]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
* breakpoint.c:
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "demangle.h"
33 #include "language.h"
34 #include "gdbcmd.h"
35 #include "regcache.h"
36 #include "cp-abi.h"
37 #include "block.h"
38 #include "infcall.h"
39 #include "dictionary.h"
40 #include "cp-support.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47
48 extern int overload_debug;
49 /* Local functions. */
50
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
53
54 static struct value *search_struct_field (char *, struct value *, int,
55 struct type *, int);
56
57 static struct value *search_struct_method (char *, struct value **,
58 struct value **,
59 int, int *, struct type *);
60
61 static int find_oload_champ_namespace (struct type **arg_types, int nargs,
62 const char *func_name,
63 const char *qualified_name,
64 struct symbol ***oload_syms,
65 struct badness_vector **oload_champ_bv);
66
67 static
68 int find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
69 const char *func_name,
70 const char *qualified_name,
71 int namespace_len,
72 struct symbol ***oload_syms,
73 struct badness_vector **oload_champ_bv,
74 int *oload_champ);
75
76 static int find_oload_champ (struct type **arg_types, int nargs, int method,
77 int num_fns,
78 struct fn_field *fns_ptr,
79 struct symbol **oload_syms,
80 struct badness_vector **oload_champ_bv);
81
82 static int oload_method_static (int method, struct fn_field *fns_ptr,
83 int index);
84
85 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
86
87 static enum
88 oload_classification classify_oload_match (struct badness_vector
89 * oload_champ_bv,
90 int nargs,
91 int static_offset);
92
93 static int check_field_in (struct type *, const char *);
94
95 static struct value *value_struct_elt_for_reference (struct type *domain,
96 int offset,
97 struct type *curtype,
98 char *name,
99 struct type *intype,
100 enum noside noside);
101
102 static struct value *value_namespace_elt (const struct type *curtype,
103 char *name,
104 enum noside noside);
105
106 static struct value *value_maybe_namespace_elt (const struct type *curtype,
107 char *name,
108 enum noside noside);
109
110 static CORE_ADDR allocate_space_in_inferior (int);
111
112 static struct value *cast_into_complex (struct type *, struct value *);
113
114 static struct fn_field *find_method_list (struct value ** argp, char *method,
115 int offset,
116 struct type *type, int *num_fns,
117 struct type **basetype,
118 int *boffset);
119
120 void _initialize_valops (void);
121
122 /* Flag for whether we want to abandon failed expression evals by default. */
123
124 #if 0
125 static int auto_abandon = 0;
126 #endif
127
128 int overload_resolution = 0;
129 static void
130 show_overload_resolution (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Overload resolution in evaluating C++ functions is %s.\n"),
135 value);
136 }
137
138 /* Find the address of function name NAME in the inferior. */
139
140 struct value *
141 find_function_in_inferior (const char *name)
142 {
143 struct symbol *sym;
144 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
145 if (sym != NULL)
146 {
147 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
148 {
149 error (_("\"%s\" exists in this program but is not a function."),
150 name);
151 }
152 return value_of_variable (sym, NULL);
153 }
154 else
155 {
156 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
157 if (msymbol != NULL)
158 {
159 struct type *type;
160 CORE_ADDR maddr;
161 type = lookup_pointer_type (builtin_type_char);
162 type = lookup_function_type (type);
163 type = lookup_pointer_type (type);
164 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
165 return value_from_pointer (type, maddr);
166 }
167 else
168 {
169 if (!target_has_execution)
170 error (_("evaluation of this expression requires the target program to be active"));
171 else
172 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
173 }
174 }
175 }
176
177 /* Allocate NBYTES of space in the inferior using the inferior's malloc
178 and return a value that is a pointer to the allocated space. */
179
180 struct value *
181 value_allocate_space_in_inferior (int len)
182 {
183 struct value *blocklen;
184 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
185
186 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
187 val = call_function_by_hand (val, 1, &blocklen);
188 if (value_logical_not (val))
189 {
190 if (!target_has_execution)
191 error (_("No memory available to program now: you need to start the target first"));
192 else
193 error (_("No memory available to program: call to malloc failed"));
194 }
195 return val;
196 }
197
198 static CORE_ADDR
199 allocate_space_in_inferior (int len)
200 {
201 return value_as_long (value_allocate_space_in_inferior (len));
202 }
203
204 /* Cast value ARG2 to type TYPE and return as a value.
205 More general than a C cast: accepts any two types of the same length,
206 and if ARG2 is an lvalue it can be cast into anything at all. */
207 /* In C++, casts may change pointer or object representations. */
208
209 struct value *
210 value_cast (struct type *type, struct value *arg2)
211 {
212 enum type_code code1;
213 enum type_code code2;
214 int scalar;
215 struct type *type2;
216
217 int convert_to_boolean = 0;
218
219 if (value_type (arg2) == type)
220 return arg2;
221
222 CHECK_TYPEDEF (type);
223 code1 = TYPE_CODE (type);
224 arg2 = coerce_ref (arg2);
225 type2 = check_typedef (value_type (arg2));
226
227 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
228 is treated like a cast to (TYPE [N])OBJECT,
229 where N is sizeof(OBJECT)/sizeof(TYPE). */
230 if (code1 == TYPE_CODE_ARRAY)
231 {
232 struct type *element_type = TYPE_TARGET_TYPE (type);
233 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
234 if (element_length > 0
235 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
236 {
237 struct type *range_type = TYPE_INDEX_TYPE (type);
238 int val_length = TYPE_LENGTH (type2);
239 LONGEST low_bound, high_bound, new_length;
240 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
241 low_bound = 0, high_bound = 0;
242 new_length = val_length / element_length;
243 if (val_length % element_length != 0)
244 warning (_("array element type size does not divide object size in cast"));
245 /* FIXME-type-allocation: need a way to free this type when we are
246 done with it. */
247 range_type = create_range_type ((struct type *) NULL,
248 TYPE_TARGET_TYPE (range_type),
249 low_bound,
250 new_length + low_bound - 1);
251 deprecated_set_value_type (arg2, create_array_type ((struct type *) NULL,
252 element_type, range_type));
253 return arg2;
254 }
255 }
256
257 if (current_language->c_style_arrays
258 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
259 arg2 = value_coerce_array (arg2);
260
261 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
262 arg2 = value_coerce_function (arg2);
263
264 type2 = check_typedef (value_type (arg2));
265 code2 = TYPE_CODE (type2);
266
267 if (code1 == TYPE_CODE_COMPLEX)
268 return cast_into_complex (type, arg2);
269 if (code1 == TYPE_CODE_BOOL)
270 {
271 code1 = TYPE_CODE_INT;
272 convert_to_boolean = 1;
273 }
274 if (code1 == TYPE_CODE_CHAR)
275 code1 = TYPE_CODE_INT;
276 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
277 code2 = TYPE_CODE_INT;
278
279 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
280 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
281
282 if (code1 == TYPE_CODE_STRUCT
283 && code2 == TYPE_CODE_STRUCT
284 && TYPE_NAME (type) != 0)
285 {
286 /* Look in the type of the source to see if it contains the
287 type of the target as a superclass. If so, we'll need to
288 offset the object in addition to changing its type. */
289 struct value *v = search_struct_field (type_name_no_tag (type),
290 arg2, 0, type2, 1);
291 if (v)
292 {
293 deprecated_set_value_type (v, type);
294 return v;
295 }
296 }
297 if (code1 == TYPE_CODE_FLT && scalar)
298 return value_from_double (type, value_as_double (arg2));
299 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
300 || code1 == TYPE_CODE_RANGE)
301 && (scalar || code2 == TYPE_CODE_PTR))
302 {
303 LONGEST longest;
304
305 if (deprecated_hp_som_som_object_present /* if target compiled by HP aCC */
306 && (code2 == TYPE_CODE_PTR))
307 {
308 unsigned int *ptr;
309 struct value *retvalp;
310
311 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
312 {
313 /* With HP aCC, pointers to data members have a bias */
314 case TYPE_CODE_MEMBER:
315 retvalp = value_from_longest (type, value_as_long (arg2));
316 /* force evaluation */
317 ptr = (unsigned int *) value_contents (retvalp);
318 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
319 return retvalp;
320
321 /* While pointers to methods don't really point to a function */
322 case TYPE_CODE_METHOD:
323 error (_("Pointers to methods not supported with HP aCC"));
324
325 default:
326 break; /* fall out and go to normal handling */
327 }
328 }
329
330 /* When we cast pointers to integers, we mustn't use
331 POINTER_TO_ADDRESS to find the address the pointer
332 represents, as value_as_long would. GDB should evaluate
333 expressions just as the compiler would --- and the compiler
334 sees a cast as a simple reinterpretation of the pointer's
335 bits. */
336 if (code2 == TYPE_CODE_PTR)
337 longest = extract_unsigned_integer (value_contents (arg2),
338 TYPE_LENGTH (type2));
339 else
340 longest = value_as_long (arg2);
341 return value_from_longest (type, convert_to_boolean ?
342 (LONGEST) (longest ? 1 : 0) : longest);
343 }
344 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
345 code2 == TYPE_CODE_ENUM ||
346 code2 == TYPE_CODE_RANGE))
347 {
348 /* TYPE_LENGTH (type) is the length of a pointer, but we really
349 want the length of an address! -- we are really dealing with
350 addresses (i.e., gdb representations) not pointers (i.e.,
351 target representations) here.
352
353 This allows things like "print *(int *)0x01000234" to work
354 without printing a misleading message -- which would
355 otherwise occur when dealing with a target having two byte
356 pointers and four byte addresses. */
357
358 int addr_bit = TARGET_ADDR_BIT;
359
360 LONGEST longest = value_as_long (arg2);
361 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
362 {
363 if (longest >= ((LONGEST) 1 << addr_bit)
364 || longest <= -((LONGEST) 1 << addr_bit))
365 warning (_("value truncated"));
366 }
367 return value_from_longest (type, longest);
368 }
369 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
370 {
371 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
372 {
373 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
374 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
375 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
376 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
377 && !value_logical_not (arg2))
378 {
379 struct value *v;
380
381 /* Look in the type of the source to see if it contains the
382 type of the target as a superclass. If so, we'll need to
383 offset the pointer rather than just change its type. */
384 if (TYPE_NAME (t1) != NULL)
385 {
386 v = search_struct_field (type_name_no_tag (t1),
387 value_ind (arg2), 0, t2, 1);
388 if (v)
389 {
390 v = value_addr (v);
391 deprecated_set_value_type (v, type);
392 return v;
393 }
394 }
395
396 /* Look in the type of the target to see if it contains the
397 type of the source as a superclass. If so, we'll need to
398 offset the pointer rather than just change its type.
