 CHECK_TYPEDEF (type);
1662 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1663 {
1664 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1665 /* FIXME! May need to check for ARM demangling here */
1666 if (strncmp (t_field_name, "__", 2) == 0 ||
1667 strncmp (t_field_name, "op", 2) == 0 ||
1668 strncmp (t_field_name, "type", 4) == 0)
1669 {
1670 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1671 t_field_name = dem_opname;
1672 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1673 t_field_name = dem_opname;
1674 }
1675 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1676 {
1677 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1678 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1679 name_matched = 1;
1680
1681 check_stub_method_group (type, i);
1682 if (j > 0 && args == 0)
1683 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1684 else if (j == 0 && args == 0)
1685 {
1686 v = value_fn_field (arg1p, f, j, type, offset);
1687 if (v != NULL)
1688 return v;
1689 }
1690 else
1691 while (j >= 0)
1692 {
1693 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1694 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1695 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1696 TYPE_FN_FIELD_ARGS (f, j), args))
1697 {
1698 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1699 return value_virtual_fn_field (arg1p, f, j,
1700 type, offset);
1701 if (TYPE_FN_FIELD_STATIC_P (f, j)
1702 && static_memfuncp)
1703 *static_memfuncp = 1;
1704 v = value_fn_field (arg1p, f, j, type, offset);
1705 if (v != NULL)
1706 return v;
1707 }
1708 j--;
1709 }
1710 }
1711 }
1712
1713 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1714 {
1715 int base_offset;
1716
1717 if (BASETYPE_VIA_VIRTUAL (type, i))
1718 {
1719 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1720 const gdb_byte *base_valaddr;
1721
1722 /* The virtual base class pointer might have been
1723 clobbered by the user program. Make sure that it
1724 still points to a valid memory location. */
1725
1726 if (offset < 0 || offset >= TYPE_LENGTH (type))
1727 {
1728 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1729 if (target_read_memory (value_address (*arg1p) + offset,
1730 tmp, TYPE_LENGTH (baseclass)) != 0)
1731 error (_("virtual baseclass botch"));
1732 base_valaddr = tmp;
1733 }
1734 else
1735 base_valaddr = value_contents (*arg1p) + offset;
1736
1737 base_offset = baseclass_offset (type, i, base_valaddr,
1738 value_address (*arg1p) + offset);
1739 if (base_offset == -1)
1740 error (_("virtual baseclass botch"));
1741 }
1742 else
1743 {
1744 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1745 }
1746 v = search_struct_method (name, arg1p, args, base_offset + offset,
1747 static_memfuncp, TYPE_BASECLASS (type, i));
1748 if (v == (struct value *) - 1)
1749 {
1750 name_matched = 1;
1751 }
1752 else if (v)
1753 {
1754 /* FIXME-bothner: Why is this commented out? Why is it here? */
1755 /* *arg1p = arg1_tmp; */
1756 return v;
1757 }
1758 }
1759 if (name_matched)
1760 return (struct value *) - 1;
1761 else
1762 return NULL;
1763 }
1764
1765 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1766 extract the component named NAME from the ultimate target
1767 structure/union and return it as a value with its appropriate type.
1768 ERR is used in the error message if *ARGP's type is wrong.
1769
1770 C++: ARGS is a list of argument types to aid in the selection of
1771 an appropriate method. Also, handle derived types.
1772
1773 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1774 where the truthvalue of whether the function that was resolved was
1775 a static member function or not is stored.
1776
1777 ERR is an error message to be printed in case the field is not
1778 found. */
1779
1780 struct value *
1781 value_struct_elt (struct value **argp, struct value **args,
1782 char *name, int *static_memfuncp, char *err)
1783 {
1784 struct type *t;
1785 struct value *v;
1786
1787 *argp = coerce_array (*argp);
1788
1789 t = check_typedef (value_type (*argp));
1790
1791 /* Follow pointers until we get to a non-pointer. */
1792
1793 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1794 {
1795 *argp = value_ind (*argp);
1796 /* Don't coerce fn pointer to fn and then back again! */
1797 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1798 *argp = coerce_array (*argp);
1799 t = check_typedef (value_type (*argp));
1800 }
1801
1802 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1803 && TYPE_CODE (t) != TYPE_CODE_UNION)
1804 error (_("Attempt to extract a component of a value that is not a %s."), err);
1805
1806 /* Assume it's not, unless we see that it is. */
1807 if (static_memfuncp)
1808 *static_memfuncp = 0;
1809
1810 if (!args)
1811 {
1812 /* if there are no arguments ...do this... */
1813
1814 /* Try as a field first, because if we succeed, there is less
1815 work to be done. */
1816 v = search_struct_field (name, *argp, 0, t, 0);
1817 if (v)
1818 return v;
1819
1820 /* C++: If it was not found as a data field, then try to
1821 return it as a pointer to a method. */
1822 v = search_struct_method (name, argp, args, 0,
1823 static_memfuncp, t);
1824
1825 if (v == (struct value *) - 1)
1826 error (_("Cannot take address of method %s."), name);
1827 else if (v == 0)
1828 {
1829 if (TYPE_NFN_FIELDS (t))
1830 error (_("There is no member or method named %s."), name);
1831 else
1832 error (_("There is no member named %s."), name);
1833 }
1834 return v;
1835 }
1836
1837 v = search_struct_method (name, argp, args, 0,
1838 static_memfuncp, t);
1839
1840 if (v == (struct value *) - 1)
1841 {
1842 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1843 }
1844 else if (v == 0)
1845 {
1846 /* See if user tried to invoke data as function. If so, hand it
1847 back. If it's not callable (i.e., a pointer to function),
1848 gdb should give an error. */
1849 v = search_struct_field (name, *argp, 0, t, 0);
1850 /* If we found an ordinary field, then it is not a method call.
