]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
configure: require libzstd >= 1.4.0
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "gdbtypes.h"
43 #include "gdbsupport/byte-vector.h"
44
45 /* Local functions. */
46
47 static int typecmp (bool staticp, bool varargs, int nargs,
48 struct field t1[], const gdb::array_view<value *> t2);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 gdb::optional<gdb::array_view<value *>>,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 bool overload_resolution = false;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 gdb_printf (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (sym.symbol->aclass () != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = sym.symbol->objfile ();
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = msymbol.value_address ();
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution ())
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution ())
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
234 {
235 v = search_struct_field (t1->name (),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
262 return v;
263
264 v = search_struct_field (t2->name (), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2) + value_embedded_offset (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (type1->target_type ());
301 struct type *t2 = check_typedef (type2->target_type ());
302
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* See value.h. */
335
336 gdb_mpq
337 value_to_gdb_mpq (struct value *value)
338 {
339 struct type *type = check_typedef (value_type (value));
340
341 gdb_mpq result;
342 if (is_floating_type (type))
343 {
344 double d = target_float_to_host_double (value_contents (value).data (),
345 type);
346 mpq_set_d (result.val, d);
347 }
348 else
349 {
350 gdb_assert (is_integral_type (type)
351 || is_fixed_point_type (type));
352
353 gdb_mpz vz;
354 vz.read (value_contents (value), type_byte_order (type),
355 type->is_unsigned ());
356 mpq_set_z (result.val, vz.val);
357
358 if (is_fixed_point_type (type))
359 mpq_mul (result.val, result.val,
360 type->fixed_point_scaling_factor ().val);
361 }
362
363 return result;
364 }
365
366 /* Assuming that TO_TYPE is a fixed point type, return a value
367 corresponding to the cast of FROM_VAL to that type. */
368
369 static struct value *
370 value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
371 {
372 struct type *from_type = value_type (from_val);
373
374 if (from_type == to_type)
375 return from_val;
376
377 if (!is_floating_type (from_type)
378 && !is_integral_type (from_type)
379 && !is_fixed_point_type (from_type))
380 error (_("Invalid conversion from type %s to fixed point type %s"),
381 from_type->name (), to_type->name ());
382
383 gdb_mpq vq = value_to_gdb_mpq (from_val);
384
385 /* Divide that value by the scaling factor to obtain the unscaled
386 value, first in rational form, and then in integer form. */
387
388 mpq_div (vq.val, vq.val, to_type->fixed_point_scaling_factor ().val);
389 gdb_mpz unscaled = vq.get_rounded ();
390
391 /* Finally, create the result value, and pack the unscaled value
392 in it. */
393 struct value *result = allocate_value (to_type);
394 unscaled.write (value_contents_raw (result),
395 type_byte_order (to_type),
396 to_type->is_unsigned ());
397
398 return result;
399 }
400
401 /* Cast value ARG2 to type TYPE and return as a value.
402 More general than a C cast: accepts any two types of the same length,
403 and if ARG2 is an lvalue it can be cast into anything at all. */
404 /* In C++, casts may change pointer or object representations. */
405
406 struct value *
407 value_cast (struct type *type, struct value *arg2)
408 {
409 enum type_code code1;
410 enum type_code code2;
411 int scalar;
412 struct type *type2;
413
414 int convert_to_boolean = 0;
415
416 /* TYPE might be equal in meaning to the existing type of ARG2, but for
417 many reasons, might be a different type object (e.g. TYPE might be a
418 gdbarch owned type, while VALUE_TYPE (ARG2) could be an objfile owned
419 type).
420
421 In this case we want to preserve the LVAL of ARG2 as this allows the
422 resulting value to be used in more places. We do this by calling
423 VALUE_COPY if appropriate. */
424 if (types_deeply_equal (value_type (arg2), type))
425 {
426 /* If the types are exactly equal then we can avoid creating a new
427 value completely. */
428 if (value_type (arg2) != type)
429 {
430 arg2 = value_copy (arg2);
431 deprecated_set_value_type (arg2, type);
432 }
433 return arg2;
434 }
435
436 if (is_fixed_point_type (type))
437 return value_cast_to_fixed_point (type, arg2);
438
439 /* Check if we are casting struct reference to struct reference. */
440 if (TYPE_IS_REFERENCE (check_typedef (type)))
441 {
442 /* We dereference type; then we recurse and finally
443 we generate value of the given reference. Nothing wrong with
444 that. */
445 struct type *t1 = check_typedef (type);
446 struct type *dereftype = check_typedef (t1->target_type ());
447 struct value *val = value_cast (dereftype, arg2);
448
449 return value_ref (val, t1->code ());
450 }
451
452 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
453 /* We deref the value and then do the cast. */
454 return value_cast (type, coerce_ref (arg2));
455
456 /* Strip typedefs / resolve stubs in order to get at the type's
457 code/length, but remember the original type, to use as the
458 resulting type of the cast, in case it was a typedef. */
459 struct type *to_type = type;
460
461 type = check_typedef (type);
462 code1 = type->code ();
463 arg2 = coerce_ref (arg2);
464 type2 = check_typedef (value_type (arg2));
465
466 /* You can't cast to a reference type. See value_cast_pointers
467 instead. */
468 gdb_assert (!TYPE_IS_REFERENCE (type));
469
470 /* A cast to an undetermined-length array_type, such as
471 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
472 where N is sizeof(OBJECT)/sizeof(TYPE). */
473 if (code1 == TYPE_CODE_ARRAY)
474 {
475 struct type *element_type = type->target_type ();
476 unsigned element_length = check_typedef (element_type)->length ();
477
478 if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
479 {
480 struct type *range_type = type->index_type ();
481 int val_length = type2->length ();
482 LONGEST low_bound, high_bound, new_length;
483
484 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
485 low_bound = 0, high_bound = 0;
486 new_length = val_length / element_length;
487 if (val_length % element_length != 0)
488 warning (_("array element type size does not "
489 "divide object size in cast"));
490 /* FIXME-type-allocation: need a way to free this type when
491 we are done with it. */
492 range_type = create_static_range_type (NULL,
493 range_type->target_type (),
494 low_bound,
495 new_length + low_bound - 1);
496 deprecated_set_value_type (arg2,
497 create_array_type (NULL,
498 element_type,
499 range_type));
500 return arg2;
501 }
502 }
503
504 if (current_language->c_style_arrays_p ()
505 && type2->code () == TYPE_CODE_ARRAY
506 && !type2->is_vector ())
507 arg2 = value_coerce_array (arg2);
508
509 if (type2->code () == TYPE_CODE_FUNC)
510 arg2 = value_coerce_function (arg2);
511
512 type2 = check_typedef (value_type (arg2));
513 code2 = type2->code ();
514
515 if (code1 == TYPE_CODE_COMPLEX)
516 return cast_into_complex (to_type, arg2);
517 if (code1 == TYPE_CODE_BOOL)
518 {
519 code1 = TYPE_CODE_INT;
520 convert_to_boolean = 1;
521 }
522 if (code1 == TYPE_CODE_CHAR)
523 code1 = TYPE_CODE_INT;
524 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
525 code2 = TYPE_CODE_INT;
526
527 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
528 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
529 || code2 == TYPE_CODE_RANGE
530 || is_fixed_point_type (type2));
531
532 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
533 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
534 && type->name () != 0)
535 {
536 struct value *v = value_cast_structs (to_type, arg2);
537
538 if (v)
539 return v;
540 }
541
542 if (is_floating_type (type) && scalar)
543 {
544 if (is_floating_value (arg2))
545 {
546 struct value *v = allocate_value (to_type);
547 target_float_convert (value_contents (arg2).data (), type2,
548 value_contents_raw (v).data (), type);
549 return v;
550 }
551 else if (is_fixed_point_type (type2))
552 {
553 gdb_mpq fp_val;
554
555 fp_val.read_fixed_point (value_contents (arg2),
556 type_byte_order (type2),
557 type2->is_unsigned (),
558 type2->fixed_point_scaling_factor ());
559
560 struct value *v = allocate_value (to_type);
561 target_float_from_host_double (value_contents_raw (v).data (),
562 to_type, mpq_get_d (fp_val.val));
563 return v;
564 }
565
566 /* The only option left is an integral type. */
567 if (type2->is_unsigned ())
568 return value_from_ulongest (to_type, value_as_long (arg2));
569 else
570 return value_from_longest (to_type, value_as_long (arg2));
571 }
572 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
573 || code1 == TYPE_CODE_RANGE)
574 && (scalar || code2 == TYPE_CODE_PTR
575 || code2 == TYPE_CODE_MEMBERPTR))
576 {
577 LONGEST longest;
578
579 /* When we cast pointers to integers, we mustn't use
580 gdbarch_pointer_to_address to find the address the pointer
581 represents, as value_as_long would. GDB should evaluate
582 expressions just as the compiler would --- and the compiler
583 sees a cast as a simple reinterpretation of the pointer's
584 bits. */
585 if (code2 == TYPE_CODE_PTR)
586 longest = extract_unsigned_integer
587 (value_contents (arg2), type_byte_order (type2));
588 else
589 longest = value_as_long (arg2);
590 return value_from_longest (to_type, convert_to_boolean ?
591 (LONGEST) (longest ? 1 : 0) : longest);
592 }
593 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
594 || code2 == TYPE_CODE_ENUM
595 || code2 == TYPE_CODE_RANGE))
596 {
597 /* type->length () is the length of a pointer, but we really
598 want the length of an address! -- we are really dealing with
599 addresses (i.e., gdb representations) not pointers (i.e.,
600 target representations) here.
601
602 This allows things like "print *(int *)0x01000234" to work
603 without printing a misleading message -- which would
604 otherwise occur when dealing with a target having two byte
605 pointers and four byte addresses. */
606
607 int addr_bit = gdbarch_addr_bit (type2->arch ());
608 LONGEST longest = value_as_long (arg2);
609
610 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
611 {
612 if (longest >= ((LONGEST) 1 << addr_bit)
613 || longest <= -((LONGEST) 1 << addr_bit))
614 warning (_("value truncated"));
615 }
616 return value_from_longest (to_type, longest);
617 }
618 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
619 && value_as_long (arg2) == 0)
620 {
621 struct value *result = allocate_value (to_type);
622
623 cplus_make_method_ptr (to_type,
624 value_contents_writeable (result).data (), 0, 0);
625 return result;
626 }
627 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
628 && value_as_long (arg2) == 0)
629 {
630 /* The Itanium C++ ABI represents NULL pointers to members as
631 minus one, instead of biasing the normal case. */
632 return value_from_longest (to_type, -1);
633 }
634 else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
635 && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
636 && type->length () != type2->length ())
637 error (_("Cannot convert between vector values of different sizes"));
638 else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
639 && type->length () != type2->length ())
640 error (_("can only cast scalar to vector of same size"));
641 else if (code1 == TYPE_CODE_VOID)
642 {
643 return value_zero (to_type, not_lval);
644 }
645 else if (type->length () == type2->length ())
646 {
647 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
648 return value_cast_pointers (to_type, arg2, 0);
649
650 arg2 = value_copy (arg2);
651 deprecated_set_value_type (arg2, to_type);
652 set_value_enclosing_type (arg2, to_type);
653 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
654 return arg2;
655 }
656 else if (VALUE_LVAL (arg2) == lval_memory)
657 return value_at_lazy (to_type, value_address (arg2));
658 else
659 {
660 if (current_language->la_language == language_ada)
661 error (_("Invalid type conversion."));
662 error (_("Invalid cast."));
663 }
664 }
665
666 /* The C++ reinterpret_cast operator. */
667
668 struct value *
669 value_reinterpret_cast (struct type *type, struct value *arg)
670 {
671 struct value *result;
672 struct type *real_type = check_typedef (type);
673 struct type *arg_type, *dest_type;
674 int is_ref = 0;
675 enum type_code dest_code, arg_code;
676
677 /* Do reference, function, and array conversion. */
678 arg = coerce_array (arg);
679
680 /* Attempt to preserve the type the user asked for. */
681 dest_type = type;
682
683 /* If we are casting to a reference type, transform
684 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
685 if (TYPE_IS_REFERENCE (real_type))
686 {
687 is_ref = 1;
688 arg = value_addr (arg);
689 dest_type = lookup_pointer_type (dest_type->target_type ());
690 real_type = lookup_pointer_type (real_type);
691 }
692
693 arg_type = value_type (arg);
694
695 dest_code = real_type->code ();
696 arg_code = arg_type->code ();
697
698 /* We can convert pointer types, or any pointer type to int, or int
699 type to pointer. */
700 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
701 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
702 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
703 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
704 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
705 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
706 || (dest_code == arg_code
707 && (dest_code == TYPE_CODE_PTR
708 || dest_code == TYPE_CODE_METHODPTR
709 || dest_code == TYPE_CODE_MEMBERPTR)))
710 result = value_cast (dest_type, arg);
711 else
712 error (_("Invalid reinterpret_cast"));
713
714 if (is_ref)
715 result = value_cast (type, value_ref (value_ind (result),
716 type->code ()));
717
718 return result;
719 }
720
721 /* A helper for value_dynamic_cast. This implements the first of two
722 runtime checks: we iterate over all the base classes of the value's
723 class which are equal to the desired class; if only one of these