399 FIXME: This fails silently with virtual inheritance. */
400 if (TYPE_NAME (t2) != NULL)
401 {
402 v = search_struct_field (type_name_no_tag (t2),
403 value_zero (t1, not_lval), 0, t1, 1);
404 if (v)
405 {
406 CORE_ADDR addr2 = value_as_address (arg2);
407 addr2 -= (VALUE_ADDRESS (v)
408 + value_offset (v)
409 + value_embedded_offset (v));
410 return value_from_pointer (type, addr2);
411 }
412 }
413 }
414 /* No superclass found, just fall through to change ptr type. */
415 }
416 deprecated_set_value_type (arg2, type);
417 arg2 = value_change_enclosing_type (arg2, type);
418 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
419 return arg2;
420 }
421 else if (VALUE_LVAL (arg2) == lval_memory)
422 return value_at_lazy (type, VALUE_ADDRESS (arg2) + value_offset (arg2));
423 else if (code1 == TYPE_CODE_VOID)
424 {
425 return value_zero (builtin_type_void, not_lval);
426 }
427 else
428 {
429 error (_("Invalid cast."));
430 return 0;
431 }
432 }
433
434 /* Create a value of type TYPE that is zero, and return it. */
435
436 struct value *
437 value_zero (struct type *type, enum lval_type lv)
438 {
439 struct value *val = allocate_value (type);
440 VALUE_LVAL (val) = lv;
441
442 return val;
443 }
444
445 /* Return a value with type TYPE located at ADDR.
446
447 Call value_at only if the data needs to be fetched immediately;
448 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
449 value_at_lazy instead. value_at_lazy simply records the address of
450 the data and sets the lazy-evaluation-required flag. The lazy flag
451 is tested in the value_contents macro, which is used if and when
452 the contents are actually required.
453
454 Note: value_at does *NOT* handle embedded offsets; perform such
455 adjustments before or after calling it. */
456
457 struct value *
458 value_at (struct type *type, CORE_ADDR addr)
459 {
460 struct value *val;
461
462 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
463 error (_("Attempt to dereference a generic pointer."));
464
465 val = allocate_value (type);
466
467 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
468
469 VALUE_LVAL (val) = lval_memory;
470 VALUE_ADDRESS (val) = addr;
471
472 return val;
473 }
474
475 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
476
477 struct value *
478 value_at_lazy (struct type *type, CORE_ADDR addr)
479 {
480 struct value *val;
481
482 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
483 error (_("Attempt to dereference a generic pointer."));
484
485 val = allocate_value (type);
486
487 VALUE_LVAL (val) = lval_memory;
488 VALUE_ADDRESS (val) = addr;
489 set_value_lazy (val, 1);
490
491 return val;
492 }
493
494 /* Called only from the value_contents and value_contents_all()
495 macros, if the current data for a variable needs to be loaded into
496 value_contents(VAL). Fetches the data from the user's process, and
497 clears the lazy flag to indicate that the data in the buffer is
498 valid.
499
500 If the value is zero-length, we avoid calling read_memory, which would
501 abort. We mark the value as fetched anyway -- all 0 bytes of it.
502
503 This function returns a value because it is used in the value_contents
504 macro as part of an expression, where a void would not work. The
505 value is ignored. */
506
507 int
508 value_fetch_lazy (struct value *val)
509 {
510 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
511 int length = TYPE_LENGTH (value_enclosing_type (val));
512
513 struct type *type = value_type (val);
514 if (length)
515 read_memory (addr, value_contents_all_raw (val), length);
516
517 set_value_lazy (val, 0);
518 return 0;
519 }
520
521
522 /* Store the contents of FROMVAL into the location of TOVAL.
523 Return a new value with the location of TOVAL and contents of FROMVAL. */
524
525 struct value *
526 value_assign (struct value *toval, struct value *fromval)
527 {
528 struct type *type;
529 struct value *val;
530 struct frame_id old_frame;
531
532 if (!deprecated_value_modifiable (toval))
533 error (_("Left operand of assignment is not a modifiable lvalue."));
534
535 toval = coerce_ref (toval);
536
537 type = value_type (toval);
538 if (VALUE_LVAL (toval) != lval_internalvar)
539 fromval = value_cast (type, fromval);
540 else
541 fromval = coerce_array (fromval);
542 CHECK_TYPEDEF (type);
543
544 /* Since modifying a register can trash the frame chain, and modifying memory
545 can trash the frame cache, we save the old frame and then restore the new
546 frame afterwards. */
547 old_frame = get_frame_id (deprecated_selected_frame);
548
549 switch (VALUE_LVAL (toval))
550 {
551 case lval_internalvar:
552 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
553 val = value_copy (VALUE_INTERNALVAR (toval)->value);
554 val = value_change_enclosing_type (val, value_enclosing_type (fromval));
555 set_value_embedded_offset (val, value_embedded_offset (fromval));
556 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
557 return val;
558
559 case lval_internalvar_component:
560 set_internalvar_component (VALUE_INTERNALVAR (toval),
561 value_offset (toval),
562 value_bitpos (toval),
563 value_bitsize (toval),
564 fromval);
565 break;
566
567 case lval_memory:
568 {
569 const gdb_byte *dest_buffer;
570 CORE_ADDR changed_addr;
571 int changed_len;
572 gdb_byte buffer[sizeof (LONGEST)];
573
574 if (value_bitsize (toval))
575 {
576 /* We assume that the argument to read_memory is in units of
577 host chars. FIXME: Is that correct? */
578 changed_len = (value_bitpos (toval)
579 + value_bitsize (toval)
580 + HOST_CHAR_BIT - 1)
581 / HOST_CHAR_BIT;
582
583 if (changed_len > (int) sizeof (LONGEST))
584 error (_("Can't handle bitfields which don't fit in a %d bit word."),
585 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
586
587 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
588 buffer, changed_len);
589 modify_field (buffer, value_as_long (fromval),
590 value_bitpos (toval), value_bitsize (toval));
591 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
592 dest_buffer = buffer;
593 }
594 else
595 {
596 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
597 changed_len = TYPE_LENGTH (type);
598 dest_buffer = value_contents (fromval);
599 }
600
601 write_memory (changed_addr, dest_buffer, changed_len);
602 if (deprecated_memory_changed_hook)
603 deprecated_memory_changed_hook (changed_addr, changed_len);
604 }
605 break;
606
607 case lval_register:
608 {
609 struct frame_info *frame;
610 int value_reg;
611
612 /* Figure out which frame this is in currently. */
613 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
614 value_reg = VALUE_REGNUM (toval);
615
616 if (!frame)
617 error (_("Value being assigned to is no longer active."));
618
619 if (VALUE_LVAL (toval) == lval_register
620 && CONVERT_REGISTER_P (VALUE_REGNUM (toval), type))
621 {
622 /* If TOVAL is a special machine register requiring
623 conversion of program values to a special raw format. */
624 VALUE_TO_REGISTER (frame, VALUE_REGNUM (toval),
625 type, value_contents (fromval));
626 }
627 else
628 {
629 /* TOVAL is stored in a series of registers in the frame
630 specified by the structure. Copy that value out,
631 modify it, and copy it back in. */
632 int amount_copied;
633 int amount_to_copy;
634 gdb_byte *buffer;
635 int reg_offset;
636 int byte_offset;
637 int regno;
638
639 /* Locate the first register that falls in the value that
640 needs to be transfered. Compute the offset of the
641 value in that register. */
642 {
643 int offset;
644 for (reg_offset = value_reg, offset = 0;
645 offset + register_size (current_gdbarch, reg_offset) <= value_offset (toval);
646 reg_offset++);
647 byte_offset = value_offset (toval) - offset;
648 }
649
650 /* Compute the number of register aligned values that need
651 to be copied. */
652 if (value_bitsize (toval))
653 amount_to_copy = byte_offset + 1;
654 else
655 amount_to_copy = byte_offset + TYPE_LENGTH (type);
656
657 /* And a bounce buffer. Be slightly over generous. */
658 buffer = alloca (amount_to_copy + MAX_REGISTER_SIZE);
659
660 /* Copy it in. */
661 for (regno = reg_offset, amount_copied = 0;
662 amount_copied < amount_to_copy;
663 amount_copied += register_size (current_gdbarch, regno), regno++)
664 frame_register_read (frame, regno, buffer + amount_copied);
665
666 /* Modify what needs to be modified. */
667 if (value_bitsize (toval))
668 modify_field (buffer + byte_offset,
669 value_as_long (fromval),
670 value_bitpos (toval), value_bitsize (toval));
671 else
672 memcpy (buffer + byte_offset, value_contents (fromval),
673 TYPE_LENGTH (type));
674
675 /* Copy it out. */
676 for (regno = reg_offset, amount_copied = 0;
677 amount_copied < amount_to_copy;
678 amount_copied += register_size (current_gdbarch, regno), regno++)
679 put_frame_register (frame, regno, buffer + amount_copied);
680
681 }
682 if (deprecated_register_changed_hook)
683 deprecated_register_changed_hook (-1);
684 observer_notify_target_changed (&current_target);
685 break;
686 }
687
688 default:
689 error (_("Left operand of assignment is not an lvalue."));
690 }
691
692 /* Assigning to the stack pointer, frame pointer, and other
693 (architecture and calling convention specific) registers may
694 cause the frame cache to be out of date. Assigning to memory
695 also can. We just do this on all assignments to registers or
696 memory, for simplicity's sake; I doubt the slowdown matters. */
697 switch (VALUE_LVAL (toval))
698 {
699 case lval_memory:
700 case lval_register:
701
702 reinit_frame_cache ();
703
704 /* Having destoroyed the frame cache, restore the selected frame. */
705
706 /* FIXME: cagney/2002-11-02: There has to be a better way of
707 doing this. Instead of constantly saving/restoring the
708 frame. Why not create a get_selected_frame() function that,
709 having saved the selected frame's ID can automatically
710 re-find the previously selected frame automatically. */
711
712 {
713 struct frame_info *fi = frame_find_by_id (old_frame);
714 if (fi != NULL)
715 select_frame (fi);
716 }
717
718 break;
719 default:
720 break;
721 }
722
723 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
724 If the field is signed, and is negative, then sign extend. */
725 if ((value_bitsize (toval) > 0)
726 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
727 {
728 LONGEST fieldval = value_as_long (fromval);
729 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
730
731 fieldval &= valmask;
732 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
733 fieldval |= ~valmask;
734
735 fromval = value_from_longest (type, fieldval);
736 }
737
738 val = value_copy (toval);
739 memcpy (value_contents_raw (val), value_contents (fromval),
740 TYPE_LENGTH (type));
741 deprecated_set_value_type (val, type);
742 val = value_change_enclosing_type (val, value_enclosing_type (fromval));
743 set_value_embedded_offset (val, value_embedded_offset (fromval));
744 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
745
746 return val;
747 }
748
749 /* Extend a value VAL to COUNT repetitions of its type. */
750
751 struct value *
752 value_repeat (struct value *arg1, int count)
753 {
754 struct value *val;
755
756 if (VALUE_LVAL (arg1) != lval_memory)
757 error (_("Only values in memory can be extended with '@'."));
758 if (count < 1)
759 error (_("Invalid number %d of repetitions."), count);
760
761 val = allocate_repeat_value (value_enclosing_type (arg1), count);
762
763 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
764 value_contents_all_raw (val),
765 TYPE_LENGTH (value_enclosing_type (val)));
766 VALUE_LVAL (val) = lval_memory;
767 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
768
769 return val;
770 }
771
772 struct value *
773 value_of_variable (struct symbol *var, struct block *b)
774 {
775 struct value *val;
776 struct frame_info *frame = NULL;
777
778 if (!b)
779 frame = NULL; /* Use selected frame. */
780 else if (symbol_read_needs_frame (var))
781 {
782 frame = block_innermost_frame (b);
783 if (!frame)
784 {
785 if (BLOCK_FUNCTION (b)
786 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
787 error (_("No frame is currently executing in block %s."),
788 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
789 else
790 error (_("No frame is currently executing in specified block"));
791 }
792 }
793
794 val = read_var_value (var, frame);
795 if (!val)
796 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
797
798 return val;
799 }
800
801 /* Given a value which is an array, return a value which is a pointer to its
802 first element, regardless of whether or not the array has a nonzero lower
803 bound.