1851 So, treat it as if it were a static member function. */
1852 if (v && static_memfuncp)
1853 *static_memfuncp = 1;
1854 }
1855
1856 if (!v)
1857 error (_("Structure has no component named %s."), name);
1858 return v;
1859 }
1860
1861 /* Search through the methods of an object (and its bases) to find a
1862 specified method. Return the pointer to the fn_field list of
1863 overloaded instances.
1864
1865 Helper function for value_find_oload_list.
1866 ARGP is a pointer to a pointer to a value (the object).
1867 METHOD is a string containing the method name.
1868 OFFSET is the offset within the value.
1869 TYPE is the assumed type of the object.
1870 NUM_FNS is the number of overloaded instances.
1871 BASETYPE is set to the actual type of the subobject where the
1872 method is found.
1873 BOFFSET is the offset of the base subobject where the method is found.
1874 */
1875
1876 static struct fn_field *
1877 find_method_list (struct value **argp, char *method,
1878 int offset, struct type *type, int *num_fns,
1879 struct type **basetype, int *boffset)
1880 {
1881 int i;
1882 struct fn_field *f;
1883 CHECK_TYPEDEF (type);
1884
1885 *num_fns = 0;
1886
1887 /* First check in object itself. */
1888 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1889 {
1890 /* pai: FIXME What about operators and type conversions? */
1891 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1892 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1893 {
1894 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1895 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1896
1897 *num_fns = len;
1898 *basetype = type;
1899 *boffset = offset;
1900
1901 /* Resolve any stub methods. */
1902 check_stub_method_group (type, i);
1903
1904 return f;
1905 }
1906 }
1907
1908 /* Not found in object, check in base subobjects. */
1909 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1910 {
1911 int base_offset;
1912 if (BASETYPE_VIA_VIRTUAL (type, i))
1913 {
1914 base_offset = value_offset (*argp) + offset;
1915 base_offset = baseclass_offset (type, i,
1916 value_contents (*argp) + base_offset,
1917 value_address (*argp) + base_offset);
1918 if (base_offset == -1)
1919 error (_("virtual baseclass botch"));
1920 }
1921 else /* Non-virtual base, simply use bit position from debug
1922 info. */
1923 {
1924 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1925 }
1926 f = find_method_list (argp, method, base_offset + offset,
1927 TYPE_BASECLASS (type, i), num_fns,
1928 basetype, boffset);
1929 if (f)
1930 return f;
1931 }
1932 return NULL;
1933 }
1934
1935 /* Return the list of overloaded methods of a specified name.
1936
1937 ARGP is a pointer to a pointer to a value (the object).
1938 METHOD is the method name.
1939 OFFSET is the offset within the value contents.
1940 NUM_FNS is the number of overloaded instances.
1941 BASETYPE is set to the type of the base subobject that defines the
1942 method.
1943 BOFFSET is the offset of the base subobject which defines the method.
1944 */
1945
1946 struct fn_field *
1947 value_find_oload_method_list (struct value **argp, char *method,
1948 int offset, int *num_fns,
1949 struct type **basetype, int *boffset)
1950 {
1951 struct type *t;
1952
1953 t = check_typedef (value_type (*argp));
1954
1955 /* Code snarfed from value_struct_elt. */
1956 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1957 {
1958 *argp = value_ind (*argp);
1959 /* Don't coerce fn pointer to fn and then back again! */
1960 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1961 *argp = coerce_array (*argp);
1962 t = check_typedef (value_type (*argp));
1963 }
1964
1965 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1966 && TYPE_CODE (t) != TYPE_CODE_UNION)
1967 error (_("Attempt to extract a component of a value that is not a struct or union"));
1968
1969 return find_method_list (argp, method, 0, t, num_fns,
1970 basetype, boffset);
1971 }
1972
1973 /* Given an array of argument types (ARGTYPES) (which includes an
1974 entry for "this" in the case of C++ methods), the number of
1975 arguments NARGS, the NAME of a function whether it's a method or
1976 not (METHOD), and the degree of laxness (LAX) in conforming to
1977 overload resolution rules in ANSI C++, find the best function that
1978 matches on the argument types according to the overload resolution
1979 rules.
1980
1981 In the case of class methods, the parameter OBJ is an object value
1982 in which to search for overloaded methods.
1983
1984 In the case of non-method functions, the parameter FSYM is a symbol
1985 corresponding to one of the overloaded functions.
1986
1987 Return value is an integer: 0 -> good match, 10 -> debugger applied
1988 non-standard coercions, 100 -> incompatible.
1989
1990 If a method is being searched for, VALP will hold the value.
1991 If a non-method is being searched for, SYMP will hold the symbol
1992 for it.
1993
1994 If a method is being searched for, and it is a static method,
1995 then STATICP will point to a non-zero value.
1996
1997 Note: This function does *not* check the value of
1998 overload_resolution. Caller must check it to see whether overload
1999 resolution is permitted.