724 holds the value, then it is the answer. */
725
726 static int
727 dynamic_cast_check_1 (struct type *desired_type,
728 const gdb_byte *valaddr,
729 LONGEST embedded_offset,
730 CORE_ADDR address,
731 struct value *val,
732 struct type *search_type,
733 CORE_ADDR arg_addr,
734 struct type *arg_type,
735 struct value **result)
736 {
737 int i, result_count = 0;
738
739 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
740 {
741 LONGEST offset = baseclass_offset (search_type, i, valaddr,
742 embedded_offset,
743 address, val);
744
745 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
746 {
747 if (address + embedded_offset + offset >= arg_addr
748 && address + embedded_offset + offset < arg_addr + arg_type->length ())
749 {
750 ++result_count;
751 if (!*result)
752 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
753 address + embedded_offset + offset);
754 }
755 }
756 else
757 result_count += dynamic_cast_check_1 (desired_type,
758 valaddr,
759 embedded_offset + offset,
760 address, val,
761 TYPE_BASECLASS (search_type, i),
762 arg_addr,
763 arg_type,
764 result);
765 }
766
767 return result_count;
768 }
769
770 /* A helper for value_dynamic_cast. This implements the second of two
771 runtime checks: we look for a unique public sibling class of the
772 argument's declared class. */
773
774 static int
775 dynamic_cast_check_2 (struct type *desired_type,
776 const gdb_byte *valaddr,
777 LONGEST embedded_offset,
778 CORE_ADDR address,
779 struct value *val,
780 struct type *search_type,
781 struct value **result)
782 {
783 int i, result_count = 0;
784
785 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
786 {
787 LONGEST offset;
788
789 if (! BASETYPE_VIA_PUBLIC (search_type, i))
790 continue;
791
792 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
793 address, val);
794 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
795 {
796 ++result_count;
797 if (*result == NULL)
798 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
799 address + embedded_offset + offset);
800 }
801 else
802 result_count += dynamic_cast_check_2 (desired_type,
803 valaddr,
804 embedded_offset + offset,
805 address, val,
806 TYPE_BASECLASS (search_type, i),
807 result);
808 }
809
810 return result_count;
811 }
812
813 /* The C++ dynamic_cast operator. */
814
815 struct value *
816 value_dynamic_cast (struct type *type, struct value *arg)
817 {
818 int full, using_enc;
819 LONGEST top;
820 struct type *resolved_type = check_typedef (type);
821 struct type *arg_type = check_typedef (value_type (arg));
822 struct type *class_type, *rtti_type;
823 struct value *result, *tem, *original_arg = arg;
824 CORE_ADDR addr;
825 int is_ref = TYPE_IS_REFERENCE (resolved_type);
826
827 if (resolved_type->code () != TYPE_CODE_PTR
828 && !TYPE_IS_REFERENCE (resolved_type))
829 error (_("Argument to dynamic_cast must be a pointer or reference type"));
830 if (resolved_type->target_type ()->code () != TYPE_CODE_VOID
831 && resolved_type->target_type ()->code () != TYPE_CODE_STRUCT)
832 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
833
834 class_type = check_typedef (resolved_type->target_type ());
835 if (resolved_type->code () == TYPE_CODE_PTR)
836 {
837 if (arg_type->code () != TYPE_CODE_PTR
838 && ! (arg_type->code () == TYPE_CODE_INT
839 && value_as_long (arg) == 0))
840 error (_("Argument to dynamic_cast does not have pointer type"));
841 if (arg_type->code () == TYPE_CODE_PTR)
842 {
843 arg_type = check_typedef (arg_type->target_type ());
844 if (arg_type->code () != TYPE_CODE_STRUCT)
845 error (_("Argument to dynamic_cast does "
846 "not have pointer to class type"));
847 }
848
849 /* Handle NULL pointers. */
850 if (value_as_long (arg) == 0)
851 return value_zero (type, not_lval);
852
853 arg = value_ind (arg);
854 }
855 else
856 {
857 if (arg_type->code () != TYPE_CODE_STRUCT)
858 error (_("Argument to dynamic_cast does not have class type"));
859 }
860
861 /* If the classes are the same, just return the argument. */
862 if (class_types_same_p (class_type, arg_type))
863 return value_cast (type, arg);
864
865 /* If the target type is a unique base class of the argument's
866 declared type, just cast it. */
867 if (is_ancestor (class_type, arg_type))
868 {
869 if (is_unique_ancestor (class_type, arg))
870 return value_cast (type, original_arg);
871 error (_("Ambiguous dynamic_cast"));
872 }
873
874 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
875 if (! rtti_type)
876 error (_("Couldn't determine value's most derived type for dynamic_cast"));
877
878 /* Compute the most derived object's address. */
879 addr = value_address (arg);
880 if (full)
881 {
882 /* Done. */
883 }
884 else if (using_enc)
885 addr += top;
886 else
887 addr += top + value_embedded_offset (arg);
888
889 /* dynamic_cast<void *> means to return a pointer to the
890 most-derived object. */
891 if (resolved_type->code () == TYPE_CODE_PTR
892 && resolved_type->target_type ()->code () == TYPE_CODE_VOID)
893 return value_at_lazy (type, addr);
894
895 tem = value_at (type, addr);
896 type = value_type (tem);
897
898 /* The first dynamic check specified in 5.2.7. */
899 if (is_public_ancestor (arg_type, resolved_type->target_type ()))
900 {
901 if (class_types_same_p (rtti_type, resolved_type->target_type ()))
902 return tem;
903 result = NULL;
904 if (dynamic_cast_check_1 (resolved_type->target_type (),
905 value_contents_for_printing (tem).data (),
906 value_embedded_offset (tem),
907 value_address (tem), tem,
908 rtti_type, addr,
909 arg_type,
910 &result) == 1)
911 return value_cast (type,
912 is_ref
913 ? value_ref (result, resolved_type->code ())
914 : value_addr (result));
915 }
916
917 /* The second dynamic check specified in 5.2.7. */
918 result = NULL;
919 if (is_public_ancestor (arg_type, rtti_type)
920 && dynamic_cast_check_2 (resolved_type->target_type (),
921 value_contents_for_printing (tem).data (),
922 value_embedded_offset (tem),
923 value_address (tem), tem,
924 rtti_type, &result) == 1)
925 return value_cast (type,
926 is_ref
927 ? value_ref (result, resolved_type->code ())
928 : value_addr (result));
929
930 if (resolved_type->code () == TYPE_CODE_PTR)
931 return value_zero (type, not_lval);
932
933 error (_("dynamic_cast failed"));
934 }
935
936 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
937
938 struct value *
939 value_one (struct type *type)
940 {
941 struct type *type1 = check_typedef (type);
942 struct value *val;
943
944 if (is_integral_type (type1) || is_floating_type (type1))
945 {
946 val = value_from_longest (type, (LONGEST) 1);
947 }
948 else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
949 {
950 struct type *eltype = check_typedef (type1->target_type ());
951 int i;
952 LONGEST low_bound, high_bound;
953
954 if (!get_array_bounds (type1, &low_bound, &high_bound))
955 error (_("Could not determine the vector bounds"));
956
957 val = allocate_value (type);
958 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
959 int elt_len = eltype->length ();
960
961 for (i = 0; i < high_bound - low_bound + 1; i++)
962 {
963 value *tmp = value_one (eltype);
964 copy (value_contents_all (tmp),
965 val_contents.slice (i * elt_len, elt_len));
966 }
967 }
968 else
969 {
970 error (_("Not a numeric type."));
971 }
972
973 /* value_one result is never used for assignments to. */
974 gdb_assert (VALUE_LVAL (val) == not_lval);
975
976 return val;
977 }
978
979 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
980 The type of the created value may differ from the passed type TYPE.
981 Make sure to retrieve the returned values's new type after this call
982 e.g. in case the type is a variable length array. */
983
984 static struct value *
985 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
986 {
987 struct value *val;
988
989 if (check_typedef (type)->code () == TYPE_CODE_VOID)
990 error (_("Attempt to dereference a generic pointer."));
991
992 val = value_from_contents_and_address (type, NULL, addr);
993
994 if (!lazy)
995 value_fetch_lazy (val);
996
997 return val;
998 }
999
1000 /* Return a value with type TYPE located at ADDR.
1001
1002 Call value_at only if the data needs to be fetched immediately;
1003 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
1004 value_at_lazy instead. value_at_lazy simply records the address of
1005 the data and sets the lazy-evaluation-required flag. The lazy flag
1006 is tested in the value_contents macro, which is used if and when
1007 the contents are actually required. The type of the created value
1008 may differ from the passed type TYPE. Make sure to retrieve the
1009 returned values's new type after this call e.g. in case the type
1010 is a variable length array.
1011
1012 Note: value_at does *NOT* handle embedded offsets; perform such
1013 adjustments before or after calling it. */
1014
1015 struct value *
1016 value_at (struct type *type, CORE_ADDR addr)
1017 {
1018 return get_value_at (type, addr, 0);
1019 }
1020
1021 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
1022 The type of the created value may differ from the passed type TYPE.
1023 Make sure to retrieve the returned values's new type after this call
1024 e.g. in case the type is a variable length array. */
1025
1026 struct value *
1027 value_at_lazy (struct type *type, CORE_ADDR addr)
1028 {
1029 return get_value_at (type, addr, 1);
1030 }
1031
1032 void
1033 read_value_memory (struct value *val, LONGEST bit_offset,
1034 int stack, CORE_ADDR memaddr,
1035 gdb_byte *buffer, size_t length)
1036 {
1037 ULONGEST xfered_total = 0;
1038 struct gdbarch *arch = get_value_arch (val);
1039 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1040 enum target_object object;
1041
1042 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
1043
1044 while (xfered_total < length)
1045 {
1046 enum target_xfer_status status;
1047 ULONGEST xfered_partial;
1048
1049 status = target_xfer_partial (current_inferior ()->top_target (),
1050 object, NULL,
1051 buffer + xfered_total * unit_size, NULL,
1052 memaddr + xfered_total,
1053 length - xfered_total,
1054 &xfered_partial);
1055
1056 if (status == TARGET_XFER_OK)
1057 /* nothing */;
1058 else if (status == TARGET_XFER_UNAVAILABLE)
1059 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
1060 + bit_offset),
1061 xfered_partial * HOST_CHAR_BIT);
1062 else if (status == TARGET_XFER_EOF)
1063 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
1064 else
1065 memory_error (status, memaddr + xfered_total);
1066
1067 xfered_total += xfered_partial;
1068 QUIT;
1069 }
1070 }
1071
1072 /* Store the contents of FROMVAL into the location of TOVAL.
1073 Return a new value with the location of TOVAL and contents of FROMVAL. */
1074
1075 struct value *
1076 value_assign (struct value *toval, struct value *fromval)
1077 {
1078 struct type *type;
1079 struct value *val;
1080 struct frame_id old_frame;
1081
1082 if (!deprecated_value_modifiable (toval))
1083 error (_("Left operand of assignment is not a modifiable lvalue."));
1084
1085 toval = coerce_ref (toval);
1086
1087 type = value_type (toval);
1088 if (VALUE_LVAL (toval) != lval_internalvar)
1089 fromval = value_cast (type, fromval);
1090 else
1091 {
1092 /* Coerce arrays and functions to pointers, except for arrays
1093 which only live in GDB's storage. */
1094 if (!value_must_coerce_to_target (fromval))
1095 fromval = coerce_array (fromval);
1096 }
1097
1098 type = check_typedef (type);
1099
1100 /* Since modifying a register can trash the frame chain, and
1101 modifying memory can trash the frame cache, we save the old frame
1102 and then restore the new frame afterwards. */
1103 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1104
1105 switch (VALUE_LVAL (toval))
1106 {
1107 case lval_internalvar:
1108 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1109 return value_of_internalvar (type->arch (),
1110 VALUE_INTERNALVAR (toval));
1111
1112 case lval_internalvar_component:
1113 {
1114 LONGEST offset = value_offset (toval);
1115
1116 /* Are we dealing with a bitfield?
1117
1118 It is important to mention that `value_parent (toval)' is
1119 non-NULL iff `value_bitsize (toval)' is non-zero. */
1120 if (value_bitsize (toval))
1121 {
1122 /* VALUE_INTERNALVAR below refers to the parent value, while
1123 the offset is relative to this parent value. */
1124 gdb_assert (value_parent (value_parent (toval)) == NULL);
1125 offset += value_offset (value_parent (toval));
1126 }
1127
1128 set_internalvar_component (VALUE_INTERNALVAR (toval),
1129 offset,
1130 value_bitpos (toval),
1131 value_bitsize (toval),
1132 fromval);
1133 }
1134 break;
1135
1136 case lval_memory:
1137 {
1138 const gdb_byte *dest_buffer;
1139 CORE_ADDR changed_addr;
1140 int changed_len;
1141 gdb_byte buffer[sizeof (LONGEST)];
1142
1143 if (value_bitsize (toval))
1144 {
1145 struct value *parent = value_parent (toval);
1146
1147 changed_addr = value_address (parent) + value_offset (toval);
1148 changed_len = (value_bitpos (toval)
1149 + value_bitsize (toval)
1150 + HOST_CHAR_BIT - 1)
1151 / HOST_CHAR_BIT;
1152
1153 /* If we can read-modify-write exactly the size of the
1154 containing type (e.g. short or int) then do so. This
1155 is safer for volatile bitfields mapped to hardware
1156 registers. */
1157 if (changed_len < type->length ()
1158 && type->length () <= (int) sizeof (LONGEST)
1159 && ((LONGEST) changed_addr % type->length ()) == 0)
1160 changed_len = type->length ();
1161
1162 if (changed_len > (int) sizeof (LONGEST))
1163 error (_("Can't handle bitfields which "
1164 "don't fit in a %d bit word."),
1165 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1166
1167 read_memory (changed_addr, buffer, changed_len);
1168 modify_field (type, buffer, value_as_long (fromval),
1169 value_bitpos (toval), value_bitsize (toval));
1170 dest_buffer = buffer;
1171 }
1172 else
1173 {
1174 changed_addr = value_address (toval);
1175 changed_len = type_length_units (type);
1176 dest_buffer = value_contents (fromval).data ();
1177 }
1178
1179 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1180 }
1181 break;
1182
1183 case lval_register:
1184 {
1185 frame_info_ptr frame;
1186 struct gdbarch *gdbarch;
1187 int value_reg;
1188
1189 /* Figure out which frame this register value is in. The value
1190 holds the frame_id for the next frame, that is the frame this
1191 register value was unwound from.