804
805 FIXME: A previous comment here indicated that this routine should be
806 substracting the array's lower bound. It's not clear to me that this
807 is correct. Given an array subscripting operation, it would certainly
808 work to do the adjustment here, essentially computing:
809
810 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
811
812 However I believe a more appropriate and logical place to account for
813 the lower bound is to do so in value_subscript, essentially computing:
814
815 (&array[0] + ((index - lowerbound) * sizeof array[0]))
816
817 As further evidence consider what would happen with operations other
818 than array subscripting, where the caller would get back a value that
819 had an address somewhere before the actual first element of the array,
820 and the information about the lower bound would be lost because of
821 the coercion to pointer type.
822 */
823
824 struct value *
825 value_coerce_array (struct value *arg1)
826 {
827 struct type *type = check_typedef (value_type (arg1));
828
829 if (VALUE_LVAL (arg1) != lval_memory)
830 error (_("Attempt to take address of value not located in memory."));
831
832 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
833 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
834 }
835
836 /* Given a value which is a function, return a value which is a pointer
837 to it. */
838
839 struct value *
840 value_coerce_function (struct value *arg1)
841 {
842 struct value *retval;
843
844 if (VALUE_LVAL (arg1) != lval_memory)
845 error (_("Attempt to take address of value not located in memory."));
846
847 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
848 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
849 return retval;
850 }
851
852 /* Return a pointer value for the object for which ARG1 is the contents. */
853
854 struct value *
855 value_addr (struct value *arg1)
856 {
857 struct value *arg2;
858
859 struct type *type = check_typedef (value_type (arg1));
860 if (TYPE_CODE (type) == TYPE_CODE_REF)
861 {
862 /* Copy the value, but change the type from (T&) to (T*).
863 We keep the same location information, which is efficient,
864 and allows &(&X) to get the location containing the reference. */
865 arg2 = value_copy (arg1);
866 deprecated_set_value_type (arg2, lookup_pointer_type (TYPE_TARGET_TYPE (type)));
867 return arg2;
868 }
869 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
870 return value_coerce_function (arg1);
871
872 if (VALUE_LVAL (arg1) != lval_memory)
873 error (_("Attempt to take address of value not located in memory."));
874
875 /* Get target memory address */
876 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
877 (VALUE_ADDRESS (arg1)
878 + value_offset (arg1)
879 + value_embedded_offset (arg1)));
880
881 /* This may be a pointer to a base subobject; so remember the
882 full derived object's type ... */
883 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
884 /* ... and also the relative position of the subobject in the full object */
885 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
886 return arg2;
887 }
888
889 /* Given a value of a pointer type, apply the C unary * operator to it. */
890
891 struct value *
892 value_ind (struct value *arg1)
893 {
894 struct type *base_type;
895 struct value *arg2;
896
897 arg1 = coerce_array (arg1);
898
899 base_type = check_typedef (value_type (arg1));
900
901 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
902 error (_("not implemented: member types in value_ind"));
903
904 /* Allow * on an integer so we can cast it to whatever we want.
905 This returns an int, which seems like the most C-like thing
906 to do. "long long" variables are rare enough that
907 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
908 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
909 return value_at_lazy (builtin_type_int,
910 (CORE_ADDR) value_as_long (arg1));
911 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
912 {
913 struct type *enc_type;
914 /* We may be pointing to something embedded in a larger object */
915 /* Get the real type of the enclosing object */
916 enc_type = check_typedef (value_enclosing_type (arg1));
917 enc_type = TYPE_TARGET_TYPE (enc_type);
918 /* Retrieve the enclosing object pointed to */
919 arg2 = value_at_lazy (enc_type, (value_as_address (arg1)
920 - value_pointed_to_offset (arg1)));
921 /* Re-adjust type */
922 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
923 /* Add embedding info */
924 arg2 = value_change_enclosing_type (arg2, enc_type);
925 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
926
927 /* We may be pointing to an object of some derived type */
928 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
929 return arg2;
930 }
931
932 error (_("Attempt to take contents of a non-pointer value."));
933 return 0; /* For lint -- never reached */
934 }
935 \f
936 /* Create a value for an array by allocating space in the inferior, copying
937 the data into that space, and then setting up an array value.
938
939 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
940 populated from the values passed in ELEMVEC.
941
942 The element type of the array is inherited from the type of the
943 first element, and all elements must have the same size (though we
944 don't currently enforce any restriction on their types). */
945
946 struct value *
947 value_array (int lowbound, int highbound, struct value **elemvec)
948 {
949 int nelem;
950 int idx;
951 unsigned int typelength;
952 struct value *val;
953 struct type *rangetype;
954 struct type *arraytype;
955 CORE_ADDR addr;
956
957 /* Validate that the bounds are reasonable and that each of the elements
958 have the same size. */
959
960 nelem = highbound - lowbound + 1;
961 if (nelem <= 0)
962 {
963 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
964 }
965 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
966 for (idx = 1; idx < nelem; idx++)
967 {
968 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
969 {
970 error (_("array elements must all be the same size"));
971 }
972 }
973
974 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
975 lowbound, highbound);
976 arraytype = create_array_type ((struct type *) NULL,
977 value_enclosing_type (elemvec[0]), rangetype);
978
979 if (!current_language->c_style_arrays)
980 {
981 val = allocate_value (arraytype);
982 for (idx = 0; idx < nelem; idx++)
983 {
984 memcpy (value_contents_all_raw (val) + (idx * typelength),
985 value_contents_all (elemvec[idx]),
986 typelength);
987 }
988 return val;
989 }
990
991 /* Allocate space to store the array in the inferior, and then initialize
992 it by copying in each element. FIXME: Is it worth it to create a
993 local buffer in which to collect each value and then write all the
994 bytes in one operation? */
995
996 addr = allocate_space_in_inferior (nelem * typelength);
997 for (idx = 0; idx < nelem; idx++)
998 {
999 write_memory (addr + (idx * typelength),
1000 value_contents_all (elemvec[idx]),
1001 typelength);
1002 }
1003
1004 /* Create the array type and set up an array value to be evaluated lazily. */
1005
1006 val = value_at_lazy (arraytype, addr);
1007 return (val);
1008 }
1009
1010 /* Create a value for a string constant by allocating space in the inferior,
1011 copying the data into that space, and returning the address with type
1012 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1013 of characters.
1014 Note that string types are like array of char types with a lower bound of
1015 zero and an upper bound of LEN - 1. Also note that the string may contain
1016 embedded null bytes. */
1017
1018 struct value *
1019 value_string (char *ptr, int len)
1020 {
1021 struct value *val;
1022 int lowbound = current_language->string_lower_bound;
1023 struct type *rangetype = create_range_type ((struct type *) NULL,
1024 builtin_type_int,
1025 lowbound, len + lowbound - 1);
1026 struct type *stringtype
1027 = create_string_type ((struct type *) NULL, rangetype);
1028 CORE_ADDR addr;
1029
1030 if (current_language->c_style_arrays == 0)
1031 {
1032 val = allocate_value (stringtype);
1033 memcpy (value_contents_raw (val), ptr, len);
1034 return val;
1035 }
1036
1037
1038 /* Allocate space to store the string in the inferior, and then
1039 copy LEN bytes from PTR in gdb to that address in the inferior. */
1040
1041 addr = allocate_space_in_inferior (len);
1042 write_memory (addr, (gdb_byte *) ptr, len);
1043
1044 val = value_at_lazy (stringtype, addr);
1045 return (val);
1046 }
1047
1048 struct value *
1049 value_bitstring (char *ptr, int len)
1050 {
1051 struct value *val;
1052 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1053 0, len - 1);
1054 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1055 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1056 val = allocate_value (type);
1057 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1058 return val;
1059 }
1060 \f
1061 /* See if we can pass arguments in T2 to a function which takes arguments
1062 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1063 vector. If some arguments need coercion of some sort, then the coerced
1064 values are written into T2. Return value is 0 if the arguments could be
1065 matched, or the position at which they differ if not.
1066
1067 STATICP is nonzero if the T1 argument list came from a
1068 static member function. T2 will still include the ``this'' pointer,
1069 but it will be skipped.