2000 */
2001
2002 int
2003 find_overload_match (struct type **arg_types, int nargs,
2004 char *name, int method, int lax,
2005 struct value **objp, struct symbol *fsym,
2006 struct value **valp, struct symbol **symp,
2007 int *staticp)
2008 {
2009 struct value *obj = (objp ? *objp : NULL);
2010 /* Index of best overloaded function. */
2011 int oload_champ;
2012 /* The measure for the current best match. */
2013 struct badness_vector *oload_champ_bv = NULL;
2014 struct value *temp = obj;
2015 /* For methods, the list of overloaded methods. */
2016 struct fn_field *fns_ptr = NULL;
2017 /* For non-methods, the list of overloaded function symbols. */
2018 struct symbol **oload_syms = NULL;
2019 /* Number of overloaded instances being considered. */
2020 int num_fns = 0;
2021 struct type *basetype = NULL;
2022 int boffset;
2023 int ix;
2024 int static_offset;
2025 struct cleanup *old_cleanups = NULL;
2026
2027 const char *obj_type_name = NULL;
2028 char *func_name = NULL;
2029 enum oload_classification match_quality;
2030
2031 /* Get the list of overloaded methods or functions. */
2032 if (method)
2033 {
2034 gdb_assert (obj);
2035 obj_type_name = TYPE_NAME (value_type (obj));
2036 /* Hack: evaluate_subexp_standard often passes in a pointer
2037 value rather than the object itself, so try again. */
2038 if ((!obj_type_name || !*obj_type_name)
2039 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2040 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2041
2042 fns_ptr = value_find_oload_method_list (&temp, name,
2043 0, &num_fns,
2044 &basetype, &boffset);
2045 if (!fns_ptr || !num_fns)
2046 error (_("Couldn't find method %s%s%s"),
2047 obj_type_name,
2048 (obj_type_name && *obj_type_name) ? "::" : "",
2049 name);
2050 /* If we are dealing with stub method types, they should have
2051 been resolved by find_method_list via
2052 value_find_oload_method_list above. */
2053 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2054 oload_champ = find_oload_champ (arg_types, nargs, method,
2055 num_fns, fns_ptr,
2056 oload_syms, &oload_champ_bv);
2057 }
2058 else
2059 {
2060 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2061
2062 /* If we have a C++ name, try to extract just the function
2063 part. */
2064 if (qualified_name)
2065 func_name = cp_func_name (qualified_name);
2066
2067 /* If there was no C++ name, this must be a C-style function.
2068 Just return the same symbol. Do the same if cp_func_name
2069 fails for some reason. */
2070 if (func_name == NULL)
2071 {
2072 *symp = fsym;
2073 return 0;
2074 }
2075
2076 old_cleanups = make_cleanup (xfree, func_name);
2077 make_cleanup (xfree, oload_syms);
2078 make_cleanup (xfree, oload_champ_bv);
2079
2080 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2081 func_name,
2082 qualified_name,
2083 &oload_syms,
2084 &oload_champ_bv);
2085 }
2086
2087 /* Check how bad the best match is. */
2088
2089 match_quality =
2090 classify_oload_match (oload_champ_bv, nargs,
2091 oload_method_static (method, fns_ptr,
2092 oload_champ));
2093
2094 if (match_quality == INCOMPATIBLE)
2095 {
2096 if (method)
2097 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2098 obj_type_name,
2099 (obj_type_name && *obj_type_name) ? "::" : "",
2100 name);
2101 else
2102 error (_("Cannot resolve function %s to any overloaded instance"),
2103 func_name);
2104 }
2105 else if (match_quality == NON_STANDARD)
2106 {
2107 if (method)
2108 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2109 obj_type_name,
2110 (obj_type_name && *obj_type_name) ? "::" : "",
2111 name);
2112 else
2113 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2114 func_name);
2115 }
2116
2117 if (method)
2118 {
2119 if (staticp != NULL)
2120 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2121 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2122 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2123 basetype, boffset);
2124 else
2125 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2126 basetype, boffset);
2127 }
2128 else
2129 {
2130 *symp = oload_syms[oload_champ];
2131 }
2132
2133 if (objp)
2134 {
2135 struct type *temp_type = check_typedef (value_type (temp));
2136 struct type *obj_type = check_typedef (value_type (*objp));
2137 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2138 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2139 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2140 {
2141 temp = value_addr (temp);
2142 }
2143 *objp = temp;
2144 }
2145 if (old_cleanups != NULL)
2146 do_cleanups (old_cleanups);
2147
2148 switch (match_quality)
2149 {
2150 case INCOMPATIBLE:
2151 return 100;
2152 case NON_STANDARD:
2153 return 10;
2154 default: /* STANDARD */
2155 return 0;
2156 }
2157 }
2158
2159 /* Find the best overload match, searching for FUNC_NAME in namespaces
2160 contained in QUALIFIED_NAME until it either finds a good match or
2161 runs out of namespaces. It stores the overloaded functions in
2162 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2163 calling function is responsible for freeing *OLOAD_SYMS and
2164 *OLOAD_CHAMP_BV. */
2165
2166 static int
2167 find_oload_champ_namespace (struct type **arg_types, int nargs,
2168 const char *func_name,
2169 const char *qualified_name,
2170 struct symbol ***oload_syms,
2171 struct badness_vector **oload_champ_bv)
2172 {
2173 int oload_champ;
2174
2175 find_oload_champ_namespace_loop (arg_types, nargs,
2176 func_name,
2177 qualified_name, 0,
2178 oload_syms, oload_champ_bv,
2179 &oload_champ);
2180
2181 return oload_champ;
2182 }
2183
2184 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2185 how deep we've looked for namespaces, and the champ is stored in
2186 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2187 if it isn't.