1192
1193 Below we will call put_frame_register_bytes which requires that
1194 we pass it the actual frame in which the register value is
1195 valid, i.e. not the next frame. */
1196 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (toval));
1197 frame = get_prev_frame_always (frame);
1198
1199 value_reg = VALUE_REGNUM (toval);
1200
1201 if (!frame)
1202 error (_("Value being assigned to is no longer active."));
1203
1204 gdbarch = get_frame_arch (frame);
1205
1206 if (value_bitsize (toval))
1207 {
1208 struct value *parent = value_parent (toval);
1209 LONGEST offset = value_offset (parent) + value_offset (toval);
1210 size_t changed_len;
1211 gdb_byte buffer[sizeof (LONGEST)];
1212 int optim, unavail;
1213
1214 changed_len = (value_bitpos (toval)
1215 + value_bitsize (toval)
1216 + HOST_CHAR_BIT - 1)
1217 / HOST_CHAR_BIT;
1218
1219 if (changed_len > sizeof (LONGEST))
1220 error (_("Can't handle bitfields which "
1221 "don't fit in a %d bit word."),
1222 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1223
1224 if (!get_frame_register_bytes (frame, value_reg, offset,
1225 {buffer, changed_len},
1226 &optim, &unavail))
1227 {
1228 if (optim)
1229 throw_error (OPTIMIZED_OUT_ERROR,
1230 _("value has been optimized out"));
1231 if (unavail)
1232 throw_error (NOT_AVAILABLE_ERROR,
1233 _("value is not available"));
1234 }
1235
1236 modify_field (type, buffer, value_as_long (fromval),
1237 value_bitpos (toval), value_bitsize (toval));
1238
1239 put_frame_register_bytes (frame, value_reg, offset,
1240 {buffer, changed_len});
1241 }
1242 else
1243 {
1244 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1245 type))
1246 {
1247 /* If TOVAL is a special machine register requiring
1248 conversion of program values to a special raw
1249 format. */
1250 gdbarch_value_to_register (gdbarch, frame,
1251 VALUE_REGNUM (toval), type,
1252 value_contents (fromval).data ());
1253 }
1254 else
1255 put_frame_register_bytes (frame, value_reg,
1256 value_offset (toval),
1257 value_contents (fromval));
1258 }
1259
1260 gdb::observers::register_changed.notify (frame, value_reg);
1261 break;
1262 }
1263
1264 case lval_computed:
1265 {
1266 const struct lval_funcs *funcs = value_computed_funcs (toval);
1267
1268 if (funcs->write != NULL)
1269 {
1270 funcs->write (toval, fromval);
1271 break;
1272 }
1273 }
1274 /* Fall through. */
1275
1276 default:
1277 error (_("Left operand of assignment is not an lvalue."));
1278 }
1279
1280 /* Assigning to the stack pointer, frame pointer, and other
1281 (architecture and calling convention specific) registers may
1282 cause the frame cache and regcache to be out of date. Assigning to memory
1283 also can. We just do this on all assignments to registers or
1284 memory, for simplicity's sake; I doubt the slowdown matters. */
1285 switch (VALUE_LVAL (toval))
1286 {
1287 case lval_memory:
1288 case lval_register:
1289 case lval_computed:
1290
1291 gdb::observers::target_changed.notify
1292 (current_inferior ()->top_target ());
1293
1294 /* Having destroyed the frame cache, restore the selected
1295 frame. */
1296
1297 /* FIXME: cagney/2002-11-02: There has to be a better way of
1298 doing this. Instead of constantly saving/restoring the
1299 frame. Why not create a get_selected_frame() function that,
1300 having saved the selected frame's ID can automatically
1301 re-find the previously selected frame automatically. */
1302
1303 {
1304 frame_info_ptr fi = frame_find_by_id (old_frame);
1305
1306 if (fi != NULL)
1307 select_frame (fi);
1308 }
1309
1310 break;
1311 default:
1312 break;
1313 }
1314
1315 /* If the field does not entirely fill a LONGEST, then zero the sign
1316 bits. If the field is signed, and is negative, then sign
1317 extend. */
1318 if ((value_bitsize (toval) > 0)
1319 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1320 {
1321 LONGEST fieldval = value_as_long (fromval);
1322 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1323
1324 fieldval &= valmask;
1325 if (!type->is_unsigned ()
1326 && (fieldval & (valmask ^ (valmask >> 1))))
1327 fieldval |= ~valmask;
1328
1329 fromval = value_from_longest (type, fieldval);
1330 }
1331
1332 /* The return value is a copy of TOVAL so it shares its location
1333 information, but its contents are updated from FROMVAL. This
1334 implies the returned value is not lazy, even if TOVAL was. */
1335 val = value_copy (toval);
1336 set_value_lazy (val, 0);
1337 copy (value_contents (fromval), value_contents_raw (val));
1338
1339 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1340 in the case of pointer types. For object types, the enclosing type
1341 and embedded offset must *not* be copied: the target object refered
1342 to by TOVAL retains its original dynamic type after assignment. */
1343 if (type->code () == TYPE_CODE_PTR)
1344 {
1345 set_value_enclosing_type (val, value_enclosing_type (fromval));
1346 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1347 }
1348
1349 return val;
1350 }
1351
1352 /* Extend a value ARG1 to COUNT repetitions of its type. */
1353
1354 struct value *
1355 value_repeat (struct value *arg1, int count)
1356 {
1357 struct value *val;
1358
1359 if (VALUE_LVAL (arg1) != lval_memory)
1360 error (_("Only values in memory can be extended with '@'."));
1361 if (count < 1)
1362 error (_("Invalid number %d of repetitions."), count);
1363
1364 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1365
1366 VALUE_LVAL (val) = lval_memory;
1367 set_value_address (val, value_address (arg1));
1368
1369 read_value_memory (val, 0, value_stack (val), value_address (val),
1370 value_contents_all_raw (val).data (),
1371 type_length_units (value_enclosing_type (val)));
1372
1373 return val;
1374 }
1375
1376 struct value *
1377 value_of_variable (struct symbol *var, const struct block *b)
1378 {
1379 frame_info_ptr frame = NULL;
1380
1381 if (symbol_read_needs_frame (var))
1382 frame = get_selected_frame (_("No frame selected."));
1383
1384 return read_var_value (var, b, frame);
1385 }
1386
1387 struct value *
1388 address_of_variable (struct symbol *var, const struct block *b)
1389 {
1390 struct type *type = var->type ();
1391 struct value *val;
1392
1393 /* Evaluate it first; if the result is a memory address, we're fine.
1394 Lazy evaluation pays off here. */
1395
1396 val = value_of_variable (var, b);
1397 type = value_type (val);
1398
1399 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1400 || type->code () == TYPE_CODE_FUNC)
1401 {
1402 CORE_ADDR addr = value_address (val);
1403
1404 return value_from_pointer (lookup_pointer_type (type), addr);
1405 }
1406
1407 /* Not a memory address; check what the problem was. */
1408 switch (VALUE_LVAL (val))
1409 {
1410 case lval_register:
1411 {
1412 frame_info_ptr frame;
1413 const char *regname;
1414
1415 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1416 gdb_assert (frame);
1417
1418 regname = gdbarch_register_name (get_frame_arch (frame),
1419 VALUE_REGNUM (val));
1420 gdb_assert (regname != nullptr && *regname != '\0');
1421
1422 error (_("Address requested for identifier "
1423 "\"%s\" which is in register $%s"),
1424 var->print_name (), regname);
1425 break;
1426 }
1427
1428 default:
1429 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1430 var->print_name ());
1431 break;
1432 }
1433
1434 return val;
1435 }
1436
1437 /* See value.h. */
1438
1439 bool
1440 value_must_coerce_to_target (struct value *val)
1441 {
1442 struct type *valtype;
1443
1444 /* The only lval kinds which do not live in target memory. */
1445 if (VALUE_LVAL (val) != not_lval
1446 && VALUE_LVAL (val) != lval_internalvar
1447 && VALUE_LVAL (val) != lval_xcallable)
1448 return false;
1449
1450 valtype = check_typedef (value_type (val));
1451
1452 switch (valtype->code ())
1453 {
1454 case TYPE_CODE_ARRAY:
1455 return valtype->is_vector () ? 0 : 1;
1456 case TYPE_CODE_STRING:
1457 return true;
1458 default:
1459 return false;
1460 }
1461 }
1462
1463 /* Make sure that VAL lives in target memory if it's supposed to. For
1464 instance, strings are constructed as character arrays in GDB's
1465 storage, and this function copies them to the target. */
1466
1467 struct value *
1468 value_coerce_to_target (struct value *val)
1469 {
1470 LONGEST length;
1471 CORE_ADDR addr;
1472
1473 if (!value_must_coerce_to_target (val))
1474 return val;
1475
1476 length = check_typedef (value_type (val))->length ();
1477 addr = allocate_space_in_inferior (length);
1478 write_memory (addr, value_contents (val).data (), length);
1479 return value_at_lazy (value_type (val), addr);
1480 }
1481
1482 /* Given a value which is an array, return a value which is a pointer
1483 to its first element, regardless of whether or not the array has a
1484 nonzero lower bound.
1485
1486 FIXME: A previous comment here indicated that this routine should
1487 be substracting the array's lower bound. It's not clear to me that
1488 this is correct. Given an array subscripting operation, it would
1489 certainly work to do the adjustment here, essentially computing:
1490
1491 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1492
1493 However I believe a more appropriate and logical place to account
1494 for the lower bound is to do so in value_subscript, essentially
1495 computing:
1496
1497 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1498
1499 As further evidence consider what would happen with operations
1500 other than array subscripting, where the caller would get back a
1501 value that had an address somewhere before the actual first element
1502 of the array, and the information about the lower bound would be
1503 lost because of the coercion to pointer type. */
1504
1505 struct value *
1506 value_coerce_array (struct value *arg1)
1507 {
1508 struct type *type = check_typedef (value_type (arg1));
1509
1510 /* If the user tries to do something requiring a pointer with an
1511 array that has not yet been pushed to the target, then this would
1512 be a good time to do so. */
1513 arg1 = value_coerce_to_target (arg1);
1514
1515 if (VALUE_LVAL (arg1) != lval_memory)
1516 error (_("Attempt to take address of value not located in memory."));
1517
1518 return value_from_pointer (lookup_pointer_type (type->target_type ()),
1519 value_address (arg1));
1520 }
1521
1522 /* Given a value which is a function, return a value which is a pointer
1523 to it. */
1524
1525 struct value *
1526 value_coerce_function (struct value *arg1)
1527 {
1528 struct value *retval;
1529
1530 if (VALUE_LVAL (arg1) != lval_memory)
1531 error (_("Attempt to take address of value not located in memory."));
1532
1533 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1534 value_address (arg1));
1535 return retval;
1536 }
1537
1538 /* Return a pointer value for the object for which ARG1 is the
1539 contents. */
1540
1541 struct value *
1542 value_addr (struct value *arg1)
1543 {
1544 struct value *arg2;
1545 struct type *type = check_typedef (value_type (arg1));
1546
1547 if (TYPE_IS_REFERENCE (type))
1548 {
1549 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1550 TARGET_CHAR_BIT * type->length ()))
1551 arg1 = coerce_ref (arg1);
1552 else
1553 {
1554 /* Copy the value, but change the type from (T&) to (T*). We
1555 keep the same location information, which is efficient, and
1556 allows &(&X) to get the location containing the reference.
1557 Do the same to its enclosing type for consistency. */
1558 struct type *type_ptr
1559 = lookup_pointer_type (type->target_type ());
1560 struct type *enclosing_type
1561 = check_typedef (value_enclosing_type (arg1));
1562 struct type *enclosing_type_ptr
1563 = lookup_pointer_type (enclosing_type->target_type ());
1564
1565 arg2 = value_copy (arg1);
1566 deprecated_set_value_type (arg2, type_ptr);
1567 set_value_enclosing_type (arg2, enclosing_type_ptr);
1568
1569 return arg2;
1570 }
1571 }
1572 if (type->code () == TYPE_CODE_FUNC)
1573 return value_coerce_function (arg1);
1574
1575 /* If this is an array that has not yet been pushed to the target,
1576 then this would be a good time to force it to memory. */
1577 arg1 = value_coerce_to_target (arg1);
1578
1579 if (VALUE_LVAL (arg1) != lval_memory)
1580 error (_("Attempt to take address of value not located in memory."));
1581
1582 /* Get target memory address. */
1583 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1584 (value_address (arg1)
1585 + value_embedded_offset (arg1)));
1586
1587 /* This may be a pointer to a base subobject; so remember the
1588 full derived object's type ... */
1589 set_value_enclosing_type (arg2,
1590 lookup_pointer_type (value_enclosing_type (arg1)));
1591 /* ... and also the relative position of the subobject in the full
1592 object. */
1593 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1594 return arg2;
1595 }
1596
1597 /* Return a reference value for the object for which ARG1 is the
1598 contents. */
1599
1600 struct value *
1601 value_ref (struct value *arg1, enum type_code refcode)
1602 {
1603 struct value *arg2;
1604 struct type *type = check_typedef (value_type (arg1));
1605
1606 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1607
1608 if ((type->code () == TYPE_CODE_REF
1609 || type->code () == TYPE_CODE_RVALUE_REF)
1610 && type->code () == refcode)
1611 return arg1;
1612
1613 arg2 = value_addr (arg1);
1614 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1615 return arg2;
1616 }
1617
1618 /* Given a value of a pointer type, apply the C unary * operator to
1619 it. */
1620
1621 struct value *
1622 value_ind (struct value *arg1)
1623 {
1624 struct type *base_type;
1625 struct value *arg2;
1626
1627 arg1 = coerce_array (arg1);
1628
1629 base_type = check_typedef (value_type (arg1));
1630
1631 if (VALUE_LVAL (arg1) == lval_computed)
1632 {
1633 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1634
1635 if (funcs->indirect)
1636 {
1637 struct value *result = funcs->indirect (arg1);
1638
1639 if (result)
1640 return result;
1641 }
1642 }
1643
1644 if (base_type->code () == TYPE_CODE_PTR)
1645 {
1646 struct type *enc_type;
1647
1648 /* We may be pointing to something embedded in a larger object.
1649 Get the real type of the enclosing object. */
1650 enc_type = check_typedef (value_enclosing_type (arg1));
1651 enc_type = enc_type->target_type ();
1652
1653 CORE_ADDR base_addr;
1654 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1655 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1656 {
1657 /* For functions, go through find_function_addr, which knows
1658 how to handle function descriptors. */
1659 base_addr = find_function_addr (arg1, NULL);
1660 }
1661 else
1662 {
1663 /* Retrieve the enclosing object pointed to. */
1664 base_addr = (value_as_address (arg1)
1665 - value_pointed_to_offset (arg1));
1666 }
1667 arg2 = value_at_lazy (enc_type, base_addr);
1668 enc_type = value_type (arg2);
1669 return readjust_indirect_value_type (arg2, enc_type, base_type,
1670 arg1, base_addr);
1671 }
1672
1673 error (_("Attempt to take contents of a non-pointer value."));
1674 }
1675 \f
1676 /* Create a value for an array by allocating space in GDB, copying the
1677 data into that space, and then setting up an array value.
1678
1679 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1680 is populated from the values passed in ELEMVEC.
1681
1682 The element type of the array is inherited from the type of the
1683 first element, and all elements must have the same size (though we
1684 don't currently enforce any restriction on their types). */
1685
1686 struct value *
1687 value_array (int lowbound, int highbound, struct value **elemvec)
1688 {
1689 int nelem;
1690 int idx;
1691 ULONGEST typelength;
1692 struct value *val;
1693 struct type *arraytype;
1694
1695 /* Validate that the bounds are reasonable and that each of the
1696 elements have the same size. */
1697
1698 nelem = highbound - lowbound + 1;
1699 if (nelem <= 0)
1700 {
1701 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1702 }
1703 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1704 for (idx = 1; idx < nelem; idx++)
1705 {
1706 if (type_length_units (value_enclosing_type (elemvec[idx]))
1707 != typelength)
1708 {
1709 error (_("array elements must all be the same size"));
1710 }
1711 }
1712
1713 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1714 lowbound, highbound);
1715
1716 if (!current_language->c_style_arrays_p ())
1717 {
1718 val = allocate_value (arraytype);
1719 for (idx = 0; idx < nelem; idx++)
1720 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1721 typelength);
1722 return val;
1723 }
1724
1725 /* Allocate space to store the array, and then initialize it by
1726 copying in each element. */
1727
1728 val = allocate_value (arraytype);
1729 for (idx = 0; idx < nelem; idx++)
1730 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1731 return val;
1732 }
1733
1734 struct value *
1735 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1736 {
1737 struct value *val;
1738 int lowbound = current_language->string_lower_bound ();
1739 ssize_t highbound = len / char_type->length ();
1740 struct type *stringtype
1741 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1742
1743 val = allocate_value (stringtype);
1744 memcpy (value_contents_raw (val).data (), ptr, len);
1745 return val;
1746 }
1747
1748 /* Create a value for a string constant by allocating space in the
1749 inferior, copying the data into that space, and returning the
1750 address with type TYPE_CODE_STRING. PTR points to the string
1751 constant data; LEN is number of characters.