1070
1071 For non-static member functions, we ignore the first argument,
1072 which is the type of the instance variable. This is because we want
1073 to handle calls with objects from derived classes. This is not
1074 entirely correct: we should actually check to make sure that a
1075 requested operation is type secure, shouldn't we? FIXME. */
1076
1077 static int
1078 typecmp (int staticp, int varargs, int nargs,
1079 struct field t1[], struct value *t2[])
1080 {
1081 int i;
1082
1083 if (t2 == 0)
1084 internal_error (__FILE__, __LINE__, _("typecmp: no argument list"));
1085
1086 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1087 if (staticp)
1088 t2 ++;
1089
1090 for (i = 0;
1091 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1092 i++)
1093 {
1094 struct type *tt1, *tt2;
1095
1096 if (!t2[i])
1097 return i + 1;
1098
1099 tt1 = check_typedef (t1[i].type);
1100 tt2 = check_typedef (value_type (t2[i]));
1101
1102 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1103 /* We should be doing hairy argument matching, as below. */
1104 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1105 {
1106 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1107 t2[i] = value_coerce_array (t2[i]);
1108 else
1109 t2[i] = value_addr (t2[i]);
1110 continue;
1111 }
1112
1113 /* djb - 20000715 - Until the new type structure is in the
1114 place, and we can attempt things like implicit conversions,
1115 we need to do this so you can take something like a map<const
1116 char *>, and properly access map["hello"], because the
1117 argument to [] will be a reference to a pointer to a char,
1118 and the argument will be a pointer to a char. */
1119 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1120 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1121 {
1122 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1123 }
1124 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1125 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1126 TYPE_CODE(tt2) == TYPE_CODE_REF)
1127 {
1128 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1129 }
1130 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1131 continue;
1132 /* Array to pointer is a `trivial conversion' according to the ARM. */
1133
1134 /* We should be doing much hairier argument matching (see section 13.2
1135 of the ARM), but as a quick kludge, just check for the same type
1136 code. */
1137 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1138 return i + 1;
1139 }
1140 if (varargs || t2[i] == NULL)
1141 return 0;
1142 return i + 1;
1143 }
1144
1145 /* Helper function used by value_struct_elt to recurse through baseclasses.
1146 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1147 and search in it assuming it has (class) type TYPE.
1148 If found, return value, else return NULL.
1149
1150 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1151 look for a baseclass named NAME. */
1152
1153 static struct value *
1154 search_struct_field (char *name, struct value *arg1, int offset,
1155 struct type *type, int looking_for_baseclass)
1156 {
1157 int i;
1158 int nbases = TYPE_N_BASECLASSES (type);
1159
1160 CHECK_TYPEDEF (type);
1161
1162 if (!looking_for_baseclass)
1163 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1164 {
1165 char *t_field_name = TYPE_FIELD_NAME (type, i);
1166
1167 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1168 {
1169 struct value *v;
1170 if (TYPE_FIELD_STATIC (type, i))
1171 {
1172 v = value_static_field (type, i);
1173 if (v == 0)
1174 error (_("field %s is nonexistent or has been optimised out"),
1175 name);
1176 }
1177 else
1178 {
1179 v = value_primitive_field (arg1, offset, i, type);
1180 if (v == 0)
1181 error (_("there is no field named %s"), name);
1182 }
1183 return v;
1184 }
1185
1186 if (t_field_name
1187 && (t_field_name[0] == '\0'
1188 || (TYPE_CODE (type) == TYPE_CODE_UNION
1189 && (strcmp_iw (t_field_name, "else") == 0))))
1190 {
1191 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1192 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1193 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1194 {
1195 /* Look for a match through the fields of an anonymous union,
1196 or anonymous struct. C++ provides anonymous unions.
1197
1198 In the GNU Chill (now deleted from GDB)
1199 implementation of variant record types, each
1200 <alternative field> has an (anonymous) union type,
1201 each member of the union represents a <variant
1202 alternative>. Each <variant alternative> is
1203 represented as a struct, with a member for each
1204 <variant field>. */
1205
1206 struct value *v;
1207 int new_offset = offset;
1208
1209 /* This is pretty gross. In G++, the offset in an
1210 anonymous union is relative to the beginning of the
1211 enclosing struct. In the GNU Chill (now deleted
1212 from GDB) implementation of variant records, the
1213 bitpos is zero in an anonymous union field, so we
1214 have to add the offset of the union here. */
1215 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1216 || (TYPE_NFIELDS (field_type) > 0
1217 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1218 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1219
1220 v = search_struct_field (name, arg1, new_offset, field_type,
1221 looking_for_baseclass);
1222 if (v)
1223 return v;
1224 }
1225 }
1226 }
1227
1228 for (i = 0; i < nbases; i++)
1229 {
1230 struct value *v;
1231 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1232 /* If we are looking for baseclasses, this is what we get when we
1233 hit them. But it could happen that the base part's member name
1234 is not yet filled in. */
1235 int found_baseclass = (looking_for_baseclass
1236 && TYPE_BASECLASS_NAME (type, i) != NULL
1237 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
1238
1239 if (BASETYPE_VIA_VIRTUAL (type, i))
1240 {
1241 int boffset;
1242 struct value *v2 = allocate_value (basetype);
1243
1244 boffset = baseclass_offset (type, i,
1245 value_contents (arg1) + offset,
1246 VALUE_ADDRESS (arg1)
1247 + value_offset (arg1) + offset);
1248 if (boffset == -1)
1249 error (_("virtual baseclass botch"));
1250
1251 /* The virtual base class pointer might have been clobbered by the
1252 user program. Make sure that it still points to a valid memory
1253 location. */
1254
1255 boffset += offset;
1256 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1257 {
1258 CORE_ADDR base_addr;
1259
1260 base_addr = VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1261 if (target_read_memory (base_addr, value_contents_raw (v2),
1262 TYPE_LENGTH (basetype)) != 0)
1263 error (_("virtual baseclass botch"));
1264 VALUE_LVAL (v2) = lval_memory;
1265 VALUE_ADDRESS (v2) = base_addr;
1266 }
1267 else
1268 {
1269 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1270 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1271 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1272 set_value_offset (v2, value_offset (arg1) + boffset);
1273 if (value_lazy (arg1))
1274 set_value_lazy (v2, 1);
1275 else
1276 memcpy (value_contents_raw (v2),
1277 value_contents_raw (arg1) + boffset,
1278 TYPE_LENGTH (basetype));
1279 }
1280
1281 if (found_baseclass)
1282 return v2;
1283 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1284 looking_for_baseclass);
1285 }
1286 else if (found_baseclass)
1287 v = value_primitive_field (arg1, offset, i, type);
1288 else
1289 v = search_struct_field (name, arg1,
1290 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1291 basetype, looking_for_baseclass);
1292 if (v)
1293 return v;
1294 }
1295 return NULL;
1296 }
1297
1298
1299 /* Return the offset (in bytes) of the virtual base of type BASETYPE
1300 * in an object pointed to by VALADDR (on the host), assumed to be of
1301 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
1302 * looking (in case VALADDR is the contents of an enclosing object).
1303 *
1304 * This routine recurses on the primary base of the derived class because
1305 * the virtual base entries of the primary base appear before the other
1306 * virtual base entries.
1307 *
1308 * If the virtual base is not found, a negative integer is returned.
1309 * The magnitude of the negative integer is the number of entries in
1310 * the virtual table to skip over (entries corresponding to various
1311 * ancestral classes in the chain of primary bases).
1312 *
1313 * Important: This assumes the HP / Taligent C++ runtime
1314 * conventions. Use baseclass_offset() instead to deal with g++
1315 * conventions. */
1316
1317 void
1318 find_rt_vbase_offset (struct type *type, struct type *basetype,
1319 const gdb_byte *valaddr, int offset, int *boffset_p,
1320 int *skip_p)
1321 {
1322 int boffset; /* offset of virtual base */
1323 int index; /* displacement to use in virtual table */
1324 int skip;
1325
1326 struct value *vp;
1327 CORE_ADDR vtbl; /* the virtual table pointer */
1328 struct type *pbc; /* the primary base class */
1329
1330 /* Look for the virtual base recursively in the primary base, first.
1331 * This is because the derived class object and its primary base
1332 * subobject share the primary virtual table. */
1333
1334 boffset = 0;
1335 pbc = TYPE_PRIMARY_BASE (type);
1336 if (pbc)
1337 {
1338 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
1339 if (skip < 0)
1340 {
1341 *boffset_p = boffset;
1342 *skip_p = -1;
1343 return;
1344 }
1345 }
1346 else
1347 skip = 0;
1348
1349
1350 /* Find the index of the virtual base according to HP/Taligent
1351 runtime spec. (Depth-first, left-to-right.) */
1352 index = virtual_base_index_skip_primaries (basetype, type);
1353
1354 if (index < 0)
1355 {
1356 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
1357 *boffset_p = 0;
1358 return;
1359 }
1360
1361 /* pai: FIXME -- 32x64 possible problem */
1362 /* First word (4 bytes) in object layout is the vtable pointer */
1363 vtbl = *(CORE_ADDR *) (valaddr + offset);
1364
1365 /* Before the constructor is invoked, things are usually zero'd out. */
1366 if (vtbl == 0)
1367 error (_("Couldn't find virtual table -- object may not be constructed yet."));
1368
1369
1370 /* Find virtual base's offset -- jump over entries for primary base
1371 * ancestors, then use the index computed above. But also adjust by
1372 * HP_ACC_VBASE_START for the vtable slots before the start of the
1373 * virtual base entries. Offset is negative -- virtual base entries
1374 * appear _before_ the address point of the virtual table. */
1375
1376 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
1377 & use long type */
1378
1379 /* epstein : FIXME -- added param for overlay section. May not be correct */
1380 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START));
1381 boffset = value_as_long (vp);
1382 *skip_p = -1;
1383 *boffset_p = boffset;
1384 return;
1385 }
1386
1387
1388 /* Helper function used by value_struct_elt to recurse through baseclasses.
1389 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1390 and search in it assuming it has (class) type TYPE.