2188
2189 It is the caller's responsibility to free *OLOAD_SYMS and
2190 *OLOAD_CHAMP_BV. */
2191
2192 static int
2193 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2194 const char *func_name,
2195 const char *qualified_name,
2196 int namespace_len,
2197 struct symbol ***oload_syms,
2198 struct badness_vector **oload_champ_bv,
2199 int *oload_champ)
2200 {
2201 int next_namespace_len = namespace_len;
2202 int searched_deeper = 0;
2203 int num_fns = 0;
2204 struct cleanup *old_cleanups;
2205 int new_oload_champ;
2206 struct symbol **new_oload_syms;
2207 struct badness_vector *new_oload_champ_bv;
2208 char *new_namespace;
2209
2210 if (next_namespace_len != 0)
2211 {
2212 gdb_assert (qualified_name[next_namespace_len] == ':');
2213 next_namespace_len += 2;
2214 }
2215 next_namespace_len +=
2216 cp_find_first_component (qualified_name + next_namespace_len);
2217
2218 /* Initialize these to values that can safely be xfree'd. */
2219 *oload_syms = NULL;
2220 *oload_champ_bv = NULL;
2221
2222 /* First, see if we have a deeper namespace we can search in.
2223 If we get a good match there, use it. */
2224
2225 if (qualified_name[next_namespace_len] == ':')
2226 {
2227 searched_deeper = 1;
2228
2229 if (find_oload_champ_namespace_loop (arg_types, nargs,
2230 func_name, qualified_name,
2231 next_namespace_len,
2232 oload_syms, oload_champ_bv,
2233 oload_champ))
2234 {
2235 return 1;
2236 }
2237 };
2238
2239 /* If we reach here, either we're in the deepest namespace or we
2240 didn't find a good match in a deeper namespace. But, in the
2241 latter case, we still have a bad match in a deeper namespace;
2242 note that we might not find any match at all in the current
2243 namespace. (There's always a match in the deepest namespace,
2244 because this overload mechanism only gets called if there's a
2245 function symbol to start off with.) */
2246
2247 old_cleanups = make_cleanup (xfree, *oload_syms);
2248 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2249 new_namespace = alloca (namespace_len + 1);
2250 strncpy (new_namespace, qualified_name, namespace_len);
2251 new_namespace[namespace_len] = '\0';
2252 new_oload_syms = make_symbol_overload_list (func_name,
2253 new_namespace);
2254 while (new_oload_syms[num_fns])
2255 ++num_fns;
2256
2257 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2258 NULL, new_oload_syms,
2259 &new_oload_champ_bv);
2260
2261 /* Case 1: We found a good match. Free earlier matches (if any),
2262 and return it. Case 2: We didn't find a good match, but we're
2263 not the deepest function. Then go with the bad match that the
2264 deeper function found. Case 3: We found a bad match, and we're
2265 the deepest function. Then return what we found, even though
2266 it's a bad match. */
2267
2268 if (new_oload_champ != -1
2269 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2270 {
2271 *oload_syms = new_oload_syms;
2272 *oload_champ = new_oload_champ;
2273 *oload_champ_bv = new_oload_champ_bv;
2274 do_cleanups (old_cleanups);
2275 return 1;
2276 }
2277 else if (searched_deeper)
2278 {
2279 xfree (new_oload_syms);
2280 xfree (new_oload_champ_bv);
2281 discard_cleanups (old_cleanups);
2282 return 0;
2283 }
2284 else
2285 {
2286 gdb_assert (new_oload_champ != -1);
2287 *oload_syms = new_oload_syms;
2288 *oload_champ = new_oload_champ;
2289 *oload_champ_bv = new_oload_champ_bv;
2290 discard_cleanups (old_cleanups);
2291 return 0;
2292 }
2293 }
2294
2295 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2296 the best match from among the overloaded methods or functions
2297 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2298 The number of methods/functions in the list is given by NUM_FNS.
2299 Return the index of the best match; store an indication of the
2300 quality of the match in OLOAD_CHAMP_BV.