1752
1753 Note that string types are like array of char types with a lower
1754 bound of zero and an upper bound of LEN - 1. Also note that the
1755 string may contain embedded null bytes. */
1756
1757 struct value *
1758 value_string (const char *ptr, ssize_t len, struct type *char_type)
1759 {
1760 struct value *val;
1761 int lowbound = current_language->string_lower_bound ();
1762 ssize_t highbound = len / char_type->length ();
1763 struct type *stringtype
1764 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1765
1766 val = allocate_value (stringtype);
1767 memcpy (value_contents_raw (val).data (), ptr, len);
1768 return val;
1769 }
1770
1771 \f
1772 /* See if we can pass arguments in T2 to a function which takes arguments
1773 of types T1. T1 is a list of NARGS arguments, and T2 is an array_view
1774 of the values we're trying to pass. If some arguments need coercion of
1775 some sort, then the coerced values are written into T2. Return value is
1776 0 if the arguments could be matched, or the position at which they
1777 differ if not.
1778
1779 STATICP is nonzero if the T1 argument list came from a static
1780 member function. T2 must still include the ``this'' pointer, but
1781 it will be skipped.
1782
1783 For non-static member functions, we ignore the first argument,
1784 which is the type of the instance variable. This is because we
1785 want to handle calls with objects from derived classes. This is
1786 not entirely correct: we should actually check to make sure that a
1787 requested operation is type secure, shouldn't we? FIXME. */
1788
1789 static int
1790 typecmp (bool staticp, bool varargs, int nargs,
1791 struct field t1[], gdb::array_view<value *> t2)
1792 {
1793 int i;
1794
1795 /* Skip ``this'' argument if applicable. T2 will always include
1796 THIS. */
1797 if (staticp)
1798 t2 = t2.slice (1);
1799
1800 for (i = 0;
1801 (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
1802 i++)
1803 {
1804 struct type *tt1, *tt2;
1805
1806 if (i == t2.size ())
1807 return i + 1;
1808
1809 tt1 = check_typedef (t1[i].type ());
1810 tt2 = check_typedef (value_type (t2[i]));
1811
1812 if (TYPE_IS_REFERENCE (tt1)
1813 /* We should be doing hairy argument matching, as below. */
1814 && (check_typedef (tt1->target_type ())->code ()
1815 == tt2->code ()))
1816 {
1817 if (tt2->code () == TYPE_CODE_ARRAY)
1818 t2[i] = value_coerce_array (t2[i]);
1819 else
1820 t2[i] = value_ref (t2[i], tt1->code ());
1821 continue;
1822 }
1823
1824 /* djb - 20000715 - Until the new type structure is in the
1825 place, and we can attempt things like implicit conversions,
1826 we need to do this so you can take something like a map<const
1827 char *>, and properly access map["hello"], because the
1828 argument to [] will be a reference to a pointer to a char,
1829 and the argument will be a pointer to a char. */
1830 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1831 {
1832 tt1 = check_typedef ( tt1->target_type () );
1833 }
1834 while (tt2->code () == TYPE_CODE_ARRAY
1835 || tt2->code () == TYPE_CODE_PTR
1836 || TYPE_IS_REFERENCE (tt2))
1837 {
1838 tt2 = check_typedef (tt2->target_type ());
1839 }
1840 if (tt1->code () == tt2->code ())
1841 continue;
1842 /* Array to pointer is a `trivial conversion' according to the
1843 ARM. */
1844
1845 /* We should be doing much hairier argument matching (see
1846 section 13.2 of the ARM), but as a quick kludge, just check
1847 for the same type code. */
1848 if (t1[i].type ()->code () != value_type (t2[i])->code ())
1849 return i + 1;
1850 }
1851 if (varargs || i == t2.size ())
1852 return 0;
1853 return i + 1;
1854 }
1855
1856 /* Helper class for search_struct_field that keeps track of found
1857 results and possibly throws an exception if the search yields
1858 ambiguous results. See search_struct_field for description of
1859 LOOKING_FOR_BASECLASS. */
1860
1861 struct struct_field_searcher
1862 {
1863 /* A found field. */
1864 struct found_field
1865 {
1866 /* Path to the structure where the field was found. */
1867 std::vector<struct type *> path;
1868
1869 /* The field found. */
1870 struct value *field_value;
1871 };
1872
1873 /* See corresponding fields for description of parameters. */
1874 struct_field_searcher (const char *name,
1875 struct type *outermost_type,
1876 bool looking_for_baseclass)
1877 : m_name (name),
1878 m_looking_for_baseclass (looking_for_baseclass),
1879 m_outermost_type (outermost_type)
1880 {
1881 }
1882
1883 /* The search entry point. If LOOKING_FOR_BASECLASS is true and the
1884 base class search yields ambiguous results, this throws an
1885 exception. If LOOKING_FOR_BASECLASS is false, the found fields
1886 are accumulated and the caller (search_struct_field) takes care
1887 of throwing an error if the field search yields ambiguous
1888 results. The latter is done that way so that the error message
1889 can include a list of all the found candidates. */
1890 void search (struct value *arg, LONGEST offset, struct type *type);
1891
1892 const std::vector<found_field> &fields ()
1893 {
1894 return m_fields;
1895 }
1896
1897 struct value *baseclass ()
1898 {
1899 return m_baseclass;
1900 }
1901
1902 private:
1903 /* Update results to include V, a found field/baseclass. */
1904 void update_result (struct value *v, LONGEST boffset);
1905
1906 /* The name of the field/baseclass we're searching for. */
1907 const char *m_name;
1908
1909 /* Whether we're looking for a baseclass, or a field. */
1910 const bool m_looking_for_baseclass;
1911
1912 /* The offset of the baseclass containing the field/baseclass we
1913 last recorded. */
1914 LONGEST m_last_boffset = 0;
1915
1916 /* If looking for a baseclass, then the result is stored here. */
1917 struct value *m_baseclass = nullptr;
1918
1919 /* When looking for fields, the found candidates are stored
1920 here. */
1921 std::vector<found_field> m_fields;
1922
1923 /* The type of the initial type passed to search_struct_field; this
1924 is used for error reporting when the lookup is ambiguous. */
1925 struct type *m_outermost_type;
1926
1927 /* The full path to the struct being inspected. E.g. for field 'x'
1928 defined in class B inherited by class A, we have A and B pushed
1929 on the path. */
1930 std::vector <struct type *> m_struct_path;
1931 };
1932
1933 void
1934 struct_field_searcher::update_result (struct value *v, LONGEST boffset)
1935 {
1936 if (v != NULL)
1937 {
1938 if (m_looking_for_baseclass)
1939 {
1940 if (m_baseclass != nullptr
1941 /* The result is not ambiguous if all the classes that are
1942 found occupy the same space. */
1943 && m_last_boffset != boffset)
1944 error (_("base class '%s' is ambiguous in type '%s'"),
1945 m_name, TYPE_SAFE_NAME (m_outermost_type));
1946
1947 m_baseclass = v;
1948 m_last_boffset = boffset;
1949 }
1950 else
1951 {
1952 /* The field is not ambiguous if it occupies the same
1953 space. */
1954 if (m_fields.empty () || m_last_boffset != boffset)
1955 m_fields.push_back ({m_struct_path, v});
1956 else
1957 {
1958 /*Fields can occupy the same space and have the same name (be
1959 ambiguous). This can happen when fields in two different base
1960 classes are marked [[no_unique_address]] and have the same name.
1961 The C++ standard says that such fields can only occupy the same
1962 space if they are of different type, but we don't rely on that in
1963 the following code. */
1964 bool ambiguous = false, insert = true;
1965 for (const found_field &field: m_fields)
1966 {
1967 if(field.path.back () != m_struct_path.back ())
1968 {
1969 /* Same boffset points to members of different classes.
1970 We have found an ambiguity and should record it. */
1971 ambiguous = true;
1972 }
1973 else
1974 {
1975 /* We don't need to insert this value again, because a
1976 non-ambiguous path already leads to it. */
1977 insert = false;
1978 break;
1979 }
1980 }
1981 if (ambiguous && insert)
1982 m_fields.push_back ({m_struct_path, v});
1983 }
1984 }
1985 }
1986 }
1987
1988 /* A helper for search_struct_field. This does all the work; most
1989 arguments are as passed to search_struct_field. */
1990
1991 void
1992 struct_field_searcher::search (struct value *arg1, LONGEST offset,
1993 struct type *type)
1994 {
1995 int i;
1996 int nbases;
1997
1998 m_struct_path.push_back (type);
1999 SCOPE_EXIT { m_struct_path.pop_back (); };
2000
2001 type = check_typedef (type);
2002 nbases = TYPE_N_BASECLASSES (type);
2003
2004 if (!m_looking_for_baseclass)
2005 for (i = type->num_fields () - 1; i >= nbases; i--)
2006 {
2007 const char *t_field_name = type->field (i).name ();
2008
2009 if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
2010 {
2011 struct value *v;
2012
2013 if (field_is_static (&type->field (i)))
2014 v = value_static_field (type, i);
2015 else
2016 v = value_primitive_field (arg1, offset, i, type);
2017
2018 update_result (v, offset);
2019 return;
2020 }
2021
2022 if (t_field_name
2023 && t_field_name[0] == '\0')
2024 {
2025 struct type *field_type = type->field (i).type ();
2026
2027 if (field_type->code () == TYPE_CODE_UNION
2028 || field_type->code () == TYPE_CODE_STRUCT)
2029 {
2030 /* Look for a match through the fields of an anonymous
2031 union, or anonymous struct. C++ provides anonymous
2032 unions.
2033
2034 In the GNU Chill (now deleted from GDB)
2035 implementation of variant record types, each
2036 <alternative field> has an (anonymous) union type,
2037 each member of the union represents a <variant
2038 alternative>. Each <variant alternative> is
2039 represented as a struct, with a member for each
2040 <variant field>. */
2041
2042 LONGEST new_offset = offset;
2043
2044 /* This is pretty gross. In G++, the offset in an
2045 anonymous union is relative to the beginning of the
2046 enclosing struct. In the GNU Chill (now deleted
2047 from GDB) implementation of variant records, the
2048 bitpos is zero in an anonymous union field, so we
2049 have to add the offset of the union here. */
2050 if (field_type->code () == TYPE_CODE_STRUCT
2051 || (field_type->num_fields () > 0
2052 && field_type->field (0).loc_bitpos () == 0))
2053 new_offset += type->field (i).loc_bitpos () / 8;
2054
2055 search (arg1, new_offset, field_type);
2056 }
2057 }
2058 }
2059
2060 for (i = 0; i < nbases; i++)
2061 {
2062 struct value *v = NULL;
2063 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2064 /* If we are looking for baseclasses, this is what we get when
2065 we hit them. But it could happen that the base part's member
2066 name is not yet filled in. */
2067 int found_baseclass = (m_looking_for_baseclass
2068 && TYPE_BASECLASS_NAME (type, i) != NULL
2069 && (strcmp_iw (m_name, basetype->name ()) == 0));
2070 LONGEST boffset = value_embedded_offset (arg1) + offset;
2071
2072 if (BASETYPE_VIA_VIRTUAL (type, i))
2073 {
2074 struct value *v2;
2075
2076 boffset = baseclass_offset (type, i,
2077 value_contents_for_printing (arg1).data (),
2078 value_embedded_offset (arg1) + offset,
2079 value_address (arg1),
2080 arg1);
2081
2082 /* The virtual base class pointer might have been clobbered
2083 by the user program. Make sure that it still points to a
2084 valid memory location. */
2085
2086 boffset += value_embedded_offset (arg1) + offset;
2087 if (boffset < 0
2088 || boffset >= value_enclosing_type (arg1)->length ())
2089 {
2090 CORE_ADDR base_addr;
2091
2092 base_addr = value_address (arg1) + boffset;
2093 v2 = value_at_lazy (basetype, base_addr);
2094 if (target_read_memory (base_addr,
2095 value_contents_raw (v2).data (),
2096 value_type (v2)->length ()) != 0)
2097 error (_("virtual baseclass botch"));
2098 }
2099 else
2100 {
2101 v2 = value_copy (arg1);
2102 deprecated_set_value_type (v2, basetype);
2103 set_value_embedded_offset (v2, boffset);
2104 }
2105
2106 if (found_baseclass)
2107 v = v2;
2108 else
2109 search (v2, 0, TYPE_BASECLASS (type, i));
2110 }
2111 else if (found_baseclass)
2112 v = value_primitive_field (arg1, offset, i, type);
2113 else
2114 {
2115 search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2116 basetype);
2117 }
2118
2119 update_result (v, boffset);
2120 }
2121 }
2122
2123 /* Helper function used by value_struct_elt to recurse through
2124 baseclasses. Look for a field NAME in ARG1. Search in it assuming
2125 it has (class) type TYPE. If found, return value, else return NULL.
2126
2127 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2128 fields, look for a baseclass named NAME. */
2129
2130 static struct value *
2131 search_struct_field (const char *name, struct value *arg1,
2132 struct type *type, int looking_for_baseclass)
2133 {
2134 struct_field_searcher searcher (name, type, looking_for_baseclass);
2135
2136 searcher.search (arg1, 0, type);
2137
2138 if (!looking_for_baseclass)
2139 {
2140 const auto &fields = searcher.fields ();
2141
2142 if (fields.empty ())
2143 return nullptr;
2144 else if (fields.size () == 1)
2145 return fields[0].field_value;
2146 else
2147 {
2148 std::string candidates;
2149
2150 for (auto &&candidate : fields)
2151 {
2152 gdb_assert (!candidate.path.empty ());
2153
2154 struct type *field_type = value_type (candidate.field_value);
2155 struct type *struct_type = candidate.path.back ();
2156
2157 std::string path;
2158 bool first = true;
2159 for (struct type *t : candidate.path)
2160 {
2161 if (first)
2162 first = false;
2163 else
2164 path += " -> ";
2165 path += t->name ();
2166 }
2167
2168 candidates += string_printf ("\n '%s %s::%s' (%s)",
2169 TYPE_SAFE_NAME (field_type),
2170 TYPE_SAFE_NAME (struct_type),
2171 name,
2172 path.c_str ());
2173 }
2174
2175 error (_("Request for member '%s' is ambiguous in type '%s'."
2176 " Candidates are:%s"),
2177 name, TYPE_SAFE_NAME (type),
2178 candidates.c_str ());
2179 }
2180 }
2181 else
2182 return searcher.baseclass ();
2183 }
2184
2185 /* Helper function used by value_struct_elt to recurse through
2186 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2187 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2188 TYPE.
2189
2190 ARGS is an optional array of argument values used to help finding NAME.
2191 The contents of ARGS can be adjusted if type coercion is required in
2192 order to find a matching NAME.