1391 If found, return value, else if name matched and args not return (value)-1,
1392 else return NULL. */
1393
1394 static struct value *
1395 search_struct_method (char *name, struct value **arg1p,
1396 struct value **args, int offset,
1397 int *static_memfuncp, struct type *type)
1398 {
1399 int i;
1400 struct value *v;
1401 int name_matched = 0;
1402 char dem_opname[64];
1403
1404 CHECK_TYPEDEF (type);
1405 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1406 {
1407 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1408 /* FIXME! May need to check for ARM demangling here */
1409 if (strncmp (t_field_name, "__", 2) == 0 ||
1410 strncmp (t_field_name, "op", 2) == 0 ||
1411 strncmp (t_field_name, "type", 4) == 0)
1412 {
1413 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1414 t_field_name = dem_opname;
1415 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1416 t_field_name = dem_opname;
1417 }
1418 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1419 {
1420 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1421 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1422 name_matched = 1;
1423
1424 check_stub_method_group (type, i);
1425 if (j > 0 && args == 0)
1426 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1427 else if (j == 0 && args == 0)
1428 {
1429 v = value_fn_field (arg1p, f, j, type, offset);
1430 if (v != NULL)
1431 return v;
1432 }
1433 else
1434 while (j >= 0)
1435 {
1436 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1437 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1438 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1439 TYPE_FN_FIELD_ARGS (f, j), args))
1440 {
1441 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1442 return value_virtual_fn_field (arg1p, f, j, type, offset);
1443 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1444 *static_memfuncp = 1;
1445 v = value_fn_field (arg1p, f, j, type, offset);
1446 if (v != NULL)
1447 return v;
1448 }
1449 j--;
1450 }
1451 }
1452 }
1453
1454 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1455 {
1456 int base_offset;
1457
1458 if (BASETYPE_VIA_VIRTUAL (type, i))
1459 {
1460 if (TYPE_HAS_VTABLE (type))
1461 {
1462 /* HP aCC compiled type, search for virtual base offset
1463 according to HP/Taligent runtime spec. */
1464 int skip;
1465 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1466 value_contents_all (*arg1p),
1467 offset + value_embedded_offset (*arg1p),
1468 &base_offset, &skip);
1469 if (skip >= 0)
1470 error (_("Virtual base class offset not found in vtable"));
1471 }
1472 else
1473 {
1474 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1475 const gdb_byte *base_valaddr;
1476
1477 /* The virtual base class pointer might have been clobbered by the
1478 user program. Make sure that it still points to a valid memory
1479 location. */
1480
1481 if (offset < 0 || offset >= TYPE_LENGTH (type))
1482 {
1483 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1484 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1485 + value_offset (*arg1p) + offset,
1486 tmp, TYPE_LENGTH (baseclass)) != 0)
1487 error (_("virtual baseclass botch"));
1488 base_valaddr = tmp;
1489 }
1490 else
1491 base_valaddr = value_contents (*arg1p) + offset;
1492
1493 base_offset =
1494 baseclass_offset (type, i, base_valaddr,
1495 VALUE_ADDRESS (*arg1p)
1496 + value_offset (*arg1p) + offset);
1497 if (base_offset == -1)
1498 error (_("virtual baseclass botch"));
1499 }
1500 }
1501 else
1502 {
1503 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1504 }
1505 v = search_struct_method (name, arg1p, args, base_offset + offset,
1506 static_memfuncp, TYPE_BASECLASS (type, i));
1507 if (v == (struct value *) - 1)
1508 {
1509 name_matched = 1;
1510 }
1511 else if (v)
1512 {
1513 /* FIXME-bothner: Why is this commented out? Why is it here? */
1514 /* *arg1p = arg1_tmp; */
1515 return v;
1516 }
1517 }
1518 if (name_matched)
1519 return (struct value *) - 1;
1520 else
1521 return NULL;
1522 }
1523
1524 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1525 extract the component named NAME from the ultimate target structure/union
1526 and return it as a value with its appropriate type.
1527 ERR is used in the error message if *ARGP's type is wrong.
1528
1529 C++: ARGS is a list of argument types to aid in the selection of
1530 an appropriate method. Also, handle derived types.
1531
1532 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1533 where the truthvalue of whether the function that was resolved was
1534 a static member function or not is stored.
1535
1536 ERR is an error message to be printed in case the field is not found. */
1537
1538 struct value *
1539 value_struct_elt (struct value **argp, struct value **args,
1540 char *name, int *static_memfuncp, char *err)
1541 {
1542 struct type *t;
1543 struct value *v;
1544
1545 *argp = coerce_array (*argp);
1546
1547 t = check_typedef (value_type (*argp));
1548
1549 /* Follow pointers until we get to a non-pointer. */
1550
1551 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1552 {
1553 *argp = value_ind (*argp);
1554 /* Don't coerce fn pointer to fn and then back again! */
1555 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1556 *argp = coerce_array (*argp);
1557 t = check_typedef (value_type (*argp));
1558 }
1559
1560 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1561 error (_("not implemented: member type in value_struct_elt"));
1562
1563 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1564 && TYPE_CODE (t) != TYPE_CODE_UNION)
1565 error (_("Attempt to extract a component of a value that is not a %s."), err);
1566
1567 /* Assume it's not, unless we see that it is. */
1568 if (static_memfuncp)
1569 *static_memfuncp = 0;
1570
1571 if (!args)
1572 {
1573 /* if there are no arguments ...do this... */
1574
1575 /* Try as a field first, because if we succeed, there
1576 is less work to be done. */
1577 v = search_struct_field (name, *argp, 0, t, 0);
1578 if (v)
1579 return v;
1580
1581 /* C++: If it was not found as a data field, then try to
1582 return it as a pointer to a method. */
1583
1584 if (destructor_name_p (name, t))
1585 error (_("Cannot get value of destructor"));
1586
1587 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1588
1589 if (v == (struct value *) - 1)
1590 error (_("Cannot take address of method %s."), name);
1591 else if (v == 0)
1592 {
1593 if (TYPE_NFN_FIELDS (t))
1594 error (_("There is no member or method named %s."), name);
1595 else
1596 error (_("There is no member named %s."), name);
1597 }
1598 return v;
1599 }
1600
1601 if (destructor_name_p (name, t))
1602 {
1603 if (!args[1])
1604 {
1605 /* Destructors are a special case. */
1606 int m_index, f_index;
1607
1608 v = NULL;
1609 if (get_destructor_fn_field (t, &m_index, &f_index))
1610 {
1611 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
1612 f_index, NULL, 0);
1613 }
1614 if (v == NULL)
1615 error (_("could not find destructor function named %s."), name);
1616 else
1617 return v;
1618 }
1619 else
1620 {
1621 error (_("destructor should not have any argument"));
1622 }
1623 }
1624 else
1625 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1626
1627 if (v == (struct value *) - 1)
1628 {
1629 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1630 }
1631 else if (v == 0)
1632 {
1633 /* See if user tried to invoke data as function. If so,
1634 hand it back. If it's not callable (i.e., a pointer to function),
1635 gdb should give an error. */
1636 v = search_struct_field (name, *argp, 0, t, 0);
1637 }
1638
1639 if (!v)
1640 error (_("Structure has no component named %s."), name);
1641 return v;
1642 }
1643
1644 /* Search through the methods of an object (and its bases)
1645 * to find a specified method. Return the pointer to the
1646 * fn_field list of overloaded instances.
1647 * Helper function for value_find_oload_list.
1648 * ARGP is a pointer to a pointer to a value (the object)
1649 * METHOD is a string containing the method name
1650 * OFFSET is the offset within the value
1651 * TYPE is the assumed type of the object
1652 * NUM_FNS is the number of overloaded instances
1653 * BASETYPE is set to the actual type of the subobject where the method is found
1654 * BOFFSET is the offset of the base subobject where the method is found */
1655
1656 static struct fn_field *
1657 find_method_list (struct value **argp, char *method, int offset,
1658 struct type *type, int *num_fns,
1659 struct type **basetype, int *boffset)
1660 {
1661 int i;
1662 struct fn_field *f;
1663 CHECK_TYPEDEF (type);
1664
1665 *num_fns = 0;
1666
1667 /* First check in object itself */
1668 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1669 {
1670 /* pai: FIXME What about operators and type conversions? */
1671 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1672 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1673 {
1674 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1675 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1676
1677 *num_fns = len;
1678 *basetype = type;
1679 *boffset = offset;
1680
1681 /* Resolve any stub methods. */
1682 check_stub_method_group (type, i);
1683
1684 return f;
1685 }
1686 }
1687
1688 /* Not found in object, check in base subobjects */
1689 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1690 {
1691 int base_offset;
1692 if (BASETYPE_VIA_VIRTUAL (type, i))
1693 {
1694 if (TYPE_HAS_VTABLE (type))
1695 {
1696 /* HP aCC compiled type, search for virtual base offset
1697 * according to HP/Taligent runtime spec. */
1698 int skip;
1699 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1700 value_contents_all (*argp),
1701 offset + value_embedded_offset (*argp),
1702 &base_offset, &skip);
1703 if (skip >= 0)
1704 error (_("Virtual base class offset not found in vtable"));
1705 }
1706 else
1707 {
1708 /* probably g++ runtime model */
1709 base_offset = value_offset (*argp) + offset;
1710 base_offset =
1711 baseclass_offset (type, i,
1712 value_contents (*argp) + base_offset,
1713 VALUE_ADDRESS (*argp) + base_offset);
1714 if (base_offset == -1)
1715 error (_("virtual baseclass botch"));
1716 }
1717 }
1718 else
1719 /* non-virtual base, simply use bit position from debug info */
1720 {
1721 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1722 }
1723 f = find_method_list (argp, method, base_offset + offset,
1724 TYPE_BASECLASS (type, i), num_fns, basetype,
1725 boffset);
1726 if (f)
1727 return f;
1728 }
1729 return NULL;
1730 }
1731
1732 /* Return the list of overloaded methods of a specified name.
1733 * ARGP is a pointer to a pointer to a value (the object)
1734 * METHOD is the method name
1735 * OFFSET is the offset within the value contents
1736 * NUM_FNS is the number of overloaded instances
1737 * BASETYPE is set to the type of the base subobject that defines the method
1738 * BOFFSET is the offset of the base subobject which defines the method */
1739
1740 struct fn_field *
1741 value_find_oload_method_list (struct value **argp, char *method, int offset,
1742 int *num_fns, struct type **basetype,
1743 int *boffset)
1744 {
1745 struct type *t;
1746
1747 t = check_typedef (value_type (*argp));
1748
1749 /* code snarfed from value_struct_elt */
1750 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1751 {
1752 *argp = value_ind (*argp);
1753 /* Don't coerce fn pointer to fn and then back again! */
1754 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1755 *argp = coerce_array (*argp);
1756 t = check_typedef (value_type (*argp));
1757 }
1758
1759 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1760 error (_("Not implemented: member type in value_find_oload_lis"));
1761
1762 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1763 && TYPE_CODE (t) != TYPE_CODE_UNION)
1764 error (_("Attempt to extract a component of a value that is not a struct or union"));
1765
1766 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
1767 }
1768
1769 /* Given an array of argument types (ARGTYPES) (which includes an
1770 entry for "this" in the case of C++ methods), the number of
1771 arguments NARGS, the NAME of a function whether it's a method or
1772 not (METHOD), and the degree of laxness (LAX) in conforming to
1773 overload resolution rules in ANSI C++, find the best function that
1774 matches on the argument types according to the overload resolution
1775 rules.