2301
2302 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2303
2304 static int
2305 find_oload_champ (struct type **arg_types, int nargs, int method,
2306 int num_fns, struct fn_field *fns_ptr,
2307 struct symbol **oload_syms,
2308 struct badness_vector **oload_champ_bv)
2309 {
2310 int ix;
2311 /* A measure of how good an overloaded instance is. */
2312 struct badness_vector *bv;
2313 /* Index of best overloaded function. */
2314 int oload_champ = -1;
2315 /* Current ambiguity state for overload resolution. */
2316 int oload_ambiguous = 0;
2317 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2318
2319 *oload_champ_bv = NULL;
2320
2321 /* Consider each candidate in turn. */
2322 for (ix = 0; ix < num_fns; ix++)
2323 {
2324 int jj;
2325 int static_offset = oload_method_static (method, fns_ptr, ix);
2326 int nparms;
2327 struct type **parm_types;
2328
2329 if (method)
2330 {
2331 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2332 }
2333 else
2334 {
2335 /* If it's not a method, this is the proper place. */
2336 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2337 }
2338
2339 /* Prepare array of parameter types. */
2340 parm_types = (struct type **)
2341 xmalloc (nparms * (sizeof (struct type *)));
2342 for (jj = 0; jj < nparms; jj++)
2343 parm_types[jj] = (method
2344 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2345 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2346 jj));
2347
2348 /* Compare parameter types to supplied argument types. Skip
2349 THIS for static methods. */
2350 bv = rank_function (parm_types, nparms,
2351 arg_types + static_offset,
2352 nargs - static_offset);
2353
2354 if (!*oload_champ_bv)
2355 {
2356 *oload_champ_bv = bv;
2357 oload_champ = 0;
2358 }
2359 else /* See whether current candidate is better or worse than
2360 previous best. */
2361 switch (compare_badness (bv, *oload_champ_bv))
2362 {
2363 case 0: /* Top two contenders are equally good. */
2364 oload_ambiguous = 1;
2365 break;
2366 case 1: /* Incomparable top contenders. */
2367 oload_ambiguous = 2;
2368 break;
2369 case 2: /* New champion, record details. */
2370 *oload_champ_bv = bv;
2371 oload_ambiguous = 0;
2372 oload_champ = ix;
2373 break;
2374 case 3:
2375 default:
2376 break;
2377 }
2378 xfree (parm_types);
2379 if (overload_debug)
2380 {
2381 if (method)
2382 fprintf_filtered (gdb_stderr,
2383 "Overloaded method instance %s, # of parms %d\n",
2384 fns_ptr[ix].physname, nparms);
2385 else
2386 fprintf_filtered (gdb_stderr,
2387 "Overloaded function instance %s # of parms %d\n",
2388 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2389 nparms);
2390 for (jj = 0; jj < nargs - static_offset; jj++)
2391 fprintf_filtered (gdb_stderr,
2392 "...Badness @ %d : %d\n",
2393 jj, bv->rank[jj]);
2394 fprintf_filtered (gdb_stderr,
2395 "Overload resolution champion is %d, ambiguous? %d\n",
2396 oload_champ, oload_ambiguous);
2397 }
2398 }
2399
2400 return oload_champ;
2401 }
2402
2403 /* Return 1 if we're looking at a static method, 0 if we're looking at
2404 a non-static method or a function that isn't a method. */
2405
2406 static int
2407 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2408 {
2409 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2410 return 1;
2411 else
2412 return 0;
2413 }
2414
2415 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2416
2417 static enum oload_classification
2418 classify_oload_match (struct badness_vector *oload_champ_bv,
2419 int nargs,
2420 int static_offset)
2421 {
2422 int ix;
2423
2424 for (ix = 1; ix <= nargs - static_offset; ix++)
2425 {
2426 if (oload_champ_bv->rank[ix] >= 100)
2427 return INCOMPATIBLE; /* Truly mismatched types. */
2428 else if (oload_champ_bv->rank[ix] >= 10)
2429 return NON_STANDARD; /* Non-standard type conversions
2430 needed. */
2431 }
2432
2433 return STANDARD; /* Only standard conversions needed. */
2434 }
2435
2436 /* C++: return 1 is NAME is a legitimate name for the destructor of
2437 type TYPE. If TYPE does not have a destructor, or if NAME is
2438 inappropriate for TYPE, an error is signaled. */
2439 int
2440 destructor_name_p (const char *name, const struct type *type)
2441 {
2442 if (name[0] == '~')
2443 {
2444 char *dname = type_name_no_tag (type);
2445 char *cp = strchr (dname, '<');
2446 unsigned int len;
2447
2448 /* Do not compare the template part for template classes. */
2449 if (cp == NULL)
2450 len = strlen (dname);
2451 else
2452 len = cp - dname;
2453 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2454 error (_("name of destructor must equal name of class"));
2455 else
2456 return 1;
2457 }
2458 return 0;
2459 }
2460
2461 /* Given TYPE, a structure/union,
2462 return 1 if the component named NAME from the ultimate target
2463 structure/union is defined, otherwise, return 0. */
2464
2465 int
2466 check_field (struct type *type, const char *name)
2467 {
2468 int i;
2469
2470 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2471 {
2472 char *t_field_name = TYPE_FIELD_NAME (type, i);
2473 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2474 return 1;
2475 }
2476
2477 /* C++: If it was not found as a data field, then try to return it
2478 as a pointer to a method. */
2479
2480 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2481 {
2482 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2483 return 1;
2484 }
2485
2486 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2487 if (check_field (TYPE_BASECLASS (type, i), name))
2488 return 1;
2489
2490 return 0;
2491 }
2492
2493 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2494 return the appropriate member (or the address of the member, if
2495 WANT_ADDRESS). This function is used to resolve user expressions
2496 of the form "DOMAIN::NAME". For more details on what happens, see
2497 the comment before value_struct_elt_for_reference. */
2498
2499 struct value *
2500 value_aggregate_elt (struct type *curtype,
2501 char *name, int want_address,
2502 enum noside noside)
2503 {
2504 switch (TYPE_CODE (curtype))
2505 {
2506 case TYPE_CODE_STRUCT:
2507 case TYPE_CODE_UNION:
2508 return value_struct_elt_for_reference (curtype, 0, curtype,
2509 name, NULL,
2510 want_address, noside);
2511 case TYPE_CODE_NAMESPACE:
2512 return value_namespace_elt (curtype, name,
2513 want_address, noside);
2514 default:
2515 internal_error (__FILE__, __LINE__,
2516 _("non-aggregate type in value_aggregate_elt"));
2517 }
2518 }
2519
2520 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2521 return the address of this member as a "pointer to member" type.