2193
2194 If found, return value, else if name matched and args not return
2195 (value) -1, else return NULL. */
2196
2197 static struct value *
2198 search_struct_method (const char *name, struct value **arg1p,
2199 gdb::optional<gdb::array_view<value *>> args,
2200 LONGEST offset, int *static_memfuncp,
2201 struct type *type)
2202 {
2203 int i;
2204 struct value *v;
2205 int name_matched = 0;
2206
2207 type = check_typedef (type);
2208 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2209 {
2210 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2211
2212 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2213 {
2214 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2215 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2216
2217 name_matched = 1;
2218 check_stub_method_group (type, i);
2219 if (j > 0 && !args.has_value ())
2220 error (_("cannot resolve overloaded method "
2221 "`%s': no arguments supplied"), name);
2222 else if (j == 0 && !args.has_value ())
2223 {
2224 v = value_fn_field (arg1p, f, j, type, offset);
2225 if (v != NULL)
2226 return v;
2227 }
2228 else
2229 while (j >= 0)
2230 {
2231 gdb_assert (args.has_value ());
2232 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2233 TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
2234 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2235 TYPE_FN_FIELD_ARGS (f, j), *args))
2236 {
2237 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2238 return value_virtual_fn_field (arg1p, f, j,
2239 type, offset);
2240 if (TYPE_FN_FIELD_STATIC_P (f, j)
2241 && static_memfuncp)
2242 *static_memfuncp = 1;
2243 v = value_fn_field (arg1p, f, j, type, offset);
2244 if (v != NULL)
2245 return v;
2246 }
2247 j--;
2248 }
2249 }
2250 }
2251
2252 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2253 {
2254 LONGEST base_offset;
2255 LONGEST this_offset;
2256
2257 if (BASETYPE_VIA_VIRTUAL (type, i))
2258 {
2259 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2260 struct value *base_val;
2261 const gdb_byte *base_valaddr;
2262
2263 /* The virtual base class pointer might have been
2264 clobbered by the user program. Make sure that it
2265 still points to a valid memory location. */
2266
2267 if (offset < 0 || offset >= type->length ())
2268 {
2269 CORE_ADDR address;
2270
2271 gdb::byte_vector tmp (baseclass->length ());
2272 address = value_address (*arg1p);
2273
2274 if (target_read_memory (address + offset,
2275 tmp.data (), baseclass->length ()) != 0)
2276 error (_("virtual baseclass botch"));
2277
2278 base_val = value_from_contents_and_address (baseclass,
2279 tmp.data (),
2280 address + offset);
2281 base_valaddr = value_contents_for_printing (base_val).data ();
2282 this_offset = 0;
2283 }
2284 else
2285 {
2286 base_val = *arg1p;
2287 base_valaddr = value_contents_for_printing (*arg1p).data ();
2288 this_offset = offset;
2289 }
2290
2291 base_offset = baseclass_offset (type, i, base_valaddr,
2292 this_offset, value_address (base_val),
2293 base_val);
2294 }
2295 else
2296 {
2297 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2298 }
2299 v = search_struct_method (name, arg1p, args, base_offset + offset,
2300 static_memfuncp, TYPE_BASECLASS (type, i));
2301 if (v == (struct value *) - 1)
2302 {
2303 name_matched = 1;
2304 }
2305 else if (v)
2306 {
2307 /* FIXME-bothner: Why is this commented out? Why is it here? */
2308 /* *arg1p = arg1_tmp; */
2309 return v;
2310 }
2311 }
2312 if (name_matched)
2313 return (struct value *) - 1;
2314 else
2315 return NULL;
2316 }
2317
2318 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2319 extract the component named NAME from the ultimate target
2320 structure/union and return it as a value with its appropriate type.
2321 ERR is used in the error message if *ARGP's type is wrong.
2322
2323 C++: ARGS is a list of argument types to aid in the selection of
2324 an appropriate method. Also, handle derived types.
2325
2326 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2327 where the truthvalue of whether the function that was resolved was
2328 a static member function or not is stored.
2329
2330 ERR is an error message to be printed in case the field is not
2331 found. */
2332
2333 struct value *
2334 value_struct_elt (struct value **argp,
2335 gdb::optional<gdb::array_view<value *>> args,
2336 const char *name, int *static_memfuncp, const char *err)
2337 {
2338 struct type *t;
2339 struct value *v;
2340
2341 *argp = coerce_array (*argp);
2342
2343 t = check_typedef (value_type (*argp));
2344
2345 /* Follow pointers until we get to a non-pointer. */
2346
2347 while (t->is_pointer_or_reference ())
2348 {
2349 *argp = value_ind (*argp);
2350 /* Don't coerce fn pointer to fn and then back again! */
2351 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2352 *argp = coerce_array (*argp);
2353 t = check_typedef (value_type (*argp));
2354 }
2355
2356 if (t->code () != TYPE_CODE_STRUCT
2357 && t->code () != TYPE_CODE_UNION)
2358 error (_("Attempt to extract a component of a value that is not a %s."),
2359 err);
2360
2361 /* Assume it's not, unless we see that it is. */
2362 if (static_memfuncp)
2363 *static_memfuncp = 0;
2364
2365 if (!args.has_value ())
2366 {
2367 /* if there are no arguments ...do this... */
2368
2369 /* Try as a field first, because if we succeed, there is less
2370 work to be done. */
2371 v = search_struct_field (name, *argp, t, 0);
2372 if (v)
2373 return v;
2374
2375 if (current_language->la_language == language_fortran)
2376 {
2377 /* If it is not a field it is the type name of an inherited
2378 structure. */
2379 v = search_struct_field (name, *argp, t, 1);
2380 if (v)
2381 return v;
2382 }
2383
2384 /* C++: If it was not found as a data field, then try to
2385 return it as a pointer to a method. */
2386 v = search_struct_method (name, argp, args, 0,
2387 static_memfuncp, t);
2388
2389 if (v == (struct value *) - 1)
2390 error (_("Cannot take address of method %s."), name);
2391 else if (v == 0)
2392 {
2393 if (TYPE_NFN_FIELDS (t))
2394 error (_("There is no member or method named %s."), name);
2395 else
2396 error (_("There is no member named %s."), name);
2397 }
2398 return v;
2399 }
2400
2401 v = search_struct_method (name, argp, args, 0,
2402 static_memfuncp, t);
2403
2404 if (v == (struct value *) - 1)
2405 {
2406 error (_("One of the arguments you tried to pass to %s could not "
2407 "be converted to what the function wants."), name);
2408 }
2409 else if (v == 0)
2410 {
2411 /* See if user tried to invoke data as function. If so, hand it
2412 back. If it's not callable (i.e., a pointer to function),
2413 gdb should give an error. */
2414 v = search_struct_field (name, *argp, t, 0);
2415 /* If we found an ordinary field, then it is not a method call.
2416 So, treat it as if it were a static member function. */
2417 if (v && static_memfuncp)
2418 *static_memfuncp = 1;
2419 }
2420
2421 if (!v)
2422 throw_error (NOT_FOUND_ERROR,
2423 _("Structure has no component named %s."), name);
2424 return v;
2425 }
2426
2427 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2428 to a structure or union, extract and return its component (field) of
2429 type FTYPE at the specified BITPOS.
2430 Throw an exception on error. */
2431
2432 struct value *
2433 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2434 const char *err)
2435 {
2436 struct type *t;
2437 int i;
2438
2439 *argp = coerce_array (*argp);
2440
2441 t = check_typedef (value_type (*argp));
2442
2443 while (t->is_pointer_or_reference ())
2444 {
2445 *argp = value_ind (*argp);
2446 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2447 *argp = coerce_array (*argp);
2448 t = check_typedef (value_type (*argp));
2449 }
2450
2451 if (t->code () != TYPE_CODE_STRUCT
2452 && t->code () != TYPE_CODE_UNION)
2453 error (_("Attempt to extract a component of a value that is not a %s."),
2454 err);
2455
2456 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2457 {
2458 if (!field_is_static (&t->field (i))
2459 && bitpos == t->field (i).loc_bitpos ()
2460 && types_equal (ftype, t->field (i).type ()))
2461 return value_primitive_field (*argp, 0, i, t);
2462 }
2463
2464 error (_("No field with matching bitpos and type."));
2465
2466 /* Never hit. */
2467 return NULL;
2468 }
2469
2470 /* Search through the methods of an object (and its bases) to find a
2471 specified method. Return a reference to the fn_field list METHODS of
2472 overloaded instances defined in the source language. If available
2473 and matching, a vector of matching xmethods defined in extension
2474 languages are also returned in XMETHODS.
2475
2476 Helper function for value_find_oload_list.
2477 ARGP is a pointer to a pointer to a value (the object).
2478 METHOD is a string containing the method name.
2479 OFFSET is the offset within the value.
2480 TYPE is the assumed type of the object.
2481 METHODS is a pointer to the matching overloaded instances defined
2482 in the source language. Since this is a recursive function,
2483 *METHODS should be set to NULL when calling this function.
2484 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2485 0 when calling this function.
2486 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2487 should also be set to NULL when calling this function.
2488 BASETYPE is set to the actual type of the subobject where the
2489 method is found.
2490 BOFFSET is the offset of the base subobject where the method is found. */
2491
2492 static void
2493 find_method_list (struct value **argp, const char *method,
2494 LONGEST offset, struct type *type,
2495 gdb::array_view<fn_field> *methods,
2496 std::vector<xmethod_worker_up> *xmethods,
2497 struct type **basetype, LONGEST *boffset)
2498 {
2499 int i;
2500 struct fn_field *f = NULL;
2501
2502 gdb_assert (methods != NULL && xmethods != NULL);
2503 type = check_typedef (type);
2504
2505 /* First check in object itself.
2506 This function is called recursively to search through base classes.
2507 If there is a source method match found at some stage, then we need not
2508 look for source methods in consequent recursive calls. */
2509 if (methods->empty ())
2510 {
2511 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2512 {
2513 /* pai: FIXME What about operators and type conversions? */
2514 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2515
2516 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2517 {
2518 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2519 f = TYPE_FN_FIELDLIST1 (type, i);
2520 *methods = gdb::make_array_view (f, len);
2521
2522 *basetype = type;
2523 *boffset = offset;
2524
2525 /* Resolve any stub methods. */
2526 check_stub_method_group (type, i);
2527
2528 break;
2529 }
2530 }
2531 }
2532
2533 /* Unlike source methods, xmethods can be accumulated over successive
2534 recursive calls. In other words, an xmethod named 'm' in a class
2535 will not hide an xmethod named 'm' in its base class(es). We want
2536 it to be this way because xmethods are after all convenience functions
2537 and hence there is no point restricting them with something like method
2538 hiding. Moreover, if hiding is done for xmethods as well, then we will
2539 have to provide a mechanism to un-hide (like the 'using' construct). */
2540 get_matching_xmethod_workers (type, method, xmethods);
2541
2542 /* If source methods are not found in current class, look for them in the
2543 base classes. We also have to go through the base classes to gather
2544 extension methods. */
2545 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2546 {
2547 LONGEST base_offset;
2548
2549 if (BASETYPE_VIA_VIRTUAL (type, i))
2550 {
2551 base_offset = baseclass_offset (type, i,
2552 value_contents_for_printing (*argp).data (),
2553 value_offset (*argp) + offset,
2554 value_address (*argp), *argp);
2555 }
2556 else /* Non-virtual base, simply use bit position from debug
2557 info. */
2558 {
2559 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2560 }
2561
2562 find_method_list (argp, method, base_offset + offset,
2563 TYPE_BASECLASS (type, i), methods,
2564 xmethods, basetype, boffset);
2565 }
2566 }
2567
2568 /* Return the list of overloaded methods of a specified name. The methods
2569 could be those GDB finds in the binary, or xmethod. Methods found in
2570 the binary are returned in METHODS, and xmethods are returned in
2571 XMETHODS.
2572
2573 ARGP is a pointer to a pointer to a value (the object).
2574 METHOD is the method name.
2575 OFFSET is the offset within the value contents.
2576 METHODS is the list of matching overloaded instances defined in
2577 the source language.
2578 XMETHODS is the vector of matching xmethod workers defined in
2579 extension languages.
2580 BASETYPE is set to the type of the base subobject that defines the
2581 method.
2582 BOFFSET is the offset of the base subobject which defines the method. */
2583
2584 static void
2585 value_find_oload_method_list (struct value **argp, const char *method,
2586 LONGEST offset,
2587 gdb::array_view<fn_field> *methods,
2588 std::vector<xmethod_worker_up> *xmethods,
2589 struct type **basetype, LONGEST *boffset)
2590 {
2591 struct type *t;
2592
2593 t = check_typedef (value_type (*argp));
2594
2595 /* Code snarfed from value_struct_elt. */
2596 while (t->is_pointer_or_reference ())
2597 {
2598 *argp = value_ind (*argp);
2599 /* Don't coerce fn pointer to fn and then back again! */
2600 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2601 *argp = coerce_array (*argp);
2602 t = check_typedef (value_type (*argp));
2603 }
2604
2605 if (t->code () != TYPE_CODE_STRUCT
2606 && t->code () != TYPE_CODE_UNION)
2607 error (_("Attempt to extract a component of a "
2608 "value that is not a struct or union"));
2609
2610 gdb_assert (methods != NULL && xmethods != NULL);
2611
2612 /* Clear the lists. */
2613 *methods = {};
2614 xmethods->clear ();
2615
2616 find_method_list (argp, method, 0, t, methods, xmethods,
2617 basetype, boffset);
2618 }
2619
2620 /* Given an array of arguments (ARGS) (which includes an entry for
2621 "this" in the case of C++ methods), the NAME of a function, and
2622 whether it's a method or not (METHOD), find the best function that
2623 matches on the argument types according to the overload resolution
2624 rules.
2625
2626 METHOD can be one of three values:
2627 NON_METHOD for non-member functions.
2628 METHOD: for member functions.
2629 BOTH: used for overload resolution of operators where the
2630 candidates are expected to be either member or non member
2631 functions. In this case the first argument ARGTYPES
2632 (representing 'this') is expected to be a reference to the
2633 target object, and will be dereferenced when attempting the
2634 non-member search.
2635
2636 In the case of class methods, the parameter OBJ is an object value
2637 in which to search for overloaded methods.
2638
2639 In the case of non-method functions, the parameter FSYM is a symbol
2640 corresponding to one of the overloaded functions.
2641
2642 Return value is an integer: 0 -> good match, 10 -> debugger applied
2643 non-standard coercions, 100 -> incompatible.
2644
2645 If a method is being searched for, VALP will hold the value.
2646 If a non-method is being searched for, SYMP will hold the symbol
2647 for it.
2648
2649 If a method is being searched for, and it is a static method,
2650 then STATICP will point to a non-zero value.
2651
2652 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2653 ADL overload candidates when performing overload resolution for a fully
2654 qualified name.
2655
2656 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2657 read while picking the best overload match (it may be all zeroes and thus
2658 not have a vtable pointer), in which case skip virtual function lookup.
2659 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2660 the result type.