1776
1777 In the case of class methods, the parameter OBJ is an object value
1778 in which to search for overloaded methods.
1779
1780 In the case of non-method functions, the parameter FSYM is a symbol
1781 corresponding to one of the overloaded functions.
1782
1783 Return value is an integer: 0 -> good match, 10 -> debugger applied
1784 non-standard coercions, 100 -> incompatible.
1785
1786 If a method is being searched for, VALP will hold the value.
1787 If a non-method is being searched for, SYMP will hold the symbol for it.
1788
1789 If a method is being searched for, and it is a static method,
1790 then STATICP will point to a non-zero value.
1791
1792 Note: This function does *not* check the value of
1793 overload_resolution. Caller must check it to see whether overload
1794 resolution is permitted.
1795 */
1796
1797 int
1798 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
1799 int lax, struct value **objp, struct symbol *fsym,
1800 struct value **valp, struct symbol **symp, int *staticp)
1801 {
1802 struct value *obj = (objp ? *objp : NULL);
1803
1804 int oload_champ; /* Index of best overloaded function */
1805
1806 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
1807
1808 struct value *temp = obj;
1809 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
1810 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
1811 int num_fns = 0; /* Number of overloaded instances being considered */
1812 struct type *basetype = NULL;
1813 int boffset;
1814 int ix;
1815 int static_offset;
1816 struct cleanup *old_cleanups = NULL;
1817
1818 const char *obj_type_name = NULL;
1819 char *func_name = NULL;
1820 enum oload_classification match_quality;
1821
1822 /* Get the list of overloaded methods or functions */
1823 if (method)
1824 {
1825 obj_type_name = TYPE_NAME (value_type (obj));
1826 /* Hack: evaluate_subexp_standard often passes in a pointer
1827 value rather than the object itself, so try again */
1828 if ((!obj_type_name || !*obj_type_name) &&
1829 (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
1830 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
1831
1832 fns_ptr = value_find_oload_method_list (&temp, name, 0,
1833 &num_fns,
1834 &basetype, &boffset);
1835 if (!fns_ptr || !num_fns)
1836 error (_("Couldn't find method %s%s%s"),
1837 obj_type_name,
1838 (obj_type_name && *obj_type_name) ? "::" : "",
1839 name);
1840 /* If we are dealing with stub method types, they should have
1841 been resolved by find_method_list via value_find_oload_method_list
1842 above. */
1843 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
1844 oload_champ = find_oload_champ (arg_types, nargs, method, num_fns,
1845 fns_ptr, oload_syms, &oload_champ_bv);
1846 }
1847 else
1848 {
1849 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
1850 func_name = cp_func_name (qualified_name);
1851
1852 /* If the name is NULL this must be a C-style function.
1853 Just return the same symbol. */
1854 if (func_name == NULL)
1855 {
1856 *symp = fsym;
1857 return 0;
1858 }
1859
1860 old_cleanups = make_cleanup (xfree, func_name);
1861 make_cleanup (xfree, oload_syms);
1862 make_cleanup (xfree, oload_champ_bv);
1863
1864 oload_champ = find_oload_champ_namespace (arg_types, nargs,
1865 func_name,
1866 qualified_name,
1867 &oload_syms,
1868 &oload_champ_bv);
1869 }
1870
1871 /* Check how bad the best match is. */
1872
1873 match_quality
1874 = classify_oload_match (oload_champ_bv, nargs,
1875 oload_method_static (method, fns_ptr,
1876 oload_champ));
1877
1878 if (match_quality == INCOMPATIBLE)
1879 {
1880 if (method)
1881 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
1882 obj_type_name,
1883 (obj_type_name && *obj_type_name) ? "::" : "",
1884 name);
1885 else
1886 error (_("Cannot resolve function %s to any overloaded instance"),
1887 func_name);
1888 }
1889 else if (match_quality == NON_STANDARD)
1890 {
1891 if (method)
1892 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
1893 obj_type_name,
1894 (obj_type_name && *obj_type_name) ? "::" : "",
1895 name);
1896 else
1897 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
1898 func_name);
1899 }
1900
1901 if (method)
1902 {
1903 if (staticp != NULL)
1904 *staticp = oload_method_static (method, fns_ptr, oload_champ);
1905 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
1906 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1907 else
1908 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1909 }
1910 else
1911 {
1912 *symp = oload_syms[oload_champ];
1913 }
1914
1915 if (objp)
1916 {
1917 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
1918 && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR)
1919 {
1920 temp = value_addr (temp);
1921 }
1922 *objp = temp;
1923 }
1924 if (old_cleanups != NULL)
1925 do_cleanups (old_cleanups);
1926
1927 switch (match_quality)
1928 {
1929 case INCOMPATIBLE:
1930 return 100;
1931 case NON_STANDARD:
1932 return 10;
1933 default: /* STANDARD */
1934 return 0;
1935 }
1936 }
1937
1938 /* Find the best overload match, searching for FUNC_NAME in namespaces
1939 contained in QUALIFIED_NAME until it either finds a good match or
1940 runs out of namespaces. It stores the overloaded functions in
1941 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
1942 calling function is responsible for freeing *OLOAD_SYMS and
1943 *OLOAD_CHAMP_BV. */
1944
1945 static int
1946 find_oload_champ_namespace (struct type **arg_types, int nargs,
1947 const char *func_name,
1948 const char *qualified_name,
1949 struct symbol ***oload_syms,
1950 struct badness_vector **oload_champ_bv)
1951 {
1952 int oload_champ;
1953
1954 find_oload_champ_namespace_loop (arg_types, nargs,
1955 func_name,
1956 qualified_name, 0,
1957 oload_syms, oload_champ_bv,
1958 &oload_champ);
1959
1960 return oload_champ;
1961 }
1962
1963 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
1964 how deep we've looked for namespaces, and the champ is stored in
1965 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
1966 if it isn't.
1967
1968 It is the caller's responsibility to free *OLOAD_SYMS and
1969 *OLOAD_CHAMP_BV. */
1970
1971 static int
1972 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
1973 const char *func_name,
1974 const char *qualified_name,
1975 int namespace_len,
1976 struct symbol ***oload_syms,
1977 struct badness_vector **oload_champ_bv,
1978 int *oload_champ)
1979 {
1980 int next_namespace_len = namespace_len;
1981 int searched_deeper = 0;
1982 int num_fns = 0;
1983 struct cleanup *old_cleanups;
1984 int new_oload_champ;
1985 struct symbol **new_oload_syms;
1986 struct badness_vector *new_oload_champ_bv;
1987 char *new_namespace;
1988
1989 if (next_namespace_len != 0)
1990 {
1991 gdb_assert (qualified_name[next_namespace_len] == ':');
1992 next_namespace_len += 2;
1993 }
1994 next_namespace_len
1995 += cp_find_first_component (qualified_name + next_namespace_len);
1996
1997 /* Initialize these to values that can safely be xfree'd. */
1998 *oload_syms = NULL;
1999 *oload_champ_bv = NULL;
2000
2001 /* First, see if we have a deeper namespace we can search in. If we
2002 get a good match there, use it. */
2003
2004 if (qualified_name[next_namespace_len] == ':')
2005 {
2006 searched_deeper = 1;
2007
2008 if (find_oload_champ_namespace_loop (arg_types, nargs,
2009 func_name, qualified_name,
2010 next_namespace_len,
2011 oload_syms, oload_champ_bv,
2012 oload_champ))
2013 {
2014 return 1;
2015 }
2016 };
2017
2018 /* If we reach here, either we're in the deepest namespace or we
2019 didn't find a good match in a deeper namespace. But, in the
2020 latter case, we still have a bad match in a deeper namespace;
2021 note that we might not find any match at all in the current
2022 namespace. (There's always a match in the deepest namespace,
2023 because this overload mechanism only gets called if there's a
2024 function symbol to start off with.) */
2025
2026 old_cleanups = make_cleanup (xfree, *oload_syms);
2027 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2028 new_namespace = alloca (namespace_len + 1);
2029 strncpy (new_namespace, qualified_name, namespace_len);
2030 new_namespace[namespace_len] = '\0';
2031 new_oload_syms = make_symbol_overload_list (func_name,
2032 new_namespace);
2033 while (new_oload_syms[num_fns])
2034 ++num_fns;
2035
2036 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2037 NULL, new_oload_syms,
2038 &new_oload_champ_bv);
2039
2040 /* Case 1: We found a good match. Free earlier matches (if any),
2041 and return it. Case 2: We didn't find a good match, but we're
2042 not the deepest function. Then go with the bad match that the
2043 deeper function found. Case 3: We found a bad match, and we're
2044 the deepest function. Then return what we found, even though
2045 it's a bad match. */
2046
2047 if (new_oload_champ != -1
2048 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2049 {
2050 *oload_syms = new_oload_syms;
2051 *oload_champ = new_oload_champ;
2052 *oload_champ_bv = new_oload_champ_bv;
2053 do_cleanups (old_cleanups);
2054 return 1;
2055 }
2056 else if (searched_deeper)
2057 {
2058 xfree (new_oload_syms);
2059 xfree (new_oload_champ_bv);
2060 discard_cleanups (old_cleanups);
2061 return 0;
2062 }
2063 else
2064 {
2065 gdb_assert (new_oload_champ != -1);
2066 *oload_syms = new_oload_syms;
2067 *oload_champ = new_oload_champ;
2068 *oload_champ_bv = new_oload_champ_bv;
2069 discard_cleanups (old_cleanups);
2070 return 0;
2071 }
2072 }
2073
2074 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2075 the best match from among the overloaded methods or functions
2076 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2077 The number of methods/functions in the list is given by NUM_FNS.
2078 Return the index of the best match; store an indication of the
2079 quality of the match in OLOAD_CHAMP_BV.