2522 If INTYPE is non-null, then it will be the type of the member we
2523 are looking for. This will help us resolve "pointers to member
2524 functions". This function is used to resolve user expressions of
2525 the form "DOMAIN::NAME". */
2526
2527 static struct value *
2528 value_struct_elt_for_reference (struct type *domain, int offset,
2529 struct type *curtype, char *name,
2530 struct type *intype,
2531 int want_address,
2532 enum noside noside)
2533 {
2534 struct type *t = curtype;
2535 int i;
2536 struct value *v, *result;
2537
2538 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2539 && TYPE_CODE (t) != TYPE_CODE_UNION)
2540 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2541
2542 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2543 {
2544 char *t_field_name = TYPE_FIELD_NAME (t, i);
2545
2546 if (t_field_name && strcmp (t_field_name, name) == 0)
2547 {
2548 if (field_is_static (&TYPE_FIELD (t, i)))
2549 {
2550 v = value_static_field (t, i);
2551 if (v == NULL)
2552 error (_("static field %s has been optimized out"),
2553 name);
2554 if (want_address)
2555 v = value_addr (v);
2556 return v;
2557 }
2558 if (TYPE_FIELD_PACKED (t, i))
2559 error (_("pointers to bitfield members not allowed"));
2560
2561 if (want_address)
2562 return value_from_longest
2563 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2564 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2565 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2566 return allocate_value (TYPE_FIELD_TYPE (t, i));
2567 else
2568 error (_("Cannot reference non-static field \"%s\""), name);
2569 }
2570 }
2571
2572 /* C++: If it was not found as a data field, then try to return it
2573 as a pointer to a method. */
2574
2575 /* Perform all necessary dereferencing. */
2576 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2577 intype = TYPE_TARGET_TYPE (intype);
2578
2579 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2580 {
2581 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2582 char dem_opname[64];
2583
2584 if (strncmp (t_field_name, "__", 2) == 0
2585 || strncmp (t_field_name, "op", 2) == 0
2586 || strncmp (t_field_name, "type", 4) == 0)
2587 {
2588 if (cplus_demangle_opname (t_field_name,
2589 dem_opname, DMGL_ANSI))
2590 t_field_name = dem_opname;
2591 else if (cplus_demangle_opname (t_field_name,
2592 dem_opname, 0))
2593 t_field_name = dem_opname;
2594 }
2595 if (t_field_name && strcmp (t_field_name, name) == 0)
2596 {
2597 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2598 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2599
2600 check_stub_method_group (t, i);
2601
2602 if (intype == 0 && j > 1)
2603 error (_("non-unique member `%s' requires type instantiation"), name);
2604 if (intype)
2605 {
2606 while (j--)
2607 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2608 break;
2609 if (j < 0)
2610 error (_("no member function matches that type instantiation"));
2611 }
2612 else
2613 j = 0;
2614
2615 if (TYPE_FN_FIELD_STATIC_P (f, j))
2616 {
2617 struct symbol *s =
2618 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2619 0, VAR_DOMAIN, 0);
2620 if (s == NULL)
2621 return NULL;
2622
2623 if (want_address)
2624 return value_addr (read_var_value (s, 0));
2625 else
2626 return read_var_value (s, 0);
2627 }
2628
2629 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2630 {
2631 if (want_address)
2632 {
2633 result = allocate_value
2634 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2635 cplus_make_method_ptr (value_type (result),
2636 value_contents_writeable (result),
2637 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2638 }
2639 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2640 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2641 else
2642 error (_("Cannot reference virtual member function \"%s\""),
2643 name);
2644 }
2645 else
2646 {
2647 struct symbol *s =
2648 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2649 0, VAR_DOMAIN, 0);
2650 if (s == NULL)
2651 return NULL;
2652
2653 v = read_var_value (s, 0);
2654 if (!want_address)
2655 result = v;
2656 else
2657 {
2658 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2659 cplus_make_method_ptr (value_type (result),
2660 value_contents_writeable (result),
2661 value_address (v), 0);
2662 }
2663 }
2664 return result;
2665 }
2666 }
2667 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2668 {
2669 struct value *v;
2670 int base_offset;
2671
2672 if (BASETYPE_VIA_VIRTUAL (t, i))
2673 base_offset = 0;
2674 else
2675 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2676 v = value_struct_elt_for_reference (domain,
2677 offset + base_offset,
2678 TYPE_BASECLASS (t, i),
2679 name, intype,
2680 want_address, noside);
2681 if (v)
2682 return v;
2683 }
2684
2685 /* As a last chance, pretend that CURTYPE is a namespace, and look
2686 it up that way; this (frequently) works for types nested inside
2687 classes. */
2688
2689 return value_maybe_namespace_elt (curtype, name,
2690 want_address, noside);
2691 }
2692
2693 /* C++: Return the member NAME of the namespace given by the type
2694 CURTYPE. */
2695
2696 static struct value *
2697 value_namespace_elt (const struct type *curtype,
2698 char *name, int want_address,
2699 enum noside noside)
2700 {
2701 struct value *retval = value_maybe_namespace_elt (curtype, name,
2702 want_address,
2703 noside);
2704
2705 if (retval == NULL)
2706 error (_("No symbol \"%s\" in namespace \"%s\"."),
2707 name, TYPE_TAG_NAME (curtype));
2708
2709 return retval;
2710 }
2711
2712 /* A helper function used by value_namespace_elt and
2713 value_struct_elt_for_reference. It looks up NAME inside the
2714 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2715 is a class and NAME refers to a type in CURTYPE itself (as opposed
2716 to, say, some base class of CURTYPE). */
2717
2718 static struct value *
2719 value_maybe_namespace_elt (const struct type *curtype,
2720 char *name, int want_address,
2721 enum noside noside)
2722 {
2723 const char *namespace_name = TYPE_TAG_NAME (curtype);
2724 struct symbol *sym;
2725 struct value *result;
2726
2727 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2728 get_selected_block (0),
2729 VAR_DOMAIN);
2730
2731 if (sym == NULL)
2732 return NULL;
2733 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2734 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2735 result = allocate_value (SYMBOL_TYPE (sym));
2736 else
2737 result = value_of_variable (sym, get_selected_block (0));
2738
2739 if (result && want_address)
2740 result = value_addr (result);
2741
2742 return result;
2743 }
2744
2745 /* Given a pointer value V, find the real (RTTI) type of the object it
2746 points to.