2661
2662 Note: This function does *not* check the value of
2663 overload_resolution. Caller must check it to see whether overload
2664 resolution is permitted. */
2665
2666 int
2667 find_overload_match (gdb::array_view<value *> args,
2668 const char *name, enum oload_search_type method,
2669 struct value **objp, struct symbol *fsym,
2670 struct value **valp, struct symbol **symp,
2671 int *staticp, const int no_adl,
2672 const enum noside noside)
2673 {
2674 struct value *obj = (objp ? *objp : NULL);
2675 struct type *obj_type = obj ? value_type (obj) : NULL;
2676 /* Index of best overloaded function. */
2677 int func_oload_champ = -1;
2678 int method_oload_champ = -1;
2679 int src_method_oload_champ = -1;
2680 int ext_method_oload_champ = -1;
2681
2682 /* The measure for the current best match. */
2683 badness_vector method_badness;
2684 badness_vector func_badness;
2685 badness_vector ext_method_badness;
2686 badness_vector src_method_badness;
2687
2688 struct value *temp = obj;
2689 /* For methods, the list of overloaded methods. */
2690 gdb::array_view<fn_field> methods;
2691 /* For non-methods, the list of overloaded function symbols. */
2692 std::vector<symbol *> functions;
2693 /* For xmethods, the vector of xmethod workers. */
2694 std::vector<xmethod_worker_up> xmethods;
2695 struct type *basetype = NULL;
2696 LONGEST boffset;
2697
2698 const char *obj_type_name = NULL;
2699 const char *func_name = NULL;
2700 gdb::unique_xmalloc_ptr<char> temp_func;
2701 enum oload_classification match_quality;
2702 enum oload_classification method_match_quality = INCOMPATIBLE;
2703 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2704 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2705 enum oload_classification func_match_quality = INCOMPATIBLE;
2706
2707 /* Get the list of overloaded methods or functions. */
2708 if (method == METHOD || method == BOTH)
2709 {
2710 gdb_assert (obj);
2711
2712 /* OBJ may be a pointer value rather than the object itself. */
2713 obj = coerce_ref (obj);
2714 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2715 obj = coerce_ref (value_ind (obj));
2716 obj_type_name = value_type (obj)->name ();
2717
2718 /* First check whether this is a data member, e.g. a pointer to
2719 a function. */
2720 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2721 {
2722 *valp = search_struct_field (name, obj,
2723 check_typedef (value_type (obj)), 0);
2724 if (*valp)
2725 {
2726 *staticp = 1;
2727 return 0;
2728 }
2729 }
2730
2731 /* Retrieve the list of methods with the name NAME. */
2732 value_find_oload_method_list (&temp, name, 0, &methods,
2733 &xmethods, &basetype, &boffset);
2734 /* If this is a method only search, and no methods were found
2735 the search has failed. */
2736 if (method == METHOD && methods.empty () && xmethods.empty ())
2737 error (_("Couldn't find method %s%s%s"),
2738 obj_type_name,
2739 (obj_type_name && *obj_type_name) ? "::" : "",
2740 name);
2741 /* If we are dealing with stub method types, they should have
2742 been resolved by find_method_list via
2743 value_find_oload_method_list above. */
2744 if (!methods.empty ())
2745 {
2746 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2747
2748 src_method_oload_champ
2749 = find_oload_champ (args,
2750 methods.size (),
2751 methods.data (), NULL, NULL,
2752 &src_method_badness);
2753
2754 src_method_match_quality = classify_oload_match
2755 (src_method_badness, args.size (),
2756 oload_method_static_p (methods.data (), src_method_oload_champ));
2757 }
2758
2759 if (!xmethods.empty ())
2760 {
2761 ext_method_oload_champ
2762 = find_oload_champ (args,
2763 xmethods.size (),
2764 NULL, xmethods.data (), NULL,
2765 &ext_method_badness);
2766 ext_method_match_quality = classify_oload_match (ext_method_badness,
2767 args.size (), 0);
2768 }
2769
2770 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2771 {
2772 switch (compare_badness (ext_method_badness, src_method_badness))
2773 {
2774 case 0: /* Src method and xmethod are equally good. */
2775 /* If src method and xmethod are equally good, then
2776 xmethod should be the winner. Hence, fall through to the
2777 case where a xmethod is better than the source
2778 method, except when the xmethod match quality is
2779 non-standard. */
2780 /* FALLTHROUGH */
2781 case 1: /* Src method and ext method are incompatible. */
2782 /* If ext method match is not standard, then let source method
2783 win. Otherwise, fallthrough to let xmethod win. */
2784 if (ext_method_match_quality != STANDARD)
2785 {
2786 method_oload_champ = src_method_oload_champ;
2787 method_badness = src_method_badness;
2788 ext_method_oload_champ = -1;
2789 method_match_quality = src_method_match_quality;
2790 break;
2791 }
2792 /* FALLTHROUGH */
2793 case 2: /* Ext method is champion. */
2794 method_oload_champ = ext_method_oload_champ;
2795 method_badness = ext_method_badness;
2796 src_method_oload_champ = -1;
2797 method_match_quality = ext_method_match_quality;
2798 break;
2799 case 3: /* Src method is champion. */
2800 method_oload_champ = src_method_oload_champ;
2801 method_badness = src_method_badness;
2802 ext_method_oload_champ = -1;
2803 method_match_quality = src_method_match_quality;
2804 break;
2805 default:
2806 gdb_assert_not_reached ("Unexpected overload comparison "
2807 "result");
2808 break;
2809 }
2810 }
2811 else if (src_method_oload_champ >= 0)
2812 {
2813 method_oload_champ = src_method_oload_champ;
2814 method_badness = src_method_badness;
2815 method_match_quality = src_method_match_quality;
2816 }
2817 else if (ext_method_oload_champ >= 0)
2818 {
2819 method_oload_champ = ext_method_oload_champ;
2820 method_badness = ext_method_badness;
2821 method_match_quality = ext_method_match_quality;
2822 }
2823 }
2824
2825 if (method == NON_METHOD || method == BOTH)
2826 {
2827 const char *qualified_name = NULL;
2828
2829 /* If the overload match is being search for both as a method
2830 and non member function, the first argument must now be
2831 dereferenced. */
2832 if (method == BOTH)
2833 args[0] = value_ind (args[0]);
2834
2835 if (fsym)
2836 {
2837 qualified_name = fsym->natural_name ();
2838
2839 /* If we have a function with a C++ name, try to extract just
2840 the function part. Do not try this for non-functions (e.g.
2841 function pointers). */
2842 if (qualified_name
2843 && (check_typedef (fsym->type ())->code ()
2844 == TYPE_CODE_FUNC))
2845 {
2846 temp_func = cp_func_name (qualified_name);
2847
2848 /* If cp_func_name did not remove anything, the name of the
2849 symbol did not include scope or argument types - it was
2850 probably a C-style function. */
2851 if (temp_func != nullptr)
2852 {
2853 if (strcmp (temp_func.get (), qualified_name) == 0)
2854 func_name = NULL;
2855 else
2856 func_name = temp_func.get ();
2857 }
2858 }
2859 }
2860 else
2861 {
2862 func_name = name;
2863 qualified_name = name;
2864 }
2865
2866 /* If there was no C++ name, this must be a C-style function or
2867 not a function at all. Just return the same symbol. Do the
2868 same if cp_func_name fails for some reason. */
2869 if (func_name == NULL)
2870 {
2871 *symp = fsym;
2872 return 0;
2873 }
2874
2875 func_oload_champ = find_oload_champ_namespace (args,
2876 func_name,
2877 qualified_name,
2878 &functions,
2879 &func_badness,
2880 no_adl);
2881
2882 if (func_oload_champ >= 0)
2883 func_match_quality = classify_oload_match (func_badness,
2884 args.size (), 0);
2885 }
2886
2887 /* Did we find a match ? */
2888 if (method_oload_champ == -1 && func_oload_champ == -1)
2889 throw_error (NOT_FOUND_ERROR,
2890 _("No symbol \"%s\" in current context."),
2891 name);
2892
2893 /* If we have found both a method match and a function
2894 match, find out which one is better, and calculate match
2895 quality. */
2896 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2897 {
2898 switch (compare_badness (func_badness, method_badness))
2899 {
2900 case 0: /* Top two contenders are equally good. */
2901 /* FIXME: GDB does not support the general ambiguous case.
2902 All candidates should be collected and presented the
2903 user. */
2904 error (_("Ambiguous overload resolution"));
2905 break;
2906 case 1: /* Incomparable top contenders. */
2907 /* This is an error incompatible candidates
2908 should not have been proposed. */
2909 error (_("Internal error: incompatible "
2910 "overload candidates proposed"));
2911 break;
2912 case 2: /* Function champion. */
2913 method_oload_champ = -1;
2914 match_quality = func_match_quality;
2915 break;
2916 case 3: /* Method champion. */
2917 func_oload_champ = -1;
2918 match_quality = method_match_quality;
2919 break;
2920 default:
2921 error (_("Internal error: unexpected overload comparison result"));
2922 break;
2923 }
2924 }
2925 else
2926 {
2927 /* We have either a method match or a function match. */
2928 if (method_oload_champ >= 0)
2929 match_quality = method_match_quality;
2930 else
2931 match_quality = func_match_quality;
2932 }
2933
2934 if (match_quality == INCOMPATIBLE)
2935 {
2936 if (method == METHOD)
2937 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2938 obj_type_name,
2939 (obj_type_name && *obj_type_name) ? "::" : "",
2940 name);
2941 else
2942 error (_("Cannot resolve function %s to any overloaded instance"),
2943 func_name);
2944 }
2945 else if (match_quality == NON_STANDARD)
2946 {
2947 if (method == METHOD)
2948 warning (_("Using non-standard conversion to match "
2949 "method %s%s%s to supplied arguments"),
2950 obj_type_name,
2951 (obj_type_name && *obj_type_name) ? "::" : "",
2952 name);
2953 else
2954 warning (_("Using non-standard conversion to match "
2955 "function %s to supplied arguments"),
2956 func_name);
2957 }
2958
2959 if (staticp != NULL)
2960 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2961
2962 if (method_oload_champ >= 0)
2963 {
2964 if (src_method_oload_champ >= 0)
2965 {
2966 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2967 && noside != EVAL_AVOID_SIDE_EFFECTS)
2968 {
2969 *valp = value_virtual_fn_field (&temp, methods.data (),
2970 method_oload_champ, basetype,
2971 boffset);
2972 }
2973 else
2974 *valp = value_fn_field (&temp, methods.data (),
2975 method_oload_champ, basetype, boffset);
2976 }
2977 else
2978 *valp = value_from_xmethod
2979 (std::move (xmethods[ext_method_oload_champ]));
2980 }
2981 else
2982 *symp = functions[func_oload_champ];
2983
2984 if (objp)
2985 {
2986 struct type *temp_type = check_typedef (value_type (temp));
2987 struct type *objtype = check_typedef (obj_type);
2988
2989 if (temp_type->code () != TYPE_CODE_PTR
2990 && objtype->is_pointer_or_reference ())
2991 {
2992 temp = value_addr (temp);
2993 }
2994 *objp = temp;
2995 }
2996
2997 switch (match_quality)
2998 {
2999 case INCOMPATIBLE:
3000 return 100;
3001 case NON_STANDARD:
3002 return 10;
3003 default: /* STANDARD */
3004 return 0;
3005 }
3006 }
3007
3008 /* Find the best overload match, searching for FUNC_NAME in namespaces
3009 contained in QUALIFIED_NAME until it either finds a good match or
3010 runs out of namespaces. It stores the overloaded functions in
3011 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
3012 argument dependent lookup is not performed. */
3013
3014 static int
3015 find_oload_champ_namespace (gdb::array_view<value *> args,
3016 const char *func_name,
3017 const char *qualified_name,
3018 std::vector<symbol *> *oload_syms,
3019 badness_vector *oload_champ_bv,
3020 const int no_adl)
3021 {
3022 int oload_champ;
3023
3024 find_oload_champ_namespace_loop (args,
3025 func_name,
3026 qualified_name, 0,
3027 oload_syms, oload_champ_bv,
3028 &oload_champ,
3029 no_adl);
3030
3031 return oload_champ;
3032 }
3033
3034 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
3035 how deep we've looked for namespaces, and the champ is stored in
3036 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
3037 if it isn't. Other arguments are the same as in
3038 find_oload_champ_namespace. */
3039
3040 static int
3041 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
3042 const char *func_name,
3043 const char *qualified_name,
3044 int namespace_len,
3045 std::vector<symbol *> *oload_syms,
3046 badness_vector *oload_champ_bv,
3047 int *oload_champ,
3048 const int no_adl)
3049 {
3050 int next_namespace_len = namespace_len;
3051 int searched_deeper = 0;
3052 int new_oload_champ;
3053 char *new_namespace;
3054
3055 if (next_namespace_len != 0)
3056 {
3057 gdb_assert (qualified_name[next_namespace_len] == ':');
3058 next_namespace_len += 2;
3059 }
3060 next_namespace_len +=
3061 cp_find_first_component (qualified_name + next_namespace_len);
3062
3063 /* First, see if we have a deeper namespace we can search in.
3064 If we get a good match there, use it. */
3065
3066 if (qualified_name[next_namespace_len] == ':')
3067 {
3068 searched_deeper = 1;
3069
3070 if (find_oload_champ_namespace_loop (args,
3071 func_name, qualified_name,
3072 next_namespace_len,
3073 oload_syms, oload_champ_bv,
3074 oload_champ, no_adl))
3075 {
3076 return 1;
3077 }
3078 };
3079
3080 /* If we reach here, either we're in the deepest namespace or we
3081 didn't find a good match in a deeper namespace. But, in the
3082 latter case, we still have a bad match in a deeper namespace;
3083 note that we might not find any match at all in the current
3084 namespace. (There's always a match in the deepest namespace,
3085 because this overload mechanism only gets called if there's a
3086 function symbol to start off with.) */
3087
3088 new_namespace = (char *) alloca (namespace_len + 1);
3089 strncpy (new_namespace, qualified_name, namespace_len);
3090 new_namespace[namespace_len] = '\0';
3091
3092 std::vector<symbol *> new_oload_syms
3093 = make_symbol_overload_list (func_name, new_namespace);
3094
3095 /* If we have reached the deepest level perform argument
3096 determined lookup. */
3097 if (!searched_deeper && !no_adl)
3098 {
3099 int ix;
3100 struct type **arg_types;
3101
3102 /* Prepare list of argument types for overload resolution. */
3103 arg_types = (struct type **)
3104 alloca (args.size () * (sizeof (struct type *)));
3105 for (ix = 0; ix < args.size (); ix++)
3106 arg_types[ix] = value_type (args[ix]);
3107 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
3108 &new_oload_syms);
3109 }
3110
3111 badness_vector new_oload_champ_bv;
3112 new_oload_champ = find_oload_champ (args,
3113 new_oload_syms.size (),
3114 NULL, NULL, new_oload_syms.data (),
3115 &new_oload_champ_bv);
3116
3117 /* Case 1: We found a good match. Free earlier matches (if any),
3118 and return it. Case 2: We didn't find a good match, but we're
3119 not the deepest function. Then go with the bad match that the
3120 deeper function found. Case 3: We found a bad match, and we're
3121 the deepest function. Then return what we found, even though
3122 it's a bad match. */
3123
3124 if (new_oload_champ != -1
3125 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
3126 {
3127 *oload_syms = std::move (new_oload_syms);
3128 *oload_champ = new_oload_champ;
3129 *oload_champ_bv = std::move (new_oload_champ_bv);
3130 return 1;
3131 }
3132 else if (searched_deeper)
3133 {
3134 return 0;
3135 }
3136 else
3137 {
3138 *oload_syms = std::move (new_oload_syms);
3139 *oload_champ = new_oload_champ;
3140 *oload_champ_bv = std::move (new_oload_champ_bv);
3141 return 0;
3142 }
3143 }
3144
3145 /* Look for a function to take ARGS. Find the best match from among
3146 the overloaded methods or functions given by METHODS or FUNCTIONS
3147 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
3148 and XMETHODS can be non-NULL.