2080
2081 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2082
2083 static int
2084 find_oload_champ (struct type **arg_types, int nargs, int method,
2085 int num_fns, struct fn_field *fns_ptr,
2086 struct symbol **oload_syms,
2087 struct badness_vector **oload_champ_bv)
2088 {
2089 int ix;
2090 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2091 int oload_champ = -1; /* Index of best overloaded function */
2092 int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2093 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2094
2095 *oload_champ_bv = NULL;
2096
2097 /* Consider each candidate in turn */
2098 for (ix = 0; ix < num_fns; ix++)
2099 {
2100 int jj;
2101 int static_offset = oload_method_static (method, fns_ptr, ix);
2102 int nparms;
2103 struct type **parm_types;
2104
2105 if (method)
2106 {
2107 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2108 }
2109 else
2110 {
2111 /* If it's not a method, this is the proper place */
2112 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2113 }
2114
2115 /* Prepare array of parameter types */
2116 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2117 for (jj = 0; jj < nparms; jj++)
2118 parm_types[jj] = (method
2119 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2120 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2121
2122 /* Compare parameter types to supplied argument types. Skip THIS for
2123 static methods. */
2124 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2125 nargs - static_offset);
2126
2127 if (!*oload_champ_bv)
2128 {
2129 *oload_champ_bv = bv;
2130 oload_champ = 0;
2131 }
2132 else
2133 /* See whether current candidate is better or worse than previous best */
2134 switch (compare_badness (bv, *oload_champ_bv))
2135 {
2136 case 0:
2137 oload_ambiguous = 1; /* top two contenders are equally good */
2138 break;
2139 case 1:
2140 oload_ambiguous = 2; /* incomparable top contenders */
2141 break;
2142 case 2:
2143 *oload_champ_bv = bv; /* new champion, record details */
2144 oload_ambiguous = 0;
2145 oload_champ = ix;
2146 break;
2147 case 3:
2148 default:
2149 break;
2150 }
2151 xfree (parm_types);
2152 if (overload_debug)
2153 {
2154 if (method)
2155 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2156 else
2157 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2158 for (jj = 0; jj < nargs - static_offset; jj++)
2159 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2160 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2161 }
2162 }
2163
2164 return oload_champ;
2165 }
2166
2167 /* Return 1 if we're looking at a static method, 0 if we're looking at
2168 a non-static method or a function that isn't a method. */
2169
2170 static int
2171 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2172 {
2173 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2174 return 1;
2175 else
2176 return 0;
2177 }
2178
2179 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2180
2181 static enum oload_classification
2182 classify_oload_match (struct badness_vector *oload_champ_bv,
2183 int nargs,
2184 int static_offset)
2185 {
2186 int ix;
2187
2188 for (ix = 1; ix <= nargs - static_offset; ix++)
2189 {
2190 if (oload_champ_bv->rank[ix] >= 100)
2191 return INCOMPATIBLE; /* truly mismatched types */
2192 else if (oload_champ_bv->rank[ix] >= 10)
2193 return NON_STANDARD; /* non-standard type conversions needed */
2194 }
2195
2196 return STANDARD; /* Only standard conversions needed. */
2197 }
2198
2199 /* C++: return 1 is NAME is a legitimate name for the destructor
2200 of type TYPE. If TYPE does not have a destructor, or
2201 if NAME is inappropriate for TYPE, an error is signaled. */
2202 int
2203 destructor_name_p (const char *name, const struct type *type)
2204 {
2205 /* destructors are a special case. */
2206
2207 if (name[0] == '~')
2208 {
2209 char *dname = type_name_no_tag (type);
2210 char *cp = strchr (dname, '<');
2211 unsigned int len;
2212
2213 /* Do not compare the template part for template classes. */
2214 if (cp == NULL)
2215 len = strlen (dname);
2216 else
2217 len = cp - dname;
2218 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2219 error (_("name of destructor must equal name of class"));
2220 else
2221 return 1;
2222 }
2223 return 0;
2224 }
2225
2226 /* Helper function for check_field: Given TYPE, a structure/union,
2227 return 1 if the component named NAME from the ultimate
2228 target structure/union is defined, otherwise, return 0. */
2229
2230 static int
2231 check_field_in (struct type *type, const char *name)
2232 {
2233 int i;
2234
2235 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2236 {
2237 char *t_field_name = TYPE_FIELD_NAME (type, i);
2238 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2239 return 1;
2240 }
2241
2242 /* C++: If it was not found as a data field, then try to
2243 return it as a pointer to a method. */
2244
2245 /* Destructors are a special case. */
2246 if (destructor_name_p (name, type))
2247 {
2248 int m_index, f_index;
2249
2250 return get_destructor_fn_field (type, &m_index, &f_index);
2251 }
2252
2253 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2254 {
2255 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2256 return 1;
2257 }
2258
2259 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2260 if (check_field_in (TYPE_BASECLASS (type, i), name))
2261 return 1;
2262
2263 return 0;
2264 }
2265
2266
2267 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2268 return 1 if the component named NAME from the ultimate
2269 target structure/union is defined, otherwise, return 0. */
2270
2271 int
2272 check_field (struct value *arg1, const char *name)
2273 {
2274 struct type *t;
2275
2276 arg1 = coerce_array (arg1);
2277
2278 t = value_type (arg1);
2279
2280 /* Follow pointers until we get to a non-pointer. */
2281
2282 for (;;)
2283 {
2284 CHECK_TYPEDEF (t);
2285 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2286 break;
2287 t = TYPE_TARGET_TYPE (t);
2288 }
2289
2290 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2291 error (_("not implemented: member type in check_field"));
2292
2293 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2294 && TYPE_CODE (t) != TYPE_CODE_UNION)
2295 error (_("Internal error: `this' is not an aggregate"));
2296
2297 return check_field_in (t, name);
2298 }
2299
2300 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2301 return the appropriate member. This function is used to resolve
2302 user expressions of the form "DOMAIN::NAME". For more details on
2303 what happens, see the comment before
2304 value_struct_elt_for_reference. */
2305
2306 struct value *
2307 value_aggregate_elt (struct type *curtype,
2308 char *name,
2309 enum noside noside)
2310 {
2311 switch (TYPE_CODE (curtype))
2312 {
2313 case TYPE_CODE_STRUCT:
2314 case TYPE_CODE_UNION:
2315 return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL,
2316 noside);
2317 case TYPE_CODE_NAMESPACE:
2318 return value_namespace_elt (curtype, name, noside);
2319 default:
2320 internal_error (__FILE__, __LINE__,
2321 _("non-aggregate type in value_aggregate_elt"));
2322 }
2323 }
2324
2325 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2326 return the address of this member as a "pointer to member"
2327 type. If INTYPE is non-null, then it will be the type
2328 of the member we are looking for. This will help us resolve
2329 "pointers to member functions". This function is used
2330 to resolve user expressions of the form "DOMAIN::NAME". */
2331
2332 static struct value *
2333 value_struct_elt_for_reference (struct type *domain, int offset,
2334 struct type *curtype, char *name,
2335 struct type *intype,
2336 enum noside noside)
2337 {
2338 struct type *t = curtype;
2339 int i;
2340 struct value *v;
2341
2342 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2343 && TYPE_CODE (t) != TYPE_CODE_UNION)
2344 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2345
2346 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2347 {
2348 char *t_field_name = TYPE_FIELD_NAME (t, i);
2349
2350 if (t_field_name && strcmp (t_field_name, name) == 0)
2351 {
2352 if (TYPE_FIELD_STATIC (t, i))
2353 {
2354 v = value_static_field (t, i);
2355 if (v == NULL)
2356 error (_("static field %s has been optimized out"),
2357 name);
2358 return v;
2359 }
2360 if (TYPE_FIELD_PACKED (t, i))
2361 error (_("pointers to bitfield members not allowed"));
2362
2363 return value_from_longest
2364 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2365 domain)),
2366 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2367 }
2368 }
2369
2370 /* C++: If it was not found as a data field, then try to
2371 return it as a pointer to a method. */
2372
2373 /* Destructors are a special case. */
2374 if (destructor_name_p (name, t))
2375 {
2376 error (_("member pointers to destructors not implemented yet"));
2377 }
2378
2379 /* Perform all necessary dereferencing. */
2380 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2381 intype = TYPE_TARGET_TYPE (intype);
2382
2383 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2384 {
2385 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2386 char dem_opname[64];
2387
2388 if (strncmp (t_field_name, "__", 2) == 0 ||
2389 strncmp (t_field_name, "op", 2) == 0 ||
2390 strncmp (t_field_name, "type", 4) == 0)
2391 {
2392 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2393 t_field_name = dem_opname;
2394 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2395 t_field_name = dem_opname;
2396 }
2397 if (t_field_name && strcmp (t_field_name, name) == 0)
2398 {
2399 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2400 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2401
2402 check_stub_method_group (t, i);
2403
2404 if (intype == 0 && j > 1)
2405 error (_("non-unique member `%s' requires type instantiation"), name);
2406 if (intype)
2407 {
2408 while (j--)
2409 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2410 break;
2411 if (j < 0)
2412 error (_("no member function matches that type instantiation"));
2413 }
2414 else
2415 j = 0;
2416
2417 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2418 {
2419 return value_from_longest
2420 (lookup_reference_type
2421 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2422 domain)),
2423 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2424 }
2425 else
2426 {
2427 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2428 0, VAR_DOMAIN, 0, NULL);
2429 if (s == NULL)
2430 {
2431 v = 0;
2432 }
2433 else
2434 {
2435 v = read_var_value (s, 0);
2436 #if 0
2437 VALUE_TYPE (v) = lookup_reference_type
2438 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2439 domain));
2440 #endif
2441 }
2442 return v;
2443 }
2444 }
2445 }
2446 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2447 {
2448 struct value *v;
2449 int base_offset;
2450
2451 if (BASETYPE_VIA_VIRTUAL (t, i))
2452 base_offset = 0;
2453 else
2454 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2455 v = value_struct_elt_for_reference (domain,
2456 offset + base_offset,
2457 TYPE_BASECLASS (t, i),
2458 name,
2459 intype,
2460 noside);
2461 if (v)
2462 return v;
2463 }
2464
2465 /* As a last chance, pretend that CURTYPE is a namespace, and look
2466 it up that way; this (frequently) works for types nested inside
2467 classes. */
2468
2469 return value_maybe_namespace_elt (curtype, name, noside);
2470 }
2471
2472 /* C++: Return the member NAME of the namespace given by the type
2473 CURTYPE. */
2474
2475 static struct value *
2476 value_namespace_elt (const struct type *curtype,
2477 char *name,
2478 enum noside noside)
2479 {
2480 struct value *retval = value_maybe_namespace_elt (curtype, name,
2481 noside);
2482
2483 if (retval == NULL)
2484 error (_("No symbol \"%s\" in namespace \"%s\"."), name,
2485 TYPE_TAG_NAME (curtype));
2486
2487 return retval;
2488 }
2489
2490 /* A helper function used by value_namespace_elt and
2491 value_struct_elt_for_reference. It looks up NAME inside the
2492 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2493 is a class and NAME refers to a type in CURTYPE itself (as opposed
2494 to, say, some base class of CURTYPE). */
2495
2496 static struct value *
2497 value_maybe_namespace_elt (const struct type *curtype,
2498 char *name,
2499 enum noside noside)
2500 {
2501 const char *namespace_name = TYPE_TAG_NAME (curtype);
2502 struct symbol *sym;
2503
2504 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2505 get_selected_block (0), VAR_DOMAIN,
2506 NULL);
2507
2508 if (sym == NULL)
2509 return NULL;
2510 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2511 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2512 return allocate_value (SYMBOL_TYPE (sym));
2513 else
2514 return value_of_variable (sym, get_selected_block (0));
2515 }
2516
2517 /* Given a pointer value V, find the real (RTTI) type
2518 of the object it points to.