2747
2748 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2749 and refer to the values computed for the object pointed to. */
2750
2751 struct type *
2752 value_rtti_target_type (struct value *v, int *full,
2753 int *top, int *using_enc)
2754 {
2755 struct value *target;
2756
2757 target = value_ind (v);
2758
2759 return value_rtti_type (target, full, top, using_enc);
2760 }
2761
2762 /* Given a value pointed to by ARGP, check its real run-time type, and
2763 if that is different from the enclosing type, create a new value
2764 using the real run-time type as the enclosing type (and of the same
2765 type as ARGP) and return it, with the embedded offset adjusted to
2766 be the correct offset to the enclosed object. RTYPE is the type,
2767 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2768 by value_rtti_type(). If these are available, they can be supplied
2769 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2770 NULL if they're not available. */
2771
2772 struct value *
2773 value_full_object (struct value *argp,
2774 struct type *rtype,
2775 int xfull, int xtop,
2776 int xusing_enc)
2777 {
2778 struct type *real_type;
2779 int full = 0;
2780 int top = -1;
2781 int using_enc = 0;
2782 struct value *new_val;
2783
2784 if (rtype)
2785 {
2786 real_type = rtype;
2787 full = xfull;
2788 top = xtop;
2789 using_enc = xusing_enc;
2790 }
2791 else
2792 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2793
2794 /* If no RTTI data, or if object is already complete, do nothing. */
2795 if (!real_type || real_type == value_enclosing_type (argp))
2796 return argp;
2797
2798 /* If we have the full object, but for some reason the enclosing
2799 type is wrong, set it. */
2800 /* pai: FIXME -- sounds iffy */
2801 if (full)
2802 {
2803 argp = value_change_enclosing_type (argp, real_type);
2804 return argp;
2805 }
2806
2807 /* Check if object is in memory */
2808 if (VALUE_LVAL (argp) != lval_memory)
2809 {
2810 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2811 TYPE_NAME (real_type));
2812
2813 return argp;
2814 }
2815
2816 /* All other cases -- retrieve the complete object. */
2817 /* Go back by the computed top_offset from the beginning of the
2818 object, adjusting for the embedded offset of argp if that's what
2819 value_rtti_type used for its computation. */
2820 new_val = value_at_lazy (real_type, value_address (argp) - top +
2821 (using_enc ? 0 : value_embedded_offset (argp)));
2822 deprecated_set_value_type (new_val, value_type (argp));
2823 set_value_embedded_offset (new_val, (using_enc
2824 ? top + value_embedded_offset (argp)
2825 : top));
2826 return new_val;
2827 }
2828
2829
2830 /* Return the value of the local variable, if one exists.