3149
3150 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
3151 or XMETHODS, whichever is non-NULL.
3152
3153 Return the index of the best match; store an indication of the
3154 quality of the match in OLOAD_CHAMP_BV. */
3155
3156 static int
3157 find_oload_champ (gdb::array_view<value *> args,
3158 size_t num_fns,
3159 fn_field *methods,
3160 xmethod_worker_up *xmethods,
3161 symbol **functions,
3162 badness_vector *oload_champ_bv)
3163 {
3164 /* A measure of how good an overloaded instance is. */
3165 badness_vector bv;
3166 /* Index of best overloaded function. */
3167 int oload_champ = -1;
3168 /* Current ambiguity state for overload resolution. */
3169 int oload_ambiguous = 0;
3170 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3171
3172 /* A champion can be found among methods alone, or among functions
3173 alone, or in xmethods alone, but not in more than one of these
3174 groups. */
3175 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3176 == 1);
3177
3178 /* Consider each candidate in turn. */
3179 for (size_t ix = 0; ix < num_fns; ix++)
3180 {
3181 int jj;
3182 int static_offset = 0;
3183 std::vector<type *> parm_types;
3184
3185 if (xmethods != NULL)
3186 parm_types = xmethods[ix]->get_arg_types ();
3187 else
3188 {
3189 size_t nparms;
3190
3191 if (methods != NULL)
3192 {
3193 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
3194 static_offset = oload_method_static_p (methods, ix);
3195 }
3196 else
3197 nparms = functions[ix]->type ()->num_fields ();
3198
3199 parm_types.reserve (nparms);
3200 for (jj = 0; jj < nparms; jj++)
3201 {
3202 type *t = (methods != NULL
3203 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
3204 : functions[ix]->type ()->field (jj).type ());
3205 parm_types.push_back (t);
3206 }
3207 }
3208
3209 /* Compare parameter types to supplied argument types. Skip
3210 THIS for static methods. */
3211 bv = rank_function (parm_types,
3212 args.slice (static_offset));
3213
3214 if (overload_debug)
3215 {
3216 if (methods != NULL)
3217 gdb_printf (gdb_stderr,
3218 "Overloaded method instance %s, # of parms %d\n",
3219 methods[ix].physname, (int) parm_types.size ());
3220 else if (xmethods != NULL)
3221 gdb_printf (gdb_stderr,
3222 "Xmethod worker, # of parms %d\n",
3223 (int) parm_types.size ());
3224 else
3225 gdb_printf (gdb_stderr,
3226 "Overloaded function instance "
3227 "%s # of parms %d\n",
3228 functions[ix]->demangled_name (),
3229 (int) parm_types.size ());
3230
3231 gdb_printf (gdb_stderr,
3232 "...Badness of length : {%d, %d}\n",
3233 bv[0].rank, bv[0].subrank);
3234
3235 for (jj = 1; jj < bv.size (); jj++)
3236 gdb_printf (gdb_stderr,
3237 "...Badness of arg %d : {%d, %d}\n",
3238 jj, bv[jj].rank, bv[jj].subrank);
3239 }
3240
3241 if (oload_champ_bv->empty ())
3242 {
3243 *oload_champ_bv = std::move (bv);
3244 oload_champ = 0;
3245 }
3246 else /* See whether current candidate is better or worse than
3247 previous best. */
3248 switch (compare_badness (bv, *oload_champ_bv))
3249 {
3250 case 0: /* Top two contenders are equally good. */
3251 oload_ambiguous = 1;
3252 break;
3253 case 1: /* Incomparable top contenders. */
3254 oload_ambiguous = 2;
3255 break;
3256 case 2: /* New champion, record details. */
3257 *oload_champ_bv = std::move (bv);
3258 oload_ambiguous = 0;
3259 oload_champ = ix;
3260 break;
3261 case 3:
3262 default:
3263 break;
3264 }
3265 if (overload_debug)
3266 gdb_printf (gdb_stderr, "Overload resolution "
3267 "champion is %d, ambiguous? %d\n",
3268 oload_champ, oload_ambiguous);
3269 }
3270
3271 return oload_champ;
3272 }
3273
3274 /* Return 1 if we're looking at a static method, 0 if we're looking at
3275 a non-static method or a function that isn't a method. */
3276
3277 static int
3278 oload_method_static_p (struct fn_field *fns_ptr, int index)
3279 {
3280 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3281 return 1;
3282 else
3283 return 0;
3284 }
3285
3286 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3287
3288 static enum oload_classification
3289 classify_oload_match (const badness_vector &oload_champ_bv,
3290 int nargs,
3291 int static_offset)
3292 {
3293 int ix;
3294 enum oload_classification worst = STANDARD;
3295
3296 for (ix = 1; ix <= nargs - static_offset; ix++)
3297 {
3298 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3299 or worse return INCOMPATIBLE. */
3300 if (compare_ranks (oload_champ_bv[ix],
3301 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3302 return INCOMPATIBLE; /* Truly mismatched types. */
3303 /* Otherwise If this conversion is as bad as
3304 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3305 else if (compare_ranks (oload_champ_bv[ix],
3306 NS_POINTER_CONVERSION_BADNESS) <= 0)
3307 worst = NON_STANDARD; /* Non-standard type conversions
3308 needed. */
3309 }
3310
3311 /* If no INCOMPATIBLE classification was found, return the worst one
3312 that was found (if any). */
3313 return worst;
3314 }
3315
3316 /* C++: return 1 is NAME is a legitimate name for the destructor of
3317 type TYPE. If TYPE does not have a destructor, or if NAME is
3318 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3319 have CHECK_TYPEDEF applied, this function will apply it itself. */
3320
3321 int
3322 destructor_name_p (const char *name, struct type *type)
3323 {
3324 if (name[0] == '~')
3325 {
3326 const char *dname = type_name_or_error (type);
3327 const char *cp = strchr (dname, '<');
3328 unsigned int len;
3329
3330 /* Do not compare the template part for template classes. */
3331 if (cp == NULL)
3332 len = strlen (dname);
3333 else
3334 len = cp - dname;
3335 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3336 error (_("name of destructor must equal name of class"));
3337 else
3338 return 1;
3339 }
3340 return 0;
3341 }
3342
3343 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3344 class". If the name is found, return a value representing it;
3345 otherwise throw an exception. */
3346
3347 static struct value *
3348 enum_constant_from_type (struct type *type, const char *name)
3349 {
3350 int i;
3351 int name_len = strlen (name);
3352
3353 gdb_assert (type->code () == TYPE_CODE_ENUM
3354 && type->is_declared_class ());
3355
3356 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3357 {
3358 const char *fname = type->field (i).name ();
3359 int len;
3360
3361 if (type->field (i).loc_kind () != FIELD_LOC_KIND_ENUMVAL
3362 || fname == NULL)
3363 continue;
3364
3365 /* Look for the trailing "::NAME", since enum class constant
3366 names are qualified here. */
3367 len = strlen (fname);
3368 if (len + 2 >= name_len
3369 && fname[len - name_len - 2] == ':'
3370 && fname[len - name_len - 1] == ':'
3371 && strcmp (&fname[len - name_len], name) == 0)
3372 return value_from_longest (type, type->field (i).loc_enumval ());
3373 }
3374
3375 error (_("no constant named \"%s\" in enum \"%s\""),
3376 name, type->name ());
3377 }
3378
3379 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3380 return the appropriate member (or the address of the member, if
3381 WANT_ADDRESS). This function is used to resolve user expressions
3382 of the form "DOMAIN::NAME". For more details on what happens, see
3383 the comment before value_struct_elt_for_reference. */
3384
3385 struct value *
3386 value_aggregate_elt (struct type *curtype, const char *name,
3387 struct type *expect_type, int want_address,
3388 enum noside noside)
3389 {
3390 switch (curtype->code ())
3391 {
3392 case TYPE_CODE_STRUCT:
3393 case TYPE_CODE_UNION:
3394 return value_struct_elt_for_reference (curtype, 0, curtype,
3395 name, expect_type,
3396 want_address, noside);
3397 case TYPE_CODE_NAMESPACE:
3398 return value_namespace_elt (curtype, name,
3399 want_address, noside);
3400
3401 case TYPE_CODE_ENUM:
3402 return enum_constant_from_type (curtype, name);
3403
3404 default:
3405 internal_error (_("non-aggregate type in value_aggregate_elt"));
3406 }
3407 }
3408
3409 /* Compares the two method/function types T1 and T2 for "equality"
3410 with respect to the methods' parameters. If the types of the
3411 two parameter lists are the same, returns 1; 0 otherwise. This
3412 comparison may ignore any artificial parameters in T1 if
3413 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3414 the first artificial parameter in T1, assumed to be a 'this' pointer.
3415
3416 The type T2 is expected to have come from make_params (in eval.c). */
3417
3418 static int
3419 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3420 {
3421 int start = 0;
3422
3423 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3424 ++start;
3425
3426 /* If skipping artificial fields, find the first real field
3427 in T1. */
3428 if (skip_artificial)
3429 {
3430 while (start < t1->num_fields ()
3431 && TYPE_FIELD_ARTIFICIAL (t1, start))
3432 ++start;
3433 }
3434
3435 /* Now compare parameters. */
3436
3437 /* Special case: a method taking void. T1 will contain no
3438 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3439 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3440 && t2->field (0).type ()->code () == TYPE_CODE_VOID)
3441 return 1;
3442
3443 if ((t1->num_fields () - start) == t2->num_fields ())
3444 {
3445 int i;
3446
3447 for (i = 0; i < t2->num_fields (); ++i)
3448 {
3449 if (compare_ranks (rank_one_type (t1->field (start + i).type (),
3450 t2->field (i).type (), NULL),
3451 EXACT_MATCH_BADNESS) != 0)
3452 return 0;
3453 }
3454
3455 return 1;
3456 }
3457
3458 return 0;
3459 }
3460
3461 /* C++: Given an aggregate type VT, and a class type CLS, search
3462 recursively for CLS using value V; If found, store the offset
3463 which is either fetched from the virtual base pointer if CLS
3464 is virtual or accumulated offset of its parent classes if
3465 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3466 is virtual, and return true. If not found, return false. */
3467
3468 static bool
3469 get_baseclass_offset (struct type *vt, struct type *cls,
3470 struct value *v, int *boffs, bool *isvirt)
3471 {
3472 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3473 {
3474 struct type *t = vt->field (i).type ();
3475 if (types_equal (t, cls))
3476 {
3477 if (BASETYPE_VIA_VIRTUAL (vt, i))
3478 {
3479 const gdb_byte *adr = value_contents_for_printing (v).data ();
3480 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3481 value_as_long (v), v);
3482 *isvirt = true;
3483 }
3484 else
3485 *isvirt = false;
3486 return true;
3487 }
3488
3489 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3490 {
3491 if (*isvirt == false) /* Add non-virtual base offset. */
3492 {
3493 const gdb_byte *adr = value_contents_for_printing (v).data ();
3494 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3495 value_as_long (v), v);
3496 }
3497 return true;
3498 }
3499 }
3500
3501 return false;
3502 }
3503
3504 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3505 return the address of this member as a "pointer to member" type.
3506 If INTYPE is non-null, then it will be the type of the member we
3507 are looking for. This will help us resolve "pointers to member
3508 functions". This function is used to resolve user expressions of
3509 the form "DOMAIN::NAME". */
3510
3511 static struct value *
3512 value_struct_elt_for_reference (struct type *domain, int offset,
3513 struct type *curtype, const char *name,
3514 struct type *intype,
3515 int want_address,
3516 enum noside noside)
3517 {
3518 struct type *t = check_typedef (curtype);
3519 int i;
3520 struct value *result;
3521
3522 if (t->code () != TYPE_CODE_STRUCT
3523 && t->code () != TYPE_CODE_UNION)
3524 error (_("Internal error: non-aggregate type "
3525 "to value_struct_elt_for_reference"));
3526
3527 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3528 {
3529 const char *t_field_name = t->field (i).name ();
3530
3531 if (t_field_name && strcmp (t_field_name, name) == 0)
3532 {
3533 if (field_is_static (&t->field (i)))
3534 {
3535 struct value *v = value_static_field (t, i);
3536 if (want_address)
3537 v = value_addr (v);
3538 return v;
3539 }
3540 if (TYPE_FIELD_PACKED (t, i))
3541 error (_("pointers to bitfield members not allowed"));
3542
3543 if (want_address)
3544 return value_from_longest
3545 (lookup_memberptr_type (t->field (i).type (), domain),
3546 offset + (LONGEST) (t->field (i).loc_bitpos () >> 3));
3547 else if (noside != EVAL_NORMAL)
3548 return allocate_value (t->field (i).type ());
3549 else
3550 {
3551 /* Try to evaluate NAME as a qualified name with implicit
3552 this pointer. In this case, attempt to return the
3553 equivalent to `this->*(&TYPE::NAME)'. */
3554 struct value *v = value_of_this_silent (current_language);
3555 if (v != NULL)
3556 {
3557 struct value *ptr, *this_v = v;
3558 long mem_offset;
3559 struct type *type, *tmp;
3560
3561 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3562 type = check_typedef (value_type (ptr));
3563 gdb_assert (type != NULL
3564 && type->code () == TYPE_CODE_MEMBERPTR);
3565 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3566 v = value_cast_pointers (tmp, v, 1);
3567 mem_offset = value_as_long (ptr);
3568 if (domain != curtype)
3569 {
3570 /* Find class offset of type CURTYPE from either its
3571 parent type DOMAIN or the type of implied this. */
3572 int boff = 0;
3573 bool isvirt = false;
3574 if (get_baseclass_offset (domain, curtype, v, &boff,
3575 &isvirt))
3576 mem_offset += boff;
3577 else
3578 {
3579 struct type *p = check_typedef (value_type (this_v));
3580 p = check_typedef (p->target_type ());
3581 if (get_baseclass_offset (p, curtype, this_v,
3582 &boff, &isvirt))
3583 mem_offset += boff;
3584 }
3585 }
3586 tmp = lookup_pointer_type (type->target_type ());
3587 result = value_from_pointer (tmp,
3588 value_as_long (v) + mem_offset);
3589 return value_ind (result);
3590 }
3591
3592 error (_("Cannot reference non-static field \"%s\""), name);
3593 }
3594 }
3595 }
3596
3597 /* C++: If it was not found as a data field, then try to return it
3598 as a pointer to a method. */
3599
3600 /* Perform all necessary dereferencing. */
3601 while (intype && intype->code () == TYPE_CODE_PTR)
3602 intype = intype->target_type ();
3603
3604 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3605 {
3606 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3607
3608 if (t_field_name && strcmp (t_field_name, name) == 0)
3609 {
3610 int j;
3611 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3612 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3613
3614 check_stub_method_group (t, i);
3615
3616 if (intype)
3617 {
3618 for (j = 0; j < len; ++j)
3619 {
3620 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3621 continue;
3622 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3623 continue;
3624
3625 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3626 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3627 intype, 1))
3628 break;
3629 }
3630
3631 if (j == len)
3632 error (_("no member function matches "
3633 "that type instantiation"));
3634 }
3635 else
3636 {
3637 int ii;
3638
3639 j = -1;
3640 for (ii = 0; ii < len; ++ii)
3641 {
3642 /* Skip artificial methods. This is necessary if,
3643 for example, the user wants to "print
3644 subclass::subclass" with only one user-defined
3645 constructor. There is no ambiguity in this case.