2519 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2520 and refer to the values computed for the object pointed to. */
2521
2522 struct type *
2523 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
2524 {
2525 struct value *target;
2526
2527 target = value_ind (v);
2528
2529 return value_rtti_type (target, full, top, using_enc);
2530 }
2531
2532 /* Given a value pointed to by ARGP, check its real run-time type, and
2533 if that is different from the enclosing type, create a new value
2534 using the real run-time type as the enclosing type (and of the same
2535 type as ARGP) and return it, with the embedded offset adjusted to
2536 be the correct offset to the enclosed object
2537 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
2538 parameters, computed by value_rtti_type(). If these are available,
2539 they can be supplied and a second call to value_rtti_type() is avoided.
2540 (Pass RTYPE == NULL if they're not available */
2541
2542 struct value *
2543 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
2544 int xusing_enc)
2545 {
2546 struct type *real_type;
2547 int full = 0;
2548 int top = -1;
2549 int using_enc = 0;
2550 struct value *new_val;
2551
2552 if (rtype)
2553 {
2554 real_type = rtype;
2555 full = xfull;
2556 top = xtop;
2557 using_enc = xusing_enc;
2558 }
2559 else
2560 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2561
2562 /* If no RTTI data, or if object is already complete, do nothing */
2563 if (!real_type || real_type == value_enclosing_type (argp))
2564 return argp;
2565
2566 /* If we have the full object, but for some reason the enclosing
2567 type is wrong, set it *//* pai: FIXME -- sounds iffy */
2568 if (full)
2569 {
2570 argp = value_change_enclosing_type (argp, real_type);
2571 return argp;
2572 }
2573
2574 /* Check if object is in memory */
2575 if (VALUE_LVAL (argp) != lval_memory)
2576 {
2577 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), TYPE_NAME (real_type));
2578
2579 return argp;
2580 }
2581
2582 /* All other cases -- retrieve the complete object */
2583 /* Go back by the computed top_offset from the beginning of the object,
2584 adjusting for the embedded offset of argp if that's what value_rtti_type
2585 used for its computation. */
2586 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2587 (using_enc ? 0 : value_embedded_offset (argp)));
2588 deprecated_set_value_type (new_val, value_type (argp));
2589 set_value_embedded_offset (new_val, (using_enc
2590 ? top + value_embedded_offset (argp)
2591 : top));
2592 return new_val;
2593 }
2594
2595
2596
2597
2598 /* Return the value of the local variable, if one exists.
2599 Flag COMPLAIN signals an error if the request is made in an
2600 inappropriate context. */
2601
2602 struct value *
2603 value_of_local (const char *name, int complain)
2604 {
2605 struct symbol *func, *sym;
2606 struct block *b;
2607 struct value * ret;
2608
2609 if (deprecated_selected_frame == 0)
2610 {
2611 if (complain)
2612 error (_("no frame selected"));
2613 else
2614 return 0;
2615 }
2616
2617 func = get_frame_function (deprecated_selected_frame);
2618 if (!func)
2619 {
2620 if (complain)
2621 error (_("no `%s' in nameless context"), name);
2622 else
2623 return 0;
2624 }
2625
2626 b = SYMBOL_BLOCK_VALUE (func);
2627 if (dict_empty (BLOCK_DICT (b)))
2628 {
2629 if (complain)
2630 error (_("no args, no `%s'"), name);
2631 else
2632 return 0;
2633 }
2634
2635 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2636 symbol instead of the LOC_ARG one (if both exist). */
2637 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2638 if (sym == NULL)
2639 {
2640 if (complain)
2641 error (_("current stack frame does not contain a variable named `%s'"), name);
2642 else
2643 return NULL;
2644 }
2645
2646 ret = read_var_value (sym, deprecated_selected_frame);
2647 if (ret == 0 && complain)
2648 error (_("`%s' argument unreadable"), name);
2649 return ret;
2650 }
2651
2652 /* C++/Objective-C: return the value of the class instance variable,
2653 if one exists. Flag COMPLAIN signals an error if the request is
2654 made in an inappropriate context. */
2655
2656 struct value *
2657 value_of_this (int complain)
2658 {
2659 if (current_language->la_language == language_objc)
2660 return value_of_local ("self", complain);
2661 else
2662 return value_of_local ("this", complain);
2663 }
2664
2665 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2666 long, starting at LOWBOUND. The result has the same lower bound as
2667 the original ARRAY. */
2668
2669 struct value *
2670 value_slice (struct value *array, int lowbound, int length)
2671 {
2672 struct type *slice_range_type, *slice_type, *range_type;
2673 LONGEST lowerbound, upperbound;
2674 struct value *slice;
2675 struct type *array_type;
2676 array_type = check_typedef (value_type (array));
2677 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2678 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2679 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2680 error (_("cannot take slice of non-array"));
2681 range_type = TYPE_INDEX_TYPE (array_type);
2682 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2683 error (_("slice from bad array or bitstring"));
2684 if (lowbound < lowerbound || length < 0
2685 || lowbound + length - 1 > upperbound)
2686 error (_("slice out of range"));
2687 /* FIXME-type-allocation: need a way to free this type when we are
2688 done with it. */
2689 slice_range_type = create_range_type ((struct type *) NULL,
2690 TYPE_TARGET_TYPE (range_type),
2691 lowbound, lowbound + length - 1);
2692 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2693 {
2694 int i;
2695 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
2696 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2697 slice = value_zero (slice_type, not_lval);
2698 for (i = 0; i < length; i++)
2699 {
2700 int element = value_bit_index (array_type,
2701 value_contents (array),
2702 lowbound + i);
2703 if (element < 0)
2704 error (_("internal error accessing bitstring"));
2705 else if (element > 0)
2706 {
2707 int j = i % TARGET_CHAR_BIT;
2708 if (BITS_BIG_ENDIAN)
2709 j = TARGET_CHAR_BIT - 1 - j;
2710 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2711 }
2712 }
2713 /* We should set the address, bitssize, and bitspos, so the clice
2714 can be used on the LHS, but that may require extensions to
2715 value_assign. For now, just leave as a non_lval. FIXME. */
2716 }
2717 else
2718 {
2719 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2720 LONGEST offset
2721 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2722 slice_type = create_array_type ((struct type *) NULL, element_type,
2723 slice_range_type);
2724 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2725 slice = allocate_value (slice_type);
2726 if (value_lazy (array))
2727 set_value_lazy (slice, 1);
2728 else
2729 memcpy (value_contents_writeable (slice),
2730 value_contents (array) + offset,
2731 TYPE_LENGTH (slice_type));
2732 if (VALUE_LVAL (array) == lval_internalvar)
2733 VALUE_LVAL (slice) = lval_internalvar_component;
2734 else
2735 VALUE_LVAL (slice) = VALUE_LVAL (array);
2736 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2737 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2738 set_value_offset (slice, value_offset (array) + offset);
2739 }
2740 return slice;
2741 }
2742
2743 /* Create a value for a FORTRAN complex number. Currently most of
2744 the time values are coerced to COMPLEX*16 (i.e. a complex number
2745 composed of 2 doubles. This really should be a smarter routine
2746 that figures out precision inteligently as opposed to assuming
2747 doubles. FIXME: fmb */
2748
2749 struct value *
2750 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
2751 {
2752 struct value *val;
2753 struct type *real_type = TYPE_TARGET_TYPE (type);
2754
2755 val = allocate_value (type);
2756 arg1 = value_cast (real_type, arg1);
2757 arg2 = value_cast (real_type, arg2);
2758
2759 memcpy (value_contents_raw (val),
2760 value_contents (arg1), TYPE_LENGTH (real_type));
2761 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
2762 value_contents (arg2), TYPE_LENGTH (real_type));
2763 return val;
2764 }
2765
2766 /* Cast a value into the appropriate complex data type. */
2767
2768 static struct value *
2769 cast_into_complex (struct type *type, struct value *val)
2770 {
2771 struct type *real_type = TYPE_TARGET_TYPE (type);
2772 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
2773 {
2774 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
2775 struct value *re_val = allocate_value (val_real_type);
2776 struct value *im_val = allocate_value (val_real_type);
2777
2778 memcpy (value_contents_raw (re_val),
2779 value_contents (val), TYPE_LENGTH (val_real_type));
2780 memcpy (value_contents_raw (im_val),
2781 value_contents (val) + TYPE_LENGTH (val_real_type),
2782 TYPE_LENGTH (val_real_type));
2783
2784 return value_literal_complex (re_val, im_val, type);
2785 }
2786 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
2787 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
2788 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2789 else
2790 error (_("cannot cast non-number to complex"));
2791 }
2792
2793 void
2794 _initialize_valops (void)
2795 {
2796 add_setshow_boolean_cmd ("overload-resolution", class_support,
2797 &overload_resolution, _("\
2798 Set overload resolution in evaluating C++ functions."), _("\
2799 Show overload resolution in evaluating C++ functions."), NULL,
2800 NULL,
2801 show_overload_resolution,
2802 &setlist, &showlist);
2803 overload_resolution = 1;
2804 }