2831 Flag COMPLAIN signals an error if the request is made in an
2832 inappropriate context. */
2833
2834 struct value *
2835 value_of_local (const char *name, int complain)
2836 {
2837 struct symbol *func, *sym;
2838 struct block *b;
2839 struct value * ret;
2840 struct frame_info *frame;
2841
2842 if (complain)
2843 frame = get_selected_frame (_("no frame selected"));
2844 else
2845 {
2846 frame = deprecated_safe_get_selected_frame ();
2847 if (frame == 0)
2848 return 0;
2849 }
2850
2851 func = get_frame_function (frame);
2852 if (!func)
2853 {
2854 if (complain)
2855 error (_("no `%s' in nameless context"), name);
2856 else
2857 return 0;
2858 }
2859
2860 b = SYMBOL_BLOCK_VALUE (func);
2861 if (dict_empty (BLOCK_DICT (b)))
2862 {
2863 if (complain)
2864 error (_("no args, no `%s'"), name);
2865 else
2866 return 0;
2867 }
2868
2869 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2870 symbol instead of the LOC_ARG one (if both exist). */
2871 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2872 if (sym == NULL)
2873 {
2874 if (complain)
2875 error (_("current stack frame does not contain a variable named `%s'"),
2876 name);
2877 else
2878 return NULL;
2879 }
2880
2881 ret = read_var_value (sym, frame);
2882 if (ret == 0 && complain)
2883 error (_("`%s' argument unreadable"), name);
2884 return ret;
2885 }
2886
2887 /* C++/Objective-C: return the value of the class instance variable,
2888 if one exists. Flag COMPLAIN signals an error if the request is
2889 made in an inappropriate context. */
2890
2891 struct value *
2892 value_of_this (int complain)
2893 {
2894 if (!current_language->la_name_of_this)
2895 return 0;
2896 return value_of_local (current_language->la_name_of_this, complain);
2897 }
2898
2899 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2900 elements long, starting at LOWBOUND. The result has the same lower
2901 bound as the original ARRAY. */
2902
2903 struct value *
2904 value_slice (struct value *array, int lowbound, int length)
2905 {
2906 struct type *slice_range_type, *slice_type, *range_type;
2907 LONGEST lowerbound, upperbound;
2908 struct value *slice;
2909 struct type *array_type;
2910
2911 array_type = check_typedef (value_type (array));
2912 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2913 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2914 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2915 error (_("cannot take slice of non-array"));
2916
2917 range_type = TYPE_INDEX_TYPE (array_type);
2918 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2919 error (_("slice from bad array or bitstring"));
2920
2921 if (lowbound < lowerbound || length < 0
2922 || lowbound + length - 1 > upperbound)
2923 error (_("slice out of range"));
2924
2925 /* FIXME-type-allocation: need a way to free this type when we are
2926 done with it. */
2927 slice_range_type = create_range_type ((struct type *) NULL,
2928 TYPE_TARGET_TYPE (range_type),
2929 lowbound,
2930 lowbound + length - 1);
2931 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2932 {
2933 int i;
2934
2935 slice_type = create_set_type ((struct type *) NULL,
2936 slice_range_type);
2937 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2938 slice = value_zero (slice_type, not_lval);
2939
2940 for (i = 0; i < length; i++)
2941 {
2942 int element = value_bit_index (array_type,
2943 value_contents (array),
2944 lowbound + i);
2945 if (element < 0)
2946 error (_("internal error accessing bitstring"));
2947 else if (element > 0)
2948 {
2949 int j = i % TARGET_CHAR_BIT;
2950 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
2951 j = TARGET_CHAR_BIT - 1 - j;
2952 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2953 }
2954 }
2955 /* We should set the address, bitssize, and bitspos, so the
2956 slice can be used on the LHS, but that may require extensions
2957 to value_assign. For now, just leave as a non_lval.
2958 FIXME. */
2959 }
2960 else
2961 {
2962 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2963 LONGEST offset =
2964 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2965
2966 slice_type = create_array_type ((struct type *) NULL,
2967 element_type,
2968 slice_range_type);
2969 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2970
2971 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2972 slice = allocate_value_lazy (slice_type);
2973 else
2974 {
2975 slice = allocate_value (slice_type);
2976 memcpy (value_contents_writeable (slice),
2977 value_contents (array) + offset,
2978 TYPE_LENGTH (slice_type));
2979 }
2980
2981 set_value_component_location (slice, array);
2982 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2983 set_value_offset (slice, value_offset (array) + offset);
2984 }
2985 return slice;
2986 }
2987
2988 /* Create a value for a FORTRAN complex number. Currently most of the
2989 time values are coerced to COMPLEX*16 (i.e. a complex number
2990 composed of 2 doubles. This really should be a smarter routine
2991 that figures out precision inteligently as opposed to assuming
2992 doubles. FIXME: fmb */
2993
2994 struct value *
2995 value_literal_complex (struct value *arg1,
2996 struct value *arg2,
2997 struct type *type)
2998 {
2999 struct value *val;
3000 struct type *real_type = TYPE_TARGET_TYPE (type);
3001
3002 val = allocate_value (type);
3003 arg1 = value_cast (real_type, arg1);
3004 arg2 = value_cast (real_type, arg2);
3005
3006 memcpy (value_contents_raw (val),
3007 value_contents (arg1), TYPE_LENGTH (real_type));
3008 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3009 value_contents (arg2), TYPE_LENGTH (real_type));
3010 return val;
3011 }
3012
3013 /* Cast a value into the appropriate complex data type. */
3014
3015 static struct value *
3016 cast_into_complex (struct type *type, struct value *val)
3017 {
3018 struct type *real_type = TYPE_TARGET_TYPE (type);
3019
3020 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3021 {
3022 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3023 struct value *re_val = allocate_value (val_real_type);
3024 struct value *im_val = allocate_value (val_real_type);
3025
3026 memcpy (value_contents_raw (re_val),
3027 value_contents (val), TYPE_LENGTH (val_real_type));
3028 memcpy (value_contents_raw (im_val),
3029 value_contents (val) + TYPE_LENGTH (val_real_type),
3030 TYPE_LENGTH (val_real_type));
3031
3032 return value_literal_complex (re_val, im_val, type);
3033 }
3034 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3035 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3036 return value_literal_complex (val,
3037 value_zero (real_type, not_lval),
3038 type);
3039 else
3040 error (_("cannot cast non-number to complex"));
3041 }
3042
3043 void
3044 _initialize_valops (void)
3045 {
3046 add_setshow_boolean_cmd ("overload-resolution", class_support,
3047 &overload_resolution, _("\
3048 Set overload resolution in evaluating C++ functions."), _("\
3049 Show overload resolution in evaluating C++ functions."),
3050 NULL, NULL,
3051 show_overload_resolution,
3052 &setlist, &showlist);
3053 overload_resolution = 1;
3054 }