3646 We are careful here to allow artificial methods
3647 if they are the unique result. */
3648 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3649 {
3650 if (j == -1)
3651 j = ii;
3652 continue;
3653 }
3654
3655 /* Desired method is ambiguous if more than one
3656 method is defined. */
3657 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3658 error (_("non-unique member `%s' requires "
3659 "type instantiation"), name);
3660
3661 j = ii;
3662 }
3663
3664 if (j == -1)
3665 error (_("no matching member function"));
3666 }
3667
3668 if (TYPE_FN_FIELD_STATIC_P (f, j))
3669 {
3670 struct symbol *s =
3671 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3672 0, VAR_DOMAIN, 0).symbol;
3673
3674 if (s == NULL)
3675 return NULL;
3676
3677 if (want_address)
3678 return value_addr (read_var_value (s, 0, 0));
3679 else
3680 return read_var_value (s, 0, 0);
3681 }
3682
3683 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3684 {
3685 if (want_address)
3686 {
3687 result = allocate_value
3688 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3689 cplus_make_method_ptr (value_type (result),
3690 value_contents_writeable (result).data (),
3691 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3692 }
3693 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3694 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3695 else
3696 error (_("Cannot reference virtual member function \"%s\""),
3697 name);
3698 }
3699 else
3700 {
3701 struct symbol *s =
3702 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3703 0, VAR_DOMAIN, 0).symbol;
3704
3705 if (s == NULL)
3706 return NULL;
3707
3708 struct value *v = read_var_value (s, 0, 0);
3709 if (!want_address)
3710 result = v;
3711 else
3712 {
3713 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3714 cplus_make_method_ptr (value_type (result),
3715 value_contents_writeable (result).data (),
3716 value_address (v), 0);
3717 }
3718 }
3719 return result;
3720 }
3721 }
3722 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3723 {
3724 struct value *v;
3725 int base_offset;
3726
3727 if (BASETYPE_VIA_VIRTUAL (t, i))
3728 base_offset = 0;
3729 else
3730 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3731 v = value_struct_elt_for_reference (domain,
3732 offset + base_offset,
3733 TYPE_BASECLASS (t, i),
3734 name, intype,
3735 want_address, noside);
3736 if (v)
3737 return v;
3738 }
3739
3740 /* As a last chance, pretend that CURTYPE is a namespace, and look
3741 it up that way; this (frequently) works for types nested inside
3742 classes. */
3743
3744 return value_maybe_namespace_elt (curtype, name,
3745 want_address, noside);
3746 }
3747
3748 /* C++: Return the member NAME of the namespace given by the type
3749 CURTYPE. */
3750
3751 static struct value *
3752 value_namespace_elt (const struct type *curtype,
3753 const char *name, int want_address,
3754 enum noside noside)
3755 {
3756 struct value *retval = value_maybe_namespace_elt (curtype, name,
3757 want_address,
3758 noside);
3759
3760 if (retval == NULL)
3761 error (_("No symbol \"%s\" in namespace \"%s\"."),
3762 name, curtype->name ());
3763
3764 return retval;
3765 }
3766
3767 /* A helper function used by value_namespace_elt and
3768 value_struct_elt_for_reference. It looks up NAME inside the
3769 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3770 is a class and NAME refers to a type in CURTYPE itself (as opposed
3771 to, say, some base class of CURTYPE). */
3772
3773 static struct value *
3774 value_maybe_namespace_elt (const struct type *curtype,
3775 const char *name, int want_address,
3776 enum noside noside)
3777 {
3778 const char *namespace_name = curtype->name ();
3779 struct block_symbol sym;
3780 struct value *result;
3781
3782 sym = cp_lookup_symbol_namespace (namespace_name, name,
3783 get_selected_block (0), VAR_DOMAIN);
3784
3785 if (sym.symbol == NULL)
3786 return NULL;
3787 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3788 && (sym.symbol->aclass () == LOC_TYPEDEF))
3789 result = allocate_value (sym.symbol->type ());
3790 else
3791 result = value_of_variable (sym.symbol, sym.block);
3792
3793 if (want_address)
3794 result = value_addr (result);
3795
3796 return result;
3797 }
3798
3799 /* Given a pointer or a reference value V, find its real (RTTI) type.
3800
3801 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3802 and refer to the values computed for the object pointed to. */
3803
3804 struct type *
3805 value_rtti_indirect_type (struct value *v, int *full,
3806 LONGEST *top, int *using_enc)
3807 {
3808 struct value *target = NULL;
3809 struct type *type, *real_type, *target_type;
3810
3811 type = value_type (v);
3812 type = check_typedef (type);
3813 if (TYPE_IS_REFERENCE (type))
3814 target = coerce_ref (v);
3815 else if (type->code () == TYPE_CODE_PTR)
3816 {
3817
3818 try
3819 {
3820 target = value_ind (v);
3821 }
3822 catch (const gdb_exception_error &except)
3823 {
3824 if (except.error == MEMORY_ERROR)
3825 {
3826 /* value_ind threw a memory error. The pointer is NULL or
3827 contains an uninitialized value: we can't determine any
3828 type. */
3829 return NULL;
3830 }
3831 throw;
3832 }
3833 }
3834 else
3835 return NULL;
3836
3837 real_type = value_rtti_type (target, full, top, using_enc);
3838
3839 if (real_type)
3840 {
3841 /* Copy qualifiers to the referenced object. */
3842 target_type = value_type (target);
3843 real_type = make_cv_type (TYPE_CONST (target_type),
3844 TYPE_VOLATILE (target_type), real_type, NULL);
3845 if (TYPE_IS_REFERENCE (type))
3846 real_type = lookup_reference_type (real_type, type->code ());
3847 else if (type->code () == TYPE_CODE_PTR)
3848 real_type = lookup_pointer_type (real_type);
3849 else
3850 internal_error (_("Unexpected value type."));
3851
3852 /* Copy qualifiers to the pointer/reference. */
3853 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3854 real_type, NULL);
3855 }
3856
3857 return real_type;
3858 }
3859
3860 /* Given a value pointed to by ARGP, check its real run-time type, and
3861 if that is different from the enclosing type, create a new value
3862 using the real run-time type as the enclosing type (and of the same
3863 type as ARGP) and return it, with the embedded offset adjusted to
3864 be the correct offset to the enclosed object. RTYPE is the type,
3865 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3866 by value_rtti_type(). If these are available, they can be supplied
3867 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3868 NULL if they're not available. */
3869
3870 struct value *
3871 value_full_object (struct value *argp,
3872 struct type *rtype,
3873 int xfull, int xtop,
3874 int xusing_enc)
3875 {
3876 struct type *real_type;
3877 int full = 0;
3878 LONGEST top = -1;
3879 int using_enc = 0;
3880 struct value *new_val;
3881
3882 if (rtype)
3883 {
3884 real_type = rtype;
3885 full = xfull;
3886 top = xtop;
3887 using_enc = xusing_enc;
3888 }
3889 else
3890 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3891
3892 /* If no RTTI data, or if object is already complete, do nothing. */
3893 if (!real_type || real_type == value_enclosing_type (argp))
3894 return argp;
3895
3896 /* In a destructor we might see a real type that is a superclass of
3897 the object's type. In this case it is better to leave the object
3898 as-is. */
3899 if (full
3900 && real_type->length () < value_enclosing_type (argp)->length ())
3901 return argp;
3902
3903 /* If we have the full object, but for some reason the enclosing
3904 type is wrong, set it. */
3905 /* pai: FIXME -- sounds iffy */
3906 if (full)
3907 {
3908 argp = value_copy (argp);
3909 set_value_enclosing_type (argp, real_type);
3910 return argp;
3911 }
3912
3913 /* Check if object is in memory. */
3914 if (VALUE_LVAL (argp) != lval_memory)
3915 {
3916 warning (_("Couldn't retrieve complete object of RTTI "
3917 "type %s; object may be in register(s)."),
3918 real_type->name ());
3919
3920 return argp;
3921 }
3922
3923 /* All other cases -- retrieve the complete object. */
3924 /* Go back by the computed top_offset from the beginning of the
3925 object, adjusting for the embedded offset of argp if that's what
3926 value_rtti_type used for its computation. */
3927 new_val = value_at_lazy (real_type, value_address (argp) - top +
3928 (using_enc ? 0 : value_embedded_offset (argp)));
3929 deprecated_set_value_type (new_val, value_type (argp));
3930 set_value_embedded_offset (new_val, (using_enc
3931 ? top + value_embedded_offset (argp)
3932 : top));
3933 return new_val;
3934 }
3935
3936
3937 /* Return the value of the local variable, if one exists. Throw error
3938 otherwise, such as if the request is made in an inappropriate context. */
3939
3940 struct value *
3941 value_of_this (const struct language_defn *lang)
3942 {
3943 struct block_symbol sym;
3944 const struct block *b;
3945 frame_info_ptr frame;
3946
3947 if (lang->name_of_this () == NULL)
3948 error (_("no `this' in current language"));
3949
3950 frame = get_selected_frame (_("no frame selected"));
3951
3952 b = get_frame_block (frame, NULL);
3953
3954 sym = lookup_language_this (lang, b);
3955 if (sym.symbol == NULL)
3956 error (_("current stack frame does not contain a variable named `%s'"),
3957 lang->name_of_this ());
3958
3959 return read_var_value (sym.symbol, sym.block, frame);
3960 }
3961
3962 /* Return the value of the local variable, if one exists. Return NULL
3963 otherwise. Never throw error. */
3964
3965 struct value *
3966 value_of_this_silent (const struct language_defn *lang)
3967 {
3968 struct value *ret = NULL;
3969
3970 try
3971 {
3972 ret = value_of_this (lang);
3973 }
3974 catch (const gdb_exception_error &except)
3975 {
3976 }
3977
3978 return ret;
3979 }
3980
3981 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3982 elements long, starting at LOWBOUND. The result has the same lower
3983 bound as the original ARRAY. */
3984
3985 struct value *
3986 value_slice (struct value *array, int lowbound, int length)
3987 {
3988 struct type *slice_range_type, *slice_type, *range_type;
3989 LONGEST lowerbound, upperbound;
3990 struct value *slice;
3991 struct type *array_type;
3992
3993 array_type = check_typedef (value_type (array));
3994 if (array_type->code () != TYPE_CODE_ARRAY
3995 && array_type->code () != TYPE_CODE_STRING)
3996 error (_("cannot take slice of non-array"));
3997
3998 if (type_not_allocated (array_type))
3999 error (_("array not allocated"));
4000 if (type_not_associated (array_type))
4001 error (_("array not associated"));
4002
4003 range_type = array_type->index_type ();
4004 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
4005 error (_("slice from bad array or bitstring"));
4006
4007 if (lowbound < lowerbound || length < 0
4008 || lowbound + length - 1 > upperbound)
4009 error (_("slice out of range"));
4010
4011 /* FIXME-type-allocation: need a way to free this type when we are
4012 done with it. */
4013 slice_range_type = create_static_range_type (NULL,
4014 range_type->target_type (),
4015 lowbound,
4016 lowbound + length - 1);
4017
4018 {
4019 struct type *element_type = array_type->target_type ();
4020 LONGEST offset
4021 = (lowbound - lowerbound) * check_typedef (element_type)->length ();
4022
4023 slice_type = create_array_type (NULL,
4024 element_type,
4025 slice_range_type);
4026 slice_type->set_code (array_type->code ());
4027
4028 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
4029 slice = allocate_value_lazy (slice_type);
4030 else
4031 {
4032 slice = allocate_value (slice_type);
4033 value_contents_copy (slice, 0, array, offset,
4034 type_length_units (slice_type));
4035 }
4036
4037 set_value_component_location (slice, array);
4038 set_value_offset (slice, value_offset (array) + offset);
4039 }
4040
4041 return slice;
4042 }
4043
4044 /* See value.h. */
4045
4046 struct value *
4047 value_literal_complex (struct value *arg1,
4048 struct value *arg2,
4049 struct type *type)
4050 {
4051 struct value *val;
4052 struct type *real_type = type->target_type ();
4053
4054 val = allocate_value (type);
4055 arg1 = value_cast (real_type, arg1);
4056 arg2 = value_cast (real_type, arg2);
4057
4058 int len = real_type->length ();
4059
4060 copy (value_contents (arg1),
4061 value_contents_raw (val).slice (0, len));
4062 copy (value_contents (arg2),
4063 value_contents_raw (val).slice (len, len));
4064
4065 return val;
4066 }
4067
4068 /* See value.h. */
4069
4070 struct value *
4071 value_real_part (struct value *value)
4072 {
4073 struct type *type = check_typedef (value_type (value));
4074 struct type *ttype = type->target_type ();
4075
4076 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4077 return value_from_component (value, ttype, 0);
4078 }
4079
4080 /* See value.h. */
4081
4082 struct value *
4083 value_imaginary_part (struct value *value)
4084 {
4085 struct type *type = check_typedef (value_type (value));
4086 struct type *ttype = type->target_type ();
4087
4088 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4089 return value_from_component (value, ttype,
4090 check_typedef (ttype)->length ());
4091 }
4092
4093 /* Cast a value into the appropriate complex data type. */
4094
4095 static struct value *
4096 cast_into_complex (struct type *type, struct value *val)
4097 {
4098 struct type *real_type = type->target_type ();
4099
4100 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
4101 {
4102 struct type *val_real_type = value_type (val)->target_type ();
4103 struct value *re_val = allocate_value (val_real_type);
4104 struct value *im_val = allocate_value (val_real_type);
4105 int len = val_real_type->length ();
4106
4107 copy (value_contents (val).slice (0, len),
4108 value_contents_raw (re_val));
4109 copy (value_contents (val).slice (len, len),
4110 value_contents_raw (im_val));
4111
4112 return value_literal_complex (re_val, im_val, type);
4113 }
4114 else if (value_type (val)->code () == TYPE_CODE_FLT
4115 || value_type (val)->code () == TYPE_CODE_INT)
4116 return value_literal_complex (val,
4117 value_zero (real_type, not_lval),
4118 type);
4119 else
4120 error (_("cannot cast non-number to complex"));
4121 }
4122
4123 void _initialize_valops ();
4124 void
4125 _initialize_valops ()
4126 {
4127 add_setshow_boolean_cmd ("overload-resolution", class_support,
4128 &overload_resolution, _("\
4129 Set overload resolution in evaluating C++ functions."), _("\
4130 Show overload resolution in evaluating C++ functions."),
4131 NULL, NULL,
4132 show_overload_resolution,
4133 &setlist, &showlist);
4134 overload_resolution = 1;
4135 }